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Abstract: High-throughput sequence data retrieved from ancient or other degraded samples has
led to unprecedented insights into the evolutionary history of many species, but the analysis of
such sequences also poses specific computational challenges. The most commonly used approach
involves mapping sequence reads to a reference genome. However, this process becomes increasingly
challenging with an elevated genetic distance between target and reference or with the presence of
contaminant sequences with high sequence similarity to the target species. The evaluation and testing
of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of
ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient
Samples), a computational tool that enables the systematic testing of mapping tools for ancient data
by simulating sequence data reflecting the properties of an ancient dataset and performing test runs
using the mapping software and parameter settings of interest. We showcase TAPAS by using it
to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon
linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase
of the number of mapped reads without sacrificing mapping specificity. The increase of mapped
reads effectively reduces the need for additional sequencing, thus making more economical use of
time, resources, and sample material.

Keywords: ancient DNA; short-read mapping; palaeogenomics; paleogenomics; alignment
sensitivity/specificity

1. Introduction

DNA retrieved from ancient or historical specimens is typically highly degraded into small
fragments with damage-derived nucleotide mis-incorporations that complicate sequence analysis [1,2].
Furthermore, large amounts of contaminant molecules are often present in the sample, which can
hamper the identification of endogenous DNA sequences [3]. The specific computational challenges
posed by ancient DNA (aDNA) data were identified early on in the high-throughput sequencing era,
which has led to a number of recommended tools and adjustments (e.g., [1,4–8]).

A commonly used approach for the analysis of ancient sequence data involves the local alignment
or ‘mapping’ of sequence reads to a reference genome. Since the introduction of high-throughput
sequencing, a large number of mapping tools have been developed with their own repertoire of
parameters to fine-tune their performance (see [9]). This multitude of mapping tools as well as
potential interactions between specific mapping parameters can make it difficult to select the most
appropriate approach to maximize mapping performance for a specific dataset. A number of studies
have addressed this problem by exploring and comparing the behavior of different mapping tools and

Genes 2018, 9, 157; doi:10.3390/genes9030157 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://dx.doi.org/10.3390/genes9030157
http://www.mdpi.com/journal/genes


Genes 2018, 9, 157 2 of 12

their parameters [9–12]. However, very few studies have focused specifically on the challenges that
are posed by aDNA data [1,13].

The inherent difficulties of mapping aDNA data are even more pronounced when only a distantly
related reference is available [14,15]. In such cases, sequence divergence between the target species
and reference can hamper successful mapping of the endogenous reads [16]. Most sequence read
aligners (e.g., Burrows-Wheeler Aligner, BWA [17]; Bowtie [18]) allow the adjustment of alignment
stringency. However, relaxing the allowed mismatches between sequence and target may also cause
contaminant sequences to map to the reference. This issue is particularly problematic when working
on species that are highly divergent from available reference species and/or species that are closely
related to common contamination sources such as humans, cats, dogs, or pigs [19,20]. Various studies
have shown that when reducing the stringency of mapping parameters, mapped contaminant reads
can interfere with results of downstream analyses [3,21,22]. This illustrates the need for a tool that can
systematically assess the effect of the mapping tool and its parameters (e.g., Teaser [10] Rabema [11],
GCAT [23]). However, the distinctive challenges posed by aDNA data should be taken into account for
mapping optimization, which may not be applicable for data derived from high quality DNA obtained
when sampling living organisms.

In this article we present TAPAS, which is a tool that allows the Testing of Alignment Parameters
for Ancient Samples (see Figure 1). TAPAS achieves this by simulating sequence reads with user-defined
characteristics such as the read length, sequence divergence, damage patterns, and contaminant
sequences. TAPAS systematically tests a range of mapping parameters selected by the user. The output
can then be investigated in terms of the sensitivity (fraction of all endogenous reads that map correctly
to the reference genome), specificity (fraction of all contaminant reads that fail to map to the reference),
and the false positive rate (mapped contaminant reads compared to the total number of mapped
reads). In this way, TAPAS offers the opportunity to test the effects of multiple mapping parameter
combinations on a simulated dataset representing the characteristics of any in vivo generated data.
TAPAS allows the user to make an informed decision on which parameters to use for their data based
on the desired mapping effectiveness and stringency.
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Figure 1. (A) Schematic of the TAPAS (Testing of Alignment Parameters for Ancient Samples) tool
indicating a typical workflow from in vivo data to mapping assessment. (B) Different classes of reads
that TAPAS assigns* incorrect and unmapped reads are by default not independently considered but
can be distinguished if needed.
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2. Materials and Methods

2.1. The TAPAS Tool

The TAPAS tool is a pipeline of shell and python scripts designed to automate the assessment of
mapping parameters and should run on any GNU/Linux environment. The only required pre-installed
dependencies are R v ≥ 3.2, Python v ≥ 3.4 and the Python package manager ‘pip’. To improve the
first-time usability and minimize the impact on the users' system, R and Python packages are loaded
from a directory within TAPAS and can be downloaded and installed using a single command. TAPAS
analyses conducted in this study utilized a Linux system running Scientific Linux v6.9, Python v3.5.0,
and R v3.4.3. A schematic workflow is shown in Figure 1. A detailed manual and walkthrough also
accompanies the TAPAS distribution (GitHub page: https://mlell.github.io/tapas).

2.1.1. Data Simulation

The TAPAS tool is designed to simulate sequence reads with custom properties including average
read length, damage patterns, contaminant sequences, and the sequence divergence to the reference.
To this end, TAPAS can take any multi-FASTA file (i.e., a genome assembly comprising multiple
scaffolds available from GenBank or other public repository) and simulate sequence read data in a
standard format (i.e., FASTQ file). The read length distribution can be specified by the user. The desired
patterns of nucleotide mis-incorporation in the simulated read set can be inferred from preliminary
data exploration using the commonly-used tool mapDamage [24] or alternatively specified by the
user. Simulated endogenous reads can be subjected to random base substitutions, which would reflect
genetic distance between the target sequence and reference genome. Finally, using TAPAS, it is also
possible to generate simulated metagenomic datasets comprising of sequences from both endogenous
and contaminant (exogenous) sources at a ratio decided by the user. This allows for a direct assessment
of the amount of false mapping of contaminant sequences. Modeling of fragment length distribution,
genetic divergence, and DNA damage of contaminant sequences can be performed in the same way
as described for endogenous sequences. The flexibility provided by TAPAS also allows the results of
preliminary data analysis to be used to estimate appropriate parameter values for data simulation
such that simulated datasets can be tailored precisely for specific research questions and objectives.

2.1.2. Automated Read Mapping and Evaluation

TAPAS allows the automation of short read alignment for any combination of mapping parameters
of interest. This allows users to directly and easily assess the effect of and potential interactions between
a wide variety of parameter settings in a straightforward and reproducible fashion. For the work
presented here, the commonly-used mapping software BWA v0.7.8 [17] has been used. Other mapping
algorithms can also easily be employed for this step (details on how to implement other mapping tools
are available in the documentation available from https://github.com/mlell/tapas). The mapping
algorithm is integrated into the analysis pipeline by simply providing the respective program call
to TAPAS. For studying the effect of a mapping parameter, the user can provide a placeholder in
the call. The parameter values to be tested are then indicated in a configuration file based on which
TAPAS performs mapping runs with all possible combinations of parameter values. The final output
comprises a table reporting the results of all mapping runs.

For each mapping run, the sensitivity and specificity are reported. These two measures summarize
the most important outcomes of read mapping analysis. Sensitivity represents the fraction of all
endogenous reads that map correctly to the reference genome. For our purposes, unmapped and
incorrectly mapped are both considered ‘incorrect’. Specificity represents the fraction of all contaminant
reads that fail to map to the reference. For this purpose, the original genome coordinates are compared
with the reported mapping coordinates to assess read mapping for each run. Endogenous reads can
either be assigned as correctly mapped (positions match), incorrectly mapped (positions do not match),
and unmapped. Contaminant reads are either incorrectly mapped (when the read is mapped) or

https://mlell.github.io/tapas
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correct (when the read is not mapped) (see Figure 1B). Based on the sensitivity, specificity, and runtime,
the parameter combination which is most appropriate for the simulated dataset can then be used for
the in vivo dataset of interest.

2.2. In Vivo Generated Linsang Dataset

To demonstrate the application of TAPAS, we used the tool to assess and optimize the mapping
parameters for in vivo sequence data recovered from a banded linsang (Prionodon linsang). This sample
was chosen based on two criteria. First, the data from this elusive carnivore was retrieved from a
preserved skin sample, which is generally expected to yield highly degraded DNA [25]. Second,
no intrageneric nuclear genome is available to serve as mapping reference for this species. At the time
of writing, the closest available reference genome is the domestic cat (Felis catus), which is estimated to
be around 28 million years diverged from the linsang [26]. The poor-quality sample and the expected
sequence divergence between target species and reference are likely to result in suboptimal mapping
results, which can be both assessed and optimized using TAPAS. Details on wet lab sample processing
can be found in the Supplementary Material (File S1) [20,27–32]).

Using TAPAS, simulated endogenous sequence data was generated from the cat genome (F. catus
v6.2, GenBank Accession number GCA_000181335.2) by applying 5% random nucleotide substitutions
to approximate the expected evolutionary distance between cat and linsang. The composition of the
simulated dataset (Table S1) was based on analysis of the in vivo dataset using FastQ Screen v0.5.0
(Supplementary Materials, Figure S1, Table S2). Exogenous (contaminant) reads were generated from
the human genome (Homo sapiens GrCH38), which represents a likely source of contamination, and the
dog genome (Canis lupus familiaris v3.1), which represents a closely related species to linsang that
could potentially interfere with mapping results when the alignment mismatch parameters are relaxed.
As bacterial and fungal DNA is generally the most abundant source of contamination [33,34], a total of
five bacterial and fungal genomes were selected based on the BLAST results (Supplementary Material,
Table S1).

For mapping using BWA aln, we chose to investigate the parameters defining the number of
allowed mismatches between read and reference (n) and seed length (l) since these have previously
been suggested to influence the mapping results [1,12,35]. Allowing more mismatches between read
and reference is thought to result in increased sensitivity at the expense of decreased specificity [1].
However, it may allow an increase of false mapping of contaminant sequences. Disabling of the
mapping seed function has previously been advocated for aDNA in order to utilize data for complete
DNA fragments, which frequently contain an excess of nucleotide mis-incorporations at their terminal
ends [36] and can be achieved by setting seed length to a value much greater than the expected fragment
length. The range of values tested for n and l (Table S3) resulted in 30 individual mapping runs.

Mapping runs for simulated data were assessed based on their sensitivity, specificity, and runtime.
Additionally, false positive rates (contaminant reads mapped compared to the total number of mapped
reads) were investigated (Figure 2). After selecting TAPAS-optimized parameters, these parameters
were used to re-map the in vivo generated data and compare their performance in terms of the
percentage of mapped reads, read length, damage patterns, and coverage (Table 1, Figure S2). Finally,
it should be noted that this example serves primarily to demonstrate the utility and application
of the TAPAS tool in a real-world scenario rather than an exhaustive investigation of optimal
mapping procedures for this particular organism. If biological conclusions were to be drawn from
this dataset, then further testing of additional mapping references and contaminating organisms
as well as additional mapping parameters and algorithms may be desirable and allow for further
mapping optimization.
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Figure 2. False positive rates calculated from all mapped reads (faded colors) and from all mapped
reads with high mapping quality (MapQ > 30; dark colors). A total of 30 combinations of the parameters
mismatch value (n, x-axis) and seed length (l, coloured bars, see key top right) were tested by using
one million simulated reads and the cat genome as reference. Even at the most relaxed mismatch value
tested, less than 6%of contaminant reads mapped successfully to the reference genome after quality
filtering. This figure was generated using R (v3.4.2 and v3.4.3 [37]).

Table 1. Summary of mapping results for in vivo generated data mapped with two sets of mapping
parameters in comparison to mapping runs with simulated data applying the same mapping parameters
for the linsang data.

n l
Reads

for
Mapping

Duplicates
(%)

Reads
Mapped

Reads
Mapped

(%)
Mapped bp Coverage

Median
Read

Length

Total
CPU

Time (h)

fold increase

in vivo
generated

data

0.04 * 32 * 6,178,108 1.92 580,773 9.40 26,240,720 0.011 42 9.23
0.004 32 * 6,178,108 2.06 1,017,849 16.48 46,032,861 0.019 42 33.50

1.1 1.8 1.8 1.8 1.8 1.0 3.6

simulated
data

0.04 * 32 * 1,000,000 0.78 117,379 11.74 5,802,202 0.002 44 0.10
0.004 32 * 1,000,000 1.08 171,099 17.11 8,567,055 0.003 44 1.32

1.4 1.5 1.5 1.5 1.5 1.0 13.5

n: mismatch value; l: seed length; * default mapping parameters of Burrows-Wheeler Aligner (BWA) aln; CPU: core
processing unit.

2.3. Published Bison Dataset

In order to showcase the TAPAS tool on a previously published dataset, we evaluated the
mapping efficacy for recently published sequence data generated from a historical European bison
sample (Bison bonasus [38]). We selected this dataset because it illustrates a relevant challenge for
admixture studies where mapping to the genome of a potentially admixing closely related species
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(in this case the cow, Bos taurus) may bias admixture estimates, and thus requires the use of a more
divergent mapping reference that is outgroup to the focal clade [38]. We followed the same procedure
for this dataset as for the linsang dataset, using a subsample of 10 million reads as input in order
to make the size of the bison dataset comparable to the linsang dataset (Supplementary Material,
File S1 for details). Sequence reads representing endogenous data were generated from the water
buffalo (Bubalus bubalis). Seven different organisms were selected as contaminant sequences (Table S1).
Mapping was performed using the water buffalo (GenBank accession GCF_000471725.1) as a reference
sequence. The estimated divergence time between water buffalo and bison (~11 M years, [39]) is more
recent than that found for the domestic cat and linsang. Furthermore, a higher sequence similarity is
expected because substitution rates are generally slower in larger bodied animals [40].

3. Results

3.1. In Vivo Linsang Data

For the in vivo linsang data, a total of 6,178,108 reads were available for mapping to the cat
genome after adapter trimming. Mapping using BWA aln with default mapping parameters resulted
in 580,773 mapped reads (9.40% of reads available after adapter trimming) and a coverage (number of
covered bases divided by the size of the reference genome) of 0.01-fold. The endogenous content of
the linsang sample was roughly estimated to be around 26% with some contaminants from common
sources such as cow (~6%), dog (~13%), and human (~7%) (estimated using FastQ Screen; Figure S1).
The majority of reads (about 70%) could not be mapped to any of the chosen reference sequences (Table
S2), which could represent contaminant sources not included in the reference database. The mapped
reads show damage patterns characteristic of archival DNA as well as a baseline substitution rate for
all reads of about 3%, which is expected when mapping to a divergent reference and almost certainly
represents an underestimate as more divergent reads may fail to map the data (Figure S2).

3.2. TAPAS

3.2.1. Simulated Data Composition

Based on the preliminary results obtained using FastQ Screen, the simulated read set was
generated to contain 26% cat sequences (to reflect the endogenous reads) and 74% contaminant
reads (1% human, 3% dog, and 70% bacteria and fungi). Both endogenous and contaminant reads were
then simulated following an exponential decay distribution as expected for degraded samples [2,41]
with a minimum read length of 30 bp and a decay length of 15 bp (Supplementary Material, File S1).
Additionally, following the mapDamage output from the in vivo data, random substitutions (5%) were
introduced in the endogenous reads to reflect the sequence divergence between the cat and linsang
as well as C to T substitutions to reflect aDNA damage. In total, one million reads were simulated as
input for performing the mapping simulations.

3.2.2. Sensitivity, Specificity, and False Positive Rate

The sensitivity when using different mapping parameters varied considerably, ranging from
18% to 80% of simulated endogenous reads that could be mapped correctly (Figure 3, Table S4).
As expected, sensitivity increased with a more relaxed mismatch value (n) (up to 35% improvement
compared to default settings) and decreased with more stringent mismatch values (up to 27% reduction
compared to default settings). Our results also show that mismatch value and seed length may have
a slight interactive effect where the optimal seed length differs with particular mismatch values
(Figure 3). The general pattern remains unchanged before and after removing reads with low mapping
quality (MapQ < 30), although more reads were lost for more stringent mismatch values (Figure 3).
The mapping quality as assigned by BWA aln takes the sensitivity of the alignment algorithm into
account, which leads to an overall reduction in mapping quality when a more stringent mapping
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approach is used (based on the source code from BWA). This resulted in a greater proportion of reads
removed when applying a MapQ filter of 30 for more stringent mismatch values.Genes 2018, 9, x FOR PEER REVIEW  7 of 12 
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Figure 3. Sensitivity using BWA aln before (faded colors) and after (darker colors) filtering reads with
low mapping quality (MapQ < 30). A total of 30 combinations of the parameters mismatch value
(n, x-axis) and seed length (l, coloured bars, see key top right) were tested using one million simulated
reads and the cat genome as reference. Increased sensitivity is achieved by relaxing the mismatch value.
Furthermore, mismatch value and seed length appear to have an interactive effect where the impact of
the seed length parameter on sensitivity is more pronounced at lower mismatch values. This figure
was generated using R (v3.4.2 and v3.4.3, [37]).

The specificity never dropped below 96% (Table S4). Furthermore, even at the most relaxed
mismatch value (n value of 0.0001), the false positive rate was less than 6% (Figure 2). The number of
incorrectly mapped endogenous reads never exceeded 0.23% for any mapping run (Table S4).

3.2.3. TAPAS-Optimized Parameters

The simulated mapping results generated using TAPAS provide an approximation of the effect
of different mapping parameters for the in vivo dataset. The optimal parameter combination was
selected based on the sensitivity, specificity, and runtime. We selected a more relaxed mismatch value
of 0.004 (i.e., allowing for more mismatches) and seed length of 32 bp as most appropriate for our
dataset since it recovered the highest sensitivity (65%; Figure 3, Table S4) without considerable sacrifice
of specificity (still above 99%; Table S4). Although our results suggest that a further relaxed mismatch
value (n < 0.0001) is likely to improve the sensitivity even further, the increased runtime (up to 5.05 core
processing unit (CPU) days for one million reads, Figure S3) may make this approach computationally
unfeasible for larger datasets.

The mapping results for the simulated reads mapped with default parameters (n = 0.04, l = 32)
and with TAPAS-optimized parameters (n = 0.004, l = 32) showed an increase by 1.5-fold in the number
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of mapped reads and the endogenous content (corresponding to an increase in sensitivity by 20%,
Table S4) and of 1.5-fold in coverage (Table 1).

The TAPAS-optimized parameters (n = 0.004, l = 32) for mapping the in vivo data yielded a
1.8-fold increase of mapped reads compared to the default parameters and a 1.8-fold increase in
coverage (Table 1, Figure 4). Assuming high specificity, the improvement of mapping results was
therefore even higher than estimated based on the simulated reads.Genes 2018, 9, x FOR PEER REVIEW  8 of 12 
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Figure 4. Sensitivity, specificity, and false positive rates of mapping using BWA aln with default
parameters (black) and with the optimized parameters (red) based on the simulated data for the linsang
(top) and bison (bottom). Using TAPAS, we can show an improvement of sensitivity (1.5-fold for the
linsang and 1.4-fold for the bison) with only limited reduction in specificity while keeping the false
positive rate low. This figure was generated using R (v3.4.2 and v3.4.3 [37]).

3.3. Published Bison Data

Mapping the 10 million in vivo data subsample from the bison data with BWA aln by using the
default mapping parameters resulted in 1.56 million mapped reads (15.6%, resulting in a coverage of
0.03-fold; Table S5). From the FastQ Screen results (Figure S1C), the data composition was estimated
to be about 30% endogenous DNA with contaminants from human (~1%) and bacterial and fungal
organisms (~69%) (Table S1). After performing read simulation and mapping evaluation using TAPAS
(Supplementary Material, File S1), we choose values for the parameters n and l. With these settings,
we achieved the highest sensitivity while still maintaining a specificity >99% (n = 0.0004, l = 19).
We achieved a 1.4-fold improvement of sensitivity and a 1.4-fold increase in coverage (Figure 4,
Tables S5 and S6).

4. Discussion

In this study, we show that the simulation of aDNA data sequence data is a viable and effective
approach for the systematic optimization of mapping algorithms and parameters. Applying this
approach to the linsang dataset yielded a 1.8-fold improvement in sequence recovery with no apparent
sacrifice of specificity. We have furthermore applied the TAPAS tool to assess the mapping efficacy for
a previously published dataset (European bison, [38]). We showed that, unlike the linsang dataset,
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only small improvements were possible for the bison dataset compared to the default parameters
used previously. Potential reasons why this could be the case may be the properties of the reference
genome [12], the reduced evolutionary distance between target and reference, or the longer fragment
length. This confirms that different datasets behave differently and therefore are likely to benefit from
individual mapping parameter assessment and optimization, which further underlines the value of
the TAPAS tool for the structural assessment of mapping efficacy for ancient DNA datasets.

In line with previous studies [13], our analysis showed that BWA aln retains a high level of
specificity when using extremely relaxed mismatch values even with a high abundance of contaminant
sequences including those from closely related species. A commonly used mapping strategy in aDNA
research [36,42] is to systematically disable the seeding when mapping aDNA with BWA aln [1].
However, both reducing the seed length and disabling seeding almost always resulted in higher
sensitivity values than the default seed length (n = 32). The effect of the seed length does become more
pronounced as the mismatch value is relaxed, which indicates a potential interactive effect between
these parameters. Such interactions are likely to complicate the optimization of mapping parameters
and further support the benefit of the TAPAS tool for this task.

Although tools designed for datasets derived from high quality DNA are available
(e.g., Teaser [10], Rabema [11], GCAT [23]), the characteristics of aDNA present specific challenges
that are not common for modern genomic data. Issues such as spurious mapping of contaminants
can potentially have a detrimental impact on mapping and subsequent analysis of ancient data
and therefore most tools for benchmarking and optimization for standard datasets are less suitable
for aDNA datasets. To date, only a single tool has been developed for simulating the specific
characteristics of aDNA data (‘Gargammel’; [13]). Gargammel offers comprehensive aDNA data
simulation including fragment size, base mis-incorporation patterns, and nucleotide composition to
reflect the biases introduced by different sample types, library preparation methods, and sequencing
protocols. Simulated data are then mapped to a reference following standard recommendations for
processing aDNA data (following [1]). In contrast to Gargammel, TAPAS is specifically focused on
identifying optimized mapping parameters in order to maximize the amount of usable data that can
be generated from one sample while also giving an estimation of specificity and false positive rate.
By recording the original coordinates during read generation, TAPAS allows for a clear distinction of
correctly and incorrectly mapped and unmapped reads rather than determining only the change in the
number of mapped reads. As such, it offers a more detailed evaluation of the mapping efficiency.

A further core component of TAPAS is the possibility to introduce a fixed genome wide mutation
rate during read generation. While this is currently limited to a simplified representation of the
evolutionary divergence between target species and the available reference genome, it does enable
a structural evaluation of a more relaxed mismatch strategy for read alignment. This feature could
be further improved by the implementation of specific nucleotide substitution models to mutate the
sequences. Further refinements to data simulation could be achieved by introducing more complex
models for generating read length distributions and patterns of nucleotide mis-incorporation as well as
the simulation of short indels in the sequence reads. This would allow a more accurate representation
of empirical datasets. An additional feature that could be added to future versions is a more detailed
report of false positive mapping. For example, the distribution of falsely mapped reads across the
genome and GC content could be used. TAPAS’ modular design and simple data formats should
allow for a relatively straightforward implementation of any such refinements in the future. Although
simulated datasets will never encompass the entire complexity of an empirical dataset, it nevertheless
allows for a more objective and structural assessment of the alignment efficiency when mapping reads
from a particular dataset.

5. Conclusions

Our study highlights the potential benefits of systematically optimizing mapping tools and their
parameters when analyzing aDNA datasets. The effects of altering mapping parameter values and the
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interaction between parameters, may not be easy to predict and likely depend on a multitude of factors
such as fragment size, the reference genome, and contamination. The TAPAS tool presented here
provides a way of exploring these processes in an automated and reproducible manner. Furthermore,
this study reinforces the potential for bioinformatic optimization in advancing the study of aDNA,
which is likely to become increasingly important as future developments in wet lab procedures extend
both the time depth and taxonomic breadth of sequence retrieval.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/3/157/s1. File S1:
Detailed experimental procedures for wetlab protocols and bioinformatic pipelines. Figure S1: FastQ Screen
results for the in vivo generated dataset and the simulated dataset of the linsang and the bison sample: (A)
linsang—in vivo generated dataset, (B) linsang—simulated dataset, (C) bison—in vivo generated dataset, (D)
bison—simulated dataset. The majority of reads could not be matched to any of the genomes included in the
database (Table S2). Figure S2: Extracts from mapDamage output for in vivo generated data and simulated data
of the linsang sample using either default or TAPAS-optimized mapping parameters: (A) in vivo generated data
mapped with default settings, (B) in vivo generated data mapped with TAPAS-optimized settings, (C) simulated
data mapped with default settings, (D) simulated data mapped with TAPAS-optimized settings. Figures adapted
from the output of mapDamage2 [9]. Graph colors represent C to T substitutions (red), G to A substitutions
(blue), all other substitutions (grey), soft-clipped bases (orange), and deletions/insertions relative to the reference
(green/purple). Both simulated and in vivo generated datasets show damage patterns characteristic of degraded
DNA. Figure S3: Runtime in seconds (CPU time, y-axis) using BWA aln for mapping one million simulated linsang
reads to the cat genome testing 30 combinations of the parameters mismatch value (n, x-axis) and seed length (l,
colored bars, see key top right). Particularly at long seed lengths runtime becomes increasingly unfeasible for
large datasets at more relaxed mismatch values. Bars for the longest runtimes are broken to aid visualization of
shorter runtimes. This figure was generated using R (v3.4.2 and v3.4.3 [11]). Table S1: Genomes used to assemble
the simulated datasets. Fractions of the endogenous and contaminant sequences were estimated from the in vivo
data (described in Materials and Methods in main text). Table S2: Genomes included in the database for screening
in vivo generated and simulated reads with FastQ Screen. Table S3: Values of mapping parameters systematically
tested with TAPAS. The default settings of BWA aln are indicated with an asterisk. Table S4: Summary of the total
number of endogenous (endo) and contaminant (exo) reads mapped correctly and incorrectly filtered for mapping
quality (≥30; <30) for 30 mapping runs with BWA aln using 30 different combinations of the mapping parameters
mismatch value (n) and seed length (l) for the simulated linsang data. Table S5: Summary of mapping results
for in vivo generated data mapped with two sets of mapping parameters in comparison to mapping runs with
simulated data applying the same mapping parameters for the bison data. n = mismatch value, l = seed length,
* default mapping parameters of BWA aln, + random subsample of ten million reads. Table S6: Summary of the
total number of endogenous (endo) and contaminant (exo) reads mapped correctly and incorrectly filtered for
mapping quality (≥30; <30) for 30 mapping runs with BWA aln using 30 different combinations of the mapping
parameters mismatch value (n) and seed length (l) for the simulated bison data.
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