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The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found
across all kingdoms of life. The domain functions as a sensing unit for a diverse array
of signals, including molecular oxygen, small metabolites, and light. In plants, several
PAS domain-containing proteins form an integral part of the circadian clock and regulate
responses to environmental change. Moreover, these proteins function in pathways that
control development and plant stress adaptation responses. Here, we discuss the role of
PAS domain-containing proteins in anticipation, and adaptation to environmental changes
in plants.
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Introduction

The evolution of the photosynthetic apparatus resulted in twomajor developments on earth. During
photosynthesis, water is split into oxygen (O2), protons and electrons, which caused the oxygenation
of the earth’s atmosphere for about 2.2 billion years ago (Knoll, 2003; Schippers et al., 2012). The first
event, the release of O2, placed organisms under strong selection pressure to mitigate the reactive
nature of highly toxic O2 derivatives, i.e., superoxide, hydroxyl radical and hydrogen peroxide
commonly called reactive oxygen species (ROS; Raymond and Segrè, 2006; Schippers et al., 2012).
The release of oxygen stimulated the evolution of aerobic metabolism using a superior electron
acceptor, resulting in an increased energy availability, whichmight have accelerated the development
of multicellular organisms (Thannickal, 2009; Schirrmeister et al., 2013). The development of the
photosynthetic apparatus itself gave rise to autotrophic organisms whose energy metabolism is light
dependent. Considering the rotational behavior of the Earth, energy production in plants is limited
to a specific time-window during a single day. Both, light dependent metabolism as well as redox
oscillations, have stimulated the emergence of a control system that directs cellular processes in
a temporal manner, the circadian clock (Lai et al., 2012; Haydon et al., 2013). Interestingly, the
acquisition of aerobic metabolism, photosynthesis and the evolution of circadian systems appear
to have co-occurred (Loudon, 2012).

At the molecular level, the circadian clock consists of several transcriptional feedback loops
(Chow and Kay, 2013). The central loop is formed by the morning-expressed CIRCADIAN CLOCK-
ASSOCIATED1 and LATE ELONGATED HYPOCOTYL and the evening-expressed clock gene
TIMING OF CAB EXPRESSION1 (TOC1), which act in a reciprocal manner (Gendron et al., 2012).
In principle, the transcriptional loops allow for activating or deactivating specific genetic programs at
different times of the day. However, to ensure anticipation of environmental conditions and accurate
timing of cellular processes, circadian clocks are set to the correct time of day through the perception
of environmental signals (Harmer, 2009; Sanchez et al., 2011; Lai et al., 2012; Haydon et al., 2013).

Frontiers in Plant Science | www.frontiersin.org July 2015 | Volume 6 | Article 5131

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00513
https://creativecommons.org/licenses/by/4.0/
mailto:schippers@bio1.rwth-aachen.de
http://dx.doi.org/10.3389/fpls.2015.00513
http://journal.frontiersin.org/article/10.3389/fpls.2015.00513/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00513/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00513/abstract
http://loop.frontiersin.org/people/203751
http://loop.frontiersin.org/people/163117
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Vogt and Schippers PAS domain proteins and environmental adaptation

Light is the best-studied zeitgeber (a signal that resets the clock),
that entrains or synchronizes the clock (Alabadí et al., 2001).
In addition, other external cues such as temperature (Michael
et al., 2003), but also internal cues like energy status and redox
homeostasis (Lai et al., 2012; Haydon et al., 2013; Zhou et al.,
2015), all feed back into the clock to optimize plant growth
and survival (Dodd et al., 2005). Especially for the adaptation
against adverse environmental conditions a functional clock is a
prerequisite (Lai et al., 2012; Kolmos et al., 2014; Gehan et al.,
2015). Moreover, genes associated with abiotic stresses show
rhythmic expression behavior, and their transcriptional response
often depends on the time of the day at which the plant encounters
the stress (Gehan et al., 2015; Matsuzaki et al., 2015).

Plants, as sessile organisms heavily rely on their ability to
sense and adapt to changes in their environment. One particular
protein domain, the per-ARNT-sim (PAS) domain, is a sensory
module that can be found in all kingdoms of life (Nambu et al.,
1991). The PAS domain can function as a chemoreceptor, a redox
sensor, a photoreceptor, or a voltage sensor (Möglich et al., 2009),
indicating its versatile role in signal transduction. In animals,
the PAS-domain containing ARNT transcription factor regulates
the response to environmental stimuli by heterodimerization
with different protein interaction partners to initiate a specific
transcriptional response (McIntosh et al., 2010). Moreover, both
in animals and plants, several of the circadian timekeeping
proteins contain a PAS domain, forming a direct link between
sensing the environment and the circadian clock. Here, we focus
on the role of PAS domain proteins in environmental adaptation,
under the control of the circadian clock.

Structure of PAS Domains

The PAS domain is a sensory and protein–protein-interaction
module, which can be found throughout all kingdoms of life.
It was originally identified by sequence homology of three
eukaryotic proteins: the circadian protein Period (per) and
developmental regulator Sim (single-minded) of Drosophila and
the vertebrate aryl hydrocarbon receptor nuclear transporter
(ARNT), which comprise two PAS motifs each (Nambu et al.,
1991). Conserved residues C-terminal to the PAS motif were
at first assigned as PAC motif (Ponting and Aravind, 1997).
However, the first three-dimensional structure of the PAS domain
revealed that both, the PAS and PAC motif, form a globular fold
made up of about 100 residues, thus redefining the PAS domain
(Hefti et al., 2004). Although PAS domains share only a low
sequence homology on the amino acid level (∼20%), the three-
dimensional structure is highly conserved (Mei and Dvornyk,
2014). The PAS fold consists of an antiparallel five-stranded
β-sheet in topological order 2-1-5-4-3 and several flanking α-
helices (Figure 1), which are either packed on the core or
extend from it (Möglich et al., 2009). In plants, PAS domains
are combined in multidomain proteins with functionally diverse
effector/regulatory domains such as Serine/Threonine kinases, F-
Boxes or,HD-ZIP domains (Figure 2 andTable 1), thusmediating
a plethora of cellular responses. Interestingly, the phytochrome
and F-BOX containing PAS domain proteins were shown to
interact (Jarillo et al., 2001a; Kim et al., 2007) and function either

as an input to the clock and/or an integral component of the
circadian oscillator.

Structure of FMN-binding PAS-domain (LOV) in
Plant Phototropins
The Arabidopsis thaliana genome contains two membrane-
associated phototropin genes, Phot1 and Phot2 that encode
serine/threonine kinases and serve as receptor for blue light
(Kinoshita et al., 2001). They belong to a subclass of the PAS
domain superfamily, termed LOV (light, oxygen, or voltage)
domain. Defining feature of the LOV domain is the cofactor,
a Flavin nucleotide (Huala et al., 1997). The photosensors
harbor two N-terminal FMN-binding PAS domains, termed
N- to C-terminal LOV1 and LOV2, which are coupled to
the C-terminal kinase domain. The typical PAS fold consists
of the five-stranded antiparallel β-sheet and four α-helices
(β2α4β3: Aβ, Bβ, Cα, Dα, Eα, Fα, Gβ, Hβ, and Iβ; Figure 1).
The core is flanked by amphiphatic α-helices (A’α, Jα) and
mediates chromophore binding and signal transduction. Upon
photoexcitation, the C4a of the oxidized FMN isoalloxazine
ring forms a dark-reversible cysteyl-adduct with Cys39 within
the LOV2 core domain (Salomon et al., 2000; Swartz et al.,
2001) resulting in alteration of the hydrogen bonding in the
binding pocket between the chromophore and the β-sheet,
as well as the adjacent Jα helix (Crosson and Moffat, 2001;
Halavaty and Moffat, 2013). Jα was shown to be required for
kinase activity, and light-activated alterations of the interacting
surface of the core domain leads to an intermediate partial
unfolding of the α-helical structure. Together with the β-
sheet it might constitute the interface involved in signal
transmission by alleviating the repressive effect on the protein
kinase domain of phototropins (Crosson and Moffat, 2002;
Crosson et al., 2002; Corchnoy et al., 2003; Harper et al.,
2003; Matsuoka and Tokutomi, 2005; Chen et al., 2007; Pfeifer
et al., 2010). A’α and Jα helices both contribute to coiled coil
dimerization of the phototropin (Figure 1; Halavaty and Moffat,
2013).

The two PAS cores share a high degree of similarity among
each other and among the phototropins (Halavaty and Moffat,
2007; Nakasako et al., 2008) and exhibit identical photochemical
cycles (Salomon et al., 2000; Kasahara et al., 2002). However,
there are functional differences between the two domains: while
LOV2 is required and sufficient for light sensing and the
autophosphorylation resulting in phototropic hypocotyl growth
(Christie et al., 2002), the LOV1 domain, mainly contributes to
dimerization and regulating the sensitivity to blue-light activation
(Matsuoka and Tokutomi, 2005; Nakasako et al., 2008; Tokutomi
et al., 2008). The dimerization sites of LOV1 in the two
phototropins are similar to the extent that they both form a
face-to-face association of the β-scaffolds. They are stabilized by
hydrophobic interactions of an N-terminal α-helix (relative to
the PAS core) with the β-scaffolds of both subunits (Nakasako
et al., 2008). While the LOV1 dimer of Phototropin 1 forms a
stable disulfide bond [Cys261(A)—Cys261(B), Figure 1A], LOV1
of Phototropin 2 dimer is predominantly stabilized by hydrogen
bonds of a threonine and methionine (Nakasako et al., 2008),
underlining the structural rather than sequence conservation and
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BA

FIGURE 1 | Structures of Arabidopsis thaliana LOV1 and LOV2
domains of phototropin 1 dark-adapted state. LOV1 domain (2Z6C;
Nakasako et al., 2008), (A) and LOV2 of phototropin 1 in dark-adapted
state (4HHD; Halavaty and Moffat, 2013), (B). Subunits B of LOV1 and
LOV2 are shown in white, subunit A of the respective LOV domains is
shown in colors according to secondary structure. Several α-helices (cyan)
and β-strands (yellow) of the PAS core are labeled according to their

nomenclature within the PAS domain as well as flanking helices, which are
involved in dimerization and signaling. The Flavin mononucleotide
chromophores (red) and the disulfide-bond-creating Cys at position 261
(Cys261, yellow) in the monomers of LOV2 domains, respectively, are
depicted as sticks. C- and N-termini of subunits A and B are labeled (C, N).
The graphic representation of the structure was generated using VMD
(Humphrey et al., 1996).

giving a possible explanation for the different physiological roles
of the two phototropins in plants.

Sensing-signaling Mechanisms
It was recently postulated that the general role for PAS domains
is to modulate protein–protein interactions to form hetero-
or homo-oligomers with other proteins (Möglich et al., 2009),
or alter protein structures by rearranging interactions between
domains in a single protein. As the PAS domain can act as a
sensor, the occurrence of protein–protein interactions becomes
signal dependent. This property provides specificity, allowing
for complex spatial and temporal regulation of cellular signaling
networks (Möglich et al., 2009). Here, the role of PAS domains in
the modulation of protein activity and signaling is illustrated by
several examples.

In contrast to other species, plant phytochromes contain three
PAS domains (Hughes, 2013). It has been shown for PhyB,
the most prominent photo-stable phytochrome, that the nuclear
translocation depends on the tandem PAS domain (Chen et al.,
2005). In its inactive form the tandem-repeat PAS domain
interacts with the N-terminal sensory domain containing the
other PAS motif (Figure 2). Upon red light, the protein is

activated through a conformational change, exposing the nuclear-
localization signal present in the tandem PAS motif, resulting
in translocation to the nucleus. In addition, the tandem PAS
domain is crucial for the red-light induced interaction between
PhyB and PHY INTERACTING FACTORs (PIFs; Levskaya et al.,
2009). Moreover, application of far-red light results in a reversal
of the interaction between PhyB and PIFs (Ni et al., 1999).
This photoreversibility of the protein interaction depends on the
presence of the tandem PAS domain (Levskaya et al., 2009). Still,
sensing of red light by phytochromes is established through the
billin chromophore bound by the GAF domain within the N-
terminal photosensory module (Galvão and Fankhauser, 2015).
Although the function of the PAS domain in the photosensory
module is unknown, it was shown to interact with and thereby
stabilizing the chromophore binding GAF domain, which has also
been implicated in PIF binding (Burgie et al., 2014). Thus, the PAS
domains in phytochromes do not function as light sensors, and it
is currently unclear, whether they have sensory roles themselves
or mainly support conformational changes (Burgie and Vierstra,
2014).

The phototropins and ZEITLUPE family of LOV domain-
containing proteins act as blue-light receptors. The ZTL family
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FIGURE 2 | Composition of PAS containing multidomain proteins in
plants. Schematic representation of PAS domain-containing proteins in
Arabidopsis and their multidomain architecture (Mitchell et al., 2015). The PAS
module is located in variable positions within the protein and associated with a
variety of effector domains. Abbreviations: PAS, per-arnt-sim domain;
PASLOV1/2, LOV (light oxygen, or voltage) subclass of PAS domain; PASMEKHLA,

PAS-like MEKHLA domain; S/T kinase, Serine/Threonine kinase; F-BOX,
domain interacting with SCF complex; KELCH, KELCH repeat; GAF,
cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA; PHY, GAF-like
domain/Chromobillin binding; START, StAR-related lipid-transfer; HD-SAD,
HD-START-associated domain; HD, homeodomain; LZ, Leucine zipper; aa,
amino acids.

TABLE 1 | PAS-domain containing Arabidopsis proteins.

AGI Protein Function References

Blue-light receptors

AT5G57360 ZTL Regulation of circadian clock and photoperiodic flowering time Somers et al. (2000)
AT3G18915 LKP2 Regulation of circadian clock and photoperiodic flowering time Schultz et al. (2001)
AT1G68050 FKF1 Regulation of circadian clock and photoperiodic flowering time Nelson et al. (2000)
AT3G45780 PHOT1 Phototropic response Liscum and Briggs (1995)
AT5G58140 PHOT2 Phototropic response Sakai et al. (2001)
AT2G02710 PLP Involved in abiotic stress responses Ogura et al. (2008a)

Phytochromes

AT1G09570 PHYA Seed germination, plant greening, cell expansion, and flowering time Reed et al. (1994)
AT2G18790 PHYB Seed germination, plant greening, cell expansion, and flowering time Reed et al. (1994)
AT5G35840 PHYC Seed germination, plant greening, cell expansion, and flowering time Qin et al. (1997)
AT4G16250 PHYD Seed germination, plant greening, cell expansion, and flowering time Franklin et al. (2003)
AT4G18130 PHYE Seed germination, plant greening, cell expansion, and flowering time Delvin et al. (1998)

HD-ZIP III transcription
factors

AT3G34710 PHB Meristem development and functioning; organ polarity and vascular development. McConnell et al. (2001)
AT1G30490 PHV Meristem development and functioning; organ polarity and vascular development. McConnell et al. (2001)
AT1G52150 ICU4/CNA Vascular development, meristem development; organogenesis Ochando et al. (2008)
AT5G60690 REV Meristem development and functioning; organ polarity and vascular development. Talbert et al. (1995)
AT4G32880 ATHB8 Meristem development and functioning; organ polarity and vascular development. Baima et al. (2001)

MAPKKK

AT5G49470 RAF10 Positive regulators of ABA and seed dormancy Lee et al. (2015)
AT1G67890 RAF11 Positive regulators of ABA and seed dormancy Lee et al. (2015)
AT4G23050 MAP3Kδ4 Involved in plant growth and abiotic stress responses Sasayama et al. (2011)
AT3G06620 putative MAPKKK Unknown MAPK Group (2002)
AT3G06630 putative MAPKKK Unknown MAPK Group (2002)
AT3G06640 putative MAPKKK Unknown MAPK Group (2002)

contains an N-terminal LOV domain followed by an F-box
and six Kelch repeats (Figure 2), suggesting a role in light-
regulated protein degradation (Demarsy and Fankhauser, 2009).

F-box proteins are components of SCF-type (Skp1, Culin, and
F-box) ubiquitin E3 ligases and ZTL was shown to interact
with Arabidopsis Skp-like (ASK) proteins (Kevei et al., 2006).
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A mutation in the LOV domain of ZTL, as found in the
ztl-21 mutant, was shown to interfere with the interaction with
ASK1 (Kevei et al., 2006), indicating that light signals are
required for ZTL to target proteins for degradation. In the light,
photoexcitation of ZTL promotes interaction with GIGANTEA
(GI), stabilizing ZTL during the day (Kim et al., 2007). Still, ZTL
is not completely stabilized as photochemical characterization of
ZTL reveals a half-life of about 4 h (Pudasaini and Zoltowski,
2013). It was postulated that this fast photocycle allows for
estimating the timing of the day-night transition. Thus, the
LOV domain of ZTL determines protein stability and directs
protein–protein interactions.

So far, only a role for the PAS sensory domain in light receptors
has been described, in other plant proteins the function of the
PAS domain is mostly unknown and the signals they perceive
are elusive. For example, the HD-ZIP III family of transcription
factors contains a C-terminal PAS-like domain. A point mutation
in this domain for CORONA/INCURVATA4 results in a bushy
plant phenotype, suggesting a regulatory role for this domain
(Duclercq et al., 2011). Furthermore, the PAS-like domain in HD-
ZIP III member REVOLUTA (REV), was shown to modulate the
DNA binding activity of the protein (Xie et al., 2014), however,
the signal that modulates the regulatory function of the PAS-like
domain in this case is unknown. Therefore, additional efforts are
required to better understand the role of PAS domains in plants.

Plant PAS Domain Proteins

Plants as phototrophic sessile organisms are required to adapt
especially to changes in light, but also other environmental
cues. Hence, it is not surprising that many of the PAS sensory
modules are coupled to light perception and signaling (Table 1).
Among the five classes of photoreceptor families characterized
in Arabidopsis, the phytochrome, cryptochrome, and ZEITLUPE
family integrate the red/far-red and blue light information into the
central oscillator (McClung, 2011).

Phototropin 1 and 2, Tandem LOV Domain
Blue-light Receptors
The plant specific blue-light (and UVA) receptor protein kinase
Phot1was initially identified by a forward genetic screen for plants
showing defects in the phototrophic response (Liscum and Briggs,
1995; Huala et al., 1997). Moreover, phototropins 1 and 2 are
involved in blue-light induced stomata opening, and chloroplast
migration (Jarillo et al., 2001b; Kinoshita et al., 2001; Sakai et al.,
2001). This indicates that both receptors play an important role
in sensing the light availability, for metabolic and physiological
adaptation.

The structure of the two phototropins have been extensively
studied (Christie et al., 2002; Nakasako et al., 2008; Halavaty
and Moffat, 2013) and helped understanding the underlying
mechanism of the structure-function relationship of PAS
(LOV) domains. In the dark, each LOV domain non-covalently
binds FMN, while blue light causes covalent binding of the
chromophore, resulting in the release of its inhibitory effect
on the C-terminal kinase domain — thereby facilitating
autophosphorylation and subsequent activation of the

phototropin signal transduction pathway (Tokutomi et al.,
2008). Of note, this reaction is reversible allowing for a rapid
switch of phototropin activation in a light-dependent manner.

Recently it was found that PIF4 and PIF5 act downstream
of Phot1 to negatively modulate phototropism in Arabidopsis
(Sun et al., 2013). Although no direct link between the circadian
clock and Phot1/2 has been established, the dependence of PIF4
and PIF5 on Phot1 might present such an interaction. PIF4 and
PIF5 expression are under the control of the evening complex,
containing the proteins EARLY FLOWERING 3 (ELF3), ELF4,
and LUX ARRHYTHMO (LUX) during hypocotyl elongation
(Nusinow et al., 2011). Still, this interaction has so far not been
described.

Phytochromes, Tandem PAS Domain Red-light
Receptors
Phytochromes act as homodimeric red and far-red photoreceptors
that are encoded by a small family of genes encompassing
three clades, PHYA, PHYB, and PHYC (Casal, 2013). As stated
above, they contain a single PAS motif within their phytochrome
sensory domain, which is followed by a tandem PAS domain
and histidine-kinase-like transmitter module (Hughes, 2013). In
plants, phytochromes regulate amultitude of processes, including,
seed germination, plant greening, cell expansion, and flowering
time to regulate plant growth and development in response to
environmental light cues (Galvão and Fankhauser, 2015).

Of note, PhyB mutants display a long circadian period,
predominantly under continuous red light, while PhyA mutants
display long period under constant red and blue light (Somers
et al., 1998). PhyB has been shown to directly interact with ELF3
(Liu et al., 2001), forming a link to the clock. In addition, PIFs
were found to negatively regulate PhyB levels by promoting the
proteasome dependent degradation of the activated PhyB form
(Jang et al., 2010; Ni et al., 2014). Interestingly, it was found
that nuclear-localized PhyB is required for stabilizing the ELF3
protein (Nieto et al., 2015), which represses the PIF4 function
by sequestering the protein. Moreover, PhyB is known to interact
with another PAS domain containing clock protein, ZTL/ADO1
(Jarillo et al., 2001a), as described below. In contrast, no direct
interaction between the other four phytochrome proteins with
clock proteins have been reported so far.

Circadian Clock Proteins ZTL, LKP2, and FKF1
The three paralogs in Arabidopsis, ZEITLUPE (ZTL), FLAVIN-
KELCH-FBOX-1 (FKF1), and LOV-Kelch-Protein-2 (LKP2),
share a high degree of amino acid identity of about 70–80%
(Somers et al., 2000). They comprise a single N-terminal LOV-
type PAS domain similar to that of phototropins binding oxidized
FMN (Imaizumi et al., 2003), followed by an F-Box and a C-
terminal Kelch-repeat domain, which mediate formation of SCF
E3 ligase complexes and substrate binding for polyubiquitination,
respectively (Somers et al., 2000; Andrade et al., 2001; Yasuhara
et al., 2004; Figure 2). Blue light is perceived in a fluence-
dependent manner via the PAS (LOV) domain and fed to the
light-input of the circadian clock and regulation photoperiodic
flowering control via protein–protein-interactions (Nelson et al.,
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2000; Imaizumi et al., 2003; Somers et al., 2004; Takase et al.,
2011). The protein–protein-interaction either targets the partner
to proteasomal degradation, such as the core clock components
TOC1 and PRR5 by ZTL in the dark, or stabilizes the proteins,
as shown for interactions of FKF1 with CONSTANS (CO) and
CYCLING DOF FACTORS (CDFs), or all three proteins with
GIGANTEA (GI) in blue light (Imaizumi et al., 2005; Kiba et al.,
2007; Kim et al., 2007; Baudry et al., 2010; Song et al., 2014).
Despite their structural similarity, ZTL, FKF1, and LKP2 exert
distinct physiological roles. While ZTL is a major player in the
evening loop of the circadian clock, the latter are mainly involved
in themorning loop. This is achieved by a combination of different
regulatory mechanisms, such as differential expression, protein
stability and intracellular localization, as well as the photokinetic
properties and fluence sensitivities of their light-sensing PAS
domains (Somers et al., 2000, 2004; Kim et al., 2007; Baudry et al.,
2010; Pudasaini and Zoltowski, 2013; Song et al., 2014).

ZTL was shown to interact with PhyB in vitro (Jarillo et al.,
2001a), and several mutations in either of the domains of ZTL
protein, including the PAS domain, did not abolish the interaction
with the C-terminal part of PhyB, indicating that ztl phenotypes
are not due to disrupted interaction between these two proteins
(Kevei et al., 2006).

PAS/LOV Protein—Another Potential Plant
Blue-light Receptor
Arabidopsis encodes yet another potential photoreceptor, termed
PAS/LOV protein (PLP isoforms A to C). PLP harbors a PAS
domain at either end of the protein, the C-terminal domain
showing homology to FMN-binding LOV domains. Having no
predicted effector domain, however, it is likely that they act in
trans on other proteins (Crosson et al., 2002).

Although PLPs have not been studied in great detail and
the exact function of both PAS domains are not resolved to
date, they seem to be involved in the plant reaction to salt and
dehydration stress, and protein interaction is modulated in a
blue-light dependent manner in yeast (Ogura et al., 2008a,b). In
addition, the PLP gene shows a clear diurnal expression pattern,
with a maximum expression in the afternoon (Mockler et al.,
2007), suggesting that it might act as a clock output.

PAS-like Domain in HD-ZIP Transcription Factors
REVOLUTA (REV), PHABULOSA (PHB), PHAVOLUTA
(PHV), INCURATA4/CORONA (ICU4/CAN), and ATHB8
(ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 8)
constitute the plant-specific Class III of homeodomain leucine
zipper (HD-ZIP III) transcription factors. They are well studied
major regulators of developmental processes and involved in
establishing adaxial-abaxial polarity in lateral organs, meristem
regulation and formation, vascular development, as well as
embryonic patterning (Talbert et al., 1995; Zhong and Ye, 1999;
McConnell et al., 2001; Otsuga et al., 2001; Prigge et al., 2005;
Carlsbecker et al., 2010; Smith and Long, 2010). As a recurring
pattern in plant PAS domain proteins of a family, they function
not only redundantly, but display distinct, yet antagonistic
function (Prigge et al., 2005).

The multidomain proteins consist of the N-terminally located
eponymousHD-ZIP domain followed by two regulatory domains,
the lipid ligand binding START and the START associated
domain (HD-SAD, Mukherjee et al., 2009; Schrick et al.,
2014). START/HD-SAD domains serve as regulatory domains
recognized by microRNAs miR165 and miR166 (Emery et al.,
2003). The C-terminus is constituted by a so-called MEKHLA
domain, an approximately 150 amino acid long PAS-like domain
(Mukherjee and Bürglin, 2006) that shares highest homology
to bacterial sensor histidine kinases such as the oxygen sensor
FixL (Hao et al., 2002; Mukherjee and Bürglin, 2006). It is not
known, however, whether the transcription factors bind the same
cofactor (i.e., heme) with its PAS-like domain because of the
high sequence variability (Mukherjee and Bürglin, 2006). The
PAS-like domain negatively regulates REV activity by inhibiting
protein homodimerization (Magnani and Barton, 2011). Upon
stimulation this inhibition is lifted and the REV protein is
activated. Of note, HD-ZIP III proteins are known to be redox-
sensitive (Comelli andGonzalez, 2007; Xie et al., 2014), suggesting
that the PAS-like domains in these proteins might also sense
oxygen or ROS.A genome-wide binding analysis for REV revealed
that PRR5 is a target gene, representing a link with the morning-
loop of the circadian clock (Brandt et al., 2012).

MAPKKKs Harboring PAS Domains
Mitogen-activated protein kinase (MAPK) cascades are a
common way of signal transduction and they are associated
with integrating environmental cues into adequate responses
(Romeis, 2001; Sinha et al., 2011). Arabidopsis encodes about
80 MAPKKK (MAP3K) genes. The subgroup B2 of Raf-like
kinases consists of six members and comprises an N-terminal
PAS domain (MAPK Group, 2002; Colcombet and Hirt, 2008).
To date, knowledge of the physiological framework in which this
subgroup of MAPKKKs exerts its role, the signaling mechanism
and molecular function of the PAS domain is scarce.

MAP3Kδ4 was reported to be an auxin- and abscisic acid
(ABA)-responsive kinase affecting plant growth, mediating
tolerance to salt stress, and it is likely to be involved in other abiotic
stress responses as well (Sasayama et al., 2011; Shitamichi et al.,
2013). Recently, two functional redundant putative MAPKKK
of the same group, Raf10 and Raf11, were identified likewise as
positive regulators of ABA response and seed dormancy (Lee
et al., 2015). As forMAP3Kδ4, the exact molecular function of the
PAS domain within the MAPK signaling is not yet understood.
Moreover, in animals it has been shown that a MAPK cascade can
reset the circadian clock (Akashi andNishida, 2000), whether such
a scenario also exists in plant remains to be discovered.

Environmental Sensing and Plant
Adaptation Through PAS
Domain-containing Proteins

Light is the major clock input signal, which is used by plants
to set the pace and phase of the oscillator, adjusts growth and
development to changing environmental conditions. Most of the
here described PAS domain-containing proteins sense light, and
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have been shown previously to be involved in entraining the
circadian clock.

Although the PAS domain-containing phytochromes represent
an important class of photoreceptors, they are not required for
regulating circadian responses, per se (Yanovsky et al., 2000;
Strasser et al., 2010). Still, under free-running conditions, in
a light-intensity and quality dependent manner, phytochrome
mutants were shown to exhibit a lengthened or reduced period
and arrhythmic leafmovements (Somers et al., 1998; Strasser et al.,
2010). Although light input is essential for clock periodicity, it
has not been possible so far to relate this strongly to the presence
of phytochromes, even though PhyB interacts with and stabilizes
ELF3 in the light (Nieto et al., 2015). Potentially, the loss of
phytochrome-dependent light signaling can be compensated for
by other photoreceptors to sustain light entrainment of the clock.
Indeed, it was previously shown that cryptochromes mediate
phytochrome signaling to the clock in both red and blue light
(Devlin and Kay, 2000). In addition, it has been established
that the blue light cryptochromes differentially control circadian
period and sustain rhythmicity across a physiological temperature
range (Gould et al., 2013). Still, PhyB and ELF3 were shown
to be negative regulators of dark-induced senescence (Sakuraba
et al., 2014). Prolonged light-deprivation causes the inactivation of
PhyB and the subsequent accumulation of PIF4 and PIF5 and the
onset of leaf senescence. Under normal day-night rhythms, ELF3
represses PIF4 and PIF5 expression during the night. However,
prolonged darkness overrides this control. Interestingly, short
pulses of red light during 10 days of darkness prevent the onset of
senescence in a PhyB dependent manner (Sakuraba et al., 2014).

The LOV domain-containing ZTL was shown to interact with
PhyB as well as with CRY1, linking both phytochrome and
cryptochrome with the circadian clock (Jarillo et al., 2001a). The
ztl mutant is described as a clock mutant with altered period
in a light-dependent manner (Somers et al., 2000). Therefore,
ZTL might regulate the integration of light signals into the
clock. In Arabidopsis, the blue-light receptor CRY2 interacts
with and activates the transcription factor CRYPTOCHROME-
INTERACTING basic helix–loop–helix 1 (CIB1). CIB1 regulates
the floral integrator gene FLOWERING LOCUS T (FT), which
in turn controls floral initiation (Liu et al., 2008). In blue
light, ZTL/LKP2 protect CIB1 from proteasomal degradation
(Liu et al., 2013) emphasizing the convergence of more than
one, evolutionary distinct PAS domain-containing light receptors
involved in photoperiodic regulation. Next to a role of CIB1 in
regulating flowering time, it was found to have a negative impact
on plant immunity (Malinovsky et al., 2014). In line with this, ZTL
was found to affect the plant defense response (Wang et al., 2011).

In addition, the ZTL family target PRR5 was shown to repress
the expression of genes involved in abiotic stress (Nakamichi et al.,
2009, 2012). Furthermore, a triple loss of function prr5 prr7 prr9
mutant displays enhanced cold, drought and salinity tolerance,
placing the clock PRR proteins in a central position mediating
adaptation to environmental cues. Interestingly, overexpression
of LKP2 improves plant drought tolerance by positively regulating
dehydration-inducible genes such as DREB1A-C, RD29A, as well
as DEHYDRIN (Miyazaki et al., 2015). Moreover, these genes
overlap with those that show elevated expression in the prr5 prr7
prr9 mutant (Nakamichi et al., 2012), in agreement with a role
of LKP2 in promoting the degradation of PRR5 (Baudry et al.,
2010), and thereby promoting plant adaptation to a changing
environment.

The HD-ZIPIII transcription factor REV was shown to control
oxidative stress tolerance in Arabidopsis (Xie et al., 2014), aside
from its role in plant development. This indicates that theHD-ZIP
III familymight be an important player integrating environmental
signals for growth regulation. However, still little is known
regarding the emerging role of this family in adaptive growth.
Initial findings suggest a rather complex network embedding the
transcription factors requiring thorough future investigations.

Conclusion

The PAS domain fold is a common protein module found
throughout the kingdoms of life. Although the domain has been
implicated in sensing a multitude of signals, in plants only
evidence for a role in light signaling has been obtained so far.
Many of the PAS domain-containing proteins are intimately
connected to the circadian clock, suggesting that they might
contribute to linking environmental conditions with clock
entrainment.

Here, we presented the emerging links between PAS domain
proteins, time keeping and the response of the plant to the
environment. So far, a clear implication for light signaling
and plant adaptation through PAS domain proteins has been
established by predominantly altering protein–protein interaction
properties of their proteins. Still, plenty of effort is needed to
dissect the biochemical and mechanistic functions of most PAS
domain proteins in plants. The role of most of these proteins
in response to the environment is unexplored. In addition, the
stimulus uponwhich they exert their function remains elusive. An
appealing aim would be to characterize the family of MAPKKK
proteins further, which seem to be linked with abiotic stress
tolerances. It would be intriguing to reveal whether the PAS
domain controls their signaling activity.
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