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Summary

The central aim of this thesis is to demonstrate the benefits of innovative frequency-based
methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems
may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensi-
tive to changes in climate and land use because they integrate disturbances across their entire
catchment. This makes understanding the dynamics of lake ecosystems an intriguing and im-
portant research priority. This thesis adds new findings to the baseline knowledge regarding
variability in lake ecosystems. It provides a literature-based, data-driven and methodological
framework for the investigation of variability and patterns in environmental parameters in the
time frequency domain.

Observational data often show considerable variability in the environmental parameters of
lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic
processes inside and outside the ecosystems. These run in parallel and may operate at vastly
different time scales, ranging from seconds to decades. In measured data, all of these signals are
superimposed, and dominant processes may obscure the signals of other processes, particularly
when analyzing mean values over long time scales. Dominant signals are often caused by
phenomena at long time scales like seasonal cycles, and most of these are well understood in the
limnological literature. The variability injected by biological, chemical and physical processes
operating at smaller time scales is less well understood. However, variability affects the state
and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently
high temporal resolution, the investigation of the full spectrum of variability requires innovative
methods of analysis.

Analyzing observational data in the time frequency domain allows to identify variability at
different time scales and facilitates their attribution to specific processes. The merit of this ap-
proach is subsequently demonstrated in three case studies. The first study uses a conceptual
analysis to demonstrate the importance of time scales for the detection of ecosystem responses
to climate change. These responses often occur during critical time windows in the year, may
exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can
only be detected if the temporal resolution of the data is high enough. The second study applies
Fast Fourier Transform spectral analysis to two decades of daily water temperature measure-
ments to show how temporal and spatial scales of water temperature variability can serve as an
indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as
a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the
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onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake.
Synchronicities among limnological and meteorological time series in narrow frequency bands
were used to identify and disentangle prevailing limnological processes.

Beyond the novel empirical findings reported in the three case studies, this thesis aims to
more generally be of interest to researchers dealing with now increasingly available time series
data at high temporal resolution. A set of innovative methods to attribute patterns to processes,
their drivers and constraints is provided to help make more efficient use of this kind of data.
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Zusammenfassung

See-Ökosysteme sind eine der bedrohtesten Ressourcen der Hydrosphäre. Sie reagieren
besonders sensibel auf Veränderungen des Klimas und auf Einflüsse durch Landnutzung, da
verschiedene Prozesse im gesamten Einzugsgebiet auf sie einwirken. Daher ist es von beson-
derer Dringlichkeit, die verschiedenen Prozess-Dynamiken in See-Ökosystemen besser zu ver-
stehen. Die hier vorliegende Doktorarbeit hat zum Ziel, das bestehende Wissen bezüglich der
verschiedenen einwirkenden Prozesse in See-Ökosystemen zu erweitern. Die Arbeit stellt ein
Forschungsdesign zur Diskussion, das eine Literatur-basierte und auf empirischen Erhebungen
beruhende Analyse von Variabilität und Mustern in großen Datensätzen verschiedener Umwelt-
parameter im Zeit-Frequenz-Raum ermöglicht.

Umweltparameter sind häufig charakterisiert durch eine hohe zeitliche Dynamik. Diese
Variabilität steht im Zentrum dieser Arbeit. Sie wird durch eine Fülle an periodischen und
stochastischen Prozessen innerhalb und außerhalb des Ökosystems getrieben. Diese Prozesse
können gleichzeitig und auf sehr unterschiedlichen Zeitskalen, von Sekunden bis hin zu
Dekaden, ablaufen. In Messdaten überlagern sich alle diese Signale, und dominante Prozesse
können die Signale anderer Prozesse verschleiern, insbesondere wenn Mittelwerte über längere
Zeiträume analysiert werden. Dominante Signale werden oft durch Prozesse auf längeren Zeit-
skalen verursacht, wie z. B. saisonale Zyklen. Diese sind im Allgemeinen in der limnologischen
Literatur gut dokumentiert. See-Ökosysteme werden allerdings von Prozessen auf allen Zeit-
skalen beeinflusst. Insbesondere biologische, chemische und physikalische Prozesse operieren
in kürzeren Zeitrahmen. Die Variabilität, die über solche Prozesse in See-Ökosysteme einge-
bracht wird, ist bisher weit weniger gut erforscht. Neben der Notwendigkeit, Umweltparameter
in hoher zeitlicher Auflösung zu messen, erfordert die Untersuchung der kompletten Bandbreite
an Variabilität innovative Analysemethoden.

Die Berücksichtigung der Zeit-Frequenz-Domäne kann dabei helfen, Dynamiken auf ver-
schiedenen Zeitskalen zu identifizieren und daraus bestimmte Prozesse abzuleiten. Diese Arbeit
zeigt die Vorzüge dieser Herangehensweise anhand von drei Fallstudien auf. Die erste Studie
zeigt die Bedeutung von Zeitskalen für die Erfassung von Ökosystem-Reaktionen auf klima-
tische Veränderungen. Diese ereignen sich oft während kritischer Zeitfenster im Jahresver-
lauf und können durch die Überschreitung von Schwellenwerten in den treibenden Variablen,
unter Umständen zeitlich verzögert, verursacht sein. Solche Zusammenhänge können nur er-
fasst werden, wenn die zeitliche Auflösung der Daten hoch genug ist. In der zweiten Studie
wird die Spektralanalyse, basierend auf der Fast Fourier Transformation, auf einen Datensatz
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täglicher Messungen der Wassertemperatur über zwanzig Jahre hinweg angewendet. Es wird
gezeigt, wie zeitliche und räumliche Skalen der Variabilität der Wassertemperatur als Indikator
für Mischprozesse in einem polymiktischen See dienen können. In der dritten Studie wird die
Wavelet Coherence als Diagnose-Werkzeug für einen multivariaten, hochfrequenten Datensatz
genutzt. Dieser wurde zwischen dem Einsetzen einer Eisbedeckung und einer Sommerblüte von
Cyanobakteriern in einem polymiktischen See im Jahr 2009 erhoben. Synchronizitäten zwis-
chen limnologischen und meteorologischen Zeitreihen in schmalen Frequenz-Bändern wurden
genutzt, um vorherrschende limnologische Prozesse zu identifizieren und analytisch zu trennen.

Neben den neuen empirischen Erkenntnissen, die in den drei Fallstudien präsentiert wer-
den, zielt diese Doktorarbeit darauf ab, Forscher*innen, Behörden und politischen Entschei-
dungsträger*innen eine Grundlage zu liefern, die hohe zeitliche Auflösung der heute vielfach
verfügbaren Monitoring-Datensätze effizienter zu nutzen. Innovative Methoden sollen dabei
helfen, Muster in den Daten Prozessen zuzuordnen und die entsprechenden Treiber und Limi-
tationen zu identifizieren.
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1 Introduction

1.1 Variability, lakes and time scales

Variability is a fundamental property of our world. But what exactly is variability, and how
can we quantify and characterize it? Although “variability” is among the most common words
in the ecological literature, the term is often used rather vaguely (Kareiva and Bergelson 1997).
Seasonal cycles of sunlight and temperature, for example, in temperate and polar regions are
among the most striking variations that can be observed. They influence manifold processes in
all aspects of human, animal, plant or microbial life. Changes on longer time scales, such as cli-
mate or land use changes, have received much attention, as their effects (e.g. heat waves, floods,
droughts, shifts in phenology or changes in species composition) increasingly manifest (IPCC
2013) and are often accompanied by tremendous loss of life and/or economic assets (Easterling
et al. 2000). On the other hand, shorter time scales are much more directly experienced by liv-
ing beings, as the variability from week to week, from day to day, from hour to hour or on even
shorter time scales forms an important part of their daily lives. However, changes on short time
scales have received much less scientific attention, as they are often less obvious and harder
to understand in observational data (Benedetti-Cecchi 2003; Guadayol et al. 2014). Variability
can have periodic (i.e. composed of regular cycles on specific time scales) and stochastic (i.e.
originating from random, unpredictable variations) components at all of these time scales, rang-
ing from seconds to days to years to decades. Besides this temporal characterization, variability
can also be described in terms of the “frequency”, which gives information on the number of
occurrences of a considered quantity in a given time interval. The variability components at all
of these frequencies act simultaneously and, superimposed, constitute the variability observed
in the world (Sabo and Post 2008; Franke et al. 2013). Aquatic ecosystems form no exception.

The availability of freshwater is one of the most vital factors for the livability on planet Earth.
At the same time, freshwater ecosystems may be the most threatened part of the hydrosphere
(Abell et al. 2007; Kernan et al. 2010) and face a disproportionately high risk of species ex-
tinction and decline in abundances compared to marine and terrestrial ecosystems (Young et al.
2016). Lakes are particularly vulnerable to changes in climate parameters, because variations
in climate and land use in their entire catchment directly affect the entire lake ecosystem, and
because freshwater fauna is spatially highly constrained (IPCC 2013; Young et al. 2016). For
example, variations in air temperature, solar radiation, wind speed or precipitation affect water
temperature, evaporation, water chemistry, rates of biological processes, intensity and duration
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1 Introduction

of ice cover, thermal regime and mixing processes in lakes. Lakes react sensitively to vari-
ations in their entire catchment and are therefore particularly suitable as sensors for climatic
changes (Adrian et al. 2009; Schindler 2009; Williamson et al. 2014). Lakes integrate over
external drivers, i.e. related to climate, weather and land use, and internal physical, chemical or
biological processes. Externally and internally driven processes in lake ecosystems occur from
short to long time scales, or at high to low frequencies. Therefore, lakes provide very intriguing
and fundamentally important examples for the investigation of patterns of variability and their
ascription to processes.

One example of (low-frequency) variability is the fact that our world is warming (IPCC
2013), and with it the majority of lakes worldwide (O’Reilly et al. 2015; Sharma et al. 2015;
Fig. 1.1). Water temperature is the major driver of almost all processes in lakes (Winder and

Fig. 1.1: Map of trends in lake summer surface water temperature from 1985 to 2009 (O’Reilly
et al. 2015).

Schindler 2004; Hanson et al. 2006; Lampert and Sommer 2007), which makes it particularly
important to capture and understand patterns and time scales of water temperature variability.
How much lakes are warming is subject to substantial regional variation and is not per se ex-
plained by geographic location or morphologic features such as lake depth, water volume or
lake surface area (O’Reilly et al. 2015). Furthermore, trends in lake water temperature may
differ seasonally (Livingstone 2003) and between water depths (Kraemer et al. 2015). These
examples illustrate that climate change is often addressed in terms of changes of the mean.
However, there is evidence that, together with an overall increase in temperature, the variance
may increase as well. This implies not only a shift, but also a broadening of the statistical distri-
bution of temperature (Fig. 1.2). Recent increases in the variability of air temperature have been
reported especially in Europe (Schär et al. 2004; Vidale et al. 2007; Huntingford et al. 2013;
IPCC 2013) and have as well been suspected for lake water temperature (Nickus et al. 2010;
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1.1 Variability, lakes and time scales

Fig. 1.2: Illustration of the effect of an increase in mean and variance on the probability density
function of temperature; adapted from IPCC (2001, 2013).

Guadayol et al. 2014). This increased temperature variability is not captured in temperature
means or changes of the mean.

Nevertheless, environmental variables are often communicated as mean values over longer
periods of time (Benedetti-Cecchi 2003; Coble et al. 2016). Yet, looking at a mean value is
similar to reading only the cover of a book – the reader may get a certain notion of the content,
but the story that led to the title (or the mean value) will be obscured. When considering
monthly mean values or discrete monthly measurements, for example, a seasonal variation may
be revealed, which could be the most dominant time scale of variability. However, this would
correspond to reading every tenth page of a book, enabling a broad understanding of the story.
To really grasp the entire information would, however, require reading every single word of
that book. Detecting the entire spectrum of variability in an ecosystem requires to consider
long time scales at high temporal resolution. Mean values mask environmental variability,
which is, however, fundamentally important for the structuring and functionality of (aquatic)
ecosystems (Reynolds 1990; Benedetti-Cecchi 2003; Fraterrigo and Rusak 2008; Benincà et al.
2011; Guadayol et al. 2014). Yet, Platt and Denman (1975) as well as Coble et al. (2016), 40
years apart, observe that although researchers are aware that the climate is variable, they often
fail to adequately address this variability in analytic, experimental or laboratory studies. Coble
et al. (2016) go as far as to attest large parts of the literature a “concerning lack of baseline
knowledge” of even understanding the role, characteristics and implications of variability in
many ecosystems.

Addressing temporal variability is important for several reasons. For example, temperature
time series with the same mean value can otherwise exhibit substantial differences, as a mean
value can derive from a multitude of patterns. Such detailed characteristics of the temporal
evolution of temperature can play a crucial role for ecology in general (e.g. Drake 2005; Wang
et al. 2014), and for climatically driven aquatic processes and aquatic organisms in particular
(Reynolds 1990; Müller-Navarra et al. 1997; Cloern and Jassby 2010; Shurin et al. 2010; Posch
et al. 2012). Local populations can even be driven to extinction by environmental fluctuations,
with the risk of extinction being determined by the amount of, and relationship between, short-
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1 Introduction

term and long-term variation (Ripa and Lundberg 1996; Heino et al. 2000; Lögdberg and Wen-
nergren 2012). There is evidence that aquatic organisms might be more affected by increased
variability of physical driving forces (mainly water temperature) than by increases in the mean
of drivers: Barbosa et al. (2014) showed that under increased temperature variability, Daph-

nia magna, a zooplankton species, was unable to respond appropriately to predation risk and
had reduced growth rates and impaired development of morphological defenses. On the other
hand, increased long-term growth rates in zooplankton were recorded under increased variation
in temperature (Drake 2005). Lastly, Shurin et al. (2010) observed higher zooplankton species
richness in lakes with greater water temperature variability at interannual, seasonal and residual
time scales. While the effects of increased environmental variability may hence be beneficial
or detrimental for organisms, their physiological stress appears to be enhanced overall (Sabo
and Post 2008; Barbosa et al. 2014). It is therefore crucial to capture and characterize the tem-
poral variability inherent in climate and weather observations in order to understand ecosystem
responses to them.

Variability in aquatic ecosystems happens at time scales that reach from sub-seconds to
decades, meaning from high to low frequencies (Fig. 1.3). Biochemical reactions happen at

Fig. 1.3: Time scales of environmental variability; modified from Reynolds (1990).

high frequencies on time scales below seconds (Reynolds 1990). Photosynthetic reactions can
span seconds to days, while population dynamics of planktonic species occur between hours
and weeks (Reynolds 2006; Lampert and Sommer 2007). Depending mainly on the depth and
climate zone of a lake, mixing processes occur at scales between minutes and days or weeks
(Reynolds 1990; Behrendt et al. 1993; Read et al. 2011). Seasonal warming and cooling pat-
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1.1 Variability, lakes and time scales

terns determine the annual succession of plankton communities (Sommer et al. 1986, 2012).
Longer time scales of eutrophication or climatic shifts span decades (George and Harris 1985;
Anderson 1995; Climate Research Committee 1995). Short time scales are particularly rele-
vant for planktonic organisms (Reynolds 1990) and other limnological processes (Marcé et al.
2016). Furthermore, small stochastic or periodic fluctuations in environmental forcing can in-
duce strong resonance in species responses (Benincà et al. 2011). However, the longer-scale
environmental variability, such as annual mean values, seasonal cycles or long-term trends,
has received more attention than the variability at short time scales (Benedetti-Cecchi 2003;
Guadayol et al. 2014). Yet, short-term and long-term temperature variability in environmental
drivers might affect the ecosystem in different ways, and the physical and ecological impacts
of climatic changes might be overlooked if the time scale of analysis is too coarse (Platt and
Denman 1975; Fraterrigo and Rusak 2008; Marcé et al. 2016). To characterize the whole spec-
trum of variability experienced by organisms is therefore important, and focusing on smaller
scale variability is particularly relevant. To that end it is crucial to account for the time scale of
ecosystem variability (Harris 1980; Reynolds 1990).

To capture patterns of ecosystem variability, routine measurements of various parameters
have been performed for many decades in lake ecosystems across the globe. Physical sensors
recording limnological and meteorological variables such as water and air temperature, wind
speed and humidity were among the first developed automated sensors, enabling researchers to
gain quasi-continuous data (Meinson et al. 2016). The development of electrochemical sensors
such as pH and oxygen electrodes then enabled the assessment of chemical dynamics, followed
by sensors recording biological parameters such as chlorophyll a or phycocyanin (Dubelaar
et al. 2004; Marcé et al. 2016; Meinson et al. 2016). However, high-frequency automated
sensor systems that measure physical, chemical and biological state variables at high temporal
resolution are still a relatively new technology. Research based on this kind of data is still just
emerging, and the opportunities and pitfalls they offer are just now becoming evident (Porter et
al. 2005; Dur et al. 2007; Porter et al. 2009; Hampton et al. 2013; Marcé et al. 2016; Meinson et
al. 2016). Nevertheless, if in operation for a certain amount of time, high-frequency monitoring
data allow to investigate the interplay between short-term and long-term variability.

There is the notion that physical, chemical and biological time series originating from these
monitoring stations allow the retrieval of information about the system and the processes, con-
straints and time scales that generated them (Ghil 2002; Lischeid 2009; Gnauck et al. 2010).
However, the usability of automated high-frequency measurements, their explanatory power for
the assessment of lake ecosystem dynamics and the identification of the underlying processes is
not straightforward. It is not necessarily clear how to interpret fluctuations in a specific param-
eter. Furthermore, one state variable may be controlled by various drivers operating at different
time scales (Hanson et al. 2006; Müller et al. 2010). The interaction of meteorological and
lake-internal drivers can make it difficult to disentangle processes that happen in parallel.
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1 Introduction

For example, variations in water temperature can originate from manifold drivers and pro-
cesses at various time scales. While the seasonal variation may be the most dominant and ob-
vious source of variability, longer-term fluctuations on time scales of multiple years, so-called
atmospheric modes of variability such as the North Atlantic Oscillation, the Pacific Decadal
Oscillation or the El Niño Southern Oscillation, have been shown to drive water temperature
variability decisively (Arhonditsis et al. 2004a; Blenckner et al. 2007). On shorter time scales,
short-and long-wave radiation, conduction and evaporation drive dynamics in water temper-
ature, which in turn depend on meteorological drivers such as ambient air temperature, cloud
cover and wind speed (Edinger et al. 1968). Additionally, lake-internal processes such as mixing
dynamics during time periods of thermal stratification, acting on time scales between minutes
and weeks, can have a strong impact on water temperature variability (Reynolds 1990; Behrendt
et al. 1993).

Other commonly measured state variables in lakes are pH and dissolved oxygen, which can
be driven by processes such as photosynthesis, respiration, chemical reactions such as calcite
precipitation and dissolution, gas exchange with the atmosphere, mixing processes or input
from the catchment (Hanson et al. 2006). These drivers act simultaneously, but on different
time scales, and their importance differs according to the productivity, alkalinity and mixing
type of a lake and according to the time of year.

While understanding phytoplankton dynamics is crucially important, as they form the base
of most aquatic food webs (Wetzel 2001; Thackeray et al. 2013) and their potential to form toxic
blooms can cause mass mortalities (Castle and Rodgers 2009; Lürling and De Senerpont Domis
2013), their assessment remains challenging (Dubelaar et al. 2004). Phytoplankton abundance is
commonly approximated by the fluorescence of chlorophyll a, the main pigment responsible for
the absorption of light for photosynthesis (Lorenzen 1966; Proctor and Roesler 2010; Escoffier
et al. 2015). Fluorometers are optical sensors which quantify chlorophyll a fluorescence and
allow the assessment of phytoplankton dynamics at high temporal resolution. Potential drivers
of phytoplankton dynamics are e.g. water temperature, light availability, nutrient availability,
water column mixing and herbivory (Arhonditsis et al. 2004b; Reynolds 2006). These can have
varying importance over the course of a year and in different lake types (Sommer et al. 1986,
2012) and act at different time scales (Harris 1980; Reynolds 1990).

The examples above illustrate that the ascription of variability in parameters to processes
is not straightforward. Furthermore, processes are often difficult to identify and disentangle
and require the consideration of the time scale of variability. Making use of multivariate data
at high temporal resolution and an appropriate methodological approach seem promising to
identify and disentangle processes, their drivers and constraints (Lischeid and Bittersohl 2008;
Lischeid 2009; Langman et al. 2010; Recknagel et al. 2013).

Taking into account time scales of variability requires methods that are capable of separat-
ing, e.g., hourly from daily, weekly, monthly, seasonal or yearly time scales. Many commonly
used methods to quantify variability, such as the standard deviation, are not per se able to ac-
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complish this. In geophysical variables, low frequencies often dominate over high frequencies.
As a result, e.g., a standard deviation calculated over a year of a seasonally changing vari-
able measured at daily resolution will most probably be dominated by this seasonality. The
standard deviation will therefore describe the deviation of a daily value from the annual mean
rather than the daily variability. This could be partly overcome if data were deseasonalized
beforehand. However, short-term variations can also be masked by longer-term non-seasonal
oscillations. Also, short-term variability such as diurnal variations can affect the variability at
longer time scales. Hence, long-term (or low-frequency) variability can mask short-term (or
high-frequency) variability, and, conversely, high-frequency variability can blur low-frequency
variability. For this reason, an appropriate way to separate time scales of variability from each
other is needed. This task can be accomplished by analyzing time series in the time frequency
domain (Kestin et al. 1998; Ghil 2002; Schaefli et al. 2007; Cazelles et al. 2008; Gnauck et al.
2010).

1.2 Analyzing in the time frequency domain

The frequency information inherent in every time series can be used to identify characteristic
time scales and the corresponding variability components that contribute to the dynamics in the
time series. Spectral methods, such as the Fourier transform or the wavelet analysis, make use
of this frequency information. The Fourier transform provides a representation of a time series
in the frequency domain (Bloomfield 2000), informing about how much of the variability in the
data results from processes with certain frequencies. The wavelet analysis transforms a time
series from the time domain to the frequency domain (Torrence and Compo 1998), giving the
additional information of how the frequency-dependent signal changes with time. The wavelet
coherence allows for the analysis of two time series together to detect their joint dynamics in
time frequency space (Grinsted et al. 2004). These methods were applied in this thesis and are
presented in more detail in the following.

The spectral analysis based on the Fourier transform decomposes a time series into a super-
position of sine and cosine waves of varying frequencies, and hereby transforms the times series
from the time domain to the frequency domain (Platt and Denman 1975; Bloomfield 2000). The
discrete Fourier transform Xk is defined as:

Xk =
1
N

N−1

∑
t=0

xtei2πk t
N (1.1)

where k is a frequency and x is the value of a time series of length N at time t (Cooley and
Tukey 1965; Singleton 1969). The spectral density is given by |Xk|2. It provides a measure of
the magnitude of periodic variability at specific frequencies. The Fourier transform is a fully
invertible procedure and hence an exact representation of the signal in frequency space. The
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measurement resolution defines the highest frequency that can be assessed, which is half the
measurement resolution (Nyquist frequency). The spectral analysis can furthermore be used as
a band-pass filter by averaging over adjacent frequencies (Platt and Denman 1975; Ghil 2002).

An example of a spectrum of water temperature, measured hourly over the time span of year
in Müggelsee, a polymictic lake in Northern Germany, is given in Fig. 1.4. The frequency is

Fig. 1.4: Frequency spectrum of water temperature measured hourly in 1.5 m depth in
Müggelsee in 2009. Note logarithmic scales on x- and y-axes.

given on the x-axis, while the y-axis shows the intensity of periodic variability at the respective
frequencies. Here, the spectral density decreases from low frequencies (long-term variability)
to high frequencies (short-term variability). This means that long-term dynamics, such as sea-
sonal cycles, dominate the variability, while shorter-term dynamics, such as daily variations,
contribute less to the total variability. The peak at a frequency of one cycle per day indicates
pronounced diurnal cycles. This scaling behavior from low to high frequencies can be quanti-
fied as the slope of a spectrum, calculated by simple linear regression of the log10-transformed
spectral density on the log10-transformed frequency. It gives a rough characterization of the
dependence of water temperature variability on frequency, commonly termed the noise color
(Vasseur and Yodzis 2004; Sabo and Post 2008). In this case, the decrease from low to high
frequencies corresponds to a red noise spectrum, which is common in geophysical variables
(Pelletier 1997; Cuddington and Yodzis 1999; Cyr and Cyr 2003; Vasseur and Yodzis 2004).

The spectral analysis of nonstationary time series can only be done by Fourier analysis with
some extra effort of, e.g., applying it successively to time windows (Kestin et al. 1998). The
constraints of the Fourier analysis, i.e. the inability to detect changes in the frequency spectrum
over time, are overcome by the wavelet analysis (Torrence and Compo 1998; Schaefli et al.
2007; Cazelles et al. 2008). Applying a wavelet analysis to a time series transforms it from the
time domain to the time frequency domain. The wavelet transform of a time series xt is defined
as the convolution of xt with a wavelet function, the so-called mother wavelet ψ(t). A widely
used example for a mother wavelet is the Morlet wavelet function, defined as:

ψ0(t) = π
−1/4eiω0te−t2/2 (1.2)

8



1.2 Analyzing in the time frequency domain

where ω0 is the central angular frequency. The continuous wavelet transform W ( f ,τ) at scale
f and time τ is given by:

W ( f ,τ) =
1√

f

+∞∫
−∞

x(t)ψ∗
(

t− τ

f

)
dt =

+∞∫
−∞

x(t)ψ∗f ,τ(t)dt (1.3)

where (∗) indicates the complex conjugate form (Cazelles et al. 2008). The mother wavelet
is dilated by scale f , connecting a time window to a particular frequency, and shifted by time
position τ , which controls the location of the time window in the time domain (Kestin et al.
1998; Torrence and Compo 1998). This yields the amplitude at a particular scale (or frequency)
and the variation of this amplitude with time. The wavelet transform can be thought as a cross-
correlation of a time series xt with a set of wavelets exhibiting different widths f at different
time positions τ (Cazelles et al. 2008).

An example of the graphical representation of the wavelet transform of water temperature
measured hourly in Müggelsee is shown in Fig. 1.5. The time domain is represented on the x-
axis, while the frequency domain is represented as period length (the inverse of the frequency)

Fig. 1.5: Upper panel: time series of water temperature (wtemp) [◦C] measured hourly in 1.5 m
depth in Müggelsee in 2009; time window with an ice cover (grey line). Bottom panel:
Continuous wavelet transform of water temperature; black contours around regions
where the power is significant against red noise; the lighter shade denotes the cone of
influence, where edge effects are present. The x-axis applies to both panels.
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on the y-axis. The cone of influence, where edge effects are present, is shown in lighter shade.
Colors indicate the strength of the signal at a particular period and during a particular time
window. Regions surrounded by black lines indicate significance against red noise. For ex-
ample, the variability of water temperature between January and March resembles red noise as
the power of the signal is very low at high frequencies of hourly time scales (blue color). It
increases to higher power at low frequencies of weekly time scales (red color). This time win-
dow was characterized by an ice cover on the lake, reducing substantially any meteorological
influence on water temperature variability. On the other hand, from April onwards, there is a
band of high power around period lengths of 24 hours that differs significantly from red noise,
representing the diurnal variability of water temperature. High power from short to long time
scales occurs during several time windows. There is furthermore a frequency band from April
to June with high low-frequency power around period lengths of several weeks. In this way,
time windows and frequencies in a time series can be identified that exhibit certain features in
time frequency space.

Often, the statistical relationship between two time series is of interest. The wavelet analysis
can be extended to the joint analysis of two time series via the cross wavelet transform and the
wavelet coherence (Grinsted et al. 2004; Cazelles et al. 2008). The cross wavelet transform
W XY between two time series xt and yt is given by the product of the wavelet transformed time
series xt , W X

f ,τ , with the complex conjugate of the wavelet transformed time series yt , WY
f ,τ as:

W XY
f ,τ =W X

f ,τ WY∗
f ,τ (1.4)

where (∗) indicates the complex conjugate form. The cross wavelet transform detects areas
in the time frequency space where two time series exhibit high common power (Grinsted et
al. 2004; Maraun and Kurths 2004). The wavelet coherence on the other hand is a method that
detects time windows and frequencies where two time series co-vary, but not necessarily exhibit
high power. The wavelet coherence RXY between two time series xt and yt is defined as the cross
wavelet normalized by the individual power spectra of each time series (Torrence and Compo
1998; Grinsted et al. 2004; Maraun and Kurths 2004; Cazelles et al. 2008) as:

RXY
f ,τ =

|S(W XY
f ,τ )|

|S(W X
f ,τ)|1/2 · |S(WY

f ,τ)|1/2 (1.5)

where S denotes a smoothing operator. It detects synchronicities between two time series and
can be thought of as local cross-correlation in the time frequency space. In contrast to the cross
wavelet transform, it can detect coherence between two signals even though their common
power is low (Grinsted et al. 2004). It is superior to the cross wavelet transform for significance
testing the relationship between two signals, as the cross wavelet transform can produce mis-
leading peaks (Maraun and Kurths 2004). High wavelet coherence over extended regions in the
time frequency space can point to a causal relationship between two time series. Thus, causes
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and effects of patterns and processes can be explored. The direction of causality can be assessed
by calculating the phase difference between two time series, giving information about time lags
in the synchronicities between two time series.

The wavelet coherence between time series of wind speed and water temperature is exem-
plified in Fig. 1.6. The time domain is represented on the x-axis, while the frequency domain

Fig. 1.6: Upper panels: time series of wind speed (ws) [ms−1] measured hourly in 4 m height
above Müggelsee and water temperature (wtemp) [◦C] measured hourly in 1.5 m depth
in Müggelsee in 2009. Bottom panel: wavelet coherence between ws and wtemp;
black contours around regions where the coherence is significant against red noise,
based on Monte Carlo AR (1) time series (significance level 0.95); black arrows indi-
cate the relative phase relationship (in-phase pointing right; anti-phase pointing left;
out of phase pointing up/down); the lighter shade denotes the cone of influence, where
edge effects may distort patterns of coherence. The x-axis applies to all three panels.

is represented as period length on the y-axis. The color indicates the degree of coherence and
can exhibit values between zero and one. The area in lighter shade denotes the cone of influ-
ence, where edge effects may distort the wavelet coherence. Regions in time frequency space
bordered by a black line indicate significant coherence between the time series. The black ar-
rows visualize their phase relationship. For example, the extended area in May and June around
period lengths of one week exhibits high coherence, meaning that wind speed and water tem-
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perature were somehow related during this time window and around weekly time scales, but not
for instance at sub-daily time scales. Their phase relationship is mostly out of phase, indicating
a time lag in the response of water temperature dynamics to variations in wind speed.

The above examples illustrate how an analysis of lakes in the time frequency domain can be
accomplished. The Fourier transform spectral analysis quantifies the periodic variability of a
signal in the frequency space. The wavelet transform is particularly useful for the analysis of
nonstationary time series and detects periodic or non-periodic variability in the time frequency
space. The wavelet coherence quantifies the degree of synchronicity between two time series in
the time frequency space. All of these methods can help to extract features in limnological and
meteorological time series to identify processes, their time scales and constraints.

The tendency of ecosystems to oscillate in space and time means that they can be character-
ized by their spectral behavior – a research priority encouraged by Platt and Denman (1975) over
40 years ago. A review of the spatiotemporal scales of phytoplankton variability is presented by
Harris (1980), who emphasize the importance of high-frequency as well as low-frequency vari-
ability and of considering the “correct algal scales of perturbation and response”. Subsequent
studies of lakes in the time frequency domain have proven promising to reveal patterns and
processes and to identify their drivers and constraints. For example, Kimura et al. (2014) used
spectral analysis to discriminate between rainstorm-induced and wind-induced vertical mixing
and their impact on internal waves in a shallow subtropical lake. An extensive analysis of the
noise color of temperature variability in terrestrial and aquatic ecosystems demonstrated that the
slopes of air and water temperature spectra became steeper (more red) from land to river to lake
to ocean ecosystems, revealing substantial differences according to the lake type (Cyr and Cyr
2003). Winder and Cloern (2010) assessed annual cycles of phytoplankton, proxied by chloro-
phyll a concentration, to reveal periodicities in phytoplankton patterns across lake, estuarine
and ocean ecosystems via wavelet analysis. They found large site-specific differences, while
acknowledging the limitation of their approach due to an only monthly sampling frequency.
Changes in the periodicity of phytoplankton seasonal succession from year to year were high-
lighted by Carey et al. (2016). Physical and biological drivers of the variability in dissolved
oxygen differed with respect to their time scale and among lakes, as revealed by wavelet analy-
sis (Langman et al. 2010). Guyennon et al. (2014) used wavelet analysis and wavelet coherence
to extract oscillation modes of internal waves and the exchange of water between two basins of
a large deep lake from time series of water temperature and wind speed. Analyses in the time
frequency domain using wavelet coherence revealed time lags in the response of phytoplank-
ton biomass to environmental drivers (Recknagel et al. 2013; Li et al. 2015). These examples
describe promising roads to an insightful analysis of lakes in the time frequency domain.
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1.3 Research questions

Motivated by the above discussion on lake ecosystems, variability in the parameters that
characterize them and the time scales governing this variability, the overarching research ques-
tion of this thesis is:

How can the consideration of the time scale of variability and an analysis in the
time frequency domain help to enhance our understanding of lake ecosystems
and their responsiveness to the variability in climate and weather conditions?

Specifically, I intend to answer the following three questions with this thesis:

1. What role does the time scale of analysis play in detecting the underlying mechanisms of
ecosystem responses to climate variability?

2. What are the temporal and spatial scales of water temperature variability in a polymictic
lake, and how can they be explained?

3. How can the joint dynamics of limnological and meteorological parameters be used to
identify processes, their drivers, constraints and time scales?

These questions are addressed by a literature-based review of previous studies and thorough
investigations of empirical data collected over the last twenty years in Müggelsee, a shallow
polymictic lake in northeastern Germany. Data comprise both limnological and meteorologi-
cal time series measured by automated sensor systems. This thesis adopts a frequency-based
methodological approach with the aim to explore and explain patterns and processes in lake
ecosystems. An overview of how the research questions are addressed is outlined in the follow-
ing.

1.4 Outline of this thesis

The research questions of this cumulative thesis are addressed in the following three chap-
ters. A conceptual analysis is presented in the second chapter: Windows of change: temporal

scale of analysis is decisive to detect ecosystem responses to climate change. The content is
based on an article by Rita Adrian, Dieter Gerten, Veronika Huber, Carola Wagner and Silke R.
Schmidt and was published 2012 in Marine Biology (Adrian et al. 2012). Here, the role of the
time scale of analysis regarding the detection of responses of limnic and marine ecosystems to
climate change is addressed. It is demonstrated that average annual, seasonal or monthly cli-
mate data often fall short of characterizing the meteorological and ecosystem thermal dynamics
that most organisms respond to. Potential time scales of ecosystem responses to meteorological
forcing are summarized. It is emphasized that a profound understanding of the mechanisms
underlying responses to climate warming requires that records of ecological processes are not
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only sufficiently long, but are also collected at an appropriate temporal resolution and time of
year. It is documented that ecological responses are often triggered by changes in critical time
windows and that the triggering mechanism often involves the exceedance of critical thresholds
in the forcing variables. Moreover, responses tend to occur with a time lag. In an empirical
analysis, two years sharing almost the same annual mean are compared regarding their vari-
ability at different time scales. The author of this thesis performed the quantitative analyses,
contributed to interpreting the results and to drafting the manuscript.

A systematic, frequency-based investigation of patterns of variability in near-surface water
temperature of Müggelsee is presented in the third chapter: Temporal and spatial scales of wa-

ter temperature variability as an indicator for mixing in a polymictic lake. This chapter was
submitted to Inland Waters by Silke R. Schmidt, Dieter Gerten, Thomas Hintze, Gunnar Lis-
cheid, David M. Livingstone and Rita Adrian and is currently under review. Here, seasonal and
spatial patterns of water temperature variability are compared to the variability in corresponding
air temperature and related to mixing dynamics, stratification stability and the duration of ice
cover to explore potential drivers of water temperature variability. An indicator of lake mixing
is presented that helps to explain the observed temporal and spatial scales of water temperature
variability. The author of this thesis designed the research, performed all analyses, interpreted
the results and drafted the manuscript. Contributions to the study design, discussions of the
results, commenting and proofreading of the draft by the co-authors is acknowledged.

The fourth chapter Using wavelet coherence as a diagnostic tool in limnology was submitted
to Limnology and Oceanography by Silke R. Schmidt, Gunnar Lischeid, Thomas Hintze and
Rita Adrian and is currently under review. It presents a methodological approach to investigate
how wavelet coherence can be used to identify and disentangle physical, chemical and biolog-
ical processes and to detect the time scales these processes operate on. It is tested whether
processes such as algal growth, photosynthesis, respiration, biogenic calcite precipitation or
wind-induced resuspension of particles can be detected analyzing synchronicities between lim-
nological and meteorological parameters measured at a high temporal resolution in Müggelsee
during a time span from the onset of an ice cover in winter until a summer cyanobacteria bloom
in the year 2009. The author of this thesis designed the research, performed all analyses, in-
terpreted the results and drafted the manuscript. Contributions by the co-authors to the design
of the study approach, support in interpreting the results, commenting and proofreading of the
draft is acknowledged.

The fifth chapter Synthesis and outlook concludes with a discussion of the answers to the
research questions given in chapters 2 – 4 and the main findings of this thesis. It is a conclusion
how this thesis contributes to a better understanding of the variability in lake ecosystems and the
processes that generate it with a literature-based and a data-driven methodological approach.

14



References

References

Abell R, Allan JD, and Lehner B (2007). Unlocking the potential of protected areas for fresh-
waters. In: Biological Conservation 134, pp. 48–63.

Adrian R, Gerten D, Huber V, Wagner C, and Schmidt SR (2012). Windows of change: temporal
scale of analysis is decisive to detect ecosystem responses to climate change. In: Marine

Biology 159, pp. 2533–2542.

Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Som-
maruga R, Straile D, van Donk E, Weyhenmeyer GA, and Winder M (2009). Lakes as sen-
tinels of climate change. In: Limnology and Oceanography 54, pp. 2283–2297.

Anderson NJ (1995). Temporal scale, phytoplankton ecology and palaeolimnology. In: Fresh-

water Biology 34, pp. 367–378.

Arhonditsis GB, Arhonditsis GB, Brett MT, Brett MT, Degasperi CL, Degasperi CL, Schindler
DE, and Schindler DE (2004a). Effects of climatic variability on the thermal properties of
Lake Washington. In: Limnology and Oceanography 49, pp. 256–270.

Arhonditsis GB, Winder M, Brett MT, and Schindler DE (2004b). Patterns and mechanisms
of phytoplankton variability in Lake Washington (USA). In: Water Research 38, pp. 4013–
4027.

Barbosa M, Pestana J, and Soares AMVM (2014). Predation life history responses to increased
temperature variability. In: PLoS One 9, pp. 1–8.

Behrendt H, Nixdorf B, and Pagenkopf WG (1993). Phenomenological description of polymixis
and influence on oxygen budget and phosphorus release in Lake Müggelsee. In: Interna-

tionale Revue der gesamten Hydrobiologie und Hydrographie 78, pp. 411–421.

Benedetti-Cecchi L (2003). The importance of the variance around the mean effect size of
ecological processes. In: Ecology 84, pp. 2335–2346.

Benincà E, Dakos V, van Nes EH, Huisman J, and Scheffer M (2011). Resonance of plankton
communities with temperature fluctuations. In: The American Naturalist 178, E85–E95.

Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG,
Jankowski T, Järvinen M, Aonghusa CN, Nõges T, Straile D, and Teubner K (2007). Large-
scale climatic signatures in lakes across Europe: a meta-analysis. In: Global Change Biology

13, pp. 1314–1326.

Bloomfield P (2000). Fourier Analysis of Time Series: An Introduction. 2nd ed. New York:
Wiley, pp. 1–275.

15



References

Carey CC, Hanson PC, Lathrop RC, and St. Amand AL (2016). Using wavelet analyses to
examine variability in phytoplankton seasonal succession and annual periodicity. In: Journal

of Plankton Research.

Castle JW and Rodgers JH (2009). Hypothesis for the role of toxin-producing algae in Phanero-
zoic mass extinctions based on evidence from the geologic record and modern environments.
In: Environmental Geosciences 16, pp. 1–23.

Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, and Stenseth NC (2008).
Wavelet analysis of ecological time series. In: Oecologia 156, pp. 287–304.

Climate Research Committee (1995). Natural climate variability on decade-to-century time

scales. National Academy Press, pp. 295–305.

Cloern JE and Jassby AD (2010). Patterns and scales of phytoplankton variability in estuarine-
coastal ecosystems. In: Estuaries and Coasts 33, pp. 230–241.

Coble AA, Asch RG, Rivero-Calle S, Heerhartz SM, Holding JM, Kremer CT, Finiguerra M,
and Strock KE (2016). Climate is variable, but is our science? In: Limnology and Oceanog-

raphy Bulletin 25, pp. 71–76.

Cooley JW and Tukey JW (1965). An algorithm for the machine calculation of complex Fourier
series. In: Mathematics of Computation 19, pp. 297–301.

Cuddington K and Yodzis P (1999). Black noise and population persistence. In: Proceedings of

the Royal Society B: Biological Sciences 266, pp. 969–973.

Cyr H and Cyr I (2003). Temporal scaling of temperature variability from land to oceans. In:
Evolutionary Ecology Research 5, pp. 1183–1197.

Drake JM (2005). Population effects of increased climate variation. In: Proceedings of the Royal

Society B: Biological Sciences 272, pp. 1823–1827.

Dubelaar GBJ, Geerders PJF, and Jonker RR (2004). High frequency monitoring reveals phy-
toplankton dynamics. In: Journal of Environmental Monitoring 6, p. 946.

Dur G, Schmitt FG, and Souissi S (2007). Analysis of high frequency temperature time series
in the Seine estuary from the Marel autonomous monitoring buoy. In: Hydrobiologia 588,
pp. 59–68.

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, and Mearns LO (2000). Cli-
mate extremes: observations, modeling, and impacts. In: Science 289, pp. 2068–2074.

Edinger JE, Duttweiler DW, and Geyer JC (1968). The response of water temperatures to me-
teorological conditions. In: Water Resources Research 4, pp. 1137–1143.

16



References

Escoffier N, Bernard C, Hamlaoui S, Groleau A, and Catherine A (2015). Quantifying phyto-
plankton communities using spectral fluorescence: The effects of species composition and
physiological state. In: Journal of Plankton Research 37, pp. 233–247.

Franke J, Frank D, Raible CC, Esper J, and Brönnimann S (2013). Spectral biases in tree-ring
climate proxies. In: Nature Climate Change 3, pp. 360–364.

Fraterrigo JM and Rusak JA (2008). Disturbance-driven changes in the variability of ecological
patterns and processes. In: Ecology Letters 11, pp. 756–770.

George DG and Harris GP (1985). The effect of climate on long-term changes in the crustacean
zooplankton biomass of Lake Windermere, UK. In: Nature 316, pp. 536–539.

Ghil M (2002). Advanced spectral methods for climatic time series. In: Reviews of Geophysics

40, p. 1003.

Gnauck A, Li BLL, Feugo JDA, and Luther B (2010). The role of statistics for long-term eco-
logical research. In: Long-term ecological research: between theory and application. Ed. by
F Müller, C Baessler, H Schubert, and S Klotz. 1st ed. Springer Netherlands. Chap. 8.

Grinsted A, Moore JC, and Jevrejeva S (2004). Application of the cross wavelet transform and
wavelet coherence to geophysical time series. In: Nonlinear Processes in Geophysics 11,
pp. 561–566.

Guadayol Ò, Silbiger NJ, Donahue MJ, and Thomas FIM (2014). Patterns in temporal variabil-
ity of temperature, oxygen and pH along an environmental gradient in a coral reef. In: PLoS

One 9, pp. 1–12.

Guyennon N, Valerio G, Salerno F, Pilotti M, Tartari G, and Copetti D (2014). Internal wave
weather heterogeneity in a deep multi-basin subalpine lake resulting from wavelet transform
and numerical analysis. In: Advances in Water Resources 71, pp. 149–161.

Hampton SE, Strasser CA, Tewksbury JJ, Gram WK, Budden AE, Batcheller AL, Duke CS,
and Porter JH (2013). Big data and the future of ecology. In: Frontiers in Ecology and the

Environment 11, pp. 156–162.

Hanson PC, Carpenter SR, Armstrong DE, Stanley EH, and Kratz TK (2006). Lake dissolved
inorganic carbon and dissolved oxygen: changing drivers from days to decades. In: Ecologi-

cal Monographs 76, pp. 343–363.

Harris GP (1980). Temporal and spatial scales in phytoplankton ecology. Mechanisms, meth-
ods, models, and management. In: Canadian Journal of Fisheries and Aquatic Sciences 37,
pp. 877–900.

17



References

Heino M, Ripa J, and Kaitala V (2000). Extinction risk under coloured environmental noise. In:
Ecography 23, pp. 177–184.

Huntingford C, Jones PD, Livina VN, Lenton TM, and Cox PM (2013). No increase in global
temperature variability despite changing regional patterns. In: Nature 500, pp. 327–330.

IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to

the Third Assessment Report of the Intergovernmental Panel on Climate Change. Tech. rep.
Cambridge, United Kingdom and New York, NY, USA, pp. 1–881.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Tech. rep. Cambridge, United Kingdom and New York, NY, USA, pp. 1–1535.

Kareiva P and Bergelson J (1997). The nuances of variability: beyond mean square error and
platitudes about fluctuating environments. In: Ecology 78, pp. 1299–1300.

Kernan M, Battarbee RW, and Moss B, eds. (2010). Climate change impacts on freshwater

ecosystems. Wiley-Blackwell, pp. 1–328.

Kestin TS, Karoly DJ, Yano JI, and Rayner NA (1998). Time-frequency variability of ENSO
and stochastic simulations. In: Journal of Climate 11, pp. 2258–2272.

Kimura N, Liu WC, Chiu CY, and Kratz TK (2014). Assessing the effects of severe rainstorm-
induced mixing on a subtropical, subalpine lake. In: Environmental Monitoring and Assess-

ment 186, pp. 3091–3114.

Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A,
Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, and Mcintyre PB (2015).
Morphometry and average temperature affect lake stratification responses to climate change.
In: Geophysical Research Letters 42, pp. 1–8.

Lampert W and Sommer U (2007). Limnoecology: The ecology of lakes and streams. 2nd ed.
Oxford and New York: Oxford University Press.

Langman OC, Hanson PC, Carpenter SR, and Hu YH (2010). Control of dissolved oxygen in
northern temperate lakes over scales ranging from minutes to days. In: Aquatic Biology 9,
pp. 193–202.

Li W, Qin B, and Zhang Y (2015). Multi-temporal scale characteristics of algae biomass and
selected environmental parameters based on wavelet analysis in Lake Taihu, China. In: Hy-

drobiologia 747, pp. 189–199.

18



References

Lischeid G (2009). Non-linear visualization and analysis of large water quality data sets: a
model-free basis for efficient monitoring and risk assessment. In: Stochastic Environmental

Research and Risk Assessment 23, pp. 977–990.

Lischeid G and Bittersohl J (2008). Tracing biogeochemical processes in stream water and
groundwater using non-linear statistics. In: Journal of Hydrology 357, pp. 11–28.

Livingstone DM (2003). Impact of secular climate change on the thermal structure of a large
temperate central European lake. In: Climatic Change 57, pp. 205–225.

Lögdberg F and Wennergren U (2012). Spectral color, synchrony, and extinction risk. In: The-

oretical Ecology 5, pp. 545–554.

Lorenzen CJ (1966). A method for the continuous measurement of in vivo chlorophyll concen-
tration. In: Deep-Sea Research 13, pp. 223–227.

Lürling M and De Senerpont Domis LN (2013). Predictability of plankton communities in an
unpredictable world. In: Freshwater Biology 58, pp. 455–462.

Maraun D and Kurths J (2004). Cross wavelet analysis: significance testing and pitfalls. In:
Nonlinear Processes in Geophysics 11, pp. 505–514.

Marcé R, George G, Buscarinu P, Deidda M, Dunalska J, De Eyto E, Flaim G, Grossart HP,
Istvanovics V, Lenhardt M, Moreno-Ostos E, Obrador B, Ostrovsky I, Pierson DC, Potuzak
J, Poikane S, Rinke K, Rodriguez-Mozaz S, Staehr PA, Sumberova K, Waajen G, Weyhen-
meyer GA, Weathers KC, Zion M, Ibelings BW, and Jennings E (2016). Automatic high
frequency monitoring for improved lake and reservoir management. In: Environmental Sci-

ence and Technology 50, pp. 10780–10794.

Meinson P, Idrizaj A, Nõges P, Nõges T, and Laas A (2016). Continuous and high-frequency
measurements in limnology: history, applications, and future challenges. In: Environmental

Reviews 24, pp. 52–62.

Müller F, Gnauck A, Wenkel KO, Schubert H, and Bredemeier M (2010). Theoretical demands
for long-term ecological research and the management of long-term data sets. In: Long-

term ecological research: between theory and application. Ed. by F Müller, C Baessler, H
Schubert, and S Klotz. Springer, pp. 11–25.

Müller-Navarra DC, Güss S, and von Storch H (1997). Interannual variability of seasonal suc-
cession events in a temperate lake and its relation to temperature variability. In: Global

Change Biology 3, pp. 429–438.

Nickus U, Bishop K, Erlandsson M, Evans CD, Forsius M, Laudon H, Livingstone DM, Mon-
teith D, and Thies H (2010). Direct impacts of climate change on freshwater ecosystems. In:

19



References

Climate change impacts on freshwater ecosystems. Ed. by M Kernan, RW Battarbee, and B
Moss. Wiley-Blackwell, pp. 38–64.

O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters
JD, Mcintyre PB, Kraemer BM, Weyhenmeyer GA, Straile D, Dong B, Adrian R, Allan
MG, Anneville O, Arvola L, Austin J, Bailey J, Baron JS, Brookes J, Eyto ED, Dokulil MT,
Hamilton DP, Havens K, Hetherington AL, Higgins SN, Hook S, Izmest’eva LR, Joehnk KD,
Kangur K, Kasprzak P, Kumagai M, Kuusisto E, Leshkevich G, Livingstone DM, MacIntyre
S, May L, Melack JM, Mueller-Navarra DC, Naumenko M, Nõges P, Nõges T, North RP,
Plisnier PD, Rigosi A, Rimmer A, Rogora M, Rudstam LG, Rusak JA, Salmaso N, Samal
NR, Schindler DE, Schladow G, Schmid M, Schmidt SR, Silow E, Soylu ME, Teubner K,
Verburg P, Voutilainen A, Watkinson A, Williamson CE, and Zhang G (2015). Rapid and
highly variable warming of lake surface waters around the globe. In: Geophysical Research

Letters 42, pp. 1–9.

Pelletier J (1997). Analysis and modeling of the natural variability of climate. In: Journal of

Climate 10, pp. 1331–1342.

Platt T and Denman K (1975). Spectral analysis in ecology. In: Annual Review of Ecology and

Systematics 6, pp. 189–210.

Porter JH, Arzberger P, Braun HW, Bryant P, Gage S, Hansen T, Hanson P, Lin CC, Lin
FP, Kratz T, Michener W, Shapiro S, and Williams T (2005). Wireless sensor networks
for ecology. In: BioScience 55, pp. 561–572.

Porter JH, Nagy E, Kratz TK, Hanson PC, Collins SL, and Arzberger P (2009). New eyes on
the world: advanced sensors for ecology. In: BioScience 59, pp. 385–397.

Posch T, Köster O, Salcher MM, and Pernthaler J (2012). Harmful filamentous cyanobacteria
favoured by reduced water turnover with lake warming. In: Nature Climate Change 2, pp. 1–
8.

Proctor CW and Roesler CS (2010). New insights on obtaining phytoplankton concentration
and composition from in situ multispectral Chlorophyll fluorescence. In: Limnology and

Oceanography: Methods 8, pp. 695–708.

Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow L, Kroiss R, Wu CH, and Gaiser E
(2011). Derivation of lake mixing and stratification indices from high-resolution lake buoy
data. In: Environmental Modelling and Software 26, pp. 1325–1336.

Recknagel F, Ostrovsky I, Cao H, Zohary T, and Zhang X (2013). Ecological relationships,
thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret,

20



References

Israel elucidated by evolutionary computation and wavelets. In: Ecological Modelling 255,
pp. 70–86.

Reynolds CS (1990). Temporal scales of variability in pelagic environments and the response
of phytoplankton. In: Freshwater Biology 23, pp. 25–53.

Reynolds CS (2006). Ecology of phytoplankton. Ecology, Biodiversity and Conservation. Cam-
bridge: Cambridge University Press, p. 535.

Ripa J and Lundberg P (1996). Noise colour and the risk of population extinctions. In: Proceed-

ings of the Royal Society B: Biological Sciences 263, pp. 1751–1753.

Sabo JL and Post DM (2008). Quantifying periodic, stochastic, and catastrophic environmental
variation. In: Ecological Monographs 78, pp. 19–40.

Schaefli B, Maraun D, and Holschneider M (2007). What drives high flow events in the Swiss
Alps? Recent developments in wavelet spectral analysis and their application to hydrology.
In: Advances in Water Resources 30, pp. 2511–2525.

Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, and Appenzeller C (2004). The
role of increasing temperature variability in European summer heatwaves. In: Nature 427,
pp. 332–336.

Schindler DW (2009). Lakes as sentinels and integrators for the effects of climate change on
watersheds, airsheds, and landscapes. In: Limnology and Oceanography 54, pp. 2349–2358.

Sharma S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C, Stefanoff S,
Hampton SE, Hook S, Lenters JD, Livingstone DM, McIntyre PB, Adrian R, Allan MG, An-
neville O, Arvola L, Austin J, Bailey J, Baron JS, Brookes J, Chen Y, Daly R, Dokulil MT,
Dong B, Ewing K, Eyto ED, Hamilton DP, Havens K, Haydon S, Hetzenauer H, Heneberry
J, Hetherington AL, Higgins SN, Hixson E, Izmest’eva LR, Jones BM, Kangur K, Kasprzak
P, Köster O, Kraemer BM, Kumagai M, Kuusisto E, Leshkevich G, May L, MacIntyre S,
Müller-Navarra DC, Naumenko M, Nõges P, Nõges T, Niederhauser P, North RP, Pater-
son AM, Plisnier PD, Rigosi A, Rimmer A, Rogora M, Rudstam L, Rusak JA, Salmaso N,
Samal NR, Schindler DE, Schladow G, Schmidt SR, Schultz T, Silow Ea, Straile D, Teubner
K, Verburg P, Voutilainen A, Watkinson A, Weyhenmeyer GA, Williamson CE, and Woo
KH (2015). A global database of lake surface temperatures collected by in situ and satellite
methods from 1985–2009. In: Scientific Data 2, p. 150008.

Shurin JB, Winder M, Adrian R, Keller W, Matthews B, Paterson AM, Paterson MJ, Pinel-
Alloul B, Rusak JA, and Yan ND (2010). Environmental stability and lake zooplankton
diversity - contrasting effects of chemical and thermal variability. In: Ecology Letters 13,
pp. 453–463.

21



References

Singleton RC (1969). An algorithm for computing the mixed radix Fast Fourier Transform. In:
IEEE Transactions on Audio and Electroacoustics 17, pp. 93–103.

Sommer U, Adrian R, De Senerpont Domis LN, Elser JJ, Gaedke U, Ibelings B, Jeppesen
E, Lürling M, Molinero JC, Mooij WM, van Donk E, and Winder M (2012). Beyond the
plankton ecology group (PEG) model: mechanisms driving plankton succession. In: Annual

Review of Ecology, Evolution, and Systematics 43, pp. 429–448.

Sommer U, Gliwicz ZM, Lampert W, and Duncan A (1986). The PEG-model of seasonal suc-
cession of planktonic events in fresh waters. In: Archiv für Hydrobiologie 106, pp. 433–471.

Thackeray SJ, Henrys PA, Feuchtmayr H, Jones ID, Maberly SC, and Winfield IJ (2013). Food
web de-synchronization in England’s largest lake: An assessment based on multiple pheno-
logical metrics. In: Global Change Biology 19, pp. 3568–3580.

Torrence C and Compo GP (1998). A practical guide to wavelet analysis. In: Bulletin of the

American Meteorological Society 79, pp. 61–78.

Vasseur DA and Yodzis P (2004). The color of environmental noise. In: Ecology 85, pp. 1146–
1152.

Vidale PL, Lüthi D, Wegmann R, and Schär C (2007). European summer climate variability in
a heterogeneous multi-model ensemble. In: Climatic Change 81, pp. 209–232.

Wang T, Ottlé C, Peng S, Janssens IA, Lin X, Poulter B, Yue C, and Ciais P (2014). The influ-
ence of local spring temperature variance on temperature sensitivity of spring phenology. In:
Global Change Biology 20, pp. 1473–1480.

Wetzel RG (2001). Limnology. Third Edit. Academic Press.

Williamson CE, Brentrup JA, Zhang J, Renwick WH, Hargreaves BR, Knoll LB, Overholt EP,
and Rose KC (2014). Lakes as sensors in the landscape: Optical metrics as scalable sentinel
responses to climate change. In: Limnology and Oceanography 59, pp. 840–850.

Winder M and Cloern JE (2010). The annual cycles of phytoplankton biomass. In: Philosophical

Transactions of the Royal Society B: Biological Sciences 365, pp. 3215–26.

Winder M and Schindler DE (2004). Climatic effects on the phenology of lake processes. In:
Global Change Biology 10, pp. 1844–1856.

Young HS, McCauley DJ, Galetti M, and Dirzo R (2016). Patterns, causes, and consequences
of anthropocene defaunation. In: Annual Review of Ecology, Evolution, and Systematics 47,
annurev–ecolsys–112414–054142.

22



2 Windows of change: temporal scale of

analysis is decisive to detect ecosystem

responses to climate change *

Abstract

Long-term ecological research has become a cornerstone of the scientific endeavor to better
understand ecosystem responses to environmental change. This paper provides a perspective
on how such research could be advanced. It emphasizes that a profound understanding of the
mechanisms underlying these responses requires that records of ecologic processes be not only
sufficiently long, but also collected at an appropriate temporal resolution. We base our argument
on an overview of studies of climate impacts in limnic and marine ecosystems, suggesting that
lakes and oceans respond to (short-term) weather conditions during critical time windows in
the year. The observed response patterns are often time-lagged or driven by the crossing of
thresholds in weather-related variables (such as water temperature and thermal stratification
intensity). It becomes clear from the previous studies that average annual, seasonal or monthly
climate data often fall short of characterizing the thermal dynamics that most organisms respond
to. To illustrate such literature-based evidence using a concrete example, we compare 2 years
of water temperature data from Müggelsee (Berlin, Germany) at multiple temporal scales (from
hours to years). This comparison underlines the pitfalls of analyzing data at resolutions not high
enough to detect critical differences in environmental forcing. Current science initiatives that
aim at improving the temporal resolution of long-term observatory data in aquatic systems will
help to identify adequate timescales of analysis necessary for the understanding of ecosystem
responses to climate change.

*published as Adrian R, Gerten D, Huber V, Wagner C, and Schmidt SR (2012). Windows of change: temporal
scale of analysis is decisive to detect ecosystem responses to climate change. In: Marine Biology 159, pp.
2533–2542
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2.1 Introduction

About 20 years ago, Magnuson (1990) published a land-mark paper which suggested that
ecologists should move beyond a mere focus on present ecosystem dynamics and adopt longer-
term perspectives. His main point was that our perception and understanding of the physical,
chemical and biological processes acting over decades in limnic, marine and terrestrial ecosys-
tems is necessarily limited by the length of the existing observational time series. If the avail-
ability of long-term time series enabled researchers to extend their temporal “window” of anal-
ysis, they might well discover new phenomena and possibly unexpected trends that might put
the present “into a context that makes it more understandable and more interesting” (Magnuson
1990).

Two further decades of long-term ecological research have passed since. During this time,
numerous studies have been published that shed light on the long-term dynamics of ecologi-
cal processes, helped situating current observations in a longer-term context and also advanced
the integration of statistical and modeling methods in ecological research. A substantial part
of this research was and still is driven by the quest for evidence of climate change impacts
on ecosystems and synchronization of such impacts over large distances (for overviews, see
Drinkwater et al. 2003; Edwards and Richardson 2004 and Alheit et al. 2005 on marine ecosys-
tems; Gerten and Adrian 2002a and Straile et al. 2003 on limnic ecosystems; and Mysterud
et al. 2003 on terrestrial ecosystems) – so much so that one might characterize this development
as a paradigm shift (Gerten 2008; Livingstone 2008). These studies certainly benefited from
the fact that the length of observation records is increasing over time (as long as measurements
are being continued) and that climate’s signature on ecosystems tends to become stronger the
further anthropogenic climate change proceeds.

In the present paper, we seek to further stimulate such research by presenting a complemen-
tary perspective. We argue that a thorough understanding of long-term dynamics of ecological
processes – be it in limnic, marine or terrestrial systems – requires observation and data analysis
at multiple timescales. As will be demonstrated in more detail below, evidence suggests that
detection of trends, interpretation of single events in the context of their long-term dynamics
and profound understanding of underlying mechanisms requires that records of ecological pro-
cesses be not only sufficiently long but also be at an appropriate temporal resolution (Haury
et al. 1978; Harris 1980; Anderson 1995). For instance, recent research on lake ecosystems
clearly demonstrated that the detailed (high-frequency) seasonal evolution of water temperature
and of correlated phenomena such as thermal stratification is crucial for habitat refuge, nutri-
ent dynamics, plankton phenology and abundance, growth initiation, bloom formation, emer-
gence from resting stages and responses to extreme events (Reid et al. 1998; Gerten and Adrian
2002b; Edwards and Richardson 2004; Jansen and Hesslein 2004; Mooij et al. 2005; Sommer
and Lengfellner 2008; Wagner and Adrian 2009a; Huber et al. 2010, 2012).
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Thus, information about whether the average climate in a season or month is changing may
not be sufficient to detect and explain climate impacts on highly dynamic ecosystem processes
that are controlled by meteorological conditions fluctuating at much shorter timescales. For
example, monthly or even weekly averages of meteorological conditions are likely to mask the
exceedance of ecologically critical temperature thresholds and responses of species to (short-
term) meteorological changes that occurred immediately before, or time-lagged, substantially
earlier in the year (Fig. 2.1).

Fig. 2.1: Timescales of ecosystem responses to meteorological forcing. Ecological responses
are often triggered by changes in critical time windows. The triggering mechanism fre-
quently involves the crossing of critical thresholds in forcing variables (dashed-dotted
line), and responses tend to occur with a time lag. The challenge lies in identifying
the adequate timescale of analysis to detect relationships of this kind. In this concep-
tual sketch, analysis at the monthly timescale (dashed line) would not be sufficient to
detect threshold exceedance, in contrast to analysis at the daily timescale (solid line).

Using examples from a suite of studies of climate impacts on foremost limnic and marine
ecosystems, this paper demonstrates that average annual, seasonal or monthly climate data in-
deed often fall short of characterizing the meteorological and ecosystem thermal dynamics that
most organisms respond to. It is not our intention to provide a comprehensive review and syn-
thesis of previous studies, but we hope that our exemplary analyses – many of which are derived
from the AQUASHIFT project – help to sharpen the focus of future statistical, modeling and
experimental ecosystem studies on the adequate timescales of investigation. As such, it is meant
as a thought-provoking perspective paper aimed at stimulating research in this direction. The
paper concludes with a discussion of implications of our findings for experimental approaches
and model-based climate impact projections that necessarily rely on coarse-resolution output
from climate models.
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2 Windows of change

2.2 Approach and data

We start out by illustrating typical variability in the pattern of meteorological forcing which
aquatic ecosystems are exposed to at a range of temporal scales. By comparing different years,
we also show how easily crucial differences in forcing can be missed if the temporal resolution
of analysis is not sufficiently high. This illustrative example is based on observed water tem-

perature data of a well-studied polymictic lake (Müggelsee; Berlin Germany). We investigated
the differences in average water temperatures for one pair of years sharing almost the same
annual mean at temporal scales of minutes, days, weeks, months and seasons. Years were also
compared in terms of cumulative rates of change at these different temporal scales, which were
computed according to Eq. (2.1):

∑ |xt+1− xt |, (2.1)

with x being the water temperature at time t + 1 and time t, respectively. All analyses were
performed using R (R Core Team 2010) supported by the packages ggplot2 (Wickham 2009)
and TSA (Chan 2010). For information on the lake, methodology of temperature recording and
data processing, see Wilhelm et al. (2006).

The subsequent sections on published literature for the limnic and marine domains are orga-
nized as follows: we first address critical time windows of change in the course of organism’s
life cycles. Second, we present characteristic time lags in responses of organisms to anoma-
lies in temperature. Third, we explore the role of thresholds in weather- or climate-related
forcing that potentially cause regime shifts of ecosystems. The focus is on thresholds in water
temperature, but we also address thresholds in variables that are independent of, or only in-
directly dependent on, water temperature (e.g. thermal stratification, day length-specific water
temperature). Although many of the cited studies investigated all of these three characteristics
of ecological responses to meteorological forcing together (critical time windows, time-lagged
responses, critical thresholds), we here discuss these three issues separately for reason of clarity.

2.3 Results and discussion

2.3.1 Small-scale variability in temperature forcing

Investigation of three decades of water temperature records in Müggelsee showed that there
were several years that exhibited almost the same yearly average. We focus on the relatively
warm years 1989 and 2009, characterized by almost the same annual temperature mean of
11.6 ◦C in 1989 and 11.3 ◦C in 2009 (Fig. 2.2a). When comparing the progression of water
temperature in these 2 years at yearly, seasonal, monthly, weekly, daily and hourly timescales,
we found a strong increase in the deviation in water temperature between the two time series,
which becomes the greater the finer the temporal resolution is. Differences at the seasonal or

26



2.3 Results and discussion

Fig. 2.2: Left panel Temporal evolution of water temperature in Müggelsee shown as yearly to
hourly averages of 2 years sharing almost the same yearly average of 11.6 ◦C in 1989
(solid line) and of 11.3 ◦C in 2009 (dashed line). Right panel Cumulative absolute
values of the rate of change of water temperature from seasonal to hourly temporal
scales for the 2 years. Note the differences in scale of the y-axis.

monthly scale did not exceed 3 K (which, however, can be considered a large difference at this
aggregation level), but reached up to 8 K at the hourly scale (data not shown). The difference
between these years becomes even more obvious when looking at the rates of change. Whereas
the two curves are still quite similar and almost parallel from the seasonal to the weekly scale,
they drift apart quite extremely at the hourly scale, where the total absolute cumulative rate of
change in 2009 was 326 and 1570 K in 1989, respectively (Fig. 2.2b). Thus, water temperatures
in 1989 fluctuated a lot more on the finest timescale than in 2009. This fluctuation, however,
leveled out at coarser timescales. It may be exactly this fine-scale variability that contributes
to the large fraction of unexplained interannual variability of plankton community composition
and succession that ecologists are still confronted with (for review, see Cottingham et al. 2001).

For those 2 years, for example cardinal events in plankton phenology differed quite sub-
stantially (Table 2.1). The timing of the spring phytoplankton bloom differed by 3 weeks. It
occurred exceptionally early in 1989 – a year without any ice development (Table 2.1; Huber
et al. 2008). On the contrary, daphnids developed their spring population maximum earlier
in 2009 than observed in 1989 (Table 2.1). The timing of the Daphnia spring peak is more
or less independent of the winter climate but determined by water temperatures during spring
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2 Windows of change

Table 2.1: Timing of cardinal events in 1989 and 2009 exhibiting almost the same annual mean
water temperature (see Fig. 2.2): ice-off date; maxima of total algal biomass (phyto-
plankton), and daphnid abundances in spring and summer

Year Ice-off Phytoplankton Daphnids

Spring Summer Spring Summer

1989 No ice 11 26 22 27
2009 11 14 34 19 35

The timing of the cardinal events is given in calendar weeks

(Gerten and Adrian 2000). Thus, the higher water temperatures during the critical time window
of their development in the spring of 2009 (Fig. 2.2) caused the discrepancies in phenology in
the 2 years. In contrast, the summer phenology of both phytoplankton and zooplankton was
rather similar in both years (Table 2.1). During summer, indirect temperature effects such as the
duration of stratification events are more important driving forces for the development of the
phytoplankton (Wagner and Adrian 2009a, 2011), while complex interactions between meteo-
rological conditions in spring and summer may determine the summer crustacean zooplankton
development (Huber et al. 2010; see also below).

2.3.2 Critical time windows

Aquatic ecologists are just beginning to understand the importance of such temporal fluc-
tuations of water temperature for ecosystem processes. Rather, few studies have considered
system-specific time windows of change in temperature critical for ecosystem responses to cli-
mate change.

At the seasonal temporal scale, prominent examples of critical time windows are the well-
known changes in phenology in marine (Edwards and Richardson 2004; Wiltshire and Manly
2004; Aberle et al. 2007; Martens and van Beusekom 2008) and freshwater ecosystems (Wey-
henmeyer et al. 1999; Gerten and Adrian 2000; Straile 2002; Winder and Schindler 2004; Rusak
et al. 2008). In lakes, critical time windows were, for example, ice-off dates affecting the timing
of the spring phytoplankton bloom, day length-specific water temperature affecting emergence
of resting stages or the timing of surpassed temperature thresholds initiating spawning (Adrian
et al. 2006; Blenckner et al. 2007; Straile et al. 2007; Wilhelm and Adrian 2007). It was also
observed that compared to more immediate responses in aquatic systems during the spring,
phenological changes in summer were not as coherent and seem to have established only af-
ter a transition period of several years (Martens and van Beusekom 2008; Wagner and Adrian
2009b). In marine habitats, critical thermal windows for physiological mechanisms such as
aerobic performance of fish have been studied in the context of future warming trends (Pörtner
and Knust 2007; Pörtner and Farrell 2008). Warming-induced shifts in seasonal phenology may
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cause mistiming between such thermal windows and processes timed according to constant cues
such as day length (freshwater: Adrian et al. 2006; marine: Pörtner and Farrell 2008).

Besides studies of climate-induced phenology shifts, Shatwell et al. (2008), for example,
showed how short-term (in the order of weeks) windows of opportunity for population devel-
opment can be opened for cyanobacteria in warm springs in an otherwise diatom-dominated
season in Müggelsee (Germany). They argued that if cyanobacteria attain a critical biomass
during that very time window, they may dominate the phytoplankton throughout the summer
(see also Teubner et al. 1999). Another study showed that for lake summer crustacean zoo-
plankton, differences in water temperatures in rather narrow time windows, either before (2.2
weeks) or after the typical clear-water phase (3.2 weeks), affected their start-up populations
(Huber et al. 2010). These differences explained some of their contrasting success during three
hot summers characterized by more or less the same average summer temperature (Huber et al.
2010). For species with complex life cycles such as copepods, critical time windows affected
the survival rate of the juveniles, whereas the longer life time of the adults may have buffered
the adults’ population dynamics against seasonal variability in abiotic forces in lakes (Seebens
et al. 2007, 2009; Winder et al. 2009).

Another example of critical time windows is that changes in a lake’s thermal regime in re-
sponse to water temperature changes during specific time windows within a year induce subse-
quent changes in oxygen and nutrient dynamics. Of particular importance is that the duration
of stable thermal stratification may operate over a broad range of timescales related to lake
morphometry: on monthly scales in monomictic or dimictic lakes (Gerten and Adrian 2000;
Livingstone 2003; Mooij et al. 2005) and on sub-daily (Wilhelm and Adrian 2008) to weekly
scales in polymictic lakes (Wagner and Adrian 2009a). Longer summer stratification in the
range of one to several weeks has been shown to positively affect the magnitude of the autum-
nal algal bloom in productive dimictic lakes (Adrian et al. 1995; Huisman et al. 2004; Jöhnk
et al. 2008) or during sufficiently long-time windows of stable stratification in the order of a few
weeks during the summer in polymictic lakes (Wagner and Adrian 2009a) – mostly mediated by
enhanced internal nutrient loading (Elliott et al. 2006; Mooij et al. 2005; Wilhelm and Adrian
2008) and/or species replacements (Winder and Hunter 2008; Wagner and Adrian 2009a).

Recent studies also provide an important insight into the definition of the timing of seasonal
events. The widespread observed changes in phenology in marine and freshwater ecosystems
during recent warming episodes indicate that the timing of seasonal events should not be defined
based on fixed calendar dates, but according to cardinal events in the ecosystem itself. Impor-
tant cardinal events that have been successfully used in the past to define phenology-adjusted
temporal scales in lakes are, for example, ice-off dates, the timing of the clear-water phase or
periods of stable thermal stratification (Rolinski et al. 2007; Wagner and Adrian 2009a; Huber
et al. 2010).
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2.3.3 Time lags in response

Most of the above-cited studies also demonstrate lags between the described (more or less
short) forcing time window and the response time window in the range of weeks to months.
For example, water temperature, early in the year, is decisive for the summer development of
phyto- and zooplankton in lakes (Teubner et al. 1999; George and Hewitt 2006; Seebens et al.
2007; Wagner and Benndorf 2007; Huber et al. 2010) as well as of benthic species in marine
habitats (Kirby et al. 2007). Temperature-driven changes in the timing of food availability and
of predation by young-of-the-year fish during critical time windows in spring/early summer
determined the mid-summer decline of daphnids in a reservoir in Germany (Benndorf et al.
2001). Regarding freshwater and marine copepods, the abundances of cyclopoid (Gerten and
Adrian 2002b; Martens and van Beusekom 2008; Seebens et al. 2009) and calanoid copepods
(Beaugrand et al. 2002; Seebens et al. 2007; Martens and van Beusekom 2008; Batten and
Mackas 2009) in summer and autumn were found to be determined by weather in spring –
likely related to temperature-induced changes in the emergence of resting stages (Adrian et
al. 2006) or short-time windows of high food quantity for offspring survival (Seebens et al.
2009). Similarly, even in large-scale marine ecosystems, the intensity of the response of North
Sea plankton phenology in summer was reported to be driven by sea surface temperature in
spring (Edwards and Richardson 2004). Moreover, reproduction and survival of benthic species
in summer were influenced by sea surface temperature in winter/spring (Kirby et al. 2007).
Besides changes in population size, extensions of the growing season in summer/autumn have
been found for both marine (Martens and van Beusekom 2008) and freshwater copepods in
response to climatic changes in spring and summer that involved exceedance of temperature
thresholds during specific, rather short-time windows (Gerten and Adrian 2002b).

Even time lags at the scale of several months to years are known for physical and biological
system levels. It has been established that lake morphometry determines the memory of large-
scale signals such as the NAO in water temperatures from weeks to several months (Gerten and
Adrian 2001) to multiple years (Livingstone 2003). Species encompassing longer life cycles,
such as fish, are also affected by such extensive time lags. For example, year-class strength of
Coregonus lavaretus followed a 1-year time lag related to specific mixing dynamics in Lake
Constance (Straile et al. 2007).

Overall, time lags between the time windows of the climatic forcing window and the bio-
logical response window (differences in center of time windows) lay between 1.5 months for
phytoplankton, 2-3 months for parthenogenetically reproducing cladocerans, 3.3-3.5 months for
copepods and 11 months for whitefish for the limnetic examples depicted in Fig. 2.3. In spring,
the responses tend to be of a more immediate nature, because fast-growing species, adapted
to spring-specific steep gradients in temperature and light conditions, prevail in lakes (Adrian
et al. 2006). For slow-growing species with longer and more complex life cycles of months to
years such as copepods or fish, discrepancies between climatic forcing and response windows
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Fig. 2.3: Typical time lags between climate-related forcing and biological response in fresh-
water ecosystems. Squares in a indicate the seasonal timing of different species re-
sponses (vertical lines) with regard to the forcing time period (horizontal lines), as
identified in the literature (exemplary studies 1-7). b Shows the corresponding mean
time lags (differences in centers of time windows), which are also illustrated by the
vertical offsets of boxes to the dashed concurrence line in a. Climate forcing con-
sidered in the selected studies were water temperature (WT) and/or the index of the
North Atlantic oscillation (NAO), and the biological responses were mean or peak
biomass/abundance, growth rates and egg development time as indicated in the leg-
end. For example, study 4, based on a long-term record of Lake Constance, found
that the abundances of Eudiaptomus gracilis (calanoid copepod) in July/August were
positively correlated with mean WT in April (a). The mean time lag between forcing
and response was approximately 3.5 months (b).

are usually longer (Adrian et al. 2006; Straile et al. 2007; Fig. 2.3). Warming may be required
during decisive developmental stages such as emergence from diapause, egg and/or larval devel-
opment within one year or on different developmental stages across years as shown for whitefish
in Lake Constance. Here, the winter NAO affected larval growth of whitefish in spring, while
their egg development time was affected with a time lag of 1 year (Straile et al. 2007). Time lags
of 2 years were found between the NAO signal and cod recruitment in the Barents Sea (Dipp-
ner and Ottersen 2001). While it seems plausible that generation time and response windows
are linked, the underlying mechanisms are complex. Besides temperature and prey resources,
lake morphometry has been identified as an important driver for whitefish recruitment (Straile
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et al. 2007). In the marine realm spawning stock (Brander 2005), prey resources or water fluxes
(Drinkwater et al. 2003) are known to affect cod recruitment, independent of generation time.

2.3.4 Critical thresholds

In addition to the determination of critical time windows, the quantification of critical thresh-
olds has put another quality to recent climate impact studies. The surpassing of critical thresh-
olds in abiotic and biotic drivers is an important force that manifests at all system levels.
Pertinent examples are thermally limited oxygen delivery for marine fish (Pörtner and Knust
2007), the hatching of marine calanoid copepods (Holste and Peck 2006), surpassed tempera-
ture thresholds for the first spawning of freshwater mussel Dreissena polymorpha larvae (Wil-
helm and Adrian 2007), surpassed thresholds of freshwater competitor and/or predator densities
(Adrian 1997), thermal windows for growth and survival of larval and juvenile and adult fish
(reviewed by Pörtner and Peck 2010), all the way to the susceptibility of freshwater fish species
to diseases (Hari et al. 2006). Furthermore, the exceedance of direct and indirect temperature
thresholds may trigger processes, such as the onset of cyanobacteria blooms in lakes (Wagner
and Adrian 2009a; Huber et al. 2012), alterations in aquatic species composition (Holste and
Peck 2006; Parmesan 2006; Helaouët and Beaugrand 2007; Wagner and Adrian 2009a) or habi-
tat shifts (Jansen and Hesslein 2004; Hari et al. 2006; Wiedner et al. 2007). Peeters et al. (2007)
quantified surpassed critical thresholds in spring for a number of meteorological variables act-
ing in concert, such as air temperature, wind and light conditions and their relative importance
in determining an early or late onset of phytoplankton growth in Lake Constance.

Temperature thresholds can play a critical role, not only at the scale of single species or
processes, but also at ecosystem level, possibly causing a change into a different ecosystem
state often referred to as regime shift (Scheffer and Carpenter 2003). Beaugrand et al. (2008)
showed, for example, that regions in the North Atlantic, which were at the edge of the 9°-10°
isotherm, had the highest sensitivity to small changes in temperature, with large impacts on all
system levels as well as on biodiversity. The quantification of critical thresholds and related
nonlinear ecosystem responses has been a big step forward as they help to improve ecosystem
modeling approaches and thus enhance their predictive power.

During the last decades, several climate-induced regime shifts have been observed within
marine and limnic ecosystems over the entire Northern Hemisphere, in particular around
1976/1977 in marine habitats (Hare and Mantua 2000; Alheit et al. 2005; Weijerman et al.
2005) and the late 1980s in freshwater habitats (Gerten and Adrian 2000; Straile et al. 2003;
Blenckner et al. 2007). Such shifts have been attributed to large-scale climate modifications, in
particular to changes in the Pacific Decadal Oscillation, (Hare and Mantua 2000; DeYoung et al.
2004) or the North Atlantic Oscillation (Gerten and Adrian 2000; Alheit et al. 2005; Blenck-
ner et al. 2007; Möllmann et al. 2011). Regime shifts are inherently difficult to predict given
the non-stationary relationship that often characterizes the links between climatic forces and
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ecological responses (Scheffer and Carpenter 2003) along with the complexity of overlapping
forces (Wagner and Adrian 2009b). Theory developed already in the 1980s proposed that re-
covery rates from perturbation slow down when approaching a tipping point, which may be
used as an early warning signal for upcoming regime shifts (Wissel 1984). Most recent studies
indeed point to statistical signals that precede nonlinear transitions – and as such may serve as
early warning signals for abrupt regime shifts. A critical slowingdown in fluctuations measured
as an increase in autocorrelation has been detected in ancient climatic time series prior to abrupt
regime shifts (Dakos et al. 2008). Limited empirical evidence for several statistical signals suit-
able as early warnings of aquatic regime shifts come from laboratory experiments (phyto- and
zooplankton; Drake and Griffen 2010; Veraart et al. 2012) and whole-lake experimental studies
(Carpenter et al. 2011). The slowdown in fluctuations does not point to any specific mechanism,
but is more likely a universal property of a system moving towards a threshold (Wissel 1984;
van Nes and Scheffer 2007). Given the inherent unpredictability of complex ecosystems, it re-
mains to be tested whether statistical signals such as an increase in autocorrelation are indeed
suitable to predict transitions in ecosystem states (Veraart et al. 2012).

2.3.5 Outlook

The above-described studies from the literature demonstrate that physical, chemical and bio-
logical processes in aquatic ecosystems often respond, potentially time-lagged, to meteorolog-
ical conditions within very narrow time windows, for example, because specific temperature
thresholds were surpassed during that period (see also Fig. 2.1). These observations are crucial
in the light of global climate change, as changes in climatic conditions principally can manifest
themselves during any time window within a year, while there may be pronounced differences
among years with respect to the detailed seasonal pattern of change. The challenge lies in iden-
tifying the adequate timescale of analysis to detect climate-induced response pattern in aquatic
ecosystems.

Current understanding of the importance of variability at multiple temporal scales for these
response patterns – as documented in the reviewed literature – has implications for improving
the design of experimental and model-based climate impact studies. So far, temperatures in ex-
perimental and modeling approaches have been typically manipulated by a continuous increase
of, for example, 1-6 ◦C over an experimental period covering several months (de Senerpont
Domis et al. 2007; Sommer and Lengfellner 2008; Elliott 2010; Gaedke et al. 2010; Moss
2010). For most modeling studies of ecosystem impacts of future climate change, projections
of, for example, monthly or daily air temperature are constrained to output from general or
regional circulation models (downscaled by statistical or dynamical methods) in an attempt to
capture a range of potential trajectories. In addition, although current climate models operate
at high temporal resolution already, they only represent a specific trajectory – while in real-
ity, a change, for example, in mean annual or monthly temperature can be realized by myriad
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ways of temperature progression not accounted for by climate models. We do not question the
value of such studies but suggest that future studies would profit from the incorporation of high-
frequency fluctuations as documented in the above case study of Müggelsee (Fig. 2.2), as these
might be decisive for the dynamics of specific species and other ecosystem processes (Langman
et al. 2010; Sadro et al. 2011a,b).

A way forward might be the emulation of (sub)-daily temperature progressions in hundreds
of simulations, comparable to how it is being done with the statistical climate model STAR
(Orlowsky et al. 2008). STAR generates climate predictions based on observed historic time
series of meteorological variables, which are permuted in segments based on a linear trend of
a characteristic climatological variable. In general, such research needs to integrate analysis of
effects operating at multiple temporal scales, ranging from descriptive illustrations as proposed
in the present paper to more analytical methods of multivariate statistics (taking into account
the data time series at different temporal resolutions) and of time series analysis (for exam-
ple autoregressive conditional heteroscedasticity models) that jointly account for time-lagged
dependencies and autocorrelations of time series (Engle 1982).

In conclusion, our overview strongly supports science initiatives that aim at improving the
temporal resolution of long-term observatory data in aquatic systems (such as the Global Lake
Ecological Observatory Network GLEON; Hanson 2007). Most of these initiatives employ
modern in situ sensor techniques (Staehr et al. 2010; Pierson et al. 2011) generating data at
sub-daily temporal scales with a global coverage. These data will help to identify adequate
timescales of analysis for a large range of different ecosystems necessary for the understanding
of ecosystem responses to climate change.
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temperature variability as an indicator

for mixing in a polymictic lake *

Abstract

Applying coarse spectral analysis to over two decades of daily near-surface water tempera-
ture (WT) measurements from Müggelsee, a shallow, polymictic lake in Germany, allowed us
to systematically characterize patterns in WT variability from daily to yearly temporal scales.
Comparison of WT with local air temperature indicates that the patterns found in WT vari-
ability are likely attributable to both meteorological forcing and internal lake dynamics. We
identify seasonal patterns of WT variability and show that WT variability increases with in-
creasing Schmidt stability, decreasing Lake number and decreasing ice cover duration, and is
higher near the shore than in the open water. We introduce the slope of WT spectra as an indica-
tor for the degree of lake mixing that helps to explain the identified temporal and spatial scales
of WT variability. The explanatory power of this indicator in other lakes with different mixing
regimes remains to be established.

*in revision for Inland Waters as Schmidt SR, Gerten D, Hintze T, Lischeid G, Livingstone DM and Adrian R.
Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake.
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3.1 Introduction

Water temperature (WT) variability is a fundamental driving force of almost all processes
in lake ecosystems at temporal scales extending from biochemical reaction rates to life his-
tories (Reynolds 1990). The detailed characteristics of the temporal evolution of WT and
scale-dependent changes in its variability can play a crucial role for aquatic organisms. The
importance of variability has been shown on many levels, from individual species (Drake 2005;
Barbosa et al. 2014) to community composition (Benedetti-Cecchi 2003; Benincà et al. 2011;
Thompson et al. 2013) and biodiversity (Shurin et al. 2010). Yet, despite this, the majority of
studies investigating climate change and its impacts are focused only on changes in mean tem-
perature. This is also the case in freshwater sciences, where significant increases in mean WT
have been observed in lakes over the past few decades (Adrian et al. 2009; George 2010; Kernan
et al. 2010; IPCC 2013; O’Reilly et al. 2015). There is, however, evidence that climate change
also involves changes in the overall temperature probability distribution that imply an increase
in variability on at least the regional level, especially in Europe (Schär et al. 2004; Salinger
2005; Vidale et al. 2007; Hansen et al. 2012; Huntingford et al. 2013 (regionally); IPCC 2013).
These examples focus on meteorological variables, and up to now the effect of an increase in
air temperature variability on aquatic ecosystems has been merely the subject of speculation.
Such a “concerning lack of baseline knowledge” together with the “inescapable reality of cli-
mate variability on multiple scales” (Coble et al. 2016) calls for advances to be made in aquatic
research that will focus not only on changes in the mean, but on comprehensively assessing the
multiple facets of climate variability in experimental and observational studies.

Variability in water temperature is generated by various external and internal processes act-
ing on different temporal and spatial scales. In temperate regions, the most important driver
of WT variability is the seasonality of the weather. The main weather-related drivers of WT
variability are air temperature (AT), wind speed, relative humidity, solar (short-wave) radiation,
atmospheric (long-wave) radiation and, in some cases, precipitation (Edinger et al. 1968; Wil-
helm et al. 2006). Oscillatory climate modes, such as the North Atlantic Oscillation, act on
longer time scales (Gerten and Adrian 2000; Straile and Adrian 2000; George et al. 2010). De-
spite the strong coupling between AT and WT, especially in shallow lakes (Gerten and Adrian
2001), the unique physical properties of water (e.g., its high heat storage capacity), coupled with
specific internal lake processes, shape patterns of lake WT variability decisively (MacKay et al.
2009). For instance, polymictic lakes can stratify at high ambient AT, but stratification periods
are often interrupted by events of turbulence and vertical mixing induced by short-term changes
in the weather (Lampert and Sommer 2007). The duration and intensity of summer stratifica-
tion in lakes has been on the increase and is expected to increase further as global warming
progresses (Elo et al. 1998; Livingstone 2003; Wagner and Adrian 2011), possibly causing a
transition between different mixing regimes (Livingstone 2008; Kirillin 2010). Internal waves,
which can occur throughout the year (Lorke 1998), even under ice (Kirillin et al. 2012), also
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induce fluctuations in WT (Wetzel 2001) and thus affect WT variability. Finally, the presence
or absence of ice cover during winter, which is also strongly affected by global warming (Liv-
ingstone and Adrian 2009), may significantly change the physical and biotic conditions of lakes
in general (Adrian et al. 1999), as well as WT variability in particular (Kirillin et al. 2009).
However, the effect of changes in the most important internal driving forces of WT variability
in shallow lakes – seasonality, mixing dynamics and ice cover – has not yet been systematically
quantified.

Lakes are often spatially heterogeneous. This has been observed for dissolved substances
and planktonic organisms, which can be distributed in patches (Wiens 1989; Lampert and Som-
mer 2007). Furthermore, water temperature can exhibit horizontal differences. The shallower
water near the shore of a lake warms and cools more rapidly than the deeper regions, leading
to differential warming and cooling of pelagic and littoral regions and distinct horizontal and
vertical circulation patterns (Imberger and Patterson 1990; Farrow and Patterson 1993; Peeters
et al. 2003). Despite a growing interest in the spatial variability of substances and processes
within lakes (Yurista and Kelly 2007; Van de Bogert et al. 2012), studies of spatial variabil-
ity that also incorporate temporal scales of variability are still rare (but see Akyuz et al. 2014;
Guadayol et al. 2014).

Among the reasons why the variability of lake WT is often neglected, despite the fact that
it is a fundamental property of lakes and plays a crucial role for lake biota, are its inherent
multi-faceted nature and the fact that the quantification of variability is far less straightforward
than the quantification of average conditions (Coble et al. 2016). A wide variety of statistical
descriptors are commonly used to quantify the variability of a time series: e.g., the second
and higher moments of the probability density function; range; coefficient of variation; median
absolute deviation; and interquartile range (for an overview see Heath 2006; Fraterrigo and
Rusak 2008). However, all of these descriptors have one major disadvantage: they are unable
to account for any dependence on temporal scale, as they fail to distinguish between short-
term (high-frequency) and long-term (low-frequency) variability. Thus, they are all dominated
by the variability of the underlying (long-term) temporal scales. Yet, short-term temperature
variability and long-term temperature variability are likely to affect the (aquatic) ecosystem in
different ways (Litaker et al. 1993; Steele et al. 1994; Fischer and Schär 2009; Benincà et al.
2011; Adrian et al. 2012; Foster et al. 2014). Therefore, a method capable of resolving the
total variance of a time series into its frequency components, or at the very least, partitioning it
into coarse frequency bins, is required to adequately address the variability of a time series on
different temporal scales. Spectral analysis based on the Fourier Transform (e.g., Bloomfield
2000) is an appropriate method for accomplishing this.

Here, we document patterns in the WT variability of a shallow, polymictic lake, a lake type
in the transition zone likely to switch from polymixis to dimixis under future climate scenarios
(Kirillin 2010; Shatwell et al. 2016). Specifically, we ask what are the temporal and spatial
scales of water temperature variability, and what impact do the most important drivers of WT
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variability – air temperature variability, seasonality, ice cover, stratification stability and mixing
dynamics – have? We base our study on a unique 22-year-long data set of daily near-surface
WT measured at the shore and in the open water in Müggelsee, applying Fast Fourier Transform
(FFT) spectral analysis over time windows of years, seasons and months and analyzing temporal
scales from days to years. The results of our study contribute to a better understanding of the
specific characteristics of lake WT variability on different temporal and spatial scales and at
different times during the course of a year.

3.2 Methods

3.2.1 Study site

Our study site, Müggelsee, is a well-studied, shallow, polymictic lake in Berlin, Germany,
with a surface area of 7.3 km2, a mean depth of 4.9 m and a maximum depth of 7.9 m (Fig.
3.1; Driescher et al. 1993). The River Spree flows through the lake, resulting in a theoretical

Fig. 3.1: Bathymetric map of Müggelsee with sampling locations.

retention time of about 6-8 weeks (Köhler et al. 2005). Because of its mainly east-west ori-
entation and the dominance of westerly winds in the region, the lake is very much exposed to
wind. Wind speeds are highest from November to April and lowest in August and Septem-
ber (Fig. S3.1; Driescher et al. 1993). Müggelsee is situated in a geographic region where the
severity of winter is highly variable. Thus, depending on the winter, ice cover on the lake can
be either continuous, intermittent or completely absent (Adrian and Hintze 2000). In the long
term, however, the overall duration of annual ice cover exhibits a decreasing trend (Livingstone
and Adrian 2009). As a polymictic lake, Müggelsee is characterized by irregular shifts between
mixed and stratified conditions. These shifts occur mainly during the growing season (April
to September). Most stratification events last less than 24 hours (Wilhelm and Adrian 2008),
but longer stratification events can last from 1-2 weeks up to a maximum of 8 weeks (Wagner
and Adrian 2009). Müggelsee is eutrophic, with intense algal blooms occurring in spring and
summer that may affect the thermal structure and mixing dynamics of the lake, and hence the
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variability of its WT (Shatwell et al. 2016). Internal seiches are present throughout the year
(Lorke 1998; Wüest and Lorke 2003) and occur even in winter under ice (Kirillin et al. 2012).

3.2.2 Data sets

Near-surface water temperatures have been measured near the northern shore of Müggelsee
since 1994. These measurements were made daily, between 08:00 h and 09:00 h local time, at
a mean depth of 0.8 m, using a YSI multi-parameter probe (6600 V2 sonde, with a resolution
of 0.01 K and an accuracy of ±0.15 K. The measurement location changed once during the
measurement period. From 1994 until 2002, the probe was deployed at a jetty 30 m from the
shore (52°26′48.1′′N; 13°38′10.9′′E), where the lake is about 2 m deep (henceforth termed the
“shore” location). In the year 2002, a measuring station was put into operation 300 m from the
shore (52°26′46.1′′N; 13°39′0.2′′E), where the lake is 5.3 m deep (henceforth termed the “lake”
location). In winter, measurements were continued under the ice cover at a depth of about
1.5 m. In 2002, when the measurement location was changed, simultaneous measurements
were made at both locations on 98 days between June and September. Aside from this overlap,
the shore measurements (1994-2002) and the lake measurements (2002-2015) were performed
during consecutive time periods. During the period of simultaneous WT measurements, WT
was found to be on average 0.1 K higher at the lake station than at the shore station. This
difference was therefore added to the shore measurements. No macrophytes were present at
either location.

To determine whether any patterns found in WT were generated by internal lake processes
or by local weather, we compared WT at the two locations with AT measured at Schönefeld
Airport, located approximately 10 km from Müggelsee. This enabled us to attribute differences
between the time series from the shore and lake locations to either a location effect or a time
effect, which would otherwise have confounded each other.

3.2.3 Data preparation

The analysis of the data sets was conducted separately for three time windows: annual, sea-
sonal and monthly scales (Fig. 3.2a). To guarantee uniformity for each time window, each year
was defined as consisting of 365 consecutive days (discarding 31 December in leap years). The
year was divided into four seasons of 92 days each, with a one-day overlap between consecutive
seasons, as follows: winter, Julian days 1-92 (1 January – 3 April in non-leap years); spring,
Julian days 92-183 (3 April – 2 July in non-leap years); summer, Julian days 183-274 (2 July – 1
October in non-leap years); and fall, Julian days 274-365 (1 October – 31 December in non-leap
years). Lastly, the year was divided into 12 months of 31 days each, also with a one-day overlap
between consecutive months. January was defined as Julian days 1-31; February as Julian days
31-61 (31 January – 2 March in non-leap years); March as Julian days 61-91 (2 March – 1 April
in non-leap years); etc.
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Fig. 3.2: Illustration of the study approach. (a) Annual mean near-surface water temperature
(black, complete years; gray, years containing gaps) with examples of annual, seasonal
(summer) and monthly (July) time series for the year 2000. (b) Fourier spectrum of
Müggelsee near-surface water temperatures from the year 2000; the five frequency
bands used for frequency-band averaging, corresponding to period lengths of 2-3, 3-6,
6-15, 15-35 and 35-365 days, are shown as dashed vertical lines. (c) Spectral means
over these five frequency bands with 95 % confidence intervals for the years 2000 and
2009.

There were 212 gaps in the WT time series, ranging from 1 to 100 days in duration and
accounting for 10 % of the total number of days in the time series. Gaps of 3 days or less ac-
counted for 78 % of the total number of gaps. As spectral analysis by FFT requires regularly
spaced data, interpolation was necessary to increase the sample size. Recognizing that interpo-
lation may distort the variability structure of the data, and hence the spectrum, we developed a
decision procedure to define which gaps to interpolate over and which data to exclude from the
analyses, as follows. To estimate the influence of interpolating missing values on the calculation
of monthly means, all months in the WT data set that contained no gaps were used to calculate
“true” monthly means. Then, gaps of increasing duration from 1 day up to a maximum of 29
days were created within this data set; these gaps were furthermore shifted to all possible posi-
tions within each month. The gaps were then filled by linear interpolation and a new “artificial”
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mean value was calculated. For each month, the deviation of the artificial from the true mean
was calculated. This deviation was found to vary during the course of a year, being greatest
during summer and least during winter. The criterion for interpolating over a gap was based on
the mean absolute deviation. This was calculated separately for each gap length (1-29 days) and
for each month of the year (January – December) as the mean of all absolute deviations for all
possible positions of a gap of the given length within the given month. The maximum accept-
able mean absolute deviation for interpolating over a gap was set at 0.15 K. Application of this
criterion to each month of the year separately resulted in maximum gap lengths acceptable for
interpolation that varied seasonally, being shorter in summer than in winter (Table 3.1). At the
end of this procedure, a total of 457 gap days had been filled by interpolation, corresponding
to 56 % of all gap days and 6 % of all days over the whole 22-year time series from 1994 to
2015. To make sure that the linear interpolation did not overly bias the WT variability patterns
by damping the signals from the interpolated sections, the analyses were additionally run over
those sections of the original data set that were without gaps. This resulted in the same overall
patterns as the results gained from the interpolated data set.

Table 3.1: Outcomes of the gap filling procedure. Mean dev: Absolute mean deviation of “arti-
ficial” monthly mean water temperature (WT) (after linear interpolation of artificially
created gaps) from “true” monthly mean WT (before the creation of artificial gaps)
[K]. Max dev: Maximum deviation of “artificial” monthly mean WT from “true”
monthly mean WT [K]. Length: Maximum duration of created gaps [days].

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean dev 0.13 0.15 0.14 0.14 0.13 0.14 0.12 0.13 0.15 0.14 0.15 0.15

Max dev 0.58 0.56 0.50 0.86 0.46 0.73 0.48 0.47 0.60 0.60 0.54 0.67

Length 14 16 12 8 7 7 6 8 11 10 12 13

3.2.4 Statistical approach

To analyze the frequency dependence of the variability within the WT time series we calcu-
lated FFT power spectra over time windows of years, seasons and months of the 22-year data
set using

Xk =
1
N

N−1

∑
t=0

xtei2πk t
N (3.1)

where Xk = discrete Fourier Transform at frequency k = 0, . . . ,N − 1 of the time series x of
length N at time t (Cooley and Tukey 1965; Singleton 1969). This gives the power spectral
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density Sk at frequency k as

Sk = |Xk|2 (3.2)

The mean was subtracted and the trend removed from each time window prior to analysis, and
no zero-padding was applied. The power attributed to a specific frequency (i.e., the spectral
density at that frequency) gives a measure of the magnitude of the variability at that frequency.
A high spectral density thus implies a strong (“highly variable”) signal at that frequency. In the
present context, high frequencies (i.e., short periods) represent “short-term” (daily to weekly)
variability, medium frequencies represent “medium-term” (weekly to monthly) variability, and
low frequencies represent “long-term” (monthly to yearly) variability. To improve the statistical
robustness of the spectra obtained, frequency-band averaging was used to increase the number
of degrees of freedom, yielding coarse, low-resolution spectra well-suited to the purpose of
this study. Five frequency bands were defined corresponding to periods 1/k < 3 days; 3 days
≤ 1/k < 6 days; 6 days ≤ 1/k < 15 days; 15 days ≤ 1/k < 35 days; and 1/k ≥ 35 days. All
five were used for the annual windows (up to 365 days) and the seasonal windows (up to 92
days), and the first four of these for the monthly windows (Fig. 3.2b). As an example, the mean
spectral estimates for these five frequency bands are illustrated in Fig. 3.2c for the years 2000
and 2009.

For each location (shore or lake), the resulting estimates for each spectral band and time
window were averaged to yield one annual spectrum, four seasonal spectra and twelve monthly
spectra per location and spectral band. For each aggregation, 95 % confidence intervals were
calculated based on the distribution df/χ2

df , with df = number of degrees of freedom. As spectra
were calculated without tapering or smoothing, there are two degrees of freedom associated
with each initial spectral estimate. Averaging across i neighboring frequencies and j spectra
increases df by the factor i j. No overlap in confidence intervals implies a statistically significant
difference between estimates at the 95 % level, which is a very conservative approach (Payton
et al. 2003). Hereafter, all references to statistical significance imply non-overlapping 95 %
confidence intervals (Fig. 3.2c). A potential source of error in spectral analysis is the aliasing
of power at frequencies greater than the Nyquist frequency (0.5 cycles per day). However, a
comparison of daily and hourly WT data from 2009 showed this to be unlikely (Fig. S3.2), as
the spectrum of the daily data (with a Nyquist frequency of 0.5 c/d) differed only slightly from
the spectrum of the hourly data (with a Nyquist frequency of 12 c/d).

The scaling behavior of WT variability from low to high frequencies was characterized as the
slope of the non-aggregated power spectrum, calculated by simple linear regression of the log10-
transformed spectral density on the log10-transformed frequency. The slope of the spectrum,
sometimes described in terms of “noise color” (e.g., Vasseur and Yodzis 2004), gives a rough
characterization of the dependence of WT variability on frequency. A (steep) negative slope
implies a red-noise or brown-noise spectrum, in which low-frequency variability exceeds high-
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frequency variability; a (steep) positive slope implies a blue-noise or violet-noise spectrum, in
which high-frequency variability exceeds low-frequency variability; and an approximately flat
slope implies a white-noise spectrum, in which low-frequency variability and high-frequency
variability are similar.

3.2.5 Drivers of WT variability

The AT data were subjected to a similar procedure to that used for the WT data to allow
direct comparison between the two. To ensure consistency with the WT data, only those AT
measurements recorded on days on which WT was also measured were included in the analysis.
The AT spectra were averaged over the time windows during which the corresponding WT was
measured at the same location (shore or lake). As AT was always measured at the same nearby
location, differences in the statistical properties of WT measured at the two locations (the early
data from the shore station and the later data from the lake station) could be attributed either to
a time effect (if AT showed similar differences in variability between the early and later years),
or to a location effect (if AT variability did not change over the entire time period). Seasonality
in WT and AT was accounted for by calculating monthly means.

Internal lake processes that we related to monthly WT spectra were taken into account as
follows. The intensity of thermal stratification was determined from hourly WT profiles by cal-
culating the monthly mean Schmidt stability, which quantifies the overall resistance of a water
body to mechanical mixing (Schmidt 1928; Idso 1973). The Wedderburn number, which de-
scribes the potential for upwelling events in lakes (Imberger and Patterson 1990), was calculated
from hourly WT profiles and local hourly wind speed measurements. The Lake number (Im-
berger and Patterson 1990) was also calculated from hourly WT profiles and local hourly wind
speed measurements to quantify the degree of internal mixing due to internal waves induced
by wind stress during stratified conditions. To relate hourly calculations of the Wedderburn
number and Lake number to monthly WT spectra, we tested different percentiles of the log10-
transformed Wedderburn and Lake numbers for monthly time windows, and their ability to
explain identified patterns. As WT profiles were available only at the lake location, the Schmidt
stability, Wedderburn number and Lake number could be calculated only for this location. The
duration of ice cover was defined as the percentage of days per month during which more than
80 % of the lake surface was covered with ice (Adrian and Hintze 2000). Trends were calculated
from simple least squares regression and considered significant if p-values were < 0.05.

A comparison of the variability derived from the FFT power spectra with the standard devi-
ation as a more traditional variability metric is given in the supporting information.

All analyses were performed using R (R Core Team 2015). Power spectra were calculated
using the function spec.pgram of the R package stats (R Core Team 2015), Schmidt stability and
Lake number were calculated using the R package rLakeAnalyzer (Read et al. 2011; Winslow
et al. 2014), and graphics were created using the R package ggplot2 (Wickham 2009).
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3.3 Results

We analyzed the variability in WT, quantified as spectral density, in 22 years of daily near-
surface water temperature from Müggelsee (1994-2015) at different temporal scales (days to
years) and spatial scales (open water, near shore). Measurement location, air temperature vari-
ability, seasonality, stratification stability, mixing dynamics and ice cover were tested as poten-
tial drivers of WT variability.

3.3.1 Slopes of spectra

For the majority of time windows, the spectral densities in the spectra of the WT time series
increased from high frequencies (short-term variability, with a minimum period of 2 days) to
low frequencies (long-term variability, up to a period of 365 days) (Fig. 3.2b), corresponding to
a red-noise spectrum. The slopes of the spectra characterize this scaling behavior. In order to
investigate the explanatory power of the slopes of the spectra of WT, we tested their relation-
ship to the limnological indicators Schmidt stability, Wedderburn number and Lake number.
The slopes of the monthly WT spectra were found to decrease significantly with an increase
in the 1st percentile of the log10-transformed Lake number (p < 0.0001,r2 = 0.2; Fig. 3.3).
Monthly spectra with steep negative slopes were associated with high values of the 1st per-

Fig. 3.3: Slopes of monthly spectra of near-surface water temperature measured at the
Müggelsee lake station as a function of the 1st percentile of the log10-transformed
Lake number.

centile of the log10-transformed Lake number, implying a strong, stable thermal stratification
with little potential for vertical mixing through the action of wind-induced nonlinear internal
waves. On the other hand, monthly spectra with flat slopes were associated with low values of
the 1st percentile of the log10-transformed Lake number, implying a high potential for mixing
by wind-induced nonlinear internal waves. The relationship was also highly significant with
other, especially low, percentiles and the mean of the Lake number. Furthermore, different per-
centiles of the log10-transformed Wedderburn number also exhibited a significant relationship
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with the slopes of the WT spectra, but the Schmidt stability, for instance, did not. The rela-
tionship with the 1st percentile of the log10-transformed Lake number had the lowest p-value
and explained most of the variance, and is therefore the one shown here. Low percentiles of
the Lake number characterized the probability of incipient occurrence of internal waves during
stratified conditions better than higher percentiles, and better than any other of the limnological
indicators tested.

3.3.2 Differences in WT variability between shore and lake locations

In almost all years, seasons and months, WT variability was higher at the shore station than
at the lake station at all temporal scales investigated (Fig. 3.4). In the annual time windows,

Fig. 3.4: Spectral density (with 95 % confidence intervals) of near-surface water temperature
measured at the Müggelsee shore station and lake station, averaged over five frequency
bands for time windows of (a) years, (b) seasons and (c) months. Large dots represent
estimates of spectral density with non-overlapping confidence intervals within one
frequency band and time window (significant difference between locations); small
dots represent estimates with overlapping confidence intervals. Note logarithmic scale
on y-axes.

this was found for daily to monthly variability, although only the daily variability differed sig-
nificantly between the two stations (Fig. 3.4a). In 7 seasonal time windows (Fig. 3.4b) and 16
monthly time windows (Fig. 3.4c), distributed over the whole year for daily to biweekly vari-
abilities, differences were significant. The only exception to this, with variability at the shore
station significantly lower than at the lake station, was the long-term variability in the win-
ter season (Fig. 3.4b). In 2002, when parallel measurements were conducted at the shore and
lake stations, we also found short-term variability to be higher at the shore station (results not
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shown). The slopes of the mean annual, seasonal and monthly spectra of the WT measured at
the shore location were generally flatter than the slopes of the corresponding spectra of the WT
measured at the lake location (Fig. 3.5).

Fig. 3.5: Slopes of the mean annual, seasonal and monthly spectra of near-surface water tem-
perature measurements at the Müggelsee shore station and lake station.

In some cases, AT showed higher variability during the time windows when WT measure-
ments were available from the shore station than during the time windows when WT was mea-
sured at the lake station (Fig. S3.3a-c). However, for daily to weekly AT variability, significant
differences between the shore station and lake station time windows were found only in three
seasons (spring, summer and fall) and three months (April, September and November). In fact,
the daily variability of AT showed a significant decreasing trend over time during the 22 years
investigated, but trends in AT variability at temporal scales longer than one day were not signif-
icant (results not shown).

3.3.3 Seasonality

Within the seasonal cycle, the WT variability in the monthly time windows increased signif-
icantly with increasing WT from winter to summer and decreased significantly with decreasing
WT from summer to winter over all frequency bands (Fig. 3.6a). This relationship depended
on the month of the year: variability was lowest in January and February and highest between
April and July. Seasonality in WT variability was, however, not dependent solely on mean WT:
variability was much higher in spring months (March to May) than in fall months (September to
November), despite the similarity in monthly mean WT in these two seasons. These differences
between spring months and fall months were greatest for short-term variability and decreased
with increasing temporal scale (Fig. 3.6a).

No differences between spring and fall were present in AT variability, which showed very
little change during the course of the year, despite a slight, but significant, decrease in variability
with increasing mean AT (Fig. 3.6b).

To further investigate the most prominent differences in WT variability detected within the
seasonal cycle – i.e., those between spring and fall – we compared the slopes of the spring and
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Fig. 3.6: (a) Spectral density of near-surface water temperature (WT) in Müggelsee in each of
four frequency bands as a function of monthly mean WT, grouped by month of the
year. (b) Spectral density of air temperature (AT) measured at Schönefeld airport as a
function of monthly mean AT, grouped by month of the year. Note logarithmic scale
on y-axes.

fall WT spectra. The slopes of the monthly spectra of WT measured in spring (March to May)
were significantly less steep (i.e., flatter) than the slopes of the monthly spectra of WT measured
in fall (September to November; Wilcoxon rank sum test, p < 0.001; Fig. 3.7).

Fig. 3.7: Box plots of slopes of monthly spectra of near-surface water temperature in Müggelsee
measured in spring (March to May) and fall (September to November).
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3.3.4 Stratification stability, wind-induced mixing and ice cover

WT variability increased significantly with increasing Schmidt stability (St) in all frequency
bands for values of monthly mean St up to ~20 Jm−2 (Fig. 3.8a). From November to March
the lake was mixed in all years and St was therefore very close to zero. In spring (March to
May), WT variability was higher than in fall (September to November), although St was similar.
Furthermore, WT variability decreased significantly with increasing 1st percentile of the log10-
transformed Lake number for daily to weekly variabilities, but not for longer timescales (Fig.
3.8b). In months with potential ice cover (December – March), the WT variability decreased
with increasing ice-cover duration (Fig. 3.8c). This decrease was significant for the shore station
at all frequency bands (with higher significance levels for short-term variability) and for the lake
station at all frequency bands except daily variability.

Fig. 3.8: (a) Spectral density of near-surface water temperature (WT) measured at the Müggel-
see lake station in each of four frequency bands as a function of the monthly mean
Schmidt stability. (b) Spectral density of near-surface WT measured at the Müggelsee
lake station in each of four frequency bands as a function of the 1st percentile of the
log10-transformed Lake number. Black lines represent the linear regression fits to the
data. (c) Spectral density of near-surface WT measured at the Müggelsee shore station
and lake station, averaged over four frequency bands, as a function of the percentage
of days per month during which the lake was ice-covered. Black lines represent linear
regression fits to the data. Note logarithmic scale on y-axes.

To further investigate the differences identified in the winter WT spectra (December to
March), we compared the slopes of the spectra in “warm” winter months (mean monthly tem-
perature above the median) to those in “cold” winter months (mean monthly temperature below
the median). The slopes of the spectra of WT measured at the shore location were significantly
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flatter in warm winter months than in cold winter months (Wilcoxon rank sum test, p < 0.001;
Fig. 3.9). The slopes of the spectra of WT measured at the lake location were slightly steeper in
warm winter months than in cold winter months (Wilcoxon rank sum test, p < 0.05; Fig. 3.9).

Fig. 3.9: Box plots of slopes of monthly spectra of near-surface water temperature in Müggelsee
measured in “cold” (mean annual, seasonal or monthly temperature below the median)
and “warm” (the same above the median) winter months (December to March).

3.4 Discussion

To elucidate patterns of WT variability and their drivers, we analyzed short-term to long-
term WT variability at temporal scales ranging from days to years. Overall, we found: higher
WT variability at the shore station than at the lake station; seasonally specific differences in WT
variability although mean WTs were similar (spring / fall); increasing WT variability with in-
creasing stratification stability; decreasing short-term WT variability with increasing probability
of occurrence of wind-induced internal waves; and decreasing WT variability with increasing
ice-cover duration. Patterns of variability in AT differed from those in WT. The slope of the
WT spectra turned out to be a good indicator for identifying patterns of WT variability. In
the following, we discuss the temporal and spatial scales of WT variability and their potential
drivers.

3.4.1 Spatial variability

On all time-scales, WT variability was higher at the shore station than at the lake station
(Fig. 3.4). However, as most WT measurements at the two stations were not conducted simulta-
neously, this difference could not immediately be attributed solely to the difference in measure-
ment location. Short-term variability in AT exhibited a significant decreasing trend with time,
implying that the lake was exposed to a higher short-term variability in AT during the earlier
years, when WT was measured at the shore station, than during the later years, when WT was
measured at the lake station (Fig. S3.3). However, the differences in AT variability between the
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earlier and later years were significant in only a few months and seasons, and were undetectable
at longer temporal scales (weeks to years). The parallel measurements conducted at both loca-
tions in 2002 also showed WT variability to be substantially higher at the shore station than at
the lake station. This suggests that the observed differences can be attributed at least in part to
the difference in measurement location. Hence, for WT, a trend toward decreasing short-term
variability with time, induced by external climatic forcing, would seem to be superimposed on
a location effect.

The flatter slopes of the spectra of WT measured at the shore station (Fig. 3.5) indicate higher
short-term variability and a higher potential for vertical mixing by nonlinear internal waves at
the shore (Fig. 3.3). At the lake station, on the other hand, the slopes of the spectra were steeper,
indicating that the influence of internal waves was weaker. The shallower water at the shore
station likely responds more directly to meteorological forcing than does the deeper water at the
lake station due to the limited heat capacity of the smaller water volume near shore (Farrow and
Patterson 1993; Benincà et al. 2011). This so-called differential warming and cooling between
the shore and the open water, which can result in horizontal temperature differences between
the pelagic and littoral regions of lakes (Imberger and Patterson 1990; Farrow and Patterson
1993; Peeters et al. 2003), might also result in WT variability close to the shore being higher
than in the open water.

Assuming that inflowing water from the River Spree, the main inflow to Müggelsee, mixes
rapidly into the lake (Barthelmes 1962), any influence of Spree water on the variability of the
lake WT at the distant lake station is likely to be slight. Moreover, the potential impact of
groundwater flowing into the lake can most likely be neglected. At the lake station, located
~300 m offshore, where the lake is 5.5 m deep, the influence of groundwater on the lake is
insignificant (Driescher et al. 1993). At the shallower shore station, where the lake depth is
only 2 m, continuous groundwater withdrawal along the shore is likely to reduce any influence
of groundwater on the lake water.

Overall, although the potentially confounding factors of location and time are difficult to
disentangle, the higher reactivity of the smaller water volume and the higher probability of
occurrence of wind-induced internal waves at the shore location would seem to be the most
important drivers of the greater degree of short-term variability observed there. This agrees
with Guadayol et al. (2014), who found – albeit in a very different system – all analyzed WT
variance components, ranging from hourly to weekly time scales, to decrease with distance
from the shore along a transect in a shallow coastal coral reef. On the other hand, Lorke et al.
(2006) found WT variability at a nearshore station in Lake Constance to be only slightly higher
than at an offshore station for timescales between 10 and 15 min, and no difference at longer
timescales up to several days. However, the nearshore location used in their study was 75 m
offshore at a depth of 19 m and hence represented a substantially larger water volume than the
shore location used in our study.
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3.4.2 Seasonal variability

In all frequency bands, WT variability was lowest in fall and winter, highest in spring and
summer and higher in spring than in fall at similar mean WT (Fig. 3.6a). This was not the
case for ambient AT, which exhibited no such seasonal differences in variability (Fig. 3.6b).
Thus, there seem to be seasonally dependent physical processes at work which modify the link
between AT and WT variability (MacKay et al. 2009). To our knowledge, a dependence of
the seasonality of WT variability on frequency has not yet been discussed in the limnological
literature.

The seasonal differences were reflected in the apparent dependence of WT variability on
thermal stratification and mixing dynamics. WT variability increased with increasing intensity
of thermal stratification (Fig. 3.8a) and decreased with decreasing potential for vertical mixing
through the action of wind-induced internal waves (Fig. 3.8b). Although the mean WT was
similar in spring and fall, the WT variability was higher in spring than in fall (Fig. 3.6a) and the
slopes of the spectra were flatter (Fig. 3.7). This indicates a higher potential for high-frequency
internal waves in spring than in fall (Figs. 3.3, 3.8b), leading to the observed higher WT vari-
ability, especially on short temporal scales. This higher variability in spring and summer WT
is in line with the findings of Woolway et al. (2016), who describe substantially larger diel
temperature ranges in summer than in winter in 100 temperate and boreal lakes. The seasonal
pattern of Schmidt stability (Read et al. 2011; Sadro et al. 2011) suggests that from spring to
summer, an epilimnion of varying thickness is often present in this polymictic lake. Such an
epilimnion will respond more sensitively to climatic forcing than would a completely mixed
larger water body (Lampert and Sommer 2007), leading to higher WT variability in the epil-
imnion than during periods when the lake is well-mixed. In summer the external input of heat
to the lake reaches a maximum, resulting in increased thermal stratification (Fig. 3.8a), while
mean wind speeds are lowest (Fig. S3.1). The reduced wind stress hence had less effect on the
thicker epilimnion, leading to higher Lake numbers (Fig. 3.8b) and only slightly higher WT
variability in summer than in spring. In fall on the other hand, the water column was already
almost completely mixed (Fig. 3.8a) and wind-induced internal waves were less likely (Fig.
3.8b). This resulted in reduced WT variability.

It might be anticipated that the observed warming of Müggelsee during the past few decades
(O’Reilly et al. 2015) will lead to more frequent and longer periods of thermal stratification,
and possibly to a thermal regime shift (Livingstone 2003, 2008; Kirillin 2010; Shatwell et al.
2016). This would result in a generally thicker epilimnion with lower WT variability. This
hypothesis is supported by the two months in the data set (June and July 2006) that exhibited
exceptionally long stratification periods and relatively high monthly mean Schmidt stabilities
of over 30 Jm−2 (with daily values up to 80 Jm−2), but only medium levels of WT variability
(Fig. 3.8a). If this hypothesis is correct, such changes in thermal regime may tend to counteract
the increases in lake water temperature variability that might otherwise be expected to occur
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as a result of global warming (Wilhelm and Adrian 2008; Nickus et al. 2010; Guadayol et al.
2014; Coble et al. 2016).

Ice formation in winter reduces the external energy input to the lake and imposes a lower limit
(0 ◦C) on the WT. WT variability in winter was related to the duration of ice cover and tended
to be low in months when the lake was ice-covered most of the time; i.e., in colder months (Fig.
3.8c). This was also reflected in the steeper slopes of the WT spectra at the shore location in
cold winter months as compared to warm winter months. These steeper slopes resulted from
the lower short-term variability in cold winter months, during which the lake was often ice-
covered (Fig. 3.9). Obviously, the presence of ice on a lake drastically reduces the influence of
meteorological forcing on the lake, which will likely result in a reduced WT variability under
ice. Kirillin et al. (2012) have shown that internal seiches also occur under ice, albeit with lower
amplitudes and lower current speeds than during ice-free periods. Such internal seiches may
well occur in Müggelsee at the measurement depths considered here (Kirillin et al. 2009). At
the lake location, ice cover did not have much effect on the already very low WT variability,
which may indicate that direct heating of littoral sediment by solar radiation adds to the WT
variability at the shore location in winter, but not at the lake location. Furthermore, the ice may
be thinner toward the center of the lake, enabling a greater influence of solar radiation there.

Overall, the observed high degree of heterogeneity in WT variability patterns may stem from
the high degree of variation in two major internal drivers of variability – ice cover and mixing
dynamics during thermal stratification. Both of these drivers are themselves characterized by
strong alterations within shallow lakes in this geographical area as a consequence of natural cli-
mate variability and global warming. Müggelsee, for example, experiences either no ice cover,
intermittent ice cover, or continuous ice cover depending on the severity of winter (Livingstone
and Adrian 2009). Although the thermal stratification in Müggelsee in summer is undergoing
a general long-term increase as mean WT increases (Wagner and Adrian 2011), it is also char-
acterized by short-term alternations between mixed and stratified periods of different duration
depending on the weather, especially wind stress. These propagating and overlapping effects of
internal physical and biological drivers of WT variability modify the direct link between AT and
WT variability. Thus, the weak link between AT and WT variability found in our study is not
surprising. This is in line with the counterintuitive result that regional consistency in observed
lake WT warming trends on a global scale is the exception rather than the rule (O’Reilly et al.
2015). All in all, a warmer climate may have pronounced effects on WT variability in polymic-
tic lakes. Climate warming, associated with shorter periods of ice cover in winter and longer
periods of stratification in summer, will increase WT variability in these seasons in the medium
term, but may in the long term decrease WT variability in summer as a result of a decrease in
the frequency of mixing events.
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3.4.3 The slope of a spectrum as an indicator for mixing dynamics

The relationship between the slope of a spectrum of near-surface WT and a low percentile
of the Lake number (Fig. 3.3) indicated that WT spectra scale according to the potential for
wind-induced vertical mixing. White-noise spectra, in which short-term and long-term vari-
ability components exhibit similar intensity, were associated with a high potential for vertical
mixing, while red-noise spectra, in which the intensity of long-term variability exceeds that
of short-term variability, were associated with more stable thermal stratification and little po-
tential for vertical mixing. The ecological relevance of internal waves and mixing dynamics
is well established in the limnological literature, and its effect has been shown, for example,
on phytoplankton distribution and productivity (Spigel and Imberger 1987), spatial patterns of
zooplankton (Pernica et al. 2013) and changes in oxygen concentration (Robertson and Im-
berger 1994; Hanson et al. 2006). In Müggelsee, short-term vertical mixing has been shown
to be responsible for the vertical transport of algae, influencing primary production (Nixdorf
et al. 1992), and for variations in oxygen concentration and the release of phosphorus from the
sediment (Behrendt et al. 1993).

Here, the slope of WT spectra turned out to be a good indicator for identifying patterns
of WT variability. Spatial differences were related to the slope of WT spectra such that the
probability of occurrence of wind-induced internal waves and vertical mixing was higher at the
shore station, where WT exhibited higher variability than at the lake station. Similarly, the slope
of the WT spectra explained the fact that WT variability was higher in spring months than in
fall months. Lastly, it showed that the variability of WT measured close to the shore in winter
is significantly reduced if the lake is covered with ice. This is not the case in pelagic regions,
however, where the influence of the sediment is smaller due to the greater water depth and the
ice may be thinner. These examples highlight the potential usefulness of the slope of WT spectra
as an indicator for lake mixing. This is especially the case when a lack of WT depth profiles
or wind speed measurements precludes the calculation of other indicators of mixing dynamics
such as the Lake number. In the present study, this was the case for measurements at the
shore location, and also for measurements at the lake location when the lake was ice-covered.
The slope of WT spectra would therefore seem to be a promising indicator for assessing WT
dynamics. However, the generality of its usefulness beyond polymictic lakes remains to be
tested in lakes exhibiting different mixing regimes.

3.4.4 Conclusions

To reveal timescale-dependent differences in lake water temperature variability, both high-
resolution data and an adequate method of analysis that is capable of separating short-term
from long-term variability are required. Here, a coarse spectral analysis was demonstrated to be
a suitable method of accomplishing this granular analysis. It was found that WT variability de-
pended not only on the temporal scale, but also on the measurement location (littoral or pelagic).
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We also showed that the occurrence of seasonal events such as ice cover and stratification, which
are both strongly coupled to climate warming, played a crucial role in determining WT variabil-
ity. We identified differences in WT variability especially in short-term cycles. Hence, when
studying environmental variability, we consider it crucial to take into account higher-frequency
(sub-monthly) variability. The use of the slope of the spectra of WT as an indicator for lake
mixing proved to be promising for assessing WT variability. It may be especially useful when
measurements of wind speed and/or depth profiles of WT are not available for the calculation
of more usual indicators of mixing dynamics, such as the Lake number. The specific scaling of
WT variability with respect to frequency – the slope of the spectrum – can resonate in biologi-
cal communities, inducing large oscillations in species abundances (Benincà et al. 2011). This
may contribute to the unexplained day-to-day and interannual temporal dynamics of aquatic
communities, which represents an ongoing challenge in plankton ecology. The resolution of
variability into different frequencies might help to explain short-term and long-term ecological
patterns that are linked to temperature.
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3 Supporting information

SI Supporting information

SI.1 Supplementary figures

Fig. S3.1: Monthly mean wind speed (with 95 % confidence intervals) measured 15 m above
ground level at the shore of Müggelsee, based on data from 2002 to 2015.

Fig. S3.2: Spectra of near-surface water temperature measured at the Müggelsee lake station
in 2009, based on hourly data (gray) and daily data (black). The same spectra after
frequency-band averaging and binning into five frequency bands are shown in orange
and red, respectively (mean and 95 % confidence intervals).
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Fig. S3.3: Spectral density (with 95 % confidence intervals) of air temperature measured at
Schönefeld airport during the same time windows when water temperature was mea-
sured at the shore station and at the lake station, averaged over the same frequency
bands for time windows of (a) years, (b) seasons and (c) months. Large dots repre-
sent estimates of spectral density with non-overlapping confidence intervals within
one frequency band and time window (significant difference between locations);
small dots represent estimates with overlapping confidence intervals. Note loga-
rithmic scale on y-axes.
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SI.2 Comparison with the standard deviation as a measure of variability

To compare the variability derived by the FFT power spectra with a more traditional method,
we calculated standard deviations of the same yearly, seasonal and monthly water tempera-
ture (WT) time windows and averaged them over years, seasons and months measured at the
same location (shore or lake). The standard deviation (sd), as a more traditional measure of
the total variance in the WT time series (the integral over the entire spectrum), showed to some
extent similar patterns to the long-term variability estimated by spectral analysis (Fig. S3.4).
However, because sd was dominated by the WT seasonality, the seasonal time windows in Fig.
S3.4b) largely reflected the range of the data (steep increase in spring and steep decrease in
fall) rather than the shorter-period (e.g., daily) variability. As sd always includes the underlying
lower-frequency temporal scales, it is not able to resolve scale dependence; e.g., it cannot sep-
arate daily, weekly or monthly variability. This could be partly avoided by deseasonalizing the
data beforehand, which is essentially what we did by frequency-band averaging the spectrum.
However, even then, using the standard deviation does not allow variability at short, medium
and long temporal scales to be analysed separately, which is a main focus of this study.

Fig. S3.4: Standard deviation (with 95 % confidence intervals) of near-surface water tempera-
ture (WT) measured at the Müggelsee shore and lake stations for time windows of
(a) years, (b) seasons and (c) months. Large dots represent estimates of standard
deviation with non-overlapping confidence intervals (significant difference between
shore and lake location); small dots represent estimates with overlapping confidence
intervals. (d) Standard deviation of near-surface WT in Müggelsee as a function of
monthly mean WT, grouped by month of the year. (e) Corresponding standard de-
viation of air temperature (AT) at Schönefeld airport. Mean standard deviation and
monthly mean WT and AT over all months (squares) are connected chronologically
(black line).
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4 Using wavelet coherence as a

diagnostic tool in limnology *

Abstract

State variables in lake ecosystems are subject to processes that act at different time scales.
The importance of these processes changes over time, e.g., due to varying constraints of phys-
ical, biological and biogeochemical processes. Correspondingly, continuous automatic mea-
surements at high temporal resolution often reveal intriguing patterns that can hardly be di-
rectly ascribed to single processes. More powerful methods are required than applied hitherto
to disentangle an often rather complex interplay. To that end we tested the potential of wavelet
coherence, based on the assumption that different processes result in correlation between dif-
ferent variables, at different time scales and during different time windows. The approach was
tested on a set of multivariate hourly data measured between the onset of an ice cover and
a cyanobacterial summer bloom in the year 2009 in a polymictic eutrophic lake. We found
that processes such as photosynthesis and respiration, the build-up and decay of phytoplank-
ton biomass, dynamics in the CO2-carbonate system, wind-induced resuspension of particles
and vertical mixing were alternating dominant drivers of the variability in our data. We con-
clude that high-resolution data and a method capable of analyzing time series in both the time
and the frequency domain can help to enhance our understanding of the time scales and pro-
cesses responsible for the high variability in driver and response variables, setting the ground
for mechanistic analyses.

*in revision for Limnology and Oceanography as: Schmidt SR, Lischeid G, Hintze T and Adrian R. Using wavelet
coherence as a diagnostic tool in limnology.
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4 Using wavelet coherence as a diagnostic tool in limnology

4.1 Introduction

Since long, limnologists seek to understand the processes causing temporal variability in
physical, chemical or biological state variables. Dynamics in these variables can be caused by
changes in the prevailing constraints of the dominant limnological processes. For example, the
potentially exponential growth of phytoplankton populations is constrained alternately by light
availability, supply of nutrients and grazing pressure of zooplankton (Sommer et al. 1986, 2012).
Calcite precipitation often occurs during spring and summer in productive, carbonate-rich water
bodies when photosynthetic uptake of carbon dioxide increases pH levels (Heine et al. 2017),
while a decrease in pH can lead to calcite dissolution (Lampert and Sommer 2007). On the other
hand, calcite precipitation can, through co-precipitation of phosphate, limit eutrophication and
thereby phytoplankton growth (Hamilton et al. 2009). Finally, the replenishment with oxygen in
oxygen-depleted lake bottoms is constrained to periods of vertical mixing at high wind speeds
(Lampert and Sommer 2007; Read et al. 2011). In this regard research now focuses more and
more on episodic events and how for instance storms affect a lake ecosystem or certain processes
in it (Jennings et al. 2012; Klug et al. 2012; Kasprzak et al. 2017). These examples illustrate
that the type of prevailing constraint of a limnological process may change over time and can
happen at different time scales ranging from fractions of seconds ((bio-)chemical reaction rates),
seconds to days (photosynthesis), minutes to days or weeks (mixing processes), hours to weeks
(population dynamics) to several months (seasonal dynamics) (Reynolds 1990; Behrendt et al.
1993; Hanson et al. 2006). Yet, understanding and identifying the huge intra-annual variability
of various state variables, their interactions and time scales remains challenging.

Analyzing limnological processes, their time scales and constraints requires a high amount
of multivariate data, which are now increasingly measured in lakes worldwide (Meinson et al.
2016). With automated high-frequency measurements, the temporal resolution has become al-
most unlimitedly high. Improvements in the development of automated sensors have increased
the number and quality of measured variables (Cushing 2013; Marcé et al. 2016). These data al-
low us to capture patterns of variability in space and time in the first place. Yet, the interpretabil-
ity of these variables and the implications for the state of a lake are not always straightforward,
as different variables or processes operate on different time scales. The inherent complexity
of internal and external forces structuring lake ecosystems adds to that variability. There is,
however, an understanding that the measured variables are indicative of certain processes. For
example, oxygen concentration and pH values are strongly affected by photosynthesis, while
chlorophyll a indicates the build-up and decay of phytoplankton biomass. However, how the
variation in a variable, or the covariation of two variables, can pinpoint a process is not neces-
sarily clear, as many processes likely affect more than just one single variable, and each of them
in a different way during different times of the year. Methods are hence needed that can grasp
patterns of covariation between variables at a range of time scales the processes they reveal
operate on. There is now a number of studies which separate e.g. hourly variability from daily,
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4.1 Introduction

monthly, seasonal or yearly variability (Benincà et al. 2011; Blauw et al. 2012; Kara et al. 2012;
Adrian et al. 2012; Guadayol et al. 2014). Yet, the benefit of using high-frequency compared to
lower-frequency measurements and the role of different time scales of variability still lack suf-
ficient consideration (Adrian et al. 2012; Coble et al. 2016). To that end, methods are required
that are able to differentiate between processes, time scales, and particular time windows. Once
we have identified the temporal patterns and time scales of covariation, subsequent analytical
or modeling steps may allow us to further our understanding of the mechanisms driving overall
temporal variability in lakes.

Wavelet coherence (Torrence and Compo 1998; Grinsted et al. 2004; Cazelles et al. 2008) is
a method by which the direction and strength of coherence of two time series across different
time scales can be analyzed, which can point to a causal relationship between the respective two
variables. Other than correlation analyses, wavelet coherence differentiates time scales, as the
variability of the coherence between two variables is partitioned into frequencies. These range
from twice the measurement resolution up to the length of the time span under investigation.
Importantly, wavelet coherence can track periods of synchronicity even when they are limited
to rather short time spans. Thus, the analysis of synchronicity of temporal patterns of different
variables at different time scales is a first step in disentangling different processes that occur in
parallel.

This study aims at testing how wavelet coherence can be used to identify plausible temporal
synchronicities between physical, chemical and biological variables in a eutrophic polymic-
tic lake spanning time scales between hours and several months. We intend to identify the
most prominent time scales these synchronicities operate on across different seasons and water
depths. We base our study on a dataset of hourly automated measurements of water tempera-
ture, chlorophyll a as an indicator for algal biomass, phycocyanin as a proxy for cyanobacterial
biomass, oxygen concentration, pH, turbidity, electrical conductivity quantifying ionic sub-
stances, wind speed as an important meteorological driver of turbulence in the water column,
and manually measured ice development. We selected five examples out of a set of many possi-
ble combinations of variables where we expected to find a causal relationship that could indicate
processes such as photosynthesis, build-up of phytoplankton biomass, particle resuspension,
calcite precipitation and lake mixing. However, sound proofs of causality would require more
elaborate examinations of each single case and were beyond the scope of this study. We show
how the coherence between variables in time-frequency space and of a single variable between
different measurement depths can help to identify processes that occurred during limited time
windows and at certain frequencies.
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4 Using wavelet coherence as a diagnostic tool in limnology

4.2 Methods

4.2.1 Study site

Müggelsee is a shallow (mean depth 4.9 m, maximum depth 7.9 m), polymictic, eutrophic
lake in North-Eastern Germany with a surface area of 7.3 km2 and a mean retention time of 6-8
weeks (Köhler et al. 2005). The river Spree flows through Müggelsee and rapidly mixes with
the lake water (Barthelmes 1962). Müggelsee is a highly wind-exposed lake. This, together
with its shallowness, leads to frequent events of complete mixing that interrupt time windows
of thermal stratification (Driescher et al. 1993). Events of stable thermal stratification during
summer were to 79.3 % shorter than one day (Wilhelm and Adrian 2008) but can occasionally
last up to several weeks. The catchment area is 7000 km2 and dominated by agriculture and
forestry (Driescher et al. 1993). Müggelsee is a calcium-rich hard water lake with high levels
of alkalinity (Driescher et al. 1993). The river Spree has a large influence on its water quality
(Köhler and Nixdorf 1994), while groundwater withdrawal from wells around the lake reduces
any influence of the adjacent groundwater on the water quality of Müggelsee. Due to high
nutrient levels, Müggelsee is eutrophic and experiences substantial algal blooms during spring
and summer. Summer blooms are often dominated by cyanobacteria (Wagner and Adrian 2009).

4.2.2 Automated sensor measurements

Limnological data were collected by automated measurements with a multi-parameter probe
(YSI 6600 V2-4) at a platform 300 m from the northern shore of Müggelsee (52°26′46.1′′N;
13°39′0.2′′E). The probe measured water temperature, chlorophyll a, phycocyanin, turbidity,
oxygen, pH and electrical conductivity at 1.5 m depth below surface. Water temperature and
electrical conductivity were measured with a combined physical sensor. A pH electrode deter-
mined hydrogen ion concentrations. Chlorophyll a, phycocyanin, turbidity and oxygen were
measured with optical sensors, equipped with integrated anti-fouling wipers for self-cleaning.
Once per hour, depth profiles were measured between 0.5 m and 5 m depth at increments of
0.5 m. The multi-parameter probe has a sampling frequency of twice per second. Each mea-
surement was derived from a mean over 20 single measurements recorded over a time period
of 10 seconds every hour. The measurements in different depths were performed with an offset
of a few minutes. Therefore, we only interpreted time scales exceeding 3 hours. During winter,
measurements with the same probe were performed hourly below the ice cover at a fixed depth
of 1.5 m at the same location. Hence, measurements in depths other than 1.5 m were only avail-
able after ice-off in March. We used measurements in 1.5 m depth to analyze the coherence
between different variables, and measurements in 1.5 and 5 m depths to analyze the coherence
of a single variable between these depths. The thickness of the ice cover was measured circa
daily at several locations. Wind speed was measured after ice-off at the same location in 4 m
height above the water surface with a cup anemometer (Thies GmbH).
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4.2.3 Data preprocessing

We selected a time span between December 2008 and August 2009 that was almost free
of data gaps. As the focus of the study was to capture patterns of natural short- to long-term
variability, any kind of gap filling would result in major artifacts. However, even within the
selected time span there were a few short gaps in the dataset. Due to fouling of the optical
turbidity sensor, 31 hours of turbidity measurements in April were excluded from the analyses.
The fouling was indicated by a steep increase of turbidity values before the sensor was cleaned
manually. One extreme outlier in chlorophyll a measurements in April was excluded as well.
There was furthermore a gap of 24 hours in all variables in March, when the measurement pro-
tocol changed from winter measurements to regular measurements that included depth profiles.
A 19-hour gap in July, a 5-hour gap in February, a 2-hour gap in August and 4 one-hour gaps
in June and July occurred due to probe malfunction. All gaps were filled by linear interpolation
and marked in red in all figures. The wavelet coherence especially at sub-daily frequencies
should be interpreted with caution at these instances, as the low variability of the linearly in-
terpolated gaps can lead to spurious results. However, apart from the one gap in turbidity of
31 hours, gaps were no longer than 24 hours and the coherence at longer time scales can hence
be interpreted with sufficient confidence. All variables were normalized to zero mean and unit
variance prior to analyses.

As some variables were not normally distributed, we repeated all analyses on log-
transformed data. Most log-transformed variables exhibited a reduced skewness, but this re-
sulted only for some variables in a normal distribution. We therefore additionally repeated all
analyses on the rate of change of the log-transformed data, calculated as the difference between
data values of adjacent time steps. This resulted in normal distributions of all variables. The
analyses of original data, log-transformed data and the rate of change of log-transformed data
all resulted in very similar patterns. We therefore only show the results of the original, untrans-
formed data.

4.2.4 Wavelet coherence

We applied wavelet coherence (Torrence and Compo 1998; Grinsted et al. 2004; Maraun and
Kurths 2004) to detect synchronous fluctuations between two time series. For this purpose, both
time series are decomposed via the continuous wavelet transform, defined as the convolution of
the time series with a wavelet, i.e. a basis function localized in both time and frequency. This
wavelet is continuously scaled and shifted in time and thus exhibits specific information on fre-
quency and time localization. The wavelet coherence is given by the square of the product of
the first time series wavelet transform with the complex conjugation of the second, normalized
by the individual power spectra of each time series. It exhibits values between zero and one and
identifies phases of local cross-correlation between two time series as a function of frequency.
The phase difference between the time series, indicated by arrows in the figures of wavelet co-
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herence, gives information about a possible time lag in the relationships between two variables,
and thus points to the direction of potential causality.

All analyses were performed with R (R Core Team 2016). The wavelet coherence and phase
relationships were calculated with the R package biwavelet (Gouhier et al. 2016), whose code
is based on the Matlab package WTC (Grinsted et al. 2004). We chose the Morlet wavelet
as the basis function, because it represents a good compromise between time and frequency
resolution (Torrence and Compo 1998). No zero-padding was applied. The significance of
the wavelet coherence was calculated as significant deviation from red noise generated by an
AR1 model with 100 Monte Carlo randomizations. Significance was tested using a χ2 test at a
significance level of 0.95. To quantify the intensity of thermal stratification, we calculated the
Schmidt stability (Schmidt 1928; Idso 1973) from hourly water temperature profiles using the
R package rLakeAnalyzer (Winslow et al. 2016). All figures were created with the R package
ggplot2 (Wickham 2009).

In the following, “period length” always refers to the regarded period length as 1/frequency.
In contrast, references to certain time intervals are termed “time span” if referred to the whole
available time interval and termed “time window” if shorter.

4.2.5 Analyzing patterns for processes

Here we focus on the following patterns that we related to specific processes. We chose
five examples where we expected plausible relationships between two variables or between
one variable measured at different depths. Some of these patterns are restricted to lakes with
circum-neutral pH values where hydrogencarbonate (HCO−3 ) is the prevailing form of dissolved
inorganic carbon (Lampert and Sommer 2007), like in the lake studied here.

• Synchronous fluctuations of pH and oxygen (O2) are ascribed to photosynthesis, where
uptake of CO2 reduces HCO−3 concentration and thus increases pH, and release of O2

increases oxygen saturation. The inverse pattern holds for respiration. This is likely to
occur at all time scales. In contrast, phases of pronounced decay of algal and cyanobac-
teria biomass will likely occur at period lengths� 1 day.

• Synchronous increase of water temperature, chlorophyll a and phycocyanin points to the
build-up of algal and cyanobacteria biomass at a time scale of several hours to days. This
can be regarded as a measure of potential photosynthesis of the existent phytoplankton
biomass, whereas synchronous fluctuations of pH and O2 are related to the actual produc-
tivity of the existent phytoplankton biomass.

• Synchronous changes of turbidity and chlorophyll a or phycocyanin at time scales �
1 day are indicative of a causal relationship between chlorophyll a or phycocyanin and
turbidity, respectively. In contrast, changes of turbidity that are not reflected by those
of chlorophyll a or phycocyanin point to, e.g., input of turbid water via streams during
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heavy rain storms or resuspension from the bottom layer of the lake, e.g., during heavy
wind storms.

• A decrease of electrical conductivity in parallel with an increase of pH points to calcite
precipitation, and the inverse pattern to calcite dissolution. This process is not restricted
to specific time scales.

• Changes of single variables at different depths that occur with inverse sign (indicating a
phase shift of half a period length) are interpreted as an indicator of mixing of shallow
and deep water. This phenomenon will likely affect different variables in parallel, but
might not necessarily be visible for all of them, because not all variables might exhibit a
clear depth gradient during that phase. Mixing is not restricted to specific time scales.

4.3 Results

From December 31, 2008 until March 9, 2009 the lake was covered with ice (Fig. 4.1). A
phytoplankton bloom started already underneath the ice and lasted until the onset of the clear
water phase around May 2, 2009. In June, the weather was mostly stormy, as indicated by
low air pressure, high wind speeds, frequent precipitation, cool air and water temperature and
low Schmidt stability, i.e., favoring mixing (Fig. 4.1). In July, the weather was more settled
and a stable thermal stratification developed in the lake as indicated by relatively high Schmidt
stabilities (Fig. 4.1), followed by a cyanobacteria bloom.

Wavelet coherence between two time series is visualized in Figs. 4.2 – 4.10. The time domain
is shown on the x-axis with the same scaling as for the time series given above, while the
respective period length is given on the y-axis. Colors indicate the degree of coherence. For
example, a red area in the time-frequency space bordered by a black line would mark a range of
period lengths and a time window during which two variables fluctuate in a highly coherent way
and differ significantly from red noise. The black arrows indicate the phase relationship between
two variables at the indicated period length and time window. Arrows pointing right mean that
the two variables are in phase, i.e. they oscillate synchronously at that period length. Arrows
pointing left mean that the synchronicity is in anti-phase, hence an increase in one variable
is accompanied by a decrease in the other variable and vice versa. Arrows pointing upward
mean the variables are out-of-phase with a lead of the first variable, while arrows pointing
downward reflect an out-of-phase relationship with a lead of the second variable. Both hint to
a time lag between the variables of a quarter of a period length. If significant coherence and
phase relationships are consistent over a certain extent of the time-frequency space, causality
between the leading and the following variable can be assumed (Grinsted et al. 2004; Maraun
et al. 2007). In the “cone of influence”, marked in lighter shade, edge effects due to the limited
length of the respective time series may distort the wavelet coherence and should be interpreted
with caution.
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Fig. 4.1: Upper panel: Time series of water temperature [◦C] in Müggelsee with blue color
gradient according to measurement depth; ice thickness [cm] (grey dots and line);
vertical dashed line: peak of zooplankton abundance as indicator of the clear water
phase, calculated as local maximum of the fit of a Weibull function to weekly cladocera
abundance data (Rolinski et al. 2007). Bottom panel: Time series of Schmidt stability
[Jm−2], calculated from vertical water temperature profiles.

Over the course of the considered time span from December 2008 until August 2009 patterns
of coherence between most variables changed frequently, resulting in rather patchy patterns in
Figs. 4.2 – 4.10. These were often restricted within the time-frequency space, and especially
at short period lengths of a few hours, coherent and non-coherent phases were usually quite
short-lived.

Photosynthesis and respiration: High in-phase coherence between oxygen concentration
and pH would indicate photosynthetic processes if both increased synchronously or respiratory
processes if both decreased synchronously. We found high coherence in phase between O2 and
pH at all time scales throughout until the end of the studied time span, except for sub-daily
patterns during the first month (Fig. 4.2). Time series of oxygen concentrations and pH values
showed a synchronous abrupt and substantial decline in mid-January, pointing to a dominance
of respiration over photosynthesis. O2 and pH increased synchronously in early February and
even more after ice-off, which coincided with the begin of the phytoplankton spring bloom,
indicating an increase of photosynthesis. This was followed by a substantial decrease toward
the clear water phase, signalling that respiration exceeded photosynthesis. Another two-month
cycle occurred in May and June and several much shorter cycles thereafter.
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Fig. 4.2: Upper panels: time series of oxygen concentration (O2) [mgL−1] and pH [] measured
hourly in 1.5 m depth in Müggelsee; time window with an ice cover (grey line); ver-
tical dashed line: onset of the clear water phase. Bottom panel: wavelet coherence
between O2 and pH; black contours around regions where the coherence is signifi-
cant against red noise, based on Monte Carlo AR (1) time series (significance level
0.95); black arrows indicate the relative phase relationship (in-phase pointing right;
anti-phase pointing left; out of phase pointing up/down); the lighter shade denotes the
cone of influence, where edge effects may distort patterns of coherence. The x-axis
applies to all three panels.

Build-up of algae and cyanobacteria populations: High in-phase coherence between water
temperature and chlorophyll a or phycocyanin would indicate the build-up of a phytoplankton
population driven by water temperature, while high in-phase coherence between chlorophyll
a and phycocyanin would indicate similar drivers of the dynamics of algae and cyanobacteria
populations. Water temperature and chlorophyll a were for rather short time windows of one
to three weeks between January and August coherently in phase (Fig. 4.3). Their strongest
and longest coherence was observed during the intensified phytoplankton spring bloom in April
after ice-off and covered period lengths from hours up to a week. This indicates that water
temperature drove the build-up of phytoplankton populations during this time window. In sum-
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mer the coherence between chlorophyll a and water temperature was generally lower and more
short-lived and restricted to small ranges of period lengths. This suggests that water temperature
did not play a major role in the build-up of phytoplankton populations in summer. Chlorophyll
a and phycocyanin were coherently in phase in the first 4.5 months of 2009 for period lengths
exceeding 12 hours, indicating similar drivers of algae and cyanobacteria populations during
this time window. This synchronicity was interrupted during the clear water phase (Fig. 4.4).
Coherence between chlorophyll a and phycocyanin was to a lesser degree re-established shortly
after the clear water phase at period lengths greater than 12 h. In July, after time windows of
intense and long-lasting thermal stratification as indicated by high Schmidt stabilities (Fig. 4.1),
cyanobacteria developed a bloom that was not captured by chlorophyll a, and their coherence
was low.

Fig. 4.3: Upper panels: time series of water temperature (wtemp) [◦C] and chlorophyll a (chl_a)
[µgL−1] measured hourly in 1.5 m depth in Müggelsee; time window with an ice cover
(grey line); vertical dashed line: onset of the clear water phase. Bottom panel: wavelet
coherence between wtemp and chl_a; black lines, arrows and lighter shade as in Fig.
4.2. The x-axis applies to all three panels.
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Fig. 4.4: Upper panels: time series of chlorophyll a (chl_a) [µgL−1] and phycocyanin (phyco)
[relative fluorescence units (RFU)] measured hourly in 1.5 m depth in Müggelsee;
time window with an ice cover (grey line); vertical dashed line: onset of the clear
water phase. Bottom panel: wavelet coherence between chl_a and phyco; black lines,
arrows and lighter shade as in Fig. 4.2. The x-axis applies to all three panels.

Turbidity: High in-phase coherence between turbidity and either phytoplankton, electrical
conductivity or wind speed would indicate that either biological, chemical or physical processes
were responsible for dynamics in turbidity. The coherence between phycocyanin and turbidity
was most of the time rather low and short-lived (Fig. 4.5). Only in July during several weeks
of the cyanobacteria bloom, coherence was high and in phase at period lengths from hours to
weeks, indicating a biological driver of turbid conditions during this time window. Coherence
between chlorophyll a and turbidity exhibited mostly similar patterns due to the high coher-
ence between chlorophyll a and phycocyanin (Fig. 4.4), but was low and short-lived during the
cyanobacteria bloom (not shown). One time window in January below the ice cover exhib-
ited coherent in-phase variations between electrical conductivity and turbidity at period lengths
between one day and a week, indicating a chemical driver of turbidity in January (Fig. 4.6).
Fluctuations of wind speed and turbidity were coherently in phase in May and June at scales of
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several days up to two weeks while the weather was stormy (Fig. 4.7). This indicated a physical
driver of turbidity in May and June, possibly the settling and resuspension of particles from the
lake bottom.

Fig. 4.5: Upper panels: time series of phycocyanin (phyco) [relative fluorescence units (RFU)]
and turbidity (turbid) [nephelometric turbidity units (NTU)] measured hourly in 1.5 m
depth in Müggelsee; time window with an ice cover (grey line); vertical dashed line:
onset of the clear water phase. Bottom panel: wavelet coherence between phyco and
turbid; black lines, arrows and lighter shade as in Fig. 4.2. The x-axis applies to all
three panels.

Calcite precipitation and dissolution: High anti-phase coherence between pH and electrical
conductivity would indicate either calcite precipitation if pH increased while electrical conduc-
tivity decreased or calcite dissolution if pH decreased while electrical conductivity increased.
Coherence between pH and electrical conductivity was in anti-phase during several time win-
dows in winter under ice between daily and weekly scales, during the phytoplankton spring
bloom in April at similar scales, and to a lesser extent in summer at sub-daily scales (Fig. 4.8).
The overall increase in electrical conductivity in January, accompanied by a synchronous de-
crease in pH, hints to calcite dissolution. In contrast, calcite precipitation was probably confined
to short time windows under the ice, as to be concluded from the small diametrical spikes in the
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4.3 Results

Fig. 4.6: Upper panels: time series of electrical conductivity (EC) [µScm−1] and turbidity
(turbid) [nephelometric turbidity units (NTU)] measured hourly in 1.5 m depth in
Müggelsee; time window with an ice cover (grey line); vertical dashed line: onset
of the clear water phase. Bottom panel: wavelet coherence between EC and turbid;
black lines, arrows and lighter shade as in Fig. 4.2. The x-axis applies to all three
panels.

time series of pH and electrical conductivity. The increase in pH accompanied by a decrease in
electrical conductivity during the phytoplankton spring bloom and during short time windows
in summer, on the other hand, indicated calcite precipitation.

Vertical mixing: High anti-phase coherence of a single variable between different measure-
ment depths would indicate mixing of shallow and deep waters. The coherence in pH between
measurements in 1.5 and 5 m depths was high and in anti-phase at period lengths between four
days and one week in May and between one and over two weeks in June and July, indicating
mixing between the two layers (Fig. 4.9). At shorter period lengths, the coherence was some-
times in phase for short time windows. Patterns of coherence of O2 between the same depths
were very similar to those of pH (Fig. 4.10). Fluctuations in O2 and pH were very large and
happened often abruptly. Especially the steady decline down to oxygen depletion and minimum
pH values in the hypolimnion during the second week of July was interrupted almost instantly
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Fig. 4.7: Upper panels: time series of wind speed (ws) [ms−1] measured hourly in 4 m height
above Müggelsee and turbidity (turbid) [nephelometric turbidity units (NTU)] mea-
sured hourly in 1.5 m depth in Müggelsee; time window with an ice cover (grey line);
vertical dashed line: onset of the clear water phase. Bottom panel: wavelet coherence
between ws and turbid; black lines, arrows and lighter shade as in Fig. 4.2. The x-axis
applies to all three panels.

with increases of about 1.5 pH units and 10 mgL−1 O2 within a few hours. Mixing events,
as indicated by a Schmidt stability near zero (Fig. 4.1), coincided with high wind speed (Fig.
4.7) and decreases of near-surface O2 and pH and increases of bottom O2 and pH, balancing
their levels in the whole water column. High coherence was observed for other variables (water
temperature, chlorophyll a, phycocyanin, turbidity and electrical conductivity), comparing mea-
surements in 1.5 and 5 m depths, during limited time windows and for certain period lengths
(not shown). However, they were in phase and thus could not be related to vertical mixing
events.
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4.4 Discussion

Fig. 4.8: Upper panels: time series of pH [] and electrical conductivity (EC) [µScm−1] mea-
sured hourly in 1.5 m depth in Müggelsee; time window with an ice cover (grey line);
vertical dashed line: onset of the clear water phase. Bottom panel: wavelet coherence
between pH and EC; black lines, arrows and lighter shade as in Fig. 4.2. The x-axis
applies to all three panels.

4.4 Discussion

We investigated in what way wavelet coherence may serve as a diagnostic tool to identify
and disentangle limnological processes in polymictic eutrophic Müggelsee. Coherent dynamics
among limnological and meteorological variables were detected during limited time windows
and at specific time scales. These suggested reversible processes such as photosynthesis and
respiration, the build-up of phytoplankton biomass, calcite precipitation and dissolution, wind-
induced resuspension of sedimented particles and vertical mixing of water masses. The plau-
sibility of the ascription of synchronicities between state variables to certain processes and the
characteristics of the identified time scales of these synchronicities are discussed in the follow-
ing.
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Fig. 4.9: Upper panels: time series of pH measured in 1.5 m depth and in 5 m depth in
Müggelsee; time window with an ice cover (grey line); vertical dashed line: onset
of the clear water phase. Bottom panel: wavelet coherence between pH measured in
1.5 m depth and pH measured in 5 m depth; black lines, arrows and lighter shade as in
Fig. 4.2. The x-axis applies to all three panels.

4.4.1 Plausibility of ascription to processes

Under the ice cover of Müggelsee in mid-January, we observed a synchronous decrease of
O2 and pH, which we ascribed to a dominance of respiration over photosynthesis. This was
substantiated by low levels of algal biomass, quantified as chlorophyll a and phycocyanin, un-
til February. Similar patterns of O2 and pH decreases have been observed under the ice cover
of several lakes and were attributed to respiration processes (Kratz et al. 1987; Wetzel 2001;
Baehr and Degrandpre 2002; Hanson et al. 2006). According to Bertilsson et al. (2013), rates
of oxygen depletion and concurrent increases of the partial pressure of CO2 are fastest after the
onset of ice cover, when the ratio of photosynthesis to respiration changes in favour of respira-
tion. The observed decrease of pH under ice can hence be assumed to be caused by increases in
pCO2, which can lead to strong undersaturation with calcite and consequential calcite dissolu-
tion (Ohlendorf and Sturm 2001). This may have led to the observed high anti-phase coherence
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Fig. 4.10: Upper panels: time series of oxygen concentration measured in 1.5 m depth (O2)
[mgL−1] and in 5 m depth in Müggelsee; time window with an ice cover (grey line);
vertical dashed line: onset of the clear water phase. Bottom panel: wavelet coherence
between O2 measured in 1.5 m depth and O2 measured in 5 m depth; black lines,
arrows and lighter shade as in Fig. 4.2. The x-axis applies to all three panels.

between pH and electrical conductivity at daily to weekly scales in January, indicating calcite
dissolution. It might furthermore have driven the dynamics of turbidity as indicated by the high
in-phase coherence between electrical conductivity and turbidity during the same time window
and at the same time scales. On the other hand, photosynthesis can be substantial under ice if
light availability is sufficient (Wetzel 2001; Sommer et al. 2012; Hampton et al. 2017). This can
account for the observed increase in O2 and pH in February. Their increase coincided with rising
levels of chlorophyll a and phycocyanin, implying that it was most likely caused by under-ice
photosynthesis. The lack of persistent coherence between water temperature and chlorophyll a

below the ice indicates that the initiation of the phytoplankton spring bloom was not caused by
increasing water temperatures, but probably by enhanced light conditions (Adrian et al. 1999).
Oxygen concentrations and pH were coherently in phase throughout the time window of ice
cover and thereafter at time scales of hours to months. The only exception were the first four
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weeks in late December and early January, when only small and non-coherent fluctuations of
O2 and pH were observed that have to be ascribed to minor random disturbances.

After ice breakup, the time window in April exhibiting the steepest increase in water temper-
ature was the only time window showing high in-phase coherence between water temperature
and chlorophyll a over a broad range of time scales. In light-saturated conditions, water tem-
perature is assumed to drive photosynthesis (Lampert and Sommer 2007). A positive feedback
of spring water temperature on phytoplankton development has been shown for Müggelsee
(Gerten and Adrian 2000) and other lakes for certain phytoplankton species (Reynolds 1990;
Adrian et al. 1995; Feuchtmayr et al. 2012; Talling 2012). Li et al. (2015) found high syn-
chronicity, estimated by wavelet coherence, between chlorophyll a and water temperature in
certain regions in the time-frequency space, although based on monthly data only. The detected
high in-phase coherence between chlorophyll a and water temperature during the phytoplank-
ton spring bloom in Müggelsee indicated that only during this time window of a few weeks,
water temperature and phytoplankton growth were characterized by a causal relationship. Wa-
ter temperature may have driven phytoplankton growth directly by affecting replication rates or
indirectly, e.g., through the control of stratification intensity in turn improving light availability,
as deep mixing of algal cells is prevented. The high anti-phase coherence between electrical
conductivity and pH at daily to weekly time scales during the phytoplankton spring bloom indi-
cates that the phytoplankton growth was accompanied by biogenic calcite precipitation during
this time window. In Müggelsee, sediment dredging has indicated the precipitation of calcite
due to high photosynthetic activity (Kozerski and Kleeberg 1998). This is commonly observed
in productive hard water lakes such as Müggelsee where calcium is the main cation (Dudel
and Kohl 1992; Driescher et al. 1993), when photosynthetic uptake of CO2 increases the pH,
leading to oversaturation with calcite (Lampert and Sommer 2007; Heine et al. 2017). The high
coherence between pH and electrical conductivity around a period length of 24 hours matches
with diurnal variations in CO2 due to metabolic day-night cycles (Morales-Pineda et al. 2014).
The collapse of most synchronicities, most strikingly the coherence between chlorophyll a and
water temperature and between chlorophyll a and phycocyanin, marked the clear water phase
and was accompanied by substantial decreases in chlorophyll a, phycocyanin, O2 and pH. The
coherences between water temperature and chlorophyll a and between chlorophyll a and phyco-
cyanin were high before, completely absent during, and low and more short-lived after the clear
water phase. Only the coherence between O2 and pH remained high at all time scales, while
their synchronous decrease signalled that respiration exceeded photosynthesis. This indicates
that zooplankton grazing broke the formerly synchronous relationships (Sommer et al. 2012).
This has been shown to be one important explanation of the collapse of phytoplankton spring
blooms in Müggelsee during the past two decades (Huber et al. 2008). The clear water phase
hence represented a cardinal event that clearly marked a time window of altered interactions
between variables and processes, thus a change of the prevailing constraints.
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After the clear water phase, the rather low and short-lived coherence between water temper-
ature and chlorophyll a indicated other drivers of the dynamics of the summer phytoplankton
population than water temperature, indicating a change in the prevailing constraints of phy-
toplankton growth. Indeed, nitrogen limitation, in contrast to water temperature, was shown
to play a role for the summer phytoplankton development in Müggelsee (Köhler et al. 2005).
Cyanobacteria, on the other hand, thrive under increased water temperature and concomitant
intense and long-lasting stratification stability (Huber et al. 2012; Merel et al. 2013). This
may explain the observed low coherence between chlorophyll a and phycocyanin in summer.
Furthermore, cyanobacteria blooms increase the turbidity of water bodies (Paerl and Huisman
2008). This seems to be responsible for the high in-phase coherence between phycocyanin and
turbidity observed during the cyanobacteria summer bloom in Müggelsee in July at time scales
of hours to weeks. In contrast, the high in-phase coherence between turbidity and wind speed
at time scales of several days to two weeks in June indicated wind-induced resuspension of
particles. Rising wind speeds were accompanied by an increase in turbidity, indicating the re-
suspension of particles from the lake bottom, while calm time windows enabled their settling,
coinciding with low turbidity. Wind-induced resuspension is common in shallow, polymictic
lakes (Kristensen et al. 1992; Kozerski and Kleeberg 1998; Eleveld 2012). Correspondingly,
we found high anti-phase coherence of pH and O2 between near-surface and near-bottom mea-
surements from May to July at similar time scales. This was accompanied by large synchronous
fluctuations of pH and O2 diametrically in surface and bottom waters with substantial drops in
surface water oxygen concentration, while bottom waters were re-oxygenated (Fig. 4.10). Sim-
ilar patterns have been observed in other lakes and were correlated with wind events, suggesting
vertical mixing (Robertson and Imberger 1994; Hanson et al. 2006; Langman et al. 2010), and
in Müggelsee from May onwards in all years analyzed by Behrendt et al. (1993). The latter
were related to a decoupling of production and consumption processes in surface and bottom
waters, which were interrupted by irregular wind-induced changes of mixed and stratified con-
ditions at time scales of hours to weeks (Behrendt et al. 1993). The period lengths of four days
to one week in May and one to two weeks in June and July, which revealed the strong anti-phase
coherence between near-surface and near-bottom water layers in our study, lay within the range
of durations of general weather situations over Germany. These lasted three to five days in May,
up to eight days in June, and up to ten days in July (Deutscher Wetterdienst 2017). Hence, the
ascription of high anti-phase coherence between single variables measured in different depths
to vertical mixing can be substantiated, and the characteristic time scale at which vertical mix-
ing is observed might reflect the periodicity of the general weather situation. All in all, our
hypothesized relationships between patterns of coherence of various state variables and certain
limnological processes proved plausible.
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4.4.2 Measuring synchronicity – advantages of analyzing at high

resolution in both the time and the frequency domain

There is a large amount of literature concerned with temporal coherence of various state
variables: Magnuson et al. (1990) and various studies thereafter (Wynne et al. 1996; Kratz et al.
1998; Rusak et al. 1999; Baines et al. 2000; Pace and Cole 2002; Chrzanowski and Grover
2005; Salmaso et al. 2014) define coherence as synchronous dynamics of time series of sin-
gle variables between different lakes. These studies have in common that their measure of
coherence is simple correlation analysis. They hence lack the ability to detect transient and
frequency-specific relationships, as correlations between variables may go undetected if they
occur only at a certain frequency or during limited time windows. For example, Arhonditsis
et al. (2004) found no correlation between water temperature and chlorophyll a measured dur-
ing 25 years in Lake Washington. However, their connection may have been masked by the
weekly resolution of the data and the methodological approach of correlation analysis and lin-
ear regression, which lacked the ability to detect transient and potentially frequency-dependent
correlations as revealed by our study. Other studies inferred causality from detected correlations
or linear regression between numerous state variables in lake ecosystems (Gerten and Adrian
2000; Blenckner et al. 2007; Gaiser et al. 2009; Eleveld 2012), which could gain in accuracy
and significance if a more advanced method like wavelet coherence would be applied.

In this respect, the high resolution in the time and the frequency domain applied in our study
helped to identify the respective prevailing constraints during specific time windows. For ex-
ample, phytoplankton growth was related to water temperature only during short time windows
(Fig. 4.3), pointing to other constraints or drivers of its dynamics during the rest of the obser-
vation period. Furthermore, wavelet coherence helped to disentangle different processes that
affected the same variable but to a different extent during different time windows. For exam-
ple, according to our analysis, the observed dynamics of pH were related to photosynthesis and
respiration (Fig. 4.2) during most of the study period as well as to calcite dissolution and pre-
cipitation (Fig. 4.8) and vertical mixing (Fig. 4.9) during rather short time windows. Similarly,
the dynamics of turbidity were related to chemical (electrical conductivity, Fig. 4.6), biological
(phycocyanin, Fig. 4.5) as well as physical (wind speed, Fig. 4.7) drivers during different time
windows. Hence, process identification cannot necessarily be derived only from the dynamics
of the variables themselves, but from their joint dynamics with other variables and a time- and
frequency-resolved methodology. Lastly, wavelet coherence has proven the potential to identify
reversible processes that do not necessarily result in observable net effects like calcite dissolu-
tion observed during a rather short time window in January and re-precipitation in early April
(Fig. 4.8).
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4.4.3 Conclusion

Applying wavelet coherence to multivariate limnological high-frequency data proved suit-
able to identify and disentangle reversible processes that affected the same variable, to detect
their characteristic time scales, and to identify the prevailing constraints of processes that hap-
pened during limited time windows and often in parallel. This could not have been achieved
using simpler methods, such as correlation or regression analysis, as the coherence between
variables was found to be frequency-specific and to depend on the time window. This stresses
the importance of considering process-specific time scales. A high temporal resolution of the
data was necessary to detect characteristic time scales of variability and time windows in which
processes occurred, as both were often rather short. Our results imply that wavelet coherence
has a high potential to serve as a diagnostic tool in limnology, and potentially also in other
types of ecosystems, especially non-stationary ones. For example, Schaefli et al. (2007) applied
wavelet coherence to 20-year long time series of precipitation, temperature and discharge in an
Alpine catchment. They detected potentially flood triggering situations, while identifying the
prevailing critical hydrometeorological constraints of different flood types. A possible limita-
tion of our approach is that wavelet coherence, as a statistical method, does not reveal the true
underlying ecological mechanisms that cause periodicities or associations between variables
(Cazelles et al. 2008). Causality can only be assumed from the phase relationship of extended
regions of local cross-correlation in time-frequency space. To reveal mechanisms behind coher-
ent regions, experimental or modelling studies and more elaborate examinations of each case,
possibly comprising further variables, would be necessary. These could for instance include the
Granger causality (Granger 1969) or convergent cross mapping (Sugihara et al. 2012) calculated
over time windows and frequency ranges where high coherence has been identified beforehand,
which may distinguish causality from correlation and hence result in a higher confidence on
causal mechanisms. To this end, comparing wavelet coherence of the same set of state vari-
ables measured in different lakes over a range of mixing types, trophic states and chemical
compositions would give insight into the general applicability of the approach and may reveal
interesting connections and differences between lake types and their characteristic time scales
of major processes. These might be promising next steps in diagnosing and understanding the
processes behind temporal variability in limnological state variables.
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5 Synthesis and outlook

The aim of this thesis is to contribute to a better baseline knowledge concerning variability in
patterns and processes in lake ecosystems. A literature-based and a data-driven approach were
combined with an analysis in the time frequency domain to investigate patterns of variability, to
identify processes and to enhance the overall understanding of the structure and functioning of
lake ecosystems. In the following, the results presented in the previous chapters are discussed
and synthesized.

5.1 Automated high-frequency data: opportunities and

pitfalls

5.1.1 The role of the time scale of measurements and analysis

Environmental policies aiming to improve the water quality status of aquatic ecosystems
(e.g., the EU Water Framework Directive or the US Clean Water Act), rely on a thorough un-
derstanding of the dynamics of various parameters measured in aquatic ecosystems and the un-
derlying processes. Automated high frequency measurements can provide substantial benefits
in determining the water quality status of aquatic ecosystems over traditional routine monitoring
programs, where measurements often take place in bi-weekly cycles at most (Marcé et al. 2016).
This is problematic if there is a mismatch between the time scale at which data are recorded and
the time scale at which processes operate (Fraterrigo and Rusak 2008). For example, the build-
up and decay of cyanobacteria blooms can easily be missed by a bi-weekly monitoring (Pomati
et al. 2011). Studies reviewed in chapter 2 of this thesis also demonstrated the importance of
short time windows of opportunity for cyanobacteria development in warm springs. Similarly,
a comparison of sampling regimes between hourly and monthly sampling frequencies revealed
that assessments of water quality in an urbanized river system were sensitive to the season, time
of day and frequency of sampling. The Water Framework Directive status of dissolved oxygen
ranged from a “good” status under monthly sampling to a “bad” status under hourly sampling
during the same time period (Halliday et al. 2015). In this respect, the explanatory power of
pattern recognition techniques in particular of biological parameters and in polymictic lakes can
depend dramatically on the sampling resolution (Aguilera et al. 2016). Chapter 2 of this thesis
also demonstrated that mistiming between thermal time windows and processes that depend on
thermal cues can only be detected and understood if the sampling frequency is adequate. It
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was shown empirically that the variability of water temperature at high frequencies can differ
substantially between years sharing similar low-frequency dynamics.

Many biological phenomena are driven by the detailed high-frequency evolution of water
temperature as illustrated in the conceptual sketch in Fig. 2.1. The exceedance of ecologically
critical thresholds and associated ecological responses can go undetected with a coarse sam-
pling resolution. The role of critical thresholds has been shown at the scale of single species
(Pörtner and Knust 2007; Wilhelm and Adrian 2007; Pörtner and Peck 2010), processes such
as temperature-driven cyanobacteria blooms (Wagner and Adrian 2009; Huber et al. 2012) and
habitat shifts (Hari et al. 2006; Wiedner et al. 2007), up to the ecosystem level, at which thresh-
olds can trigger regime shifts (Scheffer and Carpenter 2003; Beaugrand et al. 2008) (see chapter
2). Often, these processes are driven by meteorological conditions within narrow time windows.
For example, biological, chemical and physical processes are often limited to short time win-
dows of days or weeks as shown in chapter 4 of this thesis. For example, a phytoplankton
bloom was driven by water temperature only during a short time window of two weeks during
spring. This is in line with Feuchtmayr et al. (2012) and Talling (2012), who detected season-
specific, species-specific and lake-specific responses of phytoplankton to water temperature
forcing. Also, processes of calcite precipitation and calcite dissolution, as described in chapter
4, happened during short time windows of weeks. Calcite precipitation often accompanies phy-
toplankton blooms in nutrient-rich hard water lakes (Lampert and Sommer 2007; Heine et al.
2017) and is thus as well limited to the respective time windows. The data analyzed in chapters
2 – 4 of this thesis, as well as the literature referenced in chapter 2, showed that especially in
polymictic lakes, such as Müggelsee, short time scales are of particular importance regarding
critical time windows, because thermal stratification periods are often very short in this type of
lakes. It is thus easy to miss these time windows if the sampling regime is too coarse.

However, it is not enough to monitor environmental parameters at adequate temporal res-
olution. All three studies performed in the context of this thesis show that the time scale of
analysis and the specific methods applied are equally crucial to detect and analyze the ecologi-
cal responses of interest. The variability in water temperature was found to differ particularly at
short time scales (see chapters 2 and 3), which underlines the importance of taking into account
high-frequency variability and applying a frequency-based approach. This was also advocated
by Platt and Denman (1975), Sabo and Post (2008), and Guadayol et al. (2014). On the other
hand, long-term data are needed to form the framework in which short-term observations can
be interpreted (Magnuson 1990; Müller et al. 2010). The available long-term dataset used in
chapter 3 enabled to investigate general rules of identified patterns and enhanced the explana-
tory power of the applied methods. Generally, the long tradition of limnological research in
Müggelsee and the availability of a unique long-term dataset at high temporal resolution highly
supported the interpretation of results derived from all three studies presented in this thesis.

The “resonance effect” describes that the time scale of variability of environmental forc-
ing, relative to intrinsic oscillations of organisms at characteristic time scales, can induce large
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oscillations in the response variables such as plankton populations, and hence underpins the
importance of characterizing time scales of environmental forcing and ecological responses
(Benincà et al. 2011). The resonance of biological populations to environmental noise can af-
fect population sizes and ultimately lead to population extinctions, with the risk of extinction
likely depending on the noise color (Cuddington and Yodzis 1999; Sabo and Post 2008). The
slopes of the water temperature spectra found in the study presented in chapter 3 agree with
those found for polymictic lakes by Cyr and Cyr (2003). They are indicative of only moder-
ately reddened noise, which, according to Cuddington and Yodzis (1999), is associated with
intermediate unpredictability and extinction risk. However, these and other studies of the power
spectra of temperature, especially water temperature, are based on a monthly resolution at most,
and are therefore not entirely comparable with the study presented in chapter 3.

The time scale of analysis was as well crucial for detecting synchronous dynamics between
different time series in chapter 4. The separation of time scales performed by the wavelet
analysis enabled the detection of temporal coherence in the first place. The characteristic time
scales of coherent dynamics, on the other hand, were used to derive processes from them and
facilitated their interpretation. Time scales of variability were found to be process-specific and
to change over the course of the 8-month time period. For example, time windows of vertical
upwelling occurred at time scales of days in May, but at time scales of weeks in June and July.
Furthermore, ecological responses can occur with a time lag with respect to the forcing time
windows, as demonstrated in the studies reviewed in chapter 2. The detection of time lags
between driver and response parameters is possible using wavelet coherence. While this was
not the primary focus in chapter 4, several recent studies successfully applied wavelet coherence
to determine time-delayed responses of ecological parameters to different drivers (Recknagel
et al. 2013; Guyennon et al. 2014; Morales-Pineda et al. 2014; Li et al. 2015). In chapter 4,
the time scale of analysis, in particular the high resolution in both the time and the frequency
domain, was necessary for inferring processes from synchronous dynamics of time series.

5.1.2 The role of spatial scales

The spatial scale of measurements impacts the analysis of ecosystem parameters in a similar
way as discussed for the temporal scale above. In the same way as sampling (and method
of analysis) in time should capture the relevant temporal dynamics of underlying processes,
sampling (and method of analysis) in space must be adequate to capture the spatial dynamics
of underlying processes. For example, if measurements are only taken at one specific location
in a lake, as is often the case, these measurements are likely neither transferable to other parts
of the lake, nor necessarily representative for the whole lake (Steele 1978; Van de Bogert et al.
2012; Akyuz et al. 2014; Marcé et al. 2016).

In chapter 3, spatial scales of water temperature variability were assessed. Consistently
higher water temperature variability was detected at a measurement location at the shore of
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Müggelsee than in the open water. The slopes of water temperature spectra were generally
flatter at the shore, implying less difference between high- and low-frequency variability, than
in the open water, where the steeper slopes indicated lower high-frequency variability. This
was related to the higher probability of wind-induced internal waves at the shore. While two
measurement locations within one lake are certainly not enough to capture the whole degree of
spatial heterogeneity, the results are still valuable to add to the existent knowledge on spatial pat-
terns in lakes. Although studies are rare that explicitly investigate frequency-dependent spatial
differences in the variability of water temperature within lakes, some existent studies confirm a
higher water temperature variability at littoral locations than at pelagic locations (Lorke et al.
2006; Guadayol et al. 2014).

Shallow lakes and coastal waters were found to exhibit more rapid temperature fluctuations
than deep lakes or the open ocean (Benincà et al. 2011). Similarly, the slopes of water tempera-
ture spectra were flatter in shallow polymictic lakes and became steeper in larger lakes (Cyr and
Cyr 2003). Phytoplankton and zooplankton species are sensitive to temperature fluctuations
due to the above mentioned resonance effect (Benincà et al. 2011), explaining why plankton
communities may differ between shore and open water locations. For similar reasons, there is
also evidence that metabolic rates, which are strongly driven by ambient temperature (Brown et
al. 2004), can differ substantially in terms of variability and absolute level between littoral and
pelagic habitats within lakes (Lauster et al. 2006; Van de Bogert et al. 2007; Sadro et al. 2011).
These studies lacked sufficient quantification of differential mixing dynamics according to lo-
cations within the investigated lakes, which could have explained at least part of the observed
spatial patterns of metabolism. This calls for more comprehensive assessments of physical as
well as biological differences between littoral and pelagic regions of lakes.

5.1.3 Pitfalls of automated monitoring data

Automated high-frequency data offer opportunities as well as pitfalls (Porter et al. 2005;
Marcé et al. 2016). Time series derived from this type of data often possess a sometimes sub-
stantial amount of data gaps due to malfunction of the sensor or transmittance, routine main-
tenance or removal of biofouling (Dur et al. 2007; Meinson et al. 2016). Moreover, recorded
data may require additional preprocessing, e.g. if biofouling has not been detected and measure-
ments are deficient (Manov et al. 2004; Blauw et al. 2012; Xu et al. 2014). The use of automated
monitoring data hence requires quality assessment and preprocessing. As missing data in time
series can hamper the deduction of processes from them and lead to misinterpretation of their
dynamics, it is necessary to adopt a strategy on how to handle missing data that is consistent
with the specific requirements of the investigation (Müller et al. 2010). Especially if researchers
want to make use of the full temporal resolution of automated high-frequency data and not risk
to loose information, averaging or down-sampling the data is not an option (Dur et al. 2007).
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Steps undertaken for this thesis in this respect differed between the Fourier transform ap-
proach of chapter 3 and the wavelet-based approach of chapter 4. The methods applied here
strongly depend on the least possible amount of data gaps, as both the Fourier transform and the
wavelet analysis in their classical forms require equidistant and uninterrupted time series (Dur
et al. 2007).

The investigation of patterns over a long time period with a large sample size in chapter 3
required the interpolation of at least a certain amount of gaps present in the data. Water temper-
ature, the main parameter investigated in this study, is highly autocorrelated. Thus, filling parts
of the gaps in the data could be done successfully via linear interpolation. Linear interpolation
is often well suited for this purpose and has the advantage that the time series itself is used to fill
the gaps, instead of, e.g., approximating time series by a single fixed function (Gnauck 2004).
As interpolation can distort a frequency spectrum, the robustness of the interpolation against
a potential distortion of the spectra had to be tested. For this purpose, spectra of time series
containing interpolated artificial gaps were compared to the spectra of original, continuous data
to determine the length of gaps that could be interpolated without distorting the spectrum. Con-
versely, due to the rapid fluctuations of biological and chemical parameters, interpolation would
have led to major artifacts in the analysis of short time windows and high-frequency variability
in chapter 4. Instead, a time period of recorded data with minimal gaps was selected to not
unduly compromise the interpretability of wavelet coherence results. As one purpose of this
chapter was to test the suitability of using wavelet coherence as a diagnostic tool, uncertainties
in the data basis due to missing values would have complicated the interpretation of results.

Both approaches to overcome the limitations of using automated sensor data stress the great
importance of minimizing gaps in the measurement of environmental data, e.g. through self-
cleaning systems with wipers or pressure (Rinke et al. 2013; Meinson et al. 2016) or copper-
based antifouling systems (Manov et al. 2004). A thorough analysis of the consequences of
interpolating data gaps is otherwise necessary. Introducing artificial gaps to test the robust-
ness of interpolation procedures can help in the latter respect (see chapter 3). For example,
(Aguilera et al. 2016) introduced gaps into weekly available time series of water temperature,
water chemistry and algal biomass measured in Müggelsee to test the ability of a dimension-
reduction technique to recognize patterns. Various studies explicitly approached time series
containing gaps. For example, Keitt and Fischer (2006) applied wavelet analysis to irregularly
sampled limnological data, adapting the shape of the wavelets near sampling gaps and bound-
aries. Dur et al. (2007) adapted spectral analysis to time series from the Seine estuary that
contained a high percentage of missing values. Irregularly sampled data can be analyzed using
kernel-based methods and the frequency-based Lomb-Scargle technique, which were shown to
outperform linear interpolation in the analysis of correlation functions and persistence time in
paleo data (Rehfeld et al. 2011).
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5.2 From patterns to processes – diagnosing lake

ecosystems

Automated high-frequency monitoring data provide the basis for detecting spatial and tempo-
ral scales of environmental processes. The parameters obtained through this type of monitoring
are efficient proxies for the assessment of the water quality status and to capture ecological pat-
terns at a broad range of time scales (chapters 3 – 4; Marcé et al. 2016). To fully understand
the observed dynamics of these parameters, their drivers and constraints, requires to infer their
underlying processes. This implies an “urgent need” of methods that are able to identify pro-
cesses at the appropriate time scale (Lischeid and Bittersohl 2008). Similarly, Sabo and Post
(2008) criticize that environmental data are often used inefficiently in ecology and suggest a
frequency-based approach to quantify environmental variability. Good visualization techniques
of often complex data help to find structures in the data, as visualization is “the most powerful
interface between computer and human brain” (Lischeid 2009).

5.2.1 Detecting patterns in the time frequency domain

Testing the slopes of water temperature spectra for their suitability as an indicator of mix-
ing, as shown in chapter 3 in this thesis, illustrated how a relatively simple measure can help
to explain observed patterns and to infer processes, in this case mixing, from time series data.
The robustness of this indicator was tested using the relationship of water temperature spectra
with low percentiles of the Lake number (Imberger and Patterson 1990), an indicator well es-
tablished in the limnological literature describing the potential for wind-induced internal waves.
The Lake number, however, requires depth profiles of water temperature and measurements of
wind speed. When these are not available, using the slope of water temperature spectra seems
promising. The windowed approach applied in this chapter was suitable to compare the scal-
ing behavior of water temperature spectra between seasons, measurement locations and months
with and without an ice cover. A windowed approach proved as well suitable to assess changes
of the frequency spectrum of three El Niño Southern Oscillation indices with time (Kestin et al.
1998) and to evaluate an optimal monitoring setup of surface and groundwater levels (Fahle
et al. 2015). On the other hand, more commonly used methods to quantify variability, such
as the standard deviation, failed to detect the temporal and spatial scales of water temperature
variability (chapter SI).

The analysis of ecological time series in the time frequency domain are encouraged by
Cazelles et al. (2008), who consider this methodological shift from stationarity assumptions
of the data to the recognition of non-stationarities critical for a better understanding of ecologi-
cal processes in rapidly changing environments. Disentangling drivers of specific processes can
be greatly facilitated by a frequency-based approach (Keitt and Fischer 2006). While Gnauck et
al. (2010) advocated the application of the wavelet analysis for extracting long-term dynamics
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from ecological time series to identify processes, wavelet analysis can as well very efficiently
be used to extract short-term dynamics for the identification of processes that occur during very
short time windows, as shown in chapter 4 in this thesis. The time window of analysis is in this
respect also important as was shown in chapters 2 and 4. The wavelet coherence analysis ap-
plied in chapter 4 in this thesis offers a powerful tool that can help to derive processes from time
series, identify the time scales they operate on and the time windows of their occurrence. An
advantage of wavelet analysis techniques is that prior assumptions of the dominant processes
governing the data are not required, a benefit stressed by Lischeid (2009). Instead, processes
can be identified that dominate oscillations in the data during particular time windows and at
specific time scales. The visualization of the wavelet coherence as in Figs. 4.2 – 4.10 can help
the human brain to grasp structures in the data at a glance. Chapter 4 showed that the vari-
ability and especially the frequency-resolved covariation of multivariate high-frequency data
can serve as a diagnostic tool to identify processes dominating a system and to detect changes
in the driving or limiting forces. The wavelet coherence is superior to more commonly used
methods that address temporal coherence by applying simple correlation analysis (Magnuson
et al. 1990; Wynne et al. 1996; Kratz et al. 1998; Pace and Cole 2002; Salmaso et al. 2014) or
infer causality from linear regressions (Gaiser et al. 2009; Eleveld 2012). These lack the ability
to detect transient behaviors and frequency-specific relationships. Thus, potentially frequency-
dependent correlations or processes limited to specific time windows can go undetected. The
potential of wavelet coherence is obviously not limited to lake ecosystems. Another successful
application is the detection of flood triggering situations and the underlying hydrometeorologi-
cal constraints (Schaefli et al. 2007).

The methods applied in this thesis hence proved superior to more commonly used measures
of variability, such as the standard deviation, simple linear regression or correlation analysis,
in detecting patterns and signatures of dominant processes from parameters measured in lake
ecosystems. How these patterns could be attributed to specific environmental processes is dis-
cussed in the following.

5.2.2 Attributing patterns to processes in lake ecosystems

Water temperature is the most important driver of processes in lakes (Winder and Schindler
2004; Hanson et al. 2006; Lampert and Sommer 2007), which makes understanding its vari-
ability and how processes are driven by it an essential research focus. Chapter 3 focuses on
the variability in water temperature per se. Temporal and spatial patterns of water temperature
variability differed between measurement locations, between spring and fall at similar mean
water temperatures, and were related to the stability of thermal stratification and the duration of
ice cover. These patterns were found to be driven by the potential for vertical mixing through
wind-induced internal waves as indicated by the slope of water temperature spectra, but not
directly by the variability in ambient air temperature, which exhibited no such patterns. Mixing
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dynamics play a crucial role for biological dynamics, as they control e.g. the availability of light
and nutrients for phytoplankton (Spigel and Imberger 1987), the composition of phytoplankton
species (Huisman et al. 2004) and the spatial distribution of zooplankton (Pernica et al. 2013).
Vertical mixing was also detected by high anti-phase coherence in measurements of oxygen
concentrations and pH between near-surface and near-bottom measurement depths in chapter
4. This was associated with the replenishment of the lake bottom with oxygen, accompanied
by oxygen and pH depressions at the lake surface. Similar phenomena caused by wind-induced
mixing have been reported earlier from Müggelsee (Behrendt et al. 1993) and from other lakes
(Robertson and Imberger 1994; Hanson et al. 2006; Langman et al. 2010). Furthermore, wind-
induced resuspension of particles from the lake bottom was indicated through high in-phase
coherence between wind speed and turbidity during summer (chapter 4). The resuspension of
sediments can severely affect the water quality of lakes; on the one hand due to reduced light
availability resulting from increased turbidity, and on the other hand due to the recycling of
nutrients from the sediments to the water column (Kristensen et al. 1992; Eleveld 2012), po-
tentially fueling eutrophication (Kozerski and Kleeberg 1998). Wind-induced resuspension is
especially relevant in shallow, polymictic lakes such as Müggelsee, as less wind energy is re-
quired to cause complete vertical turnover than in deeper lakes that often exhibit more stable
thermal stratification. Furthermore, phosphorus release from the sediment adds to the already
nutrient-rich state of eutrophic lakes such as Müggelsee (Kristensen et al. 1992; Søndergaard
et al. 1992; Kozerski and Kleeberg 1998). Vertical mixing can also be caused by severe rain-
storms, which can have a larger effect than wind-induced mixing (Kimura et al. 2014).

In light of the projected warming of lakes worldwide (O’Reilly et al. 2015) and the result-
ing more frequent, more intense and longer time periods of thermal stratification (Wagner and
Adrian 2011), the investigation of mixing dynamics becomes particularly relevant. Potential
thermal regime shifts were projected for polymictic lakes, with profound impacts on the struc-
ture and functioning of these ecosystems (Kirillin 2010; Shatwell et al. 2016). Warmer water
temperatures, associated with shorter periods of ice cover in winter and longer periods of ther-
mal stratification in summer, may indirectly increase water temperature variability in these sea-
sons (see chapter 3). However, there was also evidence that in the long term, water temperature
variability may be decreased though longer and more stable thermal stratification.

Increases in water temperature may fuel phytoplankton growth only during specific time
windows. This was shown in chapter 4, as the coherence between water temperature and
chlorophyll a was only high and in phase during a short time window before the clear water
phase. Afterwards, other drivers such as nitrogen limitation may have constrained phytoplank-
ton growth (Köhler et al. 2005). On the other hand, cyanobacteria blooms are often triggered
by warm water temperature and strong stratification stability (Huber et al. 2012; Merel et al.
2013) and can impair the water quality through increases in turbidity (chapter 4; Paerl and
Huisman 2008). As cyanobacteria can form toxic blooms and are projected to become more
abundant with climate warming (Castle and Rodgers 2009; Lürling and De Senerpont Domis
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2013), powerful methods to detect their drivers and constraints, such as shown in this thesis by
wavelet coherence, are needed.

Wavelet coherence also identified chemical processes such as calcite precipitation and cal-
cite dissolution through anti-phase coherence between electrical conductivity an pH (chapter
4). While of general interest for the diagnosis of lake ecosystems (Lampert and Sommer 2007;
Heine et al. 2017), calcite precipitation can also limit eutrophication and thereby phytoplankton
growth through co-precipitation of phosphate (Hamilton et al. 2009). Yet, these reversible pro-
cesses do not necessarily have permanent effects, as calcite dissolution in winter was followed
by biogenic re-precipitation in spring. Furthermore, as shown above, wind-induced resuspen-
sion of sediments can release precipitated phosphorus from the sediment. These dynamics
underline the importance of investigating lake-specific dynamics at adequate time scales and
over longer time periods, as processes may occur only during short time windows or their char-
acteristic time scale may change.

5.3 Conclusions and outlook

The frequency-based approaches applied in this thesis were found to be useful to indicate
processes, their drivers and constraints occurring in lake ecosystems. Future risk assessment
will depend on reliable diagnoses of the health and state of this fundamentally important and
vulnerable resource. This requires advanced methods that make use of the high temporal reso-
lution of now increasingly available automated monitoring data, while long-term data can form
the framework for a deeper understanding. Integrating different data sources, such as remote
sensing data, may provide additional insight. Indicators such as the slope of the spectra of
parameters and powerful visual methods such as the coherence between time series will be
needed to inform decision makers concerned with improving the water quality status of fresh-
water ecosystems. They could be integrated in decision support systems for lake risk assess-
ment. While this thesis is based on tests of the suitability of these indicators only for one lake
ecosystems, it presents a promising route towards successful, efficient analyses of other ecosys-
tems worldwide. Lakes exhibiting different morphometry, mixing regimes, trophic states and
chemical compositions, and potentially also other types of ecosystems, will provide interesting
research objects in the future. Beyond the novel empirical findings reported in the three case
studies, this thesis aims to help researchers to make more efficient use of time series data at
high temporal resolution by providing them with a set of innovative, frequency-based methods
to attribute patterns to processes, their drivers and constraints.
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