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Continuing advances in ‘omics methodologies and instrumentation is enhancing the
understanding of how plants cope with the dynamic nature of their growing environment.
‘Omics platforms have been only recently extended to cover horticultural crop species.
Many of the most widely cultivated vegetable crops belong to the genus Brassica: these
include plants grown for their root (turnip, rutabaga/swede), their swollen stem base
(kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower,
broccoli). Characterization at the genome, transcript, protein and metabolite levels has
illustrated the complexity of the cellular response to a whole series of environmental
stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold
acclimation, and excessive and sub-optimal irradiation. This review covers recent
applications of ‘omics technologies to the brassicaceous vegetables, and discusses
future scenarios in achieving improvements in crop end-use quality.
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Introduction

Brassicaceous vegetables, which are cultivated worldwide, belong to the taxa Brassica oleracea (cab-
bage, broccoli, cauliflower, kale, Brussels sprouts, collard greens, savoy, kohlrabi, and Chinese kale)
and B. rapa (turnip, mizuna, napa cabbage, cime di rapa, and turnip rape). Just as for crops gen-
erally, maintaining their productivity in the light of incipient climate change and the dynamically
changing pest and pathogen community represents a major challenge for the biotechnologist and
the plant breeder (Augustine et al., 2014). The importance of this class of vegetables lies not only in
their contribution to the vitamin and mineral components of the human diet, but also in their ben-
eficial effect on human health, which reflects the action of the glucosinolates, a group of secondary
plant metabolites almost exclusively associated with this plant family (Higdon et al., 2007; Jeffery
and Araya, 2009; Wu et al., 2013). The aliphatic glucosinolates (and their break down products)
have attracted scientific attention (Reichelt et al., 2002; Halkier and Gershenzon, 2006; Sonderby
et al., 2010; Wittstock and Burow, 2010); of particular note in this context is the anti-carcinogen
isothiocyanate sulforaphane, the major break down product of glucoraphanin in broccoli (Fahey
et al., 1997; Shapiro et al., 2001, 2006).

The use of ‘omics technologies, which current gather information either at the DNA, RNA,
protein ormetabolite levels, can potentially provide a comprehensive picture of cellular physiology.
DNA sequence (although not the epigenome) is largely independent of the growing environment,
while the transcriptome, proteome and metabolome are all highly responsive (Figure 1). Tailoring
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FIGURE 1 | The application of ‘omics technologies in brassicaceous
vegetables. Arrow size reflect the complexity of the molecular data and the
impact on phenotype.

a crop cultivar to a specific environment is the central challenge
for the plant breeder, and reflects the reality that genotype on its
own will not generally be sufficient to support a biotechnology-
driven crop improvement program. Rather, a combination of
one or more of the ‘omics platforms is required to deliver reli-
able information. Such multiple ‘omics data sets tend to be very
large, as they represent a series of time point and/or treatment
samplings; their analysis can only be addressed computationally
(Bieda, 2012; Kohl et al., 2014; Schumacher et al., 2014). The
demand for better data processing led to the release of new soft-
ware packages freely available or provided by vendors (examples
are given in Katajamaa and Oresic, 2007), however, the visual-
ization of multi-omic data sets remains an important task for
bioinformatics. Practical tools should create clear and meaning-
ful visualizations without being overwhelmed by the complexity
of the data sets (recent approaches are discussed by Gehlenborg
et al., 2010).

The prior acquisition of a full genome sequence aidsmaterially
in the interpretation of such data. The genome sequence of the
model plant Arabidopsis thaliana, a member of the Brassicaceae
family, has been known for nearly 15 years (Kaul et al., 2000),
and the full genome sequences of both B. rapa (Wang et al., 2011)
and B. oleracea (Ayele et al., 2005; Liu et al., 2014b) have been
published more recently. Substantial amounts of transcript-based
data have been acquired for B. oleracea (Gao et al., 2014; Izzah
et al., 2014; Kim et al., 2014).

Genomics

Genomic research has a great capability in speeding up breed-
ing processes and several applications for crop improvement,
through, e.g., marker-assisted selection and gene pyramiding.
In case of brassicaceous vegetables, several populations have
been generated to establish linkage maps using simple sequence
repeat (SSR), amplified fragment length polymorphism (AFLP),
nucleotide binding site or expressed sequence tag (EST) markers
with the aim to genetically localize favorable traits by quantitative

trait locus (QTL) analysis (summarized in Table 1). A survey
of available online tools, covering mapping populations, link-
age maps, gene sequences, and QTL, is presented by Li et al.
(2013). Linkage maps were generated by crossing different geno-
types of B. oleracea (Camargo et al., 1997; Iniguez-Luy et al.,
2008) and B. oleracea var. botrytis (Gu et al., 2008). In the pre-
vious examples, a segregating offspring population was used to
establish marker order and spacing. The same was shown for
doubled haploid lines where offspring are homozygous (see Pink
et al., 2008 for review). A doubled haploid population derived
from crosses of two broccoli cultivars was genotyped by SSR
and AFLP markers and QTL analysis identified loci for horti-
culturally important characteristics (Walley et al., 2012). Plant
genetic resources have been characterized using AFLP mark-
ers to assess the huge genetic diversity present in gene banks,
including Dutch and Italian B. oleracea (van Hintum et al.,
2007; Maggioni et al., 2014) and Czech B. oleracea var. capitata
accessions (Faltusova et al., 2011). A B. rapa collection consist-
ing of 239 accessions was genotyped using SSR markers and
subsequent association mapping identified two markers asso-
ciated with flowering time (Zhao et al., 2010). Genetic basis
of flowering time was also investigated in B. rapa by associa-
tion mapping using natural variation and recombinant inbred
lines (Lou et al., 2011). Phylogenetic relationships were estab-
lished in B. rapa subspecies by AFLP markers (Takuno et al.,
2007). The development of genetic maps from Brassica vegeta-
bles paved the way for QTL analysis and, together with accurate
phenotyping, morphological, qualitative and yield traits were
evaluated in different species. QTL mapping was conducted
for eleven yield- and heading-related traits in doubled hap-
loid Chinese cabbage lines and identified 46 main QTL (Liu
et al., 2013b). In addition, 27 QTL were found for leaf and
heading-related traits in a segregating population of Chinese
cabbage (Ge et al., 2011). A segregating population of a cross
between a Chinese cabbage with a turnip was used to iden-
tify loci related to morphological characteristics of the tap root
(Lu et al., 2008). To investigate the genetic background of pre-
mature bolting under cold stress, a Chinese cabbage popula-
tion was constructed based on crossing early and late bolting
genotypes and QTL analysis identified 26 QTL (Wang et al.,
2014c). Seven morphological traits were screened in a popula-
tion derived from crossing a Chinese cabbage with a vegetable
turnip and resulted in the detection of eight QTL (Kubo et al.,
2010). A doubled haploid population of B. oleracea var. capi-
tata served for detecting 13 QTL for heading-related traits (Lv
et al., 2014). QTL analysis of a B. oleracea var. italica popula-
tion, derived from a cross of a heat-sensitive and a heat-tolerant
cultivar, identified AFLP markers correlated to floral develop-
ment under heat stress (Lin et al., 2013). A high-density linkage
map was established for a B. oleracea population segregating
for carotenoid concentration in florets and three carotenoid
QTL were found (Brown et al., 2014). Authors applied the B.
napus SNP array and presented a 96% coverage of the B. oler-
acea genome. Localizing underlying factors affecting another
major pigment, chlorophyll, in a Chinese cabbage population
revealed five QTL for chlorophyll a and five QTL for chloro-
phyll b content (Ge et al., 2012). Vegetables with high nutrient
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TABLE 1 | Published genomics analyses in the brassicaceous vegetables.

Brassica species Population Plant material Reference

B. oleracea Segregating population Cross of contrasting geno-types Camargo et al. (1997)

B. oleracea Segregating population Cross of contrasting genotypes Sebastian et al. (2000)

B. oleracea Segregating population Cross of contrasting genotypes Gao et al. (2007)

B. oleracea Gene bank accessions – van Hintum et al. (2007)

B. oleracea Doubled-haploid Cross of contrasting genotypes Iniguez-Luy et al. (2008)

B. oleracea Gene bank accessions DNA methylation Salmon et al. (2008)

B. oleracea TILLING EMS mutagenesis Himelblau et al. (2009)

B. oleracea Gene bank accessions – White et al. (2010)

B. oleracea Segregating population Cross of contrasting genotypes Brown et al. (2014)

B. oleracea DNA methylation Parkin et al. (2014)

B. oleracea var. botrytis Segregating population Cross of contrasting genotypes Gu et al. (2008)

B. oleracea var. capitata Gene bank accessions – Faltusova et al. (2011)

B. oleracea var. capitata Doubled-haploid Cross of contrasting genotypes Wang et al. (2012)

B. oleracea var. capitata Doubled-haploid Cross of contrasting genotypes Lv et al. (2014)

B. oleracea var. italica Doubled-haploid Cross of contrasting genotypes Walley et al. (2012)

B. oleracea var. italica Segregating population Cross of contrasting genotypes Lin et al. (2013)

B. oleracea, B. rupestris Wild and cultivated populations, hybrid
population

Maggioni et al. (2014)

B. rapa Wild and cultivated populations – Takuno et al. (2007)

B. rapa Segregating population Cross of contrasting genotypes Lu et al. (2008)

B. rapa Segregating population Cross of contrasting genotypes Kubo et al. (2010)

B. rapa TILLING EMS mutagenesis Stephenson et al. (2010)

B. rapa Gene bank accessions – Zhao et al. (2010)

B. rapa Segregating population, gene bank
accessions

Cross of contrasting genotypes Lou et al. (2011)

B. rapa Segregating population Cross of contrasting genotypes Bagheri et al. (2012)

B. rapa Hypermethylated population DNA methylation Amoah et al. (2012)

B. rapa Segregating population Cross of contrasting genotypes Wang et al. (2014c)

B. rapa ssp. pekinensis Segregating population Cross of contrasting genotypes Ge et al. (2011)

B. rapa ssp. pekinensis Segregating population Cross of contrasting genotypes Ge et al. (2012)

B. rapa ssp. pekinensis Marker-assisted selection Gene pyramiding Matsumoto et al. (2012)

B. rapa ssp. pekinensis Doubled-haploid Cross of contrasting genotypes Liu et al. (2013b)

use efficiency are also developed in order to reduce fertilizer
application. Association mapping of B. oleracea accessions iden-
tified some QTL related to potassium concentration in shoot and
those were tested using substitution lines (White et al., 2010).
The gain of knowledge on the genetic localization of favor-
able traits is transferred to breeding new lines through marker-
assisted selection. Accumulating three major loci for clubroot
(Plasmodiophora brassicae) resistance genes resulted in the devel-
opment of Chinese cabbage lines with strengthened resistance
(Matsumoto et al., 2012).

Advances in next generation sequencing technologies enabled
surveying genotype-phenotype-relationships with the highest
resolution to date (Wei et al., 2013; Varshney et al., 2014).
A high-density linkage map was derived from the whole genome
shotgun sequence of B. oleracea var. capitata, based on 1,227
genetic markers (Wang et al., 2012). The availability of B.
rapa genome sequence aided in the generation of a linkage
map for a recombinant inbred line descending from a veg-
etable leafy and an yellow sarson oilseed genotype of B. rapa
(Bagheri et al., 2012). Recently, genomes of all three sequences
Brassicas were compared to develop SSR markers and a total

of 115,869, 185,662, and 356,522 primer pairs were designed
from B. rapa, B. oleracea, and B. napus, respectively (Shi et al.,
2014). EST markers were developed based on the sequenced
transcriptomes of two cabbage lines susceptible or tolerant to
black rot disease, demonstrating the feasibility especially for
species without a reference genome sequence (Izzah et al.,
2014).

One of the main strategies in reverse genetics is Targeting
Induced Local Lesions IN Genomes (TILLING) and numer-
ous applications are shown in functional genomics of model
plants and crops (Kurowska et al., 2011; Chen et al., 2014).
Random point mutations are generated by chemical mutagene-
sis and high-throughput screening for SNPs in the target gene
isolates mutants with loss-of-function or gain-of-function phe-
notypes. Currently, two TILLING populations are established for
brassicaceous vegetables, B. oleracea1 (Himelblau et al., 2009)
and B. rapa2 (Stephenson et al., 2010) and both are freely
accessible.

1http://www3.botany.ubc.ca/can-till
2http://revgenuk.jic.ac.uk
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Next generation sequencing and AFLP mapping of methy-
lation polymorphism allowed determining the DNA cytosine
methylation status and, hence, enabled tackling the epigenome to
understand gene expression variation (Niederhuth and Schmitz,
2014). The level of genome methylation was assessed in 30 B.
oleracea populations and lines, and then related to phenotypic
variability (Salmon et al., 2008). The B. oleracea genome was cor-
related to the leaf transcriptome and methylome and provided
insights into polyplody events (Parkin et al., 2014). A chemi-
cally induced hypermethylated B. rapa population was developed
recently and can serve for epiallele discovery (Amoah et al., 2012).

Transcriptomics

Transcriptomics is based on the characterization and quantifica-
tion of RNAs present in a given plant, organ, tissue, or cell. A
particular attraction of assaying transcription is that it presages
gene expression and so has the potential to provide a link
between genotype and phenotype. Rapid developments in the
relevant technologies now allow for the design of very large-
scaled experiments which can in principle capture and enumerate
every transcript present in a given biological sample (summa-
rized in Table 2). The early transcriptomic platforms were built
around the concept of immobilizing transcripts in an array, which
was used to capture the mRNA content of a sample on the
basis of nucleotide sequence complementarity. A more sophis-
ticated form of microarray replaced transcripts with 20–70 nt
long oligonucleotides designed to target known gene sequences
(Knudsen, 2004). In both cases, the protocol requires bathing
the array in a solution of labeled RNA extracted from the test
sample. Hybridization of the probe at a given site on the array
is detected by the fluorescence emitted by the labeled probe.
Typically, two parallel experiments need to be run, in which
one sample is derived from a plant exposed to a certain treat-
ment while the other is derived from a plant which has not been
exposed (control). Alternatively, genetic contrasts (such as wild
type vs. a mutant, wild type vs. a transgenic) can replace the treat-
ment contrast. Many of such experiments have been reported in
a range of plant species (for example, Rabbani et al. (2003) in
rice, Yu and Setter (2003) in maize, Lee and Yun (2006) in pep-
per). The quantity of such data collected from the brassicaceous

vegetable species is relatively limited, partly perhaps because their
full genome sequences have only very recently been acquired.
The close phylogenetic relationship between Brassica spp. and
A. thaliana has encouraged a number of attempts to use an
A. thaliana microarray to analyze Brassica spp. transcriptomes.
With the recent acquisition of Brassica spp. genome sequences,
a number of Brassica-specific microarrays are finally becoming
available – these include the B. rapa 24 K oligo microarray and
the Agilent Brassica microarray, which is able to detect the tran-
scription of >27,000 unigenes in a range of Brassica spp. The
genetic closeness of Brassica spp. and A. thaliana has allowed
large numbers of Brassica unigenes to be assigned a function,
but nevertheless, substantial numbers appear to encode either
Brassica-specific proteins or represent non-coding RNA (Trick
et al., 2009).

A cDNA microarray constructed from a Chinese cabbage (B.
rapa ssp. pekinensis) pistil-specific cDNA library approach was
used by Kwun et al. (2004) to investigate the effect of CO2
on self-incompatibility, and a similar strategy was followed by
Yang et al. (2005) to identify genes up-regulated by low temper-
ature stress. Meanwhile Lee et al. (2008) synthesized an oligo-
based microarray from the sequences of 24,000 B. rapa unigenes
to characterize the response to low temperature, salinity and
drought. Based on the identification of candidate genes using
a 2 × 104 k Brassica microarray to compare the gene expres-
sion of untreated and methyl jasmonate treated pak choi sprouts,
Wiesner et al. (2013a, 2014) were able to identify the homologues
genes involved in the synthesis of 1-methoxyindole-3-ylmethyl
glucosinolate.

The major alternative to microarray technology relies on
amplification rather than on hybridization. The most commonly
used method, termed RNA-seq, is designed to generate a de
novo assembly of the transcriptome. This has largely replaced
the earlier approach called “serial analysis of gene expression”
(SAGE). In general, a population of RNA (total or fraction-
ated) is converted to a library of cDNA fragments with adaptors
attached to one or both ends. Each molecule, with or without
amplification, is then sequenced in a high-throughput manner
to obtain short sequences from one end (single-end sequenc-
ing) or both ends (pair-end sequencing). The reads are typi-
cally 300–400 bp, depending on the DNA-sequencing technology
used (Wang et al., 2009). In principle, any high-throughput

TABLE 2 | Published transcriptomic analyses in the brassicaceous vegetables.

Brassica species Plant organ/developmental stage Study objective Methodology Reference

B. oleracea Flowers Male sterility Microarray Kang et al. (2008)

B. oleracea var. italica Seeds and sprouts Glucosinolate metabolism RNA-seq analysis Gao et al. (2014)

B. rapa Flowers Self-incompatibility Microarray Kwun et al. (2004)

B. rapa plants Abiotic stress Microarray Lee et al. (2008)

B. rapa Seedlings, roots, petioles, leaves, flowers Comparative analysis RNA-seq Kim et al. (2012)

B. rapa Seedlings, roots, leaves, petiole Abiotic stress RNA-Seq Devisetty et al. (2014)

B. rapa ssp. pekinensis Seedlings, root tips Cold stress Microarray Yang et al. (2005)

B. rapa ssp. pekinensis Leaves Heat shock transcription factor Comparative genomic analysis Song et al. (2014)

B. rapa ssp. pekinensis Seedlings Plant-microbe interactions RNA-seq Sun (2014)

B. rapa ssp. rapa Seedlings Etiolation RNA-seq Zhou et al. (2014)
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sequencing technology can be used for RNA-Seq. The data gen-
erated from RNA-Seq experiments are in the form of an absolute
frequency of each transcript identified, which obviates the need
for using a reference sequence. For this reason, it can provide
a greater level of insight and accuracy than microarray analy-
sis can (Marioni et al., 2008; T’Hoen et al., 2008). In broccoli,
the RNA-Seq approach has been taken to describe the transcrip-
tion of genes involved in glucosinolate metabolism (Gao et al.,
2014). Of the nearly 20 k unigenes recovered, more than 2,500
appeared to be differentially transcribed in a contrast between
the seed and the seedling, and a large proportion of these were
putative transcription factors. Curiously, the up-regulation of
candidate glucosinolate synthesis genes was negatively corre-
lated with the glucosinolate content of the germinating seedling;
a possible explanation offered by the authors was that the
high transcript abundance of an TGG2 orthologue (encoding a
myrosinase) had the effect of degrading aliphatic glucosinolates
(Gao et al., 2014).

Small RNAs, which range in length from 19 to 25 nt (most
are either 21 nt or 24 nt long), are ubiquitous in eucaryotic cells.
Extensive transcriptome sequencing has revealed the presence
of a large number of such RNAs, which cannot be translated
into a protein, but rather act as an important class of regu-
lators, especially in the context of plant development, signal
transduction, metabolism and the response to biotic and abi-
otic stress (Ellendorff et al., 2009; Sun, 2012). The abundance
of a particular species of a class of small RNAs, referred to
as microRNAs (miRNAs), varies from plant species to plant
species, from developmental stage to developmental stage and
from tissue to tissue (Carrington and Ambros, 2003; Bartel,
2004; Kenan-Eichler et al., 2011). The transcriptional response
of Chinese cabbage to infection by Erwinia carotovora ssp. caro-
tovora included a marked alteration in the abundance of cer-
tain small RNAs (Sun, 2014). In turnip (B. rapa ssp. rapa),
it appeared that various miRNAs are involved in the regula-
tion of plant growth, development and differentiation in the
absence of light (Zhou et al., 2014). A number of Brassica
species are polyploids, the genomes of which have been markedly
altered by the polyploidization event (Kenan-Eichler et al., 2011).
Some of these changes have been associated with the activity
of small RNAs. Kim et al. (2012) identified 412 distinct miR-
NAs in B. rapa, of which 216 were novel. The same study
identified 29 novel miRNAs which were only found in the
flower.

Proteomics

The acquisition of the complete genome sequence of a growing
number of plant species3 along with their transcriptomes con-
tinues apace. However, much of the physiology of the cell is
determined by gene products (particularly, but not exclusively,
proteins) rather than by nucleic acid. A proteomic analysis seeks
to characterize the full protein complement present in a particu-
lar organism, organ, tissue, or cell. Initial attempts to derive this

3phytozome.jgi.doe.gov/

were based on two dimensional gel electrophoresis (2-DE), as
described by O’Farrell (1975). Besides 2-DE, current proteomics
platforms exploit more versatile LC (liquid chromatography)-
based methods (Rabilloud et al., 2010; Matros et al., 2011),
coupled with mass spectrometry (MS). Complicating the analy-
sis, and unlike the nucleic acids, protein molecules are subject to
a range of functional modification, such as phosphorylation, gly-
cosylation, and acetylation (Cox and Mann, 2011). Nevertheless,
proteomic approaches have been successfully applied to a num-
ber of plant species to study various developmental processes
and environmental adaptation (see reviews by Barkla et al., 2013;
Vanderschuren et al., 2013; Zhuang et al., 2014). Kehr and Buhtz
(2011) have provided a summary of the literature regarding pro-
teomic analyses in Brassica spp., a list dominated by experiments
based on oilseed rape. In the following, we give emphasis to
reports on how proteomic techniques are applied to catalog and
characterize special, developmental-driven or environmentally
induced alterations in the proteome of brassicaceous vegetables
(summarized in Table 3).

Using a conventional 2-DE approach, Alam et al. (2013) suc-
ceeded in detecting about 1,300 distinct low abundance leaf
proteins in Chinese cabbage. A characterization of the pro-
teomic content of the xylem sap of broccoli and oilseed rape
(and some non- brassicaceous) undertaken by Buhtz et al.
(2004) showed little evidence of any species specificity, while
De Bernonville et al. (2014) were able to define the proteomic
impact in the xylem sap induced by infection of B. oleracea with
the pathogen Xanthomonas campestris pv. campestris. Ligat et al.
(2011) expanded the B. oleracea data set by subjecting the xylem
sap proteome to LC-MS/MS and the N-glycoproteome by prior
enrichment with concanavalin A affinity chromatography and
LC-MS/MS. Most of the ∼200 proteins identified proved to be
involved in cell wall-related carbohydrate metabolism, although
a number of oxido-reductases and proteases were also revealed.
A proteomic analysis of broccoli tissue enriched with phloem
allowed the identification of 379 proteins, some of which were
structural and others associated with the biotic and/or abiotic
stress response (Anstead et al., 2013). In cauliflower, an analysis
of isolated tonoplast membranes revealed 102 tonoplast integral
and 214 peripheral proteins (Schmidt et al., 2007). A further study
in this species was able to show that its mitochondrial proteome
was highly similar to that of A. thaliana, and included at least 51
proteins involved in the generation of ATP, protein folding and
protein transport (Pawlowski et al., 2005).

The host-pathogen interaction is important in brassicaceous
vegetables, as in all crops. A root proteomic comparison between
a pair of turnip cultivars showing a contrasting reaction to the
causal agent of clubroot disease was able to demonstrate the pres-
ence of certain proteins in the resistant cultivar which were absent
from the profile of the sensitive one (Kaido et al., 2007). Sun et al.
(2014) tracked the proteomic response of Chinese cabbage result-
ing from infection with downy mildew (Hyaloperonospora para-
sitica), and were able to identify some 91 proteins which altered in
their abundance; some of these were involved in ethylene signal-
ing. When the abundances of specific transcripts and their gene
products were compared, a correlation could be established for
only about half of the 33 genes investigated; a finding which was
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TABLE 3 | Published proteomic analyses in the brassicaceous vegetables.

Brassica species Plant organ/developmental
stage

Study objective Methodology Reference

Members of Brassicaceae family Etiolated leaves of seedlings Genotypic variation 2-DE Marquès et al. (2001)

B. oleracea var. capitata, B. rapa var.
pekinensis, synthesized B. napus

Seeds Genotypic variation 2-DE and MS/MS Hossain et al. (2014)

B. oleracea Xylem saps Mapping 1-DE and MS/MS Buhtz et al. (2004)

B. oleracea Vacuoles Mapping MS/MS Schmidt et al. (2007)

B. oleracea Xylem saps Mapping, N-glycosylation MS/MS Ligat et al. (2011)

B. oleracea Phloem tissues of stem Mapping MS/MS Anstead et al. (2013)

B. oleracea var. alboglabra Leaves, stems Genotypic variation 2-DE Albertin et al. (2005)

B. oleracea var. alboglabra Leaves Genotypic variation 2-DE and MS Kong et al. (2010)

B. oleracea var. botrytis italica Leaves, stems Genotypic variation 2-DE Albertin et al. (2005)

B. oleracea var. botrytis Mitochondria Mapping 2-DE and MS Pawlowski et al. (2005)

B. oleracea var. capitata Floral head Effect of transgene 2-DE and MS/MS Liu et al. (2011)

B. oleracea L. var capitata Leaves Cropping systems 2-DE and MS/MS Nawrocki et al. (2011)

B. oleracea var. capitata Stigma Self-incompatibility 2-DE Zeng et al. (2012)

B. oleracea var. capitata Floral head Effect of transgene 2-DE and MS/MS Liu et al. (2013a)

B. oleracea var. capitata Seeds Genotypic variation 2-DE and MS/MS Hossain et al. (2014)

B. oleracea var. capitata Floral heads Effect of transgene 2-DE and MS/MS Liu et al. (2014a)

B. oleracea var. italica Xylem sap Salinity 2-DE and MS/MS Fernandez-Garcia et al. (2011)

B. oleracea var. italica Floral heads Sodium selenate nutrition 2-DE and MS/MS Sepúlveda et al. (2013)

B. rapa cvs. Natsumaki, Takamaru Roots Pathogen interaction 2-DE Kaido et al. (2007)

B. rapa Leaves Genotypic variation 2-DE and MS Kong et al. (2010)

B. rapa ssp. chinensis Leaves Effect of di-n-butyl phtalate 2-DE and MS/MS Liao et al. (2006)

B. rapa var. chinensis Leaves Effect of di-n-butyl phtalate 2-DE and MS/MS Liao et al. (2009)

B. rapa ssp. chinensis Leaves Mapping 2-DE Alam et al. (2013)

B. rapa ssp. chinensis Leaves Pathogen interaction 2-DE and MS/MS Sun et al. (2014)

B. rapa ssp. chinensis Pistil Self-incompatibility 2-DE and MS/MS Wang et al. (2014a)

B. rapa ssp. chinensis Leaves and roots Nitrogen nutrition 2-DE and MS Zhuang et al. (2014)

B. rapa ssp. pekinensis Seedlings Effect of atrazine 2-DE and MS Li et al. (2008)

B. rapa var. pekinensis Seeds Genotypic variation 2-DE and MS/MS Hossain et al. (2014)

interpreted as implying that many of the early events in the host’s
resistance response involved post-translational modification.

Abiotic stress is a further major production constraint.
Analysis of the effect of the photosystem II inhibitor atrazine
on the chloroplast proteome of Chinese cabbage has identified
at least nine proteins as being differentially expressed; some of
these were related to isoprene or protein synthesis (Li et al., 2008).
Investigations of the impact of the industrial soil pollutant phtha-
late ester on either pak choi (Liao et al., 2006) or Chinese cabbage
(Liao et al., 2009) have shown that the pollutant was responsible
for a different set of up- or down-regulated proteins, even though
the two species are so closely related to one another. Among the
effects of salinity on broccoli are the down-regulation of several
proteins involved in cell wall metabolism and the up-regulation
of known plant defense-related proteins (Fernandez-Garcia et al.,
2011). A third common source of abiotic stress is that imposed
by nutrient supply. Wang et al. (2014b) have characterized the
response of hydroponically grown pak choi to the supply of nitro-
gen in different forms. The plants responded to glycine supply by
altering the expression of proteins involved in protein process-
ing, amino acid metabolism and redox homeostasis. A similar
experiment involving broccoli investigated the effect of supply-
ing the plants with a non-limiting concentration of the essential

trace element selenium (Sepúlveda et al., 2013), resulting in an
enhanced accumulation in the inflorescence of a number of pro-
teins associated with the general stress response, while that of
pathogen defense-related proteins was reduced. The effect of an
organic farming regime on the cabbage proteome has shown that
the cropping system had a measurable effect on the accumula-
tion of proteins involved in glycolysis, the Krebs cycle, amino acid
metabolism and various detoxification processes (Nawrocki et al.,
2011).

A plants protein composition is a key determinant of a species’
and a cultivar’s identity, and differences in specific plant features
are better reflected by their proteome than by either their genome
or transcriptome. Thus proteome variation has been suggested as
providing a viable basis for the design of molecular markers able
to accelerate breeding (Witzel et al., 2011). Marquès et al. (2001)
made comparisons between the 2-DE profiles of various Brassica
species in an attempt to establish the nature of the genetic rela-
tionship between them. PCR-based markers for the genomes A
(B. rapa) and B (B. oleracea) were obtained by Kong et al. (2010)
by aligning the proteomic profiles of young leaves. From some of
those differentially expressed proteins, PCR-based markers were
developed successfully. The effect of the polyploidization process
on the proteome was assessed by Albertin et al. (2005), who made
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comparisons between the leaf and stem proteomes of haploid,
diploid and tetraploid sprouting broccoli, and Chinese kale. The
analysis concluded that the two different tissues were responsi-
ble for 40% of the proteomic variation observed, with only 10%
ascribed to ploidy level differences. With the aim to identify pro-
teins responsible for an improved vernalisation trait, the seed
proteome of a somatic hybrid line was compared with those of its
parent lines B. oleracea (cabbage) and B. rapa (Chinese cabbage)
that showed low or high seed production during warm winter
conditions, respectively (Hossain et al., 2014).

Understanding the basis of self-incompatibility has been
a long-standing problem in the Brassica genus. A proteomic
approach addressing this issue in Chinese cabbage was taken
by Wang et al. (2014a), who analyzed the protein complement
of the pistils from self-incompatible and compatible plants; in
some cases, protein abundance was consistent with that of the
relevant transcript, particularly with respect to those involved
in energy metabolism, protein synthesis and the defense against
stress. Recently, for a more cell-type specific proteomics approach
related to self-incompatibility, a protocol for the analysis of
cabbage stigma proteins was established (Zeng et al., 2012).

The market value of vegetables is greatly affected by their
visual appearance and their post-harvest shelf life. As part of a
transgenic-based attempt to prolong the marketability of broc-
coli, 2-DE was used to compare the proteomes of the inflores-
cences of wild type and transgenic lines produced to express
delayed senescence (Liu et al., 2011). The conclusion was that
a number of stress response related proteins and chaperones
accumulated in the transgenic lines, while the build-up of 1-
aminocyclopropane-1-carboxylate oxidase was only noted in the
wild type. When the effect of exogenously supplying cytokinin
(N6-benzylaminopurine) was studied at the proteomic level, Liu
et al. (2013a) detected only a minor degree of overlap with
the transgenic contrast, an observation which was taken to
suggest that the molecular basis of the delayed post-harvest
senescence induced by exogenous cytokinin differed from that
induced by endogenous cytokinin. Of the up-regulated stress
response related proteins detected in the transgenic material,
17 proved to be heat-stable following cooking and were there-
fore considered to represent potential allergens (Liu et al.,
2014a).

Metabolomics

Metabolomics, defined as the systematic study of the by-products
of cellular processes, is an ambitious field, as the number of
chemically distinct molecules involved in a typical plant sample
is estimated to be at least 100,000 (Wink, 1988), each vary-
ing with respect to their abundance (De Vos et al., 2007). A
number of these compounds are of physiological importance
and/or represent dietary sources of antioxidants and other health
enhancing compounds; most importantly with respect to veg-
etable crops, they make a major contribution to product color
and flavor. Often these latter quality aspects rely not on indi-
vidual compounds, but rather on specific mixtures (Ferguson
and Schlothauer, 2012). The state-of-the-art analytical platforms

employed for metabolomic analyses are a sophisticated com-
bination of nuclear magnetic resonance spectroscopy (NMR),
MS, gas chromatography (GC), LC, and capillary electrophore-
sis (CE). Changes in the primary and secondary metabolite pool
have been characterized using a GC-MS approach (Hummel
et al., 2013), while CE-MS is more suitable for characteriz-
ing the products associated with the central metabolism (Yang
et al., 2012). NMR is appropriate for the targeting of pheno-
lic compounds, carbohydrates, organic acids and amino acids,
and of particular interest in the context of brassicaceous veg-
etables, glucosinolates (Table 4). Electrospray ionization (ESI),
conducted either in positive (resulting in protonated species)
or in negative (deprotonated species) mode is used for the
analysis of semi-polar metabolites. Together, these technologies
can identify and quantify a wide range of primary and sec-
ondary metabolites. For LC-MS and NMR applications, samples
are typically extracted in alcohol and not derivatized. In con-
trast, GC-MS separations require a derivatization step (Kopka
et al., 2005). Particularly high mass resolution can be achieved
by the use of time-of-flight (TOF)-MS devices, and additional
information can be obtained from the MS/MS fragmentation
patterns and UV-VIS spectra. Recent software developments
have improved the capacity to recognize different metabolites.
Profiles based on mass, retention time and signal amplitude pro-
vide the data required for filtering biomarkers. Typically a data
processing pipeline can be divided into two steps: data pro-
cessing (filtering, feature detection, alignment, and normaliza-
tion) and data analysis (algorithm selection, training, evaluation,
and model examination; further explanation see Boccard et al.,
2010).

Nevertheless, metabolite identification in non-targeted
approaches in the absence of authentic reference compounds
remains difficult. Various platforms and spectral databases are
available online4.

The metabolome of Brassica spp. as that of all plants, is
influenced by both genotype (Luthria et al., 2008) and devel-
opmental stage (Abdel-Farid et al., 2007), as well as by the
plant’s growing environment (Hall, 2006; Weimer and Slupsky,
2013). Metabolomic analyses in the brassicaceous vegetables have
included both non-targeted (Table 4) and targeted (Table 5)
approaches (Cevallos-Cevallos et al., 2009). The former have con-
cern a range of both secondary (polyphenols and carotenoids)
and primary metabolites (Hall, 2006), while the latter focused
heavily on the identification and quantification of glucosino-
lates (Ramautar et al., 2006). The glucosinolates are a unique
component of the brassicaceous vegetable metabolome (Verkerk
et al., 2009). These compounds contain a sulfur-linked β-D-
glucopyranose moiety and an amino acid-derived side chain, and
fall into three definable classes: the aliphatic, indole and aromatic
glucosinolates. They are structurally highly diverse, and within
the Brassicaceae are mostly dominated by the aliphatic glucosi-
nolates (Halkier and Gershenzon, 2006). Subsequently, aliphatic
glucosinolates can be subdivided into straight- or branched-chain
alk(en)yl glucosinolates with or without a hydroxy group and
into a large group of those that contain an additional sulfur atom

4www.metabolomicsociety.org
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TABLE 4 | Published non-targeted metabolomic analyses in the brassicaceous vegetables.

Brassica species Plant organ/
developmental stage

Study objective Methodology Compounds Reference

B. oleracea collection Leaves Factor identification for thermal
degradation of glucosinolates

HPLC-MS
LC-MS

Semi-polar Hennig et al. (2014)

B. oleracea var. botrytis
collection

Inflorescences Genotypic variation of colored
cultivars

GC-TOF-MS Primary and secondary
compounds*

Park et al. (2013)

B. oleracea var. capitata Leaves Discrimination of conventional
and organic farming

LC-MS Semi-polar Mie et al. (2014)

B. oleracea var. capitata Leaves Genotypic variation LC-MS Phenolic compounds Park et al. (2014)

B. oleracea var. italic Inflorescences Genotypic variation, selenium
treatment, crop management

LC-MS Phenolic compounds Luthria et al. (2008)

B. rapa collection Leaves Response to pre-harvest
bacterial contamination

1H NMR Polar Jahangir et al. (2008b)

B. rapa collection Leaves Genotypic variation 1H NMR Polar Abdel-Farid et al. (2007)

B. rapa collection Leaves Effect of metal-ion treatment 1H NMR Polar Jahangir et al. (2008a)

B. rapa collection Leaves Response to pre-harvest fungal
infection

1H NMR Polar Abdel-Farid et al. (2009)

B. rapa collection Leaves Genotypic variation LC-MS Semi-polar Del Carpio et al. (2011)

B. rapa var. pekinensis Leaves Discrimination by geographical
areas

1H NMR Polar Kim et al. (2013a)

B. rapa var. rapa,
Raphanus sativa

Leaves Ontogenetic variation NMR, HPLC Primary and secondary
compounds*

Muhammad et al. (2014)

*Includes both a non-targeted and a targeted approach.

TABLE 5 | Published targeted metabolomic analyses in the brassicaceous vegetables, featuring glucosinolates and their break-down products.

Brassica species Plant organ/Developmental stage Study objective Methodology Reference

B. carinata Leaves (Onto)genetic variation, effect of water supply HPLC-MS Schreiner et al. (2009)

B. oleracea Leaves Genotypic variation LC-MS Rochfort et al. (2008)

B. oleracea var. italica Inflorescences Effect of nitrogen and sulfur supply HPLC-MS Schonhof et al. (2007a)

B. oleracea var. italica Inflorescences Effect of CO2 HPLC-MS Schonhof et al. (2007b)

B. oleracea var. italica Sprouts Effect of water supply and aphid treatment HPLC-MS Khan et al. (2011)

B. oleracea var. italica Sprouts Effect of UV-B HPLC-MS Mewis et al. (2012)

B. rapa Roots Effect of nitrogen and sulfur supply HPLC-MS Shumin et al. (2007)

B. rapa Leaves Effect of fungal infection NMR Abdel-Farid et al. (2010)

B. rapa Leaves Effect of fertilization GC-MS Okazaki et al. (2012)

B. rapa Roots Genotypic variation LC-PDA-
QTOF-MS

Lee et al. (2013)

B. rapa ssp. chinensis Leaves, sprouts Effect of methyl jasmonate HPLC-MS Wiesner et al. (2013a,b)

B. rapa ssp. pekinensis Leaves, seeds Organ differentiation LC-ESI-MS,
LC-UV

Hong et al. (2011)

B. rapa ssp. rapa Leaves, roots, root exsudates Effect of methyl jasmonate, salicylic acid HPLC-MS Schreiner et al. (2011)

with various oxidation levels in the side chain (see for detailed
structural overview, Hanschen et al., 2014). The glucosinolates
are not known to be bioactive, but their hydrolysis products pro-
vide deterrence against feeding (Textor and Gershenzon, 2009),
and their presence in the human diet has been associated with
both health benefits (Vig et al., 2009) and taste (Beck et al., 2014).

Gas chromatography/TOF-MS has been used to characterize
the phytochemical diversity of the florets in cauliflower cultivars
varying in inflorescence pigmentation (Park et al., 2013). A 1H-
NMR platform proved informative for discriminating between a
set of Chinese cabbage cultivars from China and Korea: differ-
ences with respect to both primary and secondary metabolites
were uncovered, although insufficient attention has yet to be
given to the effect of the growing environment (Kim et al., 2013a).

A non-targeted strategy was chosen by Mie et al. (2014) to reveal
the impact of organic farming on the metabolome of cabbage,
and led to the conclusion that this approach has potential for
the authentication of organic products. The exposure of B. car-
inata seedlings to lithium ions induced a marked effect on the
plant’s lipid and phenolic content: sinapic acid esters and chloro-
plast lipids were replaced by benzoate derivatives, resveratrol and
oxylipins (Li et al., 2009). When GC/TOF-MS was used to dis-
criminate between cabbage cultivars varying with respect to their
resistance to feeding by diamondback moth (Plutella xylostella)
caterpillars, Kim et al. (2013b) were able to show that the lev-
els of glycolic acid, quinic acid, inositol, fumaric acid, glyceric
acid, trehalose, shikimic acid, and aspartic acid were all very
different.
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Non-targeted metabolic approaches have also been applied
to the study of processing quality in brassicaceous vegetables.
Changes in the content of certain flavonols have been associ-
ated with the thermal degradation of glucosinolates in B. oleracea
(Hennig et al., 2014). Several analytical techniques have been
used to assess the impact of industrial processing on the phyto-
chemical composition of vegetable purées. In broccoli, most of
the metabolites present in the purée were degraded by heating,
including various health-related and flavor compounds, vitamins,
carotenoids, flavonoids, glucosinolates, and oxylipins (Lopez-
Sanchez et al., 2015). Post-harvest storage temperature also has
a profound effect on the metabolome. For example, in radish
(Raphanus sativus), the content of phenylpropanoids, flavonoids,
and glucosinolates decreased with storage time (Jahangir, 2010).

Microbiomics

Microbiomics refers to the application of ‘omics technologies
to the microbial community associated with the plant spermo-
sphere, endosphere, rhizosphere, and phyllosphere. The plant
microbiome has attracted the focus of several researchers in
recent years (reviewed in Vorholt, 2012; Bakker et al., 2013;
Bulgarelli et al., 2013), as it has an intimate interaction with
the plant, affecting both its metabolism and physiology. Studies
of the plant microbiome have relied to date either on the in
vitro culture of the relevant micro-organisms or on the recog-
nition of species identity from PCR amplicons derived from
variable regions of their genome (such as the 16S rDNA locus)
followed by sequencing, microarray analysis or various elec-
trophoretic procedures (Rastogi et al., 2013; Turner et al., 2013;
Muller and Ruppel, 2014). Metaproteomics approaches can com-
plement such data sets to provide functional information rele-
vant to the microbiome (Knief et al., 2012). As many vegetable
are consumed as a fresh product, their associated microbiome
will enter the human digestive system. Exemplarily, the lettuce
(Hunter et al., 2010; Rastogi et al., 2012; Jackson et al., 2013;
Williams and Marco, 2014) and spinach (Leff and Fierer, 2013;
Lopez-Velasco et al., 2013) microbiomes are dependent on the
host genotype, the cultivation conditions and the tissue sam-
pled. The impact of commensal microbial diversity on crop
disease has been investigated in a range of oilseed rape culti-
vars infected with the fungal pathogen Verticillium longisporum
(Graner et al., 2003). Bacterial strains isolated from tolerant
or susceptible plant cultivars showed biocontrol activity against
the fungus and imply a possible application in crop protec-
tion. Meanwhile De Campos et al. (2013) used next generation
sequencing to show how the components of the oilseed rape
microbiome depended on the developmental stage of the plant.
Links et al. (2014) demonstrated that the seeds of B. juncea,
B. napus, and B. rapa, were associated with a core seed micro-
bial population of geographically and ecologically different crops.
The structure of the Brassica species -specific microbiome has
been shown to be sensitive to the composition of the host’s sec-
ondary metabolites (Ruppel et al., 2008). Hunter et al. (2014)
established a close relationship between the composition of the
root exudate and the structure of the rhizosphere microbiome.

Certain microbial strains had a significant impact on the capac-
ity of the rhizosphere to solubilize phosphorus (Schilling et al.,
1998; Deubel et al., 2000). Determining the functional interac-
tion between the microbiome’s composition and plant metabolic
activities is still at an early stage of development (Bakker et al.,
2013).

Concluding Remarks

Many refinements in all the ‘omics technologies can be expected
to come on-stream over the next few years, and these will provide
exciting new avenues of research in the brassicaceous vegetables.
Some of the topics likely to feature in the near future are flux
analysis, the identification of informative breeding markers for
the selection of beneficial bioactives and enhanced responses to
both abiotic and biotic stress (Figure 2). The increasing volume
of transcriptomic data acquired continues to provide a wealth of
information relevant to obtaining a detailed picture of key regu-
latory mechanisms and pathways active in the plant. Improving
the capacity to identify the components of the proteome is a fast
moving area of technology development. So far, proteomic anal-
ysis in the brassicaceous vegetables has relied almost exclusively
on 2-DE separation, even though the more sophisticated chro-
matography and MS platforms have been quite widely used in
other (particularly model) plant species; these technologies are
of particular value in illuminating post-translational modifica-
tions. The acquisition of full genome sequences for some (or
all) of the brassicaceous vegetables can only aid in facilitating
proteomic analysis in this groups of crop plants. Gaining some
control over the composition of metabolites will surely provide a
powerful means of varietal improvement and the optimization of
post-harvest technology.

The marriage of ‘omics technology and plant breeding should
trigger a major efficiency breakthrough in crop improvement,
and also generate novel opportunities in the fields of nutrige-
nomics (systems approach to understand the relationship
between diet and health) and microbiomics. Although substan-
tial progress has already been made both in the data acquisition
and its interpretation, many technical and scientific challenges
remain before the level of understanding of the workings of a
complex biological system such as a plant rises above the current
state. Global information of different hierarchies (genomics,
transcriptomics, proteomics, and metabolomics) need to

FIGURE 2 | Potential applications of ‘omics technologies for
brassicaceous vegetables improvement.
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be integrated usingmathematical and statistical methods to refine
existing knowledge and make new discoveries.

There are successful studies were systems perspectives
revealed correlations that had not been suggested by classi-
cal approaches in Arabidopsis, (Mochida and Shinozaki, 2011),

tomato (Enfissi et al., 2010), maize (Casati et al., 2011), and
others. Elucidating principles that govern relationships between
biological instances will help to improve plant functions also
in brassicaceous vegetables; i.e., stress-resistant plants and high-
yield cultivars.
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