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Abstract

Nowadays, graph data models are employed, when relationships between entities have to
be stored and are in the scope of queries. For each entity, this graph data model locally
stores relationships to adjacent entities. Users employ graph queries to query and modify
these entities and relationships. These graph queries employ graph patterns to lookup all
subgraphs in the graph data that satisfy certain graph structures. These subgraphs are called
graph pattern matches. However, this graph pattern matching is NP-complete for subgraph
isomorphism. Thus, graph queries can suffer a long response time, when the number of entities
and relationships in the graph data or the graph patterns increases.
One possibility to improve the graph query performance is to employ graph views that

keep ready graph pattern matches for complex graph queries for later retrieval. However,
these graph views must be maintained by means of an incremental graph pattern matching to
keep them consistent with the graph data from which they are derived, when the graph data
changes. This maintenance adds subgraphs that satisfy a graph pattern to the graph views
and removes subgraphs that do not satisfy a graph pattern anymore from the graph views.
Current approaches for incremental graph pattern matching employ Rete networks. Rete

networks are discrimination networks that enumerate and maintain all graph pattern matches
of certain graph queries by employing a network of condition tests, which implement partial
graph patterns that together constitute the overall graph query. Each condition test stores all
subgraphs that satisfy the partial graph pattern. Thus, Rete networks suffer high memory
consumptions, because they store a large number of partial graph pattern matches. But,
especially these partial graph pattern matches enable Rete networks to update the stored
graph pattern matches efficiently, because the network maintenance exploits the already stored
partial graph pattern matches to find new graph pattern matches. However, other kinds of
discrimination networks exist that can perform better in time and space than Rete networks.
Currently, these other kinds of networks are not used for incremental graph pattern matching.
This thesis employs generalized discrimination networks for incremental graph pattern

matching. These discrimination networks permit a generalized network structure of condition
tests to enable users to steer the trade-off between memory consumption and execution time for
the incremental graph pattern matching. For that purpose, this thesis contributes a modeling
language for the effective definition of generalized discrimination networks. Furthermore, this
thesis contributes an efficient and scalable incremental maintenance algorithm, which updates
the (partial) graph pattern matches that are stored by each condition test. Moreover, this
thesis provides a modeling evaluation, which shows that the proposed modeling language
enables the effective modeling of generalized discrimination networks. Furthermore, this
thesis provides a performance evaluation, which shows that a) the incremental maintenance
algorithm scales, when the graph data becomes large, and b) the generalized discrimination
network structures can outperform Rete network structures in time and space at the same
time for incremental graph pattern matching.
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Zusammenfassung

Heutzutage werden Graphdatenmodelle verwendet um Beziehungen zwischen Entitäten zu
speichern und diese Beziehungen später abzufragen. Jede Entität im Graphdatenmodell
speichert lokal die Beziehungen zu anderen verknüpften Entitäten. Benutzer stellen Suchan-
fragen um diese Entitäten und Beziehungen abzufragen und zu modifizieren. Dafür machen
Suchanfragen Gebrauch von Graphmustern um alle Teilgraphen in den Graphdaten zu finden,
die über bestimmte Graphstrukturen verfügen. Diese Teilgraphen werden Graphmusterüber-
einstimmung (Match) genannt. Allerdings ist diese Suche nach Matches NP-vollständig für
Teilgraphisomorphie. Daher können Suchanfragen einer langen Antwortzeit unterliegen, wenn
die Anzahl von Entitäten und Beziehungen in den Graphdaten oder -mustern ansteigt.
Eine Möglichkeit die Antwortzeiten von Suchanfragen zu verbessern ist Matches für kom-

plexe Suchanfragen in sogenannten Sichten über die Graphdaten für spätere Suchanfragen
bereitzuhalten. Allerdings müssen diese Sichten mittels einer inkrementellen Suche nach
Matches gewartete werden um sie konsistent zu den sich ändernden Graphdaten zu halten.
Diese Wartung ergänzt Teilgraphen, die Graphmuster erfüllen, in den Sichten und entfernt
Teilgraphen, die Graphmuster nicht mehr erfüllen, aus den Sichten.

Aktuelle Ansätze für die inkrementelle Suche nach Matches verwenden Rete Netzwerke.
Rete Netzwerke sind sogenannte Discrimination Networks, die alle Matches für bestimmte
Suchanfragen aufzählen und warten, indem sie ein Netzwerk aus einzelnen Teilgraphmustern
anwenden, die zusammen eine vollständige Suchanfrage ergeben. Das Netzwerk speichert
für jedes Teilgraphmuster welche Teilgraphen das Teilgraphmuster erfüllen. Daher haben
Rete Netzwerke einen hohen Speicherverbrauch, da sie alle Zwischenergebnisse speichern
müssen. Jedoch sind es gerade diese gespeicherten Zwischenergebnisse, die es dem Rete
Netzwerk ermöglichen die gespeicherten Zwischenergebnisse effizient zu warten, da diese
Zwischenergebnisse für das Auffinden neuer Matches ausgenutzt werden. Allerdings existieren
andere Arten von Discrimination Networks, die hinsichtlich Speicher- und Zeitverbrauch
effizienter sind, aber derzeit nicht für die inkrementelle Suche nach Matches verwendet werden.

Diese Doktorarbeit wendet eine verallgemeinerte Art von Discrimination Networks an. Diese
verallgemeinerte Art ermöglicht es die Balance zwischen Speicher- und Zeitverbrauch für die
inkrementelle Suche nach Matches zu steuern. Dafür stellt diese Arbeit eine Modellierungs-
sprache vor, die es ermöglicht verallgemeinerte Arten von Discrimination Networks effektiv zu
spezifizieren. Darauf aufbauend stellt diese Arbeit einen inkrementellen Algorithmus vor, der
die gespeicherten Matches effizient und skalierbar wartet. Abschließend stellt diese Arbeit
eine Evaluierung vor, die aufzeigt dass die Modellierungssprache eine effektive Spezifikation
von verallgemeinerten Discrimination Networks erlaubt. Außerdem zeigt die Evaluierung,
dass a) der inkrementelle Wartungsalgorithmus für große Graphdaten skaliert und b) die
Netzwerkstrukturen von verallgemeinerten Discrimination Networks im Vergleich zu den
Netzwerkstrukturen von Rete Netzwerken im Speicher- und Zeitverbrauch für die inkrementelle
Suche nach Matches effizienter sein können.
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1. Introduction
Graphs are general-purpose data structures [83] that store entities and relationships between
these entities. Graph nodes represent entities and graph edges between graph nodes represent
relationships between these entities.

Use cases for graphs are manifold. For example, social networks are graphs that enable to
leverage information about people and their connections to gain competitive and operational
advantages [82, p. 106]. In social networks, graph nodes represent people and graph edges
represent relationships between people. People either volunteer these relationships, e. g.,
when they add another person as friend, or relationships are derived from the gathered
data in the social network, e. g., from similar interests of two friends. Based on such social
networks, recommendation systems emerge as additional use case for graphs [82, p. 107].
Recommendation systems analyze relationships between people and things based on the
behaviors, interests, and purchases of people to recommend other interesting things to them
such as products that were bought by other people with similar interests. Today’s IT
infrastructures base on telecommunication networks. Telecommunication networks are also
use cases for graphs. In telecommunication networks, graph nodes represent components
such as server and client computers, routers, and switches. Graph edges represent wired and
wireless connections between such components. The representation as graph structure enables
capacity planning and impact analyses [54, p. 98]. When dealing with large IT infrastructures,
the management of complex access rights for users and groups of users is a big issue. Users
and groups with access permissions and prohibitions for certain files and folders in a file
system constitute a graph [54, p. 97]. Graph nodes represent users, groups, files, and folders.
Graph edges represent relationships between them, e. g., access permissions [82, p. 110].
Figure 1.1 shows how such graphs are processed. The graph storage (abbr. storage) stores

graphs and the graph pattern matching engine (abbr. matching engine) evaluates graph queries
(abbr. queries) that are stated by users. These queries either search for graph nodes and
edges that satisfy certain graph patterns (abbr. patterns) or apply graph transformations (abbr.
transformations) to modify graphs. A graph pattern describes a graph structure that has to
be found in graphs. For example, users search for cliques of friends in social networks. A
graph transformation adds, deletes, or modifies graph nodes and edges. For example, users
build or break friendships in social networks. The matching engine employs graph pattern
matching (abbr. pattern matching) to search for graph nodes and edges that satisfy the
patterns and to apply transformations. When the matching engine evaluates patterns, the
pattern matching looks up subgraphs in the graph storage that satisfy the patterns and returns
these subgraphs as graph query result (abbr. query result). A subgraph satisfies a pattern, if
a structure-preserving mapping between the graph nodes and edges of the pattern and the
subgraph exists. The retrieved subgraphs are called graph pattern matches (abbr. matches).
However, graph pattern matching is NP-complete for subgraph isomorphism [36]. Thus,

queries can suffer a long response time, when the number of graph nodes and graph edges
in graphs or patterns increases. In general, three possibilities exist how to increase the
throughput of the matching engine, when evaluating queries. Figure 1.1 shows graph indexes,
graph slicing, and graph views as possibilities to increase the throughput.
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Figure 1.1.: Overview of graph pattern matching

The first possibility deals with graph indexes (abbr. indexes) that index graph nodes and
edges concerning their properties, e. g., types, labels, and attribute values. For example, an
index can enumerate all female and male persons in a social network. Then, the matching
engine uses the indexes to efficiently look up graph nodes and edges with certain properties,
e. g., certain types, labels, and attribute values. For example, Goldman et al. [42] group graph
nodes in the index that are reachable via the same path in the graphs.

The second possibility deals with graph slicing (abbr. slicing) to enable the parallel evaluation
of patterns during the pattern matching. The parallel evaluation of patterns is called parallel
graph pattern matching. For that purpose, the matching engine slices graphs into partitions
that can be processed independently by multiple and also distributed matching engines.
Finding such a slicing of graphs is a challenging task, because matches may be distributed
over multiple partitions that are processed by independent matching engines. When naively
slicing graphs, the matching engines do not find these matches. For example, Krause et al. [64]
employ the Bulk Synchronous Parallel model.

The third possibility deals with graph views (abbr. views), which store and maintain matches
as result of queries. The overall process is called incremental graph pattern matching. Users
provide these queries in terms of graph patterns, beforehand. Then, the matching engine
executes the queries to retrieve and, afterwards, store all matches in the view, for later retrieval.
For example, the view can store all matches for the friend clique query. When users state
queries, the matching engine looks up the matches in the view in constant time1. However,
the view must be kept up-to-date to ensure that the stored matches are equal to the matches
in the graphs. In general, views maintain these matches by re-evaluating the queries only for
changed portions of the graphs. For that purpose, the matching engine monitors the graphs
in the graph storage and uses the captured changes to prune the search spaces of queries. For
example, Bergmann et al. [7] employ incremental graph pattern matching for querying graphs
in Model-Driven Engineering (MDE).

1Excluding the linear cost induced by the number of retrieved graph pattern matches.
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1.1. Research Topic

This thesis focuses on graph views to a) increase the throughput of graph queries and b)
hide, enrich, as well as restructure query results for later retrieval. When hiding parts of
query results in views, certain graph nodes and edges are filtered out to neglect details that
are not relevant for the purposes of the queries. When enriching query results with additional
information, queries infer additional knowledge and assign additional roles to graph nodes and
edges that are part of the query results. When restructuring query results, multiple views are
reused to derive additional views that set the content of these views into new relationships.

This thesis employs graph views, because it is more efficient and economical to re-evaluate
patterns only for small portions of graphs a second time as incremental pattern matching
approaches do than re-evaluate patterns for the complete graphs from scratch as parallel
pattern matching approaches do, when graphs change. Thus, parallel pattern matching is
not in the scope of this thesis. Furthermore, graph indexes are not in the scope of this thesis,
because they do not store query results in terms of graph pattern matches.

The contributions of this thesis are a) a modeling language for the definition of graph views,
b) maintenance algorithms that keep these views up-to-date, when graphs change, and c) an
evaluation that shows the effectiveness and efficiency of the proposed approach in comparison
to the state of the art of incremental graph pattern matching.

The modeling language enables to model definitions of views that a) enable to specify the
content of views, b) enable to maintain matches that are stored by views, and c) enable
to steer the trade-off between the memory consumption for storing matches and the time
required for maintaining these matches by means of modular graph patterns.
The maintenance algorithms process these definitions of views to initially create and,

afterwards, maintain the matches that are stored by graph views. When re-evaluating queries
to update the views, the maintenance algorithms process graphs incrementally by considering
only changed portions of these graphs. In contrast to existing approaches for incremental
graph pattern matching, the approach in this thesis is a native solution that employs graph
transformations to create and maintain views. The existing approaches are no native solutions,
because they map incremental graph pattern matching back to the relational domain.
The evaluation shows that the modeling language and maintenance algorithms together

can outperform current techniques for incremental graph pattern matching in time and space
at the same time, when they are employed for the maintenance of views.
The remainder of this chapter is organized as follows. Section 1.1 describes the research

topic that is addressed in this thesis by discussing modeling, algorithmic, and realization
challenges regarding the effective specification as well as efficient and scalable maintenance of
graph views. Afterwards, Section 1.2 describes the overall goals of this thesis. Section 1.3
summarizes the state of the art in incremental graph pattern matching. Section 1.4 discusses
the contributions of this thesis in comparison to the state of the art. Finally, Section 1.5
outlines the overall structure of this thesis.

1.1. Research Topic

The research topic of this thesis deals with retrieving domain knowledge that is embedded
in graph-structured data. This thesis refers to domain knowledge as knowledge of a certain
domain or discipline. Graphs store this domain knowledge as adjacent graph nodes that are
connected by graph edges. This thesis refers to these graphs as base graphs.
Users employ graph queries to a) retrieve domain knowledge from base graphs and b)

modify the domain knowledge stored by base graphs. At any time, the graph views must

3



1. Introduction

store all graph pattern matches retrieved by queries, also when base graphs change. For that
purpose, the views must be kept up-to-date. Therefore, the research topic deals with the
efficient and scalable maintenance of the views to ensure that the matches stored by the views
are consistent with the base graphs. The research topic of this thesis focuses on the efficiency
and scalability of this view maintenance. In this thesis, the term efficient maintenance refers
to the capability of the system to avoid wasting computational resources such as computation
time and memory footprint, when maintaining views. The term scalable maintenance refers
to the ability of the system to not decrease its maintenance performance for views, when the
number of graph nodes and edges of base graphs increases.
Furthermore, the research topic aims for a generic approach that is applicable to different

kinds of graph data models and query languages.
The remainder of this section is organized as follows. Section 1.1.1 discusses challenges

concerning the specification of graph views. This thesis refers to these kinds of challenges as
modeling challenges. Section 1.1.2 discusses challenges concerning the efficiency and scalability
of the view maintenance. This thesis refers to these kinds of challenges as algorithmic challenges.
Furthermore, this thesis aims for the realization of the proposed concepts. Section 1.1.3
discusses arising realization challenges.

1.1.1. Modeling Challenges

The modeling challenges in this thesis deal with the effective specification of graph views,
which describes the kinds of graph pattern matches that are stored by views.

Notion of Graph Views (C1a)
When talking about graph views several questions arise. For example, what exactly are views?
Are views just collections of graph nodes [101]? Or, are views collections of graph nodes and
edges? If graph edges are included in views, are all graph edges between adjacent graph nodes
included or only selected graph edges? Besides the content of views, are views collections of
tuples as in relational databases? Or, are views graphs, too?

Data Model of Graph Views (C1b)
Different kinds of graph data models exist [2]. The fundamental question that arises is which
kind of data model should be employed for graph views. Is a relational data model appropriate
or is a graph data model the better choice?

Definition of Graph Views (C1c)
When a clear notion of views exists and an appropriate data model is chosen for views, the
question arises how to define views? The definition of views specifies the content of views.
Are declarative, imperative, or both kinds of query languages appropriate for the definition of
graph views? How expressive must be the language for such definitions? Furthermore, the
chosen definition language must permit the efficient and scalable maintenance of graph views.

Reuse of Graph Views (C1d)
When graph queries are composed of other queries, definitions of graph views should be able
to refer to graph pattern matches that are stored by views that consist of matches for the
other queries. Then, the question arises how to refer to certain graph nodes and edges that
are part of the other views and have special roles in these views? How to refer to these graph
nodes and edges effectively and efficiently, i. e., without the need to check the role of these
graph nodes and edges again. Then, the question arises how graph nodes and edges of different

4



1.1. Research Topic

views can be combined to define derived additional views. How to combine definitions of
views in terms of conjunctions and disjunctions? How to express that definitions of views are
reused in negative sense, i. e., that certain graph pattern matches must not exist? How to
permit definitions of views that store graph pattern matches for graph queries that employ
recursive definitions of graph patterns?

1.1.2. Algorithmic Challenges

The algorithmic challenges of this thesis deal with the efficient and scalable maintenance of
graph views to keep these views consistent with the base graphs from which they are derived.

Materialization of Graph Views (C2a)
When graph views are derived from base graphs, several questions arise on how to materialize
these views. For example, are graph nodes and edges in graph views copies of graph nodes
and edges of base graphs [101]? Or, are graph nodes and edges of views delegates that refer
back to graph nodes and edges of base graphs? Then, views are only meaningful together
with the base graphs from which the views are derived. Or, does a view abstract from graph
nodes and edges and employs a different concept to store graph nodes and edges that are part
of graph pattern matches?

Consistency of Graph Database Views (C2b)
When base graphs change, the derived graph views must be kept consistent with base graphs
by means of a view maintenance. For example, when matches do not exist in base graphs
anymore, these matches must be also removed from the derived views. When new matches
occur in base graphs, these matches must be also added to the derived views. Then, the
question arises how to perform this view maintenance efficiently and scalable. Deriving views
always from scratch although only few graph nodes and edges of base graphs changed does
not scale with the size of the base graphs, because the time that is required to maintain the
derived views depends on the number of graph nodes and edges that are stored by these base
graphs. Instead, only added, deleted, and modified graph nodes and edges of base graphs
should be input to the view maintenance. Then, the effort that is required to perform the
maintenance only depends on the number of these graph nodes and edges.

Impact of Graph Changes on Graph Views (C2c)
When base graphs change, the derived graph views must be maintained. It depends on the
actual changes of base graphs and on the actual definitions of the views whether derived views
must be maintained or not. Then, the question arises how to efficiently look up affected graph
pattern matches that are stored by views without the need to explore all stored matches?

1.1.3. Realization Challenges

For an evaluation of the concepts, which are developed in this thesis, the following realization
challenges have to be solved appropriately.

Cope with Different Graph Data Models (C3a)
Angles [2] states that different graph data models are employed to store domain knowledge by
means of graphs. For example, labeled graphs, typed graphs with type inheritance, hypergraphs
with n-ary graph edges, and nested graphs with nested graph nodes exist. Furthermore, graph
nodes and edges can own attributes. Moreover, graph edges can be undirected or directed.
These different graph data models introduce two realization challenges.
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First, it depends on the actual domain knowledge, which kind of graph data model fits best
to store graphs. Therefore, this thesis has to provide generic concepts that work for as many
different graph data models as possible.
Second, the graph data models have certain characteristics such as directed graph edges

that cannot be traversed in backward direction easily. However, when maintaining views these
edges must be traversable in forward and backward direction. Therefore, this thesis has to
cope with the limitations of graph data models for view maintenance.

Cope with Different Graph Query Languages (C3b)
In this thesis, users employ query languages a) to query and modify base graphs and b)
to define the content of views. As stated by Angles [2], users express queries by means
of declarative and imperative query languages. For example, Cypher [82] is a declarative
query language that enables to describe how graph pattern matches that belong to the graph
query result look like. For example, Neo4j [82] provides a traversal application programming
interface (API) for several programming languages [82] that enables to implement queries
with imperative statements, which describe the algorithm to look up graph pattern matches.
Therefore, this thesis has to cope with queries that are expressed in different query languages.
In the worst case, queries are black boxes that hide the actual graph queries. That means,
the proposed approach must not rely on the characteristics of certain query languages.

1.2. Goals of this Thesis

The overall goal of this thesis is to provide a framework for the incremental maintenance
of graph pattern matches by means of graph views, when graph data models are employed
to store graphs and graph pattern matches. Johnson et al. [56] state that a framework “is
an abstract design for solutions to a family of related problems”. Johnson et al. [56] state
that “methods defined by users to tailor the framework will often be called from within the
framework itself, rather than from the user’s application code” and that “the framework
often plays the role of the main program in coordinating and sequencing application activity”.
Johnson et al. [56] explain that a “way to customize a framework is to supply it with a set of
components that provide the application specific behavior”. Finally, Johnson et al. [56] describe
that these components must implement a certain interface, which has to be understood by
the user, who implements these components.
Accordingly, this thesis aims for a framework that provides an architecture design for

creating and maintaining graph views using the technique of incremental graph pattern
matching. This thesis aims for a framework that is easily applicable, when views of arbitrary
graph domains have to be maintained. That means, the users of the framework must be
only responsible to describe which kind of domain knowledge has to be retrieved from and
maintained by views. The users of the framework do not have to care about the maintenance
of these views on their own.

Figure 1.2 gives an overview of the goals of this thesis. These goals are a modeling language
(G1) that enables to define graph views, the embedding of graph queries as means to define
the content of graph views (G2), maintenance algorithms that keep graph views consistent
with their base graphs (G3), and a realization of the proposed concepts (G4) to enable an
evaluation of these concepts (G5). The following sections describe each major goal.
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Figure 1.2.: Overview of goals

1.2.1. Modeling Language for Graph Views (G1)

This thesis aims for a platform- and technology-independent approach that enables to embed
graph queries into an overall architecture to derive and maintain graph views. Based upon
this architecture, generic maintenance algorithms for graph views can be developed that only
base on the concepts of this architecture and abstract from the implementation details of
the embedded queries. Then, the users can stay focused on the definition of graph views by
means of graph queries and do not have to care about the maintenance of these views.
The expected outcome of this goal setting is a modeling language that enables to define

graph views that can dependent on each other. The modeling language must be in line with
the maintenance algorithms for these views. For that purpose, a notion of graph views has to
be developed (G1a). Furthermore, the modeling language has to enable a) the definition of
single views (G1b) and b) the combination of multiple views (G1c) to an overall view model.

Notion of Graph Views (G1a)
This thesis must develop a clear notion of graph views, which enable to store graph pattern
matches. Then, an appropriate graph data model for views has to be provided, which enables
to enumerate all graph pattern matches effectively that are retrieved by graph queries.

Definition of Single Graph Views (G1b)
This thesis must develop concepts that enable to derive single graph views by means of
user-defined graph queries. Thus, the modeling language must enable to embed user-defined
graph queries into the overall view model that defines the views. The proposed modeling
language must not restrict users to a certain graph query language, because this thesis aims
for a generic framework that enables to define and maintain views independent from certain
graph pattern matching technologies and query languages.

Combination of Multiple Graph Views (G1c)
The proposed modeling language must enable to combine definitions of graph views, because
definitions of views should be able to reuse graph pattern matches that are stored by other
views to avoid matching equal (sub-) patterns multiple times. Therefore, the approach must
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enable the definitions of views that refer to the definitions of other views to reuse their graph
pattern matches. Then, an arbitrary granularity level should be supported to enable users to
choose a granularity level that fits best for the domain knowledge that they want to retrieve
from and maintain in views. Therefore, the modeling approach neither should enforce a certain
granularity level for definitions of views nor should enforce a certain dependency structure of
views. Instead, general-purpose operations must be supported that enable users to combine
definitions of views easily. For example, users would like to express conjunctions, disjunctions,
negations and also recursive definitions, when they combine views.

1.2.2. Embed Different Kinds of Graph Queries (G2)

This thesis aims for a framework that enables users to employ imperative and declarative
graph queries for the definition and maintenance of graph views, because both kinds of queries
are employed to query graphs, in practice. Then, the view maintenance must be designed in a
way that the maintenance algorithms do not exploit implementation details of graph queries
to create and maintain graph views.

The expected outcome of this goal setting are concepts that enable to apply the framework
to different kinds of graph data models (G2a), different kinds of graph query languages (G2b),
and different kinds of graph pattern matching algorithms (G2c).

Support Different Kinds of Graph Data Models (G2a)
In practice, different graph data models can be employed to store graphs [2]. Thus, the
framework must support different kinds of graph data models and the developed concepts
must be easily applicable to these graph data models.

Support Different Kinds of Graph Query Languages (G2b)
One goal of this thesis is to support arbitrary graph query languages for the definition and
maintenance of graph views. The framework has to enable that these kinds of queries languages
can be employed at the same time, because these kinds of queries are employed simultaneously
to query graphs, in practice. The developed concepts must be independent from the employed
query languages.

Support Different Kinds of Graph Pattern Matching Algorithms (G2c)
When different kinds of graph queries have to be supported by the framework, the framework
also has to support different kinds of pattern matching algorithms. For example, different
graph pattern matching algorithms implement injective and non-injective pattern matching,
i. e., different nodes of a graph pattern can or cannot match the same node of a graph.

1.2.3. Incremental Maintenance of Deductive Graph Database Views (G3)

This thesis employs graph views to keep ready answers for graph queries. These views must be
kept up-to-date in a manner that they store exactly the same graph pattern matches, which
also exist in the base graphs from which the views are derived. Thus, the views must be
maintained to ensure that they are consistent with their base graphs. This thesis aims for an
efficient and scalable maintenance of graph views that only depends on the number of changed
graph nodes and edges of base graphs concerning the execution time of the maintenance.

The expected outcome of this goal setting are concepts how to materialize views (G3a), how
to efficiently and scalable relate changes of base graphs to graph pattern matches that are
stored by views (G3b), and algorithms for the incremental maintenance of graph views (G3c).

8



1.2. Goals of this Thesis

Enumeration of Graph Pattern Matches (G3a)
This thesis must provide concepts to enumerate graph pattern matches by means of graph
views. These concepts must not copy graph nodes and edges from base graphs to view graphs,
because these copies require additional memory and must be kept synchronized with the
base graphs. Instead, this thesis must provide concepts for the enumeration of graph pattern
matches that are memory-efficient.

Impact Analysis of Graph Changes (G3b)
This thesis must relate changes of base graphs efficiently to graph pattern matches that
are stored by graph views and to matches that are currently missing in these views. The
framework must preserve matches in the views that still exist in base graphs. The framework
must remove matches from views that disappeared from base graphs. The framework must
add matches to views that additionally appeared in base graphs. Furthermore, the changes of
views must be propagated to dependent views as well.

Maintenance of Graph Database Views (G3c)
Deriving graph views always from scratch although only few graph nodes and edges of base
graphs changed is inefficient and does not scale, especially when the number of graph nodes
and edges of base graphs increases. Instead, an approach is required that prunes the search
space to a minimal subset of graph nodes and edges, which must be at least considered to
keep derived views consistent with their base graphs, when maintaining views. This thesis
aims for an approach that only depends on the number of changed graph nodes and edges
of base graphs concerning the execution time of the maintenance to enable an efficient and
scalable maintenance of views.

1.2.4. Realization of Concepts (G4)

This thesis presents concepts for the definition of graph views by embedding graph queries
into these definitions and maintaining the views, when base graphs change. This thesis aims
for the realization of these concepts for evaluation purposes.

The expected outcome of this goal setting are software tools that enable to model definitions
of graph views (G4a). Furthermore, graph views have to be modeled and graph queries have
to be created (G4b) with the help of these software tools for the evaluation of the proposed
modeling concepts. Moreover, the proposed maintenance algorithms have to be implemented
for a performance evaluation (G4c).

Tooling for View Definition (G4a)
For the modeling language, a graphical editor has to be realized that enables to model
definitions of graph views in concrete syntax and embed graph queries into these definitions.

Modeling Views and Graph Queries (G4b)
This thesis aims for the modeling of graph views and graph queries for conducting case studies.
For that purpose, editors have to be provided that enable to model views and embed queries.

Batch and Maintenance Algorithms (G4c)
This thesis aims for a realization of the proposed maintenance algorithms. For a performance
evaluation, the batch and incremental view maintenance algorithms have to be implemented.
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1.2.5. Evaluation of Concepts (G5)

This thesis provides a modeling language and maintenance algorithms for graph views. This
thesis aims for an evaluation of the modeling language and maintenance algorithms.

The expected outcome of this goal setting are case studies, which demonstrate that a) the
proposed modeling language is appropriate (G5a), b) the developed algorithms outperform
alternative algorithms presented in this thesis (G5b), and c) the proposed maintenance
algorithms perform better than existing algorithms for incremental pattern matching (G5c).

Case Studies (G5a)
This thesis aims for an evaluation of the proposed modeling language in terms of two case
studies. The first case study deals with the recovery of employed software design patterns from
abstract syntax graphs. The second case study deals with the tracing of design rationales.

Interior Evaluation (G5b)
This thesis provides batch and incremental algorithms for the maintenance of graph views. One
goal of this thesis is to compare the performance of the incremental maintenance algorithms
with a comparable batch algorithm that performs a real maintenance of graph views.

Exterior Evaluation (G5c)
This thesis provides concepts that are extensions of existing concepts. Therefore, this thesis
aims for a comparison of the proposed algorithms with existing approaches to prove that the
concepts presented in this thesis pay off in comparison to existing approaches.

1.3. State of the Art

This section introduces the state of the art of incremental view maintenance and incremental
graph pattern matching. This section focuses on related work that needs to be introduced
for the discussion of the contribution of this thesis. Section 1.3.1 introduces discrimination
networks for the view maintenance of relational data. Section 1.3.2 describes incremental
graph pattern matching as technique for the view maintenance of graph-structured data.
Finally, Section 1.3.3 derives observations from the presented state of the art.

1.3.1. Discrimination Networks for View Maintenance

Discrimination networks enumerate all objects that satisfy certain condition tests and enable
to update these enumerations efficiently, when objects change. Originally, discrimination
networks are employed for rule triggering in rule-based systems and the view maintenance
of relational databases. Discrimination networks consist of networks nodes and edges that
constitute a directed acyclic graph (DAG). The network nodes implement condition tests and
store all objects that satisfy the condition tests by means of an internal memory. The network
edges forward objects that satisfy these conditions to successor network nodes. Network nodes
with one input implement intra-element tests such as attribute or type constraints. Network
nodes with two or more inputs implement inter-element tests, because they combine the
condition test results of predecessor network nodes, e. g., in terms of join conditions.

When objects in the data set change, these changes are propagated through the network to
update the objects that are stored by network nodes. When objects do not satisfy a condition
test anymore, they are removed from the internal memory of the network node. When
objects satisfy a condition test, they are added to the internal memory of the network node.
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The network maintenance handles modifications of objects as the deletion and subsequent
re-creation of these objects.
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Figure 1.3.: Kinds of discrimination networks

The literature distinguishes Rete [32], Treat [73], and Gator networks [48]. Figure 1.3
depicts the differences of these networks for the same condition. The letters A to F denote
intra-element tests. The conjunctions of the condition tests A to F denote inter-element tests.
The time and space complexity of these networks depends on their structure of network

nodes and edges. The more network nodes exist the more intermediate condition test results
must be stored and maintained, but also can be exploited to decrease the time that is required
to maintain the state of the network. Thus, the space complexity is dominated by the number
of network nodes. The more intermediate condition test results are processed by a network
node, the higher is the time complexity of the network node. Thus, the time complexity of
the network is dominated by the network node with the highest time complexity.

Rete Networks
Figure 1.3(a) depicts a Rete network [32]. Ordinary Rete networks are characterized by a left-
or right-associative network structure [67] that consists of network nodes with at most two
inputs. Thus, complex condition tests must be decomposed into multiple partial condition
tests that are implemented by multiple subsequent network nodes.

The advantage of Rete networks is that they maintain a large amount of partial condition
test results as collections of objects and instantly provide objects that satisfy these condition
tests for further processing. Furthermore, only those partial test results are added to or deleted
from the internal memory of network nodes that result from object changes by exploiting
already stored test results to minimize the effort to update the network.

However, the large amount of the stored partial test results is also the biggest disadvantage
of Rete networks, because they result in a high memory footprint [73]. Furthermore, the
operations to update Rete networks are similar, when objects are added and removed. Thus,
deletions of objects are as expensive as additions of objects [73].

Treat Networks
Figure 1.3(b) depicts a Treat network [73]. Treat networks aim for overcoming the disadvan-
tages of Rete networks. In contrast to Rete networks, Treat networks only consist of network
nodes that perform intra-element tests. Treat networks do not employ network nodes with
two or more inputs. Thus, Treat networks do not maintain results of inter-element tests.

Treat networks can outperform Rete networks, due to the fact that storing and maintaining
the test results of inter-element tests in Rete networks is sometimes not beneficial [73]. On
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the one hand, Treat network require more effort to compute inter-element tests in comparison
to Rete networks, because Treat networks do not maintain and store results of inter-element
tests. On the other hand, Treat networks require less effort, when results of inter-element
tests have to be removed in comparison to Rete networks, because the object changes do not
have to be propagated to dependent network nodes that implement inter-element tests. The
evaluation in [73] shows that the maintenance effort required by Treat networks can be lower
than the maintenance effort required by Rete networks.

Gator Networks
Figure 1.3(c) depicts a Gator network [48]. Gator networks enable to create and maintain
intermediate forms of discrimination networks by taking the advantages and disadvantages of
Rete and Treat networks into account. Hanson et al. state that “with Gator, it is possible to
get additional advantages from optimization” [48], because network nodes that compute and
maintain results of inter-element tests “are only materialized when they are beneficial” [48].
As a result, Gator networks allow to control the trade-off between time and space complexity.

In contrast to Rete networks, Gator networks can consist of network nodes with more than
two inputs to combine multiple inter-element tests in one network node. An internal evaluation
plan describes the evaluation order of the combined inter-element tests. The evaluation plan
is created, when the Gator network is constructed.
Furthermore, Gator networks can employ additional memory network nodes that store

partial test results to steer the memory consumption of the network [48]. For the sake of
simplicity, this thesis omits the description of these memory network nodes. Hanson et al. [48]
provide a description of these memory network nodes.

In summary, Gator networks allow to specify intermediate forms of discrimination networks
by supporting network nodes with more than two inputs in comparison to Rete and Treat
networks. Thus, Gator networks are more general than Rete and Treat networks. The structure
of Gator networks enables to describe Rete and Treat network structures as well. Rete and
Treat network structures are the most extreme variants of the Gator network structure,
because Rete networks decompose inter-element tests into multiple network nodes with at
most two inputs, while Treat networks do not consider inter-element tests at all. It is the task
of an optimization algorithm to compute an optimal network structure. Hanson et al. [48]
propose different optimization algorithms based on cost functions that take statistics about
update cardinalities and update frequencies of objects into account.

1.3.2. Discrimination Networks for Incremental Graph Pattern Matching
Incremental graph pattern matching bases on the concepts of discrimination networks. The fol-
lowing paragraphs describe which kinds of discrimination networks are adapted for incremental
pattern matching.

Rete Networks for Graph Grammars
Bunke et al. [19] transfer the concepts of Rete networks to the efficient implementation of
graph grammars for directed labeled graphs. According to Habel et al. [47], in a “graph
grammar approach it is defined how and under which conditions graph productions can be
applied to a given graph in order to obtain a derived graph”. The approach of Bunke et al. [19]
derives the Rete network from the left-hand sides of graph productions, which describe the
conditions under which a graph is derived from a given graph. Bunke et al. [19] adapt network
nodes of Rete networks. In general, they distinguish node, edge, and subgraph checkers. Node
and edge checkers employ intra-element tests. Subgraph checkers employ inter-element tests.
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Node checkers receive graph nodes from the root of the network and check whether these
nodes have a certain label. Edge checkers receive graph edges from the root of the network and
check whether these edges have a certain label, the source nodes of these edges have a certain
label, and the target nodes of these edges have a certain label. Subgraph checkers have two
inputs and receive subgraphs from different edge checkers. Subgraph checkers combine two
subgraphs to larger subgraphs, when both subgraphs have graph nodes in common. Subgraph
checkers define in terms of a list which graph nodes must be shared by subgraphs.

Rete Networks for Model Transformations
Bergmann et al. [9] extend the approach of Bunke et al. [19] by transferring the concepts
of Rete networks from graph grammars to model transformations of the MDE domain.
Model transformations specify the applicability of model manipulations by means of graph
patterns that must be satisfied by subgraphs of the model in order to manipulate models.
Bergmann et al. [9] describe an incremental graph pattern matching engine that stores graph
pattern matches and maintains these matches, when models change. This incremental graph
pattern matching engine adapts Rete networks [32] to enable the transformation language
of the VIATRA2 framework to make use of matches that are maintained within a Rete
network. The approach derives Rete networks automatically from the graph patterns of model
transformations based upon a heuristic. Then, matches can be retrieved “in constant time
excluding the linear cost induced by the size of the result set itself” [9]. Bergmann et al. [9]
state that “the main ideas behind the incremental pattern matcher are conceptually similar
to relational algebra”. In the approach of Bergmann et al. [9], the internally employed Rete
network represents information in terms of tuples that consist of model elements. Each
network node in the Rete network is related to a (partial) graph pattern and stores a set of
tuples that satisfy this (partial) pattern. Bergmann et al. [9] state that “this set of tuples is in
analogy with the relation concept of relational algebra” and, thus, the authors map incremental
graph pattern matching as challenge of the graph domain back to the relational domain.
The approach of Bergmann et al. [9] adds additional kinds of network nodes to Rete

networks to make Rete networks applicable to graph pattern matching. Bergmann et al. [9]
state that “miscellaneous input nodes represent containment, generic type information, and
other relationship between model elements” and, therefore, multiple kinds of network nodes for
intra-element tests seem to exist without explicitly discussing these additional network nodes.
Furthermore, Rete networks in VIATRA2 distinguish network nodes for inter-element tests
such as join nodes, negative nodes, and term evaluator nodes that consist of two inputs. Join
nodes implement natural joins for tuples received by the first and second input. These joins are
performed by means of an effective index structure that enables to check whether tuples of the
first input can be joined with tuples of the second input. Negative nodes implement anti-joins
for tuples received by the first and second input. Negative nodes store tuples received by the
first input, that cannot be joined with any tuple received by the second input. Term evaluator
nodes implement attribute conditions such as arithmetical and logical functions.

Production nodes store complete graph pattern matches and employ projections to filter out
elements from tuples that are not required. These production nodes are used to implement
disjunctions of two patterns. Then, each graph pattern is matched by a separate Rete network
that have a production node in common, which employs a true union operation to store
received graph pattern matches. Furthermore, production nodes are used to implement
recursive definitions of graph patterns.

The approach of Bergmann et al. [9] is adapted for incremental model queries [7], live model
transformations [80], derivation of model features [81] and model synchronization [27].
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1.3.3. Discussion

In general, graph pattern matching is NP-complete for subgraph isomorphism [36]. When
the graph pattern size k is fixed, the worst-case complexity is O(nk) for a graph with size n
[58, 102]. Therefore, finding all subgraphs in base graphs that match a certain graph pattern
can be very time-consuming, when graph queries and / or base graphs become large. One
possibility to increase the performance of graph queries is to enumerate graph pattern matches
as answers for these queries by means of graph views. Thus, algorithms are required that
ensure the consistency of graph views with their base graphs.
The domain of relational view maintenance employs discrimination networks to maintain

views. The disadvantages of Rete [32] and Treat networks [73] are addressed by Gator networks
[48]. In contrast to Rete and Treat networks, Gator networks enable to employ network
nodes with more than two inputs. Therefore, Gator networks allow to optimize the network
structure concerning time and space complexity [48].

Bunke et al. [19] transfer Rete networks to the efficient implementation of graph grammars
for directed labeled graphs. Bergmann et al. [9] transfer Rete networks to incremental
graph pattern matching for models as special kind of graph based upon the original work of
Bunke et al. [19]. Bunke et al. [19] and Bergmann et al. [9] extend Rete networks by additional
network nodes to make Rete networks applicable for incremental graph pattern matching.

The following paragraphs derive observations from the presented state of the art that must
be considered, when aiming for a generic incremental maintenance of graph views.

No Gator Networks for Incremental Graph Pattern Matching
Currently, Gator networks as most general kind of discrimination network are not transferred
from the relational domain to the graph domain, although Gator networks can outperform
Rete networks and Treat networks in time and space at the same time.

Missing Native Concept for Graph Views
Current adaptations of Rete networks for incremental pattern matchings suffer similar problems
as known from the relational domain such as expensive join operations to reconstruct graph
edges between graph nodes, because current approaches do not employ graph data models for
storing graph pattern matches natively.

Missing Native Maintenance
Current approaches transfer Rete networks to the graph domain by mapping graph operations
back to relational operations such as join operations. This issue becomes apparent due to
special network nodes that are added to Rete networks to support special operations such
as negations and term evaluations. Furthermore, tuples of the relational domain are used
to store graph pattern matches. Thus, current approaches for incremental graph pattern
matching do not implement Rete network natively by means of graph operations.

No Real View Maintenance
Rete networks map modifications of objects to sequences of deletion and creation operations,
when maintaining the state of the network. Thus, Rete networks do not employ a real view
maintenance for modified objects, because the derived tuples change their identity during the
maintenance procedure, when they are deleted first and re-created afterwards.

Inefficient Maintenance for Object Deletions
In discrimination networks the deletion of objects is maintained in the same way as the
creation of objects. Thus, the deletion of objects is an expensive operation [96] and, thus,
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compromises the maintenance performance.

Restriction to Models
Currently, incremental graph pattern matching by means of discrimination networks is limited
to models as special kind of graph. Instead, discrimination networks should be employed for
general kinds of graphs in a manner that the concepts for storing graph pattern matches and
maintaining these graph pattern matches work for different kinds of graphs.

Heuristic-Based Derivation of Rete networks
Current approaches for incremental graph pattern matching employ heuristics to derive Rete
networks from the left-hand side of model transformations. Thus, these approaches do not
enable to model the discrimination network structure to control the trade-off between memory
consumption and execution time, when maintaining the state of the network.

1.4. Contribution

This thesis employs Gator networks as technique for incremental graph pattern matching,
when maintaining graph views. It is worth to employ Gator networks for the definition and
incremental maintenance of graph views, because current approaches for incremental graph
pattern matching are limited to Rete networks. The contributions of this thesis are as follows.

Gator Network Structures for View Maintenance
This thesis contributes a modeling language for the definition and incremental maintenance
of graph views. The modeling language enables users to model generalized discrimination
networks with network nodes that enable to embed queries. The modeling language support
Gator network structures [48] as most generalized kind of discrimination network. Thus,
the modeling language also supports Treat and Rete network structures. The modeling
of generalized discrimination network structures enable developers to control the trade-off
between time and space complexity. The modeling language enables to combine definitions
for views by means of conjunctions, disjunctions, negations, and recursions. Especially, the
recursions are an extension of discrimination networks, because the original discrimination
networks are acyclic. The recursions enable developers to formulate path expressions and
enable views to enumerate matches for these path expressions.

Notion of Native Graph Views
This thesis contributes the notion of graph views by means of a graph data model that enables
to mark graph nodes that belong to graph pattern matches. Therefore, graph views are
themselves graphs that can be processed by means of graph operations. These graph views do
not store copies of graph nodes and edges that must be kept synchronized with base graphs.

Native Maintenance of Graph Views
This thesis contributes a maintenance algorithm for graph views that is designed for the use
with graph data and does not map incremental graph pattern matching back to the relational
domain as existing approaches do. In contrast to existing approaches for incremental graph
pattern matching, the approach employs general-purpose network nodes that are not dedicated
to a specific purpose such as negation or term evaluation. Furthermore, the maintenance
algorithm performs an impact analysis based upon modifications of base graphs to prune
search spaces for graph queries, when graph views have to be maintained. This impact analysis
enables to efficiently lookup graph pattern matches that are obsolete, suspicious, or missing
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in graph views. Furthermore, the maintenance algorithm employs native graph operations
instead of relational operations and performs a real view maintenance, because the algorithm
extends the maintenance algorithms of discrimination networks by an explicit maintenance
phase for modified objects to avoid the deletion and re-creation of condition test results.

Realization for Evaluation
This thesis contributes an implementation of the developed concepts for an evaluation of these
concepts. The realization demonstrates the concepts by means of case studies.

Evaluation of the Modeling Language and Maintenance Algorithms
This thesis contributes a modeling and performance evaluation of the developed concepts.
The modeling evaluation demonstrates the effectiveness of the proposed modeling language
and shows that a graph data model for storing graph pattern matches reduces the modeling
effort for graph queries, which define the kinds of graph pattern matches that are stored by
graph views. The performance evaluation shows that the employed Gator network structures
can outperform equivalent Rete network structures for incremental view maintenance in
time and space at the same time. Furthermore, the performance evaluation shows that the
proposed approach for incremental view maintenance can outperform existing approaches for
incremental graph pattern matchings that base on generated Rete network structures.

Beyond this Thesis
This thesis aims for a modeling approach that enables users to model discrimination network
structures manually to control the trade-off between time and space complexity. An automatic
optimization of discrimination network structures is not in the scope of this thesis.
This thesis aims for an efficient and scalable incremental maintenance of graph views. A

parallel execution of discrimination networks is left for future work.
This thesis does not consider the equivalence of stated queries with the queries for which

views enumerate matches. Thus, this thesis does not relate stated queries to graph views that
store matches for these queries.

1.5. Outline
This thesis is structured as follows. Chapter 2 describes the foundations of this thesis.
Chapter 3 introduces the running example that is used throughout this thesis. Chapter 4
describes the requirements that are addressed in this thesis and gives an overview of the
concepts that are presented in this thesis. Chapter 5 describes employed graph data models
for base graphs and graph views. Chapter 6 presents the modeling language for the definition
of graph views by means of discrimination networks. Chapter 7 describes the transformation
of graph views to create and maintain views. Chapter 8 describes batch and maintenance
algorithms for the maintenance of graph views. Chapter 9 optimizes these maintenance
algorithms to handle duplicates in graph views efficiently. Chapter 10 compares the proposed
approach with related approaches for the definition of graph views. Chapter 11 compares the
proposed approach with related approaches concerning the memory consumption of graph
views and the execution time of the maintenance algorithms. Chapter 12 describes related
work and compares it with the proposed approach. Chapter 13 concludes this thesis and
outlines the horizon of possible future work.
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2. Foundations

This chapter introduces the conceptual foundations on which the remainder of this thesis
builds. Section 2.1 describes the notion of graphs and graph transformations. Section 2.2
describes the notion of models and metamodels as special kinds of graphs.

2.1. Graphs and Graph Transformations

This section explains the concepts of graphs and graph transformations. This thesis describes
the developed concepts by using the example of directed typed attributed graphs. Note that
the developed concepts can be adapted for other kinds of graph as well, e. g. hypergraphs or
nested graphs [2]. Section 2.1.1 describes graphs as means to store entities and relationships
between these entities. Section 2.1.2 describes graph transformations as means to manipulate
entities and their relationships. The following definitions are adapted from [16, 38, 41, 66].

2.1.1. Graphs

Graphs are general-purpose data structures that store entities and relationships between these
entities. According to Definition 1, graphs consist of graph nodes and graph edges. Graph
nodes represent entities. Graph edges represent relationships between entities. Definition 1
describes graph edges as directed relationships between graph nodes. Two graph nodes are
adjacent, when a graph edge connects both graph nodes.

Definition 1 (Graph)
A graph G = (NG, EG, sG, tG) consists of

• a set NG of graph nodes,
• a set EG of graph edges,
• a source function sG : EG → NG, which returns the source node of an edge, and
• a target function tG : EG → NG, which returns the target node of an edge.

This chapter employs graphs that describe concepts of object-oriented languages as running
example. For example, the top of Figure 2.1(a) depicts a graph G that consists of the graph
nodes class1, field1, and private1 as well as the graph edges member and modifier. These graph
nodes and edges describe that a class owns a private field.

Definition 2 (Graph Morphism)
Given a graph G = (NG, EG, sG, tG) and H = (NH , EH , sH , tH), a graph morphism f : G→ H
from graph G to H is a pair of functions (fN , fE) with fN : NG → NH and fE : EG → EH ,
which map nodes and edges of G to nodes and edges of H. The following properties must hold:

• ∀e ∈ EG : fN (sG(e)) = sH(fE(e)) and
• ∀e ∈ EG : fN (tG(e)) = tH(fE(e))
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2. Foundations

According to Definition 2, a graph G exists in a graph H, if a structure-preserving mapping
from the graph nodes and edges of graph G to the graph nodes and edges of graph H exists.
That means, all adjacent nodes of graph G must be mapped to adjacent nodes of graph H.
Note, graph H may contain graph nodes and edges that are not covered by this mapping and
multiple graph nodes of graph G may be mapped to the same graph node of graph H.

For example, Figure 2.1(a) depicts that graph G exists in graph H as denoted by the dashed
lines that are labeled with the function names fN and fE . For example, the function fN maps
the class1 graph node of graph G to the class2 graph node of graph H and the function fE

maps the member graph edge of graph G to the member2 graph edge of graph H.

class1 field1 private1member modifier

class2 field2 private2member2 modifier2

field3 public1modifier1member1

fN fN fNfE fE

G

H

(a) Simple graphs and graph morphism

class2

field2

private2

field3

public1

Class

Field

<<abstract>>
Modifier

Private Public

typeN

typeN

typeN

typeN

typeN

member1
member2 membertypeE

modifier1 modifier2

typeE

typeE
typeE

modifier

Inheritance
Clan of 
Modifier

H TG

(b) Typed graph

Figure 2.1.: Graph and graph morphism

Moreover, graph nodes and edges can consist of attributes that store additional properties.
For the sake of simplicity, this chapter omits attributes of graph nodes and edges, because the
formal definitions for these kinds of graphs are complex. Lara et al. [66] formalize attributes
of graph nodes and edges as E-graphs. E-graphs are graphs that additionally consist of data
nodes that represent attributes of graph nodes and edges. These data nodes are connected to
graph nodes and edges by means of node attribute edges and edge attribute edges. Appendix A
provides the formal definitions for E-graphs and beyond.

This thesis employs (attributed) typed graphs with type inheritance. Definition 3 introduces
the notion of type graphs that describe types of graph nodes and edges that can exist in
graphs. According to Definition 4, these types of graph nodes constitute a type hierarchy.

Definition 3 (Type Graph with Inheritance)
A type graph with inheritance TG = (T, I, A) consists of

• a graph T = (NT , ET , sT , tT ),
• an inheritance relation I ⊆ NT ×NT , and
• a set A ⊆ NT of abstract nodes.

The inheritance relation is

• reflexive: (n, n) ∈ I
• anti-symmetric: (m, n) ∈ I ∧ (n, m) ∈ I ⇒ m = n, and
• transitive: (m, n) ∈ I ∧ (n, o) ∈ I ⇒ (m, o) ∈ I
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2.1. Graphs and Graph Transformations

Definition 4 (Inheritance Clan)
Given a type graph with inheritance TG = (T, I, A) and T = (NT , ET , sT , tT ), an inheritance
clan is defined by clanI(n) = {m|m, n ∈ NT ∧ (m, n) ∈ I}. If m ∈ clanI(n), than m inherits
from n and this thesis writes m < n as shorthand notation.

For example, Figure 2.1(b) depicts the graph H that is typed over graph TG. The type
graph TG describes that classes consist of fields. Furthermore, fields consist of modifiers such
as private and public visibilities. The dotted rectangle denotes the inheritance clan of the
Modifier graph node that contains the graph nodes Modifier, Private, and Public. Furthermore,
the Modifier graph node belongs to the set A of abstract graph nodes.

According to Definition 5, a graph is a typed graph, when each graph node and edge has a
type. These types are defined by means of graph nodes and edges of a type graph.

Definition 5 (Typed Graph)
Given a graph G = (NG, EG, sG, tG), a type graph TG = (T, I, A) with T = (NT , ET , sT , tT ),
and a graph morphism type : G → TG, which consists of two functions typeN : NG → NT

and typeE : EG → ET that assign graph nodes and edges of T to the graph nodes and edges of
G, then graph G is a typed graph over TG, if the following conditions hold:

• ∀e ∈ EG : typeN (sG(e)) < sT (typeE(e)) and
• ∀e ∈ EG : typeN (tG(e)) < tT (typeE(e))

For example, Figure 2.1(b) shows dashed lines that are labeled with the function names
typeN and typeE . For example, the function typeN assigns the Class node type of the type
graph TG to the class graph node of graph H and the function typeE assigns the member
edge type of the type graph TG to the member1 and member2 graph edges of graph H.

Definition 6 extends the Definition 2 of graph morphisms in a manner that types of mapped
graph nodes and edges must be compatible as well.

Definition 6 (Typed Graph Morphism)
Given two graph G = (NG, EG, sG, tG) and H = (NH , EH , sH , tH) over a type graph TG, a
pair of functions (fN , fE) with fN : NG → NH and fE : EG → EH is a typed graph morphism,
if the following conditions hold:

• ∀e ∈ EG : fN (sG(e)) = sH(fE(e)) ∧ fN (tG(e)) = tH(fE(e)) (structure compatibility)
• ∀n ∈ NG : typeN (fN (n)) < typeN (n) (type compatibility)
• ∀e ∈ NE : typeE(fE(e)) = typeE(e) (type compatibility)

For example, Figure 2.2 shows the graphs G and H that are typed over graph TG. The
graph G exists in graph H as denoted by the dashed lines that are labeled with the function
name fN . Additionally, the mapped graph nodes and edges have the same types as denoted by
the dashed lines that are labeled with the function name typeN . For example, the function fN

maps the class1 graph node of graph G to the class2 graph node of graph H and the function
typeN describes that both graph nodes are of the same Class node type. For readability,
Figure 2.2 neglects the functions fE and typeE .

2.1.2. Graph Transformations
Graph transformations consists of graph transformation rules that modify graphs, when
certain conditions are satisfied. These conditions are defined by means of graph patterns. The
modifications of graphs are defined by rule applications.
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class1

field1

private1

member

modifier

class2

field2

private2

member2
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TG

typeN

typeN

typeN
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modifier

typeN

typeN

typeN

typeN

typeN

fN

fN

fN

Figure 2.2.: Typed graph morphism

Definition 7 defines a graph pattern as a typed graph P for which copies in another graph
G may exist and a set of typed graphs {Nj , j ∈ J} that contain P as subgraph and for which
copies must not exist in graph G.

Definition 7 (Graph Pattern)
A graph pattern Π = (P, {Nj , j ∈ J}) consists of a typed graph P and a finite set of typed
graphs Nj that contain P as subgraph. For the graph pattern (P, ∅), this thesis writes P .

This thesis refers to the graph nodes and edges of graph P and Nj as pattern nodes
and pattern edges, respectively. This thesis refers to the graph P as positive application
condition (PAC) and to Nj as negative application condition (NAC).

For example, Figure 2.3 shows four graph patterns. The examples neglect the type graph.
Instead, the graph nodes are labeled with the name and type of the graph node separated by
a colon. The examples omit the types of graph edges. The rounded rectangles denote the
PACs and NACs. The graph pattern in Figure 2.3(a) searches for classes with private fields.
The graph pattern in Figure 2.3(b) searches for classes with fields that are not private. The
graph pattern in Figure 2.3(c) searches for classes that have no private fields.
As a shorthand notation, this thesis crosses out graph nodes and edges of NACs that do

not belong to PACs. Figure 2.3(d) depicts the pattern of Figure 2.3(c) in shorthand notation.
According to Definition 8, this thesis distinguishes simple and complex NACs.

Definition 8 (Simple and Complex NAC)
Given a graph pattern Π = (P, {Nj , j ∈ J}), Nj is a simple NAC, if all graph nodes of Nj \ P
are directly connected to graph nodes of subgraph P and no graph edges exist that connect
the graph nodes of Nj \ P . Nj is a complex NAC, if at least one graph node of Nj \ P is not
directly connected to graph nodes of subgraph P or graph edges exist that connect the graph
nodes of Nj \ P .

Figure 2.3(b) shows a simple NAC, because all graph nodes of the NAC N \P are connected
to the graph nodes of the PAC P and the graph nodes of the NAC N \ P own no additional
graph edges that connect graph nodes of the NAC N \ P . Figure 2.3(c) shows a complex
NAC, because the private graph node is not directly connected to a graph node of PAC P .

According to Definition 9, copies of a sample graph P in another graph G are called graph
pattern match, when no copies of Nj containing P exist in graph G.
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private :
Private

member

modifier

P

(a) PAC
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private :
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(c) Complex NAC

class :
Class

field :
Field

member

private :
Private

modifier

(d) Shorthand notation

Figure 2.3.: Sample graph patterns

Definition 9 (Graph Pattern Match)
Given a graph pattern Π = (P, {Nj , j ∈ J}) and a graph G, then each injective typed graph
morphism m : P → G such that there does not exist an injective typed graph morphism
q : Nj → G with q being identical to m on P , is called a graph pattern match of the graph
pattern Π in G. This thesis refers to a graph pattern match as match.

For example, Figure 2.4 shows the two graph patterns P1 and P2 that have matches in
graph H as denoted by the dashed lines with fN and fE label. The graph pattern P1 (cf.
Figure 2.3(a)) matches the graph nodes class2, field2, and private2 of graph H. The graph
pattern P2 (cf. Figure 2.3(b)) matches the graph nodes class2 and field3 of graph H.

class1 :
Class

field1 :
Field

private1 :
Private

member modifier

class2 : 
Class

field2 :
Field

private2 :
Privatemember2 modifier2

field3 : 
Field

public1 :
Public

modifier1member3

fN fN fNfE fE

P1

H

class3 :
Class

field4:
Field

private3 :
Privatemember

modifier

fE

P2

fNfN

Figure 2.4.: Graph pattern match

A graph transformation rule describes how and under which conditions graphs are modified
by adding or removing graph nodes and edges. A graph transformation rule consists of a left-
hand side (LHS) graph pattern ΠLHS and right-hand side (RHS) graph pattern ΠRHS . The
left-hand side graph pattern describes the pre-conditions under which the graph transformation
rule modifies a graph. The right-hand side graph pattern describes the post-conditions that
must be satisfied by a graph, after the graph transformation rule is applied.

Definition 10 (Graph Transformation Rule)
A graph transformation rule r : 〈ΠLHS , ΠRHS〉 consists a left-hand side ΠLHS = (L, {Nj , j ∈
J}) and right-hand side ΠRHS = R graph pattern. The set del(r) = L \ (L ∩R) is the part of
the graph G that is deleted by the rule r. The set cre(r) = R \ (L∩R) is the part of the graph
G that is created by the rule r.
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For example, Figure 2.5(a) shows the left-hand side and right-hand side graph pattern of a
graph transformation rule. This rule transforms all public fields of a class into private fields.
Figure 2.5(b) shows the shorthand notation of this rule. The shorthand notation combines the
left-hand side and right-hand side graph pattern in one graph pattern that consists of graph
node and edge modifiers. These modifiers describe which graph node and edge is deleted,
created, or preserved, when the graph transformation rule is applied. The shorthand notation
labels graph nodes and edges that are deleted or created with “- -” and “++”, respectively.
The shorthand notation does not label graph nodes and edges that are preserved, when the
graph transformation is applied. Thus, the notation depicts the left-hand side pattern as graph
nodes and edges with “- -” labels and without labels. The notation depicts the right-hand
side pattern as graph nodes and edges with “++” labels and without labels.

class :
Class

field :
Field

public :
Public

member

modifier

class :
Class

field :
Field

private :
Private

member

modifier
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(a) Transformation rule
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(b) Shorthand notation
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class :
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field :
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private :
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modifier

G' G D 

Delete Create 

(c) Rule application

Figure 2.5.: Graph transformation rule and application

A graph transformation rule is applicable, if a match for the left-hand side of the graph
transformation rule exists. Definition 11 distinguishes the single-pushout (SPO) and the
double-pushout (DPO) approach. The SPO approach permits implicit side-effects. When the
right-hand side of the graph transformation rule deletes graph nodes, some graph edges may
be dangling. The SPO approach deletes these dangling graph edges too, even if the graph
transformation rule does not describe this deletion explicitly. The DPO approach does not
permit implicit side-effects and does not apply the graph transformation rule, even if a match
for the left-hand side of the graph transformation rule exists.

Definition 11 (Graph Transformation Rule Applicability)
A graph transformation rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Nj , j ∈ J}) and ΠRHS = R
is applicable to a graph G in the double-pushout approach, if there exists a match m : L→ G
for ΠLHS in G that fulfills the dangling edge condition.
The dangling edge condition dan(m, r) = {e|e ∈ EG, sG(e) ∨ tG(e) ∈ m(del(r)), e /∈

m(del(r))} is the set of dangling edges in G for match m and rule r. The match m ful-
fills the dangling edge condition for rule r, if dan(m, r) is empty.
A graph transformation rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Nj , j ∈ J}) and ΠRHS =

R is applicable to a graph G in the single-pushout approach, if there exists a match m : L→ G
for ΠLHS in G.

When a match for the left-hand side of the graph transformation rule exists, the graph
transformation rule is applied for this match. Then, the result of the rule application must
satisfy the right-hand side of the graph transformation rule. According to Definition 12, this
rule application consists of two construction steps. First, the rule application deletes all
graph nodes and edges (incl. dangling graph edges) that are not preserved by the right-hand
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side of the graph transformation rule. The result is an intermediate graph. Second, the rule
application creates graph nodes and edges in the graph by means of a gluing construction that
copies the graph nodes that are created by the right-hand side of the graph transformation
rule into the intermediate graph.

Definition 12 (Graph Transformation Rule Application)
A rule application G

r,m⇒ H from graph G to graph H by means of an applicable rule r :
〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Nj , j ∈ J}) and ΠRHS = R and a match m : L → G is
constructed as follows.

• Delete graph nodes and edges incl. dangling graph edges: D = G\(m(del(r))∪dan(m, r))
• Create graph nodes and edges: H = D ∪ i(R) with i : R→ i(R) a graph isomorphism
identical to m on elements of L ∩R and disjoint with D on elements in cre(r).

For example, Figure 2.5(c) shows how the graph transformation rule of Figure 2.5(b)
transforms graph G via the intermediate graph D into graph G′. First, this rule removes the
public graph node from graph G and derives the intermediate graph D. Second, this rule
creates the private graph node and links it to the field graph node by creating a modifier graph
edge. The result is the derived graph G′.
The Definition 13 describes a graph transformation as a sequence of multiple graph trans-

formation rule applications that transform a graph into another graph.

Definition 13 (Graph Transformation)
A graph transformation G0

∗⇒ Gn is a sequence G0 ⇒ . . .⇒ Gn with n ≥ 0 rule applications.

According to Definition 14, a graph pattern is a graph condition that can consist of other
graph conditions by means of conjunctions, disjunctions, and negations.

Definition 14 (Graph Conditions)
A graph pattern Π = (P, {Nj , j ∈ J}) is a graph condition. Any combination of two graph
conditions p and q of the form p∧ q, p∨ q, and ¬q is also a graph condition. A graph condition
p satisfies a graph G (written G |= p), if

• a match exists for graph pattern p in G,
• p = p1 ∧ p2, then p is satisfied, if G |= p1 and G |= p2
• p = p1 ∨ p2, then p is satisfied, if G |= p1 or G |= p2
• p = ¬p1, then p is satisfied, if ¬(G |= p1).

Definition 15 (Recursive Graph Conditions)
A graph condition p is a recursive graph condition, if it refers to graph condition p, e. g.,
p = p ∧ q or p = p ∨ q.

Definition 16 (Graph Query)
A graph query is a (recursive) graph condition. The query results are graph pattern matches.

2.2. Models and Metamodels
In software engineering, models and metamodels are special kinds of graphs. A metamodel is
an (attributed) type graph that defines additional properties such as graph edge cardinalities
and containment hierarchies. A metamodel describes the concepts of a modeling language.
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A model is a typed (attributed) graph that must adhere to a metamodel, i. e., a model
is an instance of a metamodel. A model is expressed either in abstract syntax or concrete
syntax. The abstract syntax shows all graph nodes and edges that belong to the model. The
concrete syntax represents a model in a textual or graphical notation and neglects details of
the abstract syntax.

name : String

<<abstract>>
NamedElement

Class Member

MethodField

Modifier

Public Privatemembers

type

modifiers

(a) Metamodel (UML class diagram)

name = "Person"
c1: Class

name = "String"
c2: Class

name = "name"
f : Field

name = "getName"
m : Method

private : Private

public : Public

type

modifiers

type

modifiers

members

members

(b) Abstract syntax graph (UML object diagram)

- name : String
Person

+ getName() : String

(c) Graphical Notation (UML class diagram)

class Person {
  private String name;
  public String getName {
  ...
  };
}

(d) Textual Notation (Java Syntax)

Figure 2.6.: Metamodel and models of a simple object-oriented language

For example, Figure 2.6(a) depicts a simple metamodel for an object-oriented language by
means of an Unified Modeling Language (UML) class diagram. The metamodel describes that
the language consists of classes, which own members such as fields and methods that have a
type. Furthermore, classes and members have a name. Additionally, members own modifiers
such as public and private visibilities, respectively. Figure 2.6(b) depicts an instance of this
metamodel by means of an UML object diagram. The model describes a Person class that
owns a private name field and a public getName method. The data type of the field and the
return type of the method is the String class. Figure 2.6(c) borrows the notation of UML class
diagrams to depict the model in concrete syntax. Figure 2.6(d) employs the textual syntax of
the Java programming language to describe the model.

Depending on the graph pattern language, models in abstract or concrete syntax are used to
describe graph patterns (cf. Definition 9). Additionally, these pattern languages provide the
Object Constraint Language (OCL) [77] and OCL-like expression languages for the definition
of attribute constraints such as constraints that check the equality of attribute values. These
languages enable to describe arithmetic and logical expressions. These expressions must be
satisfied by graph nodes and edges that constitute graph pattern matches.
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The running example, which is used throughout this thesis, deals with the detection of
employed software design patterns and recommended software refactorings. Software design
patterns describe best-practices for the design of software architectures. Gamma et al. [35]
describe creational, structural, and behavioral design patterns. Software refactorings aim for
improving the internal structure of existing source code. Fowler et al. [33] describe software
refactorings as architectural design flaws in source code. They recommend how such design
flaws should be refactored to improve the design of the source code while preserving the
external behavior of the software. Fowler et al. [33] describe several software refactorings
such as how to deal with generalizations, make method calls simpler, or simplify conditional
expressions. This thesis refers to software refactorings as software design anti-patterns. This
thesis uses the term design pattern as umbrella term for design pattern and anti-pattern.
This thesis uses the example of software design patterns and anti-patterns, because a) a

large number of software repositories exists that provide large-scale source code together with
a real history of changes and b) real graph queries can be derived from the descriptions of
design patterns [33, 35]. The running example employs abstract syntax graphs (ASGs) of
object-oriented source code as base graphs and searches for locations in these ASGs, where
software design patterns are employed and software refactorings should be employed. The
running example aims for storing and maintaining such locations by means of graph pattern
matches (cf. Definition 9) in graph views. For example, when a design pattern appears in
ASGs due to changes of the source code, the design pattern must be also added to the view.
When a design pattern disappears from ASGs due to changes of the source code, the design
pattern must be also removed from the view.
Detecting such design patterns in ASGs is a difficult task, because multiple variants of

software design patterns and anti-patterns exist in practice, which have to be considered by
the detection procedure. For that purpose, the running example employs graph conditions (cf.
Definition 14) that support nested disjunctions, conjunctions, and negations to express graph
patterns that cover these variants of the design patterns. Then, the running example employs
graph pattern matching (cf. Definition 9) to find subgraphs in ASGs that satisfy these graph
conditions and, therefore, represent matches of design patterns. The graph views store and
maintain these graph pattern matches.

For the detection of design patterns, this thesis adapts the approach of Niere et al. [75, 76].
Approaches for the detection of design patterns that employ heuristics or metrics [70, 79] are
not in the scope of the running example. The running example employs an approximation for
detecting design patterns. That means, the running example does not aim for detecting the
employed design patterns fully correct and complete in all possible implementation variants.
Instead, the running example serves as means to describe the definition and maintenance of
graph views. Appendix F provides a list of all employed graph patterns.

Section 3.1 describes examples for design patterns. Section 3.2 describes the composition of
design patterns. Section 3.3 describes the used type graph and graph conditions for detecting
design patterns. Section 3.4 summarizes this chapter.
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3.1. Software Design Patterns and Anti-Patterns

This section describes examples for software design patterns and anti-patterns that are used
for explanations in this thesis. Figure 3.1 shows the Composite and Decorator software design
patterns as defined by Gamma et al. [35]. Figure 3.2 depicts the Extract Interface design
anti-pattern as defined by Fowler et al. [33]. Both figures employ UML class diagrams.

Composite Design Pattern
Figure 3.1(a) shows the Composite design pattern that has the intention to “compose objects
into tree structures to represent part-whole hierarchies” [35, p. 163]. Furthermore, the “Com-
posite lets clients treat individual objects and compositions of objects uniformly” [35, p. 163].
The Composite design pattern consists of four parts called component, composite, leaf, and
client. The component defines an interface and implements the default behavior for all objects
in the composition. The composite describes the behavior of all objects in the composition such
as other composites or leafs. For that purpose, the composite stores all children components
as denoted by the children aggregation between the Composite class and Component class. The
children aggregation describes the part-whole hierarchy of the composition. The composite and
leaf are themselves specializations of the component as denoted by the inheritance relationship
between the Component class and Composite class as well as the Component class and Leaf
class. Leafs are objects in the composition that do not have children. Clients manipulate the
tree-structure of the composition. For that purpose, composites enable to add and remove
other composites and leafs to / from the tree structure. Furthermore, when clients call certain
operations, composites propagate these operation calls to all children in the composition.

<<abstract>>
Component

*

children

Composite
+ Operation()
+ Add(Component)
+ Remove(Component)

+ Operation()
+ Add(Component)
+ Remove(Component)

foreach child in children:
child.Operation()

Client

Leaf

+ Operation()

(a) UML class diagram of the Composite design
pattern (adapted from [35, p. 164])

<<abstract>>
Component

component

<<abstract>>
Decorator

+ Operation()

ConcreteComponent

+ Operation()

component->Operation()

Client

+ Operation()

ConcreteDecoratorA

+ Operation()
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(b) UML class diagram of the Decorator design
pattern (adapted from [35, p. 177])

Figure 3.1.: Running example for software design patterns

In practice, several variants of the Composite design pattern exist. For example, the
Component class can be replaced by an interface that defines the methods that must be
implemented by the Leaf and Composite class. Furthermore, also multi-level inheritance
between classes in the Composite design pattern can be employed. Note that also interfaces
and multi-level inheritance can be combined to implement variants of Composite design
patterns. Furthermore, the Leaf class is an optional part of the Composite design pattern and
can be missing. Moreover, Gamma et al. [35] describe that the children association between
the Composite class and Component class has an unbounded multiplicity. However, in practice
also aggregations with bounded multiplicity can be employed, when the number of children in
the composites has an upper bound.
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Decorator Design Pattern
Figure 3.1(b) shows the Decorator design pattern that has the intention to “add additional
responsibilities to an object dynamically” [35, p. 175]. The concept of decorators is an alter-
native to the concept of subclasses, when the functionality of a class has to be extended.
The Decorator design pattern consists of five parts called component, concrete component,
decorator, concrete decorator, and client. The component defines a common interface for
all objects that can be extended by additional functionality. The concrete component is a
component that defines objects that can be extended with additional functionality by adding
decorators. For that purpose, the ConcreteComponent class is a specialization of the Component
class. The decorator is a component that implements the additional functionality that is
added to concrete components. For that purpose, the Decorator class is a specialization of
the Component class and the Decorator class owns a component association that targets the
component that is extended by the decorator. Furthermore, several concrete decorators can
exist that extend the default decorator. Concrete decorators add additional functionality
to the default decorator by overriding inherited methods. Note that decorators are also
components and can be extended by additional decorators, too.

As illustrated by Figure 3.1, the Composite and Decorator design patterns have structural
properties in common such as the inheritance hierarchies between the Component class and
Composite class as well as the Component class and Decorator class, respectively. Furthermore,
variants of the Decorator design pattern exist that are similar to the variants of the Composite
design pattern. Therefore, the Decorator design pattern can be considered as extension of
the Composite design pattern. However, in comparison to the Composite design pattern the
Decorator design pattern employs a component association with a bounded multiplicity of
one, while the Composite design pattern employs a children association with an unbounded
multiplicity. This difference must be considered, when reusing detected Composite design
patterns for detecting Decorator design patterns.

<<Interface>>
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+ getRate() : Double
+ hasSpecialSkills() : Bool

Employee

+ getRate() : Double
+ hasSpecialSkill() : Bool
# getName() : String
# getDeparment() : String

Employee

+ getRate() : Double
+ hasSpecialSkill() : Bool
# getName() : String
# getDepartment() : String

Client

Client

PaySlipGenerator

PaySlipGenerator

Anti-Pattern Recommended Refactoring

<<Interface>>
Billable

public getRate()
public hasSpecialSkills()

Figure 3.2.: UML class diagram of the Extract Interface design anti-pattern (cf. [33, p. 341])

Extract Interface Design Anti-Pattern
Figure 3.2 shows the Extract Interface software design anti-pattern that has the intention to
derive a common interface, when “several clients use the same subset of a class’s interface,
or two classes have parts of their interfaces in common” [33, p. 341]. An explicit interface
should be extracted to enable certain groups of clients to use a certain subset of the methods
in a uniform way. The Extract Interface software design anti-pattern does not describe which
methods should be extracted and how many interfaces should be derived. This decision is left
to the person, who performs the software refactoring.
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Figure 3.2 depicts an Employee class that consist of the public methods getRate and
hasSpecialSkills among other methods. A pay slip generator uses the public getRate and
hasSpecialSkills methods to compute the salary of employees. Therefore, the Billable interface
should be extracted that defines the signature of the getRate and hasSpecialSkills methods.
Then, the classes that implement the Billable interface can be processed by the pay slip
generator or different kinds of pay slip generators in a uniform way.

3.2. Composition of Design Patterns and Anti-Patterns
Software design patterns and anti-patterns are high-level graph patterns that can be composed
of lower-level graph patterns such as patterns for generalizations or associations. When
graph pattern matches for high-level patterns have to be found, graph pattern matches for
lower-level patterns can be looked up first and, afterwards, these matches can be reused to
lookup matches for high-level patterns. Thus, graph views that store matches of high-level
patterns can reuse the matches of lower-level patterns that are stored by other views.
Figure 3.3 shows kinds of graph patterns by means of a type graph (cf. Definition 3) for

design patterns. The type graph depicts specializations of graph patterns by means of a type
hierarchy and which kinds of patterns reuse other kinds of patterns. Also other compositions
are possible, but they are not in the scope of the running example. Figure 3.3 shows the
decomposition of the Composite and Decorator design patterns as well as the Extract Interface
design anti-pattern into lower-level patterns.

DesignPattern

Composite Decorator

Association

ToManyAssocation

ToNAssocation

ToOneAssocation

DesignAntiPattern

reuses

reuses ExtractInterface

MethodOverride

reuses

Hierarchy

Generalization Interface-
Implementation

MultiLevel-
Generalization

MultiLevel-
Interface-

Implementation

reuses

reuses reusesreuses

reuses

reuses

Figure 3.3.: UML class diagram that describes the decomposition of design (anti-)patterns

The Composite graph pattern refers to the Composite design pattern. The Composite
pattern is a high-level pattern, because it reuses the Association and Hierarchy patterns. As
described in Section 3.1 multiple variants of the Composite design pattern exist. The Composite
pattern deals with these variants, because it reuses the Association and Hierarchy patterns
that consider variants of associations, generalizations, and interface implementations.

The Association pattern is a low-level pattern. The ToOne Association, ToN Association, and
ToMany Association patterns are specializations of the general Association pattern. The ToOne
Association pattern refers to associations with a multiplicity of one. The ToN Association
pattern refers to associations with a bounded multiplicity of N. The ToMany Association
pattern refers to associations with an unbounded multiplicity.

The Hierarchy graph pattern refers to several kinds of hierarchies. This thesis distinguishes
Generalization and Interface Implementation patterns as specializations of the general Hierarchy
pattern. The Generalization pattern refers to classes that extend other classes without any
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intermediate classes in between. This thesis refers to this kind of generalizations as single-level
generalizations. The Interface Implementation pattern refers to classes that implement an
interface without any intermediate classes in between. This thesis refers to this kind of
interface implementations as single-level interface implementations.

The Multi-Level Generalization pattern is a specialization of the Generalization pattern. The
Multi-Level Generalization pattern refers to classes that extend other classes with at least one
intermediate class in between. This thesis refers to this kind of generalizations as multi-level
generalizations. The Multi-Level Generalization pattern reuses the Generalization patterns
(incl. Multi-Level Generalization pattern), because multi-level generalizations are recursively
composed of single-level and multi-level generalizations.
The Multi-Level Interface Implementation pattern is a specialization of the Interface Imple-

mentation pattern. The Multi-Level Interface Implementation pattern refers to classes that
are subclasses of other classes that implement an interface. This thesis refers to this kind
of interface implementations as multi-level interface implementations. Therefore, the Multi-
Level Interface Implementation pattern reuses the Generalization patterns (incl. Multi-Level
Generalization pattern) and the Interface Implementation pattern.

The Decorator graph pattern refers to the Decorator design pattern. The Decorator pattern
is a high-level pattern, because it reuses the Composite pattern and Method Override pattern.
The Method Override pattern refers to methods that are overridden in subclasses. Therefore,
the Method Override pattern reuses the Generalization patterns.

The Decorator design pattern is an extension of the Composite design pattern as described
in Section 3.1. Therefore, the Decorator pattern reuses the Composite pattern due to their
structural similarities. The Decorator pattern considers variants of the Decorator design
pattern, because the Composite pattern considers these variants already.

The Extract Interface pattern refers to the Extract Interface design anti-pattern. The Extract
Interface pattern is a high-level pattern, because it reuses the Interface Implementation patterns.

3.3. Query Software Design Patterns and Anti-Patterns

This section describes which kinds of graph nodes and edges are stored by base graphs and
which kinds of graph pattern matches are stored by graph views. Section 3.3.1 describes
the type graph of base graphs. Afterwards, Section 3.3.2 describes graph patterns that are
employed to query the base graphs for design patterns. Later on, these patterns are used to
specify the content of graph views.

3.3.1. Type Graph of Base Graphs

Figure 3.4 depicts the type graph of base graphs by means of a metamodel (cf. Section 2.2). The
metamodel describes general concepts of object-oriented languages such as classes, attributes
and operations. The metamodel is derived from the Java Model Parser and Printer (JaMoPP)
metamodel [53] that describes the language concepts of the Java programming language. For
the sake of simplicity, the metamodel is an excerpt and simplified version of the JaMoPP
metamodel and assumes that all references can be traversed in forward and backward direction.
The metamodel is designed in a way that it is not dedicated to any object-oriented language.

The metamodel in Figure 3.4 distinguishes Types and TypeReferences. Types describe kinds
of object-oriented concepts and, therefore, consist of several specializations. Types are either
primitive types, e. g. integers and booleans, or classifiers, e. g. classes and interfaces. Furthermore,
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Figure 3.4.: UML class diagram that describes the type graph of base graphs as metamodel

classifiers consist of a name that describes the intention of the type. Type references enable
other concepts to refer to types that are defined in the same or a different namespace.

The classifiers own members that describe attributes and operations of classifiers. Therefore,
members have a name, type, and modifier. The member name describes the intention of the
member. The member type enables to refer to primitive types or classifiers that describe the
type of a field or the type of a return value of a method. The member modifier describes
the visibility and accessibility of members. For example, the metamodel distinguishes public,
private, and protected visibilities. Fields are specializations of members and describe attributes
or associations of classes. Furthermore, fields can consist of a dimension that describes a
bounded number of elements that are stored by a field. Methods are specializations of members
and describe operations that are provided by classifiers. Methods can own parameters that
consist of a name and type. Classes, members, and parameters refer to other types by means
of type references. Classes refer to other types, when they extend another class or implement
an interface. Members use type references to describe the type of fields and return values of
methods. Parameters use type references to describe their types.
The metamodel distinguishes type references into namespaces and references. Namespaces

enable to refer to the namespaces of types. References enable to refer to types in a certain
namespace. Furthermore, references can consist of type arguments to describe parameterized
types. For example, when a reference refers to a type that describes a data structure, a type
argument is used to describe the type of the elements that are stored in the data structure.

3.3.2. Graph Patterns for Graph Views

This section describes graph patterns that represent software design patterns and anti-patterns.
First, this section describes low-level patterns. Afterwards, this section reuses these low-level
patterns to compose high-level patterns. The graph patterns base on the type graph that is
described in Section 3.3.1. The rest of this thesis, refers to these patterns to query base graphs
for design patterns and to describe the kinds of graph pattern matches that are maintained
by graph views. These patterns are approximations of design patterns, which rather aim
for conveying the developed concepts than supporting an accurate and complete detection
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of design patterns. The following paragraphs describe the graph patterns in concrete and
abstract syntax by means of UML class diagrams and UML object diagrams, respectively.
Chapter 2 introduces the notation of the concrete and abstract syntax.

Low-Level Graph Patterns

The following sections describe low-level patterns such as patterns for querying hierarchies,
associations, and overriding methods.

Hierarchy patterns
Figure 3.5 shows the Generalization, Multi-Level Generalization, Interface Implementation, and
Multi-Level Interface Implementation patterns as variants of the general Hierarchy pattern
(cf. Section 3.2). These variants can be composed by means of disjunctions in high-level
graph patterns to handle the detection of implementation variants of design patterns, e. g.,
Composite design patterns that employ single-level or multi-level generalizations.
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Figure 3.5.: Kinds of Hierarchy patterns as running example

Figure 3.5(a) depicts the Generalization pattern, which describes a single-level generalization
between a superclass A and a subclass B. In the abstract syntax, the subclass references the
superclass by means of an extends edge that refers to the namespace that owns the superclass.
Figure 3.5(b) depicts the Interface Implementation pattern, which describes a class A that

implements an interface I. In the abstract syntax, the Interface Implementation pattern is
similar to the Generalization pattern, but differs in the implements edge, which references the
namespace that contains the interface.

Figure 3.5(c) depicts the Multi-Level Generalization pattern, which describes a generalization
with at least two inheritance levels between the outermost classes A and C. A multi-level
generalization exists, when the subclass B of the upper generalization and the superclass B
of the lower generalization are the same. The embedded Generalization patterns can be also
replaced by the Multi-Level Generalization patterns with two or more inheritance levels. Then,
the same condition must hold for the lower and upper multi-level generalization.

Figure 3.5(d) depicts the Multi-Level Interface Implementation pattern, which describes that
class A implements an interface I and class B extends class A at the same time. A multi-level
interface implementation exists, when a superclass A of a generalization implements an interface
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I. Then, class B implements interface I, too. Note that the Generalization pattern can be also
replaced by the Multi-Level Generalization pattern with two or more inheritance levels.

Association patterns
Figure 3.6 shows the ToOne Association, ToN Association, and ToMany Association patterns as
variants of the general Association pattern (cf. Section 3.2). High-level graph patterns can
compose these variants by means of disjunctions to handle implementation variants of design
patterns that employ different kinds of associations. For example, the Composite design
pattern can employ associations with bounded or unbounded multiplicity.
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Figure 3.6.: Kinds of Association patterns as running example

Figure 3.6(a) depicts the ToOne Association pattern, which describes an association with a
multiplicity of one. A class owns such an association, when it consists of a field that refers to
a namespace, which contains the classifier that describes the type of the field.
Figure 3.6(b) depicts the ToN Association pattern, which describes an association with a

bounded multiplicity that is greater than one. The ToN Association pattern is similar to the
ToOne Association pattern. When the field additionally owns a dimension, which describes
the number of elements that are stored by the field, then the association has a bounded
multiplicity that is greater than one.

Figure 3.6(c) depicts the ToMany Association pattern, which describes an association with an
unbounded multiplicity. The ToMany Association pattern is an extension of the ToN Association
pattern. Additionally, the type of the field must be a classifier of a data structure, e. g. a list
data structure, that can store other elements. The type of these elements is described by a
type argument, which references the namespace that contains this type.

Method override pattern
Figure 3.7 shows the Method Override pattern (cf. Section 3.2). The graph pattern describes
that class A is the superclass and class B is the subclass in a generalization. Furthermore,
both classes own methods that have the same names1 and do not have private visibilities.

1 The running example only checks the equality of the method names, because the complexity of the OCL
expressions (cf. Definition 2.2) that check the equality of the parameter types and the parameter orders are
very complex and are neglected in this example for the sake of simplicity.
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Figure 3.7.: Method Override pattern as running example

High-Level Graph Patterns

The following sections compose low-level graph patterns to high-level graph patterns that
represent software design patterns and anti-patterns. For the sake of simplicity, these patterns
only consider structural properties of design patterns. Behavioral properties are not in the
scope of the running example.

Composite Design Pattern
Figure 3.8(a) depicts the Composite pattern (cf. Figure 3.1(a)). According to the dependency
graph in Figure 3.3, the pattern reuses the Generalization pattern as denoted by the dotted
generalization 1 and generalization 2 rectangles as well as the ToN Association pattern as
denoted by the dotted association rectangle. The Generalization patterns overlap in the
common superclass A. Furthermore, the Association pattern overlaps in class C that owns the
association and class A that is the target of the association. Note that any combination of the
Hierarchy and Association graph patterns can be employed.
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Figure 3.8.: Kinds of Design Pattern patterns as running example

Decorator Design Pattern
Figure 3.8(b) shows the Decorator pattern (cf. Figure 3.1(b)). The Decorator pattern has
several structural properties in common with the Composite pattern such as the hierarchies
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and the association between the subclass C and its superclass A. Therefore, the Decorator
pattern reuses the Composite pattern as denoted by the dotted composite rectangle. However,
only Composite patterns are reused that employ the ToOne Association pattern, because
the Decorator software design pattern employs an association with a multiplicity of one.
Furthermore, the Decorator pattern reuses the Method Override pattern (cf. Figure 3.7) as
denoted by the dotted method override rectangle to search for overridden methods in the
subclass D. Note that similar variants of the Decorator pattern must be considered as for the
Composite pattern such as variants that employ multi-level generalizations and multi-level
interface implementations.

Extract Interface Anti-Pattern
Figure 3.9 shows the Extract Interface pattern (cf. Figure 3.2). Figure 3.9 shows that class A
implements a public method and does not implement an interface as denoted by the crossed
out interface I. In the abstract syntax, the Interface Implementation pattern is a complex NAC
(cf. Definition 8) as denoted by the crossed out namespace, reference, and interface graph
nodes (cf. Figure 2.3(d)). The Interface Implementation pattern can be also replaced by the
Multi-Level Interface Implementation pattern to cover variants of the Extract Interface pattern
that require the absence of multi-level interface implementations.
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Figure 3.9.: Extract Interface Design Anti-Pattern

3.4. Summary
This chapter introduces the detection of employed software design patterns and anti-patterns
as running example. For that purpose, the running example introduces a subset of possible
graph patterns that describe design patterns. The running example, composes high-level
patterns by means of lower-level patterns. This composition enables the reuse of lower-level
patterns by different high-level patterns.
The design of the running example enables to setup multiple graph views for different

kinds of software design patterns. From the perspective of evaluating the concepts that are
presented in this thesis, the ASGs can be easily derived from the source code of software
repositories. Moreover, these software repositories consist of change histories that can be used
to modify the ASGs accordingly. Then, these changes demand a maintenance of the graph
views that store the matches of the described graph patterns.
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4. Overview
This chapter gives an overview of the framework for incremental view graph maintenance.
First, user needs have to be identified that constitute the foundation for requirements towards
a framework for incremental view graph maintenance. This thesis distinguishes two kinds of
user groups: developers and end-users. Developers aim for increasing the throughput of graph
queries by means of graph views. For that purpose, developers are responsible to describe
which kinds of graph pattern matches are maintained by graph views and compose low-level
views to high-level views. End-users want to query graphs interactively and, thus, need low
response times of their queries. For that purpose, end-users make use of the graph pattern
matches that are maintained by graph views.

This thesis focuses on the developer user group, because this thesis primarily aims for the
effective definition as well as the efficient and scalable maintenance of graph views to increase
the throughput of graph queries that are stated by end-users.
Section 4.1 identifies the needs of developers. Section 4.2 uses these needs to derive

requirements towards a framework for incremental graph view maintenance. Section 4.3 gives
an overview of the framework and outlines why the framework satisfies the requirements.

4.1. Needs
This section describes the needs of the developers towards a framework for the incremental
maintenance of graph views. Section 4.1.1 describes needs concerning the definition of views.
Section 4.1.2 describes needs concerning the computation of the view content. Section 4.1.3
describes needs concerning the maintenance of views.

4.1.1. Definition of Graph Views (N1)
The following paragraphs describe identified user needs concerning the definition of views.

Native Graph Views (N1a)
Developers want to define graph views that keep ready graph pattern matches for graph
queries that are stated by end-users to increase the throughput of these graph queries. By
means of these graph views, developers want to enrich graph query results, hide details of
query results, and restructure query results [101]. Furthermore, developers want to employ
native graph data models to store graph pattern matches, because these graph data models
enable to employ graph operations for the definition and maintenance of graph views instead
of relational operations that can decrease the query performance [83]. Moreover, developers
and end-users want to query base graphs and graph views uniformly with graph queries.
Thus, they need views that are graphs, too. These graphs should store query results in a
memory-efficient way without copying graph nodes and edges from base graphs to views.

Creation of Graph Views (N1b)
Developers want to define single graph views that store matches of certain graph patterns.
They want to employ graph query languages they are familiar with and do not want to be
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forced to make use of a dedicated query language for the definition of graph views.
According to the running example, developers want to define views that store matches for

software design patterns and anti-patterns. For example, one view has to store all matches
of the Composite pattern (Figure 3.8(a)), while another view has to store all matches of the
Extract Interface pattern (Figure 3.9).

Composition of Graph Views (N1c)
Developers want to define graph views on top of other views to avoid redundant definitions
of graph patterns and redundant searches for graph pattern matches. They want to freely
choose a granularity level for the composition of low-level graph views to high-level graph
views that fits best for their graph queries to be able to optimize the maintenance of graph
views concerning memory consumption and maintenance execution time. They do not want
to be restricted to a certain granularity level that is imposed by the composition approach.

According to the running example, developers compose graph views that store matches of
the Multi-Level Interface Implementation pattern (cf. Figure 3.5(d)) by reusing views that store
matches of the Generalization (cf. Figure 3.5(a)), Multi-Level Generalization (cf. Figure 3.5(c)),
and Interface Implementation (cf. Figure 3.5(b)) pattern as depicted by Figure 3.3.

Referring to Graph Nodes and Edges of Graph Pattern Matches (N1d)
Developers and end-users want to retrieve graph pattern matches that are stored by graph
views. Furthermore, they want to efficiently retrieve graph nodes and edges with certain
roles in these matches without the need to match these graph nodes and edges a second time
to determine their roles. End-users want to use these roles to post-process them in their
applications. Developers want to make use of these roles, when they define views that need to
refer to the roles of graph nodes and edges in reused matches.
According to the running example, developers and end-users want to retrieve matches of

the Generalization pattern (cf. Figure 3.5(a)). End-users want to know which of both classes
in a match of the Generalization pattern acts as superclass and subclass, respectively.

Developers must be able to refer to the superclass and subclass in matches of the Generaliza-
tion pattern to describe that the lower and upper generalization of a Multi-Level Generalization
pattern must have a class in common as depicted by Figure 3.5(c).

Reasonable Expressive Power (N1e)
Current graph query languages support pattern-based and path-based search [2]. Therefore,
developers want to employ the same kinds of query languages to specify the content of views.
The employed query languages for pattern-based search often have the expressiveness of graph
conditions (cf. Definition 14). Thus, developers want to use conjunctions, disjunctions, and
negations to describe the kinds of matches that are stored by graph views. For path-based
searches, developers want to employ recursive graph conditions (cf. Definition 15).
According to the running example, when developers define a view that stores matches of

the Composite pattern (cf. Figure 3.8(a)), they have to describe a disjunction of Association
patterns (cf. Figure 3.6), a disjunction of Hierarchy patterns (cf. Figure 3.5), and a conjunction
of Hierarchy and Association patterns.
When developers define a view that stores matches of the Extract Interface pattern (cf.

Figure 3.9), they have to describe that matches of the Interface Implementation pattern (cf.
Figure 3.5(b)) must not exist to detect Extract Interface design anti-patterns.

When developers define a view that stores matches of the Multi-Level Generalization pattern
(cf. Figure 3.5(c)), they have to describe that matches of the Multi-Level Generalization pattern
base on other matches of the Multi-Level Generalization pattern, recursively.
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4.1.2. Graph Data Models and Graph Query Languages (N2)

The following paragraphs describe identified user needs concerning the graph data models
and graph query languages that should be employed for the maintenance of graph views.

User’s Choice of Graph Data Model (N2a)
Angles [2] states that different kinds of graph data models are employed to store entities and
their relationships such as simple graphs or attributed graphs, with or without labels of nodes
and edges, and directed or undirected edges. The developers expect that a framework for the
maintenance of graph views can handle different kinds of graph data models uniformly, e. g.,
the framework should support typed attributed graphs and hypergraphs1 in a uniform way.

User’s Choice of Graph Query Language (N2b)
Angles [2] states that different kinds of graph query languages exist. For example, Neo4j [82]
employs the declarative query language Cypher [82], AllegroGraph [34] employs SPARQL
[2], while other graph query approaches employ “SQL-based query languages with special
instructions for querying graphs” [2]. The developers want to employ query languages of
their choice, e. g., imperative as well as declarative query languages, and do not want to be
restricted to a certain query language for the definition of graph views.

Execute View Definitions (N2c)
Developers want to execute the definitions of graph views to initially create and, afterwards,
maintain the matches that are stored by views. In combination with need N2b - Query
Languages, different query languages must be supported by the execution.

Modify Graphs (N2d)
End-users want to modify base graphs and expect that the framework automatically maintains
the graph views to ensure that the views store correct and complete graph pattern matches.
Thus, developers need a framework that handles modifications of base graphs and triggers the
maintenance of graph views that are impacted by changes of base graphs.

4.1.3. Maintenance of Graph Views (N3)

The following sections describe the user needs concerning the maintenance of graph views.

Interactive Usage of Graph Views (N3a)
When end-users make use of graph views, they expect that the average response time of
queries is less than the response time without views. Thus, developers need to define graph
patterns that specify the content of views to decrease the response time of graph queries.

Consistent Graph Views (N3b)
When end-users state graph queries that make use of graph views, they expect that views are
consistent with the graphs from which they are derived. That means, the end-users expect
that queries retrieve the same result, when views are employed and are not employed to
answer queries. The end-users always need consistent query results.

General-Purpose Maintenance Algorithms (N3c)
The end-users and developers do not want to be responsible to keep views consist on their
own. Instead, they need general-purpose maintenance algorithms that maintain graph views,
which are derived with the help of a query language that is chosen by developers.

1Hypergraphs are graphs with n-ary graph edges.
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4.2. Requirements
The identified user needs lead to the following requirements. The framework must provide a
lightweight approach for graph views, which employs graphs to store graph pattern matches
and provides capabilities to define views and their interrelationships. Furthermore, the
framework must provide capabilities to specify the content of views and to maintain these
views to keep them consistent with the base graphs from which they are derived.

Section 4.2.1 describes how graph views should store graph pattern matches. Section 4.2.2
describes how the framework should enable to describe views and their interrelationships.
Section 4.2.3 describes how the framework should compute the content of views. Section 4.2.4
describes how the framework should maintain views. Section 4.2.5 summarizes the elicited
requirements and discusses why they cover the user needs.

4.2.1. Lightweight Graph Views (R1)
The framework must provide a lightweight approach that enables developers to store graph
pattern matches natively as graphs. The following paragraphs describe requirements con-
cerning a native graph data model for graph views (R1a), how views should store matches
(R1b), and how views should store additional properties of matches (R1c).

Native Graph Data Model for Graph Views (R1a)
This thesis employs graph data models to store entities and relationships between these
entities. According to need N1a - Native Views, developers want to employ a native graph
data model for storing graph pattern matches in graph views. This graph data model must
be generic enough to support common use cases of views such as enrich, hide, and restructure
query results. Furthermore, this graph data model must overcome expensive join operations
of relational data models, when graph edges between graph nodes have to be traversed.

Memory-Efficient Graph Views (R1b)
According to need N1a - Native Views, the graph views should store graph pattern matches in
a memory-efficient way. Thus, the framework should not copying graph nodes and edges from
base graphs to graph views to keep the memory consumption low. Instead, marking graph
pattern matches is much more efficient than copying graph nodes and edges.

Additional Properties for Stored Graph Pattern Matches (R1c)
According to need N1a - Native Views, developers want to enrich graph pattern matches with
additional knowledge that is derived from the graph nodes and edges of these matches. Thus,
the graph views must also enable to store additional data values for each found match. These
values must be maintained by the queries that define the content of views.

4.2.2. Model Graph Views (R2)
One major requirement is the effective modeling of views and their interrelationships. Modeling
of views means that the developers describe by means of a modeling language which kinds of
views exist (N1b - Single View), how these views are related (N1c - Composed Views), and how
end-users and developers can retrieve maintained matches effectively (N1d - Accessibility). The
modeling approach must support a reasonable expressiveness for views (N1e - Expressiveness).

The following paragraphs describe the requirements concerning the encapsulation of graph
queries (R2a), the effective storing of graph pattern matches (R2b), the reusability of stored
matches (R2c), and the expressiveness of the modeling approach (R2d, R2e).
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Encapsulation of Graph Queries (R2a)
According to the needs N2a - Graph Models and N2b - Query Languages, the framework must
support definitions of graph views that encapsulate graph queries in a way that the framework
abstracts from graph data models and graph query languages. This abstraction makes the
framework applicable to different kinds of graph data models and query languages, because
the framework can handle the encapsulated queries uniformly. For example, the modeling
language must enable the framework to handle imperative and declarative queries uniformly.

Effectiveness of Graph Views (R2b)
According to need N1d - Accessibility, the graph views must store graph pattern matches
effectively. That means, the roles of graph nodes and edges of graph pattern matches must be
preserved, when storing matches, to enable users to reuse these roles for post-processing, e. g.,
when they define views that build on the matches that are stored by other views.

For example, when developers create views that store matches of the Generalization pattern
(cf. Figure 3.5(a)), end-users are interested in the super- and subclasses of generalizations.
Thus, each stored match must keep track of which class acts as super- and subclass.

Reusability of Graph Views (R2c)
According to need N1b - Single View and N1c - Composed Views, the framework must enable
graph views to reuse the graph pattern matches that are stored by other graph views for
graph pattern matching. For that purpose, the modeling approach must enable to describe
dependencies between definitions of graph views. In combination with the encapsulation
of queries (R2a - Encapsulation), the modeling approach must enable developers to specify
interfaces that describe the input and output of graph views.
For example, the graph view that stores matches of the Multi-Level Generalization pattern

(cf. Figure 3.5(c)) must be able to efficiently access the super- and subclasses of matches,
which are stored by the Generalization view, to find matches of the Generalization pattern (cf.
Figure 3.5(a)) that overlap in the subclass of one match and the superclass of another match.

Nesting of Graph Conditions (R2d)
According to need N1e - Expressiveness, the language must support the modeling of graph views
that have the same expressive power as graph conditions (cf. Definition 14). In combination
with the reuse of graph views (R2c - Reusability), the language must enable developers to
model conjunctions, disjunctions, and negations, when they combine views to complex views.

According to the running example, the Composite graph view must implement disjunctions
of Hierarchy patterns, disjunctions of Association patterns, as well as conjunctions of Hierarchy
patterns and Association patterns to detect implementation variants of Composite design
patterns that employ single-level or multi-level generalizations and n-ary associations.
The graph view for the Extract Interface pattern (cf. Figure 3.9) reuses graph pattern

matches of the Interface Implementation pattern (cf. Figure 3.5(b)) in negative sense. That
means, the graph view requires the non-existence of matches of the Interface Implementation
pattern to detect Extract Interface design anti-patterns.

Recursive Graph Conditions (R2e)
According to the need N1e - Expressiveness, the modeling language must enable developers to
describe recursive graph conditions (cf. Definition 15).
According to the running example, the view that stores matches of the Multi-Level Gen-

eralization pattern (cf. Figure 3.5(c)) depends on itself, because matches of the Multi-Level
Generalization pattern can result in additional matches of the Multi-Level Generalization pattern.
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4.2.3. Embedding of Graph Queries (R3)

The framework must enable developers to employ graph queries as operationalization for the
definition of graph views (N2c - View Execution). These graph queries must search for graph
pattern matches that are maintained by graph views.
The following paragraphs describe requirements concerning the support of different kinds

of graph query languages (R3a) and the execution of embedded queries (R3b).

Support Different Kinds of Graph Pattern Matching (R3a)
According to the need N2b - Query Languages, the framework must enable developers to employ
different kinds of graph query languages to describe the graph pattern matches that are stored
by views. These query languages can employ different algorithms for pattern matching such
as injective and non-injective graph pattern matching. Thus, the framework must support
these different kinds of pattern matchings.

Employ Graph Transformations (R3b)
According to the need N1a - Native Views, views must employ a native graph data model to
store graph pattern matches. One natural way to add, remove, and update graph nodes and
edges is to employ graph transformations (cf. Definition 13). Thus, the framework should
employ graph transformations to natively maintain graph views.

4.2.4. Maintenance of Graph Views (R4)

The framework must maintain graph views, when base graphs change, to ensure that the
derived views are consistent with these base graphs (N3b - Consistency). This maintenance
must be efficient and scalable in time and space to enable an interactive usage of views (N3a -
Interactivity). The maintenance algorithms must be general enough to support arbitrary graph
query languages that are employed for the definition of views (N3c - Generic Algorithm).
The following paragraphs describe requirements towards the monitoring of graph changes

(R4a), the pruning of search spaces (R4b), and the change propagation between views (R4c).

Monitoring of Graph Changes (R4a)
According to the need N2d - Graph Modification, the framework must track changes of base
graphs to ensure the consistency of graph views (N3b - Consistency) by means of a graph view
maintenance (N3 - View Maintenance). For that purpose, the framework must monitor base
graphs and track how these base graphs change over time. The framework must relate these
changes to stored graph pattern matches of views and must trigger the view maintenance,
when the base graph changes have an impact on these graph pattern matches.

According to the running example, the view that enumerates matches for the Generalization
pattern (cf. Figure 3.5(a)) must be updated, when classes are added to or removed from base
graphs, because these classes may satisfy or dissatisfy the Generalization pattern.

Efficiency of Graph View Maintenance (R4b)
According to the needs N3a - Interactivity and N3b - Consistency, the framework must maintain
graph views efficiently and scalable. The efficient maintenance must reduce the time that is
required to maintain the graph pattern matches that are stored by graph views. The scalable
maintenance must keep the required time to maintain graph views independent from the
number of graph nodes and edges that are stored by base graphs.

According to the running example, when classes are added to the base graphs, it is sufficient
to only search within the scope of these classes for new matches of the Generalization pattern
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(cf. Figure 3.5(a)), because these classes are either superclasses of other classes, subclasses of
other classes, or do not belong to a generalization at all.

Propagation of Graph View Changes (R4c)
According to the need N1c - Composed Views, graph views depend on each other and reuse
graph pattern matches that are maintained by other graph views (R2c - Reusability). Therefore,
the framework must propagate matches between graph views to ensure that dependent graph
views maintain their stored graph pattern matches as well, when base graphs change.

According to the running example, the Multi-Level Generalization view depends on the
Generalization view. When matches of the Generalization pattern (Figure 3.5(a)) are added to
or removed from the Generalization view, then these added and removed graph pattern matches
must be propagated to the dependent Multi-Level Generalization view as well to update the
stored matches of the Multi-Level Generalization pattern (cf. Figure 3.5(c)).

4.2.5. Summary

Table 4.1 shows which requirements cover which user needs. The black circles denote that
a requirement covers a certain need. The black /white circles denote that a requirement
contributes to the covering of a need, but does not cover the need completely. The white
circles denote that a requirement does not cover a certain need.
The requirements concerning lightweight graph views such as a R1a - Nativeness, R1b -

Memory-Efficiency, R1c - Match-Properties, cover the need N1a - Native Views, because these
requirements aim for graph views that are graphs, too, and store matches efficiently.
The requirements concerning the modeling of views such as R2a - Encapsulation, R2b -

Effectiveness, R2c - Reusability, R2d - Nesting, and R2e - Recursion cover the user needs N1a
- Native Views, N1b - Single View, N1c - Composed Views, N1d - Accessibility, and N1e -
Expressiveness, because these requirements aim for a modeling language that enable developers
to define and combine graph views in a reusable manner with the same expressiveness as
nested and recursive graph conditions. Furthermore, the requirement R2a - Encapsulation
(partially) covers the user needs N2a - Graph Models, N2b - Query Languages, N2c - View
Execution, and N3c - Generic Algorithm, because this requirement aims for encapsulated graph
queries that enable the framework to handle arbitrary queries uniformly.
The requirements concerning the embedding of graph queries into view definitions such

as R3a - Languages and R3b - Transformations cover the user needs N2b - Query Languages
and N2c - View Execution, because these requirements aim for the support of arbitrary graph
query languages as operationalization of graph views.
The requirements concerning the maintenance of views such as R4a - Monitoring, R4b -

Time-Efficiency, and R4c - Propagation cover the need N3a - Interactivity, N3b - Consistency,
and N3c - Generic Algorithm, because these requirements aim for maintenance algorithms
that efficiently update graph views based upon base graph changes in a scalable manner.
The requirements R4b - Time-Efficiency and R4c - Propagation cover the needs N1b - Single
View and N1c - Composed Views, because they aim for a time-efficient maintenance of single
and composed views. The requirements R4a - Monitoring, R4b - Time-Efficiency, and R4c -
Propagation cover the user needs N2c - View Execution and N2d - Graph Modification, because
they aim for an efficient execution of view definitions and change propagation between graph
view, when base graphs change.
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Table 4.1.: Mapping needs of developers to requirements
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R1 - Lightweight Views

R1a - Nativeness  # # # # # # # # # # #

R1b - Memory-Efficiency  # # # # # # # # # # #

R1c - Match-Properties  # # # # # # # # # # #

R2 - View Modeling

R2a - Encapsulation #  # # G#   G# # # # G#

R2b - Effectiveness  # G#  # # # # # # # #

R2c - Reusability #    G# # # # # # # #

R2d - Nesting # #  #  # # # # # # #

R2e - Recursion # #  #  # # # # # # #

R3 - Embed Queries
R3a - Languages # # # # # #  # # # # #

R3b - Transformations  # # # # # #  # # # #

R4 - Maintenance

R4a - Monitoring # # # # # # # #  #   

R4b - Time-Efficiency #   # # # #  #    

R4c - Propagation # #  # # # # #  #   

covered:  ; partially covered: G#; not covered: #
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4.3. Overview of the Approach
Figure 4.1 depicts an overview of the proposed framework. First, Section 4.3.1 describes
the main system components of the framework. Afterwards, Section 4.3.2 discusses why the
proposed framework covers the elicited requirements of Section 4.2.
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Figure 4.1.: Overview of the approach

4.3.1. System Components and Parts
The framework distinguishes six main components called graph storage (A, B), view mod-
ule dependency graph (C), view module queries (D), view maintenance engine (E), graph
monitoring (F), and query engine (G). The next sections describe each component in detail.

Graph Storage
The graph storage (A, B) consists of a base graph storage (A) and a view graph storage (B).

The base storage (A) stores base graphs (A2). Base graphs (A2) are typed attributed graphs
(cf. Section 2.1.1) that are created and modified by end-users. Base graphs (A2) must
conform to a base graph schema (A1). The base graph schema is an attributed type graph (cf.
Section 2.1.1) that describes which kinds of graph nodes and edges can exist in base graphs.

The view graph storage (B) stores view graphs (B2). View graphs (B2) are typed attributed
graphs (cf. Section 2.1.1) that constitute graph views and store graph pattern matches. Graph
nodes of view graphs represent markings of graph pattern matches. Graph edges of view
graphs reference the graph nodes that belong to these matches and describe the role of the
graph nodes in these matches. View graphs (B2) must conform to a view graph schema (B1).
The view graph schema (B1) is an attributed type graph (cf. Section 2.1.1) that extends the
base graph schema (A1) to describe which kinds of graph pattern matches are marked by
graph nodes and edges of view graphs. Node types of the view graph schema describe which
kinds of markings for graph pattern matches can exist in view graphs. Edge types of the view
graph schema describe which kinds of graph edges are used to mark graph nodes of matches.
These edge types are used to denote the role of graph nodes in matches. Furthermore, the
view graph schema describes kinds of attributes that can be stored by graph nodes to enrich
the matches with additional data values.

43



4. Overview

Vi
ew

 G
ra

ph
 S

ch
em

a 
Ex

ce
rp

t)
Ba

se
 G

ra
ph

 S
ch

em
a 

(E
xc

er
pt

)

Class Field

*1
members<<abstract>>

Classifier
name : String

<<abstract>>
Member

name : String

<<abstract>>
Hierarchy

<<abstract>>
AssociationComposite

Super

Hierarchy

ReferenceTargetComponentCompositeSub

ToN 
Association

ToMany 
AssociationGeneralization

Multi-Level 
Generalization

UpperLower

Association

levels : Integer

(a) Excerpt of base graph schema and view graph
schema as UML class model

container 
: Class

component 
: Class

generalization: 
Generalization : Super

: Sub

: Namespace

: Reference
target

reference

extends

field : Field

: Dimension: Namespace

: Reference

association 
: ToN Association

: Reference

type

reference

target

: Target

composite: 
Composite: Hierarchy : Assocation

: Composite

: Component

members

dimension

Ba
se

 G
ra

ph
 (E

xc
er

pt
)

Vi
ew

 G
ra

ph
 (E

xc
er

pt
)

(b) Excerpt of base graph and view graph as UML
object model

Figure 4.2.: Kinds of employed graphs

For example, Figure 4.2(a) shows an excerpt of the base graph schema (A1) and view graph
schema (B1). According to the running example, the base graph schema on top describes that
classifiers, such as classes, own members, such as fields. The view graph schema at the bottom
describes that view graphs store matches of the Generalization, Multi-Level Generalization, ToN
Association, ToMany Association, and Composite patterns.

The Hierarchy type describes that markings for matches of Hierarchy patterns (cf. Figure 3.5)
mark the super- and subordinate classifiers in the matches, such as the super- and subclasses
of generalizations, by means of graph edges with Super and Sub type. Additionally, the
markings for matches of the Multi-Level Generalization pattern mark the reused generalization
matches by means of graph edges with Lower and Upper type.
The Association type describes that markings for matches of the Association patterns (cf.

Figure 3.6) mark the fields and classifiers that act as reference and target of the reference by
means of graph edges with Reference and Target type.
The Composite type describes that markings for matches of the Composite pattern mark

the reused matches of the Hierarchy and Association patterns by means of graph edges with
Hierarchy and Association type. Furthermore, these markings reference the composite and
component classifiers of the detected Composite design pattern by means of graph edges with
Composite and Component type.

The top of Figure 4.2(b) shows a base graph, which consists of a container class that extends
a component class. Furthermore, the container class owns an one-dimensional field that targets
at the component class. The bottom of Figure 4.2(b) shows a view graph that contains
markings for matches of the Generalization, ToN Association, and Composite patterns.

The generalization node with Generalization type marks a match of the Generalization pattern
(cf. Figure 3.5(a)). According to the view graph schema of Figure 4.2(a), the generalization
node owns two edges with Super and Sub type that mark the component class as superclass
and the container class as subclass of the generalization. Furthermore, the generalization node
marks the nodes with Namespace and Reference type in between, because they belong to the
match of the Generalization pattern as well.

The association node with ToN Association type marks a match of the ToN Association pattern
(cf. Figure 3.6(b)). According to the view graph schema of Figure 4.2(a), the association
node owns two edges with Reference and Target type that mark the field as reference and the
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component class as target type of the reference. Furthermore, the association node marks the
nodes with Namespace, Reference, and Dimension type in between, because they belong to the
match of the ToN Association pattern as well.
The composite node with Composite type marks a match of the Composite pattern (cf.

Figure 3.8(a)). According to the view graph schema of Figure 4.2(a), the composite node
owns four edges with Hierarchy, Association, Composite, and Component type. The edge with
Hierarchy type marks the reuse of the Generalization match that is marked by the generalization
node. The edge with Association type marks the reuse of the Association match that is
marked by the association node. The edges with Component and Composite type reference the
component and container classes to mark that the component class acts as component and the
container class acts as composite in the detected Composite software design pattern.

View Module Dependency Graph
The view module dependency graph (C) describes which kinds of graph views are maintained
by the framework. For that purpose, the view module dependency graph consists of view
modules (C1) and view module dependencies (C2).
View modules (C1) enable developers to encapsulate graph queries behind interfaces that

can be used uniformly by the framework. These interfaces describe the input and output of
view modules, i. e., which kinds of graph nodes are processed by the encapsulated queries and
which kind of graph nodes are created in the view graph, when the encapsulated queries find
graph pattern matches. The developers use the node types that are defined in the base graph
schema and view graph schema to describe the input and output of view modules.

View module dependencies (C2) enable developers to describe how view modules (C1) reuse
markings of graph pattern matches that are stored and maintained by other views.
According to the running example, Figure 4.3 shows two view module dependency graphs

for design patterns and anti-patterns. Both view module dependency graphs depict view
modules as rounded rectangles and view module dependencies as solid lines. The arrow heads
of the solid lines denote the dependent view module. The small rectangles that are attached
to the view modules denote the interfaces of view modules.
Figure 4.3(a) shows an excerpt of the view module dependency graph for design patterns.

Figure 4.3(a) depicts the Composite, Generalization, Multi-Level Generalization, ToN Association,
and ToMany Association view modules. These view modules maintain matches of the Gen-
eralization (cf. Figure 3.5(a)), Multi-Level Generalization (cf. Figure 3.5(c)), ToN Association
(cf. Figure 3.6(b)), ToMany Association (cf. Figure 3.6(c)), and Composite (cf. Figure 3.8(a))
patterns. These patterns describe which kinds of graph nodes are required by the graph
queries that are encapsulated by the view modules.

According to the running example, the Generalization pattern (cf. Figure 3.5(a)) consists of
pattern nodes with type Class, Namespace, and Reference. Therefore, the Generalization view
module requires graph nodes of type Class and TypeReference as input and produces nodes of
type Generalization in the view graph as output. According to Figure 3.4, the TypeReference
type is the supertype of the Namespace and Reference type.
View modules that maintain matches for high-level patterns require graph nodes of view

graphs. For example, the Multi-Level Generalization view module requires nodes of type
Generalization as input and produces nodes of type Multi-Level Generalization in the view
graph as output. For that purpose, Figure 4.3(a) shows a view module dependency between
the Generalization view module and Multi-Level Generalization view module. Furthermore,
Figure 4.3(a) shows a view module dependency between the output and input connector of the
Multi-Level Generalization view module to describe that markings for matches of the Multi-Level
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Figure 4.3.: View module dependency graphs (the numbers denote a possible execution order)

Generalization pattern can lead to additional matches of the Multi-Level Generalization pattern.
Thus, the Multi-Level Generalization view module implements a recursion.

The input connectors of the Composite view module describe that the Composite view
module requires graph nodes with Hierarchy and Association type to find matches of the
Composite pattern. Therefore, the Composite view module implements a conjunction of
matches for Hierarchy and Association patterns. Furthermore, the Hierarchy and Association
input connectors have two incoming view module dependencies. The two incoming view
module dependencies of the Hierarchy input connector describe that the Composite view module
implements a disjunction of matches for the Generalization and Multi-Level Generalization
pattern. Accordingly, the two incoming view module dependencies of the Association input
connector describe that the Composite view module implements a disjunction of matches for
the ToMany Association and ToN Association pattern.
Figure 4.3(b) shows an excerpt of the view module dependency graph for design anti-

patterns. Figure 4.3(b) depicts the Interface Implementation and Extract Interface view module.
These view modules maintain matches of the Interface Implementation (cf. Figure 3.5(b))
and Extract Interface (cf. Figure 3.9) patterns. The Interface Implementation view module
requires graph nodes with Classifier type (supertype of the Class and Interface node type
(cf. Figure 3.4)) and graph nodes with TypeReference type (supertype of the Namespace and
Reference node type (cf. Figure 3.4)) to find matches of the Interface Implementation pattern.
The Extract Interface view module requires graph nodes with InterfaceImplementation, Class,
Method, and Public type. For that purpose, Figure 4.3(b) depicts a view module dependency
between the Interface Implementation view module and the Extract Interface view module.
The InterfaceImplementation input connector of the Extract Interface view module is negated
as denoted by the black filled rectangle to describe that the Extract Interface view module
requires the non-existence of matches of the Interface Implementation pattern to find matches
of the Extract Interface pattern. Therefore, the Extract Interface view module implements a
negation of matches for the Interface Implementation pattern.

View Module Graph Queries
View modules (C1) encapsulate graph queries (D) as graph transformation rules (cf. Sec-
tion 2.1.2) that search for all matches of certain graph patterns (D1) and create markings for
these matches in the view graph (D2). A marking of a match consists of a graph node, which
describes the kind of the match, and owns edges, which mark all graph nodes of base and
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view graphs that belong to the match. The edge types, which are used to mark the graph
nodes of the match, describe the roles of the graph nodes in the match.

According to the running example, Figure 4.4 shows the implementation of the view modules.
Figure 4.4 employs the shorthand notation for graph transformation rules as described in
Section 2.1.2. Figure 4.4 depicts the left-hand sides of the transformation rules in black
color and the side-effects of the right-hand sides of the transformation rules in gray color.
Furthermore, Figure 4.4 depicts pattern nodes and edges that refer to the base graphs as solid
rectangles and lines. For better readability, Figure 4.4 depicts pattern nodes and edges that
refer to the view graphs as dashed rectangles and lines. Figure 4.4(a) shows an excerpt of the
graph transformation rules for design patterns. Figure 4.4(b) shows an excerpt of the graph
transformation rules for design anti-patterns.
The left-hand side of the Generalization transformation rule implements the Generalization

pattern (cf. Figure 3.5(a)). For each found match, the right-hand side of the transformation
rule creates a graph node with Generalization type in the view graph to mark the super- and
subclass in the match by means of graph edges with Super and Sub type. Additionally, the
right-hand side of the transformation rule creates two edges with a default type that mark the
graph nodes with Namespace and Reference type, because they belong to the match as well.
The left-hand side of the Multi-Level Generalization transformation rule implements the

Multi-Level Generalization pattern (cf. Figure 3.5(c)) by reusing graph nodes that mark matches
of the Generalization pattern (cf. Figure 3.5(a)). For each found match, the right-hand side
of the transformation rule marks the outermost classes of the multi-level generalization as
super- and subclass by means of graph edges with Super and Sub type. Furthermore, the
transformation rule marks the reused matches of the Generalization pattern by means of graph
edges with Lower and Upper type.

Since the two graph nodes with Generalization type, which belong to the left-hand side of the
transformation rule, can match graph nodes that mark matches of the Multi-Level Generalization
pattern as well, the Multi-Level Generalization transformation rule also find matches of the
Multi-Level Generalization pattern, which reuse matches of multi-level generalizations. Thus,
the Multi-Level Generalization view module implements recursion.

The left-hand side of the Composite transformation rule implements the Composite pattern
(cf. Section 3.8(a)) by reusing matches of the Hierarchy and Association graph patterns. For
each found match, the right-hand side of the transformation rule marks the composite and
component of the detected Composite design pattern by means of graph edges with Composite
and Component type. Furthermore, the right-hand side of the transformation rule marks the
reused matches of the Hierarchy and Association graph patterns by means of graph edges with
Hierarchy and Association type.

The Composite view module implements disjunctions of matches for Hierarchy and Association
patterns, because the graph nodes with Hierarchy and Association type can match graph nodes
that have a subtype of the Hierarchy and Association type.

The Composite view module implements conjunctions of matches for Hierarchy and Associa-
tion patterns, because the Composite view module requires both kinds of matches to lookup
matches for the Composite pattern.

Figure 4.4(b) shows the Interface Implementation view module and its graph transformation
rule that is similar to the Generalization view module. The left-hand side of the Extract
Interface transformation rule implements the Extract Interface pattern (cf. Figure 3.9) by
reusing matches of the Interface Implementation pattern (cf. Figure 3.5(b)) in negated manner.
Thus, the transformation rule implements a complex NAC (cf. Definition 8). For each found
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Figure 4.4.: Implementation of view modules by means of graph transformation rules
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match, the right-hand side of the transformation rule marks the class and the method for
which an interfaces should be extracted by means of graph edges with Class and PublicMethod
type. The right-hand side of the transformation rule also marks the public node.

View Maintenance Engine
The view maintenance engine (E) interprets the view module dependency graph (C) and
executes the graph transformations (D) that are encapsulated by view modules (C1) to initially
instantiate the view graph schema (B1) and, later on, maintain the instantiated view graph
(B2), when end-users modify base graphs (A2) with the help of the query engine (G).

The view maintenance engine (E) provides a batch maintenance algorithm (E1) and an
incremental maintenance algorithm (E2). The batch maintenance algorithm (E1) processes
the complete base graphs and view graphs during view graph maintenance. In contrast, the
incremental maintenance algorithm (E2) takes modifications of the base graphs into account
to process only portions of the base graphs and view graphs that underwent modifications. For
that purpose, the framework derives candidate sets of graph nodes from changes of base graphs
and view graphs and passes these candidate sets as pruned search space to view modules.
The framework computes these candidate sets with the help of a reachability test that checks
which graph nodes of the base graphs and view graphs are reachable from created, deleted,
and modified graph nodes of the base graphs and view graphs.

As rule of thumb, the view module that creates a marking of a graph pattern match in the
view graph is also responsible for its maintenance. For that purpose, the view modules are
able to create missing markings, delete obsolete markings, and update suspicious markings.
Furthermore, the framework propagates the changes of view graphs between view modules.

According to the running example, when end-users create a Class node in a base graph, the
view maintenance engine must execute the Generalization view module to check whether new
matches of the Generalization pattern (cf. Figure 3.5(a)) result from the added Class node. If
yes, the Generalization view module must create new markings for these matches.

When end-users remove a Class node from the base graph, the view maintenance engine
must check whether this graph node was part of a match of the Generalization pattern. For
that purpose, the framework looks up the impacted graph nodes with Generalization type in
the view graph and passes these graph nodes to the responsible Generalization view module
for maintenance. If these graph nodes do not mark matches of the Generalization pattern
anymore, the view module deletes the graph node and their edges from the view graphs.
When end-users modify a Class node in the base graph, the view maintenance engine

must check whether this graph node is part of a match of the Generalization pattern and
whether the modification dissatisfies the pattern. For that purpose, the framework looks up
the impacted graph nodes with Generalization type in the view graph and passes these graph
nodes to the responsible Generalization view module for maintenance. Then, the view module
checks whether these graph nodes still mark matches of the Generalization pattern. If these
graph nodes still mark matches of the Generalization pattern, the Generalization view module
preserves these graph nodes. If these graph nodes do not mark matches of the Generalization
pattern anymore, the Generalization view module flags these graph nodes for deletion.

Graph Monitoring
End-users state queries to apply side-effects to base graphs. The graph monitoring (F) tracks
added, deleted, and modified graph nodes and edges of the base graphs (A2). The graph
monitoring (F) notifies the view maintenance engine (E) to trigger the view graph maintenance,
when the base graph change.
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Query Engine
The query engine (G) enables end-users to query base graphs (A2) and view graphs (B2).
Furthermore, the query engine (G) enables end-users to modify the base graphs (A2). The
framework supports immediate view graph maintenance and deferred view graph maintenance.
When the framework employs an immediate maintenance, the view maintenance engine (E)
processes monitored graph changes immediately. When the framework employs a deferred
maintenance, the query engine triggers the view maintenance, when users state graph queries.

4.3.2. Summary

This section summarizes how the framework addresses the elicited requirements of Section 4.2.
The following sections describe why the system components of the framework meet the elicited
requirements. Table 4.2 maps the requirements to the system components and their parts.

Graph Storage
The graph storage (A, B) employs typed attributed graphs with inheritance as native graph
data model (R1a - Nativeness) for base graphs (A2) and view graphs (B2), because it is a
general graph data model, which covers the graph data models that are employed in practice
to store entities and their relationships [2].

The graph nodes of the view graphs represent matches of graph patterns. Each graph node
of view graphs marks all graph nodes that belong to a graph pattern match. The types of
these graph nodes in the view graphs describe the kinds of the matches that are marked by
the graph nodes. Thus, all graph nodes that satisfy a pattern are stored memory-efficient by
the view graph (R1b - Memory-Efficiency), because the view graph does not store copies of
graph nodes and edges. Furthermore, the nodes of the view graph own typed graph edges
that describe the role of graph nodes in matches. Thus, the typed graph nodes and edges of
view graphs support an effective marking of matches (R2b - Effectiveness).

The graph nodes in the view graph can own attributes that store additional data values
(R1c - Match-Properties). These data values can be used to enrich matches with additional
information, e. g., similarity values of two entities.

View Module Dependency Graph
View modules describe interfaces for graph queries and, therefore, encapsulate queries (R2a
- Encapsulation). The interfaces of view modules provide information about which kinds of
graphs nodes are required by queries and which kinds of graph nodes are created in the view
graph to mark matches of patterns (R1b - Memory-Efficiency). Thus, the framework is not
aware of graph query implementations and can handle the encapsulated queries uniformly.

The interfaces of view modules (C1) and the view module dependencies (C2) between view
modules enable developers to describe the reuse of matches (R2c - Reusability). Due to the
view graph schema (B1) that describes which kinds of graph nodes can act in certain roles
in matches, users and other view modules know which kinds of graph edges can be used to
retrieve graph nodes with certain roles in matches. Since the view graph schema describes
node types and their edge types that are used to refer to graph nodes with certain roles in
matches, dependent view modules are enabled to receive and post-process graph nodes that
mark certain kinds of matches (R2c - Reusability).
The view module dependencies together with the view modules enable developers to nest

graph conditions (R2d - Nesting). The view module dependency graph enables to express
disjunctions, conjunctions, and negations of graph conditions.
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Table 4.2.: Mapping requirements to system components and their parts
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A, B - Graph
Storage

A - Base Graph Storage  # # # # # # # # # # # #

B - View Graph Storage    #  # # # # # # #  

A1 - Base Graph Schema  # # # # # # # # # # # #

B1 - View Graph Schema  G# G# # G#  # # # # # # #

A2 - Base Graph  # # # # # # # # # # # #

B2 - View Graph    #  # # # # # # #  

C1 - View
Module

C1 - View Module # # #  # G# G# #   # # #

C2 - View Dependency # # # # #    # # # #  

D - Graph
Queries

D1 - Transformation LHS # # # # # # # #   # # #

D2 - Transformation RHS #   # # # # # #  # # #

E - View
Maintenance
Engine

E1 - Batch Maintenance #   # # # # #   # #  

E2 - Incremental Maintenance #   # # # # #   #   

F - Graph Monitoring # # # # # # # # # #  G# #

G - Query Engine # # # # # # # # G# G# # # #

covered:  ; partially covered: G#; not covered: #
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The view module dependency graph supports cyclic dependencies between view modules.
These cycles can consist of multiple view modules and cycles can contain other cycles. Thus,
the view module dependency graph supports recursive graph conditions (cf. Definition 15).

Moreover, the dependencies between view modules (C2) as well as the dependencies between
graph nodes that mark graph pattern matches (B2) are used to propagate changes between
view graphs (R4c - Propagation).

View Module Graph Transformation
View modules encapsulate the implementation details (R2a - Encapsulation) of queries (D).
Therefore, different kinds of pattern matchings can be employed by queries (R3a - Languages).

View modules (C1) employ pattern matching to find matches for the left-hand sides
of transformation rules (D1). The right-hand sides of the transformation rules (D2) create
memory-efficient markings of graph pattern matches (R1b - Memory-Efficiency) (incl. additional
match properties (R1c - Match-Properties)) in the view graph, when the left-hand sides of
the transformation rules (D1) are satisfied. Furthermore, the transformation rules are used
to delete and update graph nodes in view graphs, when matches do not satisfy patterns
anymore or changed. Moreover, different graph transformation languages can be employed
(R3b - Transformations), because view modules encapsulate queries (R2a - Encapsulation).

View Maintenance
The view maintenance engine (E) maintains graph nodes of view graphs that efficiently
mark matches of graph patterns (R1b - Memory-Efficiency). This maintenance includes the
maintenance of graph node attributes of view graphs (R1c - Match-Properties).

The framework prunes search spaces based upon modification events of base graphs (R4b -
Time-Efficiency) and propagates changes of view modules to dependent view modules (R4c -
Propagation) as described by the view module dependency graph (C2).
Moreover, the view maintenance engine provides a native realization, because the view

modules employ pattern matching (R3a - Languages) and graph transformations (R3b -
Transformations) to maintain graph nodes of view graphs.

Graph Monitoring
The framework employs a graph monitoring (F) to report added, deleted, and modified graph
nodes and edges to the view maintenance engine (E). This monitoring of changes (R4a -
Monitoring) enables the view maintenance engine to prune the search spaces of view modules
during view graph maintenance (R4b - Time-Efficiency).

Query Engine
The query engine (G) enables end-users to retrieve matches of patterns (R3a - Languages) and
to the modify base graphs with the help of graph transformations (R3b - Transformations).

Thus, all requirements are covered by the architecture of the proposed framework. The
following chapters describe each component of the architecture in detail to show how the
requirements are satisfied.
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This chapter explains the notion of graph views and how they store graph pattern matches as
result of graph queries efficiently and effectively. Section 5.1 describes how the framework
stores entities and their relationships. Section 5.2 describes how graph views store graph
pattern matches. Section 5.3 describes the notation of graph views. Section 5.4 discusses why
the concepts satisfy the elicited requirements of Section 4.2.

5.1. Base Graphs

Base graphs store entities of the real world and their relationships. Base graphs are typed
attributed graphs, which must adhere to an attributed type graph (cf. Section 2.1.1) that is
called base graph schema. Note that also other kinds of typed graphs can be employed as
base graphs such as hypergraphs with typed graph nodes and n-ary graph edges.

Type Graph
Base graph schemata describe which kinds of graph nodes and edges are stored by base graphs.
This thesis employs the following terminology to refer to graph nodes and edges of base graph
schemata. A graph node of a base graph schema is called artifact type and describes a kind of
graph nodes that are stored by base graphs. A graph edge of a base graph schema is called
relation type and describes a kind of graph edges that are stored by base graphs. A graph
node and graph edge attribute of a base graph schema is called attribute type and describes a
kind of graph node and graph edge attributes that are stored by base graphs.
Figure 5.1(a) depicts the metamodel that describes the concepts of base graph schemata.

The metamodel describes that artifact types, relation types, and attribute types consists of
distinguishable names that denote the purposes of these types. Artifact types constitute
a type hierarchy with multiple inheritance. Artifact types can be abstract, i. e., cannot be
instantiated in base graphs, but represent a common artifact supertype for a set of artifact
types and their common properties. Relation types describe the direction of graph edges in
base graphs as well as the kinds of graph nodes that are the source and target of these graph
edges. Furthermore, artifact types and relation types own attribute types that describe the
name and the data type of attribute values in base graphs.

Instance Graph
Base graphs are instances of base graph schemata. This thesis employs the following terminol-
ogy to refer to graph nodes and edges of base graphs. A graph node of a base graph is called
artifact and is an instance of a certain artifact type. A graph edge of a base graph is called
relation and is an instance of a certain relation type. A graph node attribute and graph edge
attribute of a base graph is called attribute and is an instance of a certain attribute type.
Figure 5.1(b) depicts the metamodel that describes the concepts of base graphs. The

metamodel depicts classes that are already introduced in gray color. Artifacts and relations
have a name and are instances of artifact types and relation types, respectively. Relations have
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Figure 5.1.: Metamodel for base graph schemata and base graphs as UML class diagrams

a direction and connect artifacts. Artifacts and relations own attributes that are instances of
attribute types. These attributes store attribute values.
Note that artifact types and relation types serve as graph indexes, which enumerate all

instances of a certain artifact type and relation type.

5.2. View Graphs
View graphs store markings of graph pattern matches effectively and efficiently. View graphs
are typed attributed graphs, which must adhere to an attributed type graph (cf. Section 2.1.1)
that is called view graph schema.

Type Graph
View graph schemata describe which kinds of graph pattern matches are stored by view graphs
and which kinds of graph nodes belong to these matches. Furthermore, they describe kinds of
graph edges that are used to denote the role of graph nodes in these matches.
This thesis employs the following terminology to refer to graph nodes and edges of view

graph schemata. A graph node of a view graph schema is called annotation type and describes
a kind of graph pattern matches that are stored by view graphs. A graph edge of a view
graph schema is called role type and describes a kind of roles that graph nodes can have in
graph pattern matches. A graph node and graph edge attribute of a view graph schema is
called attribute type and describes a kind of attributes that can enrich graph pattern matches
with additional properties.

Figure 5.2(a) depicts the metamodel that describes the concepts of view graph schemata.
The metamodel extends the metamodel for base graph schemata and depicts parts that are
already introduced in gray color. Annotation types, role types, and attribute types consist of
distinguishable names that describe the purpose of these types. Annotation types constitute
a type hierarchy with multiple inheritance. Annotation types can be abstract, i. e., cannot
be instantiated in view graphs, but represent a common annotation supertype for a set of
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annotation types that have properties in common. Role types describe kinds of directed graph
edges, which are used in view graphs to mark the role of the graph nodes that belong to graph
pattern matches. The source of a role type is always an annotation type. The target of a
role type is either an artifact type or an annotation type. Thus, graph nodes of base graphs
and view graphs can be part of graph pattern matches. Furthermore, annotation types can
own attribute types that describe the name and data type of attribute values in view graphs.
Annotation types hand their attribute types down to their subtypes.
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Figure 5.2.: Metamodel for view graph schemata and view graphs as UML class diagram

Instance Graph
View graphs are instances of view graph schemata. View graphs store graph nodes that
represent graph pattern matches and mark the graph nodes, which belong these matches, by
means of graph edges. The types of the graph nodes in view graphs describe the kinds of the
marked graph pattern matches. The types of the graph edges in view graphs describe the
roles of graph nodes that belong to graph pattern matches.
This thesis employs the following terminology to refer to graph nodes and edges of view

graphs. A graph node of a view graph is called annotation and is an instance of a certain
annotation type. View graphs distinguish two kinds of graph edges. One kind of graph edges
is called role and is an instance of a certain role type. The other kind of graph edges is called
scope and consist of a default type, because the graph nodes that are marked by scopes do
not have to be distinguishable. A graph node attribute and graph edge attribute of a view
graph is called attribute and is an instance of a certain attribute type.
Figure 5.2(b) depicts the metamodel, which describes the concepts of view graphs. The

metamodel extends the metamodel for base graphs and depicts classes that are already
introduced in gray color. Annotations are instances of annotation types and represent
markings of graph pattern matches. For that purpose, annotations own roles and scopes,
which reference artifacts or other annotations that satisfy a certain graph pattern. Roles are
instances of role types. These role types denote the role of artifacts or annotations in graph
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pattern matches. In contrast to roles, scopes reference artifacts or other annotations that
have no special role in graph pattern matches. Therefore, scopes have a default type that is
not explicitly represented. Furthermore, annotations can own attributes that are instances of
attribute types. Attributes of annotations can store data values to enrich the graph pattern
matches, which are marked by annotations, with additional knowledge.

5.3. Notation

The following sections describe the notation of base graph schemata and view graph schemata
as well as base graphs and view graphs.

5.3.1. Type Graphs

This thesis adapts UML class diagrams as concrete syntax to describe artifact types, annotation
types, relation types, role types, and attribute types. Artifact types and annotation types
map to UML classes. The type hierarchy of artifact types and annotation types maps to UML
generalizations. Abstract artifact types and annotation types map to abstract UML classes.
Relation types and role types map to UML associations. Attribute types map to attributes of
UML classes and UML associations.
The notation employs the «artifact type» and «annotation type» stereotypes to distinguish

artifact types of base graph schemata and annotation types of view graph schemata. Fur-
thermore, the notation employs the «relation type» and «role type» stereotypes to distinguish
relation types of base graph schemata and role types of view graph schemata.

Base Graph Schema
According to the running example, Figure 5.3 depicts an excerpt of the base graph schema.
The UML class diagram shows the abstract Classifier and Member artifact types. The Classifier
and Member artifact types consist of a name attribute type to describe that instances of
the Classifier and Member artifact types have a name. The UML class diagram depicts the
Class and Interface artifact types as specializations of the Classifier artifact type. Furthermore,
the UML class diagram depicts the Field and Method artifact types as specializations of
the Member artifact type. The Classifier artifact type owns the members relation type that
targets at the Member artifact type to describe that classifiers own members. For the sake of
simplicity, Figure 5.3 omits the remaining artifact and relation types of the running example.

View Graph Schema
According to the running example, Figure 5.3 depicts an excerpt of the view graph schema.
The UML class diagram depicts the abstract DesignPattern and DesignAntiPattern annotation
types. The Composite annotation type is a specialization of the DesignPattern annotation type.
The ExtractInterface annotation type is a specialization of the DesignAntiPattern annotation
type. Furthermore, the UML class diagram depicts annotation types for low-level kinds of
graph patterns such as the abstract Hierarchy and Association annotation types.

The Hierarchy annotation type owns the Super and Sub role types that target at the Classifier
artifact type to describe that instances of the Hierarchy annotation type mark instances
of the Classifier artifact type as superordinate and subordinate classifier. Additionally, the
Hierarchy annotation type owns a levels attribute type to describe that instances of the
Hierarchy annotation type store the number of hierarchy levels between the superordinate and
subordinate classifier. According to the running example, the Generalization annotation type
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Figure 5.3.: Excerpt of the base graph schema (top) and the view graph schema (bottom) as
UML class diagram according to the running example

and InterfaceImplementation annotation type are specializations of the Hierarchy annotation
type. Both annotation types inherit the role types and the attribute types from the Hierarchy
annotation type. Thus, instances of the Generalization annotation type mark matches of the
Generalization pattern (cf. Figure 3.5(a)) and mark the super- and subclass in the matches.
Instances of the InterfaceImplementation annotation type mark matches of the Interface Imple-
mentation pattern (cf. Figure 3.5(b)) and mark the interface and the class that implements
the interface in the matches. The MultiLevelGeneralization annotation type is a specialization
of the Generalization annotation type. Instances of the MultiLevelGeneralization annotation
type mark matches of the Multi-Level Generalization pattern (cf. Figure 3.5(c)). Additionally,
the MultiLevelGeneralization annotation type owns the Lower and Upper role types. The Lower
and Upper role types describe that instances of the MultiLevelGeneralization annotation type
mark instances of the Generalization annotation type as lower and upper generalization of a
multi-level generalization. Note that the lower and upper generalizations can be multi-level
generalizations as well, because the MultiLevelGeneralization annotation type is a specialization
of the Generalization annotation type. The MultiLevelInterfaceImplementation annotation type
is a specialization of the InterfaceImplementation annotation type and, additionally, owns the
Generalization and InterfaceImplementation role types. These role types describe that instances
of the MultiLevelInterfaceImplementation annotation type reference instances of the Generaliza-
tion and InterfaceImplementation annotation types to mark the (multi-level) generalization
and interface implementation that constitute a multi-level interface implementation.
The Association annotation type has two specializations called ToManyAssociation and

ToNAssociation annotation types. Instances of the ToManyAssociation annotation type mark
matches of the ToMany Association pattern (cf. Figure 3.6(c)). Instances of the ToNAssociation
annotation type mark matches of the ToN Association pattern (cf. Figure 3.6(b)). The
ToManyAssociation and ToNAssociation annotation types inherit the Reference and Target role
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types from the Association annotation type. These role types describe that instances of the
Association annotation type reference instances of the Field and Classifier artifact types to
mark fields as associations with certain target types.

The Composite annotation type owns the Hierarchy, Association, Composite, and Component
role types. The Hierarchy and Association role types describe that instances of the Composite
annotation type mark instances of the Hierarchy and Association annotation types to describe
which matches of the Hierarchy and Association patterns constitute a match of the Composite
pattern. The Composite and Component role types describe that instances of the Composite
annotation type reference instances of the Classifier artifact type to mark which classifiers act
as composite and component in the detected Composite software design pattern, respectively.
The ExtractInterface annotation type owns the PublicMethod and Class role types, which

describe that instances of this annotation type reference instances of the Method and Class
artifact types to mark for which method and class an interface should be extracted.

5.3.2. Instance Graphs
This thesis adapts UML object diagrams as concrete syntax to describe base graphs and view
graphs. Artifacts and annotations map to UML objects. Relations and roles map to UML
links. Attributes of artifacts and annotations map to attributes of UML objects. Attributes
of relations map to attributes of UML links.

This thesis depicts graph nodes and edges of base graphs and view graphs differently. UML
objects with solid border depict artifacts of base graphs. UML links with solid lines between
UML objects depict relations of base graphs. UML objects with dashed rounded border depict
annotations of view graphs. UML links with dashed lines depict roles of view graphs. UML
links with dotted lines depict scopes.

Base Graph
According to the running example, Figure 5.4 depicts an ASG as base graph. The base
graph shows that a child class extends a parent class, which is located in a certain namespace.
Furthermore, the child class owns an one-dimensional field that stores instances of the parent
class. Moreover, the parent class owns a method with a public visibility.

View Graph
According to the running example, Figure 5.4 depicts annotations that represent matches of
the Generalization, ToN Association, Composite, and Extract Interface pattern.
The generalization annotation with Generalization type owns roles with Super and Sub

role types, which mark that the parent class acts as superclass and the child class acts as
subclass in a generalization. Furthermore, this annotation owns two scopes, which mark
that the namespace1 and reference1 artifacts are part of the match as well. Additionally, this
annotation owns a levels attribute, which describes that one hierarchy level between the super-
and subclass exists.

The association annotation with ToNAssociation type owns roles with Reference and Target
role types, which mark that the children field acts as reference and the parent class acts as
target of the reference in a bounded association. Furthermore, this annotation owns three
scopes, which mark the dimension, namespace2, and reference2 artifacts as part of the match.
The composite annotation with Composite type owns roles with Hierarchy, Association,

Composite, and Component role types. The role with Hierarchy role type targets at the
generalization annotation to mark the match of the Generalization pattern that is reused to
find the match of the Composite pattern. The role with Association role type targets at the
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Figure 5.4.: Excerpt of the base graph (solid elements) and the view graph (dashed and dotted
elements) as UML object diagram according to the running example

association annotation to mark the match of the ToN Association pattern that is reused to find
the match of the Composite pattern. The role with Composite role type marks the child class
as composite of the Composite design pattern. The role with Component role type marks the
parent class as component of the Composite design pattern. Note that the running example
omits the Leaf class of the Composite design pattern (cf. Section 3.1) for the sake of simplicity,
because this class is an optional part of the Composite design pattern.
The extractinterface annotation with ExtractInterface type owns roles with Class role type

and PublicMethod role type. The role with Class role type targets at the parent class to mark
that for this class an interface should be extracted. The role with PublicMethod role type
targets at the method artifact to mark that for this method an interface should be extracted.
Furthermore, this annotation owns one scope that marks the public artifact, because this
artifact belongs to the match as well.

5.4. Discussion
This chapter describes the notion of base graphs and view graphs that must adhere to base
graph and view graph schemata. Base graph schemata are attributed type graphs, which
describe the kinds of entities and relationships between these entities that are stored by base
graphs. View graph schemata are attributed type graphs that describe the kinds of graph
pattern matches that are represented by graph nodes of view graphs and the kinds of graph
edges that mark which graph nodes satisfy the graph pattern. These kinds of graph edges
denote the roles of graph nodes in matches.
Table 5.1 summarizes which kinds of type graphs and instance graphs satisfy the elicited

requirements of Section 4.2. The requirement R1a - Nativeness describes that graphs must
be stored natively by using a graph data model. The requirement R1b - Memory-Efficiency
describes that matches must be stored efficiently, i. e., without copying graph nodes and
edges from base graphs to view graphs. The requirement R1c - Match-Properties describes
that stored graph pattern matches must enable developers to store and maintain additional
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Table 5.1.: Mapping requirements to type graphs and instance graphs
Requirements
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Base Graph Schema  # #

View Graph Schema    

Instance Graphs
Base Graph  # #

View Graph    

covered:  ; partially covered: G#; not covered: #

attribute values to enrich views with additional domain knowledge that is derived from the
graph nodes and edges of the matches.
In this thesis, the base graph and view graph schemata as well as base graphs and view

graphs are natively represented as attributed type graphs and typed attributed graphs,
respectively. Thus, the base graph and view graph schemata as well as the base graphs and
view graphs satisfy the requirement R1a - Nativeness.

The view graph schemata describe which kinds of graph pattern matches are marked by
graph nodes and edges of view graphs. View graphs store markings for graph pattern matches.
Therefore, view graphs do not store copies of graph nodes and edges of base graphs and view
graphs. Consequently, these graph nodes and edges do not have to be kept synchronized with
the original graph nodes and edges. Thus, the view graph schemata and the view graphs
satisfy the requirement R1b - Memory-Efficiency.
The view graph schemata enable developers to define attribute types of annotation types.

These attribute types describe kinds of attributes that can be stored by annotations to enrich
matches with additional domain knowledge. Thus, the view graph schemata and view graphs
satisfy the requirement R1c - Match-Properties.
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This chapter describes a modeling language that enables developers to model generalized
discrimination networks (cf. Section 1.3.1). These networks describe which kinds of view
graphs are initially created and, afterwards, maintained. Furthermore, these networks describe
which view graphs build on the content of other view graphs.

This chapter starts with a description of the modeling methodology that developers employ
to model generalized discrimination networks. Section 6.1 gives an overview of the modeling
methodology. Then, the subsequent sections describe the modeling activities of the modeling
methodology in detail. Section 6.2 describes the modeling language for view modules that
represent network nodes of the discrimination networks. Section 6.3 describes the modeling
language for view module dependencies that represent network edges between network nodes
of the discrimination networks. Section 6.4 discusses the expressiveness of the modeling
language. Finally, Section 6.5 discusses the satisfaction of the elicited requirements.

6.1. Modeling Methodology

The developers employ the following modeling methodology to define view graphs. First, the
developers model base graph schemata, which describe the kinds of graph nodes and edges
that are stored by base graphs. Then, the developers model view graph schemata, which
describe the kinds of graph pattern matches that are maintained by view graphs. Afterwards,
the developers define the view modules that are responsible to initially find and continuously
maintain these kinds of matches. Then, the developers define the dependencies between these
modules to describe the reuse of matches by other modules. Finally, the developers embed
graph queries into these modules to search for matches and mark these matches accordingly.
The following sections describe the required steps during each modeling activity.

Modeling the Base Graph Schemata
The developers think about which kinds of graph nodes and edges are stored in base graphs.
For that purpose, developers define artifact types and relation types by means of a base graph
schema as described in Section 5.1.

Modeling the View Graph Schemata
The developers think about which kinds of graph pattern matches are stored and maintained
by view graphs. For that purpose, developers create annotation types and role types by means
of a view graph schema as described in Section 5.2. Developers create an annotation type for
each kind of graph pattern match that is stored and maintained by view graphs. Thereby, the
developers think about the decomposition of graph patterns into partial patterns to enable the
reuse of (partial) patterns, when defining view graphs. Afterwards, the developers think about
which kinds of graph nodes of graph pattern matches must be effectively accessible, when
retrieving matches for a certain kind of (partial) graph pattern from the view graphs. For
each kind of graph node that must be effectively accessible, the developers create a role type
that is owned by the annotation type, which describes the kind of the graph pattern match.
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These role types either target at artifact types of base graph schemata, when artifacts with
a certain artifact type participate in a match, or annotation types of view graph schemata,
when matches of certain graph patterns are reused to find other graph pattern matches.

Modeling the View Modules
The developers model view modules that search for matches of graph patterns and instantiate
annotation types and role types, when they find graph pattern matches. The developers
describe an interface for each module. The developers describe which kinds of artifacts and
annotations are required by the module and which kinds of annotations are created and
maintained by the module. For that purpose, the developers employ the artifact types and
annotation types of base graph schemata and view graph schemata.

Modeling the View Module Dependencies
After developers defined view modules, they describe the reuse of graph pattern matches by
other view modules. For that purpose, developers model dependencies between these modules.
These dependencies describe the flow of annotations between modules. By creating these
dependencies, the developers compose a directed view module dependency graph. The module
dependency graph can be cyclic. This dependency graph enables the developers to describe
conjunctions, disjunctions, negations, and recursive definitions of view graphs.

Embedding Graph Queries
The developers embed graph queries into each view module in a graph query language of their
choice to implement the search for graph pattern matches and the marking of these matches.
When the graph queries find matches, they create annotations and roles in the view graphs to
mark these matches.

6.2. View Module

The developers define view modules, which encapsulate graph queries, to enable the framework
to handle these graph queries uniformly. When creating a module, the developers define an
interface for the encapsulated graph query. This interface describes the kinds of artifacts
and annotations that are required by the graph query during the graph pattern matching.
Furthermore, this interface describes the kind of annotations that are created in the view
graph, when the graph query finds a match.
Figure 6.1 depicts the metamodel for view modules. The metamodel depicts parts of the

metamodel that are already introduced in gray color. The metamodel describes that view
modules have a name and a description. View modules own artifact connectors and annotation
connectors. These connectors have a name and a type. Artifact connectors receive artifacts with
a certain artifact type, which are processed by the encapsulated query. Annotation connectors
receive or provide annotations with a certain annotation type. Input connectors are annotation
connectors, which describe the kind of annotations that are processed by the encapsulated
query. Output connectors are annotation connectors, which describe the kind of annotations
that are created by the encapsulated query. Moreover, artifact connectors and input connectors
can be negative to describe that the encapsulated query checks for the absence of artifacts
and annotations with certain types.

Figure 6.1 depicts view modules in concrete syntax. This thesis depicts modules as rounded
rectangles that are labeled with the module name. Connectors are attached to modules. This
thesis depicts artifact connectors as rectangles that contain a filled black square and are
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Figure 6.1.: Metamodel for view modules (left) and concrete syntax of view modules (right)

labeled with the name and artifact type separated by a colon. Negative artifact connectors
have a black background and consist of a filled white rectangle. This thesis depicts annotation
connectors as rectangles that contain a filled black triangle and are labeled with the name
and annotation type separated by a colon. Input connectors consist of a triangle that points
to the module. Output connectors consist of a triangle that points away from the module.
Negative input connectors have a black background and consist of a filled white triangle.
Figure 6.1 depicts the view modules Generalization, ToN Association, and Composite. Ac-

cording to the Generalization pattern (cf. Figure 3.5(a)), the Generalization module owns two
artifact connectors that receive artifacts with Class and TypeReference artifact type. The
TypeReference artifact type is the common supertype of the Namespace and Reference artifact
type. The Generalization module owns an output connector, which provides annotations with
Generalization annotation type that mark matches of the Generalization pattern.
According to the ToN Association pattern (cf. Figure 3.6(b)), the ToN Association module

owns four artifact connectors and one output connector. The artifact connectors describe that
the module receives artifacts with Field, Classifier, Dimension, and TypeReference artifact type.
The output connector provides annotations with ToNAssociation annotation type, which mark
matches of the ToN Association pattern.
According to the Composite pattern (cf. Figure 3.8(a)), the Composite module owns two

input connectors and one output connector. The input connector receives annotations with
Generalization and Association annotation type, respectively. Thus, the Composite module
reuses matches of the Generalization and ToN Association pattern. The output connector
provides annotations with Composite type, which mark matches of the Composite pattern.
Figure 6.2 shows the Extract Interface module. According to the Extract Interface pattern

(cf. Figure 3.9), the Extract Interface module owns three artifact connectors, one negative
input connector, and one output connector. The artifact connectors receive artifacts with
Class, Method, and Public artifact type. The negative input connector receives annotations
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with InterfaceImplementation annotation type. The negative input connector describes that
the encapsulated graph query checks for the absence of annotations that mark matches of
the Interface Implementation pattern (cf. Figure 3.5(b)). The output connector provides
annotations with Extract Interface type that mark matches of the Extract Interface pattern.

6.3. View Dependency Graph
When view modules build on the graph pattern matches that are maintained by other modules,
they need to exchange these matches by means of annotations. The framework enables
developers to model this reuse of annotations by means of dependencies between modules.
The resulting discrimination network is called view dependency graph and shows how view
graphs are derived from other view graphs. This dependency graph enables developers to
model conjunctions, disjunctions, negations, and recursive definitions of view graphs.

Figure 6.3 shows an extension of the metamodel for view modules. The metamodel depicts
parts that are already introduced in gray color. The metamodel describes that view dependency
graphs are specializations of view modules that contain other view modules and dependencies
between these view modules. Therefore, a view dependency graph is also a view module
that consists of connectors. The metamodel distinguishes module dependencies and graph
dependencies. Module dependencies are directed links that connect the output connectors of
view modules with the input connectors of view modules within a view dependency graph. Graph
dependencies are directed links that connect input connectors of view dependency graphs with
input connectors of view modules as well as output connectors of view modules with the output
connectors of view dependency graphs.
According to the running example, Figure 6.3 shows a view module dependency graph in

concrete syntax that depicts dependencies as directed solid lines. The arrow heads denote
the dependent view modules. The dependency graph consists of the Generalization, ToN
Association, and Compositemodules. The dependency between the Generalization and Composite
module describes that the Composite module receives graph pattern matches in terms of
annotations that are created by the Generalization module. The dependency between the ToN
Association and the Composite module describes that the Composite module receives graph
pattern matches in terms of annotations that are created by the ToN Association module.

Figure 6.4 shows the Hierarchy view dependency graph. The dependency graph consists of
the Generalization, Multi-Level Generalization, Interface Implementation, and Multi-Level Interface
Implementation modules. The Generalization module provides annotations that mark matches
of the Generalization pattern (cf. Figure 3.5(a)). The Interface Implementation module provides
annotations that mark matches of the Interface Implementation pattern (cf. Figure 3.5(b)).

The Multi-Level Generalization module receives annotations from the Generalization module
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to search for matches of the Multi-Level Generalization pattern (cf. Figure 3.5(c)). Furthermore,
the Multi-Level Generalization module receives annotations from itself to find multi-level
generalizations that base on other multi-level generalizations. For that purpose, a module
dependency connects the output connector of the Multi-Level Generalization module with the
input connector of the Multi-Level Generalization module.
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The Multi-Level Interface Implementation module receives annotations with Generalization
annotation type from the Generalization module and Multi-Level Generalization module as well
as annotations with InterfaceImplementation annotation type from the Interface Implementation
module to find matches of the Multi-Level Interface Implementation pattern (cf. Figure 3.5(d)).
Moreover, the Generalization and Multi-Level Generalization modules provide annotations

that mark matches of the Generalization patterns to the generalizations output connector of
the dependency graph. The Interface Implementation and Multi-Level Interface Implementation
modules provide annotations that mark matches of the Interface Implementation patterns to
the implementations output connector of the dependency graph.
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6.4. Expressiveness of the View Definition Language
This section describes how developers employ view modules and module dependencies to
model conjunctions, disjunctions, negations, and recursive definitions of graph conditions (cf.
Definition 14). Section 6.4.1 describes modules that encapsulate atomic graph conditions.
Section 6.4.2 describes modeling variants for modules that encapsulate conjunctions of graph
conditions. Section 6.4.3 describes modules that encapsulate disjunctions of graph conditions.
Section 6.4.4 describes modules that encapsulate negations of graph conditions. Section 6.4.5
describes cyclic dependencies between modules that encapsulate recursive graph conditions.

6.4.1. Atomic Graph Conditions
View modules encapsulate atomic graph conditions, when they own artifact input connectors,
but do not own annotation input connectors.

Generalization

classes : 
Class
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generalizations : 
Generalization

(a) Generalization
module

subClass 
: Class

namespace 
: Namespace

reference 
: Reference

superClass 
: Class

reference

extends target

Generalization

(b) Generalization pattern

Figure 6.5.: Atomic graph condition

According to the running example, Figure 6.5 shows the Generalization module and the
Generalization pattern. The Generalization module owns two artifact input connectors with Class
and TypeReference artifact type and does not own annotation input connectors. Therefore,
the Generalization module encapsulates the Generalization pattern as atomic graph condition.
Note, the TypeReference type is the common supertype of the Namespace and Reference type.

6.4.2. Conjunctions
View modules encapsulate conjunctions of graph conditions, when they own annotation
input connectors and, optionally, artifact connectors. These connectors enable developers to
model conjunctions of graph conditions in three different ways. View modules encapsulate
conjunctions, when graph patterns either a) overlap, b) are disjoint, or c) are extended.

n1 n2 n3 n4 n5

P1 P2
P

(a) Overlapping patterns

n1 n2 n3 n4 n5

P1 P2
P

(b) Disjoint patterns

n1 n2 n3 n4 n5

P1
P

(c) Extended pattern

Figure 6.6.: Conjunction of graph patterns

Figure 6.6 gives an overview of these variants. Figure 6.6(a) describes that two patterns,
which overlap in one or more pattern nodes, implement a conjunction, because the graph
nodes that match the pattern nodes in the intersection of both patterns satisfy both patterns.
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According to Figure 6.6(a), the pattern P1 consists of the pattern nodes n1, n2, and n3.
The pattern P2 consists of the pattern nodes n3, n4, and n5. The intersection of pattern P1
and P2 consists of the pattern node n3. Thus, the graph nodes, which match pattern node n3
in the overall pattern P , satisfy pattern P1 and P2.

Figure 6.6(b) describes that two disjoint patterns implement a conjunction, when the overall
pattern employs additional pattern nodes and edges that connect both disjoint patterns in a
manner that the overall pattern is a connected graph.
According to Figure 6.6(b), the pattern P1 consists of the pattern nodes n1 and n2. The

pattern P2 consists of the pattern nodes n4 and n5. The intersection of pattern P1 and P2
is empty. The pattern node n3, the pattern edge between pattern node n2 and n3, and the
pattern edge between pattern node n4 and n3 connect the pattern P1 and P2. Therefore,
matches of the overall pattern P satisfy the embedded patterns P1 and P2.
Figure 6.6(c) depicts that a pattern, which is extended by additional pattern nodes and

edges, implements a conjunction, when the pattern and the additional pattern nodes and
edges constitute a connected graph, because the additional pattern nodes and edges constitute
a second implicit pattern that overlaps with the extended pattern.

According to Figure 6.6(c), the pattern P1 consists of the pattern nodes n1, n2, and n3. The
pattern nodes n4 and n5 are directly or indirectly connected to pattern node n3 of pattern P1.
Therefore, the pattern nodes n3, n4, and n5 constitute an implicit pattern that overlaps with
pattern P1. Thus, matches of the pattern P satisfy the pattern P1 and the implicit pattern.

The following sections describe each case in detail and show modeling variants for each case.

Overlapping Graph Patterns
This thesis distinguishes two kinds of overlapping patterns. The first kind deals with overlap-
ping patterns of different kinds. View modules that encapsulate conjunctions with overlapping
patterns of different kinds own two or more annotation input connectors, which receive
annotations with different annotation types, and do not own artifact input connectors.
The second kind deals with overlapping patterns of the same kind. View modules that

encapsulate conjunctions with overlapping patterns of the same kind own one annotation
input connector, which receives annotations with a certain annotation type, and do not own
artifact input connectors. The following examples describe both modeling variants.

According to the running example, Figure 6.7(a) shows the Multi-Level Interface Implemen-
tation module, which encapsulates a conjunction that deals with different kinds of patterns.
This module owns two annotation input connectors with Generalization and InterfaceImple-
mentation annotation type, respectively. Therefore, the module describes that it encapsulates
a conjunction of the Generalization pattern (cf. Figure 3.5(a)) and Interface Implementation
pattern (cf. Figure 3.5(b)). Figure 6.7(b) depicts the Multi-Level Interface Implementation
pattern (cf. Figure 3.5(d)) and describes that both patterns overlap in the superclass pattern
node, which describes that the generalization implements an interface.

According to the running example, Figure 6.7(c) shows the Multi-Level Generalization module,
which encapsulates a conjunction that deals with the same kind of pattern. The Multi-Level
Generalization module owns one annotation input connector with Generalization annotation
type. Therefore, the module can encapsulate a conjunction that consists of two or more
Generalization patterns (cf. Figure 3.5(a)). Figure 6.7(d) depicts the Multi-Level Generalization
pattern (cf. Figure 3.5(c)) that employs two Generalization patterns. Both Generalization
patterns overlap in the middleclass pattern node, which describes that the superclass of the
lower generalization and the subclass of the upper generalization are the same.
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Figure 6.7.: Conjunction with overlapping graph patterns

Disjoint Graph Patterns
Graph patterns are disjoint, when they have no pattern nodes in common. View modules
implement conjunctions with disjoint patterns, when they own one or more annotation input
connectors and may own one or more artifact input connector. This thesis distinguishes
two modeling variants. The first modeling variant employs only additional pattern edges to
connect disjoint patterns. The second modeling variant employs additional pattern nodes and
edges to connect disjoint patterns. The following examples describe both variants.
According to the running example, Figure 6.8(a) shows a Singleton module that searches

for employed Singleton design patterns1. The Singleton module owns two annotation input
connectors with PrivateConstructor and PublicInstanceMember annotation type, respectively.
Therefore, the module encapsulates a conjunction of the PrivateConstructor pattern2 and
PublicInstanceMember pattern3. Appendix F describes these patterns. Figure 6.8(b) depicts
that both patterns are disjoint. Thus, the overall pattern employs an additional members
pattern edge that connects the PrivateConstructor and PublicInstanceMember patterns in a
way that the constructor is a member of the class that contains the public instance member.

According to the running example, Figure 6.8(c) shows an alternative Singleton module.
The Singleton module owns two annotation input connectors with PrivateConstructor and
PublicClassMember annotation type, respectively. Furthermore, the Singleton module owns
two artifact input connectors with Class artifact type and TypeReference artifact type. There-

1The Singleton design pattern enables callers to receive always the same instance of a class [35, p. 127].
2The PrivateConstructor pattern matches constructors with private visibility.
3The PublicInstanceMember pattern matches static public fields and methods that store or return instances of
the containing class.
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Figure 6.8.: Conjunction with disjoint graph patterns

fore, the module describes that it encapsulates conjunctions of the PrivateConstructor and
PublicClassMember pattern4 and, furthermore, requires artifacts with Class and TypeReference
artifact type. Figure 6.8(d) depicts that both patterns are disjoint and the overall pattern
employs artifacts with Class and TypeReference artifact type (supertype of the Namespace
and Reference artifact type) to connect both patterns. The additional pattern nodes connect
both patterns in a way that the constructor and the member are members of the same class.
Furthermore, the type of the member must be the class that owns the member.

Extended Graph Patterns
View modules encapsulate extended graph patterns, when they own at least one annotation
input connector and at least one artifact input connector.

According to the running example, Figure 6.9(a) depicts an alternative Multi-Level Interface
Implementation module that encapsulates the Multi-Level Interface Implementation pattern
(cf. Figure 3.5(d)). The Multi-Level Interface Implementation module owns one annotation
input connector with Generalization annotation type and two artifact input connectors with
Interface and TypeReference artifact type (supertype of the Namespace and Reference artifact
type). Therefore, the module describes that it encapsulates a conjunction by extending the
Generalization pattern (cf. Figure 3.5(a)) with pattern nodes of Interface and TypeReference
artifact type. Figure 6.9(b) depicts the pattern nodes with Interface, Namespace, and Reference
artifact type as implicit pattern, which extends the Generalization pattern by a chain of pattern
nodes. These nodes describe that the superclass of the generalization implements an interface.

4The PublicClassMember pattern matches static public fields or methods.
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Figure 6.9.: Conjunction with extended graph pattern

6.4.3. Disjunctions
View modules encapsulate disjunctions of graph conditions, when they own at least one
annotation input connector that has multiple incoming module dependencies. Then, the
encapsulated pattern exploits the polymorphism of the received annotations to implement
disjunctions. Thus, the annotation type of the annotation input connector can have annotation
subtypes that are instantiated by other view modules.
According to the running example, Figure 6.10(b) depicts the Composite module. The

Composite module owns two annotation input connectors with Generalization annotation type
and Association annotation type, respectively. Both annotation input connectors describe that
the Composite module encapsulates two disjunctions.

First, the Composite module encapsulates a disjunction of Generalization patterns, because
the annotation input connector with Generalization annotation type has two incoming module
dependencies with the Generalization module and Multi-Level Generalization module as sources.
According to the running example (cf. Figure 6.10(a)), theMulti-Level Generalization annotation
type is a subtype of the Generalization annotation type. Therefore, the Generalization annotation
type and the Multi-Level Generalization annotation type have the Sub and Super role type in
common. Thus, the Composite module encapsulates a disjunction of Generalization patterns,
because the generalization pattern node of the Composite pattern can match annotations that
mark matches of the Generalization or Multi-Level Generalization pattern.
Second, the Composite module implements a disjunction of Association patterns, because

the annotation input connector with Association annotation type has two incoming module
dependencies with the ToNAssociation module and ToManyAssociation module as sources.
According to the running example (cf. Figure 6.10(a)), the ToNAssocation and ToManyAssoci-
ation annotation types are subtypes of the abstract Association annotation type. Thus, the
Composite module encapsulates a disjunction of Association patterns, because the association
pattern node of the Composite pattern can match annotations that mark matches of the ToN
Association or ToMany Association patterns.

6.4.4. Negation
Negations express that certain graph nodes and edges must not exist. According to Definition 8,
this thesis distinguishes simple and complex negation. Figure 6.11 depicts examples for simple
and complex negations. The pattern nodes and edges that must not exist are crossed out.
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Figure 6.10.: Disjunction

A graph (sub-)pattern is a simple negation, when all pattern nodes of the negated graph
(sub-)pattern are directly connected to patterns nodes that are not negated and no additional
pattern edges connect the pattern nodes of the negated graph (sub-)pattern. Figure 6.11(a)
and Figure 6.11(b) depict simple negations, because the negated pattern nodes n3 and n4 are
directly connected to the non-negated pattern node n2 and no graph edges exist between the
pattern nodes n3 and n4.

A graph (sub-)pattern is a complex negation, when at least one pattern node of the negated
graph (sub-)pattern is not directly connected to pattern nodes that are not negated or pattern
edges exist that connect the negated pattern nodes. Figure 6.11(c) depicts a complex negation,
because the negated pattern node n4 is not directly connected to the non-negated pattern
node n2. Figure 6.11(d) depicts a complex negation, because a pattern edge connects the
negated pattern nodes n4 and n5.

n1 n2 n3

PAC NAC

(a) Simple negation

n1 n2

n3PAC
NAC

n4

(b) Simple negation

n1 n2 n3

PAC NAC

n4

(c) Complex negation

n1

n2 n4

PAC NAC

n3
n5

(d) Complex negation

Figure 6.11.: Kinds of negative graph conditions

In this thesis, simple and complex negations are mapped differently to modules. The
following sections describe how this thesis maps simple and complex negations to modules.
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Simple Negation
In this thesis, simple negation is mapped to modules that consist of negated artifact input
connectors. A negated artifact connector describes that the module checks for the non-existence
of artifacts that have an artifact type as specified by the negated connector.

According to the running example, Figure 6.12(a) depicts the Method Override module that
encapsulates the Method Override pattern (cf. Figure 3.7). The Method Override module
consists of a negative artifact connector with Private artifact type, an artifact connector
with Method artifact type, and an annotation input connector with Generalization annotation
type. The negative artifact connector with Private artifact type describes that the Method
Override module checks for the non-existence of artifacts with Private artifact type. The
artifact connector with Method artifact type describes that the Method Override module checks
for the existence of artifacts with Method artifact type. The annotation input connector
with Generalization annotation type describes that the Method Override module checks for the
existence of annotations with Generalization annotation type.
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modifiers : 
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MethodOverride

generalizations : 
Generalization
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modifiers
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Non-Private 
Method

Method Override

Generalization

(b) Graph pattern

Figure 6.12.: Simple Negation

Figure 6.12(b) depicts the Method Override pattern (cf. Figure 3.7). The Method Override
pattern consists of a Generalization pattern (cf. Figure 3.5(a)) and two patterns that match
methods without private modifiers. The crossed out pattern nodes and edges denote the
simple negation and describe that the methods must not consist of private modifiers.

Complex Negation
In this thesis, complex negation is mapped to modules that consist of negated annotation
input connectors. The negated annotation input connector describes that the module checks
for the non-existence of annotations that have an annotation type as specified by the negated
annotation input connector. Therefore, the mapping of complex negation requires two modules.
The first module searches for the matches of a pattern that must not exist to satisfy the
pattern of the second module.

According to the running example, Figure 6.13(a) shows the Extract Interface module that
encapsulates the Extract Interface pattern (cf. Figure 3.9). The Extract Interface pattern
implements a complex negation of the Interface Implementation pattern (cf. Figure 3.5(b)),
because the pattern nodes with Reference and Interface artifact type are not directly connected
to non-negated pattern nodes of the Extract Interface pattern.

The Extract Interface module owns a negative annotation input connector with InterfaceIm-
plementation annotation type to describe that the Extract Interface module checks for the
non-existence of matches for the Interface Implementation pattern. The InterfaceImplemen-
tation module encapsulates the Interface Implementation pattern to create annotations that
mark matches of the Interface Implementation pattern. These annotations are forwarded to
the Extract Interface module that checks whether Class artifacts do not satisfy the Interface
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Figure 6.13.: Complex Negation

Implementation pattern. The pattern in Figure 6.13(b) crosses out the pattern node with
InterfaceImplementation annotation type to describe that the Class artifact must not participate
in a match of the Interface Implementation pattern.

6.4.5. Recursion
In this thesis, recursive graph conditions (cf. Definition 15) are mapped to at least two modules.
One or more modules describe the recursion start. One or more modules describe the recursion
step. The view modules that describe the recursion step consist of cyclic module dependencies
to take the result of a previous recursion step as input for the next recursion step. Accordingly,
the view graph schema consists of annotation types that represent annotations, which mark
matches for recursion starts and recursion steps. The annotations that represent recursion
starts are polymorphic to annotations that represent recursion steps, i. e., annotations for
recursion starts are special kinds of annotations for recursions steps. Then, the view module
implementation exploits the polymorphism of the received annotations during the pattern
matching, similar to the disjunctions of graph conditions (cf. Section 6.4.3).
Note that also multiple modules can describe the recursion starts and recursion steps.

Furthermore, recursion cycles can consist of other recursion cycles.

Generalization

classes : 
Class

typeReferences : 
TypeReference

generalizations : 
Generalization

Multi-Level 
Generalization

generalizations : 
Generalization

multiGeneralizations : 
MultiLevelGeneralization

(a) View module de-
pendency graph

<<annotation type>>
Generalization

<<annotation type>>
MultiLevel-

Generalization

<<role type>>
Super

<<role type>>
Sub

<<artifact type>>
Class

<<role type>>
Lower

<<role type>>
Upper

(b) View graph schema

subClass 
: Class

generalization2
: Generalization

middleClass 
: Class

: Sub

: Super

superClass 
: Class

generalization1
: Generalization

: Super

: Sub

Multi-Level Generalization

Upper Generalization

Lower Generalization

(c) Graph pattern

Figure 6.14.: Recursion

According to the running example, Figure 6.14(a) depicts the Generalization module and
Multi-Level Generalization module. The Generalization module describes the recursion start and
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encapsulates the Generalization pattern (cf. Figure 3.5(a)) to create annotations that mark
matches of the Generalization pattern. The Multi-Level Generalization module describes the
recursion step and encapsulates the Multi-Level Generalization pattern (cf. Figure 3.5(c)) to
create annotations that mark matches of the Multi-Level Generalization pattern. The Multi-
Level Generalization module consists of a module dependency, which connects its annotation
output connector with its annotation input connector, because matches of the Multi-Level
Generalization pattern can lead to additional matches of the Multi-Level Generalization pattern
as described in Section 3.3.2.

Figure 6.14(b) depicts an excerpt of the view graph schema for Generalization patterns. The
Generalization annotation type represents annotations that mark matches for the recursion start.
The Multi-Level Generalization annotation type is a subtype of the Generalization annotation
type. The Multi-Level Generalization annotation type represents annotations that mark matches
for recursion steps. The Multi-Level Generalization annotation type inherits the Super and Sub
role types of the Generalization annotation type. Roles with Super and Sub role types mark the
outermost super- and subordinate classes of the (multi-level) generalizations. Furthermore,
the Multi-Level Generalization annotation type owns the Lower and Upper role type. Roles with
Lower and Upper role type mark the annotations that describe the matches of the lower and
upper (multi-level) generalizations, which constitute the multi-level generalization. Thus, the
Lower and Upper role type mark annotations that were created by a previous recursion step.

Figure 6.14(c) depicts the Multi-Level Generalization pattern that is employed by the Multi-
Level Generalization module. The Multi-Level Generalization pattern describes that two matches
for Generalization patterns and / or Multi-Level Generalization patterns must exist that have a
class in common, which is the outermost superclass in the lower (multi-level) generalization
and the outermost subclass in the upper (multi-level) generalization. Since the generalization1
and generalization2 pattern nodes can match annotations with Generalization and Multi-Level
Generalization type, also annotations with Multi-Level Generalization annotation type can satisfy
the pattern in Figure 6.14(c).

6.5. Discussion

This chapter describes a modeling language, which enables developers to model generalized
discrimination networks for view graph maintenance. The network consists of view modules
and module dependencies. View modules encapsulate graph patterns. The connectors of
modules provide all information that are required by the framework for view graph maintenance
such as which kinds of artifacts and annotations are matched by the encapsulated graph
patterns and which kinds of annotations are created by the modules to mark found graph
pattern matches. The module dependencies describe the reuse of graph pattern matches. View
modules and module dependencies constitute directed cyclic graphs that enables developers
to model conjunctions, disjunctions, and negations of graph conditions. Furthermore, cycles
in the dependency graphs enable developers to model recursive graph conditions.

Table 6.1 summarizes which concepts of the proposed modeling language satisfy the elicited
requirements of Section 4.2.2. In summary, the requirement R2a - Encapsulation describes
that the modeling language must enable to encapsulate graph queries that are specified by
developers. The requirement R2b - Effectiveness describes that markings for matches must
keep track of the roles of graph nodes in graph pattern matches. The requirement R2c -
Reusability describes that view graphs must be able to build on the content of other view
graphs. The requirement R2d - Nesting describes that the modeling language must support
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Table 6.1.: Mapping the requirements to the modeling language
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Base Graph Schema Definition G# G# # # # # #

View Graph Schema Definition G# G# G# G# G# # #

View Module  # G#     

View Module Dependency # #    # #

View Module Implementation #  G# G# G#   

covered:  ; partially covered: G#; not covered: #

the expressiveness of nested graph conditions to enable developers to express disjunctions,
conjunctions, and negations of graph conditions. The requirement R2e - Recursion describes
that the modeling language must enable developers to model recursive graph conditions. The
requirement R3a - Languages describes that the framework must support different kinds of
pattern matching approaches to be applicable to a multitude of graph query languages. The
requirement R3b - Transformations describes that the framework should support different kinds
of graph transformations as native implementation of graph queries.
The modeling language enables developers to model base graph schemata and view graph

schemata that describe artifact types and annotation types. The developers employ these
artifact and annotation types to describe the interfaces of view modules. The modules
encapsulate graph queries behind theses interfaces. Therefore, the base graph and view graph
schemata contribute to the satisfaction of the requirement R2a - Encapsulation and the view
modules satisfies the requirement R2a - Encapsulation. Note that the base graphs and view
graphs must be typed to be able to define such interfaces. Base graphs must be typed weak,
e. g., by means of labels, or strong, e. g., by means of types with inheritance. Weak typing
can be mapped to strong typing. View graphs must be typed strong, i. e., by means of types
with type inheritance, to be able to map disjunction and recursion to view modules, because
the mapping of disjunctions and recursion exploits the polymorphism of graph nodes of view
graphs. A weak typing of view graphs is not sufficient.

The base graph and view graph schemata describe which kinds of artifacts and annotations
can act in certain roles within graph pattern matches. These kinds of roles are defined by
the developers depending on the kinds of artifacts and annotations that must be effectively
retrievable, when post-processing the matches. Therefore, the modeling of base graph and
view graph schemata enables developers to effectively mark graph nodes of matches for easy
retrieval. Thus, the base graph and view graph schemata contribute to the satisfaction of the

75



6. View Definition Language

requirement R2b - Effectiveness. The module implementation enables developers to instantiate
annotation types and role types, when the implementation finds graph pattern matches. Thus,
the module implementation satisfies the requirement R2b - Effectiveness.
The interfaces of modules enable developers to describe which kinds of annotations are

processed by modules and which kinds of annotations are created and maintained by modules.
Therefore, the view graph schema definition and the modules contribute to the satisfaction
of the requirement R2c - Reusability. The view module dependencies enable developers to
describe which view modules reuse matches that are maintained by other modules. Therefore,
these dependencies satisfy the requirement R2c - Reusability. The module implementation
processes the received annotations and, thus, contributes to the requirement R2c - Reusability.
View modules and their dependencies enable to express atomic graph conditions, con-

junctions, disjunctions, and negations. Atomic graph conditions map to modules without
annotation input connectors. Conjunctions map to modules with annotation input connectors.
Disjunctions map to modules with input connectors that receive annotations from two or
more predecessor modules. Negations map to modules with negative input connectors. Thus,
the modules satisfy requirement R2d - Nesting.
View modules that implement conjunctions, disjunctions, and (complex) negations reuse

the matches that are provided by other modules. Module dependencies enable developers
to describe the reuse of matches. Thus, the module dependencies satisfy the requirement
R2d - Nesting. The mapping of disjunctions requires that the module receives annotations
with annotation types that have a common annotation supertype as specified by the input
connector of the module, because the module implementation exploits the polymorphism of
these annotations to implement the disjunction. Therefore, the view graph schema definition
contributes to the satisfaction of the requirement R2d - Nesting. The actual conjunction,
disjunction, and negation is implemented within the module itself. Therefore, the module
implementation contributes to the satisfaction of the requirement R2d - Nesting.
Cycles in module dependency graphs describe recursive graph conditions. In general, at

least one module defines the recursion start and at least one module defines the recursion
step. A module dependency between the module that defines the recursion start and the
module that defines the recursion step as well as the last and first module in the recursion
cycle describes the recursive evaluation of found matches. Therefore, the modules and module
dependencies satisfy the requirement R2e - Recursion. Furthermore, the view graph schema
must describe annotation types that represent annotations that mark matches of the recursion
starts and the recursion steps. Therefore, the view graph schema definition contributes to
the satisfaction of the requirement R2e - Recursion. Furthermore, the actual recursion is
implemented within the view modules that exploit the polymorphism of annotations that
mark the recursion starts and steps. Thus, the module implementations contribute to the
satisfaction of the requirement R2e - Recursion.

View modules encapsulate the implementation of graph queries from the framework. There-
fore, modules also hide the employed graph pattern matching approach as well as the employed
graph transformation languages. Thus, the modules and module implementations satisfies the
requirements R3a - Languages and R3b - Transformations.
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This chapter describes the implementation of view modules by means of graph transformation
rules (cf. Definition 10) that transform view graphs to maintain graph pattern matches.
Section 7.1 describes the execution modes of view modules. Section 7.2 describes the

implementation of view modules for conjunctions, disjunctions, negations, and recursions.

7.1. View Module Execution Modes
View modules are responsible to maintain the view graphs that they created. For that purpose,
modules must be able to create missing annotations, delete obsolete annotations, and update
suspicious annotations. View modules provide execution modes for each of these maintenance
actions. Figure 7.1 depicts the metamodel for the implementations of modules. The metamodel
describes that modules own implementations for creating, deleting, and updating annotations,
roles, and scopes in view graphs.
As rule of thumb, the module that initially created an annotation is responsible for its

maintenance. For that purpose, view modules keep track of the annotations that they created.
Moreover, the annotations keep track of the module by which they were created.

Metamodel for View Module Implementations

ViewModule

+ description : String

<<abstract>>
ViewModuleImplementation

CreateImplementation DeleteImplementation UpdateImplementation

updateImplementationcreateImplementation

deleteImplementation1 11

Annotation
annotations

module1

*

Figure 7.1.: Metamodel for view module implementations

According to the running example, Figure 7.2(a) depicts the CreateImplementation of the
Generalization module. This implementation shows a graph transformation rule that employs
the shorthand notation for graph transformation rules (cf. Definition 10). The transformation
rule employs the Generalization pattern as left-hand side of the transformation rule. The
right-hand side of the transformation rule creates an annotation with Generalization type for
each match of the Generalization pattern. This annotation references all graph nodes that
belong to the match by means of roles as well as scopes and marks the super- and subclass in
the match. Furthermore, the transformation rule adds a levels attribute to this annotation to
describe that the annotation marks a generalization with one hierarchy level.

This thesis employs the following terminology to distinguish the pattern nodes and edges of
graph transformation rules. Solid rectangles are artifact pattern nodes and match artifacts of
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base graphs. Dashed rectangles are annotation pattern nodes and match annotations of view
graphs. Solid lines are relation pattern edges and match relations of base graphs. Dashed lines
are role pattern edges and match roles of view graphs. Dotted lines are scope pattern edges
and match scopes of view graphs. Furthermore, pattern nodes can be bound or unbound.
This thesis depicts bound pattern nodes as pattern nodes with underlined labels. Bound
pattern nodes match a predefined set of graph nodes and are the input parameters of graph
transformation rules. This thesis depicts unbound pattern nodes as pattern nodes that have
no underlined label. Unbound pattern nodes can match graph nodes that are not limited to
a certain set of predefined graph nodes. Appendix B describes a metamodel for this graph
transformation language.
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Class

: Namespace
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: Generalization

(b) Delete and Update implementation

Figure 7.2.: Graph transformation rules of view module execution modes

The DeleteImplementation and UpdateImplementation can be derived from the CreateIm-
plementation. For the sake of clarity, Figure 7.2(b) shows a general graph transformation
rule for both implementations. For the DeleteImplementation and UpdateImplementation, the
annotation pattern node, which matches the annotations that have to be maintained, are
bound in the graph transformation rule. The remaining pattern nodes are unbound.

The DeleteImplementation deletes an annotation with Generalization annotation type includ-
ing its roles and scopes, when the annotation consists of at least one role or scope that does
not mark a graph node anymore, e. g., when the graph node is deleted.
The UpdateImplementation either preserves an annotation with Generalization annotation

type and updates its attribute values, when the annotation still marks graph nodes that
satisfy the Generalization pattern, or flags the annotation with Generalization annotation type
for deletion, when the marked graph nodes do not satisfy the Generalization pattern anymore.
The following sections describe how and when view modules create, delete, and update

annotations to maintain the matches of the encapsulated graph patterns that are stored by
view graphs. The next sections demonstrate the execution modes of the view modules by
using the example of the Generalization pattern. The Generalization pattern is an example and
can be replaced by other graph patterns as well. Note that these patterns can also contain
annotation pattern nodes that match annotations of view graphs.

7.1.1. Creation of Annotations
Graph transformation rules for Create implementations of view modules search for graph
pattern matches and mark all artifacts and annotations that belong to these matches. All
pattern nodes of the encapsulated graph pattern belong to the left-hand side of the graph
transformation rule. Therefore, these pattern nodes are bound in the graph transformation
rule and match the graph nodes that are received by the type compatible input connectors of
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the view module. The right-hand side of the graph transformation rule preserves all artifacts
and annotations that satisfy the graph pattern and marks these artifacts and annotations as
match of the graph pattern. For that purpose, the right-hand side of the graph transformation
rule creates an annotation with an annotation type as defined by the output connector of
the view module in the view graph. For this annotation, the right-hand side of the graph
transformation rule creates roles and scopes, which reference the artifacts and annotations
that belong to the match. The right-hand side of the graph transformation rule creates a role
with a certain role type for each artifact and annotation of the match, when it has a certain
role in the match. The right-hand side of the graph transformation rule creates a scope for
each artifact and annotation of the match, when it does not have a certain role in the match.

Algorithm 7.1 Create implementation of view modules
Input: Graph nodes of base graphs and view graphs
Output: Created annotations
1: procedure module_create(nodes)
2: annotations := ∅
3: for each match of the graph pattern for received graph nodes do //cf. Fig. 7.3(a)
4: if match is not already marked by annotation then //cf. Fig. 7.3(b)
5: annotation := create_annotation(match)
6: annotations := annotations ∪ {annotation}
7: return annotations

Algorithm 7.1 shows the Module_Create procedure that describes the Create implementation
of view modules with the help of pseudo code. The Module_Create procedure makes use of the
patterns and graph transformation rules that are depicted by Figure 7.3. The Module_Create
procedure receives graph nodes that define the search space of the view module. The framework
passes this search space in terms of artifacts and annotations to the view module.

Algorithm 7.2 Creation of annotation in view graphs
Input: Graph pattern match that has to be marked
Output: Annotation that marks the graph pattern match
1: procedure create_annotation(match)
2: annotation := create annotation for match //cf. Fig. 7.3(c)
3: for each attribute assignment of view graph transformation rule do
4: create attribute //cf. Fig. 7.3(d)
5: evaluate expression of attribute assignment //cf. Fig. 7.3(d)
6: for each role pattern edge of view graph transformation rule do
7: if role pattern edge has CREATE modifier then
8: create role to mark graph node of match //cf. Fig. 7.3(e)
9: for each scope pattern edge of view graph transformation rule do
10: if scope pattern edge has CREATE modifier then
11: create scope to mark graph node of match //cf. Fig. 7.3(f)
12: return annotation

First, the Module_Create procedure initializes an empty set of annotations. Then, the
Module_Create procedure searches for matches of the encapsulated graph pattern using the
received graph nodes as search space. For each found match, the Module_Create procedure
checks whether the graph nodes of the match are not already marked by an annotation
with an annotation type as defined by the output connector of the view module. If the
found match is not already marked by an annotation with such an annotation type, the
Module_Create procedure creates an annotation as instance of this annotation type. For that
purpose, the algorithm calls the Create_Annotation procedure and passes the found match to
the procedure. The Create_Annotation procedure returns the created annotation. Afterwards,
the Module_Create procedure adds the created annotation to the set of created annotations.
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Figure 7.3.: Graph patterns and graph transformations of Create implementation

When the Module_Create procedure investigated the complete search space and does not find
additional matches anymore, the Module_Create procedure returns all created annotations.
The Module_Create procedure makes use of the Create_Annotation procedure (cf. Algo-

rithm 7.2). First, the Create_Annotation procedure creates an annotation as instance of the
annotation type as defined by the output connector of the view module. For each attribute
assignment of the transformation rule, the Create_Annotation procedure creates an annotation
attribute as instance of a certain attribute type, adds this annotation attribute to the created
annotation, evaluates the expression of the attribute assignment, and sets the evaluation result
as attribute value. For each role pattern edge of the transformation rule, the Create_Annotation
procedure checks whether the role pattern edge has a Create modifier. If the role pattern
edge has a Create modifier, the Create_Annotation procedure creates a role as instance of the
role type as defined by the role pattern edge, adds the role to the created annotation, and
sets the graph node that matches the target pattern node of the role pattern edge as target
of the created role. For each scope pattern edge of the view graph transformation rule, the
Create_Annotation procedure checks whether the scope pattern edge has a Create modifier.
If the scope pattern edge has a Create modifier, the Create_Annotation procedure creates a
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scope, adds the scope to the created annotation, and sets the graph node that matches the
target pattern node of the scope pattern edge as target of the created scope.

7.1.2. Deletion of Annotations

Graph transformation rules for Delete implementations of view modules delete annotations
from view graphs, when these annotations are obsolete, because they do not mark graph
pattern matches anymore. The left-hand side of the graph transformation rule consists of
a bound annotation pattern node that is the input parameter of the transformation rule.
Furthermore, the bound annotation pattern node consists of role pattern edges and scope
pattern edges that target at unbound pattern nodes that belong to the left-hand side of the
transformation rule as well. These unbound pattern nodes match the artifacts and annotations,
which are marked by the annotation that matches the bound annotation pattern node. The
right-hand side of the graph transformation rule deletes the annotation that matches the
bound annotation pattern node and also deletes all its roles and scopes that mark the graph
pattern match, if at least one role or scope does not reference an artifact or annotation
anymore. The right-hand side of the graph transformation rule preserves all artifacts and
annotations that match the unbound pattern nodes.

Algorithm 7.3 Delete implementation of view modules
Input: Annotations of view graphs
Output: Graph nodes referenced by deleted annotations
1: procedure module_delete(annotations)
2: markedNodes := ∅
3: dependentAnnotations := ∅
4: for each annotation in annotations do
5: if annotation has dangling role/scope then //cf. Fig. 7.4(a)
6: markedNodes := markedNodes ∪ {graph nodes originally marked by annotation}
7: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
8: delete_annotation(annotation)
9: return markedNodes, dependentAnnotations

Algorithm 7.3 describes the Module_Delete procedure. The Module_Delete procedure
describes the Delete implementation of view modules with the help of pseudo code. The
Module_Delete procedure makes use of the graph patterns and graph transformation rules
that are depicted by Figure 7.4. The Module_Delete procedure receives annotations that have
to be deleted by the Delete implementation of the view module, if they are obsolete.
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Figure 7.4.: Graph patterns and graph transformations of Delete implementation
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First, the Module_Delete initializes an empty set of marked graph nodes and dependent
annotations. For each annotation in the set of received annotations, theModule_Delete procedure
checks whether the annotation owns dangling roles or scopes. If the annotation has dangling
roles or scopes, the annotation is obsolete and must be deleted. For each obsolete annotation,
the Module_Delete procedure collects the artifacts and annotations that were originally marked
by the annotation and adds these artifacts and annotations to the set of originally marked
graph nodes. Furthermore, the Module_Delete procedure adds all annotations that dependent
on the obsolete annotation to the set of dependent annotations. Then, the Module_Delete
procedure calls the Delete_Annotation procedure and passes the obsolete annotation to delete
this annotation. When the Module_Delete procedure processed the set of received annotations,
the Module_Delete procedure returns a) the set of graph nodes that were originally marked by
the deleted annotations and b) the set of annotations that depend on deleted annotations.

Algorithm 7.4 Deletion of annotation from view modules
Input: Annotation that has to be deleted
1: procedure delete_annotation(annotation)
2: for each dangling role / scope of annotation do
3: remove dangling role / scope //cf. Fig. 7.4(b)
4: for each non-dangling role / scope of annotation do
5: remove non-dangling role / scope //cf. Fig. 7.4(c)
6: for each attribute in annotation.attributes do
7: remove attribute from annotation //cf. Fig. 7.4(d)
8: remove annotation //cf. Fig. 7.4(e)

The Module_Delete procedure makes use of the Delete_Annotation procedure (cf. Algo-
rithm 7.4). The Delete_Annotation procedure removes all dangling and non-dangling roles and
scopes from the annotation. Then, the Delete_Annotation procedure removes all attributes
from the annotation. Afterwards, the procedure deletes the annotation itself. The procedure
preserves the graph nodes that are referenced by roles and scopes.

7.1.3. Update of Annotations
Graph transformation rules for Update implementations of view module revise annotations
of view graphs, when graph nodes and edges of base graphs or view graphs changed to
ensure that annotations still mark graph pattern matches. The left-hand side of the graph
transformation rule consists of a bound annotation pattern node that is the input parameter
of the graph transformation rule. Furthermore, the bound annotation pattern node consists of
role pattern edges and scope pattern edges that target at unbound pattern nodes that belong
to the left-hand side of the graph transformation rule as well. The unbound pattern nodes
match the artifacts and annotations that are marked by the annotation that matches the
bound annotation pattern node. If the marked graph nodes satisfy the encapsulated graph
pattern of the view module, the right-hand side of the graph transformation rule preserves the
annotation that marks the match and updates the attribute values of the annotation. If the
marked graph nodes do not satisfy the encapsulated graph pattern anymore, the right-hand
side of the graph transformation rule detaches all graph nodes from the roles and scopes of
the annotation to make the annotation obsolete.
Algorithm 7.5 describes the Module_Update procedure. The Module_Update procedure

describes the Update implementation of view modules with the help of pseudo code. The
Module_Update procedure makes use of the graph patterns and graph transformation rules
that are depicted by Figure 7.5. The Module_Update procedure receives annotations and
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Algorithm 7.5 Update implementation of view modules
Input: Annotations of view graphs
Output: Annotations that were set obsolete
1: procedure module_update(annotations)
2: obsoleteAnnotations := ∅
3: preservedAnnotations := ∅
4: dependentAnnotations := ∅
5: for each annotation in annotations do
6: if annotation marks graph nodes that satisfy graph pattern then //preserve annotation (cf. Fig. 7.5(a))
7: preserve_annotation(annotation)
8: preservedAnnotations := preservedAnnotations ∪ {annotation}
9: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
10: else //set annotation obsolete
11: obsolete_annotation(annotation)
12: obsoleteAnnotations := obsoleteAnnotations ∪ {annotation}
13: return obsoleteAnnotations, preservedAnnotations, dependentAnnotations

checks whether these annotations mark graph nodes that still satisfy the encapsulated graph
pattern of the view module. Otherwise, the view module flags these annotations for deletion.
First, the Module_Update procedure initializes an empty set of obsolete, preserved and de-

pendent annotations. For each annotation in the set of received annotations, the Module_Update
procedure checks whether the artifacts and annotations, which are referenced by the annotation,
still satisfy the encapsulated graph pattern of the view module. If the referenced artifacts
and annotations still satisfy this graph pattern, the Module_Update procedure preserves the
annotation. For that purpose, the Module_Update procedure calls the Preserve_Annotation
procedure and passes the annotation that must be preserved.

Algorithm 7.6 Preservation of annotation in view graph
Input: Annotation that has to be preserved
1: procedure preserve_annotation(annotation)
2: for each attribute in annotation.attributes do
3: re-evaluate expression of attribute assignments for attribute //cf. Fig. 7.5(b)

The Preserve_Annotation procedure (cf. Algorithm 7.6) updates the attribute value of each
annotation attribute by re-evaluating the expression of the corresponding attribute assignment.
Then, the Module_Update procedure adds the preserved annotation to the preserved annotations
and adds the annotations that dependent on the preserved annotation to the set of dependent
annotations. If the referenced artifacts and annotations do not satisfy the graph pattern
anymore, the Module_Update procedure sets the annotation obsolete. For that purpose, the
Module_Update procedure calls the Obsolete_Annotation procedure and passes the annotation
that must be set obsolete.

Algorithm 7.7 Set annotations obsolete
Input: Annotation that has to be set obsolete
1: procedure obsolete_annotation(annotation)
2: for each role / scope in annotation.roles do
3: set roles and scopes dangling //cf. Fig. 7.5(c)

The Obsolete_Annotation procedure (cf. Algorithm 7.7) detaches all graph nodes that are
referenced by roles and scopes of the annotation to make the annotation obsolete. Then, the
Module_Update procedure adds the obsolete annotation to the set of obsolete annotations.
Finally, the Module_Update procedure returns the set of obsolete, preserved, and dependent
annotations.
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Figure 7.5.: Graph patterns and graph transformations of Update implementation

7.2. Expressiveness of View Modules
This section describes the expressiveness of view modules in conjunction with their encapsulated
graph transformation rules. Section 7.2.1 describes graph transformation rules for atomic graph
conditions. Section 7.2.2 describes graph transformation rules that implement conjunctions.
Section 7.2.3 describes graph transformation rules that implement disjunctions. Section 7.2.4
describes graph transformation rules for simple and complex negations. Section 7.2.5 describes
graph transformation rules that implement recursion.
The following section reuse the examples of Section 6.4 and, additionally, describe the

employed graph transformation rules. Moreover, Appendix C provides a schematic description
of mapping graph conditions to graph transformation rules.

7.2.1. Atomic Graph Condition

Atomic graph conditions are graph conditions that are not composed of other graph conditions.
According to the running example, Figure 7.6 depicts the Generalization view module as
described in Section 6.4.1. The encapsulated graph transformation rule employs an atomic
graph condition, because it does not dependent on annotations that are created by other view
modules. The Generalization module employs the Generalization pattern as left-hand side of
the graph transformation rule. The right-hand side of the graph transformation rule creates a
Generalization annotation that marks the super- and subclass of the generalization by creating
a Sub role and Super role in the view graph that target at the super- and subclass.
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Figure 7.6.: Generalization view module with atomic graph condition

7.2.2. Conjunction
View modules implement conjunctions, when either a) graph patterns overlap in at least
one pattern node, b) the graph patterns are disjoint and additional pattern nodes and edges
connect these graph patterns, or c) a graph pattern is extended by additional pattern nodes
and edges. The following sections describe each variant.

Overlapping Graph Patterns
Graph transformation rules implement conjunctions, when two or more graph patterns overlap
in at least one pattern node. According to the running example, Figure 7.7 depicts the
Multi-Level Interface Implementation module as described in Section 6.4.2. The module
provides annotations for matches of the Multi-Level Interface Implementation pattern (cf. Fig-
ure 3.5(d)). The Multi-Level Interface Implementation view module implements a conjunction
of the Generalization pattern (cf. Figure 3.5(a)) and Interface Implementation pattern (cf. Fig-
ure 3.5(b)). For that purpose, the view module receives annotations that mark matches of the
Generalization and Interface Implementation pattern. When the superclass of the generalization
implements an interface, the generalization and the interface implementation constitute a
multi-level interface implementation. As result, the graph transformation rule creates an
annotation with MultiLevelInterfaceImplementation annotation type. This annotation marks
the annotations that represent the matches of the Generalization and Interface Implementation
pattern. Furthermore, the annotation marks the subclass of the generalization as subordinate
and the interface of the interface implementation as superordinate in the hierarchy to describe
that the subclass implements the interface.
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Figure 7.7.: Multi-Level Interface Implementation view module with conjunction
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Disjoint Graph Patterns

Graph transformation rules implement conjunctions, when two or more disjoint graph patterns
are connected by additional pattern nodes and edges. According to the running example,
Figure 7.8 depicts the Singleton module as described in Section 6.4.2. The encapsulated
transformation rule describes that a class implements a Singleton design pattern, when the
class contains a private constructor as well as a static and public member (e. g., a field or
method) that stores an instance of the class. The pattern node with Class artifact type connects
the PrivateConstructor and PublicInstanceMember pattern, because the public constructor and
the public instance member must be members of the same class. When the encapsulated
graph transformation rule finds a match, the transformation rule creates an annotation with
Singleton annotation type. The created annotation marks the annotations that mark the
matches of the PrivateConstructor pattern and PublicInstanceMember pattern. Furthermore,
the created annotation marks the class that owns the private constructor and public instance
member as class that implements the Singleton design pattern.
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++ ++
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Figure 7.8.: Singleton view module with conjunction

Extended Graph Pattern

Graph transformation rules implement conjunctions, when a graph pattern is extended by
additional pattern nodes and edges. According to the running example, Figure 7.9 depicts
an alternative Multi-Level Interface Implementation module that extends the Generalization
pattern (cf. Figure 3.5(a)) with the Interface Implementation pattern (cf. Figure 3.5(b)) as
described in Section 6.4.2 without reusing annotations that mark matches of the Interface
Implementation pattern. The encapsulated graph transformation rule describes that the
subclass of a match of the Generalization pattern implements an interface, when the superclass
of the generalization points via an artifact with Namespace artifact type and an artifact with
Reference artifact type to an artifact with Interface artifact type. When the left-hand side of
the graph transformation rule finds a match, the right-hand side of the graph transformation
rule creates an annotation with Multi-Level Interface Implementation annotation type that
marks the subclass of the generalization as subordinate in the hierarchy, the interface as
superordinate in the hierarchy, the annotation that marks the reused Generalization annotation,
and the artifacts with Namespace and Reference artifact type.
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Figure 7.9.: Alternative Multi-Level Interface Implementation view module with conjunction

7.2.3. Disjunction

Graph transformation rules implement disjunctions, when they receive annotations that can
match annotation pattern nodes, which employ the annotation super type of the received
annotations. According to the running example, Figure 7.10 shows the Composite module,
which implements two disjunctions as described in Section 6.4.3. The first disjunction deals
with the disjunction of the Hierarchy patterns (cf. Figure 3.5). The second disjunction deals
with the disjunction of the Association patterns (cf. Figure 3.6). For that purpose, the
Composite module consists of two annotation input connectors that receive annotations with
Hierarchy and Association annotation type. That means, these annotation input connectors
can receive annotations with annotation subtypes of the Hierarchy and Association annotation
type. For example, the annotation input connector with Hierarchy annotation type can receive
annotations with Generalization and Multi-Level Generalization annotation type. Then, the
annotation pattern node with Hierarchy annotation type can match annotations with General-
ization and Multi-Level Generalization type. For example, the annotation input connector with
Association annotation type can receive annotations with ToNAssociation and ToManyAssocia-
tion annotation type. Then, the annotation pattern node with Association annotation type can
match annotations with ToNAssociation and ToManyAssociation type. Thus, the encapsulated
graph transformation rule creates annotations with Composite annotation type, when the
hierarchy between the subclass and superclass is a generalization or multi-level generalization
and the field of the subclass is an association with bounded or unbounded length. Then, the
annotation with Composite annotation type references the annotations that lead to the graph
pattern match accordingly. Furthermore, this annotation marks the super- and subclass of
the generalization as component and composite in the graph pattern match, respectively.

7.2.4. Negation

Negations express that certain graph nodes must not exist, when searching for graph pattern
matches. The following sections distinguish simple and complex negations.
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Figure 7.10.: Composite view module with disjunctions

Simple Negation
In this thesis, simple negation (cf. Definition 8) is mapped to negated artifact pattern nodes
of graph transformation rules. According to the running example, Figure 7.11 shows the
MethodOverride module as described in Section 6.4.4. The MethodOverride module implements
the Method Override pattern (cf. Figure 3.7). The MethodOverride view module implements
two simple negations as denoted by the two crossed out artifact pattern nodes with Private
artifact type. These methods must be located in a super- and subclass and must have
the same names. The right-hand side of the transformation rule creates annotations with
MethodOverride type that mark both methods and the reused generalization annotations.
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Figure 7.11.: MethodOverride view module with simple negation

Complex Negation
In this thesis, complex negation (cf. Definition 8) is mapped to negated annotation pattern
nodes in graph transformation rules. Thus, the mapping of complex negation requires two
view modules. According to the running example, Figure 7.12 shows the Extract Interface
and Interface Implementation module as described in Section 6.4.4, which together enable
to detect classes for which an interface should be extracted. The Extract Interface module
implements the Extract Interface pattern (cf. Figure 3.9). The Interface Implementation
module implements the Interface Implementation pattern (cf. Figure 3.5(b)). The Interface
Implementation module creates annotations for classes that implement an interface by marking
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the interface and the class that implements the interface. The Extract Interface view module
receives annotations that mark matches of the Interface Implementation pattern. Furthermore,
the graph transformation rule of the Extract Interface module describes that a class must
consist of a public method and must not implement an interface. Therefore, the graph
transformation rule of the Extract Interface module crosses out the annotation pattern node
with InterfaceImplementation annotation type to ensure the non-existence of an interface
implementation. For each found match, the graph transformation rule creates an annotation
with ExtractInterface annotation type that marks the class and method for which an interface
should be extracted as well as the public modifier of the method.
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Figure 7.12.: Extract Interface view module with complex negation

7.2.5. Recursion
This thesis refers to cyclic dependencies between view modules as recursion. Recursion
is mapped to two or more graph transformation rules. One or more transformation rules
describe the recursion start. One or more transformation rules describe the recursion step. The
recursion step exploits the polymorphism of annotations, which are created during the previous
recursion starts and steps, to implement recursive graph conditions (cf. Definition 15).

Figure 7.13 shows the Generalization and Multi-Level Generalization view modules as described
in Section 6.4.5. The Generalization view module at the bottom implements the recursion
start. The Generalization view module creates annotations for matches of the Generalization
pattern (cf. Figure 3.5(a)). The Multi-Level Generalization view module on top implements the
recursion step. The Multi-Level Generalization view module creates annotations for matches of
the Multi-Level Generalization pattern (cf. Figure 3.5(c)). According to the running example,
the MultiLevelGeneralization annotation type is a subtype of the Generalization annotation type.
Therefore, annotations with Generalization as well as MultiLevelGeneralization type can match
annotation pattern nodes with Generalization type. For each found match, the transformation
rule of the Multi-Level Generalization module marks the reused matches of the Generalization
and Multi-Level Generalization pattern as well as the outermost super- and subclass as super-
and subordinate in the hierarchy, respectively.
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Figure 7.13.: Multi-Level Generalization view module with recursion

7.3. Discussion

This chapter describes the execution modes of view modules for the creation, deletion, and
update of annotations. In this thesis, developers employ graph transformation rules to
implement these execution modes and transform view graphs to maintain graph pattern
matches. The left-hand sides of the graph transformation rules implement graph patterns for
which the framework maintains matches. The left-hand sides of the graph transformation rules
enable developers to model conjunctions, disjunctions, negations, and recursions in conjunction
with view modules and view module dependency graphs as described in Chapter 6. The
right-hand sides of the graph transformation rules implement side effects that are applied to
view graphs. The right-hand sides of the graph transformation rules create annotations, roles,
and scopes in view graphs to mark graph pattern matches. The right-hand sides of the graph
transformation rules delete annotations, roles, and scopes from view graphs, when they do not
mark graph pattern matches anymore. The right-hand sides of the graph transformation rules
update annotations of view graphs, when graph nodes of the marked matches changed and
the attribute values of annotations must be revised accordingly, or set annotations obsolete,
because they do not mark graph pattern matches anymore.

Table 7.1 summarizes which concepts of the view graph transformations satisfy the elicited
requirements of Section 4.2. The requirement R1a - Nativeness describes that developers want
to store graph pattern matches natively as graphs. The requirement R1b - Memory-Efficiency
describes that developers want to store graph pattern matches efficiently concerning the
memory consumption of view graphs by avoiding copies of graph nodes and edges. The
requirement R1c - Match-Properties describes that developers want to store additional data
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Table 7.1.: Mapping requirements to view graph transformations
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Graph Transformation
Left-hand side  G# G#       

Right-hand side      # G# #  

Expressiveness

Conjunction # # # # #  # # #

Disjunction # # # # #  # # #

Negation # # # # #  # # #

Recursion # # # # # #  # #

covered:  ; partially covered: G#; not covered: #

values locally at maintained graph pattern matches to enrich graph pattern matches with
additional knowledge. The requirement R2b - Effectiveness describes that developers want to
store markings of graph pattern matches effectively by keeping track of the roles of graph
nodes in these matches. The requirement R2c - Reusability describes that developers want
to reuse the content of other graph views. The requirement R2d - Nesting describes that the
approach must support nested graph conditions. The requirement R2e - Recursion describes
that the approach must support recursion to enable developers to define recursive graph
conditions. The requirement R3a - Languages describes that the framework must support
different kinds of graph pattern matching approaches. The requirement R3b - Transformations
describes that graph transformation rules should be employed as native means to search for
graph pattern matches and mark these matches.
Base graphs and view graphs store graphs natively as typed attributed graphs. These

graphs can be processed natively using graph transformation rules. Thus, the left-hand sides
and right-hand sides of view graph transformations satisfies the requirement R1a - Nativeness.

The left-hand sides of graph transformation rules search for graph pattern matches that are
marked as described by the right-hand sides of the graph transformation rules, afterwards.
The right-hand sides of graph transformation rules create graph nodes in view graphs that
represent matches and create graph edges with certain edge types that target at graph nodes
of base graphs and view graphs that satisfy the graph patterns of the left-hand sides. The edge
types assign roles to the graph nodes of these matches. Thus, the right-hand sides of the graph
transformation rules satisfy requirement R1b - Memory-Efficiency, because they mark graph
pattern matches instead of copying graph nodes and edges to view graphs. The left-hand
sides of the graph transformation rules contribute to the satisfaction of the requirement R1b -
Memory-Efficiency, because they can retrieve graph nodes with certain roles in matches using
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the edge types of roles.
The right-hand sides of the graph transformation rules enable developers to define the

computation of attribute values of annotations. The left-hand sides of the graph transformation
rules enable developers to access these attribute values of annotations and process theses
values to compute attribute values of other annotations. Thus, the right-hand sides of
the graph transformation rules satisfy requirement R1c - Match-Properties, because they
compute attribute values of annotations. The left-hand sides of the graph transformation
rules contribute to the satisfaction of the requirement R1c - Match-Properties, because they
can retrieve attribute values of annotations.
The right-hand sides of the graph transformation rules enable developers to effectively

mark graph pattern matches by means of roles. Then, the left-hand sides of the graph
transformation rules are able to effectively access graph pattern matches and graph nodes
with certain roles in these matches. Thus, the left-hand sides and right-hand sides of view
graph transformations satisfy requirement R2b - Effectiveness.

The annotations that are created by the right-hand sides of the graph transformation rules
can satisfy the left-hand sides of other graph transformation rules. Thus, the left-hand and
right-hand sides of graph transformation rules satisfy the requirement R2c - Reusability.
The left-hand sides of the graph transformation rules enable to describe graph conditions

in terms of graph patterns. The graph transformation rules enable to describe conjunctions,
disjunctions, and negations of graph conditions. Thus, the left-hand sides of the graph
transformation rules satisfy requirement R2d - Nesting.
The left-hand sides of the graph transformation rules enable developers to describe graph

patterns that recursively reuse annotations that were created by other view modules in a
recursion cycle. Therefore, the right-hand sides of graph transformation rules contribute to
requirement R2e - Recursion and the left-hand side of the graph transformation rules satisfy
requirement R2e - Recursion.

This thesis does not prescribe which kind of graph pattern matching is employed. Instead,
this thesis employs existing graph pattern matching approaches as operationalization of
view modules and does not provide an own graph pattern matching approach. Since view
modules hide the employed graph pattern matching approach, the left-hand sides of graph
transformation rules satisfy requirement R3a - Languages.

The graph transformation rules enable developers to natively define kinds of graph pattern
matches that must be maintained by the framework. The left-hand sides of the graph
transformation rules enable developers to describe graph patterns. The right-hand sides of
the graph transformation rules enable developers to describe how found matches are marked
for later retrieval. Thus, the left-hand sides and right-hand sides of the graph transformation
rules satisfy requirement R3b - Transformations.

92



8. View Graph Maintenance Algorithms

This chapter describes the maintenance of view graphs, when base graphs change. This
maintenance is required, because changes of base graphs may cause satisfied or dissatisfied
graph patterns. Then, annotations that are missing in view graphs must be added to view
graphs to mark new matches, annotations that do not mark matches anymore must be removed
from view graphs, and annotations that still mark matches must be preserved in view graphs.
Section 8.1 gives an overview of the view graph maintenance. Section 8.2 describes how

the framework interprets changes of base graphs to support an efficient maintenance of view
graphs. Section 8.3 describes the life cycle of annotations during the view graph maintenance.
Section 8.4 describes how the framework determines the states of annotations in their life cycle.
Section 8.5 describes the maintenance modes of view modules, which maintain annotations
that are in certain states of their life cycle. Section 8.6 describes the maintenance phases of
the view graph maintenance that execute modules in certain maintenance modes. Section 8.7
describes how the framework computes the search spaces of modules. Section 8.8 describes
a naive maintenance strategy for view graphs. Section 8.9 describes a batch maintenance
strategy for view graphs. Section 8.10 describes an incremental maintenance strategy for view
graphs. Finally, Section 8.11 summarizes the concepts of the view graph maintenance and
discusses why these concepts satisfy the elicited requirements.

8.1. Overview

This thesis refers to the maintenance of view graphs due to changes of base graphs as view
graph maintenance. This thesis proposes different strategies for the view graph maintenance.
This thesis distinguishes naive, batch, and incremental maintenance strategies. The naive
maintenance strategy deletes all annotations from the view graphs and searches for all graph
pattern matches from scratch. The batch maintenance strategy revises all annotations of view
graphs and preserves annotations that still mark graph pattern matches. The incremental
maintenance strategy only revises portions of view graphs, which are impacted by base graph
changes, and preserves annotations that still mark graph pattern matches.
This thesis subdivides the maintenance algorithms into three maintenance phases, which

search for a) annotations that are missing in view graphs, b) annotations that are obsolete
and must be removed from view graphs, and c) annotations that are suspicious and must be
revised to decide whether they must be preserved in view graphs or must be removed from
view graphs. During these maintenance phases, the framework executes the view modules
in dedicated maintenance modes that are able to create missing annotations in view graphs,
remove obsolete annotations from view graphs, and revise suspicious annotations of view
graphs. Depending on the employed maintenance strategy, the framework employs different
procedures to compute the search spaces for these view modules. Furthermore, the framework
steers the maintenance phases and propagates maintenance information between these phases.
The following sections describe the maintenance algorithms in a bottom-up manner and

compose the single parts to naive, batch, and incremental algorithms at the end.
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8.2. Changes of Base Graphs

End-users create, delete, and modify graph nodes and edges of base graphs to store domain
knowledge. This section describes how the framework interprets these changes of base graphs.
This thesis distinguishes the creation, deletion, and modification of graph nodes and edges as
well as graph node and graph edge attributes. The following sections describe the semantic
of each case. Table 8.1 summarizes the impact of created, deleted, and modified artifacts,
relations, and attributes on other artifacts and relations of base graphs. Note that the
end-users are not allowed to modify view graphs manually.

Creation
End-users create artifacts in base graphs. The framework interprets these artifacts as added.

End-users create relations between artifacts of base graphs. The framework interprets these
relations as added and the source and target artifacts of these relations as modified.
End-users create attributes of artifacts and relations in base graphs. The framework

interprets these artifacts and relations as modified. Furthermore, the framework interprets
the relations that are connected to these artifacts as well as the source and target artifacts of
these relations as modified.

Deletion
End-users remove artifacts of base graphs. The framework interprets these artifacts as deleted.
End-users remove relations between artifacts of base graphs. The framework interprets

these relations as deleted and the source and target artifacts of these relations as modified.
End-users remove attributes of artifacts and relations from base graphs. The framework

interprets these artifacts and relations as modified. Furthermore, the framework interprets
the relations that are connected to these artifacts as well as the source and target artifacts of
these relations as modified.

Modification
End-users modify artifacts of base graphs. The framework interprets artifacts as modified,
when either a) attributes are added to or removed from artifacts, b) attribute values of these
artifacts are changed, or c) incoming or outgoing relations are added, removed, or modified.
Then, the framework interprets the relations that are connected to these artifacts as modified.

End-users modify relations between two artifacts in base graphs. The framework interprets
relations as modified, when either a) attributes are added to or removed from the relations,
b) attribute values of the relations are changed, or c) the source or target artifacts of the
relations are changed. Then, the framework interprets the source and target artifacts of the
relations as modified. Note that when the source or target artifacts of relations change, the
framework interprets the old and new source and target artifacts as modified.

8.3. Life Cycle of Annotations

The state of annotations may change, when base graphs change. This thesis distinguishes
missing, obsolete, and suspicious annotations. The following sections describe each kind.

Missing Annotation
A missing annotation is an annotation that does not exist in the view graph, although it must
exist in the view graph, because a graph pattern match exists that must be marked by an
annotation appropriately to represent the match in the view graph.
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Table 8.1.: Impact of base graph changes
Impact of end-user actions
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Creation

Artifact  # # # # # # # # # # #

Relation #  # # # # # # # #   

Attribute (Artifact) # # # # # # # #   # #

Attribute (Relation) # # # # # # # # #    

Deletion

Artifact # # # #  # # # # # # #

Relation # # # # #  # # # #   

Attribute (Artifact) # # # # # # # #   # #

Attribute (Relation) # # # # # # # # #    

Modification

Artifact # # # # # # # #  # # #

Relation # # # # # # # # #    

Attribute (Artifact) # # # # # # # #   # #

Attribute (Relation) # # # # # # # # #    

impact:  ; no impact: #

According to the running example, Figure 8.1 depicts a base graph that consists of the
subclass, middleclass, and superclass artifacts. Furthermore, the view graph consists of a
generalization2 annotation, which marks the middleclass artifact as subclass and the superclass
artifact as superclass of a generalization.

Let’s assume an end-user adds the namespace1 and reference1 artifacts as well as the extends,
reference, and target relations between the subclass and middleclass artifact to the base graph
as depicted by the artifacts and relations with «added» stereotype. Then, the generalization1
annotation is missing as depicted by the annotation, roles and scopes with «missing» stereotype
in gray color, because the base graph consists of a match of the Generalization pattern (cf.
Figure 3.5(a)) that is currently not represented in the view graph by means of an annotation.
Consequently, the multigeneralization annotation is also missing, because the base and view
graph consist of a match of the Multi-Level Generalization pattern (cf. Section 3.5(c)) that is
currently not represented in the view graph.

Obsolete Annotation
An obsolete annotation is an annotation that consists of either a) a dangling role / scope that
does not reference a graph node of base graphs or view graphs anymore, or b) a role / scope
that references another obsolete annotation.
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<<missing>>
generalization1
: Generalization

levels := 1

generalization2
: Generalization

levels := 1

<<missing>>
multigeneralization

: MultiLevelGeneralization
levels := 2

subclass : 
Class

middleclass : 
Class

superclass : 
Class

<<added>>
namespace1
: Namespace

<<added>>
reference1
: Reference<<added>>

reference

<<added>>
extends

<<added>>
target<<missing>>

<<missing>>

<<missing>>
sub1 
: Sub

<<missing>>
super1 
: Super

super2 
: Super

sub2 
: Sub

<<missing>>
sub3 : Sub

<<missing>>
super3 : Super

<<missing>>
lower : Lower

<<missing>>
upper : Upper

<<added>>
reference2
: Reference

<<added>>
namespace2
: Namespace

<<added>>
extends

<<added>>
reference

<<added>>
target

Figure 8.1.: Missing annotations

According to the running example, Figure 8.2 depicts a base graph that consists of the
subclass, middleclass, namespace1, and reference1 artifacts, which together satisfy the General-
ization pattern (cf. Figure 3.5(a)). Thus, the generalization1 annotation with Generalization
annotation type marks these four artifacts. Moreover, Figure 8.2 depicts a generalization2
annotation with Generalization annotation type, which marks a second match of the Gener-
alization pattern. The generalization2 annotation marks the middleclass artifact as subclasss
and the superclass artifacts as superclass of a generalization. Furthermore, the generalization1
and generalization2 annotation constitute a match of the Multi-Level Generalization pattern (cf.
Figure 3.5(c)) as denoted by the multigeneralization annotation with MultiLevelGeneralization
annotation type. The multigeneralization annotation references the subclass and superclass
artifacts as well as the generalization1 and generalization2 annotations.

<<obsolete>>
generalization1
: Generalization

levels := 1

generalization2
: Generalization

levels := 1

<<obsolete>>
multigeneralization

: MultiLevelGeneralization
levels := 2

subclass : 
Class

middleclass : 
Class

superclass : 
Class

<<deleted>>
namespace1
: Namespace

<<deleted>>
reference2
: Reference<<deleted>>

reference

<<deleted>>
extends

<<deleted>>
target<<obsolete>>

<<obsolete>>

<<obsolete>>
sub1 
: Sub

<<obsolete>>
super1 
: Super

super2 
: Super

sub2 
: Sub

<<obsolete>>
sub3 : Sub

<<obsolete>>
super3 : Super

<<obsolete>>
lower : Lower

<<obsolete>>
upper : Upper

reference2
: Reference

namespace2
: Namespace reference

extends target

Figure 8.2.: Obsolete annotations

96



8.3. Life Cycle of Annotations

Let’s assume an end-user deletes the namespace1 and reference1 artifacts including the
extends, reference, and target relations as depicted by the artifacts and relations with «delete»
stereotype in gray color. Then, the generalization1 annotation does not mark a match of the
Generalization pattern anymore, because the scopes that previously targeted at the namespace1
and reference2 artifacts are dangling. Therefore, the generalization1 annotation is obsolete as
depicted by the annotation, roles, and scopes with «obsolete» stereotype. Consequently, the
multigeneralization annotation is obsolete as well, because the lower role targets at the obsolete
generalization1 annotation.

Suspicious Annotation
A suspicious annotation is an annotation that marks modified artifacts of base graphs or
other suspicious annotations of view graphs.

According to the running example, Figure 8.3 depicts a base graph that initially consists of
the subclass, middleclass, and superclass artifacts. Figure 8.3 depicts a view graph that consists
of the generalization1 and generalization2 annotations. The generalization1 annotation marks the
subclass artifact as subclass and the middleclass artifact as superclass of a generalization. The
generalization2 annotation marks the middleclass artifact as subclass and the superclass artifact
as superclass of a generalization. The view graph also shows a multigeneralization annotation.
The multigeneralization annotation marks the subclass artifact as subclass and the superclass
artifact as superclass of the multi-level generalization. Furthermore, the multigeneralization
annotation marks the lower and upper generalization of the multi-level generalization as
denoted by the lower and upper roles.

<<suspicious>>
generalization1
: Generalization

levels := 1

generalization2
: Generalization

levels := 1

<<suspicious>>
multigeneralization

: MultiLevelGeneralization
levels := 2

<<modified>>
subclass : 

Class
middleclass : 

Class
superclass : 

Class

sub1 
: Sub

super1 
: Super

super2 
: Super

sub2 
: Sub

sub3 : Sub super3 : Super

lower 
: Lower

upper 
: Upper

reference2
: Reference

namespace2
: Namespace reference

extends target

reference1
: Reference

namespace1
: Namespace reference

targetextends

Figure 8.3.: Suspicious annotations

Let’s assume an end-user modifies the subclass artifact as denoted by the «modified»
stereotype, e. g., by changing its name. Then, the framework interprets the subclass artifact
as modified. Consequently, the generalization1 annotation is suspicious as denoted by the
«suspicious» stereotype, because it marks the modified subclass artifact. Furthermore, the
multigeneralization annotation is suspicious as denoted by the «suspicious» stereotype, because
it marks a) the modified subclass artifact and b) the suspicious generalization1 annotation.
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8.4. Impact Analysis

This section describes an impact analysis that exploits information about the modification of
base graphs to determine the state of annotations in their life cycle. The following sections
describe how the framework determines missing, obsolete, and suspicious annotations. Later
on, the framework uses these annotations as search space for view modules.

Missing Annotations
Algorithm 8.1 describes the Missing_Annotations procedure. The Missing_Annotations pro-
cedure looks up all artifacts that were created and modified in the base graphs since the
last view graph maintenance. For that purpose, the Missing_Annotations procedure gets all
captured modification events of base graphs as input. First, the algorithm initializes an empty
set of artifacts that stores added and modified artifacts, later on. Afterwards, the algorithm
iterates over the set of modification events. For each modification event, the algorithm checks
whether the event describes the addition or modification of an artifact. If yes, the algorithm
adds the artifact to the set of added and modified artifacts. Finally, the algorithm returns all
added and modified artifacts as search space for missing annotations.
Note that modified artifacts may satisfy a graph pattern, e. g., due to satisfied attribute

constraints. Thus, modified artifacts must belong to the search space.

Algorithm 8.1 Derive the search space for missing annotations
Input: Modification events of base graphs
Output: Search space for missing annotations
1: procedure Missing_Annotations(events)
2: artifacts := ∅
3: for each event in events do
4: if event.type = ADDED or event.type = MODIFIED then
5: artifact := event.artifact
6: artifacts := artifacts ∪ {artifact}
7: return artifacts

Obsolete Annotations
Algorithm 8.2 describes the Obsolete_Annotations procedure. The Obsolete_Annotations
procedure exploits information about the modification of base graphs to look up obsolete
annotations. For that purpose, the Obsolete_Annotations procedure gets all captured modifica-
tion events of base graphs as input. First, the algorithm initializes an empty set of annotations.
Afterwards, the algorithm iterates over the set of captured modification events. For each
modification event, the algorithm checks whether the event describes the deletion of an artifact.
If yes, the algorithm determines the deleted artifact. Then, the algorithm looks up all roles in
which the artifact acts. For each role, the algorithm looks up the annotation that owns the role.
The algorithm adds this annotation to the set of obsolete annotations. Finally, the algorithm
returns all annotations that are obsolete due to the deletion of artifacts.

Suspicious Annotations
Algorithm 8.3 describes the Suspicious_Annotations procedure. The Suspicious_Annotations
procedure exploits information about the modification of base graphs to look up suspicious
annotations. For that purpose, the Suspicious_Annotations procedure gets all captured
modification events of base graphs as input. First, the algorithm initializes an empty set of
annotations. Afterwards, the algorithm iterates over the set of captured modification events.
For each modification event, the algorithm checks whether the event describes the modification
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Algorithm 8.2 Derive obsolete annotations from changes of base graphs
Input: Modification events of base graphs
Output: Obsolete annotations
1: procedure Obsolete_Annotations(events)
2: annotations := ∅
3: for each event in events do
4: if event.type = DELETED then
5: artifact := event.artifact
6: for each role in artifact.roles do
7: annotation := role.annotation
8: annotations := annotations ∪ {annotation}
9: return annotations

of an artifact. Note that also modified relations result in modified source and target artifacts
of relations as described in Section 8.2. If yes, the algorithm determines the modified artifact.
Then, the algorithm looks up all roles in which the artifact acts. For each role, the algorithm
looks up the annotation that owns the role. The algorithm adds this annotation to the set of
suspicious annotations. Finally, the algorithm returns all annotations that are suspicious due
to modifications of artifacts.

Algorithm 8.3 Derive suspicious annotations from changes of base graphs
Input: Modification events of base graphs
Output: Suspicious annotations
1: procedure Suspicious_Annotations(events)
2: annotations := ∅
3: for each event in events do
4: if event.type = MODIFIED then
5: artifact := event.artifact
6: for each role in artifact.roles do
7: annotation := role.annotation
8: annotations := annotations ∪ {annotation}
9: return annotations

8.5. Maintenance Modes
According to Section 7.1, view modules consist of three execution modes. These modes
process annotations that are in certain states of their life cycle. These modes a) create
missing annotations for found graph pattern matches, b) delete obsolete annotations, when
the marked graph nodes do not satisfy a graph pattern anymore, and c) update annotations
to check whether they still mark matches of satisfied graph patterns. During the view graph
maintenance, the framework executes the view modules in these modes. This thesis refers
to these execution modes as maintenance modes of view modules. Thus, a view module
can be executed in Create maintenance mode, Delete maintenance mode, and Update
maintenance mode. The following sections summarize each maintenance mode.

Create Maintenance Mode
In Create maintenance mode, the framework passes search spaces to view modules. It is the
responsibility of the framework to provide artifacts and annotations to view modules that may
satisfy the graph patterns that are encapsulated by the modules. These search spaces consist
of artifacts and annotations with artifact types and annotation types according to the artifact
connectors and annotation input connectors of the modules. According to Section 7.1.1, the
CreateImplementations of the modules use the provided artifacts and annotations to search
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for matches of the encapsulated patterns. For each found match, the Create maintenance
mode creates one annotation including roles and scopes to mark this match. Furthermore,
this maintenance mode collects and returns the created annotations.

Delete Maintenance Mode
In Delete maintenance mode, the framework passes annotations to view modules that
must be deleted by the modules, when they are obsolete. According to Section 7.1.2, the
DeleteImplementations of the view modules check whether the provided annotations are obsolete.
If yes, the Delete maintenance mode deletes these annotations including their roles and
scopes. If no, the Delete maintenance mode preserves these annotations. Furthermore, this
maintenance mode collects and returns all annotations that depend on the deleted annotations,
because then these dependent annotations are obsolete as well.

Update Maintenance Mode
In Update maintenance mode, the framework passes suspicious annotations to view modules
that must be revised by the modules. According to Section 7.1.3, the UpdateImplementations
of view modules check whether annotations still mark matches of the patterns that are
encapsulated by the view module. If the annotations still mark graph nodes that satisfy the
patterns, the Update maintenance mode preserves the annotations. If the annotations mark
graph nodes that do not satisfy the encapsulated patterns anymore, the Update maintenance
mode sets the annotations obsolete. Furthermore, this maintenance mode collects and returns
all annotations that depend on updated annotations, because then these dependent annotations
are suspicious as well.

8.6. Maintenance Phases

The framework employs maintenance phases to structure the overall view graph maintenance.
This thesis distinguishes the Create, Delete, and Update maintenance phases. These
maintenance phases execute view modules in the corresponding Create, Delete, and
Update maintenance modes. The following sections describe each maintenance phase.

Create Maintenance Phase
The Create maintenance phase searches for missing annotations in view graphs. For that
purpose, the Create maintenance phase computes search spaces that must be considered
by view modules, when they search for new matches. It depends on the actual maintenance
strategy, how the Create maintenance phase computes the search space (cf. Section 8.1).
Afterwards, the Create maintenance phase executes the modules in Create maintenance
mode and passes the computed search space to the modules. It is the responsibility of the
module to search for new matches. It is the responsibility of the module to create annotations,
roles, and scopes to mark these matches that are currently not represented by annotations.

Algorithm 8.4 describes the Create maintenance phase as Create procedure. Input of the
Create procedure is a set of graph nodes that may result in new graph pattern matches. This
set contains artifacts of base graphs and annotations of view graphs. Output of the procedure
are created annotations that mark found graph pattern matches.

The algorithm traverses the module dependency graph taking into account recursion cycles.
When the module dependency graph is acyclic, i. e., the module dependency graph does not
consist of recursion cycles, a topological sorting of modules is sufficient to execute the module
dependency graph in correct order. When the module dependency graph is cyclic, i. e., the
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Algorithm 8.4 Algorithm of Create maintenance phase
Input: Set of artifacts and annotations that may result in new graph pattern matches
Output: Created annotations
1: procedure create(nodes)
2: newAnnotations := ∅
3: createdAnnotations := ∅
4: while hasNextModule(newAnnotations) do //handles recursion
5: module := nextModule(newAnnotations) //handles recursion
6: candidates := searchScope(nodes,module) //cf. Section 8.7
7: newAnnotations := module.create(candidates) //cf. Algorithm 7.1
8: createdAnnotations := createdAnnotations ∪ newAnnotations
9: return createdAnnotations

module dependency graph consists of recursion cycles, the algorithm executes modules of
recursion cycles until the recursion cycle stabilized. In the Create maintenance phase, a
recursion cycle stabilized, when no module of the recursion cycle created new annotations.
The hasNextModule and nextModule procedures implement this behavior. The hasNextModule
procedure determines whether additional view modules exist in the view module dependency
graph that have to be executed. The nextModule procedure returns the view module that has
to be executed next taking into account recursion cycles.

For each module, the algorithm computes a search space in terms of candidate nodes such as
artifacts of base graphs and annotations of view graphs using the received nodes. It depends
on the maintenance strategy, how the search space is computed (cf. Section 8.1). Then,
the algorithm passes the candidate nodes to the module that searches for new graph pattern
matches in this search space. Section 7.1.1 describes the steps of the module in Create
maintenance mode. If the module finds matches, the module returns new annotations that mark
these matches. The algorithm adds these new annotations to the set of created annotations.
Finally, the algorithm returns all created annotations.

Delete Maintenance Phase
The Delete maintenance phase deletes obsolete annotations from view graphs. For that
purpose, the Delete maintenance phase executes view modules in Delete maintenance
mode and passes annotations to these modules that be may obsolete. It is the responsibility
of the module to check whether annotations are really obsolete and, if yes, to delete these
obsolete annotations including their roles and scopes.

Algorithm 8.5 Algorithm of Delete maintenance phase
Input: Annotations that may be obsolete
Output: Artifacts and annotations that were marked by deleted annotations
1: procedure delete(annotations)
2: changed := ∅
3: for annotation in annotations do
4: module := annotation.module
5: markedNodes, dependentAnnotations := module.delete(annotation) //cf. Algorithm 7.3
6: changed := changed ∪ {markedNodes}
7: changed := changed ∪ delete(dependentAnnotations)
8: return changed

Algorithm 8.5 describes the Delete maintenance phase as Delete procedure. Input of the
Delete procedure is a set of annotations that may be obsolete. Output of the Delete procedure
is a set of artifacts and annotations that were marked by deleted annotations.

For each annotation, the algorithm looks up the view module that is responsible to maintain
the annotation (cf. Section 7.1), passes the annotation to this module, and executes this
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module in Delete maintenance mode. The module checks whether the annotation is obsolete.
Section 7.1.2 describes the steps of the module in Delete maintenance mode. If the annotation
is obsolete, the module deletes the annotation including its roles and scopes. The module
returns a) all artifacts and annotations that were marked by deleted annotations and b) all
annotations that dependent on the deleted annotation. Then, the algorithm adds all artifacts
and annotations that were marked by the deleted annotation to the set of changed artifacts and
annotations. Afterwards, the algorithm passes the returned dependent annotations to the Delete
procedure and executes the Delete procedure recursively, because these annotations are obsolete
as well. Thus, the Delete maintenance phase exploits the dependencies between annotations,
instead of the module dependencies between view modules, to traverse annotations that are
created by different view modules. The call of the Delete procedure returns all artifacts and
annotations that were marked by deleted annotations. The algorithm adds these artifacts and
annotations to the set of changed artifacts and annotations. Finally, the algorithm returns all
artifacts and annotations that were marked by deleted annotations.

Update Maintenance Phase
The Update maintenance phase revises suspicious annotations of view graphs. For that
purpose, the Update maintenance phase executes view modules in Update maintenance
mode and passes suspicious annotations to these modules. It is the responsibility of the
module to check whether a suspicious annotation still marks graph nodes, which satisfy the
graph pattern that is encapsulated by the responsible module. It is the responsibility of the
module to preserve annotations, which still mark graph nodes that satisfy the pattern. When
the module preserves annotations, it is the responsibility of the module to update the values
of their attributes by re-evaluating the expressions that compute the attribute values. It is
the responsibility of the module to set annotations obsolete, when the graph nodes, which are
marked by annotations, do not satisfy the encapsulated graph pattern anymore.

Algorithm 8.6 Algorithm of Update maintenance phase
Input: Annotations that may be suspicious
Output: Annotations that are obsolete or preserved
1: procedure update(annotations)
2: obsoletes := ∅
3: preserved := ∅
4: for annotation in annotations do
5: module := annotation.module
6: obsoleteAnnotations, preservedAnnotations, dependentAnnotations := module.update(annotation) //cf.

Algorithm 7.5
7: obsoletes := obsoletes ∪ obsoleteAnnotations
8: preserved := preserved ∪ preservedAnnotations
9: dependentObsoletes, dependentPreserved := update(dependentAnnotations)
10: obsoletes := obsoletes ∪ dependentObsoletes
11: preserved := preserved ∪ dependentPreserved
12: return obsoletes, preserved

Algorithm 8.6 describes the Update maintenance phase as Update procedure. Input of
the Update procedure is a set of annotations that may be suspicious. Output of the Update
procedure are two sets of annotations that become obsolete or are preserved during the Update
maintenance phase, respectively.

First, the procedure initializes two empty sets of obsolete and preserved annotations. For each
annotation, the algorithm looks up the module that is responsible to maintain the annotation.
Then, the algorithm passes the annotation to the responsible module and executes the module
in Update maintenance mode. The module checks whether the annotation still marks graph
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nodes that satisfy the graph pattern that is encapsulated by the module. Section 7.1.3
describes the steps of the module in Update maintenance mode. The module returns a)
annotations that are set obsolete by the module, b) annotations that are preserved by the
module, and c) annotations that dependent on preserved annotations. Note that the Update
maintenance mode may changed attribute values of preserved annotations. Afterwards, the
algorithm adds the returned obsolete annotations to the set of obsolete annotations and the
preserved annotations to the set of preserved annotations. Then, the algorithm passes the
returned dependent annotations to the Update procedure and executes the Update procedure
recursively, because the modules that are responsible to maintain the dependent annotations
may implement conditions over the attribute values of the preserved annotations, which may
be dissatisfied now. Thus, the Update maintenance phase exploits the dependencies between
annotations, instead of the module dependencies between view module, to traverse annotations
that are created by different modules. The call of the Update procedure returns all annotations
that are set obsolete and are preserved by the Update procedure. The algorithm adds these
dependent obsolete and preserved annotations to the set of obsolete and preserved annotations,
respectively. Finally, the algorithm returns the annotations that become obsolete and are
preserved during the Update maintenance phase.

8.7. Candidate Sets

The maintenance algorithms execute view modules for certain search spaces. When searching
for graph pattern matches, these search spaces describe which artifacts and annotations are
considered by view modules in Create maintenance mode. Depending on the maintenance
strategy, the maintenance algorithms employ different kinds of search space computations. The
following sections describe the computations of the search spaces for the batch and incremental
view graph maintenance. Especially, the search space computation of the incremental view
graph maintenance aims for a reduction of the search space size. Afterwards, this section
discusses the differences between both kinds of computations.

Batch Maintenance
Algorithm 8.7 describes the Batch_Search_Scope procedure. When the framework employs a
batch maintenance strategy, the Batch_Search_Scope procedure computes the search spaces
for modules that are executed during the Create maintenance phase. For that purpose,
the Batch_Search_Scope procedure gets the view module as input for which the algorithm
computes the search space. First, the algorithm initializes an empty search scope. The
algorithm distinguishes two parts. The first part of the algorithm looks up artifacts in base
graphs, which have an artifact type that is processed by the view module . The second part of
the algorithm retrieves annotations that are maintained by modules that are connected via
module dependencies to annotation input connectors of the view module.
The first part of the algorithm iterates over the connectors of the view module. For each

connector, the algorithm checks whether the connector is an artifact input connector. If yes,
the algorithm looks up its artifact type. Afterwards, the algorithm determines all subtypes
of the artifact type in terms of the inheritance clan (cf. Definition 4). For each type in the
inheritance clan, the algorithm looks up all its instances and adds these instances to the
search scope. Note that the framework maintains a typed-based index for artifact types to
look up all instances of an artifact type efficiently (cf. Section 5.1).

The second part of the algorithm iterates over the input connectors of the view module. For
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Algorithm 8.7 Candidate set computation of batch maintenance
Input: The module for which the search space is computed
Output: Search space for module in batch maintenance
1: procedure batch_search_scope(module)
2: scope := ∅
3: for each connector in module.connectors do //lookup all instances of artifact types relevant for module
4: if connector is artifact input connector then
5: type := connector.type
6: for each subtype in clan(type) do //cf. Definition 4
7: instances := subtype.instances
8: scope := scope ∪ instances
9: for each connector of module.connectors do //retrieve annotations created by dependency modules
10: if connector is annotation input connector then
11: for each dependency in connector.sources do
12: source_module := dependency.source
13: scope := scope ∪ source_module.annotations //cf. Section 7.1
14: return scope

each connector, the algorithm checks whether it is an annotation input connector. If yes, the
incoming module dependencies are used to look up modules that provide annotations to the
view module. The algorithm determines all annotations that are created by these source view
modules and adds these annotations to the search scope. Note that each module knows all its
created annotations (cf. Section 7.1). Finally, the algorithm returns the search scope.

Incremental Maintenance
Algorithm 8.8 describes the Incremental_Search_Scope procedure. When the framework em-
ploys an incremental maintenance strategy, the Incremental_Search_Scope procedure computes
the search space for modules that are executed during the Create maintenance phase. For
that purpose, the Incremental_Search_Scope procedure gets a set of nodes as input. This
set contains artifacts and annotations that underwent modifications in base graphs and
view graphs such as the creation and modification of artifacts as well as the modification of
annotation attributes. Furthermore, the Incremental_Search_Scope procedure gets the view
module as input for which the algorithm computes the search space. Note that this thesis
assumes that the encapsulated graph patterns of view modules are connected graphs.
First, the algorithm initializes an empty search scope. The algorithm distinguishes three

parts. The first part of the algorithm looks up artifacts and annotations in the set of received
nodes that have a type that is relevant to the view module. The second part of the algorithm
looks up annotations that were created by predecessor modules during the current maintenance.
The third part of the algorithm employs a reachability test that collects all artifacts and
annotations that are directly or indirectly reachable via relations or roles and have an artifact
or annotation type as specified by the input connectors of the view module. This reachability
test is required to make the search space complete, because the framework does not make any
assumptions on how the view modules process the passed search space. For example, it is
up to the view module implementation to decide on at which graph nodes the graph pattern
matching starts. Therefore, all reachable graph nodes must be provided at the corresponding
input connectors of the view modules.

The first part of the algorithm iterates over the set of nodes. For each node, the algorithm
iterates over all connectors of the view module. For each connector, the algorithm checks
whether the connector is an artifact input connector or annotation input connector. If yes,
the algorithm determines the type of the node. If the inheritance clan (cf. Definition 4) of
the connector type contains this type, the node is relevant to the view module. Therefore, the
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Algorithm 8.8 Candidate set computation of incremental maintenance
Input: Set of artifacts and annotations that may result in new matches and the module
Output: Search scope for module in incremental maintenance
1: procedure incremental_search_scope(nodes, module)
2: scope := ∅
3: for each node in nodes do //collect artifacts and annotations that are relevant for module
4: for each connector in module.connectors do
5: if connector is artifact or annotation input connector then
6: type := node.type
7: if type ∈ clan(connector.type) then //cf. Definition 4
8: scope := scope ∪ {node}
9: for each connector in module.connectors do //retrieve annotations created by dependency modules
10: if connector is annotation input connector then
11: for each dependency in connector.sources do
12: source_module := dependency.source
13: annotations := createdInCurrentMaintenancePhase(source_module.annotations)
14: scope := scope ∪ annotations
15: extendScope := scope
16: repeat //reachability test
17: added := ∅
18: for each element in extendScope do
19: for each node connected to element via relation or role do //node is either artifact or annotation
20: for each connector in module.connectors do
21: if connector is artifact or annotation input connector then //only for input connectors
22: if node.type ∈ clan(connector.type) then //cf. Definition 4
23: if scope ∩ {node} = ∅ then
24: added := added ∪ {node}
25: scope := scope ∪ added
26: extendScope := added
27: until added = ∅
28: return scope

algorithm adds the node to the search scope. Finally, the search scope contains artifacts and
annotations that are relevant to the view module and may result in new matches.

The second part of the algorithm iterates over all connectors of the view module. For each
connector, the algorithm checks whether the connector is an annotation input connector. If
yes, the algorithm looks up the connected source view module by traversing incoming module
dependencies in backward direction. Then, the algorithm looks up all annotations that were
created by the source view module during the current maintenance. The algorithm adds these
created annotations to the search scope.
The third part of the algorithm employs a temporary variable called extendScope, which

stores all artifacts and annotations that extend the current search scope. First, the algorithm
initializes the extendScope variable with the initial search scope. Then, the algorithm enters
a loop that is executed as long as the algorithm adds additional artifacts and annotations
to the search scope. Within the loop, the algorithm initializes a temporary variable called
added with an empty set. For each element in the extendScope set, the algorithm looks up all
artifacts or annotations that are directly connected to the element via a relation or role. For
each directly connected node, the algorithm iterates over the connectors of the view module to
check for each connector whether the connector is an artifact input connector or annotation
input connector. If the connector is an artifact or annotation input connector, the algorithm
checks whether the node type is contained by the inheritance clan (cf. Section 4) of the input
connector type. If yes, the node is relevant to the module and the algorithm checks whether
the node is already contained by the search scope. If the search space does not contain the
node already, the algorithm stores the node in the set of added nodes. When the algorithm
processed all elements of the extendScope set, the algorithm adds the reachable nodes that are
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stored by the added variable to the search scope. Then, the algorithm replaces the content of
the extendScope variable with the content of the added variable. If the set that is stored by the
added variable is not empty, the algorithm executes an additional loop cycle to collect relevant
reachable artifacts and annotations that are reachable from the artifacts and annotations that
were recently added to the search scope. If the set that is stored by the added variable is empty,
the algorithm found no additional reachable artifacts and annotations and the algorithm exits
the loop. Finally, the algorithm returns the computed search scope.

Discussion
The previous sections describe the computation of search spaces during the Create mainte-
nance phase. This thesis distinguishes a batch and an incremental search space computation.

The batch search space computation looks up all artifacts, which have an artifact type that
is relevant to the module for which the search space is computed. The computation adds these
artifacts to the search space. Furthermore, the computation adds all annotations, which are
maintained by predecessor modules, to the search space. The computation does not exploit
information about changes of base graphs.

The incremental search space computation receives artifacts and annotations that underwent
modifications and, thus, may satisfy encapsulated graph patterns of view modules. In contrast
to the batch search scope computation, the incremental search space computation uses these
received artifacts and annotations to remove all artifacts and annotations from the search
space that are not reachable from the received artifacts and annotations. These unreachable
artifacts and annotations never result in graph pattern matches, because view modules must
encapsulate graph patterns that are connected graphs. Furthermore, only added, deleted, and
modified artifacts and annotations may result in new graph pattern matches. Artifacts and
annotations that are not directly or indirectly connected to these artifacts and annotations
cannot result in new graph pattern matches and can be excluded from the search space to
decrease the size of the input for the graph pattern matching.

8.8. Naive View Maintenance

This section describes a naive view graph maintenance. Section 8.8.1 describes the algorithm.
Section 8.8.2 discusses the handling of suspicious, obsolete, and missing annotations.

8.8.1. Algorithm

Algorithm 8.9 describes the Naive_Maintenance procedure that implements a naive maintenance
algorithm. This naive algorithm is a kind of batch maintenance algorithm. This thesis refers
to the maintenance algorithm as naive algorithm, because the algorithm deletes all annotations
and creates all annotations from scratch. Thus, an annotation that marks the same match
before and after the view graph maintenance has different identities before and after the
maintenance. Therefore, this naive maintenance algorithm does not perform a real view graph
maintenance. This thesis refers to a real view graph maintenance, when an annotation keeps
its identity, when the match, which is marked by an annotation, does not change.
The Naive_Maintenance procedure gets all artifacts of base graphs and all annotations of

view graphs as input. First, the algorithm deletes all annotations. Then, the algorithm passes
all artifacts of base graphs to the Create phase that employs the search space computation
for the batch maintenance (cf. Section 8.7). Section 8.6 describes the Create phase.
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Algorithm 8.9 Naive maintenance algorithm
Input: All artifacts and annotations of base graphs and view graphs
Output: Consistent view graphs
1: procedure naive_maintenance(artifacts, annotations)
2: clear(annotations)
3: create(artifacts) //cf. Algorithm 8.4

8.8.2. Discussion

First, the Naive_Maintenance procedure deletes all annotations. This deletion implies that the
procedure considers all annotations as suspicious and obsolete. Thus, the procedure detects
all dissatisfied graph conditions and supports the maintenance of suspicious and obsolete
annotations. Second, the procedure searches by means of the Create maintenance phase
for all matches from scratch. Thus, the procedure detects all satisfied graph conditions and
supports the maintenance of missing annotations. The naive view graph maintenance supports
all kinds of PACs and NACs, because the procedure searches for all graph pattern matches
from scratch by traversing the view module dependency graph in topological order.

The Naive_Maintenance procedure supports recursion, because the procedure employs the
Create maintenance phase, which executes modules in topological order taking into account
recursion cycles. The Create phase executes the modules of recursion cycles as long as they
create annotations. Afterwards, the Create phase passes the annotations that are created
by the recursion cycle to modules that dependent on the modules of the recursion cycle.
However, the procedure does not support recursion cycles, when they have to revise suspicious
or have to delete obsolete annotations during the execution of the recursion cycle, because the
procedure does not employ an Update and Delete maintenance phase that together would
enable to detect annotations that must be removed, when the recursion cycle is executed.
The naive algorithm terminates for view module dependency graphs without recursion

cycles, because the number of artifacts in base graphs has an upper bound during view graph
maintenance and each match is marked at most once by an annotation (cf. Section 7.1.1).

The naive algorithm terminates for view module dependency graphs with recursion cycles,
when additionally, the termination conditions of the recursion steps are correct in a sense that
the number of possible matches has an upper bound. The developers of the view modules
implement these termination conditions and the framework is not able to control these
conditions, because the view modules encapsulate these conditions.

8.9. Batch View Maintenance

This section describes a batch algorithm for view graph maintenance that overcomes the
limitations of the naive maintenance algorithm. First and foremost, the batch maintenance
algorithm performs a real view graph maintenance, because the algorithm preserves all
annotations that still mark graph pattern matches. Thus, the algorithm preserves the identity
of annotations, when the matches that are marked by these annotations do not change.
Section 8.9.1 describes the batch maintenance algorithm. Section 8.9.2 discusses the handling
of suspicious, obsolete, and missing annotations.
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8.9.1. Algorithm

Algorithm 8.10 describes the Batch_Maintenance procedure that implements a batch mainte-
nance algorithm with real view graph maintenance. The Batch_Maintenance procedure gets all
artifacts of base graphs and all annotations of view graphs as input. The Batch_Maintenance
procedure applies the maintenance phases in the following order.

Algorithm 8.10 Batch maintenance algorithm
Input: All artifacts and annotations of base graphs and view graphs
Output: Consistent view graphs
1: procedure batch_maintenance(artifacts, annotations)
2: created := ∅
3: repeat
4: update(topological_sort(annotations)) //cf. Algorithm 8.6
5: delete(topological_sort(annotations)) //cf. Algorithm 8.5
6: created := create(artifacts) //cf. Algorithm 8.4
7: annotations := annotations ∪ created
8: until created = ∅

First, the procedure applies the Update maintenance phase to a) check for all annotations
whether they still mark graph nodes that satisfy the encapsulated graph patterns of view
modules and b) revise attribute values of these annotations, if these annotations still mark
matches. For that purpose, the procedure passes all annotations of view graphs in topological
sorted order to the Update maintenance phase. Section 8.6 describes the steps of the Update
maintenance phase. Note that the dependencies between the annotations are used for the
topological sorting, instead of the dependencies between view modules.

Second, the procedure applies the Delete maintenance phase to a) check for all annotations
whether they are obsolete and b) delete these obsolete annotations. For that purpose, the
procedure passes all annotations of view graphs in topological sorted order to the Delete
maintenance phase. Section 8.6 describes the steps of the Delete maintenance phase. Note
that again the dependencies between the annotations are used for the topological sorting.

Third, the procedure applies the Create maintenance phase to a) search for graph pattern
matches that are currently not marked by an annotation and b) create annotations to mark
these matches. Section 8.6 describes the steps of the Create maintenance phase. The
Create maintenance phase employs the batch search space computation (cf. Section 8.7)
and, thus, considers all annotations, which are provided by predecessor modules, as search
space. Therefore, also annotations with attributes, which change during the Update phase,
belong to this search space and the annotations, which are deleted during the Delete phase,
do not belong to this search space.
If the Create maintenance phase returns created annotations, the procedure applies

an additional iteration of the Update, Delete, and Create maintenance phases. This
additional iteration is required, because created annotations may dissatisfy complex NACs that
require the non-existence of an annotation (cf. Definition 8). Thus, an additional execution
of the Update maintenance phase is required that may result in new obsolete annotations.
Consequently, also an additional execution of the Delete maintenance phase is required that
may delete annotations. Deleted annotations may satisfy complex NACs that require the
non-existence of an annotation (cf. Definition 8). Thus, an additional Create maintenance
phase is required to check whether complex NACs are satisfied. The procedure terminates,
when the Create maintenance phase creates no new annotations. Otherwise, the procedure
executes an additional iteration of the Update, Delete, and Create maintenance phases.

108



8.10. Incremental View Maintenance

8.9.2. Discussion

The Batch_Maintenance procedure processes all artifacts of base graphs and all annotations
of view graphs during view graph maintenance and preserves annotations that still mark
matches of the patterns that are encapsulated by view modules.
The Update maintenance phase detects all dissatisfied PACs and NACs due to modified

artifacts or annotations (cf. Section 8.2), because the Update maintenance phase checks for
all annotations whether they still mark graph nodes that satisfy the encapsulated patterns
of view modules. Therefore, the Update maintenance phase revises all existing annotations
to a) set all annotations obsolete that do not satisfy these graph patterns anymore and b)
update all attribute values of preserved annotations.

The Delete maintenance phase detects all obsolete annotations due to deleted artifacts or
annotations and annotations that are set obsolete by the previous Update phase, because
the Delete phase checks for all annotations whether they are obsolete. The Delete phase
deletes obsolete annotations. Otherwise, the Delete phase preserves the annotations.

The Create maintenance phase detects all satisfied PACs and NACs, because the Create
maintenance phase processes all artifacts of base graphs and all annotations of view graphs,
i. e., the Create phase considers the complete base graph and view graphs as search space.
The Create maintenance phase executes the modules in topological order taking into account
recursion cycles. For each module, the Create maintenance phase passes all artifacts that
have an artifact type (incl. subtype) as specified by the artifact connectors of the module to
the module. Furthermore, the Create maintenance phase passes all annotations, which are
maintained by predecessor modules, to the module. Thus, when the Create maintenance
phase executes a certain module, all annotations that are required by the module are available,
because the Create maintenance phase executes all predecessor modules beforehand.

The batch view graph maintenance supports recursion cycles in the same way as the naive
view graph maintenance (cf. Section 8.8). But, the batch view graph maintenance also
supports recursion cycles that revise and delete annotations, because the batch view graph
maintenance employs an Update and Delete maintenance phase.

The batch view graph maintenance terminates under the same conditions as the naive view
graph maintenance (cf. Section 8.8.2). Additionally, in the Update and Delete maintenance
phases terminate for view module dependency graphs with and without recursion cycles, when
the previous Create maintenance phase terminates, because then the number of annotations
in the view graphs has an upper bound and the Update and Delete phase check each
annotation only once and create no new annotations. Note that the Update and Delete
phases exploit the dependencies between annotations to look up annotations that must be
revised or deleted (cf. Section 8.6).

8.10. Incremental View Maintenance

This section describes an incremental algorithm for view graph maintenance. In contrast to
the naive and batch maintenance algorithm, the incremental maintenance algorithm exploits
information about the modifications of base graphs to prune the search space of view modules.
Section 8.10.1 describes the incremental maintenance algorithm. Section 8.10.2 discusses the
handling of suspicious, obsolete, and missing annotations.
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8.10.1. Algorithm

Algorithm 8.11 describes the Incremental_Maintenance procedure that implements an incre-
mental maintenance algorithm. The Incremental_Maintenance procedure gets all modification
events of base graphs as input. Analog to the Batch_Maintenance procedure, the Incremen-
tal_Maintenance procedure applies the maintenance phases in the following order.

Algorithm 8.11 Incremental maintenance algorithm
Input: All modification events of base graphs
Output: Consistent view graphs
1: procedure incremental_maintenance(events)
2: suspicious := ∅
3: repeat
4: suspicious := suspicious ∪ Suspicious_Annotations(events) //cf. Algorithm 8.3
5: obsoletes, preserved := update(suspicious) //cf. Algorithm 8.6
6: obsoletes := obsoletes ∪ Obsolete_Annotations(events) //cf. Algorithm 8.2
7: modified := delete(obsoletes) //cf. Algorithm 8.5
8: modified := modified ∪ Missing_Annotations(events) //cf. Algorithm 8.1
9: created := create(modified ∪ preserved) //cf. Algorithm 8.4
10: events := ∅
11: suspicious := Reachability_Suspicious(created) //cf. Algorithm D.1
12: until suspicious = ∅

First, the procedure derives suspicious annotations from captured modification events of base
graphs (cf. Section 8.4). The procedure passes these suspicious annotations to the Update
maintenance phase. The Update phase a) set these annotations obsolete, if they mark graph
nodes that do not satisfy the graph pattern, which is encapsulated by the responsible module,
anymore and b) revises the attribute values of these annotations, if the responsible view
module preserves these annotations. Section 8.6 describes the steps of the Update phase.
The Update phase returns all annotations that become obsolete and are preserved.

Second, the procedure derives obsolete annotations from captured modification events of
base graphs (cf. Section 8.4). The procedure adds the derived obsolete annotations to the set
of obsolete annotations that is returned by the previous Update phase. Then, the procedure
passes the set of obsolete annotations to the Delete maintenance phase. The Delete phase
a) checks for these obsolete annotations whether they are really obsolete and b), if yes, deletes
these obsolete annotations. Section 8.6 describes the steps of the Delete phase. The Delete
phase returns all artifacts and annotations that were marked by deleted annotations. The
algorithm considers these artifacts and annotations as modified.

Third, the procedure derives added and modified artifacts from captured modification events
of base graphs (cf. Section 8.2). The procedure adds the derived added and modified artifacts
to the set of modified artifacts and annotations that is returned by the previous Delete
phase. Then, the procedure passes the set of added and modified artifacts and annotations as
well as the preserved annotations from the Update phase to the Create maintenance phase.
The procedure passes the preserved annotations to the Create phase, because annotation
attributes may change in such a way during the Update phase that attribute constraints are
satisfied now. The Create phase a) searches for new matches that are not already marked by
an annotation of the same type and b) creates an annotation for each new match. Section 8.6
describes the steps of the Create phase. The Create phase employs the search space
computation for the incremental maintenance (cf. Section 8.7). The Create maintenance
phase returns all annotations that are created during the Create phase.

After the first iteration of the Update, Delete, and Create phases, all modification events
of base graphs are processed. Therefore, the algorithm clears the set of events. Afterwards, the
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Incremental_Maintenance procedure uses the annotations that are created during the previous
Create phase to derive annotations that may be suspicious, because created annotations may
dissatisfy complex NACs that require the non-existence of annotations (cf. Section 6.4.4).
For that purpose, the procedure employs a reachability test, which collects all annotations
that are directly or indirectly reachable from the previously created annotations, when the
successor view modules of the modules, which created these annotations, consist of negative
annotation input connectors (cf. Appendix D.1). The reachability test only traverses artifacts
and annotations, which have a type that is relevant to these successor modules. If suspicious
annotations exist, the procedure employs an additional iteration of the Update, Delete,
and Create phases. Thus, the procedure passes the set of new suspicious annotations to
the Update maintenance phase. The Update phase may result in new obsolete annotations.
Consequently, also an additional execution of the Delete phase is required. Therefore, the
procedure passes the set of annotations that become obsolete during the previous Update
phase to the Delete phase. The Delete maintenance phase may delete annotations.
Deleted annotations may satisfy complex NACs. Thus, an additional execution of the Create
maintenance phase is required to create annotations that are currently missing in view graphs.
Therefore, the procedure passes the artifacts and annotations, which were marked by the
annotations that are deleted by the previous Delete phase, to the Create phase. Afterwards,
the Incremental_Maintenance procedure again derives new suspicious annotations based on
annotations that are created by the previous Create phase. The procedure terminates, when
no new suspicious annotations exist. Otherwise, the procedure executes an additional iteration
of the Update, Delete, and Create phases.

8.10.2. Discussion

The incremental algorithm prunes the search space of modules using changes of base graphs.
The next sections describe the handling of suspicious, obsolete, and missing annotations.

Suspicious Annotations
The Update maintenance phase searches for dissatisfied PACs and NACs. A PAC may be
dissatisfied, when graph nodes and edges are deleted or modified (e. g., changed attribute
value). These graph nodes and edges are artifacts and relations of base graphs as well as
annotations and roles of view graphs. A simple NAC may be dissatisfied, when artifacts and
relations are created or modified. A complex NAC may be dissatisfied, when annotations and
roles are created or modified. The following paragraphs discuss these scenarios.
According to Section 8.2, when artifacts are connected to or disconnected from other

artifacts, the source and target artifacts of relations between are considered as modified. This
can be the case, when either a relation is created / deleted between two existing artifacts
or an artifact and relation are created / deleted at the same time. Furthermore, artifacts
are modified, when their attribute values change. According to Section 8.4, the impact
analysis uses these modified artifacts to determine suspicious annotations. The Update phase
processes these suspicious annotations to check whether PACs and NACs are still satisfied
(incl. check of attribute constraints). If no, the Update phase sets these annotations obsolete.
If yes, the Update phase preserves these annotations and updates their attribute values.
Thus, the Update phase supports the detection of dissatisfied PACs due to deleted and
modified artifacts and relations. Furthermore, the Update phase supports the detection of
dissatisfied simple NACs due to created and modified artifacts and relations.

According to Section 6.4, PACs can require the existence of annotations that mark certain
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matches. These annotations may be set obsolete during the Update phase, e. g., when
attribute changes of annotations dissatisfy PACs. When the Update phase sets an annotation
obsolete, the subsequent Delete phase deletes these annotations as well as all annotations
that dependent on this annotation, because then the dependent annotations are obsolete as
well. Thus, the Update phase supports the detection of dissatisfied PACs due to deleted or
modified annotations.

According to Section 6.4.4, complex NACs must be mapped to view module, which search
for graph pattern matches that dissatisfy these complex NACs. Thus, created and modified
annotations may dissatisfy complex NACs. For example, a created annotation for a match of
the Interface Implementation pattern (cf. Figure 3.5(b)) can dissatisfy a match of the Extract
Interface pattern (cf. Figure 3.9). The Algorithm 8.11 employs a reachability test to determine
annotations that are suspicious due to created annotations. Then, the Update phase checks
whether the complex NACs are still satisfied by the graph nodes that are marked by these
suspicious annotations. If no, the Update phase sets the annotations obsolete and the
subsequent Delete phase deletes these annotations. If yes, the Update phase preserves the
annotations, updates their attribute values, and checks whether constraints over annotation
attributes of dependent modules are dissatisfied. Thus, the Update phase supports the
detection of dissatisfied complex NACs due to created and modified annotations.

Obsolete Annotations
The Delete maintenance phase deletes obsolete annotations. Annotations are obsolete, when
they consist of dangling roles or scopes. Annotations become obsolete, when end-users delete
artifacts that are marked by annotations. Then, this modification dissatisfies a PAC and the
annotation must be removed. Furthermore, annotations become obsolete, when the previous
Update phase sets them obsolete due to dissatisfied PACs, e. g., when attribute constraints
are not satisfied anymore, or dissatisfied NACs, e. g., when annotations are created by a
previous Create phase that now dissatisfy NACs. Moreover, the Delete phase deletes
annotations that are obsolete due to other deleted annotations. Thus, the Delete phase in
combination with the Update phase supports dissatisfied PACs and NACs.

Missing Annotations
The Create maintenance phase searches for satisfied PACs and NACs. A PAC may be
satisfied, when an artifact, relation, or annotation is created or modified. A NAC may be
satisfied, when an artifact, relation, or annotation is deleted or modified.
According to Section 8.2, the source and target artifacts of a relation are modified, when

the relation is created or modified. A created artifact results in created relations. Created and
modified artifacts are input to the reachability test of the Create phase. Thus, added and
modified artifacts belong to the search space of view modules. Furthermore, annotations that
are created by predecessor view modules are input to the reachability test and belong to this
search space as well. Moreover, Algorithm 8.11 passes preserved annotations with changed
attribute values to the Create phase and the reachability test. Thus, also these potentially
modified annotations are part of this search space. Consequently, the reachability test starts
at all kinds of artifacts and annotations that can result in satisfied PACs now. Thus, the
Create phase supports the detection of satisfied PACs due to created and modified artifacts,
relations, and annotations.
According to Section 8.2, the source and target artifacts of a relation are modified, when

the relation is deleted or modified. A deleted artifact results in deleted relations. Modified
artifacts are input to the Create phase and reachability test. Consequently, the search space
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covers graph nodes that now may satisfy simple NACs. Thus, the Create phase supports
the detection of satisfied simple NACs due to deleted and modified artifacts and relations.

According to Section 6.4.4, complex NACs must be mapped to view module that search for
graph pattern matches that dissatisfy these complex NACs. According to Algorithm 8.11,
artifacts and annotations are considered as modified, when the Delete phase deletes annota-
tions that mark these artifacts and annotations. These modified artifacts and annotations
are input to the Create phase and reachability test. Consequently, the search space covers
graph nodes that now may satisfy complex NACs. Thus, the Create phase supports the
detection of satisfied complex NACs due to deleted annotations.
Furthermore, the Create phase receives preserved annotations with potentially modified

attribute values. The preserved annotations are passed to the reachability test. Thus, the
Create phase supports the detection of satisfied complex NACs due to modified annotations.

Recursion
The Update and Delete phase of the incremental maintenance algorithm use the roles
and scopes between annotations to revise annotations that dependent on other revised and
obsolete annotations, respectively. The revision starts at suspicious and obsolete annotations,
respectively. As described for suspicious and obsolete annotations, both maintenance phases
detect dissatisfied PACs and NACs.
When the Create phase terminates before, the number of annotations that depend on

suspicious / obsolete annotations has an upper bound. Thus, the number of annotations that
must be revised / deleted, when an annotation is suspicious / obsolete has an upper bound,
too. Thus, the Update and Delete maintenance phases terminate.

As for naive and batch view graph maintenance, the Create maintenance phase executes
modules of recursion cycles until no module of the recursion cycles created an annotation
anymore, because then the outputs of the modules have no impact on the output of the other
modules in the recursion cycles anymore. During Create maintenance phase, the algorithm
passes annotations that are created by modules of the recursion cycle to dependent modules
within the recursion cycle, first. When the recursion cycle terminates, the algorithm passes
the annotations that are created by modules of the recursion cycle to dependent modules that
do not belong to the recursion cycle. Thus, the recursion cycle detects all satisfied PACs and
NACs as described for missing annotations.
Analog to the naive and batch view graph maintenance, the incremental view graph

maintenance terminates for view dependency graphs with and without recursion cycles.
Analog, the recursion cycles terminate in Create phase, when the developers ensure that the
termination conditions of the recursion steps result in an upper bound of possible matches.

8.11. Discussion

This chapter describes view graph maintenance algorithms, which enable the framework
to maintain matches of graph patterns. The view graph maintenance algorithms base on
maintenance phases that execute modules in certain maintenance modes to update existing
annotations, delete obsolete annotations, and create annotations that are currently missing in
view graphs. Depending on the employed view graph maintenance algorithm, the maintenance
algorithm passes different kinds of search spaces to modules. The naive and batch maintenance
algorithms consider the complete base graphs and view graphs, when maintaining view graphs.
The incremental maintenance algorithm considers local portions of base graphs and view
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graphs. The framework derives these portions from modification events of base graphs and
propagates the impact of these changes through the view module dependency graph.

Table 8.2.: Mapping the requirements to the view graph maintenance algorithms
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Modifications

Base Graph Changes # # # # #  G# G#

Annotation Life Cycle # # G# # # G# G# G#

Impact Analysis # # G# # # G# G# G#

Algorithmic
Framework

Maintenance Modes   G# G# G# # G# G#

Maintenance Phases      # G#  

View Graph
Maintenance

Naive Maintenance     # # # G#

Batch Maintenance      # # G#

Incremental Maintenance      #   

covered:  ; partially covered: G#; not covered: #

Section 4.2 describes the requirements for the maintenance of view graphs. Table 8.2
summarizes which concepts of the proposed maintenance algorithms satisfy the elicited
requirements. Requirement R1b - Memory-Efficiency describes that view graphs must store
matches memory-efficient without copying graph nodes and edges to view graphs. Requirement
R1c - Match-Properties describes that matches for patterns must enable to store additional
properties of matches to enrich view graphs with additional knowledge. Requirement R2c
- Reusability describes that view graphs must be able to build on the content of other view
graphs. Requirement R2d - Nesting describes that module dependency graphs must enable
developers to express disjunctions, conjunctions, and negations of graph conditions. This
expressiveness must be also supported by the view graph maintenance. Requirement R2e
- Recursion describes that module dependency graphs must enable developers to describe
recursive graph conditions. These recursive definitions must be also supported by the view
graph maintenance. Requirement R4a - Monitoring describes that the framework must
track changes of base graphs to prune search spaces of view modules. Requirement R4b -
Time-Efficiency describes that the view graph maintenance algorithms must employ pruned
search spaces to efficiently maintain view graphs. Requirement R4c - Propagation describes
that the framework must propagate changes of view graphs to dependent view graphs.
The maintenance modes of view modules and the maintenance phases of the view graph
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maintenance algorithms process suspicious, obsolete, and missing annotations to revise view
graphs. Especially, the Create maintenance phase and Create maintenance mode create
annotations and, therefore, mark matches of patterns in a memory-efficient manner. Thus,
the maintenance modes and maintenance phases satisfies requirement R1b - Memory-Efficiency.
Furthermore, all view graph maintenance algorithms employ the Create maintenance phase
and, thus, also satisfy requirement R1b - Memory-Efficiency.
The maintenance modes and maintenance phases enable to maintain attribute values of

annotations. The Create maintenance mode and Create maintenance phase add attribute
values to annotations. The Update maintenance mode and Update maintenance phase
update attribute values of annotations. Thus, the maintenance modes and maintenance
phases satisfy requirement R1c - Match-Properties. Furthermore, all view graph maintenance
algorithms employ the Create maintenance mode and Create maintenance phase and, thus,
also satisfy requirement R1c - Match-Properties.
The concept of annotation life cycles describes that annotations, which dependent on

obsolete annotations, are also obsolete. Furthermore, annotation that dependent on suspicious
annotations are also suspicious. Thus, the annotation life cycles and the impact analysis
contribute to the satisfaction of requirement R2c - Reusability.
The maintenance modes of modules return annotations, which enable the maintenance

algorithms to trigger the view modules that are responsible for the maintenance of these
annotations. Therefore, the maintenance modes support the reuse of annotations between
modules and, thus, contribute to the satisfaction of requirement R2c - Reusability.

The maintenance phases collect the annotations that are returned by modules and propagate
annotations between modules. Thus, in combination with the maintenance modes of modules,
the maintenance phases satisfy requirement R2c - Reusability. Furthermore, all maintenance
algorithms employ these maintenance phases and, thus, satisfy requirement R2c - Reusability.
The modeling approach maps atomic graph conditions and simple NACs to single view

modules. Therefore, modules can maintain matches for patterns with atomic graph conditions
and simple NACs independently from other modules. Thus, the maintenance modes of modules
partially satisfy the requirement R2d - Nesting.

The modeling approach splits up disjunctions, conjunctions, and complex NACs to multiple
modules. Therefore, multiple modules must be executed to maintain matches for patterns with
disjunctions, conjunctions, and complex NACs. Thus, the maintenance phases in combination
with the maintenance modes satisfy requirement R2d - Nesting.

All view graph maintenance algorithms employ the Create maintenance phase, which
executes modules in topological order taking into account recursion cycles. Thus, all view
graph maintenance algorithms satisfy requirement R2d - Nesting.
The modeling approach maps recursive graph conditions to modules that describe the

recursion start and the recursion step. The recursion start and the recursion step is handled
by modules that are executed in certain maintenance modes depending on the maintenance
phase. The maintenance phases handle the execution of the recursion cycle, i. e., decide on
whether an additional execution of the modules in the recursion cycle is required or not. Thus,
the maintenance modes contribute to the satisfaction of requirement R2e - Recursion and the
maintenance phases satisfy requirement R2e - Recursion.

Note that the naive maintenance algorithm does not employ a Delete maintenance phase
and, therefore, does not support recursion cycles that must delete annotations, when complex
NACs become dissatisfied due to created annotations. Thus, only the batch and incremental
maintenance algorithms satisfy the requirement R2e - Recursion.
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The monitoring of base graph changes tracks creations, deletions, and modifications of
artifacts and relations in base graphs. Thus, the monitoring of base graph changes satisfies
requirement R4a - Monitoring.

The impact analysis processes captured base graph changes to determine suspicious, obsolete,
and missing annotations. Therefore, the impact analysis and the annotation life cycles
contribute to the satisfaction of requirement R4a - Monitoring.

The monitoring of base graph changes, the annotation life cycles, and the impact analysis
enables the framework to determine suspicious, obsolete, and missing annotations. The
suspicious, obsolete, and missing annotations limit the search space to local portions of base
graphs and view graphs. Thus, the monitoring of base graph changes, the annotation life cycles,
and the impact analysis contribute to the satisfaction of requirement R4b - Time-Efficiency.

The maintenance modes of view modules process these local portions. Thus, the maintenance
modes contribute to the satisfaction of requirement R4b - Time-Efficiency.
The maintenance phases process the search spaces that are provided by the maintenance

algorithms. It depends on the concrete maintenance strategy, how the search space is
computed. Thus, the maintenance phases contribute to the satisfaction of the requirement
R4b - Time-Efficiency.

The naive and batch maintenance algorithm do not satisfy requirement R4b - Time-Efficiency,
because both view graph maintenance algorithms do not take base graph changes into account
to prune the search space. The incremental view graph maintenance algorithm uses the
captured base graph changes to employ an impact analysis that enables the maintenance
procedure to pass pruned search spaces to view modules. Thus, the incremental view graph
maintenance algorithm satisfies requirement R4b - Time-Efficiency.

The framework uses changes of base graphs, annotation life cycles, and the impact analysis
to determine the search space for modules. The framework uses the impact analysis to
determine suspicious, obsolete, and missing annotations that are maintained by modules that
dependent on other modules. Thus, the monitoring of base graph changes, the annotation life
cycle, and the impact analysis contribute to the satisfaction of requirement R4c - Propagation.
The maintenance modes of modules return suspicious and obsolete annotations as well as

artifacts and annotations that are considered as modified, when view modules deleted attached
annotations. Depending on the maintenance strategy, the maintenance phases propagate these
artifacts and annotations to dependent modules to search for new annotations, delete obsolete
annotations, and revise suspicious annotations. Thus, the maintenance modes contribute
to the satisfaction of requirement R4c - Propagation and the maintenance phases satisfy
requirement R4c - Propagation.

The naive and batch view graph maintenance algorithm propagate all annotations maintained
by predecessor modules to successor modules. The naive and batch view graph maintenance
algorithm do not limit the propagation to annotations that are created, deleted, and updated
during the current view graph maintenance. Thus, the naive and batch view graph maintenance
algorithm partially satisfy requirement R4c - Propagation, because they always propagate all
annotations maintained by predecessor modules to successor view modules.
The incremental view graph maintenance algorithm propagates annotations between view

modules that are created, deleted, and updated during the current view graph maintenance.
Therefore, the incremental view graph maintenance algorithm propagates only annotations
that are subject to change in the current view graph maintenance. Thus, the incremental
view graph maintenance algorithm satisfies requirement R4c - Propagation.
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This chapter describes an optimized view graph maintenance, which aims for an efficient
maintenance of annotations that have the same annotation type and mark the same graph
nodes by means of roles with the same types, but result from different graph pattern matches.
This thesis refers to these annotations as annotation duplicates. This chapter aims for a
reduction of this redundancy without losing the capability to enumerate all matches.

Section 9.1 describes the optimization problems that are in the scope of this chapter. Based
on the identified problems, Section 9.2 describes the optimization goals of the view graph
maintenance algorithms. Section 9.3 refines the elicited requirements based on the derived
optimization goals. Section 9.4 describes the optimizations of the maintenance algorithms.
Afterwards, Section 9.5 discusses the space and time complexity of the optimized maintenance
algorithms. Finally, Section 9.6 discusses the satisfaction of the elicited requirements.

9.1. Problem Analysis

Goal of this thesis is to effectively enumerate all matches of certain graph patterns (cf. G3a -
Enumeration of Matches). The framework must maintain these enumerations efficiently (cf.
G3c - View Maintenance). For that purpose, this thesis provides a modeling language that
enables developers to define the content of view graphs as described in Chapter 6 as well as
algorithms that maintain these view graphs as described in Chapter 8.
When developers encapsulate graph patterns by means of view modules, they decide on

which graph nodes of the graph pattern matches are marked by means of roles to keep
track of their roles in the matches. It depends on the roles that are owned by annotations
which information about graph pattern matches can be reused by view modules and end-users.
Depending on this design decision, annotations mark at least one graph node or up to all graph
nodes of graph pattern matches by means of roles. Thus, view modules and end-users can
access these graph nodes and their roles in the graph pattern matches effectively. Annotations
mark graph nodes without certain roles in graph pattern matches by means of scopes that
consist of a default edge type. Therefore, view modules and end-users cannot access these
graph nodes and their roles in the graph pattern matches effectively.

Based on the concept of roles and scopes, Section 9.1.1 describes the notion of annotation
duplicates in view graphs. Afterwards, Section 9.1.2 describes why annotation duplicates
result in superfluous graph pattern matchings of dependent view modules.

9.1.1. Duplicates of Annotations in View Graphs

View graphs store one annotation per graph pattern match. Only graph nodes that are marked
by roles of annotations are visible to dependent view modules and end-users. Graph nodes that
are marked by scopes of annotations are not visible to dependent view modules and end-users.
Therefore, multiple annotations may exist that mark the same graph nodes by means of roles,
but mark different graph nodes by means of scopes. Then, these annotations appear to be
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duplicates, because they mark the same graph nodes by means of roles, when blanking out the
scopes of these annotations. This thesis refers to these annotations as annotation duplicates.
The annotation duplicates result from different graph pattern matches. Thus, these duplicates
differ in at least one graph node that is marked by a scope. Thus, the NAC in the Create
maintenance mode of view modules (cf. Section 7.1.1) does not prevent annotation duplicates,
because this NAC only ensures that the same match is not marked more than once.

Definition 17 (Annotation Duplicate)
Two annotations are duplicates, when . . .

a) they are instances of the same annotation type and
b) they mark the same graph nodes by means of roles that have the same role types and
c) they have the same attribute values.

According to the running example, Figure 9.1 shows two equal base graphs. Each base
graph consists of a class with three public methods. The class does not implement an interface.
Furthermore, Figure 9.1 shows view graphs that differ in the kinds of employed annotations.
Note that Figure 9.1 depicts roles as dashed black lines and scopes as dotted gray lines.
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Figure 9.1.: View graphs with annotations for Extract Interface pattern

The view graph in Figure 9.1(a) depicts annotations that are instances of the ExtractInterface1
annotation type. This annotation type describes that its instances mark classes and methods
by means of roles for which an interface should be extracted. Therefore, the three annotations
in Figure 9.1(a) are no annotation duplicates, because they mark the same clazz artifact, but
mark different Method artifacts by means of roles. Thus, these annotations are distinguishable
by means of the graph nodes that are marked by roles.
In contrast, the view graph in Figure 9.1(b) depicts annotations that are instances of the

ExtractInterface2 annotation type. This annotation type describes that its instances mark only
classes by means of roles for which an interface should be extracted. These annotations do
not employ roles to mark the methods for which an interface should extracted. Thus, these
annotations are annotation duplicates, because they mark the same clazz artifact, but do
not consist of additional roles that mark the different Method artifacts. Consequently, these
annotations are not distinguishable by means of the graph nodes that are marked by roles.
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9.1.2. Superfluous Graph Pattern Matchings

View modules search for graph pattern matches using the search space, which is spanned by
annotations that are provided by other modules. When modules receive annotation duplicates,
view modules investigate the same search space inefficiently multiple times, because these
annotation duplicates mark the same graph nodes with their roles. Modules cannot access the
scopes of received annotations and, thus, graph nodes that are marked by scopes do not belong
to the search space. When modules receive annotation duplicates, multiple investigations of
the same search space are inefficient in space, because this investigation results in similar
matches that only differ in the reused annotation duplicates. To overcome these inefficiencies,
the search space that is spanned by annotation duplicates must be considered only once to
ensure a memory-efficient storing and time-efficient maintenance of view graphs.
For example, Figure 9.1(b) shows the extract1, extract2, and extract3 annotations. These

annotations mark the same clazz artifact by means of roles and are annotation duplicates.
Dependent view modules can only retrieve this clazz artifact, when they process these
annotations. Thus, the clazz artifact defines the search space for the modules that process
these annotations. These modules process these annotation duplicates three times, although
these annotations provide the same search space. Thus, the annotation duplicates increase
the required effort for pattern matching as well as the memory consumption by factor three.

9.2. Optimization Goals

This section describes the goals of the optimization to handle annotation duplicates efficiently.

Space-Efficiency for Annotation Duplicates (OG1)
The proposed optimization must avoid to store redundant parts of annotation duplicates (e. g.,
their roles) to reduce the memory consumption of view graphs in comparison to view graphs
that store each annotation duplicate separately.

Time-Efficiency for Annotation Duplicates (OG2)
The proposed optimization must ensure that the view graph maintenance algorithms investigate
the common search space that is spanned by annotation duplicates only once to decrease the
execution time of the maintenance algorithms.

Enumeration of all Annotation Duplicates (OG3)
The proposed optimization must ensure that view graphs still store all graph pattern matches
that result in annotation duplicates. Thus, the view graphs must keep track of all matches that
result in annotation duplicates to ensure that all graph pattern matches can be enumerated.

9.3. Refined Requirements

This section refines the elicited requirements of Section 4.2 based on the identified optimization
goals for the view graph maintenance that are described in Section 9.2.

Native Graph Data Model for Graph Views (R1a)
When storing and maintaining annotation duplicates, the framework must preserve the graph
structure of view graphs to still benefit from the advantages of employing graphs and graph
transformations as native means to store and query graphs.
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Memory-Efficient Graph Views (R1b)
The graph views must store graph pattern matches without copying graph nodes to view
graphs. Additionally, also matches that result in annotation duplicates must be stored by
view graphs, but storing common parts of annotation duplicates must be avoided.

Additional Properties for Stored Graph Pattern Matches (R1c)
View graphs must enable to store additional data values for graph pattern matches, because
developers want to enrich views with additional knowledge. These additional data values
must be considered, when handling annotation duplicates. For example, two annotations are
only duplicates, when all their attributes have equal values.

Encapsulation of Graph Queries (R2a)
View modules encapsulate graph patterns and maintain annotations that mark graph pattern
matches. Thus, it must be the responsibility of the view modules to decide on whether a
found match or the revision of an annotation results in an annotation duplicate.

Effectiveness of Graph Views (R2b)
View graphs must mark graph pattern matches effectively to preserve the roles of graph nodes
in these matches for the reuse of these matches. For that purpose, these roles must be also
preserved for matches that result in annotation duplicates.

Reusability of Graph Views (R2c)
The framework must support the reuse of graph pattern matches to enable developers to define
graph views on top of other graph views. The same must hold for graph pattern matches that
result in annotation duplicates. But, the views must reuse only one representative for a set of
annotation duplicates to ensure a memory- and time-efficient handling of these duplicates.

Nested Graph Conditions (R2d)
The framework must support definitions of graph views that have the same expressive power
as nested graph conditions (cf. Definition 14). The support of annotation duplicates must
preserve this expression power.

Recursion Graph Conditions (R2e)
The framework must support recursive graph conditions (cf. Definition 15). The handling of
annotation duplicates must preserve this expressive power.

Monitoring of Graph Changes (R4a)
When end-users change base graphs, these changes may result in new annotation duplicates
or obsolete annotation duplicates. Thus, changes of base graphs must be tracked and related
to already existing and missing annotation duplicates to maintain annotation duplicates.

Efficiency of Graph View Maintenance (R4b)
The framework must maintain the enumeration of graph pattern matches based on captured
base graph changes. These graph changes enable to prune the search spaces during view graph
maintenance to local portions of base graphs and view graphs. The handling of annotation
duplicates must prune search spaces as well to maintain annotation duplicates efficiently.

Propagation of Graph View Changes (R4c)
The view graphs can dependent on each other. When view graphs change, the content of
dependent view graphs must be maintained accordingly. The propagation of changes between
view graphs must be also supported for annotation duplicates.

120



9.4. Maintenance of Annotation Duplicates

9.4. Maintenance of Annotation Duplicates
This thesis distinguishes two approaches for the maintenance of annotation duplicates. Sec-
tion 9.4.1 describes an approach that employs a naive duplicate handling, which creates a
single annotation for a set of annotation duplicates. Section 9.4.2 describes an approach that
employs annotations, which aggregate all matches that result in annotation duplicates.

9.4.1. Naive Duplicate Handling

When view modules employ the naive duplicate handling, view modules only mark graph
pattern matches, if they do not result in annotation duplicates. The matches that result in
annotation duplicates are not marked by means of annotations. Thus, this approach does not
keep track of matches that result in annotation duplicates.

The following sections describe the maintenance modes of the view modules, the maintenance
phases of the algorithm, and how the algorithm works for the running example.

Maintenance Modes
The naive duplicate handling adapts the maintenance modes of view modules in such a way
that they create and preserve annotations only, if they do not result in annotation duplicates.
In Create maintenance mode, the view module searches for graph pattern matches and

checks for each found match whether it results in an annotation duplicate. If yes, the view
module discards the found match and does not create an additional annotation.

Algorithm 9.1 Create implementation of view modules with naive duplicate handling
Input: Graph nodes of base graphs and view graphs
Output: Created annotations
1: procedure module_create_duplicate_naive(nodes)
2: annotations := ∅
3: for each match of the encapsulated pattern for received graph nodes do //cf. Fig. 9.2(a)
4: if match is not already marked by roles then //cf. Fig. 9.2(b)
5: annotation := create_annotation(match) //cf. Algorithm 7.1
6: annotations := annotations ∪ {annotation}
7: else
8: existingAnnotations := retrieve annotations that mark match already by means of roles //cf. Fig. 9.2(c)
9: if equal_attribute_values(match, existingAnnotations) then //cf. Algorithm E.2
10: continue //skip creation of annotation
11: else
12: annotation := create_annotation(match) //cf. Algorithm 7.1
13: annotations := annotations ∪ {annotation}
14: return annotations

Algorithm 9.1 shows the Module_Create_Duplicate_Naive procedure, which describes the
naive duplicate handling of view modules that are executed in Create maintenance mode.
The procedure makes use of the graph patterns and graph transformations that are depicted
by Figure 9.2. Figure 9.2 employs the Extract Interface pattern as example that can be replaced
by every other graph pattern as well.
First, the procedure initializes an empty set of annotations. Then, the procedure searches

for matches of the pattern that is encapsulated by the view module. For each match, the
procedure checks whether the match is not already marked by an annotation that marks the
same graph nodes by means of roles as the annotation that would be created to mark the found
match. Note that this check does not consider scopes of annotations. If such an annotation
does not exist, the procedure creates an annotation to mark the match and adds the annotation
to the set of created annotations. If such an annotation exists, the procedure checks whether
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Figure 9.2.: Create implementation for naive duplicate handling

this annotation has the same attribute values as the annotation that would be created to
mark the match. For that purpose, the procedure retrieves all existing annotations that mark
the graph nodes of the match by means of roles. Note that the procedure does not consider
scopes to retrieve these annotations. Then, the procedure calls the Equal_Attribute_Values
procedure (cf. Algorithm E.2) and passes the found match and the existing annotations. The
Equal_Attribute_Values procedure checks whether the set of existing annotations contains an
annotation, which has the same attribute values as the annotation that would be created for
the found match. If an annotation exists that has the same attribute values, the procedure
does not create a new annotation, because this annotation would be an annotation duplicate.
If no annotation with the same attribute values exists, the procedure creates a new annotation
to mark the match and adds the annotation to the set of created annotations. Finally, the
procedure returns the created annotations.

In Delete maintenance mode, the module deletes obsolete annotations including its roles,
scopes, and attributes. The Delete maintenance mode with naive duplicate handling does
not differ from the Delete maintenance mode without duplicate handling. Algorithm 9.2
shows theModule_Delete_Duplicate_Naive procedure, which calls theModule_Delete procedure
(cf. Section 7.1.2) to delete annotations, if they are obsolete. Finally, the procedure returns
all artifacts and annotations that were marked by deleted annotations.

Algorithm 9.2 Delete implementation of view modules with naive duplicate handling
Input: Annotations of view graphs
Output: Annotations that were set obsolete
1: procedure module_delete_duplicate_naive(annotations)
2: return module_delete(annotations) //cf. Algorithm 7.3
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In Update maintenance mode, the view module checks whether annotations still mark
matches for the graph pattern that is encapsulated by the module. If the annotation does
not mark a graph pattern match anymore, the view module sets the annotation obsolete.
Otherwise, the view module preserves the annotation, if the update of the annotation attributes
does not result in an annotation duplicate. If the update of the annotation attributes results
in an annotation duplicate, the view module sets the annotation obsolete as well.

Algorithm 9.3 Update implementation of view modules with naive duplicate handling
Input: Annotations of view graphs
Output: Annotations that were set obsolete
1: procedure module_update_duplicate_naive(annotations)
2: obsoleteAnnotations := ∅
3: preservedAnnotations := ∅
4: dependentAnnotations := ∅
5: for each annotation in annotations do
6: if annotation still marks match of the encapsulated pattern then //cf. Fig. 9.3(a)
7: preserve_annotation(annotation) //cf. Algorithm 7.6
8: existingAnnotations := retrieve annotations that mark match already by means of roles //cf. Fig. 9.3(b)
9: if equal_attribute_values(annotation, existingAnnotations) then //cf. Algorithm E.3
10: obsolete_annotation(annotation) //cf. Algorithm 7.7
11: obsoleteAnnotation := obsoleteAnnotations ∪ {annotation}
12: else
13: preservedAnnotations := preservedAnnotations ∪ {annotation}
14: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
15: else
16: obsolete_annotation(annotation) //cf. Algorithm 7.7
17: obsoleteAnnotation := obsoleteAnnotation ∪ {annotation}
18: return obsoleteAnnotations, preservedAnnotations, dependentAnnotations

Algorithm 9.3 describes the Module_Update_Duplicate_Naive procedure, which describes
the naive duplicate handling of view modules that are executed in Update maintenance
mode. The procedure makes use of the graph patterns and graph transformations that are
depicted by Figure 9.3. Figure 9.3 employs the Extract Interface pattern as example that can
be replaced by every other graph pattern as well.
The procedure receives a set of annotations. Then, the procedure initializes an empty set

of obsolete, preserved, and dependent annotations. For each annotation in the set of received
annotations, the procedure checks whether the graph nodes that are marked by the annotation
still satisfy the pattern that is encapsulated by the view module. If yes, the Preserve_Annotation
procedure updates the attribute values of the annotation by re-evaluating the expressions
of the corresponding attribute assignments. Therefore, attribute values of annotations may
change in a way that they are equal to the attribute values of annotations with the same type,
which mark the same graph nodes as the preserved annotation by means of roles. For that
purpose, the Module_Update_Duplicate_Naive procedure looks up all existing annotations that
have the same annotation type as the preserved annotation and mark the same graph nodes
as the preserved annotation by means of roles. Then, the procedure checks whether one of
these existing annotations has the same attribute values as the preserved annotation. For that
purpose, the procedure calls the Equal_Attribute_Values procedure (cf. Algorithm E.3), which
checks whether an annotation already exists that has the same attribute values as the preserved
annotation. If such an annotation already exists, the procedure calls the Obsolete_Annotation
procedure to set the preserved annotation obsolete and adds the annotation to the set of
obsolete annotations, afterwards. If such an annotation does not already exist, the procedure
preserves the annotation, adds the annotation to the set of preserved annotations, and adds the
annotations that dependent on the preserved annotation to the set of dependent annotations.
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Figure 9.3.: Update implementation for naive duplicate handling

If the graph nodes that are marked by a received annotation do not satisfy the pattern that
is encapsulated by the view module, the procedure sets the annotation obsolete and adds the
annotation to the set of obsolete annotations. Finally, the procedure returns the set of obsolete,
preserved, and dependent annotations.

Maintenance Phases
This section describes the maintenance phases of the batch and incremental view graph
maintenance for the naive duplicate handling. In general, this view graph maintenance
employs the same order of maintenance phases as the view graph maintenance without naive
duplicate handling. Algorithm 8.10 and Algorithm 8.11 describe the maintenance phases of
the batch and incremental maintenance algorithms.
The Update maintenance phase checks whether annotations still mark graph nodes that

satisfy the patterns, which are encapsulated by view modules. When view modules detect
obsolete annotations in Update maintenance mode, the modules set these annotations obsolete.
Otherwise the view modules preserve the annotations, if the update of the annotation attributes
does not result in annotation duplicates. If the update of the annotation attributes results in
annotation duplicates, the view modules set the preserved annotations obsolete as well.

The Delete maintenance phase deletes annotations, when a) annotations are obsolete due
to deleted graph nodes or b) the annotations are set obsolete during the Update maintenance
phase. When the Delete maintenance phase executes a view module in Delete maintenance
mode, the view module deletes obsolete annotation including its roles, scopes, and attributes.
Note that the graph nodes that were marked by the deleted annotations are considered as
modified and, therefore, are input to the Create maintenance phase.
The Create maintenance phase creates annotations, when a) PACs are satisfied due to

the creation or modification of graph nodes or b) NACs are satisfied due to the deletion or
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modification of graph nodes. When the Create maintenance phase executes a view module
in Create maintenance mode and the view module finds a graph pattern match, the view
module checks whether the match results in an annotation duplicate. If such an annotation
duplicate already exists, the view module discards the found match and does not create an
additional annotation. Otherwise, the module creates an annotation to mark the match.
The artifacts and annotations that were marked by the deleted annotation are considered

as modified and, thus, are input to the Create maintenance phase. In doing so, the view
modules find graph pattern matches that were not marked by annotations before, because
these matches resulted in annotation duplicates of the deleted annotation, before. Thus,
view modules that are executed in Create maintenance mode create annotations that were
previously considered as annotation duplicates.
If the Create maintenance phase creates new annotations, the maintenance algorithms

employ an additional sequence of Update, Delete, and Create maintenance phases to
determine annotations that become obsolete due to dissatisfied NACs.

Running Example
According to the running example, Figure 9.4(a) depicts a clazz artifact that owns the methods
method1, method2, and method3 with the public modifiers public1, public2, and public3. The
extract1 annotation marks a match of the Extract Interface pattern (cf. Figure 3.9). The match
consists of the artifacts clazz, method1, and public1 artifacts. The artifacts clazz, method2,
and public2 constitute also a match of the Extract Interface pattern, but they are not marked
by an annotation, because this annotation would be an annotation duplicate that marks the
same clazz artifact by means of the role with Class role type as the extract1 annotation and
marks the method2 and public2 artifact by means of scopes. The same argument holds for the
clazz, method3, and public3 artifacts that are also a match for the Extract Interface pattern.

When end-users add an additional method4 artifact with Method artifact type that owns a
public4 artifact with Public artifact type to the clazz artifact, the clazz, method4, and public4
artifacts constitute an additional match for the Extract Interface pattern. Before creating the
annotation for this match, the view module checks whether the clazz artifact is not already
marked by an annotation with ExtractInterface2 annotation type by means of a role with Class
role type. In this example, the extract1 annotation dissatisfies this conditions. Thus, the view
module creates no additional annotation that marks the match, which consists of the clazz,
method4, and public4 artifacts, because this annotation is an annotation duplicate.
When end-users remove the method1 and / or public1 artifact, the extract1 annotation

is obsolete and the responsible view module deletes the annotation. Then, the framework
considers the clazz artifact as modified, because the extract1 annotation was removed from the
clazz artifact. Therefore, the clazz artifact is input to the Create maintenance phase and the
view module searches for additional matches in the context of this clazz artifact. Next, the
view module finds either the match that consists of the clazz, method2, and public2 artifacts or
the clazz, method3, public3 artifacts. The view module marks only one of both graph pattern
matches, because then the second graph pattern match results in an annotation duplicate.

9.4.2. Duplicate Handling with Aggregation

The duplicate handling with aggregation employs special annotations that keep track of all
graph pattern matches that result in annotation duplicates. Therefore, these matches can be
retrieved easily without additional search, later on.

The following sections extend the concept of annotations by so called aggregations, describe
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Figure 9.4.: View graphs with annotations for Extract Interface pattern

the impact analysis that derives missing, obsolete, and suspicious annotations that employ
such aggregations, describe the maintenance modes of view modules that create, delete, and
update these annotations, describe the maintenance algorithms that make use of these adapted
maintenance modes, and demonstrate the adapted concepts by means of the running example.

Adaptation of View Graph Metamodel
The left-hand side of Figure 9.5 shows the adapted view graph metamodel as UML class
diagram. Figure 9.5 depicts parts of the metamodel that are already introduced in gray color.
The metamodel describes that annotations can additionally consist of special abstract roles
called scope aggregations. These scope aggregations own multiple scopes that mark artifacts
and annotations that do not have special roles in graph pattern matches.
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Figure 9.5.: Metamodel for view graphs with aggregation as UML class diagram (left) and
view graph in concrete syntax (right) as adapted UML object diagram

Adaptation of View Graph Syntax
The right-hand side of Figure 9.5 shows a view graph that depicts the concrete syntax of scope
aggregations. This thesis depicts scope aggregations as black solid bars that own scopes. This
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thesis depicts scopes as dotted lines. Optionally, scope aggregations can consist of a name.
The right-hand side of Figure 9.5 shows two matches of the Extract Interface pattern. The

first match consists of the clazz, method1, and public1 artifacts. The second match consists of
the clazz, method2, and public2 artifacts. The extract annotation marks the first match by
means of the Class role and the aggregate1 scope aggregation. The aggregate1 aggregation
owns scopes that mark the method1 and public1 artifact. The extract annotation marks the
second match by means of the Class role and the aggregate2 scope aggregation. The aggregate2
aggregation owns scopes that mark the method2 and public2 artifact.

Impact Analysis
As described in Section 8.4, the framework employs an impact analysis based on captured
modification events of base graphs to determine the state of annotations in their life cycle. In
general, the impact analysis works in the same way for annotations with scope aggregations.

The impact analysis derives missing annotations from added and modified artifacts of base
graphs. Furthermore, the impact analysis derives missing annotation duplicates from missing
scope aggregations. A scope aggregation is missing, if a scope aggregation does not exist
in view graphs although it must exist, because a graph pattern match, which results in an
annotation duplicate, exists that is currently not represented in the view graph.
The impact analysis derives obsolete annotations from deleted artifacts of base graphs by

traversing roles, scopes, and scope aggregations from deleted artifacts to annotations that
own the roles and scope aggregations. An annotation duplicate that is marked by a scope
aggregation is obsolete, if a) the scope aggregation owns a dangling scope that does not
reference an artifact or annotation, or b) the annotation that owns the scope aggregation
owns a dangling role that does not reference an artifact or annotation.

The impact analysis derives suspicious annotations from modified artifacts of base graphs
by traversing roles, scopes, and scope aggregations from modified artifacts to annotations that
own the roles and scope aggregations. An annotation duplicate that is marked by a scope
aggregation is suspicious, if a) the scope aggregation owns a scope that references a modified
artifact or annotation or b) the annotation that owns the scope aggregation owns a role that
references a modified artifact or annotation.

Maintenance Modes
This section describes the maintenance modes of view modules that employ scope aggregations
to keep track of graph pattern matches that result in annotation duplicates. The following
paragraphs describe the adapted Create, Delete, and Update maintenance modes.
In Create maintenance mode, view modules search for graph pattern matches and mark

these matches by means of annotations. For each match that would result in an annotation
duplicate, the view modules create a scope aggregation, which marks the graph nodes without
explicit roles in the match, and add this scope aggregation to the already existing annotation.

Algorithm 9.4 shows the Module_Create_Duplicate_Aggregation procedure, which describes
the handling of annotation duplicates by means of scope aggregations in Create maintenance
mode. The procedure makes use of the graph patterns and graph transformations that are
depicted by Figure 9.6. Figure 9.6 employs the Extract Interface pattern as example that can
be replaced by every other pattern as well.

The procedure receives graph nodes that define the search space in which the view module
searches for graph pattern matches. First, the procedure initializes an empty set of created
annotations. Then, the procedure searches for matches of the graph pattern that is encapsulated
by the view module. For each found match, the procedure checks whether no annotation with
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Algorithm 9.4 Create implementation of view modules with scope aggregations
Input: Graph nodes of base graphs and view graphs
Output: Created annotations
1: procedure module_create_duplicate_aggregation(nodes)
2: annotations := ∅
3: for each match of the encapsulated pattern for the received graph nodes do //cf. Fig. 9.6(a)
4: if match is not already marked by roles then //cf. Fig. 9.6(b)
5: annotation := create_annotation_aggregate(match) //cf. Algorithm E.5
6: annotations := annotations ∪ {annotation}
7: else
8: existingAnnotations := retrieve annotations that mark match via roles //cf. Fig. 9.6(c)
9: annotation := retrieve_annotation_duplicate(match, existingAnnotations) //cf. Algorithm E.4
10: if annotation exists then
11: add_scope_aggregation(match, annotation) //cf. Algorithm E.6
12: else
13: annotation := create_annotation_aggregate(match) //cf. Algorithm E.5
14: annotations := annotations ∪ {annotation}
15: return annotations

the same annotation type as the output connector of the view module exists that marks the
same graph nodes of the match by means of roles. Note that scopes and scope aggregations
are not part of this check.
If such an annotation does not already exist, the procedure marks the match. For that

purpose, the procedure calls the Create_Annotation_Aggregate procedure (cf. Algorithm E.5)
and passes the found pattern match. This procedure creates an annotation with a scope
aggregation for the found match. Then, the Module_Create_Duplicate_Aggregation procedure
adds the created annotation to the set of created annotations.

If annotations exist that mark the graph nodes of the found match by means of roles already,
the procedure retrieves these annotations. Then, the procedure checks whether the set of
retrieved existing annotations contains an annotation that has the same attribute values as the
annotation that would be created for the found match. If such an annotation already exists, the
annotation that would be created is an annotation duplicate. Therefore, the procedure does
not create a new annotation. Instead, the procedure adds the graph nodes, which would be
marked by the new annotation by means of scopes, to a scope aggregation that is added to the
already existing annotation. For that purpose, the procedure calls the Add_Scope_Aggregation
procedure (cf. Algorithm E.6) and passes the found match as well as the already existing anno-
tation. If such an annotation does not exist, the procedure creates a new annotation. For that
purpose, the procedure calls the Create_Annotation_Aggregate procedure (cf. Algorithm E.5)
and passes the found match. Then, the Module_Create_Duplicate_Aggregation procedure adds
the created annotation to the set of created annotations. Finally, the procedure returns all
created annotations.

In Delete maintenance mode, view modules remove scope aggregations from annotations
or remove annotations, if they do not consist of scope aggregations or their roles are dangling.

Algorithm 9.5 shows the Module_Delete_Duplicate_Aggregation procedure, which describes
the handling of annotation duplicates by means of scope aggregations. The procedure makes
use of the graph patterns and graph transformations that are depicted by Figure 9.7.
The Module_Delete_Duplicate_Aggregation procedure receives annotations that must be

deleted, when they are obsolete. First, the procedure initializes an empty set of marked
nodes and an empty set of dependent annotations. For each annotation in the set of received
annotations, the procedure checks whether the annotation has at least one scope aggregation,
which owns a scope that does not reference an artifact or annotation anymore. If yes, the
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Figure 9.6.: Create implementation for annotations with scope aggregations

scope aggregation is obsolete. Therefore, the procedure looks up all obsolete scope aggregations
of the annotation. For each obsolete scope aggregation, the procedure adds all artifacts and
annotations that are marked by the scope aggregation and the roles of the annotation that
owns the scope aggregation to the set of marked nodes. Afterwards, the procedure calls
the Delete_Scope_Aggregation procedure (cf. Algorithm E.7) and passes the obsolete scope
aggregation to delete it. Then, the procedure checks whether the annotation consists of
additional scope aggregations. If no, the annotation is obsolete. Therefore, the procedure adds
annotations that dependent on the obsolete annotation to the set of dependent annotations.
Afterwards, the procedure deletes the annotation by calling the Delete_Annotation procedure
and passing the obsolete annotation.

If a received annotation has a dangling role, the procedure adds all artifacts and annotations
that are marked by roles and scope aggregations of the annotation to the set of marked nodes.
Then, the procedure adds all annotations that dependent on the obsolete annotation to the set
of dependent annotations. For each scope aggregation of the annotation, the procedure removes
all scopes from the scope aggregation and deletes the scope aggregation itself. Afterwards, the
procedure calls the Delete_Annotation procedure and passes the obsolete annotation to delete
the annotation. Finally, the procedure returns a) the graph nodes that were previously marked
by deleted annotations and b) the annotations that dependent on the deleted annotations.
In Update maintenance mode, view modules check whether annotations and their scope

aggregations still mark matches of the graph patterns that are encapsulated by the view
modules. These modules either preserve annotations, move scope aggregations to other
already existing annotations, extract new annotations from scope aggregations, or set scope
aggregations obsolete.
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Algorithm 9.5 Delete implementation of view modules with scope aggregations
Input: Annotations of view graphs
Output: Graph nodes referenced by deleted annotations (duplicates) and dependent annotations
1: procedure module_delete_duplicate_aggregation(annotations)
2: markedNodes := ∅
3: dependentAnnotations := ∅
4: for each annotation in annotations do
5: if annotation has dangling scope then //cf. Fig. 9.7(a)
6: obsoleteAggregations := retrieve obsolete scope aggregations of annotation //cf. Fig. 9.7(a)
7: for each aggregation in obsoleteAggregations do
8: markedNodes := markedNodes ∪ {graph nodes marked by roles and scope aggregations}
9: delete_scope_aggregation(aggregation) //cf. Algorithm E.7
10: if annotation has no scope aggregations anymore then
11: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
12: delete_annotation(annotation) //cf. Algorithm 7.3
13: if annotation has dangling role then //cf. Fig. 9.7(b)
14: markedNodes := markedNodes ∪ {graph nodes marked by roles and scope aggregations}
15: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
16: for each scopeAggregation of annotation do
17: delete_scope_aggregation(scopeAggregation) //cf. Algorithm E.7
18: delete_annotation(annotation) //cf. Algorithm 7.3
19: return markedNodes, dependentAnnotations
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scopes

element
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Figure 9.7.: Delete implementation for annotations with scope aggregations

Algorithm 9.6 shows the Module_Update_Duplicate_Aggregation procedure, which describes
the handling of annotation duplicates by means of scope aggregations in Update maintenance
mode. The procedure makes use of the graph patterns and graph transformations depicted by
Figure 9.8. Figure 9.8 employs the Extract Interface pattern as example that can be replaced
by every other pattern.

The procedure receives annotations that must to be checked whether they still mark matches
of the graph pattern that is encapsulated by the view module. First, the procedure initializes
empty sets of obsolete, preserved, extracted, and dependent annotations. For each annotation
in the set of received annotations, the procedure checks whether all scope aggregations of
the annotation satisfy the pattern, which is encapsulated by the module, and whether all
scope aggregations result in the equal attribute values. If yes, the procedure updates the
attribute values of the annotation, adds the annotation to the set of preserve annotations, adds
all dependent annotations to the set of dependent annotations, and continues with the next
annotation in the set of received annotations. If no, the procedure checks each scope aggregation
of the annotation on its own. The procedure checks for each scope aggregation whether the
scopes of the scope aggregation and the roles of the annotation that owns the scope aggregation
mark graph nodes that satisfy the pattern that is encapsulated by the view module. If yes,
the procedure considers multiple cases.

First, the procedure checks whether the attribute assignments evaluate to the same values
as the attribute values that are stored by the annotation that owns the scope aggregation. If
yes, the procedure preserves the scope aggregation and adds the annotations that dependent
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Algorithm 9.6 Update implementation of view modules with scope aggregations
Input: Annotations of view graphs
Output: Obsolete annotations, preserved, extracted, and dependent annotations
1: procedure module_update_duplicate_aggregation(annotations)
2: obsoleteAnnotations := ∅
3: preservedAnnotations := ∅
4: extractedAnnotations := ∅
5: dependentAnnotations := ∅
6: for each annotation in annotations do
7: if all scope aggregations satisfy the graph pattern and result in equal attribute values then //cf. Fig. 9.8(a)
8: set new attribute values of annotation
9: preservedAnnotations := preservedAnnotations ∪ {annotation}
10: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
11: continue
12: else //Check each scope aggregation on its own
13: for each scope aggregation of annotation do
14: if scope aggregation of annotation satisfies the encapsulated pattern then //cf. Fig. 9.8(a)
15: if scope aggregation results in unchanged attributes values then //Preserve scope aggregation
16: dependentAnnotations := dependentAnnotations ∪ annotation.dependents
17: else //Attribute values changed
18: if annotation with equal attribute values exists then //Extract by move to existing annotation
19: move scope aggregation to annotation with equal attribute values //cf. Fig. 9.8(b)
20: else //Extract by create new annotation
21: extractedAnnotation := extract annotation //cf. Fig. 9.8(c)
22: extractedAnnotations := extractedAnnotations ∪ {extractedAnnotation}
23: if annotation becomes obsolete then
24: obsoleteAnnotations := obsoleteAnnotations ∪ {annotation}
25: else //Set scope aggregation obsolete
26: obsolete_scope_aggregation(aggregation) //cf. Algorithm E.8
27: obsoleteAnnotations := obsoleteAnnotations ∪ {annotation}
28: return obsoleteAnnotations, preservedAnnotations, extractedAnnotations, dependentAnnotations

on the currently revised annotation to the set of dependent annotations. If no, the procedure
extracts the scope aggregation by moving the scope aggregation to an existing annotation or
creating a new annotation.

The procedure moves the scope aggregation to an existing annotation, when this annotation
marks the same graph nodes by means of roles, has the same attribute values as the attribute
values that are computed for the scope aggregation, and has the same annotation type.
For that purpose, the procedure removes the scope aggregation from the currently revised
annotation and adds the scope aggregation to the other existing annotation.

The procedure creates a new annotation for the scope aggregation, when such an annotation
does not exist. For that purpose, the procedure copies all roles of the currently revised
annotation, adds the scope aggregation to the extracted annotation by removing the scope
aggregation from the current annotation, adds the attributes to the extracted annotation, and
sets the attribute values by evaluating the corresponding attribute assignments. Afterwards,
the procedure adds the extracted annotation to the set of extracted annotations.

If the graph nodes that are marked by the scope aggregation of the current annotation do not
satisfy the graph pattern anymore, the procedure sets the scope aggregation obsolete. For that
purpose, the procedure calls the Obsolete_Scope_Aggregation procedure (cf. Algorithm E.8),
which detaches the graph nodes from all scopes that are owned by the passed scope aggregation.
Then, the procedure adds the obsolete annotation to the set of obsolete annotations. Finally,
the procedure returns the obsolete, preserved, extracted, and dependent annotations.
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Figure 9.8.: Update implementation for annotations with scope aggregations
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Maintenance Phases
When view modules employ scope aggregations, the batch and incremental view graph
maintenance algorithms employ the same order of maintenance phases as for the view graph
maintenance without duplicate handling.

Algorithm 9.7 Batch maintenance algorithm with duplicate aggregation
Input: All artifacts and annotations of base graphs and view graphs
Output: Consistent view graphs
1: procedure batch_maintenance_duplicate_aggregation(artifacts, annotations)
2: created := ∅
3: repeat
4: extracted := update(topological_sort(annotations))
5: delete(topological_sort(annotations))
6: created := extracted ∪ create(artifacts)
7: until created = ∅

The Algorithm 9.7 describes the Batch_Maintenance_Duplicate_Aggregation procedure. The
procedure considers all annotations as suspicious and, therefore, passes all annotations to
the Update maintenance phase. In contrast to the original view graph maintenance without
duplicate handling, the Update maintenance phase returns annotations that are extracted
from annotations due to changed attribute values of annotations. Then, the procedure stores
these extracted annotations. Afterwards, the procedure considers all annotations as obsolete
and, therefore, passes all annotations to the Delete maintenance phase to delete annotations
and scope aggregations that are obsolete. Then, the procedure considers all artifacts of base
graphs and annotations, which are maintained by predecessor view modules, as search space
for the Create maintenance phase. The Create maintenance phase creates new annotations
or adds scope aggregations to annotations for each found graph pattern match. The Create
maintenance phase returns all created annotations. Then, the procedure adds the returned
annotations to the set of extracted annotations. The procedure repeats the maintenance
phases until the Update and Create phases do not create or extract annotations anymore,
because these annotations can dissatisfy complex NACs. The detection of dissatisfied complex
NACs is implemented by the Update phase.

Algorithm 9.8 Incremental maintenance algorithm with duplicate aggregation
Input: All modification events of base graphs
Output: Consistent view graphs
1: procedure incremental_maintenance_duplicate_aggregation(events)
2: suspicious := ∅
3: repeat
4: suspicious:= suspicious ∪ Suspicious_Annotations(events)
5: obsoletes, preserved, extracted := update(suspicious)
6: obsoletes := obsoletes ∪ Obsolete_Annotations(events)
7: changed := delete(obsoletes)
8: changed := changed ∪ Missing_Annotations(events)
9: created := create(changed ∪ preserved ∪ extracted)
10: events := ∅
11: suspicious := reachabilitySuspicious(extracted ∪ created)
12: until suspicious = ∅

The Algorithm 9.8 describes the Incremental_Maintenance_Duplicate_Aggregation procedure.
The procedure derives suspicious, obsolete, and missing annotations from modifications of
base graphs. The procedure passes suspicious annotations to the Update phase. The Update
phase returns obsolete, preserved, and extracted annotations. Then, the procedure passes
obsolete annotations to the Delete phase and stores the graph nodes that were marked by
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deleted annotations. Afterwards, the procedure derives changed graph nodes from modification
events of base graphs. The procedure passes the changed graph nodes as well as the preserved
and extracted annotations to the Create phase to search for new graph pattern matches. The
Create phase also processes preserved annotations, because they may have attribute values
that now satisfy attribute constraints of view modules. Furthermore, the Create phase also
processes extracted annotations, because they may satisfy graph patterns of successor view
modules. For each found match, the procedure creates a new annotation or scope aggregation
to mark this new match. Then, the procedure uses the annotations that are extracted and
created during the Update and Create phase to derive suspicious annotations and repeats
all maintenance phases, if additional suspicious annotations exist.

Running Example
According to the running example, Figure 9.4(b) depicts a clazz artifact that owns the method1,
method2, and method3 artifacts with the public1, public2, and public3 artifacts. The extract1
annotation marks three matches for the Extract Interface pattern (cf. Figure 3.9). The extract1
annotation employs the aggregate1 scope aggregation to mark that the method1 and public1
artifacts belong to the first match, the aggregate2 scope aggregation to mark that the method2
and public2 artifacts belong to the second match, and the aggregate3 scope aggregation to
mark that the method3 and public3 artifacts belong to the third match.
When the end-users add an additional method4 artifact with Method artifact type that

owns a public4 artifact with Public artifact type to the clazz artifact, the clazz artifact and the
new method4 and public4 artifacts constitute an additional match for the Extract Interface
pattern. Before creating the annotation for this match, the view module checks whether the
clazz artifact is already marked by an annotation with ExtractInterface2 annotation type by
means of a role with Class role type. In this example, the extract1 annotation satisfies this
condition. Thus, the view module adds an aggregate4 scope aggregation, which marks the
new method4 and public4 artifacts, to the extract1 annotation.

When the end-users remove the method1 and / or public1 artifact, the graph pattern match
that is marked by the aggregate1 scope aggregation is obsolete. Then, the view module
removes the aggregate1 scope aggregation from the extract1 annotation. The view module
preserves the extract1 annotation, the aggregate2 scope aggregation, and the aggregate3 scope
aggregation, because they mark graph nodes that still satisfy the Extract Interface pattern. If
also these two scope aggregations become obsolete, the view graph maintenance removes both
scope aggregations and the extract1 annotation as well, because all matches disappeared.

9.5. Complexity

This section describes the space and time complexity of the view graph maintenance, when
view modules employ a) no duplicate handling, b) naive duplicate handling, and c) duplicate
handling with aggregation. Appendix D provides a detailed discussion.

No Duplicate Handling
Chapter 8 describes the original maintenance algorithms. These algorithms create one
annotation for each match that results in an annotation duplicate. Thus, these algorithms
employ no duplicate handling. Consequently, the number of annotations stored by view graphs
depends on the number of matches that result in annotation duplicates. When the number of
these matches doubles, then also the number of annotations doubles, which are required to
mark these matches.
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In the original algorithms, view modules exchange annotation duplicates, which span equal
search spaces for dependent modules. Thus, the effort for the graph pattern matching of
dependent modules multiplies by the number of exchanged annotation duplicates. Furthermore,
these annotation duplicates result in equivalent matches of dependent modules, because these
annotation duplicates mark the same graph nodes by means of roles. The found matches only
differ in the reused annotation duplicates. Thus, these annotation duplicates also result in
additional memory overhead of dependent modules for storing equivalent matches.

Naive Duplicate Handling
Section 9.4.1 describes a naive handling of annotation duplicates. The algorithm creates
only one annotation for a set of annotation duplicates. Thus, the number of matches, which
result in annotation duplicates, have no impact on the number of annotations that are
stored by view graphs. Therefore, modules exchange also only one annotation for a set of
annotation duplicates. Therefore, the effort for the pattern matching of dependent modules is
independent from the number of matches, which result in annotation duplicates. However,
the naive handling of annotation duplicates loses the capability to enumerate all matches that
result in annotation duplicates, because the approach does not keep track of these matches.

Duplication Handling with Aggregation
Section 9.4.2 describes a duplicate handling with aggregation of graph pattern matches. This
algorithm creates one annotation for a set of annotation duplicates and keeps track of the
matches that result in these annotation duplicates. Thus, the memory consumption of a single
annotation depends on the number of these matches. When the number of these matches
doubles, then also the number of aggregations stored by the annotation doubles. Furthermore,
modules exchange only one annotation for a set of annotation duplicates. Thus, the same
arguments hold for the effort of the graph pattern matching of dependent modules as for the
naive duplicate handling. The effort is independent from the number of aggregated matches.

9.6. Discussion

This chapter uncovers the challenge of annotation duplicates that result in inefficient search
spaces for view modules and equivalent annotations, which result in redundantly stored
information. For that purpose, this chapter introduces the concept of scope aggregations that
enable annotations to aggregate matches that result in annotation duplicates. Then, view
modules process only one annotation per set of annotation duplicates and investigate their
common search space only once.

Next, Section 9.6.1 describes which concepts satisfy the optimization goals of this chapter.
Afterwards, Section 9.6.2 discusses why the extended concepts satisfy the refined requirements.

9.6.1. Optimization Goals

Section 9.2 describes three optimization goals concerning the handling of annotation duplicates.
The first goal OG1 - Space-Efficiency aims for the reduction of the memory consumption
of view graphs. The second goal OG2 - Time-Efficiency aims for the efficient processing of
annotation duplicates by investigating their common search space only once. The third goal
OG3 - Enumerate Duplicates aims for the enumeration of all graph pattern matches, also when
they result in annotation duplicates. Table 9.1 maps the optimization goals to the concepts of
the optimized view maintenance.
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Table 9.1.: Mapping the optimization goals to the concepts of the optimized maintenance
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Naive Duplicate Handling   #

Aggregation of Duplicates    

covered:  ; partially covered: G#; not covered: #

The scope aggregations enable view modules to aggregate graph pattern matches, which
result in annotation duplicates, as one annotation to store common roles of annotation
duplicates only once. Thus, the scope aggregations satisfy the goal OG1 - Space-Efficiency.
Furthermore, the scope aggregations contribute to the goal OG2 - Time-Efficiency, because
they enable view modules to process only one representative of the annotation duplicates.
Moreover, scope aggregations keep track of all graph pattern matches that result in annotation
duplicates and, thus, satisfies the goal OG3 - Enumerate Duplicates.

The impact analysis traverses scope aggregations from artifacts to annotations, which own
these scope aggregations, to determine annotations that have to be maintained. Thus, the
impact analysis contributes to the satisfaction of the goal OG2 - Time-Efficiency.
The maintenance modes of view modules support annotations with scope aggregations.

The Create mode checks whether an annotation duplicate would be created, when the view
modules find graph pattern matches. The Update mode checks whether annotations own
scope aggregations that must be deleted or extracted. The Delete mode checks whether
scope aggregations are obsolete and, if yes, deletes them. Thus, the maintenance modes
satisfy the goal OG1 - Space-Efficiency. Furthermore, the maintenance modes contribute to the
satisfaction of the goal OG2 - Time-Efficiency, because these modes employ scope aggregations
to decrease search spaces of view modules. Moreover, the maintenance modes satisfy the goal
OG3 - Enumerate Duplicates, because they maintain scope aggregations to keep track of all
matches that result in annotation duplicates.
The maintenance phases execute view modules in certain maintenance modes. Thus, also

the maintenance phases satisfy the goal OG1 - Space-Efficiency and OG3 - Enumerate Duplicates.
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The maintenance phases propagate only one annotation for a set of annotation duplicates
between view modules. Thus, successor modules have to process only one annotation for a set
of annotation duplicates. Thus, the maintenance phases satisfy the goal OG2 - Time-Efficiency.
The original view graph maintenance (cf. Chapter 8) does not support the handling of

annotation duplicates. Thus, the original approach does not satisfy the goals OG1 - Space-
Efficiency and OG2 - Time-Efficiency. But, the original approach enumerates all graph pattern
matches including the matches that result in annotation duplicates.
The naive duplicate handling employs annotations without scope aggregations and only

marks one graph pattern match of a set of matches that result in annotation duplicates.
Therefore, the naive duplicate handling satisfies the goal OG1 - Space-Efficiency. But, the
naive duplicate handling does not mark all matches that result in annotation duplicates and,
thus, does not satisfy the goal OG3 - Enumerate Duplicates. Furthermore, the naive duplicate
handling creates one annotation for each set of annotation duplicates and only propagates this
annotation between view modules. Thus, the approach satisfies the goal OG2 - Time-Efficiency.

The duplicate handling with aggregation employs annotations with scope aggregations and,
thus, satisfies the goal OG1 - Space-Efficiency. Consequently, the approach exchanges only one
annotation for each set of annotation duplicates between view modules. Thus, the duplicate
handling with aggregation satisfies the goal OG2 - Time-Efficiency. Furthermore, the approach
keeps track of all graph pattern matches, which result in annotation duplicates, in a manner
that all matches can be retrieved instantly without additional search, later on. Algorithm E.9
describes how view graphs with scope aggregations can be transformed into view graphs
without scope aggregations. Thus, the duplicate handling with aggregation satisfies the goal
OG3 - Enumerate Duplicates.

9.6.2. Requirements
Table 9.2 maps the refined requirements of Section 9.3 to the optimized view graph maintenance.
The requirement R1a - Nativeness describes that graph views must be graphs as well. The
requirement R1b - Memory-Efficiency describes that graph views must store matches efficiently.
The requirement R1c - Match-Properties describes that graph views must enable developers to
enrich graph pattern matches with additional data values. The requirement R2b - Effectiveness
describes that graph views must keep track of graph nodes with certain roles in matches. The
requirement R2c - Reusability describes that graph views must be able to reuse the graph
pattern matches that are stored by other graph views. The requirement R2d - Nesting describes
that the framework must enable to maintain matches for patterns that employ nested graph
conditions. The requirement R2e - Recursion describes that the framework must enable to
maintain matches for patterns that employ recursive graph conditions. The requirement
R4a - Monitoring describes that the framework must keep track of base graph changes. The
requirement R4b - Time-Efficiency describes that the framework must maintain graph views
efficiently and scalable. The requirement R4c - Propagation describes that changes of base
graphs must be propagated to graph views and between graph views.
Scope aggregations are a special kind of graph nodes that preserve the graph structure of

view graphs and, thus, satisfy the requirement R1a - Nativeness.
Scope aggregations keep track of graph pattern matches that result in annotation duplicates

without creating new annotations for each match. Thus, scope aggregations are memory-
efficient and satisfy the requirement R1b - Memory-Efficiency, because they avoid to store
roles of annotation duplicates redundantly. The maintenance modes of view modules add and
remove scope aggregations to and from annotations to keep track of graph pattern matches
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Table 9.2.: Mapping the requirements to the optimized view graph maintenance
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that result in annotation duplicates. Thus, the maintenance modes satisfy requirement R1b -
Memory-Efficiency. The maintenance phases employ the maintenance modes of view modules
and, thus, satisfy the requirement R1b - Memory-Efficiency as well. The view maintenance
without duplicate handling marks each graph pattern match that results in an annotation
duplicate by means of a single annotation and, thus, does not support a memory-efficient
handling of annotation duplicates. The view maintenance with naive duplicate handling marks
only one match and discards all additional matches that result in annotation duplicates. Thus,
this approach satisfies the requirement R1b - Memory-Efficiency, but loses the capability to
enumerate all matches, which result in annotation duplicates, instantly. The view maintenance
with aggregation of annotation duplicates employs scope aggregations that do not store roles
of annotation duplicates redundantly. Thus, this approach satisfies R1b - Memory-Efficiency.
Scope aggregations preserve the capabilities of annotations to store additional attribute

values. Thus, scope aggregations satisfy the requirement R1c - Match-Properties. The
maintenance modes of view modules create annotation attributes and maintain their values.
Furthermore, the maintenance modes consider attribute values to detect annotation duplicates.
Thus, the maintenance modes satisfy the requirement R1c - Match-Properties. The maintenance
phases execute view modules in certain maintenance modes and propagate annotations with
changed attribute values between view modules. Thus, the maintenance phases satisfy the
requirement R1c - Match-Properties. The view graph maintenance without duplicate handling
creates annotations for each annotation duplicate and maintains their attribute values. Thus,
this approach satisfies the requirement R1c - Match-Properties. The view graph maintenance
with naive duplicate handling creates only one annotation for each set of annotation duplicates
by marking only one match and discarding all additional matches that result in annotation
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duplicates. Thus, this approach satisfies the requirement R1c - Match-Properties, because it
checks the equality of annotation attribute values, when creating and updating annotations.
The view graph maintenance with aggregation of annotation duplicates keeps track of all
matches that result in annotation duplicates and handles attribute changes of these annotation
duplicates. This approach moves scope aggregations to other annotations or extracts new
annotations, if the matches that result in annotation duplicates result in different attribute
values. Thus, this approach satisfies the requirement R1c - Match-Properties.

Scope Aggregations mark graph nodes that have no special roles in graph pattern matches
and preserve the capability of annotations to mark graph nodes that have certain roles in
graph pattern matches. Thus, scope aggregations satisfy the requirement R2b - Effectiveness.
The maintenance modes and maintenance phases still maintain roles of annotations with
and without scope aggregations and, thus, contribute to the satisfaction of the requirement
R2b - Effectiveness. All three approaches for the handling of annotation duplicates employ
roles to mark graph nodes with certain roles in matches. Thus, these approaches satisfy the
requirement R2b - Effectiveness.

Scope aggregations aggregate graph pattern matches and enable view modules to exchange
these aggregated matches by means of one single annotation. Thus, scope aggregations con-
tribute to the satisfaction of the requirement R2c - Reusability. The impact analysis uses roles
and scope aggregations between annotations to determine dependent suspicious or obsolete
annotations. Thus, the impact analysis contributes to the satisfaction of the requirement R2c -
Reusability. The maintenance modes of view modules provide annotations with scope aggrega-
tions as output that are created, suspicious, or obsolete. This output enables the framework to
forward the provided annotations to dependent view modules. Thus, the maintenance modes
contribute to the satisfaction of the requirement R2c - Reusability. The maintenance phases
of the view graph maintenance algorithms forward the annotations with scope aggregations
between view modules. Thus, the maintenance phases satisfy the requirement R2c - Reusability.
The view graph maintenance without duplicate handling exchanges all annotation duplicates
between view modules. Thus, this approach satisfies the requirement R2c - Reusability. The
view graph maintenance with naive duplicate handling exchanges only one annotation from a
set of annotation duplicates. This approach partially satisfies the requirement R2c - Reusability,
because the successor view modules cannot enumerate all graph pattern matches that result
from annotation duplicates. The view graph maintenance with aggregation of annotation
duplicates exchanges one single annotation that aggregates all annotation duplicates. This
approach totally satisfies the requirement R2c - Reusability, because the successor view modules
can enumerate all graph pattern matches that result from annotation duplicates.

Scope aggregations have no impact on the way how developers have to model view modules
and view module dependency graphs. The mapping of nested graph conditions to view
modules and view module dependency graphs work the same way as for annotations without
scope aggregations. The view modules internally employ scope aggregations to aggregate
graph pattern matches. Thus, scope aggregations satisfy the requirement R2d - Nesting. The
maintenance modes and maintenance phases handle PACs and NACs for annotations with
scope aggregations in the same way as for annotations without scope aggregations. Thus, the
maintenance modes contribute to the satisfaction of the requirement R2d - Nesting and the
maintenance phases satisfy the requirement R2d - Nesting. All maintenance procedures employ
these maintenance modes and phases. Thus, they satisfy the requirement R2d - Nesting.

The same arguments also hold for the support of recursive graph conditions. The mapping
of recursive graph conditions to view module dependency graphs works the same way as for
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annotations without scope aggregations. Thus, scope aggregations preserve the satisfaction
of the requirement R2e - Recursion. The maintenance modes and phases handle recursive
definitions for annotations with scope aggregations in the same way as for annotations
without scope aggregations. Thus, the maintenance modes contribute to the satisfaction of
the requirement R2e - Recursion and the maintenance phases satisfy the requirement R2e -
Recursion. Thus, all maintenance procedures satisfy the requirement R2e - Recursion.

Similar to scopes, scope aggregations enable the framework to derive obsolete and suspicious
annotations from changes of base graphs. Therefore, the scope aggregations satisfy the
requirement R4a - Monitoring. The impact analysis uses created, deleted, and modified graph
nodes to determine missing, obsolete, and suspicious annotations and scope aggregations.
Thus, the impact analysis contributes to the satisfaction of the requirement R4a - Monitoring.

Scope aggregations enable the framework to look up annotations that are impacted by
base graph changes. The impacted annotations describe portions of view graphs that must
be considered, when maintaining view graphs. Therefore, scope aggregations enable the
framework to prune search spaces and satisfy the requirement R4b - Time-Efficiency. The
impact analysis determines which annotations are impacted by base graph changes and, thus,
contributes to the satisfaction of the requirement R4b - Time-Efficiency. The maintenance
modes and phases process these portions of view graphs. However, the concrete maintenance
algorithms themselves are responsible to derive these portions of view graphs that must
be investigated during view graph maintenance. Thus, the maintenance modes and phases
contribute to the satisfaction of the requirement R4b - Time-Efficiency. All three incremental
approaches for handling annotation duplicates prune searches spaces, when maintaining view
graphs. The view maintenance without duplicate handling investigates each portion of the
view graph that is defined by the roles of annotation duplicates. The view maintenance with
naive duplicate handling investigates only the portions of the view graph that are defined by
the roles of the annotations that represent sets of annotation duplicates. The view maintenance
with aggregation of annotation duplicates investigates each portion of the view graph that is
defined by the roles of the annotations, which own the scope aggregations.
Similar to scopes, scope aggregations between annotations are used to determine missing,

obsolete, and missing annotations. Thus, the scope aggregations satisfy the requirement
R4c - Propagation. The impact analysis determines the state of annotations with scope
aggregations in their overall life cycle and triggers the view graph maintenance accordingly.
Thus, the impact analysis contributes to the satisfaction of the requirement R4c - Propagation.
The maintenance modes of view modules return annotations with scope aggregations that
become suspicious, become obsolete, or were created. Therefore, the maintenance modes
contribute to the satisfaction of the requirement R4c - Propagation. The maintenance phases
forward annotations provided by view modules to dependent view modules. Therefore, the
maintenance phases perform the actual change propagation between view modules. Thus, the
maintenance phases satisfy the requirement R4c - Propagation.

All three approaches for handling annotation duplicates employ the maintenance modes and
maintenance phases. The approach without duplicate handling employs the original scopes
and, therefore, satisfies the requirement R4c - Propagation. The approach with naive duplicate
handling employs the same scopes as the approach without duplicate handling and, therefore,
satisfies the requirement R4c - Propagation. The approach with aggregation of annotation
duplicates employs scope aggregations that are used by the maintenance modes and phases to
look up dependent annotations that must be maintained due to base graph and view graph
changes. Thus, the aggregation of duplicates satisfies the requirement R4c - Propagation.
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This chapter evaluates the proposed modeling language. The evaluation focuses on the
effectiveness of the modeling language and the capabilities to optimize the view graph
maintenance. Section 10.1 describes the goals of the evaluation. Section 10.2 summarizes
two case studies that are used to evaluate the proposed modeling language. Afterwards,
Section 10.3 compares the proposed approach with state-of-the-art approaches from different
evaluation perspectives. Section 10.4 summarizes this comparison.

10.1. Evaluation Goals
The goal of this evaluation is to a) determine the effectiveness of the proposed modeling
language in comparison to other state-of-the-art approaches, which can be used for incremental
view graph maintenance, as well as b) determine capabilities for the optimization of the view
graph maintenance by means of the proposed modeling language. For that purpose, this thesis
derives different evaluation perspectives from the elicited requirements of Section 4.2.

Expressiveness
The expressiveness perspective discusses how the modeling language enables developers to
express conjunctions, disjunctions, negations, recursions, and attribute constraints. This
perspective also covers the evaluation of the required modeling effort for the definition of
views. Furthermore, the perspective investigates how views can hide parts of graph pattern
matches as well as enrich graph pattern matches.

Optimization
The optimization perspective discusses how the approaches for incremental view graph mainte-
nance can steer the trade-off between memory consumption and execution time.

Generality
The generality perspective investigates whether developers can employ query languages and
graph data models of their choice for view graph maintenance.

Retrieval
The retrieval perspective discusses how developers can post-processed maintained graph pattern
matches effectively. This issue includes the retrieval of graph nodes with certain roles in
matches, the retrieval of all matches including matches that result in annotation duplicates,
and the retrieval of reused matches that are maintained by other view graphs.

10.2. Case Studies
This section describes the case studies that are used by this thesis to evaluate the modeling
capabilities of the proposed modeling language in comparison to state-of-the-art approaches.
For this purpose, this thesis implements the proposed modeling language using the Eclipse
Modeling Framework (EMF) and Graphical Modeling Framework (GMF). This thesis provides
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an editor that enables to model view modules, view module dependencies, and view graph
transformations. Section 10.2.1 summarizes the case study about the recovery of design
patterns and anti-patterns in ASGs of source code. Section 10.2.2 summarizes the case study
about the tracing of innovation processes to keep track of design rationales.

10.2.1. Recovery Design Pattern and Anti-Patterns (CS1)

Reverse engineering software systems is a major software engineering discipline. Recovering
employed design patterns and anti-patterns is one activity during reserve engineering.
The world wide web provides plenty of version control repositories with source code that

is published under open source licenses. These repositories store source codes of different
sizes and consist of change histories that can be used to imitate changing abstract syntax
graphs (ASGs) based on real source code changes. For this case study, this thesis derives ASGs
from Java source code using JaMoPP [53]. JaMoPP provides a metamodel that describes
the language concepts of the Java programming language and is an extended version of the
metamodel that is used by the running example (cf. Figure 3.4).

Gamma et al. [35] and Fowler et al. [33] describe design patterns and design anti-patterns,
respectively. For this case study, this thesis translates the design patterns and anti-patterns
into graph patterns, which conform to the JaMoPP metamodel, and embeds these patterns
into view modules to maintain matches for these patterns. This case study employs 49
view modules for design patterns and anti-patterns. The Appendix F lists the employed
view modules and provides short descriptions of the embodied patterns. The view modules
implement low-level patterns such as the Generalization pattern (cf. Figure 3.5(a)) and high-
level patterns such as the Composite pattern (cf. Figure 3.8(a)). The view modules create
and maintain annotations, which mark graph nodes of the ASGs that have a certain role
in design patterns and anti-patterns. For example, the Generalization view module marks
the graph nodes that represent the super- and subclass of the generalizations. The running
example of this thesis already explained some of these view modules from the perspective of
view definition (cf. Chapter 6) and view graph transformation (cf. Chapter 7).

10.2.2. Tracing Innovation Projects (CS2)

This thesis selects the tracing of innovation projects to keep track of design rationales as
second case study, because it is a non-technical example and, therefore, complements the
first technical case study. This case study deals with innovation projects that employ the
Design Thinking innovation methodology. The Design Thinking innovation methodology
provides design phases, design activities, and design techniques that enable to solve wicked
design challenges with innovative solutions. When design teams employ the Design Thinking
methodology they undergo a learning and decision process. The design team documents the
learnings and design decisions in design artifacts that constitute a design documentation.
This case study aims for recovering traceability links in this design documentation to make
the documentation traceable during and after the innovation project to enable engineers to
implement the proposed design solution in a feasible, desired, and viable manner.
This case study derives the graph data from design documentation that is stored in file

system structures. Therefore, the graph data consists of graph nodes that represent design
artifacts and graph edges that represent containment relationships between these design
artifacts. Furthermore, each graph node consists of an attribute that links the physical
design artifacts to enable view modules to load and process these physical artifacts. The view
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modules infer traceability links between design artifacts and store these traceability links in
terms of annotations in view graphs. The evolution of the design documentation is derived
from creation dates of design artifacts.
For example, view modules extract keywords and creation dates from metadata of design

artifacts. Furthermore, this case study employs view modules that process extracted keywords
to conclude design phases, design activities, and design techniques as well as creation dates to
establish the creation order of the design phases, design activities, and design techniques. With
this recovered order, the employed innovation process can be recovered and analyzed. Then,
transitions between design phases, activities, and techniques can be analyzed. Beyhl et al. re-
port on the traceability of innovation processes in several publications [11, 12, 13, 14, 15].
Appendix G describes the view modules of this case study.

10.3. Comparing Approaches

Section 1.3.2 describes EMF-IncQuery as software tool for MDE that implements Rete
networks and adapts the Rete matching algorithm for EMF models as special kind of graph.
EMF-IncQuery is the only approach that transfers Rete networks and the Rete matching
algorithm to graphs. EMF-IncQuery provides a textual syntax to enable developers to model
patterns. These patterns do not describe the structure of Rete networks. lnstead, EMF-
lncQuery generates a joint Rete network for all patterns by means of a heuristic [9]. The
resulting Rete network can employ network node sharing [4] to reuse common network parts
between patterns to reduce time and space complexity [9].
The textual syntax of EMF-IncQuery for graph patterns consists of a pattern header and

a pattern body. The header describes the kinds of graph nodes that are returned by means
of tuples, when EMF-IncQuery finds a match. The body describes the actual pattern for
which EMF-IncQuery maintains matches. Bodies consist of type checks and edge checks.
Type checks test whether a graph node has a certain type. Edge checks test whether two
graph nodes are connected by a graph edge of a certain type. Furthermore, the textual syntax
enables to express simple attribute constraints for primitive data types.

Moreover, the textual syntax provides the find keyword to refer to matches of other patterns
and test for the existence of certain matches. The textual syntax also provides the neg keyword
that is employed in combination with the find keyword to test for the non-existence of certain
matches. Furthermore, the textual syntax provides an anonymous variable _ that matches
any graph node. Additionally, the textual syntax provides an or keyword that enables to
combine multiple pattern bodies in a disjunctive manner.
The following sections compare the modeling approach of this thesis with EMF-IncQuery

concerning their expressiveness, capabilities of performance optimizations, generality, and
retrieval of matches. This evaluation derives the modeling and functional capabilities of
EMF-IncQuery from several publications [7, 9] and hands-on experiences.

10.3.1. Expressiveness

In general, the proposed modeling language and EMF-IncQuery have the same expressiveness,
because both approaches support conjunctions, disjunctions, negations, and recursion. Fur-
thermore, both approaches support arbitrarily complex attribute constraints, which must be
free of side-effects. However, both approaches differ in the manner how they enable developers
to model discrimination networks and logical operations for combining matches of certain
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patterns. The proposed approach enables developers to model the structure of generalized
discrimination networks, while EMF-IncQuery enables developers to model patterns. EMF-
IncQuery itself derives Rete networks (cf. Section 1.3.1) from these patterns. EMF-IncQuery
does not support Gator networks (cf. Section 1.3.1).
Section 6.4 and Section 7.2 describe how developers can use the modeling language and

view graph transformations to map graph conditions to view modules and view module
dependency graphs. Bergmann et al. [9] describe how developers can implement graph
conditions with EMF-IncQuery [7]. The following sections compare the modeling of atomic
conditions, conjunctions, disjunctions, negations, recursions, and attribute constraints.

Atomic Graph Conditions
The proposed modeling approach maps atomic graph conditions to view modules that only
consist of artifact input connectors (cf. Section 6.4.1). EMF-IncQuery maps atomic graph
conditions to patterns that do not employ the find keyword to refer to other matches.
Figure 10.1(a) shows the Generalization view module that implements the Generalization

pattern. The module consists of two artifact connectors, which describe that the module
requires Class and TypeReference artifacts to search for matches of the Generalization pattern.
Figure 10.1(b) shows the Generalization pattern in EMF-IncQuery. The pattern header

describes that the pattern requires Class artifacts. The header abstracts from TypeReference
artifacts that are also required to find matches of the Generalization pattern.

Generalization

subClass : 
Class

superClass : 
Class

: Namespace

: Generalization
++

: Super: Sub

++

targetextends

: Referencereference

classes : Class references : TypeReference

generalizations : Generalization

++ ++

(a) Proposed Approach

pattern Generalization(subClass:Class, superClass:Class) {
Class.ˆextends(subClass, namespace);
Namespace.reference(namespace, reference);
Reference.target(reference, superClass);

Namespace(namespace);
Reference(reference);

}

(b) EMF-IncQuery

Figure 10.1.: Modeling atomic graph conditions

The view module in Figure 10.1(a) provides a complete interface of the encapsulated
transformation, because the connectors describe all kinds of required artifacts and created
annotations. In contrast, the pattern header in Figure 10.1(b) does not describe an interface
of the encapsulated pattern. Búr et al. [20] describe pattern parameters as “a subset of
nodes and attributes interfacing the model elements interesting from the perspective of the
pattern user”. It is the choice of the developer to add the TypeReference artifacts to the
pattern header. Thus, the pattern headers in EMF-IncQuery reflect or do not reflect all
kinds of required artefacts. Therefore, pattern headers maybe do not provide a complete
interface for the pattern bodies. Therefore, the pattern itself is required to determine whether
base graph changes impact the stored matches. In contrast, the proposed approach of this
thesis encapsulates patterns behind interfaces of view modules. Thus, the proposed modeling
language makes the maintenance algorithms independent from patterns that are encapsulated
by view modules.
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Conjunctions
The proposed modeling language maps conjunctions to view modules with annotation input
connectors that have only one incoming view module dependency (cf. Section 6.4.2). Then,
the embodied view graph transformation employs annotation pattern nodes that are connected
with each other via other pattern nodes and edges (cf. Section 7.2.2). EMF-IncQuery maps
conjunctions to patterns that make use of other graph pattern matches by means of the find
keyword. The pattern implements a conjunction, when it employs at least two find statements.
Figure 10.2(a) shows the Multi-Level Interface Implementation view module that embeds a

view graph transformation, which describes that the superclass of a generalization and the
subclass of an interface implementation must be the same class, when the generalization and
interface implementation constitute a multi-level interface implementation. For that purpose,
the view module consists of two annotation input connectors that receive annotations from
the Generalization and InterfaceImplementation view module.
Figure 10.2(b) shows the equivalent pattern in EMF-IncQuery. The pattern searches for

matches of the Generalization pattern and the Interface Implementation pattern that have
the superclass of the generalization and the subclass of the interface implementation in
common. For that purpose, the pattern employs two find statements to refer to matches of
the Generalization and Interface Implementation pattern.

superClass : 
Class

: Interface-
Implementation: Generalization

: Super : Sub

subClass : 
Class

interface : 
Interface

: Sub : Super

: MultiLevelInterface-
Implementation

: Lower : Upper

: Sub : Super
++

++ ++++
++

implementations : 
MultiLevelInterfaceImplementation

generalizations 
: Generalization

implementations 
: InterfaceImplementation

Multi-Level Interface Implementation

Generalization

classes : 
Class

typeReferences : 
TypeReference

generalizations 
: Generalization

Interface 
Implementation

classifier : 
Classifier

typeReferences : 
TypeReference

implementations 
: InterfaceImplementation

(a) Proposed Approach

pattern MultiLevelInterfaceImplementation(class:Class,
interface:Interface) {
find Generalization(class, superClass);
find IntefaceImplementation(superClass, interface);

}

pattern InterfaceImplementation(class:Class,
interface:Interface) {
Class.implements(class, namespace);
Namespace.references(namespace, reference);
Classifier.target(reference,interface);

Namespace(namespace);
Reference(reference);

}

(b) EMF-IncQuery

Figure 10.2.: Modeling conjunctions of graph conditions

Both modeling approaches handle conjunctions in a similar way. However, pattern headers
in EMF-IncQuery do not describe which kinds of matches are reused within the pattern.
Therefore, patterns in EMF-IncQuery do not provide a complete interface for patterns as it is
the case for view modules in the proposed modeling approach. That means, in EMF-IncQuery
pattern headers do not describe dependencies between patterns. Instead, EMF-IncQuery
calculates decompositions in network nodes and the dependencies between these nodes to
optimize the structure of the generated Rete network [9]. In the proposed approach, these
dependencies are explicitly modeled by means of view module connectors / dependencies and
it is the responsibility of the developer to optimize the network structure.

Disjunctions
The proposed modeling language maps disjunctions to view modules with annotation input
connectors that have at least two incoming view module dependencies (cf. Section 6.4.3). Then,
the encapsulated pattern exploits the polymorphism of the received annotations to match
annotations that are part of the disjunction. In contrast, EMF-IncQuery maps disjunctions
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to multiple pattern bodies using the or keyword. The developers must describe each operand
of the disjunction by an additional pattern body.

Figure 10.3(a) shows the view module that implements the Multi-Level Interface Implementa-
tion pattern. This view module receives annotations that mark matches for the Generalization,
MultiLevelGeneralization, and InterfaceImplementation pattern. The generalization annotation
input connector of the view module has two incoming view module dependencies that originate
from the Generalization view module and Multi-Level Generalization view module. Furthermore,
the view graph transformation of the Multi-Level Interface Implementation view module
employs an annotation pattern node with Generalization annotation type (super type of
Multi-Level Generalization annotation type) to describe that the superclass of a single-level or
multi-level generalization can implement an interface. Therefore, the view module implements
a disjunction of the Generalization and Multi-Level Generalization pattern.

Figure 10.3(b) shows the implementation of the Multi-Level Interface Implementation pattern
in EMF-IncQuery. The pattern consists of two pattern bodies that are part of the disjunction.
The first pattern body describes a pattern that employs matches of the Generalization pattern
and Interface Implementation pattern to search for matches of the Multi-Level Interface Imple-
mentation pattern. The second pattern body describes a pattern that employs matches of the
Multi-Level Generalization pattern and Interface Implementation pattern to search for matches
of the Multi-Level Interface Implementation pattern.

superClass : 
Class

: Interface-
Implementation: Generalization

: Super : Sub

subClass : 
Class

interface : 
Interface

: Sub : Super

: MultiLevelInterface-
Implementation

: Lower : Upper

: Sub : Super
++

++ ++++
++

implementations : 
MultiLevelInterfaceImplementation

generalizations 
: Generalization

implementations 
: InterfaceImplementation

Multi-Level Interface Implementation

Generalization

classes : 
Class

typeReferences : 
TypeReference

generalizations : 
Generalization

Multi-Level
Generalization

multigeneralizations : 
MultiLevelGeneralization

generalizations : 
Generalization

Interface 
Implementation

classifier : 
Classifier

typeReferences : 
TypeReference

implementations : 
InterfaceImplementation

(a) Proposed Approach

pattern MultiLevelInterfaceImplementation(class:Class,
interface:Interface) {
find Generalization(class, superClass);
find IntefaceImplementation(superClass, interface);

} or {
find MultiLevelGeneralization(class, superClass);
find InterfaceImplementation(superClass, interface);

}

(b) EMF-IncQuery

Figure 10.3.: Modeling disjunctions of graph conditions

In EMF-IncQuery, the developers must model each possible pattern of a disjunction
explicitly. The resulting combinatorial complexity results in a higher modeling effort in
comparison to the proposed approach. The proposed approach enables developers to describe
the disjunction effectively, because the approach exploits the polymorphism of annotations to
support disjunctions. Then, the graph pattern has to employ the annotation supertype of
annotations that participate in the disjunction.

Internally, EMF-lncQuery generates Rete subnetworks for each operand of the disjunction
[9], which may share network nodes [4]. These subnetworks have a common production node
at the end, which performs a true union operation, to store matches that are computed by
these subnetworks [9].

Simple Negations
The proposed modeling language maps simple negation to view modules with negative artifact
input connectors (cf. Section 6.4.4). Then, the encapsulated view graph transformation
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employs negated artifact pattern nodes and relation pattern edges to describe that certain
graph nodes and edges must not exist (cf. Section 7.2.4). In contrast, EMF-IncQuery maps
simple negation to negated pattern calls. First, a graph pattern must be employed that
searches for the existence of graph nodes and edges, which must not exist in the overall
pattern. Then, a second pattern checks whether no match of the first pattern exists.
Figure 10.4(a) shows the Default Constructor view module that consists of a negative

parameters artifact connector. The view graph transformation implements the simple negation
by means of a negated parameters pattern edge and parameter pattern node.
Figure 10.4(b) shows the DefaultConstructor pattern in EMF-IncQuery. The DefaultCon-

structor pattern employs the neg and find keyword to describe that the constructor must not
participate in a match of the ConstructorWithParameters pattern.

constructors : 
Constructor

parameters : 
Parameter

defaultConstructors : 
DefaultConstructor

constructor 
: Constructor

parameter 
: Parameter

parameters

(a) Proposed Approach

pattern DefaultConstructor(constructor:Constructor) {
neg find ConstructorWithParameters(constructor);

}

pattern ConstructorWithParameters(constructor:Constructor) {
Constructor.parameters(constructor,_);

}

(b) EMF-IncQuery

Figure 10.4.: Modeling simple negation

EMF-IncQuery always requires two patterns to implement simple negations. In contrast,
the proposed modeling approach maps simple negations more effectively than EMF-IncQuery,
because the proposed approach is able to handle simple negations within view modules and
does not require two view modules. Note that the proposed approach can map simple negations
also to two view modules, if it is desired by the developers. Furthermore, the mapping to
two patterns in EMF-IncQuery results in more intermediate graph pattern matches, which
must be stored, than in the proposed approach. Thus, the proposed approach enables a more
memory-efficient mapping of simple negations to view modules.

Complex Negations
The proposed modeling language maps complex negations to two view modules. The first
view module searches for graph pattern matches that dissatisfy the negated part of the overall
graph pattern. The second view module implements the complete pattern and checks for the
non-existence of the match that dissatisfies the negated part of the pattern. For that purpose,
the second view module employs negative annotation input connectors for the annotations
that must not exist. Furthermore, the encapsulated view graph transformation employs
negated annotation pattern nodes and role pattern edges. In contrast, EMF-IncQuery maps
complex negations to patterns in the same way as simple negations. Thus, EMF-IncQuery
maps complex negations in the same way to patterns as the proposed modeling approach.

Figure 10.5(a) shows the Extract Interface view module and Interface Implementation view
module. The Extract Interface view module consists of a negative annotation input connector
with InterfaceImplementation annotation type to describe that the Extract Interface view
module uses annotations, which are provided by the Interface Implementation view module, in
negative sense. Furthermore, the view graph transformation of the Extract Interface view
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module employs a negated Interface Implementation annotation.
Figure 10.5(b) shows the Extract Interface pattern and the Interface Implementation pattern

in EMF-IncQuery. The neg and find keyword in the Extract Interface pattern describe that a
class must not participate in a match of the Interface Implementation pattern.

InterfaceImplementation

methods 
: ClassMethods

modifiers 
: Public

implementations 
: InterfaceImplementation

ExtractInterface

method 
: Method

clazz 
: Class members

: ExtractInterface

: PublicMethod

: Class: Interface-
Implementation

: Sub

++
++

++

extractInterfaces : ExtractInterface

classes 
: Class

public 
: Publicmembers

classifiers : Classifiers references : TypeReferences

++

(a) Proposed Approach

pattern ExtractInterface(class:Class) {
neg find InterfaceImplementation(class, _);

Class.members(class, method);
Method.modifiers(method, public);

Method(method);
Public(public);

}

(b) EMF-IncQuery

Figure 10.5.: Mapping complex negation

The proposed modeling language enables developers to map complex negations in the same
manner to view modules as in EMF-IncQuery. In EMF-IncQuery, pattern headers describe
which nodes of graph pattern matches are of interest to users. In EMF-IncQuery, pattern
bodies explicitly call previously defined patterns to nest patterns. Thus, one must investigate
pattern bodies to understand which sub-patterns are reused in negated manner by means of
the neg keyword. Therefore, these pattern headers are not sufficient to determine whether a
found graph pattern match may dissatisfy matches of a certain other graph pattern.

Recursion
The proposed modeling language enables developers to model recursive graph conditions (cf.
Definition 15) with the help of cyclic view modules dependencies. In the proposed approach,
recursion cycles can consist of multiple view modules and recursion cycles can embed other
recursion cycles. In EMF-IncQuery, patterns implement recursion by calling other patterns
using the find keyword. When the patterns implement cyclic calls of other patterns, then they
implement a recursion. In EMF-IncQuery, recursion cycles can consist of multiple patterns
and recursion cycles can embed other recursion cycles.

Figure 10.6(a) shows the Generalization view module and Multi-Level Generalization view
module. The Generalization view module describes the recursion start. The Multi-Level
Generalization view module describes the recursion step, because a view module dependency
connects the output connector of the view module with its input connector. The encapsulated
view graph transformation employs an annotation pattern node with Generalization type that
can match also annotations with Generalization and Multi-Level Generalization type.

Figure 10.6(b) shows the Multi-Level Generalization pattern in EMF-IncQuery. Each pattern
body calls the Generalization and Multi-Level Generalization patterns. The pattern bodies cover
all possible combinations of the Generalization and Multi-Level Generalization patterns.

In EMF-IncQuery, recursion is implemented within patterns by calling other pattern. These
recursive calls result in cyclic dependencies between single Rete networks, which are generated
by EMF-IncQuery for each pattern [9]. In contrast, the proposed approach handles recursion
cycles outside of view modules by means of explicit view module dependencies. Therefore, the
framework does not have to be aware of the encapsulated patterns to maintain matches that
result from recursive graph conditions. Furthermore, the patterns in EMF-IncQuery must
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Generalization

classes : Class references : TypeReference

subClass 
: Class

: Generalization

middleClass 
: Class

superClass 
: Class

: Super

: Sub
: Generalization

: Super

: Sub

: MultiLevel
Generalization

: Lower : Upper

: Sub : Super
++

++ ++

++++

multiLevelGens : MultiLevelGeneralization

generalizations : Generalization

generalizations : Generalization

Multi-Level Generalization

(a) Proposed Approach

pattern MultiLevelGeneralization(sub:Class, super:Class) {
find Generalization(sub, middle);
find Generalization(middle, super);
Class(middle);

} or {
find Generalization(sub, middle);
find MultiLevelGeneralization(middle, super);
Class(middle);

} or {
find MultiLevelGeneralization(sub, middle);
find Generalization(middle, super);
Class(middle);

} or {
find MultiLevelGeneralization(sub, middle);
find MultiLevelGeneralization(middle, super);
Class(middle);

}

(b) EMF-IncQuery

Figure 10.6.: Mapping recursion

provide disjunctive pattern bodies, which a) implement recursion steps based on matches for
recursion starts and b) implement recursion steps based on matches for other recursion steps.

Attribute Constraints
In the proposed modeling language, the view graph transformations enable to specify attribute
constraints that must hold for graph nodes of found matches. For example, the proposed
modeling language supports OCL. In EMF-IncQuery, “user-provided arbitrary Java code
can be applied to model elements to check the validity of a pattern” [9]. For the proposed
approach, OCL has been extended by custom operations, which can call arbitrary Java code.
Furthermore, the proposed approach enables to employ arbitrary expression languages (see
Appendix B). In both approaches, the attribute constraints must be free of side-effects. Due
to different expression languages, attribute constraints cannot be implemented analogously in
both approaches. For example, the Method Override pattern (cf. Figure 3.7) checks whether
a) the name of a method in a class and another method in a subclass of this class are equal
and b) the numbers of parameters are equal for both methods. For the sake of simplicity, the
example omits the check of the parameter order and type.

Figure 10.7(a) shows the Method Override view module. The Method Override view module
uses Generalization annotations to look up pairs of private methods in the superclass and the
subclass that have the same method names and number of method parameters. The view
module employs OCL expressions to check the equality of the method names and the number
of method parameters.
Analogously, Figure 10.7(b) shows the Method Override pattern in EMF-IncQuery. The

pattern employs the check operation of EMF-IncQuery to check the equality of the method
names. Furthermore, the pattern employs the count keyword of EMF-IncQuery to check
for equal numbers of method parameters. For that purpose, the pattern makes use of an
additional Param pattern that looks up all parameters that belong to a method.
Note that both approaches must ensure that the attribute constraints operate within

the scope of the graph pattern matches. That means, the attribute constraints must not
refer to graph nodes and edges that are not part of the graph pattern matches. Otherwise,
graph changes are not related to view modules in the proposed approach and patterns in
EMF-IncQuery during the view graph maintenance.
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superClass : 
Class

: Generalization

: Super

subClass : 
Class

: Sub

superMethod : 
ClassMethod

subMethod : 
ClassMethod

: Private : Private

modifiers modifiers

members members

: MethodOverride

++ ++

: superMethod : subMethod

generalizations 
: Generalization
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(a) Proposed Approach

pattern MethodOverride(subMethod:Method, superMethod:Method) {
find Generalization(subClassifier, superClassifier);
Class.members(subClassifier, subMethod);
Class.members(superClassifier, superMethod);

neg find PrivateMethod(subMethod, _);
neg find PrivateMethod(superMethod, _);

Method.name(subMethod, subMethodName);
EString(subMethodName);
Method.name(superMethod, superMethodName);
EString(superMethodName);

check(subMethodName.equals(superMethodName));
count find Param(subMethod)==count find Param(superMethod);

}

pattern PrivateMethod(method:ClassMethod, modifier:Private) {
Method.annotationsAndModifiers(method, modifier);

}

pattern Param(method:Method) {
Method.parameters(method, _);

}

(b) EMF-IncQuery

Figure 10.7.: Mapping attribute constraints

Discussion
The different network structures of Rete networks and Gator networks (cf. Section 1.3.1) have
several implications, when modeling such network structures. Rete networks consist of network
nodes with at most two inputs. Therefore, developers of Rete networks must decompose
graph patterns into multiple small-sized network nodes with two inputs. Thus, when patterns
become large, it is a cumbersome task to model the network nodes of Rete networks manually.
Therefore, EMF-IncQuery enables developers to define patterns that are decomposed into Rete
networks by a heuristic approach [9]. EMF-IncQuery graph patterns describe the nesting of
patterns by means of the find keyword. According to [9], developers can guide the heuristic by
splitting patterns into smaller patterns. The structure of the Rete network in EMF-IncQuery
is a result of a complex optimisation step. Gator networks consist of network nodes that
can have more than two inputs. Therefore, Gator networks enable developers to choose a
larger granularity for network nodes than Rete networks, when decomposing patterns into
discrimination networks. Thus, developers of Gator networks can model network nodes with
more than two inputs to reduce the number of network nodes that have to be modeled. Thus,
Gator networks are more suited for modeling the network structure than Rete networks.
For this reason, the proposed approach supports Gator networks including Rete networks.
EMF-IncQuery does not support Gator networks.
Furthermore, the proposed approach exploits the polymorphism of annotations to model

disjunctions and recursions. This polymorphism reduces the modeling effort. In contrast, in
EMF-IncQuery the modeling of disjunctions and recursions suffers a combinatorial complexity,
which results in multiple pattern bodies that must cover all cases of disjunctions and recursions.

EMF-IncQuery employs pattern headers to describe which graph nodes of matches are
contained by tuples that represent matches. For example, the header of the Generalization
pattern in Figure 10.1(b) describes that the tuples contain the superclass and the subclass
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of the generalization and hide the graph nodes with Namespace and Reference type. The
proposed approach employs roles and scopes to mark graph nodes of matches. The view graph
transformations, which are encapsulated by view modules, describe by means of role and scope
pattern edges which graph nodes are marked by roles and scopes, respectively. Roles mark
the graph nodes that are not filtered out from matches and, therefore, are retrievable. Scopes
mark the graph nodes that are filtered out from matches, but keep track of these graph nodes,
because they may dissatisfy the pattern, when they change. In summary, EMF-IncQuery and
the proposed approach enable to hide graph nodes of matches, but use different concepts to
describe which kinds of graph nodes are hidden.
One purpose of views is to enrich the knowledge that is stored by graphs with additional

knowledge (cf. Chapter 1). EMF-IncQuery maintains matches and can be used to derive
features [81] (i. e., attribute values or references that are calculated from other graph elements)
and custom views [27] (i. e., graphs that abstract from details of other graphs to provide a
specific point of view). The proposed approach employs attributed graph nodes to mark
graph pattern matches. The attributes of these graph nodes enable to store additional data
values that are initialized by view modules during the Create maintenance phase and are
maintained by view modules during the Update maintenance phase. The developers employ
arbitrary expression languages to derive the attribute values from the graph nodes of matches.

10.3.2. Optimization
EMF-IncQuery generates Rete networks from patterns based on a heuristic that performs
optimizations of the network structure [9]. Developers can select for each pattern, if local-
search or incremental strategies shall be applied [6] by means of the search keyword [28]. This
enables a trade-off between memory consumption and execution time, but loses incrementality,
when local-search is employed. The user guide [28] and Bergmann et al. [6] provide technical
details and a discussion, when a local search, an incremental strategy, or a combination of
both strategies is beneficial.

The proposed modeling language provides developers the full freedom of generalized discrim-
ination networks, because they allow network nodes with more than two inputs. According
to Hanson et al. [48], network nodes with more than two inputs require less memory than
equivalent Rete network substructures. But, network nodes with more than two inputs may
have a higher execution time, because less intermediate matches are cached that can speed up
the execution, when the state of the discrimination network is updated. Since the presented
approach enables developers to model generalized discrimination networks, the presented
approach enables developers to steer the trade-off between memory consumption and execution
time by choosing an appropriate granularity level for network nodes.
The proposed approach enables to employ different graph pattern matching algorithms

and languages to implement view modules. For example, the research prototype employs
story diagrams as graph pattern matching language that are interpreted by a story diagram
interpreter to find graph pattern matches. Also graph patterns specified by means of other
graph pattern languages can be easily embedded into view modules. Therefore, the developer
can choose the most beneficial graph pattern matching approach. EMF-IncQuery enables
to choose between an incremental and local-search based pattern matching strategy [20].
The approach reuses “the existing pattern language and query development environment
of EMF-IncQuery [. . . ] to select the most appropriate strategy separately for each pattern
without any modifications to the definitions of existing patterns” [20]. Bergmann et al. [6]
propose a combination of local-search based and incremental strategies for optimization
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purposes. Furthermore, EMF-IncQuery employs an effective index structure [9] to implement
network nodes in the Rete network. This index structure can be more efficient than pattern
matching, but is limited to network nodes with at most two inputs. In summary, the proposed
approach can fall back to the structure of Rete networks, but can also employ a more general
network structure. In the general case, the more general network structure will be more
memory-efficient than an equivalent Rete network, because the general network structure
employs less network nodes than the Rete network and, thus, has to store less intermediate
results. Then, the general network structure has to maintain also less intermediate results
and the maintenance can be faster than for an equivalent Rete networks. The maintenance
performance also depends on the graph pattern matching performance of network nodes with
more than two inputs.
EMF-IncQuery employs an immediate maintenance, when EMF-models change. That

means, EMF-IncQuery propagates each single change immediately through the network. In
contrast, the proposed approach supports a deferred maintenance. That means, the approach
collects changes of base graphs, filters out modification events that cancel each other, and
updates the discrimination network concerning these changes later, e. g., when an end-user
states a query. Thus, the proposed approach uses the net modification events that can be less
than all captured modification events. Therefore, the proposed approach can propagate less
changes through the network, which can speed up the maintenance.

The proposed approach employs an explicit Update maintenance phase to maintain matches
that are impacted by modified graph elements. In contrast, Rete-based approaches [32] map
the modification of graph elements to the inefficient deletion and re-creation of matches.

10.3.3. Generality
This section discusses the support of different graph query languages and graph data models.

Graph Query Languages
EMF-IncQuery provides no concepts to abstract from employed graph patterns. Logical
operations such as disjunctions, conjunctions and negations are handled within the pattern
bodies by calling other patterns. The pattern headers rather describe the kinds of tuples
that are stored for each found match than encapsulating the employed pattern by providing
an interface for the pattern. EMF-IncQuery derives Rete networks for these pattern. Thus,
the Rete network construction is coupled to the query language of EMF-IncQuery. But,
EMF-IncQuery can be silently used to implement other query or validation tools using its
support for derived features [81].
The proposed approach provides view modules as abstraction from employed query lan-

guages. View modules hide employed query languages, because they provide interfaces for
the encapsulated patterns. These interfaces describe which kinds of artifacts and annotations
must be provided to view modules. The encapsulated view graph transformation is responsible
to process the provided artifacts and annotations. Thus, the proposed approach is decoupled
from employed patterns and, therefore, is also independent from employed query languages.
Note that this thesis provides a default view graph transformation language to describe the
proposed concepts. Developers can also employ other graph transformation languages.

Graph Data Models
EMF-IncQuery provides incremental graph pattern matching for EMF models. However,
EMF-IncQuery has been also adapted to other graph-like data. For example, IncQuery-D
employs concepts of EMF-IncQuery for incremental graph search in the cloud [55]. IncQuery-D
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employs a storage and Rete layer, which can be used independently of graph-oriented data
representation formats. Furthermore, EMF-IncQuery has been integrated into the Meta
Programming System (MPS) [89].
The proposed approach employs view modules to abstract from graph queries, query

languages, and employed graph data models. Especially, the proposed approach works for
graphs in general and is not limited to special kinds of graphs such as EMF models.
Angles [2] provides an overview of graph data models. Angles lists simple graphs, hyper-

graphs1, and nested graphs2 as possible graph data models. Additionally, these graph data
models employ labels and / or attributes for graph nodes and graph edges and either consist
of directed or undirected edges. This thesis employs typed attributed graphs with directed
graph edges to describe the concepts of this thesis. The proposed marking of graph nodes,
which satisfy a pattern, is independent from the employed graph data model, because all
kinds of graphs employ graph nodes and view modules are responsible to mark these graph
nodes. Thus, view modules handle the characteristics of employed graph data models and
hide these characteristics from the framework. But, these graph data models must employ at
least typed graph nodes, because the approach uses the types of graph nodes to describe the
interfaces of view modules. Furthermore, these types are also used to prune the search spaces
of view modules during the incremental view graph maintenance.

10.3.4. Retrieval

The following sections compare EMF-IncQuery and the proposed approach concerning the
retrieval of graph pattern matches. This comparison includes the discussion how users retrieve
graph nodes with certain roles in matches, retrieve matches that result in duplicates of tuples
/ annotations, and retrieve matches that are reused to find other matches.

Retrieval of Graph Nodes
In EMF-IncQuery, the pattern headers describe the graph nodes that can be retrieved from
the incremental graph pattern matcher. In general, these pattern headers describe tuples
and associate a name with each position in these tuples. When retrieving matches in terms
of tuples, these names are used to refer to positions in the tuples. Thus, the roles of graph
nodes are encoded by the names of the tuple positions. For example, Figure 10.1(b) shows
that EMF-IncQuery stores tuples for matches of the Generalization pattern that contain the
superclass and subclass of the found generalizations. In EMF-IncQuery, the other graph nodes
of the match are not part of the retrieved tuples. Therefore, graph nodes without certain roles
in matches cannot be retrieved in EMF-IncQuery. Thus, the full match cannot be restored.

In extensions of EMF-IncQuery [27], annotations can be added to patterns. These pattern
annotations describe the creation of view models explicitly, when graph pattern matches are
found. These view models are instances of metamodels that serve as reference about which
information can be retrieved from view models.
The proposed approach employs graph edges to mark graph nodes with certain roles in

matches. These graph edges consist of types that describe the roles of the graph nodes
that are the target of these graph edges. Therefore, these types are used to retrieve graph
nodes with certain roles in matches. Furthermore, annotations own graph edges that do not
consist of a type and are used to mark graph nodes without roles in matches. In contrast to

1Hypergraphs employ graph edges that connect a set of graph nodes. That means, graph edges of hypergraphs
are n-ary.

2Nested graphs employ graph nodes that are themselves graphs.
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EMF-IncQuery, these graph edges are used to retrieve graph nodes without certain roles in
matches. Thus, the proposed approach can restore the full graph pattern match.

Furthermore, the proposed approach defines explicitly in the view graph schema, which roles
of graph nodes can be accessed in marked matches. In contrast, EMF-IncQuery defines roles
of graph nodes rather ad hoc in the pattern header. Thus, the end-users and developers must
know the implementation of patterns to know which roles of graph nodes can be accessed.

Retrieval of all Graph Pattern Matches
Graph patterns in EMF-IncQuery and annotations in the proposed approach enable developers
to filter out graph nodes from matches for retrieval, because these graph nodes are not relevant
for the query result. In EMF-IncQuery, developers filter out graph nodes of matches by
omitting these graph nodes in the pattern header. For example, the pattern header in
Figure 10.1(b) omits the graph nodes with Namespace and Reference type, because both
kinds of graph nodes have no explicit role in the Generalization pattern.
In the proposed approach, developers employ scopes to filter out graph nodes without

roles in matches. But, these scopes keep track of these graph nodes, because they belong
to the match as well. For example, in Figure 10.1(a) the annotations that mark matches of
the Generalization pattern reference artifacts with Namespace and Reference artifact type by
means of scopes, because these artifacts have no special role these matches.

When graph nodes are filtered out of matches, tuples in EMF-IncQuery and annotations in
the proposed approach may be duplicates, because these tuples contain the same graph nodes
and these annotations reference the same graph nodes by means of roles, respectively.
EMF-IncQuery filters out such duplicates of tuples and returns only one tuple for a set

of duplicates. It is the responsibility of developers to enforce the retrieval of all tuples with
internal nodes but identical header parameter values.
The proposed approach provides two maintenance algorithms that handle duplicates of

annotations in a manner that all matches are enumerated by the approach and can be retrieved
by end-users accordingly. The original view graph maintenance algorithm (Section 8.10)
enumerates all annotations including annotation duplicates and, thus, enables end-users to
retrieve all matches. The optimized view graph maintenance algorithm (Section 9.4.2) employs
aggregations to keep track of matches that result in annotation duplicates. These aggregations
enable the framework to restore and return all matches including matches that result in
annotation duplicates.

Retrieval of Reused Graph Pattern Matches
EMF-IncQuery employs pattern headers to describe which graph nodes can be retrieved
from maintained graph pattern matches. These headers do not describe which kinds of
already found matches are reused for graph pattern matching. Instead, pattern bodies call the
definition of other patterns explicitly. Therefore, EMF-IncQuery does not enable to retrieve
matches that are reused by patterns to find other matches.

The proposed approach enables to keep track of annotations that are reused to find matches
of patterns. Annotations reference reused annotations either with the help of roles, when
reused annotations have certain roles in the matches, or scopes, when reused annotations do
not have certain roles in the matches. Consequently, the roles and scopes between annotations
constitute a dependency graph of annotations and end-users as well as developers can traverse
these roles and scopes to retrieve reused annotations.

154



10.4. Discussion

10.4. Discussion
This chapter compares the proposed approach with EMF-IncQuery concerning their expres-
siveness, capabilities for optimizations, generality, and retrieval of matches.

In general, EMF-IncQuery and the proposed approach support conjunctions, disjunctions,
negations, and recursions. EMF-IncQuery derives the Rete network by means of a heuristic.
In the proposed approach, developers model the Gator network explicitly. Thus, the proposed
approach offers more possibilities for optimizations concerning memory consumption and
execution time than EMF-IncQuery, e.g. network nodes with more than two inputs. EMF-
IncQuery employs tuples to store pattern matches. The proposed approach employs attributed
graph nodes that mark matches and store additional attribute values at these graph nodes.
Originally, EMF-IncQuery is designed for EMF models, but is also adapted to other graph-
oriented representation formats. The proposed approach is designed as framework and provides
modules as network nodes of discrimination networks, which abstract from employed graph
data models and pattern matching technologies.

Moreover, the proposed approach employs a deferred view graph maintenance that enables
to filter out modifications events, which cancel each other. Thus, less modification events
may be processed by the maintenance algorithm to speed up the maintenance. In contrast,
EMF-IncQuery processes each single modification event immediately and, thus, may have to
process inefficiently more modification events than the proposed approach.
Both approaches enable developers to retrieve maintained matches instantly, when the

discrimination networks are up-to-date. As a difference, EMF-IncQuery enumerates only one
match for an internal variable for a given tuple of header variables, thus not all matches of
tuples are enumerated. Therefore, EMF-IncQuery does not enable to retrieve all matches,
when duplicates of tuples exist. Furthermore, EMF-IncQuery only enables to retrieve graph
nodes with explicit roles in matches and, thus, does not enable to retrieve the complete
matches. In contrast, the proposed approach enables to retrieve all graph nodes of matches as
well as matches that result in annotation duplicates, if required.
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This chapter describes the evaluation of the proposed view graph maintenance algorithms.
The evaluation focuses on the memory consumption for storing view graphs and the execution
time for maintaining view graphs. The evaluation aims for a verification of the analytical
observations, which are described in Section 10.3.2.
Section 11.1 describes the goals of the performance evaluation. Afterwards, Section 11.2

outlines the implementation of the view graph maintenance algorithms. Section 11.3 presents
an interior evaluation that compares the batch and incremental maintenance algorithms of this
thesis for Rete and Gator network structures. Section 11.4 presents an exterior evaluation that
compares the view graph maintenance algorithms with state-of-the-art approaches. Finally,
Section 11.5 compares the analytical observations of Section 10.3.2 with the evaluation results.

11.1. Evaluation Goals

The goal of the performance evaluation is to show a) that the incremental maintenance
algorithm outperforms the batch maintenance algorithm and that b) the proposed incremental
maintenance algorithm can outperform state-of-the-art approaches for incremental graph
pattern matching. Therefore, this thesis aims for an interior and exterior evaluation.
The interior evaluation (G5b - Interior Evaluation) compares the batch and incremental

maintenance algorithms for Rete and Gator network structures. The exterior evaluation (G5b
- Interior Evaluation) compares the incremental maintenance algorithm with the incremental
graph pattern matching approach of EMF-IncQuery [9]. EMF-IncQuery is the only available
and comparable software tool that can be employed for the evaluation. Both evaluations focus
on the memory consumption and execution time, when maintaining graph pattern matches.

11.2. Realization

This thesis implements the naive, batch, and incremental view graph maintenance algorithms.
The implementation bases on the Eclipse Modeling Framework (EMF). The design decision to
employ EMF has several implications. For example, the evaluation employs EMF models that
are specializations of typed attributed graphs (cf. Section 2). These EMF models additionally
consist of graph edges that describe a) the containment hierarchy of graph nodes and b) graph
edges of EMF models have no attributes.

This thesis implements an interpreter for view module dependency graphs. This interpreter
generates an execution plan for view modules of the dependency graph taking into account
recursion cycles and triggers view modules to execute the embedded graph transformations.
This thesis maps view graph transformation rules to story diagrams and story patterns

[102]. For that purpose, this thesis implements a graph transformation from the view graph
transformation language of this thesis to story diagrams for each execution mode of the
view modules. When the framework executes view modules in certain execution modes, the
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framework executes the generated story diagrams. The Appendix B.1 shows generated story
diagrams for the Generalization pattern.
The change monitoring of base graphs is implemented with the help of EMF-specific

monitoring capabilities similar to EMF-IncQuery [9].

11.3. Interior Evaluation

The interior evaluation is twofold. First, the interior evaluation compares the performance of
the batch and incremental view graph maintenance algorithms. Second, the interior evaluation
compares the performance of these algorithms for equivalent Rete and Gator network structures
using the view definition approach of this thesis.

Section 11.3.1 describes the evaluation setup. Section 11.3.2 shows the measurement results
that are discussed in Section 11.3.3. Section 11.3.4 discusses the validity of the evaluation.

11.3.1. Evaluation Setup

The interior evaluation deals with the recovery of software design patterns in ASGs of Java
source code that is contained by open source software repositories. This evaluation extends
to approach of Niere [75] in a manner that the evolution of the ASGs is taken into account.
That means, the evaluation repeats the recovery of the employed design patterns for each
revision of the source code.
For the evaluation, the Java source code of several open source software repositories was

pre-processed to transform the source code of each revision into XML Metadata Interchange
(XMI) models. These XMI models constitute the base graphs for the evaluation. For this
transformation, the evaluation employs JaMoPP [53] that provides a metamodel for the Java
programming language and a parser for Java source code. The running example of this thesis
employs a simplified version of the JaMoPP metamodel. The JaMoPP metamodel consists of
about 230 classes [53] and, therefore, has a reasonable complexity for this evaluation.

According to the running example, the interior evaluation employs software design patterns
[35] as graph queries. The evaluation makes use of a view module dependency graph with 49
view modules. The Appendix F describes the employed view modules and graph patterns.
The dependency graph consists of 16 view modules that implement atomic graph conditions,
18 intermediate view modules that implement intermediate graph patterns, and 15 high-level
view modules that implement software design patterns.

The evaluation employs the naive, batch, and incremental maintenance algorithms for
each revision of the derived XMI models to recover employed software design patterns. The
evaluation merges modified XMI models of the next revision into the current revision to
modify the base graphs and proceed from the current revision to the next revision. The
evaluation employs EMF-Compare [91] to merge the XMI models. The evaluation processes
the first hundred revisions of the software repositories.
The evaluation uses a Dell PowerEdge R620 x8 Base server system. The server consists

of two Intel Xeon E5-2630 processors. Each processor consists of six cores with 2,3GHz.
However, the implementation does not make use of the multi-core capabilities. Furthermore,
the evaluation increases the Java heap space to 256GB of main memory to avoid that the
Java garbage collection interrupts the view graph maintenance unexpectedly.
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11.3.2. Evaluation Result

This section describes the measurements for the comparison of a) the view graph maintenance
algorithms and b) the performance of the Rete and Gator network structure, separately.

Comparison of Maintenance Algorithms
For each software repository, Table 11.1 shows a) the number of artifacts and annotations
at revision 1 and 100, b) the memory consumption for storing annotations at revision 1
and 100, and c) the required time for the initial creation of the view graph at revision 1.
Table 11.2 shows the execution time of the naive, batch, and incremental algorithms for each
software repository. The execution time describes the total time that is required to perform
the view graph maintenance for the first 100 revisions of the software repository. Note that
the execution time for the initial creation of the view graphs is not included in the total
execution time, because this creation is always a batch approach. For each revision, the batch
and incremental algorithms result in equal annotations in comparison to the naive algorithm.

Repository #Artifacts #Annotations Memory View Initial Build
Rev. 1 Rev. 100 Rev. 1 Rev. 100 Rev. 1 Rev. 100 Rev. 1

Ant 12242 22174 1767 2982 1,22MB 2,15MB 06 s
Subclipse 12467 53621 1352 6171 0,89MB 3,97MB 04 s
Commons IO 59423 67458 4330 5129 2,68MB 3,23MB 31 s
Xerces 133858 191415 20160 25828 13,39MB 16,85MB 11min 52 s
Commons Collections 228423 230784 22999 23091 14,61MB 14,66MB 13min 47 s

Table 11.1.: Overview of data sets

Repository Execution Time for 100 revisions
Naive Batch Incremental

Ant 07min 57 s 09min 26 s 20 s
Subclipse 26min 48 s 29min 35 s 01min 27 s
Commons IO 24min 25 s 27min 26 s 37 s
Xerces 13 h 47min 52 s 16 h 23min 24 s 10min 37 s
Commons Collections 05 h 02min 57 s 05 h 26min 01 s 54 s

Table 11.2.: Execution times for each view graph maintenance algorithm

For example, the Apache Ant data set consists of 12242 artifacts at revision 1 and 22174
artifacts at revision 100. The framework derives 1767 annotations at revision 1 and 2982
annotations at revision 100. At revision 1 the view graph requires 1,22MB of main memory.
At revision 100 the view graph requires 2,15MB of main memory. The initial creation of the
view graph requires 06 s. The maintenance algorithms require 07min 57 s (naive), 09min 26 s
(batch), and 20 s (incremental) to maintain the view graph for the first hundred revisions.

Analogously, Table 11.1 and 11.2 show the evaluation results of the Subclipse, Commons
IO, Xerces, and Commons Collections data sets. Appendix H.1 shows the raw data.

Comparison of Network Structures
This section compares the performance of a Gator network structure with an equivalent Rete
network structure. This comparison includes the memory consumption of view graphs and
the execution times of all view graph maintenance algorithms. The employed Gator network
structure consists of 4 view modules that maintain view graphs for the Generalization, Interface
Implementation, ReadOperation, and WriteOperation graph pattern (cf. Appendix F). The
equivalent Rete network structure consists of 22 view modules. Each view module of the Rete
network structure consists of at most 2 inputs. Furthermore, the view modules of the Rete
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network structure employ graph (sub-)patterns with lower cardinality of graph edges first to
reduce the number of intermediate matches as early as possible. The Appendix H.2 depicts
the employed network structures. This evaluation employs less view modules for the Gator
network structure, because an equivalent Rete network structure requires many more view
modules than the Gator network structure. These view modules have to be modeled manually.

The evaluation employs the same data sets as the comparison of the maintenance algorithms.
Table 11.3 shows the sizes of the selected data sets including the number of artifacts and
annotations at revision 1 and 100. Table 11.3 distinguishes view graphs that are created by
the Gator and the Rete network structure. Table 11.3 shows the number of the annotations
that are created by both network structures at revision 1 and 100. Moreover, Table 11.4
shows the memory consumption of the annotations at revision 1 and 100 for both network
structures. Table 11.5 and Table 11.6 show the total execution times of the Gator and Rete
network structure for all kinds of maintenance algorithms for the first 100 revisions. The
execution time for the initial creation of the view graphs is not included in the total execution
time, because this creation is always a batch approach.

Repository #Artifacts #Annotations (Gator) #Annotations (Rete)
Rev. 1 Rev. 100 Rev. 1 Rev. 100 Rev. 1 Rev. 100

Ant 12242 22174 36 25 2235 3037
Subclipse 12467 53621 27 76 1600 5834
Commons IO 59423 67458 22 27 2431 2932
Xerces 133858 191415 212 265 47452 54038
Commons Collections 228423 230784 323 323 25830 25991

Table 11.3.: Overview of data sets

Repository Memory View (Gator) Memory View (Rete)
Rev. 1 Rev. 100 Rev. 1 Rev. 100

Ant 0,06MB 0,05MB 1,20MB 1,63MB
Subclipse 0,04MB 0,12MB 0,86MB 3,14MB
Commons IO 0,03MB 0,04MB 1,31MB 1,58MB
Xerces 0,41MB 0,44MB 25,42MB 28,96MB
Commons Collections 0,5MB 0,5MB 13,89MB 13,98MB

Table 11.4.: Memory consumption of the Gator and Rete network structure

For example, the Gator network structure creates 36 annotations at revision 1 and 25
annotations at revision 100 for the Apache Ant data set. The equivalent Rete network
structure creates 2235 annotations at revision 1 and 3037 annotations at revision 100. For the
Gator network structure, these annotations result in a memory consumption of 0,06MB and
0,05MB at revision 1 and 100, respectively. The equivalent Rete network structure results in
a memory consumption of 1,20MB and 1,63MB at revision 1 and 100, respectively. For the
Gator network structure, the maintenance requires 01min 03 s (naive), 01min 07 s (batch),
and 04 s (incremental). The equivalent Rete network structure requires 05min 32 s (naive),
07min 07 s (batch), and 16 s (incremental).
Analogously, the tables describe the evaluation results for the Subclipse, Commons IO,

Xerces, and Commons Collections data sets. Appendix H.2 shows the raw data.

11.3.3. Evaluation Discussion

This section discusses the measurements for a) the comparison of the view graph maintenance
algorithms and b) the performance of the Rete and Gator network structure.
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Repository Execution Time (Gator)
Naive Batch Incremental

Ant 01min 03 s 01min 07 s 04 s
Subclipse 03min 09 s 03min 13 s 06 s
Commons IO 01min 25 s 01min 28 s 03 s
Xerces 09 h 52min 59 s 09 h 47min 53 s 19 s
Commons Collections 02 h 15min 37 s 02 h 15min 43 s 04 s

Table 11.5.: Execution times of Gator network structure

Repository Execution Time (Rete)
Naive Batch Incremental

Ant 05min 32 s 07min 07 s 16 s
Subclipse 30min 13 s 33min 45 s 47 s
Commons IO 11min 21 s 13min 12 s 12 s
Xerces 11 h 42min 14 s 27 h 32min 59 s 07min 20 s
Commons Collections 03 h 41min 08 s 03 h 58min 22 s 41 s

Table 11.6.: Execution times of Rete network structure

Comparison of Maintenance Algorithms
Table 11.7 shows the speedup of the incremental algorithm in comparison to the batch
algorithm. This discussion employs the batch algorithm for the comparison, because it
employs a real view graph maintenance as the incremental algorithm in contrast to the naive
algorithm (cf. Section 8.9). Table 11.7 shows the speedup ordered by the size of the data sets.
The incremental algorithm is 20,37 to 360,82 times faster than the batch algorithm.

Repository Speedup
Batch / Incremental

Ant 28,42
Subclipse 20,37
Commons IO 44,72
Xerces 92,65
Commons Collections 360,82

Table 11.7.: Speedup of the incremental view graph maintenance algorithm
.

Figure 11.1 compares the execution times of the maintenance algorithms for the Apache
Ant data set. Appendix H.4 shows the charts for the other data sets. The solid line depicts
the number of artifacts in the base graphs for each revision. The dashed line depicts the
execution time of the naive algorithm. The dotted line depicts the execution time of the batch
algorithm. The dash-dotted line depicts the execution time of the incremental algorithm.
Figure 11.1 shows the increase of the number of the artifacts that are stored by the base

graph. For example, the number of artifacts increases at revision 55. From this point, the
naive and batch algorithm require approx. 5 seconds more than for the previous revisions. For
revision 55, the incremental algorithm requires approx. 3 seconds more than for the previous
revision, because the number of the base graph changes is larger due to the added artifacts.
Afterwards, the execution time of the incremental algorithm decreases again and remains
relatively stable, because the number of the base graph changes is lower. Thus, the execution
time of the incremental algorithm only depends on the number of base graph changes.

Comparison of Network Structures
Table 11.8 shows the memory reduction of the Gator network structure in comparison to the
Rete network structure. The table shows that the Gator network structure uses 20,40 to 62,07
times less memory than the Rete network structure. The Gator network structure requires
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Figure 11.1.: Comparison of the maintenance algorithms for Apache Ant data set

less memory, because it consists of less network nodes than the Rete network structure. Thus,
the Gator network structure has to store less intermediate annotations, which mark partial
graph pattern matches, than the Rete network structure.

Repository Memory Reduction (Rete / Gator)
Rev. 1 Rev. 100

Ant 20,40 30,63
Subclipse 21,04 26,49
Commons IO 38,40 37,49
Xerces 62,07 56,47
Commons Collections 27,64 27,78

Table 11.8.: Memory reduction in comparison to Rete network structure
.

Table 11.9 shows the speedup of the Gator network structure in comparison to the equivalent
Rete network structure. For the naive and batch algorithm, the Gator network structure is
up to 10,48 times faster than the Rete network structure. For the incremental algorithm, the
Gator network structure is up to 22,98 times faster than the Rete network structure.

Repository Speedup (Rete / Gator)
Naive Batch Incremental

Ant 5,25 6,42 4,49
Subclipse 9,60 10,48 7,44
Commons IO 8,02 8,97 4,47
Xerces 1,18 2,81 22,98
Commons Collections 1,63 1,76 10,39

Table 11.9.: Speedup in comparison to Rete network structure
.

Figure 11.2 compares the execution times of the incremental algorithm for the Gator and
Rete network structure for the Apache Ant data set. Appendix H.4 shows the charts for the
other data sets. The solid line denotes the execution time of the Gator network structure.
The dotted line denotes the execution time of the Rete network structure.
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Figure 11.2 shows for each revision that the Rete network structure is slower, when updating
the state of the network, than the Gator network structure. This circumstance is especially
visible for the peaks in the execution time.
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Figure 11.2.: Performance comparison of Gator and Rete network structure for Apache Ant

11.3.4. Threats to Validity
The evaluation results might not be valid due to design decisions concerning the evaluation
setup. The evaluation employs one variant of possible Rete network structures that is
equivalent to the employed Gator network structure. Other equivalent variants of the Rete
network structures may perform better or worse. Thus, the memory reduction and the speedup
of the Gator network structure may be different, when another Rete network structure is
employed. The same argument holds for the employed Gator network structure that is also
one variant of possible Gator network structures. However, both network structures are
reasonable choices, because they employ a redundance-free and optimal matching order.

The evaluation performs each measurement only once due to the large execution time of the
naive and batch maintenance algorithm. Therefore, the mean execution time of the algorithms
may be different. Additional measurements are not required, because the differences of the
execution times are clear. Thus, additional measurements do not change to the observation.

The annotations that are maintained by the naive, batch, and incremental algorithm mark
the same graph pattern matches. The evaluation checks the equality of these annotations
for each revision in comparison to the naive algorithm. Thus, the precision and recall are
the same for all maintenance algorithms. Therefore, the evaluation is valid. Note that the
concrete values of the precision and the recall are not in the scope of this evaluation.

11.4. Exterior Evaluation
The exterior evaluation compares the incremental maintenance algorithm of this thesis with the
incremental graph pattern matching of EMF-IncQuery [9]. The exterior evaluation compares
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the memory consumption and execution time of the Gator network, which is modeled with
the proposed approach, with the Rete network, which is generated by EMF-IncQuery.
Section 11.4.1 describes the evaluation setup. Section 11.4.2 describes the measurements

that are discussed in Section 11.4.3. Section 11.4.4 discusses the validity of the evaluation.

11.4.1. Evaluation Setup

This evaluation uses 20 graph patterns for software design pattern recovery. This set of
patterns provides a general spectrum of possible patterns. The evaluation implements these
patterns with a) the proposed approach in terms of a Gator network and b) with EMF-
IncQuery that derives a Rete network. Both implementations employ equivalent patterns
(cf. Appendix F and Appendix H.5). The evaluation employs 25 test cases for the 20 graph
patterns. These test cases cover a general set of patterns and graph changes. These test cases
modify the base graphs to measure the performance of both approaches, when updating the
network state. The test cases check whether both approaches retrieve the same matches.
The evaluation executes all test cases in one warmup phase and, afterwards, executes all

test cases in ten measurement phases. Then, the evaluation computes the average execution
time for the maintenance of the networks. Moreover, the evaluation measures the memory
consumption in one additional measurement phase that is independent from the measurement
phases for the execution time. One measurement of the memory consumption is sufficient,
because the number of required annotations / tuples is the same for all measurement phases.

For the proposed approach, the evaluation measures the memory consumption of annotations,
roles, and scopes that are required to mark all graph pattern matches. For EMF-IncQuery,
the evaluation traverses the generated Rete network and measures the memory consumption
of the network nodes. For example, the evaluation measures the memory consumption of the
primary and secondary input of join nodes.
The evaluation only compares the execution time and memory consumption of the incre-

mental algorithms, because EMF-IncQuery does not provide a batch maintenance algorithm.
Furthermore, the evaluation employs the managed incremental graph pattern matching engine
of EMF-IncQuery, because this kind of engine is recommended by the documentation.
The setup of the exterior evaluation is different to the setup of the interior evaluation,

because the proposed approach and EMF-IncQuery differ in technical details that make it
difficult to a) ensure equivalent search spaces and b) compare the retrieved graph pattern
matches. For example, EMF-IncQuery does not return all graph nodes of matches depending
on the user-defined pattern header and, thus, the retrieved matches cannot be compared easily
in an automated manner with the matches that are retrieved with the proposed approach.

11.4.2. Evaluation Result

Table 11.10 summarizes the execution time and memory consumption. Appendix H.3 shows
the raw data. The total execution time describes the time that is required to maintain the
discrimination network for all test cases. In total, the proposed approach requires 5,34 s
to maintain the modeled Gator network. EMF-IncQuery requires 4,96 s to maintain the
generated Rete network, in total. The average execution time describes the mean of all
execution times. In average, the maintenance of the Gator network in the proposed approach
requires 0,21 s. The maintenance of the Rete network in EMF-IncQuery requires 0,20 s in
average. The average memory consumption of the discrimination networks is 13,19 kb in the
proposed approach and 21,40 kb in EMF-IncQuery.
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Approach Execution Time Memory Consumption
Total Avg. Avg.

Proposed Approach 5,34 s 0,21 s 13,19 kb
EMF-IncQuery 4,96 s 0,20 s 21,40 kb

Table 11.10.: Comparison of execution time and memory consumption
.

Table 11.11 shows the measurements for six test cases in detail. For example, the test case
for the FieldAssignment pattern (cf. Appendix H.5) requires in average 0,17 s and 0,21 s in the
proposed approach and EMF-IncQuery, respectively. Furthermore, the proposed approach
requires 11,00 kb and EMF-IncQuery requires 20,91 kb to store the found graph pattern
matches. Table 11.11 describes the measurements for the other test cases analogously.
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Proposed Approach 0,26 s 0,17 s 0,18 s 0,18 s 0,19 s 0,19 s
EMF-IncQuery 0,25 s 0,21 s 0,20 s 0,19 s 0,19 s 0,18 s
Speedup 0,96 1,24 1,11 1,06 1,0 0,95

Memory
Proposed Approach 12,25 kb 11,00 kb 8,01 kb 11,51 kb 10,68 kb 11,65 kb
EMF-IncQuery 33,14 kb 20,91 kb 9,04 kb 32,39 kb 22,87 kb 27,42 kb
Memory Reduction 2,71 1,90 1,13 2,81 2,14 2,35

Table 11.11.: Speedup and memory reduction in comparison to EMF-IncQuery
.

11.4.3. Evaluation Discussion

Table 11.10 shows that the proposed approach is with a speedup of 0,93 slightly slower than
EMF-IncQuery, but EMF-IncQuery requires 1,62 times more memory.
Table 11.11 shows that the overall performance is a trade-off between the memory con-

sumption and execution time. For example, the Composite pattern and Singleton pattern are
with a speedup of 0,96 and 0,95 a little bit slower for the proposed approach in comparison to
EMF-IncQuery. However, EMF-IncQuery consumes 2,71 and 2,35 times more memory than
the proposed approach.
Moreover, Table 11.11 shows that the test cases for the FieldAssignment, Generalization,

Multi-Level Generalization, and PublicInstanceMethod patterns perform better in time and
space at the same time for the proposed approach in comparison to EMF-IncQuery. For
example, the test case for the FieldAssignment pattern is 1,24 times faster than EMF-IncQuery.
Furthermore, EMF-IncQuery uses 1,90 more memory in comparison to the proposed approach.

11.4.4. Threats to Validity

The evaluation results might not be valid due to design decisions of the evaluation setup. The
following paragraphs distinguish threats concerning the employed network structures and the
measurements of execution times and memory consumptions.
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The proposed approach employs a modeled Gator network structure. EMF-IncQuery
generates the Rete network structure by means of a heuristic. Thus, the evaluation employs
one variant of possible Gator networks and Rete networks in the proposed approach and
EMF-IncQuery, respectively. Other network structures may perform better or worse and,
therefore, may result in different speedups and memory reductions.
For the proposed approach, it is well-known which objects must be taken into account to

measure the memory consumption. In contrast, the evaluation employs a reverse engineered
solution for EMF-IncQuery that measures the memory consumption of network nodes for
storing partial graph pattern matches. This solution may overestimate or underestimate the
memory consumption. Another memory consumption of EMF-IncQuery results in another
memory reduction of the proposed approach.
EMF-IncQuery performs an immediate maintenance of the internal Rete network. This

makes it difficult to measure the time that is required by EMF-IncQuery to update the state
of the Rete network, because the measurement instrumentation cannot distinguish the time
that is required to apply the graph changes and the time that is required to update the Rete
network. In contrast to EMF-IncQuery, the proposed approach enables to defer the view
maintenance to a later point in time. Therefore, the time that is required by the proposed
approach to update the Gator network can be measured independently from the time that is
required to modify the base graph. Consequently, the measured execution times are more
precise for the proposed approach. In contrast, the execution times for EMF-IncQuery are
rather pessimistic, because they include also the time that is required to modify the graphs.
Furthermore, network nodes in EMF-IncQuery employ an effective index structures to

lookup matching tuples [9] and, thus, these network nodes do not employ real graph pattern
matching. In contrast to EMF-IncQuery, the network nodes of the proposed approach employ
graph pattern matching. Thus, the comparison is unbalanced.

11.5. Discussion
The evaluation shows the trade-off between fine- and coarse-grained network structures and,
thus, verifies the analytical observations of Section 10.3.2. Fine-grained network structures
consist of network nodes with few inputs. These network nodes require low effort for pattern
matching, because they encapsulate small patterns. However, the memory consumption of the
overall network is high, because many network nodes are required and many partial matches
are stored. Many partial matches are used to continue the matching. Coarse-grained network
structures consist of network nodes with many inputs. These network nodes require high
effort for pattern matching, because they encapsulate large patterns. However, the memory
consumption of the overall network is low, because few network nodes are required and few
partial matches are stored. Few partial matches are used to continue the matching.

Other performance variables are the employed pattern matching algorithm of network nodes,
the efficient aggregation of modification events, and an explicit update maintenance phase for
modified graph nodes to avoid deletions and re-creations of matches. The proposed approach
employs these additional performance optimization in contrast to EMF-IncQuery.

The proposed approach also enables to model Rete networks. Thus, the proposed approach
can fall back to the performance of Rete network structures. As the evaluation results show,
the proposed approach can be better in space during performing equally in time. Gator
networks enable to move the space complexity of the overall network into network nodes with
a higher time complexity and vice versa.
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This chapter describes related work and compares it with the proposed approach. Section 12.1
describes discrimination networks and discusses how the proposed approach extends these
discrimination networks. Section 12.2 describes application domains for view maintenance
and discusses how the proposed approach can be employed in the context of these domains.

12.1. Discrimination Networks

Discrimination networks enumerate all objects that satisfy certain conditions and enable to
update these enumerations efficiently, when objects change. Discrimination networks consist
of networks nodes that implement condition tests. When an object satisfies a condition test,
the network node stores the object for later retrieval. The network edges between the network
nodes forward the objects, which passed the condition tests, to successor network nodes.

Different kinds of discrimination networks exist. The literature distinguishes Rete networks,
Treat Networks, and Gator Networks as most important kinds of discrimination networks.
The following sections describe their network structures and maintenance algorithms.

Rete Networks
Forgy [32] introduces the Rete matching algorithm to efficiently compare “a large collection of
patterns to a large collection of objects” [32] for the purpose of finding “all objects that match
each pattern”. The Rete matching algorithm efficiently enumerates all objects that match a
pattern, because the algorithm does not iterate over the complete set of all objects, when just
a few objects changed in this set. This is achieved by storing information that describes which
object matches which pattern or sub-patterns of this pattern. When this information is kept
up-to-date, iterating the complete set of objects for pattern matching is avoided, because the
information which patterns match which objects is still stored for easy retrieval.
Rete networks consist of one root node, one-input nodes, two-input nodes, and terminal

nodes. Root nodes distribute changes of objects to other network nodes. One-input nodes
consist of one input and perform “intra-element tests” [32], such as testing conditions on
attribute values. Two-input nodes consists of two inputs and perform “inter-element test”
[32], such as testing conditions that refer to objects of both inputs, e. g. join conditions.
Two-input nodes store objects received from predecessor network nodes of the left and right
input separately. Terminal nodes consist of one input and terminate the network. Terminal
nodes store objects that satisfy a certain pattern.
The Rete matching algorithm propagates tokens that represent object changes through

the Rete network. A token indicates whether it is a positive or negative token and carries
an object. A positive token indicates that the carried object was added to the overall set of
objects. A negative token indicates that the carried object was removed from the overall set
of objects. When an object is modified two tokens are propagated through the network. First,
a negative token indicates that the old state of the object was deleted. Afterwards, a positive
token indicates that the new state of the object was added.
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When a positive token arrives at an one-input node, the network node checks whether the
carried object satisfies the intra-element test. If yes, the network node sends this positive
token to the successor network nodes. Otherwise, the network node rejects the token. When
a negative token arrives at an one-input node, the network node sends this negative token to
the successor network nodes, because the object that previously satisfied the intra-element
test does not exist anymore.
When a positive token arrives at a two-input node, the network node checks whether

the carried object satisfies the inter-element test together with any object that arrived at
the second input of the network node. For each combination of objects that satisfies the
inter-element test, a positive token is send to successor network nodes. This positive token
carries both objects that satisfy the inter-element test of the network node. Combinations of
objects that do not satisfy the inter-element test are rejected. When a negative token arrives
at a two-input node, “a token with an identical part is deleted" [32] from the internal memory
of the network node and a negative token is send to successor network nodes to inform them
that the object carried by the token does not satisfy the inter-element test anymore.

When a positive token arrives at a terminal node, this token is added to the internal memory
of the terminal node. When a negative token arrives at a terminal node, this token is removed
from the internal memory of the terminal node.

Treat Networks
Miranker [73] presents Treat as a better matching algorithm for finding all objects that satisfy
certain conditions. Treat aims for overcoming the disadvantages of Rete networks such as
high memory consumption and deletions of objects from the network that are as expensive as
the additions of objects to the network.

Treat networks only consist of network nodes with at most one input. These network nodes
perform intra-element tests. Objects that satisfy the intra-element test are stored by so called
alpha-memories. Treat networks do not employ two-input nodes and, thus, do not store results
of partial inter-element tests, e. g. join conditions. Treat networks store objects that satisfy a
complete condition in so called conflict sets that are similar to terminal network nodes.

The Treat algorithm employs additional internal memories per network node in comparison
to the Rete matching algorithm. Treat networks partition these memories into three parts
to store already processed objects (old memory), new added objects (new-add memory),
and new deleted objects (new-delete memory). Treat networks use these kinds of memories
to constrain the search space for new pattern matches and pattern matches that must be
deleted. New added objects are temporarily added to the new-add memory and deleted
objects are temporarily added to the new-delete memory. For additions of objects, Treat
networks compare objects in the old-memory and new-add memory. Then, the algorithm
evaluates the overall condition test and adds found matches to the conflict set. Afterwards,
the algorithm adds objects of the new-add memory to the old-memory for later comparisons.
For deletions of objects, Treat networks compare objects in the old-memory and new-delete
memory. Then, the algorithm removes matches, which contain the deleted objects, from the
conflict set. Afterwards, the algorithm removes the deleted objects from the old-memory.

Gator Networks
Hanson et al. [48] propose a generalized discrimination network structure called Gator
network. Gator networks enable to create and maintain intermediate forms of discrimination
networks by taking the advantages and disadvantages of Rete and Treat networks into
account. Hanson et al. state that “with Gator, it is possible to get additional advantages from
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optimization” [48], because network nodes that compute and maintain results of inter-element
tests “are only materialized when they are beneficial” [48]. As a result, Gator networks allow
to control the trade-off between memory consumption and the time that is required to update
the state of the network.

In general, the network node types of Gator networks are similar to the network node types
of Rete and Treat networks. The main difference is that Gator networks can employ network
nodes with more than two inputs for inter-element tests. Then, an internal evaluation order
plan describes the order of the internal evaluation of the inter-element test. The evaluation
order plan is defined, when the Gator network is constructed.
Moreover, Gator networks can employ additional memory network nodes that store or

do not store objects that satisfy condition tests. These memory network nodes enable to
materialize intermediate results only when they are beneficial concerning the performance
of the network. For the sake of simplicity, this thesis omits the description of these memory
network nodes. Hanson et al. [48] give a description of these memory network nodes.
Similar to Rete networks, Gator networks propagate tokens that carry added or deleted

objects through the network to maintain the internal memory of network nodes.

Discussion
The discussion of the discrimination networks focuses on their network structures and mainte-
nance algorithms. The following paragraphs consider only the original kinds of discrimination
networks. This chapter considers adaptations of these discrimination networks, later on.
In general, all three kinds of discrimination networks employ acyclic directed graphs as

network structures. According to [67], discrimination networks must be either left- or right-
associative and must not consist of convergent network paths. Convergent network paths are
branched network paths that join again with the network path from which they originate. If
discrimination networks consist of convergent network paths, the maintenance algorithms can
lead to missing or duplicated objects at the terminal network nodes. Lee et al. [67] provide
a counter-example for Rete networks with convergent network paths. Thus, discrimination
networks are limited concerning their overall topology.

The approach that is presented in this thesis extends the concept of discrimination networks
by cyclic directed network structures. These cyclic network structures enable developers to
express recursive definitions of condition tests. The original discrimination networks do not
support these recursive definitions.
Furthermore, the presented approach supports network nodes that can have more than

two inputs in contrast to Rete networks and, therefore, the presented approach adapts the
generalized network nodes of Gator networks. However, the network nodes of the original
discrimination networks have rather a symbolic nature than a functional purpose, because
they neither hide the condition test nor provide any information about the condition test.
The approach that is presented in this thesis extends to concept of these network nodes by
understanding them as an abstraction for employed condition tests. Therefore, in the proposed
approach network nodes consist of interfaces that hide conditions and enable the maintenance
algorithm to process network nodes uniformly and independent from the employed condition
test. Therefore, also different languages can be employed to specify these condition tests.
Consequently, in the proposed approach the network nodes are generic, because they are not
dedicated to a specific purpose such as intra- or inter-element tests.
The maintenance algorithms of all three kinds of discrimination networks employ an

immediate maintenance of the network state, when objects change. For that purpose, the
algorithms propagate the creation or deletion of a single object through the network by means
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of tokens that carry this object. In contrast, the proposed approach is able to aggregate object
changes in an efficient manner by cleaning up object changes that cancel each other to employ
a deferred maintenance of the network state. The original discrimination networks do not
support such a deferred maintenance and propagate each change as single token immediately.
For a modified object, the original algorithms propagate one token that describes the

deletion and one token that describes the creation of the object through the network. This
mapping of object modifications is no real maintenance, because the identity of (partial)
condition test results changes, when they are deleted and re-created, afterwards. In contrast,
the proposed approach avoids the deletion and re-creation of condition test results by an
update of condition test results. This update only deletes (partial) test results, when they
do not satisfy the condition test anymore. Otherwise, the update preserves the (partial) test
result. Therefore, (partial) test results keep their identity and, thus, the proposed approach
performs a real maintenance of test results.

The proposed approach propagates changes through the network in a different manner than
the original discrimination networks. The original discrimination networks propagate objects
through the network without respecting the topological order of network nodes efficiently. For
example, when a network node with two inputs receives a token at the first input, the network
node does not wait until the network that is connected to the second input processed all object
changes. In contrast, the proposed approach respects the topological order of the network
nodes and executes network nodes only, when all their predecessor network nodes processed all
object changes already. Due to this enhancement, the proposed approach supports convergent
network paths in contrast to the original discrimination networks. Furthermore, the proposed
approach employs ordered maintenance phases to process object changes. These maintenance
phases are not present in the algorithms of the original discrimination networks.

In the original discrimination networks, the network nodes with two inputs check whether
objects that are received at the first input satisfy the condition test of the network node
together with any object that was received at the second input. Furthermore, network nodes
with more than two inputs employ a static evaluation plan to evaluate the condition test of the
network node in an efficient manner. In contrast, the proposed approach employs a reachability
test for graphs to prune the search space and it is up to the network node to evaluate the
condition test efficiently. Thus, the proposed approach extends the original discrimination
networks by transferring the optimization task to the developer of the condition test. The
existing approaches employ fixed heuristics to find a good network structure. In contrast, the
proposed approach enables to model and optimize discrimination networks manually.
In summary, the proposed approach combines all three kinds of discrimination networks

and is able to emulate the original discrimination network structures. The proposed network
structure enables to mix the associativity of the network, supports convergent network paths
due to a maintenance algorithm that takes the topological order of network nodes into account,
supports network nodes with more than two inputs to steer the trade-off between memory
consumption and execution time of the network, supports recursive condition tests, performs
a real maintenance for modified objects, and enables developers to manually optimize the
network structure and the encapsulated condition tests.

12.2. Applications of Incremental Graph Processing

This thesis proposes modeling techniques and maintenance algorithms that can be employed
for several domains that deal with graphs. The following paragraphs describe application
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domains, which are related to the incremental processing of graphs. Section 12.2.1 describes
view maintenance for databases. Section 12.2.2 outlines graph indexing approaches that
enable the efficient lookup of graph nodes and subgraphs that satisfy certain constraints.
Section 12.2.3 summarizes approaches for querying graphs. Section 12.2.4 describes techniques
for incremental graph matching in Model-Driven Engineering (MDE). Section 12.2.5 describes
dedicated approaches for incremental activities in MDE.

12.2.1. Database Views

Databases employ different data models to store graphs, tables, and objects. In general,
databases provide declarative (e. g., Cypher [82]) and imperative (e. g. Neo4j API [82]) query
languages. Declarative query languages describe how expected query results look like that
satisfy the query. Imperative query languages enable to implement the algorithm that retrieves
the query results. In both cases, evaluating queries can become very time-consuming, when
the size of the stored data and the queries become large. Views can increase the throughput
of databases by maintaining query results. The following sections summarize techniques for
the view maintenance of graph-structured, relational, and object-oriented databases.

Graph Database Views
Kiesel et al. [62, 61] present GRAS. GRAS is a database system for software engineering that
employs typed attributed graphs. Kiesel et al. [61] “state that a graph database system should
support the incremental computation of derived data” without providing a clear definition of
derived data. However, their papers [62, 61] provide no hints that GRAS supports views for
graphs and, thus, also supports no view maintenance for graphs.
Zhuge et al. [101] define the notion of graph-structured databases as well as the notion of

virtual and materialized views for graph-structured databases. According to Zhuge et al. [101],
materialized views employ delegates that reference nodes in the graph-structured data and
other materialized views. Their approach employs selection paths and conditions to define
the content of these views. Their maintenance procedure re-evaluates these selection paths
and conditions for created, deleted, and modified nodes to maintain the materialized views.
However, the authors limit their approach to tree-structured data and do not support graph
patterns for the definition of views. Their approach does not employ discrimination networks.
Srinivasa et al. describe GRACE [88]. GRACE is a graph database system that enables

to search for graphs and subgraphs. For that purpose, GRACE employs an attribute value
index, a graph location index, and path index. However, the authors do not comment on how
these indexes are maintained. Furthermore, GRACE does not support views for graphs.

Khurana et al. [60] present a system for snapshot retrieval of graph data. These snapshots
are copies of graph data and represent one kind of database view. Such copies are very
inefficient concerning storage consumption. For that purpose, the authors reduce the storage
consumption of these snapshot by deriving graph deltas from the modifications of the graphs.
When graphs change, the approach creates a new snapshot using these graph deltas. Thus,
the approach does not support the maintenance of graph views.

Angles [2] compares current graph database models that are used in practice such as Neo4j
[82]. Current graph databases only support graph indexes. Angles does not compare graph
databases concerning their support of graph views. The manuals of current graph databases
(e. g., the Neo4j manual [90]) provide no hints that they support graph views.
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Relational Database Views
Varró et al. [93] show that views of relational databases can be used to store graph pattern
matches. However, their approach employs no incremental maintenance of these relational
views and employs no native graph data model for storing graphs and views. Thus, these
relational views suffer the same problems as databases that store graphs in a relational data
model such as expensive join operations to construct relationships between entities. However,
Varró et al. [94] and Bergmann et al. [8] consider incremental graph transformations based on
relational databases.
Several kinds of view maintenance algorithms for relational database views exist that

employ an impact analysis or derive maintenance rules to maintain the views. The approaches,
which employ an impact analysis, determine tuples that must be added to, removed from,
or modified in views. For example, Shmueli et al. [86] employ a good-bad marking scheme,
Blakeley et al. [17] determine whether view definitions become satisfied or dissatisfied due to
changes of base tables, and the Propagation and Filtration algorithm by Harrison et al. [49]
approximates tuples, which may impact views.
The approaches, which employ maintenance rules to keep derived views consistent, use

the view definition and applied queries to derive incremental update queries for views. For
example, Ceri et al. [22] derive production rules to propagate changes from base tables to view
tables and Qian et al. [78] derive incremental relational expressions from relational expressions
of view definitions by means of equivalence-preserving transformation rules.

Other approaches for view maintenance of relational databases, deal with duplicate handling
[46], usage of partial information for view maintenance [45], and minimization of view downtime,
when maintaining views [24]. Furthermore, approaches exist that aim for cost reduction, when
maintaining views. For example, Ross et al. [84] propose to maintain additional views that
reduce the overall cost of the view maintenance. Mistry et al. [74] exploit query expressions
that are common to multiple view definitions. Colby et al. [25] propose to employ multiple
view maintenance policies at once.

Also discrimination networks are used for view maintenance of relational databases. Then,
the terminal nodes of the networks are considered as views. For example, Hanson et al. [48]
employ Gator networks for incremental view maintenance of relational databases.

Object-Oriented Database Views
Object-oriented databases extend relational database. Object-oriented databases map objects
to tables and consider the polymorphism of objects. The view maintenance must consider
these object-oriented concepts. MultiView by Kuno et al. [65] derives and maintains virtual
classes from base classes and other virtual classes. For view maintenance, MultiView exploits
membership- and value-dependencies between objects. Liu et al. [68] employ Object Relational
SQL (QR-SQL) and perform a query-rewriting to make object-oriented concepts explicit in view
definitions for view maintenance. Akhtar et al. [1] employ the Object Query Language (OQL)
and analyze view definitions to derive incremental view maintenance plans.

Discussion
In summary, current graph databases do not provide capabilities for the definition and
maintenance of graph views. Only view maintenance approaches for relational and object-
oriented databases are available. However, mapping view maintenance for graphs back to
the relational domain is inefficient, because then the graphs are not stored natively anymore
and suffer additional join-performance overhead of relational databases, when relationships
between entities are constructed. Therefore, the approach of this thesis should be employed
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for view maintenance of graph databases. Then, each view module can be considered as view,
because each module knows all annotations that mark matches of the encapsulated patterns.

12.2.2. Graph Indexing
Graph indexes aim for a faster graph query evaluation. They avoid the sequential scanning
of graphs, when graph nodes and edges with certain properties have to be looked up during
graph pattern matching. In general, two kinds of graph indexing approaches exist. The first
kind indexes graph nodes that are reachable by means of the same paths in graphs. This
thesis refers to this kind of graph indexing as path-based indexing. The second kind indexes
graphs that have the same or similar structures in comparison to a given graph. This thesis
refers to this kind of graph indexing as structure-based indexing.

Path-Based Indexing
Goldman et al. describe DataGuides [42]. DataGuides are graphs that describe the structure
of indexed graphs. A graph node in a DataGuide represents graph nodes that are reachable
by means of the same paths in an indexed graph. A graph edge in a DataGuide represents
graph edges with the same label between two graph nodes in an indexed graph.

Milo et al. propose T-Index [72]. The approach constructs a non-deterministic automaton
with states that represent equivalence classes of graph nodes and transitions that represent
graph edges between graph nodes of these equivalence classes. The equivalence classes group
graph nodes in the index structure in a manner that these graph nodes are reachable by means
of the same paths in an indexed graph.
Cooper et al. present Fabric [26]. Fabric translates graphs into prefix strings and indexes

these strings by means of Patricia Tries. Then, Fabric translates graph queries into prefix
strings to lookup graphs in the index structure. Furthermore, Fabric supports so called refined
paths that are manually added to the index to mark the answer for certain queries. However,
the maintenance of these refined paths is not discussed by the authors.
Chung et al. propose APEX [23]. APEX is a graph index that adapts its index structure,

when the workload of queries changes. For that purpose, APEX employs a hash tree and
adapts this hash tree, when users state queries more often than other queries.

Kaushik et al. present A(k)-Index [59] as extension of 1-Index [72]. A(k)-Index groups graph
nodes in the index that are k-bisimilar to reduce the index size. Two nodes are k-bisimilar, if
the sets of paths with length k that reach these graph nodes are identical.

Srinivasa et al. describe the label walk index [87]. The approach employs a tree that indexes
sequences of nodes with the help of node labels. For each indexed node sequence, a list of
graphs is provided that contain the node sequence.

Structure-Based Indexing
Messmer et al. [71] propose a graph index that enables to retrieve graphs based on graph
and subgraph isomorphism. The approach employs decision trees that index permutations of
adjacency matrices. These matrices represent mapping between graphs. The approach maps
the graph and subgraph isomorphism problem to the problem of finding these permutations.

Yan et al. present gIndex [97, 98]. The approach uses discriminative frequent structures of
graphs as indexing feature. The index lists all graphs that contain certain graph structures.
Then, queries use the index to prune search spaces and, afterwards, employ the isomorphism
test to check for real isomorphic subgraphs.
Yan et al. also present Grafil [99]. Grafil aims for retrieving graphs that are similar to

graph queries. Grafil employs a feature-graph matrix and edge-feature matrix that index
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occurrences of subgraphs and edges of these subgraphs, respectively. Furthermore, Grafil
relaxes graph queries by removing graph edges and employs a similarity measurement to find
graphs that are similar to a graph query.
He et al. describes Closure-Tree [50]. Closure-Tree employs an index tree. Nodes in this

tree represent graph closures, which capture the structural information of graphs that are
represented by child nodes in the tree. When users state queries, Closure-Tree looks up a
candidate set of graphs by means of an approximated subgraph isomorphism test. Afterwards,
Closure-Tree employs a real subgraph isomorphism test to the remaining graphs.
Williams et al. [95] propose a graph index that aims for the improvement of subgraph

isomorphism tests. Their approach employs decomposition graphs that index all connected
and induced subgraphs of given graphs.
Zhang et al. describe TreePi [100]. TreePi employs frequent trees in graphs as indexed

features instead of frequent subgraphs. TreePi uses these frequent trees to derive a candidate
set, when users state a graph query. Then, TreePi constructs the query result by means of
the trees in the candidate set.

Discussion
In summary, graph indexes can increase the performance of graph pattern matching by
enabling a fast lookup of graph nodes, graph edges, and graph-structures based on certain
graph properties such as attribute values, reachability and similarity. However, graph indexes
do not index graph pattern matches of user-defined patterns. Furthermore, the incremental
maintenance of the graph indexes is not in the scope of the presented approaches.

12.2.3. Graph Querying

This section describes existing graph querying approaches. This thesis distinguishes graph
search and model search. Graph search deals with the retrieval of graph nodes and edges in a
broader sense and abstracts from graph languages and application domains. Model search
deals with the retrieval of models as special kinds of graphs that are expressed in certain
modeling languages, e. g. UML.

Graph Search
Fan et al. [30] describe algorithms for incremental graph pattern matching. They describe
algorithms for graph simulation, bounded simulation, and subgraph isomorphism. The authors
prove the complexities of these algorithms and conclude that the cost of incremental graph
pattern matching “is not determined by the size of the changes alone” [30]. They do not
employ discrimination networks for incremental graph pattern matching.

In another paper, Fan et al. [31] describe how views for graphs can be used to answer graph
queries. They provide an algorithm that determines whether a query can be answered with
a given set of views without the need to access base graphs. Furthermore, they provide an
algorithm that enables to compute query results efficiently with a given set of views. Moreover,
they provide an algorithm that enables to determine a minimal set of views which should be
used for answering a query. However, the authors do not consider the maintenance of views.

Giugno et al. [40] describe GraphGrep as application-independent method for retrieving all
occurrences of a subgraph in a graph database. Their approach employs regular expressions
as query language and employs a hashing approach to represent graphs in an abstract form.
This hashing is used the prune the search space, when users state queries. Afterwards, the
approach looks up all exact subgraphs in the set of the remaining graphs.
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Model Search
Models are special kinds of typed attributed graphs. In practice, model repositories store
these models. Then, model search engines create search indexes for these model repositories
and query engines browse these indexes to retrieve models and model elements as answer for
model queries. Queries can be keywords, OCL expressions, or graph patterns.

Gomes et al. [43] describe an approach for the case-based retrieval of UML models that are
similar to other models. For that purpose, their approach employs similarity metrics that
exploit synonyms of UML element names and semantic relations between these names.

Kling et al. describe MoScript [63] as domain-specific language for querying model reposito-
ries. MoScript employs a megamodel [52] to capture models and their relationships. This
megamodel acts as search index. MoScript uses OCL to lookup model representations in the
megamodel and dereference these representations to retrieve physical models.

Bozzon et al. [18] describe an approach that enables to search for models that are developed
by means of MDE practices. Their approach exploits metadata of models and mines meaningful
information to create a search index for these models.

Lucrédio et al. present Moogle [69]. Moogle maps model search to text-based search. Moogle
employs the full-text search engine Apache SOLR and, therefore, creates model descriptors
that conform to the schema of Apache SOLR.

Discussion
In summary, graph search and model search approaches aim for retrieving all (sub-)graphs
and models that satisfy a graph query. For that purpose, the approaches propose lookup
algorithms, map the search to another search engine, or generate search indexes. The
incremental maintenance of these search indexes is not described by the presented approaches.
Furthermore, these approaches do not maintain graph pattern matches. But, graph search
and model search engines can make use of maintained matches as shown by Fan et al. [31].
However, the approach of Fan et al. [31] does not consider the maintenance of views.

12.2.4. Discrimination Networks in Model-Driven Engineering

Bunke et al. [19] transfer the concepts of Rete networks and the Rete matching algorithm to
the efficient implementation of graph grammars for directed labeled graphs. Their approach
derives the Rete network from the left-hand side of graph grammar productions. These Rete
networks consist of five different network node types called root node, node checker, edge
checker, subgraph checker, and production nodes.
Similar to original Rete networks, a root node serves as input of the Rete network. This

root node is connected to all node checkers and edges checkers in the Rete network and
sends incoming graph nodes and edges to node checkers and edge checkers, respectively.
Node checkers test whether nodes have a certain label. If yes, these nodes are forwarded to
production nodes, which store nodes that are a match of the left-hand side of a production.
Node checkers consist only of one outgoing edge and are not connected to other network nodes
than production nodes. Edge checkers test whether edges have a certain label and whether
the source and target nodes of these edges have a certain label. If all three conditions are
satisfied, edges are send to subgraph checkers and production nodes. Subgraph checkers have
two inputs and receive subgraphs from different edge checkers. Subgraph checkers combine
two subgraphs to larger subgraphs, when both subgraphs have certain nodes in common.
Subgraphs that result from the combination of subgraphs are send to successor subgraph
checkers as well as production nodes, if required. Production nodes receive graph nodes,
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graph edges, and subgraphs from node checkers, edge checkers, and subgraph checkers. Thus,
production nodes enumerate all matches of the left-hand sides of graph grammar productions
and, therefore, describe which graph grammar productions are applicable.
Changes that result from the application of graph grammar productions are propagated

through the network similar to the original Rete matching algorithm. When graph nodes
and graph edges are added, they are propagated as added elements through the network
and, if necessary, resulting subgraphs are computed by subgraph checkers and stored by
production nodes. When graph nodes and graph edges are deleted, they are propagated as
deleted elements through the network. Then, subgraph checkers and production nodes remove
subgraphs that contain these elements.

Bergmann et al. [9] extend the approach of Bunke et al. [19] by transferring the concepts of
Rete networks from graph grammars to graph transformations in the context of the MDE
domain. Graph transformations perform model manipulations and, thus, matches of graph
patterns appear and disappear. For that purpose, Bergmann et al. [9] describe an incremental
matching engine that explicitly stores graph pattern matches and maintains these matches,
when the models change. This incremental matching engine adapts Rete networks and the Rete
matching algorithm [32] to enable the transformation language of the VIATRA2 framework
to make use of matches that are maintained within a Rete network. Then, matches can
be retrieved “in constant time excluding the linear cost induced by the size of the result set
itself” [9]. Bergmann et al. [9] state that “the main ideas behind the incremental pattern
matcher are conceptually similar to relational algebra”. In the approach of Bergmann et al. [9],
the internally employed Rete network represents graph pattern matches by means of tuples
that consist of model elements. Furthermore, each network node in the Rete network is
related to a (partial) pattern and stores a set of tuples that satisfy this (partial) pattern.
Bergmann et al. [9] state that “this set of tuples is in analogy with the relation concept of
relational algebra” and, therefore, the authors map incremental pattern matching as challenge
of the graph domain back to the relational domain. Indeed, that means the authors do not
provide a native solution by using concepts of the graph domain. Instead, Bergmann et al. [9]
provide several extensions of the network structure that make Rete networks applicable to
graph transformations. The authors [9] state their “solution provides full support for the
rich language constructs of VIATRA2” and, therefore, “significantly supersede and extend
the first (and relatively old) RETE-based graph transformation approach” that is presented
by Bunke et al. [19]. The following paragraphs describe the extension of the original Rete
network approach.

The approach of Bergmann et al. [9] extends Rete networks with additional kinds of network
nodes. In general, Rete networks in VIATRA2 distinguish input nodes, intermediate nodes,
and production nodes.
Input nodes represent the knowledge contained by models. These models must conform

to metamodels. Rete networks in VIATRA2 employ one input node per node type and edge
type of these metamodels. These input nodes implement node type constraints and edge type
constraints. Furthermore, Bergmann et al. [9] state that “miscellaneous input nodes represent
containment, generic type information, and other relationship between model elements” and,
therefore, multiple kinds of input nodes seem to exist without explicit discussion.
Intermediate nodes store matches of partial graph patterns. Rete networks in VIATRA2

distinguish intermediate nodes such as join nodes, negative nodes, and term evaluator nodes.
All intermediate nodes consist of two inputs. Join nodes implement natural joins for tuples
that are received by the first and second input. These joins use an effective index structure to
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check whether tuples of the first input can be joined with tuples of the second input. Negative
nodes implement anti-joins for tuples that are received by the first and second input. Negative
nodes store tuples that are received by the first input and cannot be joined with any tuple
that is received by the second input. Term evaluator nodes implement attribute conditions
such as arithmetical and logical functions. Term evaluator nodes only propagate tuples to
successor nodes, when they satisfy the attribute conditions.

Production nodes store complete matches and also perform additional tasks such as projec-
tions to filter out elements from tuples that are not required.

The approach of Bergmann et al. [9] derives Rete networks from graph patterns by means
of a heuristic. These patterns can make use of graph pattern matches that are maintained
by Rete networks, which are derived from other patterns. Thus, production nodes in Rete
networks of VIATRA2 can have successor nodes that reuse graph pattern matches, in contrast
to original Rete networks [32]. Thus, intermediate nodes and production nodes can interleave.

Furthermore, one important issue is that production nodes are used to implement disjunc-
tions of two graph patterns. For two patterns that are combined in terms of a disjunction,
each pattern is matched by a separate Rete network. Then, both networks send the resulting
tuples to a common production node. Thus, production nodes with multiple ingoing edges
implement disjunctions by employing a true union operation.

Moreover, the approach of Bergmann et al. [9] also supports graph patterns that make use
of matches of other graph patterns that have cyclic dependencies. Then, cyclic dependencies
between the generated Rete networks exist. Note that a single Rete network is still acyclic.
These cycles are used to implement recursive graph conditions.

In the approach of Bergmann et al. [9], the change propagation is very similar to the
change propagation of original Rete networks [32] and Rete networks for graph grammars
[19]. Note that the approach of Bergmann et al. [9] employs graphs that consist of nodes with
polymorphic types. Thus, when a graph node of a certain type changes, positive / negative
tokens are propagated to input nodes that consider these types and their super types.

The Rete-based incremental pattern matching approach of Bergmann et al. [9] is adapted in
multiple other contexts of the MDE domain such as model queries, live model transformations,
model synchronization, and derivation of model features. This research finally results in the
PhD thesis of Gábor Bergmann [4]. The following approaches employ the Rete-based pattern
matching of the VIATRA2.

Bergmann et al. [7] present EMF-IncQuery that enables to store graph pattern matches as
query results of model queries over EMF models by means of the Rete-based pattern matching.
Then, model queries can be answered instantly, when the Rete network is up-to-date.

Ráth et al. [80] present a live model transformation approach that enables to propagate
changes of source models to target models to keep target models consistent with their source
models. They use the Rete-based pattern matching to transform local portions of source
models into the corresponding local portions of target models.
Ráth et al. [81] employ the Rete-based pattern matching to update derived features of

models, when models change. Derived features are attributes and references, which are not
explicitly stored in models and can be computed from other model elements. In their approach,
derived features can be also derived from other derived features.

Debreceni et al. [27] extend the approach of Ráth et al. [81] by enabling to derive also objects
in terms of view models. Their approach enables to derive view models from source models
and other view models and ensures that view models are consistent with source models. The
authors employ the Rete-based pattern matching to store matches of patterns that describe
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preconditions of derivation rules, which are used to create view models.
Ghamarian et al. [37] adapt the Rete networks for state space exploration in Groove.

Discussion
In summary, the approaches for incremental graph pattern matching transfer Rete networks
from the relational domain to the graph domain. However, these approaches map the challenge
of incremental graph pattern matching back to the relational domain by adding additional
network node types to the Rete networks such as negative nodes to support the negation of
graph nodes. These approaches map graph pattern matches to tuples and employ relational
operations such as joins and anti-joins to process these tuples. In contrast to the approach
that is presented in this thesis, these approaches do not provide native implementations of
Rete networks for incremental graph pattern matching by means of graph operations.

The approaches that base on Rete networks, propagate positive and negative tokens through
the network to update the matches that are stored by network nodes. These positive and
negative tokens represent creations and deletions of graph nodes and edges, respectively.
The approaches that base on Rete networks do not consist of an explicit maintenance step
for modified graph nodes and edges. Instead, modifications of graph nodes and edges are
mapped to subsequent positive and negative tokens. Thus, these approaches perform no real
maintenance of graph pattern matches, because the maintenance process removes these graph
pattern matches first and recreates these matches, afterwards. Consequently, the identity
of maintained graph pattern matches changes. In contrast, the proposed approach consists
of an explicit Update phase for modified graph nodes and edges. Therefore, the proposed
approach performs a real maintenance of matches, because the markings of the graph pattern
matches keep their identity during maintenance.
The existing approaches for incremental graph pattern matching are limited to Rete

network structures. Currently, no approach exists that employs Gator network structures
for incremental graph pattern matching. In contrast, the proposed approach enables to
employ Gator network structures for incremental graph pattern matching and uses graph
transformations instead of relational operations to implement the behavior of network nodes,
i. e. view modules. The view modules are generic and are not dedicated to a specific type of
condition test as in EMF-IncQuery [9], e. g. negative nodes to implement negations. Instead,
the view modules provide an interface to describe the input and output of view modules in a
generic manner. This interface enables view modules to encapsulate graph transformations,
because only these interfaces are considered by the framework during the view maintenance.
The network nodes of Rete networks do not provide such an interface and, thus, are no
modules. However, EMF-IncQuery can be adapted to other graph data formats and can be
embedded into other query techniques.

The approaches that base on EMF-IncQuery (e. g. live model transformations [80], derivation
of model features [81], and synchronization of view models [27]) inherit the disadvantages
of EMF-IncQuery. These approaches can also benefit from the advantages of the proposed
approach such as Gator network structures that can be more efficient than Rete network
structures. The proposed approach can extend and improve all of these approaches and,
therefore, has a major impact on the state of the art of incremental graph pattern matching.
Furthermore, Aref et al. [3] and Bergmann et al. [10] aim for a parallelization of the

Rete-Matching algorithm. A parallelization of the incremental graph pattern matching is not
in the scope of this thesis. Moreover, Varró et al. [92] present a construction approach for Rete
networks and Bergmann et al. [5] present a benchmark for Rete-based matching approaches.
Both approaches do not support the construction and benchmarking of Gator networks.
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12.2.5. Dedicated Approaches for Incremental Activities in MDE

In MDE, several frequent modeling activities involve graph processing tasks. For example,
model transformations and model synchronizations are often performed modeling activities to
derive and synchronize models. When models are transformed and synchronized, traceability
links that describe related model elements must be maintained to trace the impact of model
changes throughout model transformation chains. Another example is model constraint
evaluation that is employed to check whether models satisfy certain requirements. Both kinds
of modeling activities suffer the same problem. They have to be performed efficiently, when
developers change models. Otherwise, the whole modeling process is not interactive and
hinders effective modeling. The following paragraphs describe techniques for incremental
model transformations, model synchronizations, model constraint evaluation, and maintenance
of traceability links. These approaches are dedicated to specific problems in MDE.

Model transformations that enable to uni-directionally propagate changes of source models
to target models without a complete re-execution of the model transformation and subsequent
merges of target models are called live model transformation. Live model transformations
do not terminate and continuously keep the transformation context up-to-date. Therefore,
changes of source models can be tracked and propagated to derived target models.
Hearnden et al. [51] present an approach for live model transformations using Selective

Linear Definite clause (SLD) resolution trees that are tagged to trace model elements in source
models concerning their impact on model elements in derived target models. In doing so, the
SLD resolution trees represent traces of transformation executions. Adding model elements
to source models results in additional tree branches and subtrees that need to be processed
to derive corresponding model elements in target models. Deleting model elements results
in tree branches that must be pruned to maintain corresponding model elements in target
models accordingly. The approach of Hearnden et al. [51] supports changes to source models
and model transformations.

Jouault et al. [57] present a live model transformation approach for a subset of the ATLAS
Transformation Language (ATL). Their approach enables to propagate changes of source
models immediately to derived target models. For that purpose, they present a mechanism
that determines parts of model transformation rules that must be re-executed to keep derived
target models synchronized. When ATL transformations rules evaluate OCL expressions, the
approach tracks which model elements are accessed by these OCL expressions. With this
dependency information at hand, model transformation rules can be determined that must be
re-executed, when certain model elements change. Then, the approach only executes the model
transformation rules that must be re-executed to keep derived target models synchronized.
In contrast to model transformations, model synchronizations deal with the bi-directional

propagation of changes, when source and target models of model transformation rules change.
Giese et al. [39] describe an approach for incremental model synchronization. Triple Graph
Grammar (TGG) rules describe how source and target models are translated in forward
and backward direction in a hierarchic manner. Their approach employs a correspondence
model that contains correspondence nodes, which track corresponding model elements in
source and target models. Moreover, dependency links between correspondence nodes exist
that describe the order in which TGG rules are executed. These correspondence nodes and,
especially, the dependency links between correspondence nodes enable to synchronize source
and target models in forward and backward direction. Information about modified model
elements is used to lookup correspondence nodes that are referenced by modified model
elements. Then, the algorithm traverses the directed acyclic graph (DAG) of correspondence
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nodes in a breadth-first search. Their algorithm reverts execution results of TGG rules, when
model elements are deleted and applies TGG rules, when model elements are added. Changes
of attribute values are propagated between source and target models.

Model constraint evaluation is employed to check whether models satisfy certain constraints,
e. g., well-formedness constraints. When models change, such model constraints must be
re-evaluated to ensure that these models still satisfy the constraints. However, evaluating
model constraints always from scratch is inefficient. Instead, only changed parts of models
should be re-evaluated. The following approaches exist.
Egyed [29] describes an approach for consistency checking in UML models. His approach

incrementally re-evaluates model constraints, when models change. In this approach, model
constraints are considered as black boxes and, therefore, it cannot be determined statically
which kinds of model elements are traversed, when evaluating model constraints. The approach
consists of two parts. First, the approach employs a model profiler that collects model elements
that are traversed, when model constraints are evaluated. This collection of model elements
is called scope of a model constraint. Such scopes are used to determine with the help of a
lookup table which model constraints must be re-evaluated, when certain model elements
change. One advantage of the approach is that model constraints do not have to be annotated
for the purpose of incremental re-evaluation, in contrast to other approaches.
Furthermore, developers also want to modify model constraints and get instant feedback

on these changes. The approach of Egyed [29] is limited to changeable models and does not
support changeable model constraints. Thus, Groher et al. [44] extend the approach of Egyed
[29] to support also changeable constraints.

In contrast to the approaches of Egyed [29] and Groher et al. [44], Cabot et al. [21] describe
an approach that rewrites model constraints based on structural changes of models to lower
the computational complexity of model constraints, when they have to be re-evaluated. Their
rewriting approach aims for finding the most incremental expressions that allow an efficient
re-evaluation of model constraints. That means, they aim for incremental expressions, which
consider the smallest number of model elements, when they are evaluated. However, the
approach of Cabot et al. [21] cannot assume black boxes for model constraints, because their
approach must be aware of the expression that specifies the model constraints.

Seibel et al. [85] describe an approach for the incremental maintenance of traceability links
based on dynamic hierarchical megamodels. Their approach employs maintenance phases in
which creation rules and deletion rules are executed to create and delete traceability links
depending on the actual model elements that changed. When model elements are created,
creation rules are triggered that consider the context in which model elements were created to
search for traceability links. When model elements are deleted, deletion rules are triggered
that consider the deleted model elements as context were traceability links must be deleted.
Modified model elements can lead to the deletion or creation of traceability links.

Discussion
Dedicated approaches for incremental modeling activities in MDE such as model constraint
checking a) track the access to model elements (e. g. [29, 57]), b) keep track of dependencies
between model elements (e. g.[39]), and c) rewrite model constraints to lower the computational
complexity (e. g.[21]), when re-evaluating model constraints. These approaches serve specific
purposes and, therefore, are not generally applicable for incremental graph pattern matching.
These approaches do not maintain graph pattern matches. However, the proposed approach
can extend approaches for model checking and maintenance of traceability links that base on
graph pattern matching.
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This thesis presents a framework for the incremental maintenance of graph views. These
views store markings of graph pattern matches. The framework maintains these markings,
when graphs change in a way that matches appear or disappear. This thesis refers to this
maintenance as incremental graph pattern matching.
The framework is motivated by the fact that existing approaches for incremental graph

pattern matching are a) limited to certain graph pattern languages, b) implement the
incremental graph pattern matching by means of relational operations, and c) are limited
to Rete networks although more generalized discrimination network structures can perform
better in time and space at the same time.
Due to this observation, the goal of this thesis is to describe a framework for incremental

graph pattern matching that a) enables the effective modeling of graph views (G1 - Modeling
Language), b) is independent from employed graph pattern languages (G2 - Embed Graph
Queries), and c) enables a native memory- and time-efficient maintenance of graph pattern
matches (G3 - Incremental Maintenance). Furthermore, this thesis aims for the realization (G4
- Concept Realization) and evaluation (G5 - Concept Evaluation) of the proposed concepts.

First, this thesis contributes the notion of view graphs that store markings of graph pattern
matches (G1a - Notion of Views). Based on this notion, this thesis contributes a modeling
language that enables developers to define the content of view graphs by means of graph
patterns (G1b - Definition of Views) and enables views to build on the content of other views
(G1c - Combination of Views). The modeling language provides view modules that encapsulate
graph patterns. Thus, view modules hide the employed graph data models (G2a - Kinds of
Graph Models), kinds of employed graph pattern matchings (G2c - Kinds of Pattern Matching),
and kinds of employed graph queries (G2b - Kinds of Graph Queries). The presented modeling
language support conjunctions, disjunctions, negations, and recursions of graph conditions.
This thesis describes batch and incremental maintenance algorithms for the consistent

enumeration of graph pattern matches (G3a - Enumeration of Matches) by means of view graphs.
For that purpose, the framework executes the view modules. For the incremental maintenance
of the view graphs, the framework captures modifications of base graphs and exploits these
modifications to prune the search space of view modules (G3b - Impact Analysis). Then, the
view modules employ an efficient local search to find missing, obsolete, and suspicious markings
of graph pattern matches in view graphs. For that purpose, the view modules update, delete,
and create markings of these matches (G3c - View Maintenance). The maintenance algorithms
support conjunctions, disjunctions, negations, and recursions of graph conditions.

As proof of concept, this thesis implements the proposed concepts based on EMF and GMF
(G4 - Concept Realization). This thesis uses the prototype for the evaluation of the maintenance
algorithms. This thesis provides a twofold evaluation. The application evaluation shows by
means of case studies (G5a - Case Studies) that the native realization of view graphs reduces
the modeling effort, because graph patterns can exploit the polymorphism of graph nodes in
view graphs to effectively support disjunctions and recursions. The performance evaluation
shows that the incremental maintenance algorithm outperforms the naive and batch algorithms
in time (G5b - Interior Evaluation). Furthermore, the performance evaluation shows that the
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generalized network structures of Gator networks can perform better in time and space at the
same time than Rete network structures for incremental pattern matching, when the proposed
maintenance algorithms are employed. Moreover, the performance evaluation shows that the
proposed approach can compete with EMF-IncQuery (G5c - Exterior Evaluation).
Furthermore, this thesis enhances the proposed marking mechanism and maintenance

algorithms to a) remove redundant markings of matches (OG1 - Space-Efficiency) without
losing the capability to enumerate all matches (OG3 - Enumerate Duplicates) and to b) efficiently
investigate the search spaces that are common to multiple redundant markings of matches
(OG2 - Time-Efficiency). For that purpose, this thesis extends annotations with aggregations,
which enable to aggregate matches that result in redundant markings. This aggregation
enables to reduce the memory consumption of view graphs and the cost of the graph pattern
matching that is imposed by redundant markings of matches.

This thesis has a major impact on the state of the art of incremental graph pattern matching,
because this thesis employs Gator networks with generalized discrimination network structures
and, therefore, overcomes the limitations of existing approaches that base on Rete networks.
By employing Gator networks for incremental graph pattern matching, this thesis enables to
steer the trade-off between memory consumption to store the network state and execution time
to update the network state. Gator network structures also enable to constitute equivalent
Rete network structures. Therefore, this thesis extends Rete-based to Gator-based incremental
graph pattern matching. The proposed framework is the first approach that employs Gator
networks for incremental graph pattern matching.

This thesis supports incremental graph pattern matching for arbitrary kinds of graphs and
graph pattern matching technologies due to the encapsulation of graph queries by means of
view modules. Therefore, the proposed approach constitutes a framework for incremental
graph pattern matching according to the notion of a framework (cf. Section 1.2).

Additionally, this thesis describes maintenance algorithms that employ an explicit mainte-
nance phase for modified graph nodes and edges to implement a real view graph maintenance,
which ensures that maintained graph pattern matches keep their identity until they finally
disappear from graphs. This explicit maintenance phase is not present in the Rete algorithm
for incremental graph pattern matching. Thus, the existing approaches do not perform a real
maintenance of graph pattern matches, because they process modified graph nodes and edges
by means of a deletion and re-creation of graph pattern matches.
Furthermore, incremental graph pattern matching has many application domains such

as model queries, model checking, model transformations, model synchronization, or graph
database views and has a large range of graph domains such as social networks, models in
MDE, or biological and chemical compounds. Thus, the proposed framework enables an
enhanced incremental pattern matching for many different graph domains. Thus, this thesis
has a major impact on the state of the art of incremental graph pattern matching.
This thesis enables several directions of future work. One direction may investigate the

parallel incremental processing of graph changes to increase the performance of the view
maintenance, when the number of graph changes becomes large. Another direction may
investigate the optimality of the employed Gator network structure from the perspective of
different parameters such as update frequency of graphs and the size as well as structure
of graph patterns that are encapsulated by view modules. Based on this direction, another
research branch may investigate the optimality of Gator network structures, when graphs
change, and adapt the network structure accordingly by means of operations that efficiently
transform the network structure into a more efficient network structure.
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Appendix

A. Preliminaries
The following definitions are adapted from [16, 38, 41, 66].

Definition 18 describes the notion of E-graphs. E-graphs extend graphs by attributes
for graph nodes and edges. These attributes store additional data values of entities and
relationships. E-graphs represent attributes as data nodes that are connected to graph nodes
and edges by means of node attribute and edge attribute edges, respectively. Note that graph
nodes and edges can have multiple attributes.

Definition 18 (E-Graph)
An E-Graph G = (NG, ND, EG, ENA, EEA, (sj , tj)j∈{G,NA,EA}) consists of the sets

• NG and ND called graph nodes and data nodes, respectively, and
• EG, ENA, EEA called graph edges, node attribute edges, and edge attribute edges,

and the source and target functions

• sG : EG → NG and tG : EG → NG for graph edges,
• sNA : ENA → NG and tNA : ENA → ND for node attribute edges, and
• sEA : EEA → EG and tEA : EEA → ND for edge attribute edges.

Accordingly, Definition 19 extends the notion of graph morphism in a manner that a source
graph is embedded in a target graph, if the structure-preserving mapping also preserves the
structure of data nodes, node attributes, and edge attributes as well.

Definition 19 (E-Graph Morphism)
Given two E-graphs

• G = (NG
G , NG

D , EG
G , EG

NA, EG
EA, (sG

j , tG
j )j∈{G,NA,EA}) and

• H = (NH
G , NH

D , EH
G , EH

NA, EH
EA, (sH

j , tH
j )j∈{G,NA,EA}),

an E-graph morphism f : G→ H is a tuple (fNG
, fND

, fEG
, fENA

, fEEA
) with

• fNi : NG
i → NH

i for i ∈ {G, D} and
• fEj : EG

j → EH
j for j ∈ {G, NA, EA}

such that f commutes with all source and target functions.

An attributed graph is an E-graph that additionally consists of an algebra over a data
signature, which is defined by attribute value sorts and data operations for these sorts.

Definition 20 (Attributed Graph)
Given a data signature DSIG = (SD, OPD) with attribute value sorts S

′
D ⊆ SD, an attributed

graph AG = (G, D) consists of an E-graph G together with a DSIG-algebra D such that
]

s∈S
′
D

Ds = ND.
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Definition 21 extends the notion of E-graph morphism for attributed graphs in a manner
that also the mapping of the source and target algebra preserves their algebraic structure.

Definition 21 (Attributed Graph Morphism)
Given two attributed graphs AGG = (GG, DG) and AGH = (GH , DH), an attributed graph
morphism f : AGG → AGH is a pair f = (fG, fD) with an E-graph morphism fG : GG → GH

and an algebra homomorphism fD : DG → DH such that fG,ND
(x) = fD,s(x) for all x ∈

DG,s, s ∈ S
′
D.

According to Definition 22, an attributed type graph is an attributed graph with an algebra.
Attributed type graphs are reference graphs that describe kinds of graph nodes and edges as
well as kinds of attributes that can be owned by these kinds of graph nodes and edges.

Definition 22 (Attributed Type Graph)
Given a data signature DSIG, an attributed type graph is an attributed graph ATG = (TG, Z),
where Z is the final DSIG-algebra.

According to Definition 23, typed attributed graphs over attributed type graphs are instance
graphs that instantiate the kinds of graph nodes and edges as well as kinds of attributes that
are defined by these attributed type graphs. Then, graph nodes and edges of typed attributed
graphs have concrete types and their attributes have concrete data values.

Definition 23 (Typed Attributed Graph)
A typed attributed graph (AG, t) over ATG consists of an attributed graph AG together with
an attributed graph morphism t : AG→ ATG.

Definition 24 extends the notion of attributed graph morphism in a manner that also the
types of graph nodes and edges are considered by the structure-preserving mapping between
the source graph and target graph.

Definition 24 (Typed Attributed Graph Morphism)
A typed attributed graph morphism f : (AGG, tG)→ (AGH , tH) is an attributed graph mor-
phism f : AGG → AGH such that tH ◦ f = tG.

Definition 25 extends attributed type graphs by an inheritance graph that describes a type
hierarchy. This type hierarchy is used to express polymorphy of graph nodes by means of
inheritance relations between graph nodes of the inheritance graph.

Definition 25 (Attributed Type Graph with Inheritance)
An attributed type graph with inheritance ATGI = (ATG, I, A) consists of an attributed type
graph ATG, an inheritance graph I = (NI , EI , sI , tI) with NI = ATGNG

, and a set A ⊆ NI

of abstract nodes. Moreover, I must be acyclic and the property ∀e, e′ ∈ EI : sI(e) = sI(e′)⇔
e = e′ must hold.

According to Definition 26, the inheritance clan of a node contains all nodes that inherit
the node attributes and graph edges of the node.

Definition 26 (Inheritance Clan)
Given an attributed type graph with inheritance ATGI = (ATG, I, A) with an inheritance graph
I = (NI , EI , sI , tI), an inheritance clan clanI(n) = {m|m ∈ NI ∧ ∃ path m

∗−→ n ∈ I} ⊆ NI

with n ∈ clanI(n).
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B. View Graph Transformation Language

B. View Graph Transformation Language
The default view graph transformation language enables developers of the framework to model
the left-hand side and right-hand side of view graph transformation rules. A view graph
transformation rule is a transformation rule (cf. Definition 10) that manipulates view graphs
to store graph pattern matches in terms of annotations and maintain these annotations. The
left-hand side of a view graph transformation rule describes a graph pattern for which the
framework has to maintain graph pattern matches. The right-hand side of a view graph
transformation rule describes the side-effect that is applied to a view graph when a) a match
is found for the graph pattern and must be stored by view graphs, b) a match is dissatisfied
and must be deleted from view graphs, and c) a match must be revised to check whether it
still satisfies the graph pattern. Note that view graph transformation rules apply side-effects
to view graphs only. View graph transformation rules do not manipulate base graphs.

ViewGraphTransformationRule

<<abstract>>
PatternNode

<<abstract>>
PatternEdge

patternNodes patternEdges

*

<<abstract>>
RuleElement

+ modifier : RuleModifier

source targets

target sources *

*

1

1

AnnotationType

AnnotationPatternNode RolePatternEdge

RoleTypeArtifactType

*

1
type

Meta-Model for View Graph Transformation Rules

RuleConstraint
+ language : ExpressionLanguage
+ expression : String

constraints *

<<enumeration>>
RuleModifier

EXIST
NEGATIVE
CREATE

<<abstract>>
NamedElement

+ name : String

RelationPatternEdge

RelationType
1

type
1

type

ArtifactPatternNode

1
type

ViewModuleImplementation

rule
1

<<enumeration>>
ExpressionLanguage
OCL
...

ScopePatternEdgeAttributeAssignment
+ language : ExpressionLanguage
+ expression : String

AttributeType

assignments

*

1

type

Figure B.1.: Metamodel for view graph transformations

Metamodel
Figure B.1 depicts the metamodel of the view graph transformation language. The metamodel
depicts parts of the metamodel that are already introduced in gray color. The metamodel
shows the ViewModuleImplementation class that owns a rule composition that targets at the
ViewGraphTransformationRule class to describe that each kind of view module implementation
consists of a view graph transformation rule. That means, a CreateImplementation, DeleteIm-
plementation, and UpdateImplementation consists of a view graph transformation rule. The
ViewGraphTransformationRule class owns the patternNodes and patternEdges compositions that
target at the abstract PatternNode and PatternEdge class, respectively. Therefore, view graph
transformation rules consist of pattern nodes and edges that together describe the left-hand
side and right-hand side of view graph transformation rules. The PatternNode and PatternEdge
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class represents pattern nodes and edges (cf. Definition 7), respectively.
The PatternNode and PatternEdge classes are specializations of the abstract RuleElement

class. The abstract RuleElement class is a specialization of the NamedElement class and,
therefore, inherits the name attribute. Additionally, the RuleElement class consists of the
modifier attribute with RuleModifier type and the binding attribute with RuleBinding type.
The RuleModifier enumeration lists all kinds of modifiers, i. e., Exist, Negative, and Create.

The Exist modifier describes that a rule element belongs to the left-hand side of the view
graph transformation rule and a graph node or edge that matches the rule element must exist
to satisfy the left-hand side of the view graph transformation rule. The Negative modifier
describes that a rule element belongs to the left-hand side of the view graph transformation
rule and a graph node or edge that matches the rule element must not exist to satisfy the
left-hand side of the view graph transformation rule. The Create modifier describes that a rule
element belongs to the right-hand side of the view graph transformation rule and the view
graph transformation rule creates graph nodes or edges in a view graph, when the left-hand
side of the view graph transformation rule is satisfied.

The metamodel distinguishes the ArtifactPatternNode class and AnnotationPatternNode class
as specializations of the PatternNode class. The ArtifactPatternNode class represents graph
pattern nodes that match certain kinds of artifacts of base graphs. The AnnotationPatternNode
class represents graph pattern nodes that match certain kinds of annotations of view graphs.
The ArtifactPatternNode and AnnotationPatternNode class consist of type references that target
at the ArtifactType and AnnotationType class to describe the kinds of these artifacts and
annotations, respectively.

The PatternEdge class owns source and target associations that target at the PatternNode class.
The source and target associations describe the direction of pattern edges. Furthermore, the
metamodel distinguishes the RelationPatternEdge class, RolePatternEdge and ScopePatternEdge
classes as specializations of the PatternEdge class. The RelationPatternEdge class represents
graph pattern edges that match certain kinds of relations in base graphs. The RolePatternEdge
class represents graph pattern edges that match certain kinds of roles in view graphs. The
ScopePatternEdge class represent graph pattern edges that match scopes in view graphs. The
RelationPatternEdge and RolePatternEdge class consist of type references that target at the
RelationType and RoleType class, respectively, to describe the kinds of these relations and
roles, respectively. Since all scopes consist of the same default edge type, no explicit edge
types are considered for scope pattern edges.

Furthermore, the ViewGraphTransformationRule class owns the constraints composition that
targets at the RuleConstraint class. The RuleConstraint class represents additional constraints
of the left-hand side of view graph transformation rules, e. g., attribute constraints. For that
purpose, the RuleConstraint class owns a language attribute with ExpressionLanguage type
and an expression attribute with String type. The language and expression attributes enable
developers to express rule constraints in arbitrary expression languages, e. g. OCL.

Furthermore, the AnnotationPatternNode class owns an assignments composition that targets
at the AttributeAssignment class. The AttributeAssignment class represents assignments of
values to attributes of annotations. For that purpose, the AttributeAssignment class owns a
language attribute with ExpressionLanguage type and an expression attribute with String type.
The language attribute describes the expression language that is used to specify the value of
the expression attribute. Furthermore, the AttributeAssignment class owns a type association
that targets at the AttributeType class to describe for which kind of attribute the attribute
assignment describes attribute values of annotations.
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Concrete Syntax
This thesis adapts the notation of UML object models to depict view graph transformation
rules. This thesis depicts pattern nodes as rectangles labeled with a name and type separated
by a colon. This thesis depicts artifact pattern nodes as solid rectangles and annotation
pattern nodes as dashed rectangles. Section 7.1 describes an example.

This thesis depicts pattern edges as directed lines labeled with a name and type separated
by a colon. This thesis depicts relation pattern edges as solid directed lines, role pattern edges
as dashed directed lines, and scope pattern edges as dotted directed lines. Scope pattern
edges do not consist of a name and employ a default edge type that is omitted in view graph
transformation rules.

Rule modifiers denote which rule elements belong to the left-hand side and right-hand side
of the view graph transformation rules. View graph transformation rules do not specifically
label rule elements that must exist. View graph transformation rules cross out rule elements
that must not exist. View graph transformation rules label rule elements that are created
by the right-hand side of the view graph transformation rule with a Create modifier that is
depicted as “++”.

View graph transformation rules depict rule constraints as strings that consist of the name
of the expression language and the expression itself separated by a colon. Names used in the
expression refer to artifacts and annotations that match the pattern nodes with equal names.

View graph transformation rules depict attribute assignments as strings that consist of the
name of the expression language and the assignment of the attribute value separated by a
colon. The assignment of the attribute value consists of the attribute name and an expression
that describes the attribute value separated by the assignment operator “:=”.

B.1. Generated Story Diagrams

The following sections describe story diagrams that implement the Create, Delete, and
Update execution modes of view modules.

Creation of Annotations
Figure B.2 shows the implementation of the Create execution mode of view modules. The
Bind Annotation Types story action node binds required annotation types and roles types.
The Match Pattern story action node implements the Generalization pattern. If a match of
the Generalization pattern exists, the Does Annotation Exist story action node checks whether
the match is already marked by an annotation. If the match is not already marked, the
Create Annotation story action node creates an annotation including roles and scopes to mark
the found graph pattern match. Otherwise, the story diagram continues to search for graph
pattern matches.

Deletion of Annotations
Figure B.3 shows the implementation of the Delete execution mode of view modules. The
Match Dangling Roles and Scopes story action node searches for annotation with dangling roles
or scopes. For each annotation with dangling roles or scopes, the Add Dependent Annotations
to Output story action node adds all dependent annotations to the output of the story diagram.
Then, the Remove Roles and Scopes story action nodes removes all roles and scopes from the
annotation. Afterwards, the Remove Annotation story action nodes removes the annotation.
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Update of Annotations
Figure B.4 shows the implementation of the Update execution mode of view modules. The
Recover Marked Match story action nodes binds all artifacts and annotations that are marked
by an anntoation. Afterwards, the Check for Match story action node checks whether these
artifacts and annotations are still a match of the Generalization pattern. If yes, the Add
Dependent Annotations to Output story action node adds all dependent annotations to the
output of the story diagram and the Update Attributes story action node updates the attribute
values of the annotation. If no, the Mark Annotation for Deletion story action node detaches
artifacts and annotations from the roles of the annotation to mark the annotation for deletion.
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Figure B.2.: Create implementation of the Generalization pattern

207



Appendix

�������������������������������

�������

��������

����

�����

����������

�����������

��������������������������

����

�������������

�����������������������

����������������������������������

����������

��������

����������

�����������

��������������

�������������

�������������������

�����������

�����������������������

���������

������������

����������

�����������

�����������

����

�������������

�����������������

���������

������������

����

�����

��������������

���������������

�����������

����������

�����������

����������

�����������

��������

����������
��������

��������������

�����������
�����

�����������
�����

�����������
����

�����������
�����������

�����������
�����������

�������

������������

�������

�������

��������

�����������

����������

���� ����������

����������
��������

�����������
�����

�����������
�����

�����������
����

�����������
�����������

�����������
�����������

Figure B.3.: Delete implementation of the Generalization pattern
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Figure B.4.: Update implementation of the Generalization pattern
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C. Mapping Graph Conditions

The following sections describe the mapping of graph conditions to view modules.

C.1. Atomic Graph Condition

Figure C.5 depicts a schematic view module that consists of three artifact input connectors
that receive artifacts with X, Y, and Z artifact type. Furthermore, the view module consists
of one annotation output connector with C annotation type that provides annotations, which
mark graph pattern matches that satisfy the depicted graph pattern. When the graph pattern
is satisfied, the view graph transformation rule creates an annotation with annotation type C
and roles / scopes that mark all artifacts of the graph pattern match, when these artifacts are
not already marked by an annotation with annotation type C (see NAC in Section 7.1.1).

: X : Y : Z 

C := X←Y ← Z
: C 

: X : Y : Z

: C
++ 

++ ++ 

++ 

Figure C.5.: Atomic graph condition

C.2. Conjunction

The following sections distinguish overlapping, disjoint, and extended graph patterns.

Overlapping Graph Patterns
Figure C.6(a) shows a schematic view module that implements a conjunction with overlapping
graph patterns. The view module consists of two annotation input connectors and receives
annotations with annotation type C1 and C2, respectively. The view graph transformation
rule shows that the graph pattern match marked by the annotation with annotation type C1
and the graph pattern match marked by the annotation with annotation type C2 must have
an artifact (or annotation) with artifact type (or annotation type) Y in common that has a
certain role in one graph pattern match and a certain role in another graph pattern match.
When the view graph transformation rule finds a match, the view graph transformation rule
creates an annotation with annotation type C that marks both annotations with the help of
roles or scopes, if the match is not already marked by an annotation with annotation type C
(see NAC in Section 7.1.1).

Disjoint Graph Patterns
Figure C.6(b) shows a schematic view module that implements a conjunction with disjoint
graph patterns. The view module consists of two annotation input connectors that receive
annotations with annotation type C1 and C2, respectively. Additionally, the view module
consists of an artifact input connector that receives artifacts with artifact type Y . The view
graph transformation rule shows that the artifact with artifact type X must be part of the
graph pattern match marked by the annotation with annotation type C1 and the artifact
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: C1 

C := C1 and C2 

: C 

: C2 

:Y

: C

: C1 : C2

++ ++ ++ 

: C1 : C2 

(a) Overlapping
patterns

: C1 

C := C1 and (X←Y ← Z) and C2 

: C 

: C2 

:Y

: C

: C1 : C2

++ ++ ++ 

++ 

: C1 : C2 

:Z:X

: Y 

(b) Disjoint patterns

: C1 

C := C1 and (X←Y ← Z) 

: C 

: Z 

:Y

: C

: C1

++ ++ ++ 

++ 

: C1 

:Z:X

: Y 

(c) Extended patterns

Figure C.6.: Conjunctions of graph patterns

with artifact type Z must be part of the graph pattern match marked by the annotation
with annotation type C2. Furthermore, the view graph transformation rule shows that the
artifact with artifact type Y must connect the artifacts with artifact type X and Z. The view
graph transformation rule describes that an annotation with annotation type C is created
in the view graph that marks both reused annotations and the artifact with artifact type Y ,
if the annotations and artifacts of the graph pattern match are not already marked by an
annotation with annotation type C (see NAC in Section 7.1.1).

Extended Graph Patterns
Figure C.6(c) shows a view module that owns one annotation input connector with annotation
type C1 and the artifact input connectors with artifact type Y and Z. The encapsulated
view graph transformation rule depicts that the artifact pattern node with artifact type X
of the graph pattern is extended by the artifact pattern nodes with artifact type Y and Z.
Furthermore, the artifact that matches the artifact pattern node with artifact type X must be
part of a graph pattern match marked by the annotation that matches the annotation pattern
node with C1 annotation type. The right-hand side of the view graph transformation rule
describes that an annotation with annotation type C is created that marks the annotation
that matches the annotation pattern node with annotation type C1, the artifact that matches
the artifact pattern node with artifact type Y , and the artifact that matches the artifact
pattern node with artifact type Z, if these artifacts and annotations are not already marked
by an annotation with annotation type C (see NAC in Section 7.1.1).

C.3. Disjunction

Figure C.7 shows a schematic view module that consists of one annotation input connector
with annotation type CSuper. The annotation type CSuper is the annotation supertype of the
annotation types C1 and C2. The view module produces annotations with annotation type
C, which describe that artifacts that match the artifact pattern node X either satisfy graph
patterns represented by annotations with annotation type C1 or C2. That means, the graph
pattern exploits the polymorphism of the received annotations to map disjunctions.
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: C1 : C2 

C := C1 or C2

: C 

: CSuper 

:X

: CSuper

: C
++ ++ 

++ 

<<annotation type>>
CSuper

<<annotation type>>
C1

<<annotation type>>
C2

Figure C.7.: Disjunction of graph conditions

C.4. Negation

The following sections distinguish simple and complex negation (cf. Definition 8).

Simple Negation
Figure C.8(a) shows a schematic view module, which implements a simple negation. The
view module receives artifacts with artifact type X, Y , and Z. The encapsulated view graph
transformation rule describes that artifacts with artifact type Y must not be connected to
artifacts with artifact type X. When the left-hand side of the transformation rule is satisfied,
the right-hand side of the transformation rule creates an annotation with annotation type C
that marks all existing graph nodes that satisfy the graph pattern, if these graph nodes are
not already marked by an annotation with annotation type C (see NAC in Section 7.1.1).

: X : Y : Z

: X : Y : Z 

C := not(X ← Y) and (Y ← Z)

: C 

: C
++ 

++ ++ 

(a) Simple negation
: W : X : Y

: W : X 

: C1 

: C1
++ ++ 

++ 

++ 

: Y

: C1 

: C 

: C1

: Y 

C := not(C1) and C2 
= not(W ← X ← Y) and (Y ← Z)

: Z

: Z 

: C ++ 
++ 

++ 

: Y 

(b) Complex negation

Figure C.8.: Negation of graph conditions

Complex Negation
Figure C.8(b) shows two schematic view modules, which implement a complex negation. The
non-negated and negated part of the graph pattern overlap in the artifact pattern node with
artifact type Y . The view module at the bottom searches for graph pattern matches that
dissatisfy the complex negation. That means, instead of searching for matches that satisfy
graph pattern ¬C1, the view module at the bottom searches for matches that satisfy graph
pattern C1. The view module marks each match for the graph pattern C1. Afterwards, the
view module at the bottom forwards all created annotations with annotation type C1 to the
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successor view module on top. The view module on top checks whether no annotation with
annotation type C1 is connected to artifacts that match the artifact pattern node with artifact
type Y . If yes, no graph nodes exist that dissatisfy the complex negation. Then, the view
module on top creates an annotation that marks all graph nodes that match the non-negated
part of the graph pattern, if these graph nodes are not already marked by an annotation with
annotation type C (see NAC in Section 7.1.1).

C.5. Recursion

Figure C.9 shows two view modules, which implement a recursive graph condition. The view
module at the bottom describes the recursion start. The view module on top describes the
recursion step, because the output connector of the view module is connected to the input
connector of the view module. The view module at the bottom receives artifacts with artifact
type X and creates an annotation with annotation type CStart for each pair of connected
artifacts with artifact type X. The annotation marks the artifact that is the source of the
connecting edge by a role with role type Start. The annotation marks the artifact that is the
target of the connecting edge by a role with role type End. The view module on top receives
artifacts with artifact type X and annotations with annotation type CStart created by the
view module at the bottom. The view module on top creates annotations with annotation
type CStep. Note that annotation type CStep is an annotation subtype of annotation type
CStart. The view module on top takes annotations with annotation type CStart and searches
for artifacts with artifact type X that are connected to the artifact that acts in the End
role of annotations with annotation type CStart. If the left-hand side of the view graph
transformation rule is satisfied, the right-hand side of the view graph transformation rule
creates an annotation with annotation type CStep that marks the annotation with annotation
type CStart as previous Step of the recursion and the artifact with artifact type X that is
connected to the artifact that acts in the End role of the previous recursion step as artifact
with End role of the current recursion step, if the annotations and artifacts are not already
marked by an annotation with annotation type CStep (see NAC in Section 7.1.1). Afterwards,
created annotations with annotation type CStep are forwarded to the input connector of the
same view module. Since the annotation type CStep is an annotation subtype of the annotation
type CStart, the annotation pattern node with annotation type CStart matches annotations
with annotation type CStep. That means, the graph pattern exploits the polymorphism of
annotations, which describe matches of recursion starts and steps, to implement recursion.
The view module an top is executed until it does not create annotations anymore.

: X : X

: CStart
++ ++ 

: X 

: X : X

: CStart: CStep
++ 

++ 

C :=  (X ← X)* 

: CStart 

: CStep 

: CStart : X 

: Start ++ : End 

: End : End 
: Step 

<<annotation type>>
CStart

<<annotation type>>
CStep

<<artifact type>>
X

EndStart

Step

Figure C.9.: Schematic view module implementation
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D. View Graph Maintenance
D.1. Reachability Test for Complex Negations
Algorithm D.1 describes a reachability test that collects all annotations that become suspicious
due to created annotations. This algorithm searches for annotations that mark matches
of graph patterns, which implement complex NACs, and become suspicious due to created
annotations. In summary, the algorithm searches for annotations that have the same annotation
types as the output connectors of the view modules that depend on the module that created
an annotation. For that purpose, the algorithm traverses all artifacts and annotations that are
relevant to these dependent modules and checks whether annotations are reachable that have
the same annotation type as the annotations that are created by these dependent modules.

Algorithm D.1 Find suspicious annotations due to created annotations
Input: Created annotations
Output: Suspicious annotations that are maintained by successor view modules
1: procedure reachability_suspicious(annotations)
2: suspiciousAnnotations := ∅
3: for each annotation in annotations do
4: dependentModules := modules that dependent on the module that created the annotation
5: for each module in dependentModules do
6: if module is connected via negative connector to module that created annotation then
7: outputConnector := output connector of module
8: scope := artifacts and annotations that are marked by annotation
9: repeat
10: added := ∅
11: for each node in scope do
12: for each connector of module do
13: if connector is artifact or annotation input connector then
14: for each adjacentNode of node do
15: if adjacentNode.type ∈ clan(connector.type) then
16: added := added ∪ {adjacentNode}
17: if node is annotation then
18: if node.type = outputConnector.type then
19: suspiciousAnnotations := suspiciousAnnotations ∪ {node}
20: scope := added
21: until added = ∅
22: return suspiciousAnnotations

Algorithm D.1 shows the Reachability_Suspicious procedure that receives a set of created
annotations. First, the procedure initializes an empty set of suspicious annotations. Then,
the procedure iterates the set of received annotations. For each annotation, the procedure
determines all modules that dependent on the module that created the annotation. For each
of these dependent modules, the procedure checks whether the module is connected via a
negative input connector to the module that created the annotation. If yes, the procedure
retrieves the output connector of the module and initializes a scope with the artifacts and
annotations that are marked by the received annotation. Then, the procedure checks for each
node in the scope whether its adjacent nodes have a (sub-)type that is processed by the module.
If yes, the procedure adds the adjacent node to a set of added nodes. If a node in the scope
is an annotation, the procedure checks whether the annotation has the same type as the
output connector of the dependent module. If yes, the procedure adds the node as suspicious
annotation to the set of suspicious annotations. When the procedure processed all nodes in the
scope, the procedure replaces the scope with the adjacent nodes that are stored by the added
variable. The procedure repeats the lookup of adjacent nodes until it finds no new adjacent
nodes anymore. Finally, the procedure returns all collected suspicious annotations.
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E. Optimized View Graph Maintenance
E.1. Naive Duplicate Handling
The following algorithms describe the lookup of annotations with equal attribute values.
Algorithm E.2 searches for annotations in a set of annotations that have the same attribute
values as the annotation that would result from a graph pattern match and returns true,
if such annotations exist. Otherwise, the procedure returns false. Algorithm E.3 searches
for annotations in a set of annotations that have the same attribute values as a given
annotation and returns true, if such annotations exist. Otherwise, the procedure returns
false. Algorithm E.4 searches for an annotation in a set of annotations that has the same
attribute values as the annotation that would result from a graph pattern match and returns
this annotation. Otherwise, the procedure returns null.

Algorithm E.2 Checks whether match results in equal values of annotation attributes
Input: Graph pattern match and existing annotations for this match
Output: True, if annotation with equal attribute values exists. Otherwise, false.
1: procedure equal_attribute_values(match, annotations)
2: for each annotation in annotations do
3: equalAttributes := 0
4: for each attribute in annotation.attributes do
5: assignment := corresponding attribute assignment of view transformation
6: if attribute.value = evaluation result of assignment expression for match then
7: equalAttributes++
8: if equalAttributes = length(annotation.attributes) then //all attribute values are equal
9: return true
10: return false

Algorithm E.3 Checks whether annotation has equal attribute values as existing annotation
Input: Preserved annotation and potential annotation duplicates
Output: True, if annotation with equal attribute values exists. Otherwise, false.
1: procedure equal_attribute_value(annotation, existingAnnotations)
2: for each existingAnnotation in existingAnnotations do
3: equalAttributes := 0
4: for each existingAttribute in existingAnnotation.attributes do
5: for each attribute in annotation.attributes do
6: if existingAttribute.name = attribute.name then
7: if existingAttribute.value = attribute.value then
8: equalAttributes++
9: if equalAttributes = length(annotation.attributes) then //all attribute values are equal
10: return true
11: return false

Algorithm E.4 Lookup annotation that has equal attribute values
Input: Graph pattern match and existing annotations for this match
Output: Annotation with equal attribute values. Otherwise, null.
1: procedure retrieve_annotation_duplicate(match, annotations)
2: for each annotation in annotations do
3: equalAttributes := 0
4: for each attribute in annotation.attributes do
5: assignment := corresponding attribute assignment of view transformation
6: if attribute.value = evaluation result of assignment expression for match then
7: equalAttributes++
8: if equalAttributes = length(annotation.attributes) then //all attribute values are equal
9: return annotation
10: return null
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E.2. Annotations with Aggregations

Algorithm E.5 shows the Create_Annotation_Aggregate procedure. This procedure creates
annotations that employ scope aggregations to mark graph nodes of matches that do not have
certain roles in matches. The procedure receives a pattern match for which the procedure
has to create an annotation. The procedure creates an annotation, adds attributes to the
annotation, sets the attribute values and creates roles for each role rule link of the view graph
transformation with Create modifier. If the view transformation consists of scope rule links,
the procedure calls the Add_Scope_Aggregation procedure and passes the found pattern match
and the created annotation to add all graph nodes that are not marked by roles to a scope
aggregation. Finally, the procedure returns the created annotation.

Algorithm E.5 Create annotations with scope aggregations
Input: Graph pattern match that has to be marked
Output: Annotation that marks the match
1: procedure create_annotation_aggregate(match)
2: annotation := create annotation for match //cf. Fig. E.10(a)
3: for each attribute assignment of view transformation do
4: create attribute //cf. Fig. E.10(b)
5: evaluate expression of attribute assignment //cf. Fig. E.10(b)
6: for each role rule link of view transformation rule do
7: if role rule link has CREATE modifier then
8: create role //cf. Fig. E.10(c)
9: if view transformationrule has scope rule links then
10: add_scope_aggregation(match, annotation) //cf. Algorithm E.6
11: return annotation

anno 
: Annotation

: AnnotationType

name = "..."
instances++++

(a) Create anno-
tation

anno 
: Annotation

++

: Attribute

value := <<value>>

: AttributeType

name = "..."
type = "..."

++

++

type

attributes

(b) Create attributes

anno 
: Annotation

: Role : RoleType

name = "..."

: AnnotatedElement

type
++

roles++

++ element

++

(c) Create roles

Figure E.10.: Graph patterns and graph transformations of Create implementation with scope
aggregations

Algorithm E.6 shows the Add_Scope_Aggregation procedure. The procedure receives the
pattern match for which the procedure has to add a scope aggregation to the received annotation.
First, the procedure adds a scope aggregation to the annotation. Then, the procedure checks
for each scope rule link of the view transformation rule, whether the scope rule link has a
Create modifier. If yes, the procedure adds the graph node that matches the target of the
scope rule link to a scope and adds the scope to the scope aggregation.
Algorithm E.7 shows the Delete_Scope_Aggregations procedure. The procedure deletes

scope aggregations of an annotation. For that purpose, the procedure receives the scope
aggregation that has to be deleted. First, the procedure deletes dangling and non-dangling
scopes of the scope aggregation. Afterwards, the procedure deletes the scope aggregation.

Algorithm E.8 shows the Obsolete_Scope_Aggregation procedure. The procedure receives a

216



E. Optimized View Graph Maintenance

Algorithm E.6 Create scope aggregation
Input: Graph pattern match and the annotation that has to mark this match
1: procedure add_scope_aggregation(match, annotation)
2: scopeAggregation := add scope aggregation to annotation //cf. Fig. E.11(a)
3: for each scope rule link of view transformation rule do
4: if scope rule link has CREATE modifier then
5: add node that matches target of scope rule link to scope aggregation //cf. Fig. E.11(b)

anno 
: Annotation

aggregation
: ScopeAggregation

roles++++

(a) Create scopes

aggregation
: ScopeAggregation

: Scope

: AnnotatedElement

scopes++++

element++

(b) Set scope tar-
get

Figure E.11.: Graph patterns and graph transformations of Create implementation with scope
aggregations

Algorithm E.7 Delete scope aggregation
Input: Obsolete scope aggregation
1: procedure delete_scope_aggregations(aggregation)
2: remove dangling scopes from aggregation //cf. Fig. E.12(a)
3: remove non-dangling scopes from aggregation //cf. Fig. E.12(b)
4: remove aggregation //cf. Fig. E.12(c)

aggregation
: ScopeAggregation

: Scope

: AnnotatedElement

roles

element

----

(a) Dangling scope

aggregation
: ScopeAggregation

: Scope

: AnnotatedElement

roles

element

----

--

(b) Remove scope

anno 
: Annotation

aggregation
: ScopeAggregation

annotation-- --

(c) Remove scope
aggregation

Figure E.12.: Graph patterns and graph transformations of Delete implementation with scope
aggregations

scope aggregation that has to be set obsolete. Then, the procedure detaches the graph nodes
from all scopes that are owned by the passed scope aggregation.

Algorithm E.8 Set scope aggregation obsolete
Input: Scope aggregation
Output: Obsolete annotations and extracted annotations
1: procedure obsolete_scope_aggregation(aggregation)
2: for each scope in aggregation.scopes do
3: detach marked graph node from scope //cf. Fig. E.13
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: Scope

: AnnotatedElement

element--

Figure E.13.: Detach scope

Algorithm E.8 shows the Obsolete_Scope_Aggregation procedure that sets scope aggregations
obsolete. The algorithm receives a scope aggregation that has to be set obsolete. For each
scope of the scope aggregation, the algorithm detaches the marked graph node.

Expanding Annotations with Aggregations
The Algorithm E.9 transforms annotations with scope aggregations into annotations without
scope aggregations by creating a set of scopes for each scope aggregation. The Expand_Matches
procedure receives annotations with scope aggregations as input. First, the procedure initializes
an empty set of transformed annotations that stores all transformed annotations without scope
aggregations. For each received annotation, the algorithm checks whether the annotation
consists of scope aggregations. If yes, the algorithm transforms the annotation that owns the
scope aggregation into an annotation without scope aggregation by iterating over all roles of
the annotation. Then, the algorithm checks whether the role is a scope aggregation. For each
scope aggregation, the algorithm creates a new transformed annotation. Then, the algorithm
adds the scopes of the scope aggregation to the new transformed annotation. Afterwards, the
algorithm adds each role of the annotation to the transformed annotation.
If the received annotation does not consist of scope aggregations, the algorithm adds the

received annotation to the set of transformed annotations, because the received annotation
only consists of roles that do not have to be transformed.
When the algorithm transformed all annotations, the algorithm returns all transformed

annotations.

Algorithm E.9 Expand annotations with scope aggregations
Input: Annotations with scope aggregations
Output: Expanded annotations with original scopes
1: procedure Expand_Matches(annotations)
2: transformed := ∅
3: for each annotation in annotations do
4: if annotation has scope aggregations then //transform annotation into annotations without aggregations
5: for each role in annotation.roles do
6: if role is scope aggregation then
7: transformedAnnotation := create new annotation
8: for each scope in role.scopes do
9: transformedAnnotation.roles := transformedAnnotation.roles ∪ {scope}
10: for each role2 in annotation.roles do
11: if role2 is role then
12: transformedAnnotation.roles := transformedAnnotation.roles ∪ {role2}
13: transformed := transformed ∪ {transformedAnnotation}
14: else //no annotation duplicates exist
15: transformed := transformed ∪ {annotation}
16: return transformed
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E.3. Space and Time Complexity
This section describes the space complexity and time complexity of the view graph maintenance,
when view modules employ a) no duplicate handling, b) naive duplicate handling, and c)
duplicate handling with aggregation. This section describes and discusses worst-case scenarios
for each kind of duplicate handling.

Space Complexity

The space complexity describes the number of graph nodes and edges that are required by
view graphs to mark matches. For that purpose, this section describes the space complexity
as a function of the number of annotation duplicates that must be stored by view graphs.

Table E.1 describes the space complexity for storing annotation duplicates. The variable d
stands for the number of annotation duplicates. The variable r stands for the number of roles
per annotation. The variable s stands for the number of scopes per annotation. The variable
p stands for the number of pattern nodes that are encapsulated by the module.

The following sections describe the space complexity for each kind of duplicate handling and
compare the space complexities for one single view module and a sequence of view modules.

No Duplicate Handling
When a view module does not employ duplicate handling, each annotation duplicate must
be marked by a separate annotation. For each annotation duplicate, the view graph stores r
roles. The number of roles that must be stored is equal to the number of role types that are
owned by the annotation type of the annotation duplicate. For each annotation duplicate, the
view graph stores s scopes. The view graph must store one scope for each graph node of a
match that is not marked by a role. Thus, the number of scopes is s = (p− r) for p pattern
nodes and r roles. In summary, the view graph stores f(d) = d + r · d + s · d = d · (1 + r + s)
graph nodes and edges in the view graph to handle d annotation duplicates.

Naive Duplicate Handling
When a view module employs a naive duplicate handling, the view graph stores one annotation
for a set of annotation duplicates. For this single annotation, the view graph stores r roles
and s scopes. The view graph does not store roles and scopes for annotation duplicates. The
number of roles is equal to the number of role types that are owned by the annotation type of
the annotation. The view graph must store one scope for each graph node of the match that
is not marked by a role. Thus, the number of scopes is s = (p− r) for p pattern nodes and r
roles. In summary, the view graph stores f(d) = 1 + r + s graph nodes and graph edges in
the view graph to handle d annotation duplicates. Thus, the required number of graph nodes
and edges is independent from the number of annotation duplicates.

Duplicate Handling with Aggregation
When a view module employs a duplicate handling with aggregation, the view graph stores
one annotation for a set of annotation duplicates. Furthermore, the annotation employs
additional scope aggregations to keep track of these annotation duplicates. For this single
annotation, the view graph stores r roles. The number of roles is equal to the number of
role types that are owned by the annotation type of the annotation. The view graph stores
these roles only once, because the annotation duplicates have these roles in common. For each
annotation duplicate, the view graph stores one scope aggregation and s scopes. The view
graph must store one scope for each graph node of the match that is not marked by a role.
Thus, the number of scopes is s = (p− r) for p pattern nodes and r roles. The view graph
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must aggregate these scopes for each annotation duplicate in terms of one scope aggregation.
In summary, the view graph stores f(d) = 1 + r + d + s · d graph nodes and edges in the view
graph to handle d annotation duplicates.

Table E.1.: Space complexity of duplicate handling
Space Complexity

Single View Module Sequence of View Modules

No Handling f(d) = d · (1 + r + s) ∈ O(d) f(dn) =
∑n

i=1(di−1 · ci) · (1 + ri + si) ∈ O(d)

Naive f(d) = 1 + r + s ∈ O(1) f(dn) =
∑n

i=1 1 + ri + si ∈ O(1)

Aggregation f(d) = 1 + r + d + s · d ∈ O(d) f(dn) =
∑n

i=1 1 + ri + di + si · di ∈ O(d)

No. of role (r) and scopes (s) per annotation, pattern nodes (p), annotation duplicates (d)

Discussion
In general, the space complexity of view modules is O(n), because each graph pattern match
is marked by one annotation. The following paragraphs describe the space complexity of view
modules as function of the number of annotation duplicates.

The number of graph nodes and edges that must be stored by the view graph is proportional
to the number of annotation duplicates, when the view module employs no duplicate handling
and duplicate handling with aggregation. The space complexity for storing annotation
duplicates without duplicate handling is O(n), because the number of graph nodes and edges
doubles, when the number of annotation duplicates doubles. The space complexity for storing
annotation duplicates with aggregation is O(n), because the number of graph nodes and edges
that are required for storing scope aggregations and scopes doubles, when the number of
annotation duplicates doubles. However, the number of graph nodes and graph edges increases
slower for duplicate handling with aggregation than for no duplicate handling, because the
view modules that employ no duplicate handling store additional roles for each annotation
duplicate in contrast to duplicate handling with aggregation. The space complexity for storing
annotation duplicates in a naive manner is O(1), because the view graph always stores one
annotation with a fixed number of roles and scopes independent from the number of annotation
duplicates. But, the naive duplicate handling loses the capability to enumerate all graph
pattern matches instantly.
When searching for matches, view modules consider annotations provided by predecessor

view modules. In the worst case, each of these annotations participates in a match. View
modules that employ different kinds of duplication handling provide different numbers of
annotations to successor view modules. This number of provided annotations has an impact
on the space complexity of successor view modules.

View modules that employ naive duplicate handling and duplicate handling with aggregation
create only one annotation for a set of annotations. Therefore, successor view modules have
to consider only one annotation for a set of annotation duplicates during their graph pattern
matching. Consequently, the number of graph nodes and graph edges stored by the view
graph adds up for a sequence of view modules.
For naive duplicate handling, the view graph stores f(dn) =

∑n
i=1(1 + ri + si) graph

nodes and graph edges, when the view module dependency graph consists of n dependent
view modules. Thus, the space complexity for naive duplicate handling is O(1), because the
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number of stored annotations, roles, and scopes is independent from the number of annotation
duplicates.

For duplicate handling with aggregation, the view graph stores f(dn) =
∑n

i=1(1 + ri + di +
si · di) graph nodes and graph edges, when the view module dependency graph consists of n
dependent view modules. Thus, the space complexity for duplicate handling with aggregation
is O(n), because the number of stored scope aggregations and scopes dependents on the
number of annotation duplicates.

View modules that employ no duplicate handling create one annotation for each annotation
duplicate. Therefore, successor view modules have to consider all annotation duplicates during
their graph pattern matching as well. Consequently, the number of graph nodes and edges
stored by the view graph adds up for a sequence of view modules and the number of annotations
created by successor view modules depends on the number of annotations duplicates created
by predecessor view modules. Thus, the view graph stores f(dn) =

∑n
i=1(di−1 · ci) · (1 + ri + si)

graph nodes and edges, when the view module dependency graph consists of n dependent
view modules. The variable di stands for the number of annotation duplicates that are
created by the predecessor view module. The variable ci stands for the number of annotation
duplicates that are created by the successor view module for each received annotation duplicate.
Consequently, the space complexity is O(n), because for each annotation duplicate created by
a predecessor view module, the successor view module finds an equivalent match. Therefore,
the number of annotations increases faster than for the duplicate handling with aggregation.

Time Complexity

The time complexity describes the number of possible mappings between the graph nodes of
the pattern and the graphs nodes received by a view module for pattern matching. For that
purpose, this section describes the time complexity as a function of the number of annotation
duplicates that must be considered by a view module during graph pattern matching.

The time complexity for generating each possible mapping between p graph nodes of a graph
pattern to m graph nodes a graph is O(mp) [102]. Artifacts of base graphs and annotations
in view graphs belong to this graph. Thus, the number of annotation duplicates that have to
be considered during graph pattern matching has an impact on the execution time of view
modules. When a view module receives annotations, the graph pattern that is encapsulated
by the view module employs pattern nodes that are bound to the received annotations. Thus,
the mapping from the graph pattern node to the received annotations is fixed and does not
have to be matched again.
Table E.2 describes the time complexity for executing view modules, i. e., searching for

matches of the encapsulated graph pattern. The variable m stands for the number of artifacts
and annotations received by a view module. The variable p stands for the number of pattern
nodes in the encapsulated pattern. The variable d stands for the number of annotation
duplicates that are received by a view module.

The following sections describe the time complexity for each kind of duplicate handling and
compare the time complexity for one single module and a sequence of view modules.

No Duplicate Handling
When view modules do not employ duplicate handling, successor view modules receive one
annotation for each annotation duplicate. In the view module, at least one graph pattern
node is bound to the received annotations and, therefore, the remaining pattern nodes have to
be considered for each received annotation, when generating each possible mapping between
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the graph pattern and the received graph nodes of base graphs and view graphs. Thus, the
execution time of a view module dependents on the number of received annotation duplicates.
For each received annotation, mp mappings between the pattern and the received graph

nodes have to be generated by the view module. Thus, the view module has to generate
f(d) = d ·mp mappings in total.

Naive Duplicate Handling
When view modules employ naive duplicate handling, successor view modules receive only
one annotation for a set of annotation duplicates. Thus, only one annotation is bound to the
graph pattern node that represents the annotation in the pattern and must be considered by
the graph pattern matching. Therefore, the execution time of the successor view module is
not impacted by the number of annotation duplicates. But, the naive duplicate handling loses
the capability to enumerate all graph pattern matches instantly.
When view modules employ naive duplicate handling, f(d) = mp mappings between the

pattern and the received graph nodes of base graphs and view graphs have to be generated by
the view module during pattern matching.

Duplicate Handling with Aggregation
When view modules employ duplicate handling with aggregation, successor view modules
receive only one annotation for a set of annotation duplicates. Thus, only one annotation
is bound to the pattern node that represents the annotation in the pattern and must be
considered by the pattern matching. Therefore, the execution time of the successor view
module is not impacted by the number of received annotation duplicates.
When view modules employ duplicate handling with aggregation, f(d) = mp mappings

between the pattern and the graph nodes received by view modules have to be generated by
the view module during pattern matching.

Table E.2.: Time complexity of duplicate handling
Time Complexity

Single View Module Sequence of View Modules

No Handling f(d) = d ·mp ∈ O(d) f(d) =
∑n

i=1 di−1 ·mpi
i ∈ O(d)

Naive f(d) = mp ∈ O(1) f(d) =
∑n

i=1 m
pi
i ∈ O(1)

Aggregation f(d) = mp ∈ O(1) f(d) =
∑n

i=1 m
pi
i ∈ O(1)

No. of annotation duplicates (d), pattern nodes (p), graph nodes (m) received by view module

Discussion
In general, the number of mappings between the nodes of the pattern and the graph nodes
received by the view module is mp [102]. The following paragraphs describe the time complexity
of view modules as function of the number of annotation duplicates.

For the naive duplicate handling and the duplicate handling with aggregation, the number
of annotation duplicates has no impact on the time complexity, because both approaches
create only one annotation for a set of annotation duplicates. Thus, both approaches have a
O(1) time complexity.

When a view module employs no duplicate handling, the view module creates one annotation
per annotation duplicate. Thus, this approach has an impact on the time complexity of
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view modules, because they have to consider each annotation duplicate, when generating
each possible mapping between the graph pattern and the graph nodes received by the view
modules. Thus, this approach has a O(n) time complexity.

When view modules employ naive duplicate handling, view modules exchange one annotation
for a set of annotation duplicates. Thus, the successor view modules have to consider at
most one annotation for all annotation duplicates. Then, the remaining graph pattern nodes
have to be mapped to the received graph nodes for this annotation only. Therefore, the time
complexity for a sequence of view modules adds up.

For naive duplicate handling, the view module has to generate and check f(d) =
∑n

i=1 mpi
i

mappings between pi graph nodes of the pattern and mi graph nodes received by the view
module. Thus, this approach has a O(1) time complexity for a sequence of view modules.

The same line of arguments holds for duplicate handling with aggregation, because successor
view modules also receive only one annotation for a set of annotation duplicates. Thus, this
approach has a O(1) time complexity for a sequence of view modules.

When view modules employ no duplicate handling, view modules exchange all annotation
duplicates. Therefore, successor view modules have to consider all annotation duplicates
that are provided by predecessor view modules. Thus, a view module has to generate and
check f(d) =

∑n
i=1 di−1 ·mpi

i mappings between pi nodes of the graph pattern and mi graph
nodes received by the view module for di−1 annotation duplicates provided by the predecessor
module. Thus, this approach has a O(n) time complexity for a sequence of view modules.
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F. Case Study - Design Pattern Recovery
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(f) Public method

Figure F.14.: Visibility of Fields and Methods

224



F. Case Study - Design Pattern Recovery

������������������

������������������ ������������������

������������������������������������

������������������������������

���������������

������������������������������������������

�������

(a) Inner and outer class

���������������������

�������������������������

�����������������

������������������������������������������

����������������������������������������

�������������������������� ������������������

����������������������

����������������������������

(b) Private constructor.

���������������������

�������������������������

�����������������������������

������������������������������������������

����������������������������������������

��������������������������������������������������������

������������������������

����������

(c) Default constructor

Figure F.15.: Auxiliary Patterns
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(b) Complex typed element

Figure F.16.: Typed Element

�����������������

����������������������������� ������������ ������������������������������������� ���������������������������

����������������������������������

���������������������������������������������������

��������������������������������

������������������������������

���������������

�����������������������������������������������

������������

����������������������������������

��������������������
����������������������������������� ������������������������������������������

Figure F.17.: A class attribute is contained by a concrete classifier and has a primitive or
complex type.
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(a) A generalization between two classes exists, if
the sub class points via a namespace classifier
and classifier reference to its super class.

��������������������������

�������������

��������������������������������������� ������������������������������

���������������������

����������������������������������������������������

��������������������������������������������������

������������������������������ ������������������������������

����������

��������������������

�������������������������

������������������������

(b) A class implements an interface, if it points via
a namespace classifier and classifier reference
to an interface.
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(c) A multi-level generalization between two classes exists, if a super
class is the sub class of another generalization.
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(d) A class implements an interface, if a super class implements an interface.

Figure F.18.: Hierarchy
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(a) A public instance field has a static and public modifier and the initial value
of the field is an instance of the class that contains the field as a member.
The initial value of the field is obtained from the call of the constructor of the
containing class.
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(b) A public instance method consists of a static and public modifier and returns
an instance of the containing class.

Figure F.19.: Public Instance Member
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(a) An array field is a field, which consists of an array dimension.

������������

������������

��������������������������������� ���������������������������

������������������������

�����������������������������������

�����������������������������������

�������������������������������

������������������������� ������������������������������

������������������������������������������������������������

����������������������

��������������������������������������������

�������������������������������������������������

������������������������

���������������������������������

�����������������������������������������������

�����������

�������������

��������������������������������������������

���������������

���������������������������

�����������������

���������������

(b) A list field is a field, which defines the type of the elements contained by the list.

Figure F.20.: Association
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Figure F.21.: An enumeration with a method and a constant can be considered as Singleton
design pattern.
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Figure F.22.: A class is a Singleton design pattern, if the class consists of a private constructor
and a member that stores or returns an instance of the class.
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Figure F.23.: Two classes constitute a Composite design pattern, if a generalization (incl.
multi-level generalization) between both classes exists and the sub class owns a
to-many reference that has the super class as target classifier.
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Figure F.24.: A Decorator design pattern exists, if a Composite design pattern exists and the
sub class in the Composite design pattern overrides a method of the super class
with additional functionality.
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Figure F.25.: A field assignment is present, if a field of a class is referenced in an expression
that consists of an assignment.
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(a) A read operation (getter method) of a class is a public method that returns the value of a private
field owned by this class.
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(b) A write operation (setter method) of a class is a public method with at least one parameter. The
value of the parameter must be assigned to a private field owned by this class.

Figure F.26.: Getter and Setter
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(a) A public method adds the value of a method parameter to a list attribute of a class, if the attribute
is a list, a method called "add" is called on this list, and the argument passed to this method is the
argument passed via the containing method.
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(b) A public method removes the value of a method parameter from a list attribute of a class, if the
attribute is a list, a method called "remove" is called on this list, and the argument passed to this
method is the argument passed via the containing method.

Figure F.27.: Add / Remove from Reference

232



F. Case Study - Design Pattern Recovery

������������������

���������������������������������������������������������������������������������

��������������������������������������� ������������

����������������������������������������

��������������������������������������

�����������������������������������������������������

���������������

������

���������������������������������

(a) Field access without "this" keyword.
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(b) Field access with "this" keyword.

Figure F.28.: Field Access
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(a) Method call without "this" keyword.
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(b) Method call with "this" keyword.

Figure F.29.: Method Calls
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Figure F.30.: An Observer design pattern exists, if two classes exists that represent the
observers and observables. The observable class must implement a method that
iterates over a list field that contains all observers of the observable and calls a
method of each observer to notify the observer about changes of observables.
Furthermore, the observeable class must provide two methods that enable to
add and remove observers from the list of observers.
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Figure F.31.: A Strategy design pattern exists, if a write operation exists that enables to set
the strategy and a method exists that executes the strategy.
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(a) A class implements a simple factory method, if it imple-
ments a method that consists of static and public modifiers
and returns an instance of another class.
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(b) A method is a factory method, if the class that contains the method is a sub class or implements
an interface and returns as product an instance of a classifier that is different from the super
class/interface. Furthermore, if the sub class extends a super class the super class must be abstract.

Figure F.32.: Factory Method
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Figure F.33.: A class represents a Builder design pattern, if the class consists of a Factory
Method design pattern and consists of a write operation to set properties used
during the creation of objects.
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Figure F.34.: A Chain of Responsibility design pattern exists, if a non-static class field has
the same type as the class. Furthermore, the class has to be a super class.
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Figure F.35.: A field of a class is effectively non final, if it does not consists of a static modifier
and is only modified within static or constructor code.
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Figure F.36.: An Adapter design pattern exists, if a hierarchy between two classes exists and
the sub class consists a field that has the type of the class that is adapted.
Furthermore, the field has to be used within the adapter class.

�����������������

���������������������

���������������������

��������������������������������

���������������������������������

����������������������������������

�����������������������

�������������������������������

�������������������������

����������������������������������

�������������������������������������

��������������������������������

��������������������������������

������������������

�������������������������������������������������������������������������������

���������������������

�������

�������������������������

�����������������

����������

������

����������

����������������������������������������

���������������������

����

����������������������������������

�������

����������������������������������

����������������������������������

Figure F.37.: A class implements a Template Method design pattern, if the class consists of a
method that calls other methods of the same class and these other methods are
overriden in sub classes to refine the algorithm implemented by the template
method.
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Figure F.38.: A Proxy design pattern exists, if the super class of the adaptee has another sub
class that overrides the same method of the super class as the adaptee.
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Figure F.39.: A Prototype design pattern exists, if a public method with name ’clone’ exists
and does not consist of parameters.
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Figure F.40.: A Visitor design pattern exists, if the sub classes of a class override the accept
method and call the visit method of the visitor that is passed as parameter to
the overridden accept methods. Furthermore, the parameter type of the visit
method(s) is a class that overrides the accept method.
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Figure F.41.: A class implements the Facade design pattern, if it does not consist of effectively
non final fields.
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Figure F.42.: A method in a sub class overrides the method of its super class, if a generalization
between both classes exists, the methods have the same name, the same number
of parameters, and the same parameter types.
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Figure F.43.: A class represents a Mediator design pattern, if the class consists of sub classes
that implement concrete mediators that consist of references to colleague classes
and each colleague class knows its mediator class.

241



Appendix

G. Case Study - Tracing Innovation Projects
The following figures show view modules for tracing Design Thinking innovation projects.
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(a) Extracts keywords from file
system object names.
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(b) Extracts keywords from the
name of the parent-folder.
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(c) Extracts keywords from the
content of a file.
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(d) Extracts keywords from the
grandparent-folder of a file
system object.
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(e) Obtains the creation date of
a file system object from its
file name.
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(f) Extracts the creation date of
a file system object from its
header.

Figure G.44.: Meta data extraction
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(a) Orders files by their creation dates.
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(b) Orders folders by their creation dates.
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(c) Gives a folder a creation date by calculating the
mean of creation dates from contained files.

Figure G.45.: Creation order
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Figure G.46.: Detects a given QR-Code and extracts keywords from the decoded text.
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(a) Determines chronological versions of a file
in the same folder.
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(b) Detects files with the same name, but
different file extensions.

Figure G.47.: Versions of artifacts
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Figure G.48.: Detects the LogCal by processing found QR codes.
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(a) Extracts the technique from keywords.
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(b) Extracts the activity from keywords.
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(c) Extracts the activity from a technique.
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(d) Extracts the phase from keywords.
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(e) Extracts the phase from an activity.

Figure G.49.: Design techniques, design activities, design phases
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(a) Detects design artifacts that are assigned to two different design activities and, therefore, are
transition artifact.
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(b) Detects design artifacts that are assigned to two different design phases and, therefore, are transition
artifacts.

Figure G.50.: Transition artifacts
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Figure G.51.: Detects iterations of artifacts, if two artifacts are in the same creation- and
chronological order.
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(a) Detects milestones by analyzing ex-
tracted keywords.
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(b) Marks a file system object as milestone, if it is the
last artifact in the current design phase.
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(c) Marks a file system object as milestone, if it is the
first artifact of the current design phase.

Figure G.52.: Milestones
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(a) Detects process artifacts from keywords.
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(b) Detects process artifacts, if the milestone indicates a process artifact.

Figure G.53.: Process artifacts
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(a) Recovers stakeholders from keywords.
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(b) Recovers stakeholders from milestones.

Figure G.54.: Stakeholder
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(a) Detects design activity follow-ups, if a design activity differs from the previous one.
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(b) Detects design phase follow-ups, if a design phase differs from the previous one.

Figure G.55.: Follow-ups

251



Appendix

������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������� ��������������������������������������������������

����������������������������������� �������������������������������

������������������������������

��������������������������� �����������������������

��������������

���������������������� ���������������������������

����������������������������

���������������������

����������������������

������������������������

���������������������

���������������������������

������������������������

�������������������

����������������������������

��������������������������

(a) Detects design activity continuations, if a design activity does not differ from the previous design
activity.
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(b) Detects design phase continuations, if a design phase does not differ from the previous design phase.

Figure G.56.: Continuation
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(a) If a design activity and its follow up are found,
the last design artifact of the previous design
activity is marked as milestone.
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(b) If a design phase and its follow up are found,
the last design artifact of the previous design
phase is marked as milestone.
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(c) If a design activity and its follow up are found,
the first design artifact of the current design
activity is marked as milestone.
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(d) If a design phase and its follow up are found,
the first design artifact of the current design
phase is marked as milestone.

Figure G.57.: Milestone
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(a) Marks files as successor artifacts in creation order.
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(b) Marks files as predecessor artifacts in creation order.

Figure G.58.: Creation order siblings
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(a) Aggregates multiple recovered design activi-
ties.
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(b) Aggregates multiple recovered design phases.
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(c) Aggregates multiple recovered milestones per
design phase.
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(d) Aggregates multiple recovered process arti-
facts.

Figure G.59.: Aggregation
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Appendix

H. Performance Evaluation
The following sections show the raw data of the evaluation measurements.

H.1. Comparison of Maintenance Algorithms

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
6 12442 1767 410 9971 0 0 12442
8 12425 1766 106 4967 0 0 537

11 12425 1766 0 4819 0 0 0
14 12220 1697 60 4632 0 0 248
15 12370 1646 504 4402 0 0 4315
16 12371 1644 27 3948 0 0 260
17 12361 1644 8 4320 0 0 88
18 12364 1644 1 4360 0 0 14
19 12288 1646 65 4434 0 0 547
25 12288 1646 0 4020 0 0 0
26 12332 1660 1 4013 0 0 44
28 12276 1654 31 4007 0 0 177
29 12376 1667 42 4528 0 0 401
30 12379 1667 5 4102 0 0 4
31 12344 1667 123 4549 0 0 1119
32 12475 1697 55 4695 0 0 396
33 12565 1713 29 4219 0 0 287
34 12570 1710 59 3929 0 0 570
35 12562 1705 5 3528 0 0 27
36 12560 1705 6 3650 0 0 51
38 12564 1705 25 3634 0 0 267
39 12578 1707 50 3387 0 0 513
41 14445 1852 14 3970 0 0 1867
42 14418 1848 36 4161 0 0 177
46 14486 1848 32 4381 0 0 384
47 14544 1848 88 4574 0 0 959
52 14544 1852 8 4636 0 0 41
53 15087 1906 195 4445 0 0 1993
54 20032 2725 129 9255 0 0 5356
55 20208 2755 106 9669 0 0 617
56 20217 2758 93 9741 0 0 404
58 20217 2758 6 9877 0 0 49
59 21215 2851 10 10520 0 0 998
60 21216 2851 1 9550 0 0 4
61 21172 2839 614 9320 0 0 2666
62 21217 2836 71 10008 0 0 428
63 21167 2835 34 9926 0 0 169
64 21195 2843 18 9447 0 0 83
66 21193 2843 11 10215 0 0 77
67 21021 2823 90 10078 0 0 330
68 21085 2841 101 10872 0 0 675
69 21151 2853 93 9741 0 0 422
70 21154 2853 13 11369 0 0 83
71 21158 2852 14 9983 0 0 68
72 21292 2870 88 10778 0 0 417
73 21288 2874 18 10526 0 0 43
74 21299 2874 9 9575 0 0 67
75 21321 2882 6 9437 0 0 44
76 21321 2882 34 10331 0 0 167
77 21323 2882 5 10440 0 0 3
78 21343 2879 61 10619 0 0 149
80 21344 2879 9 12064 0 0 51
81 21342 2876 20 10245 0 0 122
82 21342 2876 57 10205 0 0 163
83 21347 2876 61 9691 0 0 289
85 21349 2876 4 10329 0 0 3
92 21351 2876 6 10750 0 0 22
93 21615 2894 11 10384 0 0 312
94 21931 2933 5 11277 0 0 316
95 21976 2931 71 11032 0 0 482
97 21975 2914 40 10081 0 0 273
98 22084 2946 3 10709 0 0 109

100 22174 2982 97 11329 0 0 345

Table H.3.: Ant (naive maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
6 12442 1767 154 3685 87 951 12442
8 12425 1766 46 3800 30 747 537

11 12425 1766 0 3486 28 746 0
14 12220 1697 52 4374 130 727 248
15 12370 1646 403 3081 26 743 4315
16 12371 1644 24 3238 24 687 260
17 12361 1644 8 3424 25 698 88
18 12364 1644 2 3110 26 700 14
19 12288 1646 63 3460 25 716 547
25 12288 1646 0 3453 26 712 0
26 12332 1660 1 3417 26 727 44
28 12276 1654 36 3358 34 735 177
29 12376 1667 44 3521 25 763 401
30 12379 1667 2 3386 25 776 4
31 12344 1667 132 3428 26 768 1119
32 12475 1697 30 3341 26 801 396
33 12565 1713 33 3693 27 829 287
34 12570 1710 65 3568 27 852 570
35 12562 1705 7 3384 35 855 27
36 12560 1705 4 3764 26 857 51
38 12564 1705 27 3807 25 876 267
39 12578 1707 49 3829 25 902 513
41 14445 1852 12 5119 27 980 1867
42 14418 1848 50 4037 27 983 177
46 14486 1848 36 4258 28 1000 384
47 14544 1848 90 4514 25 1044 959
52 14544 1852 11 4310 28 1051 41
53 15087 1906 249 4791 29 1184 1993
54 20032 2725 165 9636 36 1886 5356
55 20208 2755 128 8538 38 1890 617
56 20217 2758 124 8854 38 1960 404
58 20217 2758 6 9986 37 1979 49
59 21215 2851 9 9689 35 3056 998
60 21216 2851 0 10097 38 2051 4
61 21172 2839 771 9519 37 2229 2666
62 21217 2836 78 10692 36 2254 428
63 21167 2835 29 9243 38 2892 169
64 21195 2843 17 9836 35 2247 83
66 21193 2843 10 9865 36 2256 77
67 21021 2823 97 8875 36 2251 330
68 21085 2841 119 10426 36 2270 675
69 21151 2853 128 11020 38 3836 422
70 21154 2853 13 9744 35 2371 83
71 21158 2852 15 9392 37 2376 68
72 21292 2870 114 10828 36 2435 417
73 21288 2874 29 9780 34 2400 43
74 21299 2874 8 12331 36 2428 67
75 21321 2882 6 9161 36 2461 44
76 21321 2882 36 10280 35 2498 167
77 21323 2882 5 9271 36 2517 3
78 21343 2879 84 10075 36 2512 149
80 21344 2879 9 10937 35 2564 51
81 21342 2876 22 10165 45 2531 122
82 21342 2876 73 9348 36 2592 163
83 21347 2876 79 10106 37 2634 289
85 21349 2876 5 10098 36 2653 3
92 21351 2876 6 10257 35 2625 22
93 21615 2894 10 10785 37 2665 312
94 21931 2933 5 9707 36 2743 316
95 21976 2931 71 10263 37 2753 482
97 21975 2914 41 9601 36 2695 273
98 22084 2946 3 10822 37 2771 109

100 22174 2982 129 10118 38 2843 345

Table H.4.: Ant (batch maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
6 12442 1767 103 6156 0 0 12442
8 12425 1766 42 734 28 45 537

11 12425 1766 0 30 0 0 0
14 12220 1697 44 51 85 1 248
15 12370 1646 414 1067 249 85 4315
16 12371 1644 21 557 14 68 260
17 12361 1644 7 67 4 5 88
18 12364 1644 1 127 0 3 14
19 12288 1646 50 344 8 69 547
25 12288 1646 0 29 0 0 0
26 12332 1660 0 46 0 0 44
28 12276 1654 21 332 7 44 177
29 12376 1667 26 459 22 55 401
30 12379 1667 2 29 0 0 4
31 12344 1667 79 422 3 68 1119
32 12475 1697 21 131 6 16 396
33 12565 1713 17 82 0 1 287
34 12570 1710 50 129 10 36 570
35 12562 1705 3 52 7 3 27
36 12560 1705 4 45 6 9 51
38 12564 1705 18 104 0 0 267
39 12578 1707 43 151 13 17 513
41 14445 1852 12 399 0 0 1867
42 14418 1848 16 372 6 42 177
46 14486 1848 23 183 0 1 384
47 14544 1848 77 306 8 28 959
52 14544 1852 3 41 0 2 41
53 15087 1906 121 823 52 79 1993
54 20032 2725 124 2794 11 49 5356
55 20208 2755 53 152 32 39 617
56 20217 2758 60 311 16 53 404
58 20217 2758 6 33 0 0 49
59 21215 2851 9 292 0 0 998
60 21216 2851 1 29 0 0 4
61 21172 2839 350 628 115 91 2666
62 21217 2836 50 177 17 24 428
63 21167 2835 30 103 3 19 169
64 21195 2843 16 120 23 18 83
66 21193 2843 9 46 0 0 77
67 21021 2823 62 87 63 90 330
68 21085 2841 65 251 108 88 675
69 21151 2853 40 164 23 52 422
70 21154 2853 9 63 0 0 83
71 21158 2852 8 82 12 41 68
72 21292 2870 37 468 16 58 417
73 21288 2874 6 81 2 4 43
74 21299 2874 7 87 0 35 67
75 21321 2882 3 186 21 48 44
76 21321 2882 23 101 73 46 167
77 21323 2882 4 30 0 0 3
78 21343 2879 23 217 26 64 149
80 21344 2879 6 46 0 0 51
81 21342 2876 12 86 11 39 122
82 21342 2876 20 68 11 20 163
83 21347 2876 29 108 0 0 289
85 21349 2876 4 30 0 0 3
92 21351 2876 3 34 0 0 22
93 21615 2894 9 107 0 0 312
94 21931 2933 5 120 0 0 316
95 21976 2931 59 101 16 15 482
97 21975 2914 32 89 41 39 273
98 22084 2946 3 84 0 0 109

100 22174 2982 29 264 16 49 345

Table H.5.: Ant (incremental maintenance)

258



H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
7 12467 1352 409 7535 0 0 12467

10 44581 4693 782 27874 0 0 32114
16 48548 5445 65 36176 0 0 3967
18 49740 5616 46 37111 0 0 1192
19 49777 5635 338 31585 0 0 1651
20 50022 5667 183 35419 0 0 1013
21 50022 5667 28 32325 0 0 111
22 50131 5665 135 34299 0 0 613
24 50123 5663 20 35471 0 0 53
25 50325 5686 201 34310 0 0 974
26 50728 5714 292 36764 0 0 1397
27 50687 5705 175 35273 0 0 713
30 50678 5702 119 36580 0 0 516
33 50678 5702 88 38050 0 0 263
37 51205 5728 81 37238 0 0 766
38 51209 5728 42 35990 0 0 230
42 51211 5728 79 38312 0 0 177
44 51231 5729 1 40170 0 0 20
54 51737 5762 112 38161 0 0 889
55 52064 5792 385 38201 0 0 1238
56 52211 5800 98 38023 0 0 644
57 53069 5967 178 40067 0 0 1664
58 53076 5967 134 43725 0 0 363
61 53075 5969 53 40319 0 0 103
62 53080 5969 65 42354 0 0 127
63 53063 5971 532 42276 0 0 1310
64 53247 5988 816 38032 0 0 1806
69 53247 5988 307 41745 0 0 458
70 53374 5998 290 42844 0 0 826
71 53399 5998 153 43291 0 0 351
74 55002 6200 621 47442 0 0 2546
77 55176 6213 36 46266 0 0 298
79 55193 6222 29 49224 0 0 64
81 55195 6222 46 49479 0 0 184
82 55183 6222 19 46606 0 0 30
86 54431 6196 1679 43048 0 0 752
88 54405 6194 74 46009 0 0 33
89 53525 6154 1991 45058 0 0 1187
90 53511 6154 168 42110 0 0 102
91 53655 6169 570 41189 0 0 731
92 53621 6171 701 47732 0 0 1379

Table H.6.: Subclipse (naive maintenance)
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Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
7 12467 1352 142 1908 85 698 12467

10 44581 4693 683 22133 60 2580 32114
16 48548 5445 63 30249 60 2854 3967
18 49740 5616 22 32530 61 2967 1192
19 49777 5635 357 34601 62 3108 1651
20 50022 5667 193 34200 62 3188 1013
21 50022 5667 37 35756 63 3199 111
22 50131 5665 150 34560 65 3311 613
24 50123 5663 22 36009 80 3856 53
25 50325 5686 233 35576 62 3380 974
26 50728 5714 325 36287 63 3598 1397
27 50687 5705 187 33836 64 3635 713
30 50678 5702 131 35508 62 3706 516
33 50678 5702 140 37518 62 3727 263
37 51205 5728 96 37228 62 3810 766
38 51209 5728 51 37499 59 3841 230
42 51211 5728 128 37664 63 3863 177
44 51231 5729 1 37891 64 4492 20
54 51737 5762 164 37186 62 3974 889
55 52064 5792 557 39084 60 4062 1238
56 52211 5800 90 39748 62 4097 644
57 53069 5967 204 42250 64 4310 1664
58 53076 5967 188 42456 64 4341 363
61 53075 5969 96 40652 63 4369 103
62 53080 5969 94 40881 64 4418 127
63 53063 5971 941 43250 64 4639 1310
64 53247 5988 1225 38820 67 4821 1806
69 53247 5988 472 43899 64 4823 458
70 53374 5998 465 41947 66 4928 826
71 53399 5998 240 41328 63 4956 351
74 55002 6200 1127 45920 65 5242 2546
77 55176 6213 33 46403 66 5281 298
79 55193 6222 52 48973 68 5320 64
81 55195 6222 50 45852 65 5343 184
82 55183 6222 24 46046 66 5351 30
86 54431 6196 2315 47411 311 5352 752
88 54405 6194 104 42574 85 5367 33
89 53525 6154 3171 45070 66 5386 1187
90 53511 6154 223 47391 66 5379 102
91 53655 6169 918 44072 66 5373 731
92 53621 6171 889 44099 66 5470 1379

Table H.7.: Subclipse (batch maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
7 12467 1352 113 4335 0 0 12467

10 44581 4693 647 18206 0 0 32114
16 48548 5445 90 2488 0 0 3967
18 49740 5616 21 293 0 0 1192
19 49777 5635 240 2039 245 174 1651
20 50022 5667 124 515 49 34 1013
21 50022 5667 19 5791 0 21 111
22 50131 5665 85 788 115 71 613
24 50123 5663 10 84 16 15 53
25 50325 5686 121 1671 142 121 974
26 50728 5714 158 1681 239 185 1397
27 50687 5705 123 1040 239 120 713
30 50678 5702 79 1341 59 108 516
33 50678 5702 42 238 0 2 263
37 51205 5728 48 845 0 6 766
38 51209 5728 34 465 13 1 230
42 51211 5728 26 146 30 39 177
44 51231 5729 1 34 0 0 20
54 51737 5762 61 1055 45 109 889
55 52064 5792 165 1846 177 151 1238
56 52211 5800 73 976 53 121 644
57 53069 5967 154 4408 141 155 1664
58 53076 5967 66 2294 47 63 363
61 53075 5969 17 129 56 16 103
62 53080 5969 20 58 0 2 127
63 53063 5971 217 4093 45 61 1310
64 53247 5988 277 2029 1045 473 1806
69 53247 5988 66 170 78 91 458
70 53374 5998 128 1740 42 54 826
71 53399 5998 62 1264 78 15 351
74 55002 6200 243 3415 61 22 2546
77 55176 6213 33 1703 0 27 298
79 55193 6222 9 92 0 31 64
81 55195 6222 30 2460 85 21 184
82 55183 6222 9 1162 0 9 30
86 54431 6196 345 28 211 0 752
88 54405 6194 12 74 15 1566 33
89 53525 6154 459 2398 359 165 1187
90 53511 6154 26 81 0 1 102
91 53655 6169 131 2752 36 46 731
92 53621 6171 257 2501 26 199 1379

Table H.8.: Subclipse (incremental maintenance)
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Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 59423 4330 1113 30667 0 0 59423
2 59423 4330 34 26017 0 0 150

15 59395 4330 228 25962 0 0 1170
16 59703 4356 108 22547 0 0 989
17 59597 4346 184 21505 0 0 1025
18 59597 4345 115 20750 0 0 739
19 59635 4347 340 20914 0 0 1543
20 60409 4470 25 22135 0 0 798
21 60410 4470 223 22629 0 0 985
22 60853 4515 7 22328 0 0 443
23 60822 4509 22 22679 0 0 76
24 60794 4507 134 22688 0 0 678
25 61195 4537 143 23167 0 0 719
26 61267 4554 52 23010 0 0 269
27 61470 4556 772 23409 0 0 1901
28 61539 4580 13 23919 0 0 119
29 61523 4579 49 22345 0 0 93
30 61562 4581 442 23875 0 0 1570
31 61579 4581 506 23153 0 0 1400
33 61570 4581 1244 22743 0 0 2410
34 61562 4576 41 24501 0 0 66
35 61540 4570 48 23648 0 0 98
36 61576 4590 29 23851 0 0 122
37 61782 4596 244 24567 0 0 695
38 61860 4602 13 27320 0 0 91
39 61872 4603 27 24656 0 0 167
40 61937 4606 14 24195 0 0 120
41 61932 4606 428 22951 0 0 456
42 61862 4601 6385 23410 0 0 7821
43 61862 4601 7 24772 0 0 28
44 61901 4603 1697 25740 0 0 3319
45 61914 4605 34 24467 0 0 60
47 62383 4628 656 26511 0 0 3743
48 63139 4719 9 25497 0 0 756
49 63155 4719 13 24122 0 0 28
50 63155 4719 126 25065 0 0 287
51 63145 4717 79 26712 0 0 329
54 64835 4988 34 29903 0 0 1690
56 64963 4996 506 30515 0 0 2125
57 64963 4996 64 31142 0 0 104
59 64963 4996 10 31331 0 0 21
60 65040 5004 421 31815 0 0 385
62 65156 5008 490 31517 0 0 2379
65 66298 5046 398 32361 0 0 3203
66 66298 5046 4 33715 0 0 21
68 66298 5046 498 31068 0 0 2645
71 67417 5125 42 33327 0 0 1131
73 67370 5125 419 34313 0 0 390
74 67374 5126 1440 34713 0 0 1350
80 67374 5126 7 33425 0 0 21
81 67374 5126 4 32394 0 0 21
83 67372 5126 51 33629 0 0 82
85 67372 5126 727 34983 0 0 2645
91 67454 5129 6 34550 0 0 82

100 67458 5129 67 32993 0 0 263

Table H.9.: Commons IO (naive maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 59423 4330 715 19815 173 2160 59423
2 59423 4330 23 19165 52 1769 150

15 59395 4330 202 20129 52 1736 1170
16 59703 4356 99 20593 50 1840 989
17 59597 4346 186 21213 51 1882 1025
18 59597 4345 103 21406 56 1881 739
19 59635 4347 388 20442 50 1931 1543
20 60409 4470 20 22033 52 2045 798
21 60410 4470 211 22578 51 2134 985
22 60853 4515 7 23626 52 2172 443
23 60822 4509 18 22424 51 2172 76
24 60794 4507 155 23015 70 2341 678
25 61195 4537 201 22856 52 2256 719
26 61267 4554 61 23202 53 2270 269
27 61470 4556 1111 23711 52 2568 1901
28 61539 4580 10 23100 51 2472 119
29 61523 4579 72 23918 61 2525 93
30 61562 4581 528 24907 50 2572 1570
31 61579 4581 925 21635 52 2616 1400
33 61570 4581 2332 23064 51 2678 2410
34 61562 4576 56 23827 53 2677 66
35 61540 4570 72 23661 50 2620 98
36 61576 4590 41 23111 53 2698 122
37 61782 4596 404 25271 49 3387 695
38 61860 4602 16 25332 52 2787 91
39 61872 4603 30 25128 50 2801 167
40 61937 4606 14 24989 51 2827 120
41 61932 4606 709 24664 52 2804 456
42 61862 4601 9139 24219 54 3086 7821
43 61862 4601 7 23494 52 3058 28
44 61901 4603 2607 24135 52 3159 3319
45 61914 4605 54 24779 51 3105 60
47 62383 4628 669 25784 53 3290 3743
48 63139 4719 10 25632 52 3362 756
49 63155 4719 16 27225 53 3384 28
50 63155 4719 149 27283 85 3341 287
51 63145 4717 71 26480 54 3415 329
54 64835 4988 36 31512 56 3764 1690
56 64963 4996 627 32023 56 3876 2125
57 64963 4996 93 32350 56 3951 104
59 64963 4996 12 32556 56 3980 21
60 65040 5004 660 30384 57 3982 385
62 65156 5008 490 31210 59 4021 2379
65 66298 5046 361 33889 58 4234 3203
66 66298 5046 5 33318 57 4204 21
68 66298 5046 450 31818 58 4270 2645
71 67417 5125 50 32437 58 4462 1131
73 67370 5125 711 34420 60 4420 390
74 67374 5126 2140 35244 59 4625 1350
80 67374 5126 7 34652 58 5086 21
81 67374 5126 5 34069 59 4613 21
83 67372 5126 71 35287 58 4641 82
85 67372 5126 853 35300 58 4689 2645
91 67454 5129 6 31504 57 4740 82

100 67458 5129 83 33591 58 4723 263

Table H.10.: Commons IO (batch maintenance)

263



Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 59423 4330 651 30818 0 0 59423
2 59423 4330 19 53 0 0 150

15 59395 4330 164 316 143 90 1170
16 59703 4356 83 208 0 0 989
17 59597 4346 155 205 177 97 1025
18 59597 4345 91 165 8 10 739
19 59635 4347 210 606 23 53 1543
20 60409 4470 15 213 0 1 798
21 60410 4470 144 206 136 5 985
22 60853 4515 7 110 0 0 443
23 60822 4509 17 47 47 18 76
24 60794 4507 91 164 24 1 678
25 61195 4537 50 274 88 182 719
26 61267 4554 32 83 32 6 269
27 61470 4556 316 672 818 445 1901
28 61539 4580 11 55 0 0 119
29 61523 4579 18 65 12 10 93
30 61562 4581 220 482 852 400 1570
31 61579 4581 197 496 25 59 1400
33 61570 4581 321 592 69 86 2410
34 61562 4576 13 56 24 24 66
35 61540 4570 20 56 35 23 98
36 61576 4590 13 66 0 7 122
37 61782 4596 60 194 35 24 695
38 61860 4602 4 57 0 1 91
39 61872 4603 21 130 25 21 167
40 61937 4606 10 51 0 4 120
41 61932 4606 66 120 0 0 456
42 61862 4601 1146 8940 1124 1462 7821
43 61862 4601 4 35 0 0 28
44 61901 4603 437 633 58 60 3319
45 61914 4605 7 41 0 1 60
47 62383 4628 442 737 59 66 3743
48 63139 4719 10 200 0 0 756
49 63155 4719 4 85 0 1 28
50 63155 4719 61 72 117 0 287
51 63145 4717 60 119 77 66 329
54 64835 4988 34 891 0 0 1690
56 64963 4996 286 432 26 53 2125
57 64963 4996 15 71 0 14 104
59 64963 4996 4 34 0 0 21
60 65040 5004 51 241 102 139 385
62 65156 5008 335 452 26 53 2379
65 66298 5046 307 569 22 44 3203
66 66298 5046 3 33 0 0 21
68 66298 5046 348 415 43 50 2645
71 67417 5125 28 263 0 2 1131
73 67370 5125 72 104 0 3 390
74 67374 5126 186 417 371 385 1350
80 67374 5126 3 34 0 0 21
81 67374 5126 4 33 0 0 21
83 67372 5126 12 107 26 72 82
85 67372 5126 355 425 43 53 2645
91 67454 5129 6 50 0 0 82

100 67458 5129 33 90 75 84 263

Table H.11.: Commons IO (incremental maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
2 133858 20160 1649 537156 0 0 133858
3 155119 21458 396 602596 0 0 21261
4 155139 21464 938 518835 0 0 1292
7 155064 21464 1447 532679 0 0 1296
8 155050 21457 1144 581125 0 0 991
9 161485 22317 81 670908 0 0 6435

12 161460 22314 462 769675 0 0 292
13 161422 22314 1471 693744 0 0 896
14 161422 22314 0 662363 0 0 0
16 161458 22315 1403 636054 0 0 997
17 161423 22315 1370 641098 0 0 1135
18 161436 22319 400 632739 0 0 349
19 161405 22319 358 700793 0 0 210
20 161356 22303 751 621762 0 0 470
21 161411 22305 1802 570412 0 0 1035
22 161466 22303 2761 624656 0 0 1975
23 161457 22303 206 742800 0 0 167
24 161466 22339 364 764892 0 0 267
25 161477 22348 14205 654967 0 0 6494
26 165728 22810 7626 682302 0 0 7612
29 165728 22810 44 724657 0 0 54
30 168753 23719 42 683073 0 0 3025
32 179908 24947 319 624850 0 0 11155
38 179906 24947 165 680901 0 0 146
39 179906 24947 56 711941 0 0 19
40 181526 25125 5889 674345 0 0 3717
42 181521 25124 244 680222 0 0 153
48 182816 25259 14954 688560 0 0 7662
49 182815 25259 41 649625 0 0 40
50 182824 25260 4860 706468 0 0 2022
51 182706 25235 8523 705107 0 0 3719
52 182440 25202 3486 651803 0 0 1086
53 182448 25202 14 733828 0 0 17
54 182472 25218 13 707647 0 0 31
55 182478 25222 7 689524 0 0 13
56 182505 25222 181 649605 0 0 91
58 182805 25261 697 652772 0 0 539
60 182806 25261 77 745167 0 0 67
61 182859 25277 2323 655423 0 0 1115
62 183084 25306 324 663002 0 0 374
63 183085 25310 637 657974 0 0 265
64 183612 25461 3 714683 0 0 527
65 183510 25435 246 751128 0 0 102
66 183467 25434 2214 726324 0 0 892
67 183444 25430 1889 733079 0 0 518
68 183444 25430 0 745170 0 0 0
71 183442 25430 350 727792 0 0 117
73 183439 25427 174 751025 0 0 85
76 183449 25399 5995 715138 0 0 1772
77 183480 25403 117 705563 0 0 72
78 183470 25402 107 749043 0 0 79
79 183637 25421 551 726621 0 0 373
80 183773 25477 2654 752391 0 0 992
81 184391 25544 8457 672492 0 0 3852
82 184387 25546 2423 760347 0 0 908
83 184383 25546 322 758973 0 0 151
84 185242 25624 3328 758161 0 0 1917
85 185288 25630 3309 758025 0 0 1324
86 185407 25652 3102 747016 0 0 1436
87 185261 25650 2235 760829 0 0 908
88 185296 25650 763 736953 0 0 616
90 185327 25650 174 677343 0 0 109
91 185323 25650 715 731409 0 0 413
92 191262 25812 269 782292 0 0 5939
93 191267 25812 1 754508 0 0 5
94 191270 25812 0 752040 0 0 3
95 191270 25812 0 772896 0 0 0
96 191270 25812 0 693341 0 0 0
97 191314 25816 794 772817 0 0 480
98 191407 25831 871 746318 0 0 289
99 191407 25831 0 696307 0 0 0

100 191415 25828 776 779137 0 0 275

Table H.12.: Xerces (naive maintenance)
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Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
2 133858 20160 1800 725047 372 17505 133858
3 155119 21458 528 624516 263 21336 21261
4 155139 21464 1347 623385 294 21877 1292
7 155064 21464 1857 644502 253 22203 1296
8 155050 21457 1669 559574 281 22535 991
9 161485 22317 103 803447 270 25959 6435

12 161460 22314 613 688352 299 24764 292
13 161422 22314 2137 759855 270 25359 896
14 161422 22314 0 683127 297 26033 0
16 161458 22315 2089 624820 283 25564 997
17 161423 22315 1831 695774 306 26646 1135
18 161436 22319 538 833148 275 29264 349
19 161405 22319 610 685416 294 26374 210
20 161356 22303 1000 820063 295 26387 470
21 161411 22305 2138 738755 300 26526 1035
22 161466 22303 3661 665670 313 30221 1975
23 161457 22303 304 709029 282 27595 167
24 161466 22339 498 843547 269 27311 267
25 161477 22348 20249 760181 271 28159 6494
26 165728 22810 10579 665117 315 30486 7612
29 165728 22810 72 755398 272 29812 54
30 168753 23719 52 749115 313 32372 3025
32 179908 24947 471 702148 332 36817 11155
38 179906 24947 243 762366 334 36070 146
39 179906 24947 120 779499 303 36464 19
40 181526 25125 8805 782683 386 36713 3717
42 181521 25124 392 779655 351 36957 153
48 182816 25259 21801 817649 359 38504 7662
49 182815 25259 51 819433 346 38089 40
50 182824 25260 7341 785205 321 38459 2022
51 182706 25235 12240 807105 314 38953 3719
52 182440 25202 5143 798911 310 39033 1086
53 182448 25202 61 764659 346 38780 17
54 182472 25218 29 803977 328 39118 31
55 182478 25222 10 800776 311 42673 13
56 182505 25222 340 828310 304 40993 91
58 182805 25261 1103 806014 310 42458 539
60 182806 25261 98 822659 330 43356 67
61 182859 25277 3527 745495 325 40773 1115
62 183084 25306 505 749550 347 41828 374
63 183085 25310 1072 764916 320 41743 265
64 183612 25461 6 767427 322 43437 527
65 183510 25435 286 792022 1347 42296 102
66 183467 25434 3576 780710 315 41667 892
67 183444 25430 3051 893181 313 44567 518
68 183444 25430 0 876926 320 43805 0
71 183442 25430 616 783456 319 42314 117
73 183439 25427 312 850547 328 43051 85
76 183449 25399 8942 860278 357 42239 1772
77 183480 25403 230 851924 313 44320 72
78 183470 25402 130 785148 317 43153 79
79 183637 25421 932 836744 319 42698 373
80 183773 25477 4530 860994 351 43252 992
81 184391 25544 12794 843571 305 46168 3852
82 184387 25546 3788 803942 313 44420 908
83 184383 25546 523 889489 344 47832 151
84 185242 25624 5335 847128 311 47904 1917
85 185288 25630 5157 815559 362 56980 1324
86 185407 25652 5334 788337 337 48776 1436
87 185261 25650 3762 841922 320 46292 908
88 185296 25650 1044 798776 341 46477 616
90 185327 25650 343 892185 328 45822 109
91 185323 25650 985 847500 352 46775 413
92 191262 25812 305 931208 351 46894 5939
93 191267 25812 1 855466 347 48155 5
94 191270 25812 0 889667 330 47734 3
95 191270 25812 0 812113 362 47401 0
96 191270 25812 0 883382 347 50016 0
97 191314 25816 1037 886882 321 48359 480
98 191407 25831 1575 919621 358 48338 289
99 191407 25831 0 853515 340 49866 0

100 191415 25828 1308 869350 313 50928 275

Table H.13.: Xerces (batch maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
2 133858 20160 1079 1798529 0 0 133858
3 155119 21458 337 287323 0 0 21261
4 155139 21464 903 3022 30 549 1292
7 155064 21464 1059 288 298 310 1296
8 155050 21457 768 1974 269 1041 991
9 161485 22317 39 2603 0 0 6435

12 161460 22314 296 70 313 132 292
13 161422 22314 848 702 0 110 896
14 161422 22314 1 28 0 0 0
16 161458 22315 821 1592 1468 1067 997
17 161423 22315 835 460 1594 1674 1135
18 161436 22319 238 194 220 300 349
19 161405 22319 211 48 0 2 210
20 161356 22303 438 387 1160 954 470
21 161411 22305 839 137 94 12 1035
22 161466 22303 1468 1006 619 579 1975
23 161457 22303 130 56 0 4 167
24 161466 22339 173 450 251 236 267
25 161477 22348 5741 2690 649 5883 6494
26 165728 22810 3187 5868 2182 2047 7612
29 165728 22810 33 65 0 0 54
30 168753 23719 39 1061 0 0 3025
32 179908 24947 312 2930 0 0 11155
38 179906 24947 131 524 212 232 146
39 179906 24947 23 39 0 6 19
40 181526 25125 2539 6468 323 884 3717
42 181521 25124 179 3632 104 79 153
48 182816 25259 7812 1962 6707 90 7662
49 182815 25259 40 34 0 0 40
50 182824 25260 2146 699 1038 877 2022
51 182706 25235 3923 14937 2433 1874 3719
52 182440 25202 1593 1143 1026 839 1086
53 182448 25202 4 8333 0 3 17
54 182472 25218 7 84 0 59 31
55 182478 25222 8 83 0 78 13
56 182505 25222 82 119 232 125 91
58 182805 25261 255 273 243 151 539
60 182806 25261 69 47 0 6 67
61 182859 25277 1035 708 662 526 1115
62 183084 25306 133 134 70 26 374
63 183085 25310 265 140 139 156 265
64 183612 25461 3 179 0 0 527
65 183510 25435 263 31 906 0 102
66 183467 25434 935 750 744 667 892
67 183444 25430 499 519 1395 1419 518
68 183444 25430 0 31 0 0 0
71 183442 25430 120 226 35 128 117
73 183439 25427 90 1023 118 345 85
76 183449 25399 2287 474 4757 3575 1772
77 183480 25403 39 3502 35 48 72
78 183470 25402 106 5233 139 81 79
79 183637 25421 257 112 70 11 373
80 183773 25477 895 521 407 330 992
81 184391 25544 3881 1349 1608 2174 3852
82 184387 25546 922 643 338 1513 908
83 184383 25546 133 75 0 1 151
84 185242 25624 1716 613 1318 825 1917
85 185288 25630 2019 827 773 1972 1324
86 185407 25652 1686 127196 398 942 1436
87 185261 25650 1722 683 378 1477 908
88 185296 25650 838 679 960 989 616
90 185327 25650 121 49 0 9 109
91 185323 25650 596 173 396 436 413
92 191262 25812 274 1239 0 0 5939
93 191267 25812 1 32 0 0 5
94 191270 25812 0 30 0 0 3
95 191270 25812 0 31 0 0 0
96 191270 25812 0 30 0 0 0
97 191314 25816 665 223 794 660 480
98 191407 25831 353 165 58 375 289
99 191407 25831 0 31 0 0 0

100 191415 25828 393 311 563 342 275

Table H.14.: Xerces (incremental maintenance)
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Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 228423 22999 5297 846766 0 0 228423
2 228423 22986 881 819525 0 0 598

14 228542 22985 1336 743151 0 0 1191
15 228541 22985 4734 712197 0 0 4018
23 228541 22985 1010 727311 0 0 750
27 229795 23013 4286 785634 0 0 4216
28 229795 23013 43 680226 0 0 24
29 229794 23012 29 736730 0 0 20
41 229794 23012 230 692994 0 0 126
55 230166 23024 4697 793863 0 0 2994
57 230165 23024 65 741759 0 0 42
59 230151 23024 3351 730899 0 0 1620
60 230204 23027 2005 787462 0 0 1017
61 230233 23029 2284 816626 0 0 1471
62 230347 23033 1260 786599 0 0 731
63 230418 23032 1403 736344 0 0 756
65 230418 23032 237 722881 0 0 273
66 230418 23032 426 686433 0 0 347
67 230611 23037 2107 700403 0 0 1028
72 230641 23038 3397 790225 0 0 1974
74 230645 23039 159 732369 0 0 68
75 230769 23047 476 820199 0 0 318
80 230786 23091 2038 831423 0 0 568
85 230786 23091 1564 733303 0 0 517
92 230784 23091 811 829752 0 0 284

Table H.15.: Commons Collections (naive maintenance)

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 228423 22999 4853 805257 374 25456 228423
2 228423 22986 771 797849 247 25060 598

14 228542 22985 1407 721995 232 25447 1191
15 228541 22985 5654 744088 233 26185 4018
23 228541 22985 1327 729863 228 26387 750
27 229795 23013 5228 745190 245 27172 4216
28 229795 23013 62 743767 245 26978 24
29 229794 23012 33 715959 312 27065 20
41 229794 23012 272 819687 255 29541 126
55 230166 23024 5994 814590 238 27628 2994
57 230165 23024 75 821196 244 28017 42
59 230151 23024 4275 836170 244 28035 1620
60 230204 23027 2570 832884 240 28654 1017
61 230233 23029 2851 741129 240 29028 1471
62 230347 23033 1636 751241 241 29250 731
63 230418 23032 1970 809066 230 29547 756
65 230418 23032 296 797934 242 29750 273
66 230418 23032 515 724689 244 30109 347
67 230611 23037 2673 789012 235 29986 1028
72 230641 23038 4379 817538 238 30466 1974
74 230645 23039 231 826892 231 30545 68
75 230769 23047 662 826652 226 32102 318
80 230786 23091 3078 835573 399 31295 568
85 230786 23091 2273 749130 242 31248 517
92 230784 23091 1131 821719 241 31882 284

Table H.16.: Commons Collections (batch maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 228423 22999 4555 822159 0 0 228423
2 228423 22986 676 191 991 254 598

14 228542 22985 961 1561 795 1028 1191
15 228541 22985 3473 873 1809 1830 4018
23 228541 22985 674 410 796 879 750
27 229795 23013 2547 1186 195 79 4216
28 229795 23013 28 49 0 11 24
29 229794 23012 17 933 74 104 20
41 229794 23012 109 307 0 45 126
55 230166 23024 2407 706 224 456 2994
57 230165 23024 37 42 0 0 42
59 230151 23024 1479 3937 1797 1922 1620
60 230204 23027 907 408 587 757 1017
61 230233 23029 1141 357 0 5 1471
62 230347 23033 501 163 90 109 731
63 230418 23032 594 554 91 324 756
65 230418 23032 203 83 0 0 273
66 230418 23032 241 75 0 3 347
67 230611 23037 949 368 1938 1966 1028
72 230641 23038 1545 565 47 120 1974
74 230645 23039 56 58 0 10 68
75 230769 23047 212 89 0 6 318
80 230786 23091 425 1170 174 22 568
85 230786 23091 472 246 136 186 517
92 230784 23091 281 86 0 0 284

Table H.17.: Commons Collections (incremental maintenance)
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Appendix

H.2. Comparison of Network Structures
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Figure H.60.: Gator network structure for exterior evaluation
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Figure H.61.: Rete network structure for exterior evaluation
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Appendix

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
6 12442 36 113 928 0 0 12442
8 12425 36 13 185 8 7 537

11 12425 36 0 3 0 0 0
14 12220 36 14 5 0 0 248
15 12370 34 141 215 55 7 4315
16 12371 33 7 26 3 6 260
17 12361 33 3 6 0 0 88
18 12364 33 1 4 0 0 14
19 12288 32 26 41 4 11 547
25 12288 32 0 4 0 0 0
26 12332 32 1 5 0 0 44
28 12276 31 6 22 2 6 177
29 12376 30 12 27 3 6 401
30 12379 30 2 3 0 0 4
31 12344 30 25 117 0 16 1119
32 12475 30 7 8 0 0 396
33 12565 30 6 8 0 0 287
34 12570 30 16 9 0 0 570
35 12562 30 1 4 0 0 27
36 12560 30 2 4 0 0 51
38 12564 30 6 311 0 0 267
39 12578 30 14 8 0 0 513
41 14445 31 14 38 0 0 1867
42 14418 31 5 15 0 0 177
46 14486 31 7 330 0 0 384
47 14544 31 26 95 0 0 959
52 14544 31 1 3 0 0 41
53 15087 30 49 66 2 8 1993
54 20032 30 63 123 0 2 5356
55 20208 28 16 14 11 3 617
56 20217 28 27 16 0 0 404
58 20217 28 2 3 0 0 49
59 21215 28 11 17 0 0 998
60 21216 28 0 3 0 0 4
61 21172 26 107 175 6 9 2666
62 21217 26 14 23 0 1 428
63 21167 26 9 7 0 0 169
64 21195 26 21 7 0 0 83
66 21193 26 2 5 0 0 77
67 21021 26 11 5 0 0 330
68 21085 27 19 43 6 1 675
69 21151 26 12 12 7 1 422
70 21154 26 2 6 0 0 83
71 21158 26 2 5 0 0 68
72 21292 26 10 27 3 6 417
73 21288 26 1 15 0 0 43
74 21299 26 2 5 0 0 67
75 21321 26 1 19 0 6 44
76 21321 26 11 5 0 0 167
77 21323 26 4 2 0 0 3
78 21343 25 10 23 3 9 149
80 21344 25 1 5 0 0 51
81 21342 25 3 6 0 0 122
82 21342 25 5 8 0 5 163
83 21347 25 8 341 0 0 289
85 21349 25 5 3 0 0 3
92 21351 25 1 3 0 0 22
93 21615 25 6 9 0 0 312
94 21931 27 10 32 0 0 316
95 21976 27 31 9 0 0 482
97 21975 25 17 10 13 1 273
98 22084 25 3 5 0 0 109

100 22174 25 12 14 0 0 345

Table H.18.: Ant (Gator network, incremental maintenance)
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H. Performance Evaluation

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
6 12442 2235 99 3814 0 0 12442
8 12425 2283 44 1139 23 27 537

11 12425 2283 0 14 0 0 0
14 12220 2279 47 18 4 0 248
15 12370 2273 439 1334 132 21 4315
16 12371 2270 22 93 11 21 260
17 12361 2270 8 23 0 0 88
18 12364 2270 2 18 0 0 14
19 12288 2272 54 132 7 23 547
25 12288 2272 0 27 0 0 0
26 12332 2275 1 30 0 0 44
28 12276 2272 21 70 6 18 177
29 12376 2276 25 85 15 34 401
30 12379 2276 2 15 0 0 4
31 12344 2292 86 931 7 97 1119
32 12475 2311 23 40 1 2 396
33 12565 2318 18 30 0 1 287
34 12570 2318 53 36 15 0 570
35 12562 2314 3 15 3 1 27
36 12560 2314 5 19 0 1 51
38 12564 2314 20 913 7 20 267
39 12578 2314 63 37 18 0 513
41 14445 2454 11 184 0 0 1867
42 14418 2453 27 54 3 8 177
46 14486 2466 27 957 11 8 384
47 14544 2481 84 1034 22 26 959
52 14544 2483 4 22 4 10 41
53 15087 2513 129 218 13 62 1993
54 20032 2914 88 793 8 10 5356
55 20208 2893 51 65 16 52 617
56 20217 2891 56 47 4 11 404
58 20217 2891 5 17 0 0 49
59 21215 2963 9 94 0 0 998
60 21216 2963 1 17 0 2 4
61 21172 2960 319 1522 65 118 2666
62 21217 2961 45 51 3 5 428
63 21167 2954 27 22 10 5 169
64 21195 2957 16 24 0 0 83
66 21193 2957 8 19 0 0 77
67 21021 2943 58 22 17 0 330
68 21085 2970 59 122 34 79 675
69 21151 2960 37 49 61 22 422
70 21154 2960 9 21 0 0 83
71 21158 2961 7 22 5 0 68
72 21292 2991 34 101 14 19 417
73 21288 2991 5 29 0 0 43
74 21299 2991 6 20 0 2 67
75 21321 2999 3 59 8 40 44
76 21321 2999 21 35 19 47 167
77 21323 2999 5 16 0 0 3
78 21343 2996 21 57 12 30 149
80 21344 2996 6 17 0 0 51
81 21342 2994 13 20 2 2 122
82 21342 2994 20 45 8 18 163
83 21347 2994 28 1336 19 57 289
85 21349 2994 4 15 0 0 3
92 21351 2994 2 17 0 2 22
93 21615 3002 10 36 0 0 312
94 21931 3053 5 80 0 0 316
95 21976 3055 67 41 6 13 482
97 21975 3021 35 37 38 101 273
98 22084 3030 2 26 0 0 109

100 22174 3037 33 54 26 12 345

Table H.19.: Ant (Rete network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
7 12467 27 352 375 0 0 12467

10 44581 56 619 2383 0 0 32114
16 48548 56 78 49 0 0 3967
18 49740 56 28 17 0 0 1192
19 49777 56 57 69 13 15 1651
20 50022 57 38 24 0 0 1013
21 50022 57 5 28 0 5 111
22 50131 58 34 24 0 0 613
24 50123 58 2 5 0 0 53
25 50325 59 45 47 7 2 974
26 50728 60 46 61 0 11 1397
27 50687 60 29 48 0 11 713
30 50678 60 43 53 7 13 516
33 50678 60 19 8 0 0 263
37 51205 60 39 16 0 3 766
38 51209 60 17 10 0 0 230
42 51211 60 6 13 0 0 177
44 51231 60 1 3 0 0 20
54 51737 61 19 40 0 2 889
55 52064 63 73 61 0 4 1238
56 52211 63 20 31 0 3 644
57 53069 69 85 125 0 9 1664
58 53076 69 19 50 7 17 363
61 53075 69 5 5 0 0 103
62 53080 69 12 5 0 0 127
63 53063 69 108 65 0 10 1310
64 53247 70 90 111 20 31 1806
69 53247 70 14 12 0 0 458
70 53374 70 71 69 0 2 826
71 53399 70 27 18 0 0 351
74 55002 75 131 114 0 0 2546
77 55176 75 17 66 0 3 298
79 55193 75 4 4 0 0 64
81 55195 75 7 17 0 3 184
82 55183 75 2 5 0 0 30
86 54431 75 68 3 0 0 752
88 54405 75 2 4 0 0 33
89 53525 75 102 61 0 10 1187
90 53511 75 11 13 0 0 102
91 53655 76 32 54 0 0 731
92 53621 76 165 100 0 8 1379

Table H.20.: Subclipse (Gator network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
7 12467 1600 112 2686 0 0 12467

10 44581 4382 631 16632 0 0 32114
16 48548 4662 86 666 0 0 3967
18 49740 4850 33 233 0 0 1192
19 49777 4922 233 985 335 665 1651
20 50022 4930 121 213 24 165 1013
21 50022 4930 18 221 0 18 111
22 50131 4957 84 178 30 21 613
24 50123 4957 11 19 0 0 53
25 50325 4992 123 564 63 67 974
26 50728 5095 152 1127 44 258 1397
27 50687 5084 125 759 99 180 713
30 50678 5080 82 561 46 62 516
33 50678 5080 42 51 14 19 263
37 51205 5112 50 232 0 4 766
38 51209 5112 34 80 14 11 230
42 51211 5112 27 90 0 0 177
44 51231 5112 0 15 0 0 20
54 51737 5195 63 621 274 153 889
55 52064 5244 167 866 34 52 1238
56 52211 5262 76 448 368 202 644
57 53069 5451 156 1588 21 118 1664
58 53076 5451 65 600 28 64 363
61 53075 5451 18 30 12 0 103
62 53080 5451 21 20 0 0 127
63 53063 5452 218 946 159 102 1310
64 53247 5536 223 1678 219 723 1806
69 53247 5536 53 43 0 3 458
70 53374 5549 107 934 8 133 826
71 53399 5557 50 358 203 113 351
74 55002 5844 206 1598 26 6 2546
77 55176 5860 28 558 92 186 298
79 55193 5864 8 26 0 0 64
81 55195 5864 25 349 297 231 184
82 55183 5862 8 28 9 6 30
86 54431 5830 279 12 162 0 752
88 54405 5830 10 17 0 0 33
89 53525 5818 361 444 154 277 1187
90 53511 5814 23 81 34 0 102
91 53655 5825 109 329 113 41 731
92 53621 5834 239 1327 83 134 1379

Table H.21.: Subclipse (Rete network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 59423 22 700 1934 0 0 59423
2 59423 22 5 4 0 0 150

15 59395 22 41 18 0 0 1170
16 59703 22 26 14 0 0 989
17 59597 22 38 16 0 0 1025
18 59597 22 24 12 0 0 739
19 59635 22 57 39 0 0 1543
20 60409 22 12 11 0 0 798
21 60410 22 41 17 0 0 985
22 60853 22 6 6 0 0 443
23 60822 22 4 3 0 0 76
24 60794 22 23 13 0 0 678
25 61195 22 18 12 0 2 719
26 61267 22 8 5 0 0 269
27 61470 22 102 36 0 0 1901
28 61539 22 3 4 0 0 119
29 61523 22 4 6 0 0 93
30 61562 22 54 24 0 4 1570
31 61579 22 46 33 0 0 1400
33 61570 22 70 28 0 0 2410
34 61562 22 2 4 0 0 66
35 61540 22 4 3 0 0 98
36 61576 22 3 4 0 0 122
37 61782 22 25 11 0 5 695
38 61860 22 2 5 0 0 91
39 61872 22 5 8 0 4 167
40 61937 22 3 3 0 0 120
41 61932 22 16 5 0 0 456
42 61862 22 301 120 0 5 7821
43 61862 22 1 3 0 0 28
44 61901 22 124 35 0 0 3319
45 61914 22 1 3 0 0 60
47 62383 22 135 40 0 0 3743
48 63139 23 9 11 0 0 756
49 63155 23 2 4 0 0 28
50 63155 23 20 5 0 0 287
51 63145 23 13 6 0 2 329
54 64835 27 33 67 0 0 1690
56 64963 27 79 21 0 0 2125
57 64963 27 4 5 0 0 104
59 64963 27 1 3 0 0 21
60 65040 27 12 10 0 2 385
62 65156 27 118 24 0 0 2379
65 66298 27 106 32 0 0 3203
66 66298 27 0 2 0 0 21
68 66298 27 86 26 0 0 2645
71 67417 27 27 13 0 0 1131
73 67370 27 16 11 0 0 390
74 67374 27 42 29 0 0 1350
80 67374 27 1 3 0 0 21
81 67374 27 1 3 0 0 21
83 67372 27 3 7 0 2 82
85 67372 27 86 26 0 0 2645
91 67454 27 7 3 0 0 82

100 67458 27 8 4 0 0 263

Table H.22.: Commons IO (Gator network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 59423 2431 649 13289 0 0 59423
2 59423 2431 12 19 0 0 150

15 59395 2427 111 72 20 53 1170
16 59703 2444 61 67 0 0 989
17 59597 2455 109 136 36 81 1025
18 59597 2455 64 50 22 50 739
19 59635 2455 160 124 13 25 1543
20 60409 2492 13 117 11 0 798
21 60410 2492 105 137 5 90 985
22 60853 2503 6 39 0 0 443
23 60822 2502 12 17 14 0 76
24 60794 2498 65 120 24 27 678
25 61195 2531 36 98 6 31 719
26 61267 2536 21 29 9 2 269
27 61470 2554 221 231 41 116 1901
28 61539 2558 8 22 0 0 119
29 61523 2550 12 101 22 108 93
30 61562 2548 155 177 101 226 1570
31 61579 2548 138 127 18 31 1400
33 61570 2548 211 131 0 3 2410
34 61562 2552 9 33 25 49 66
35 61540 2542 14 26 61 98 98
36 61576 2558 9 29 0 0 122
37 61782 2564 45 115 0 18 695
38 61860 2564 4 23 12 0 91
39 61872 2564 15 91 0 16 167
40 61937 2564 7 18 0 0 120
41 61932 2564 45 30 0 2 456
42 61862 2546 798 777 156 266 7821
43 61862 2546 3 15 0 0 28
44 61901 2546 307 158 0 3 3319
45 61914 2546 5 19 0 2 60
47 62383 2553 320 197 0 4 3743
48 63139 2598 10 77 0 0 756
49 63155 2598 3 23 10 0 28
50 63155 2598 44 27 0 0 287
51 63145 2598 41 43 29 2 329
54 64835 2844 35 494 0 0 1690
56 64963 2844 204 95 0 0 2125
57 64963 2844 11 135 0 154 104
59 64963 2844 2 17 0 2 21
60 65040 2859 33 100 8 30 385
62 65156 2859 245 105 0 2 2379
65 66298 2859 244 144 0 2 3203
66 66298 2859 2 17 0 2 21
68 66298 2859 217 112 0 2 2645
71 67417 2911 26 100 13 0 1131
73 67370 2911 42 50 24 32 390
74 67374 2911 110 138 172 58 1350
80 67374 2911 3 17 0 2 21
81 67374 2911 2 16 0 0 21
83 67372 2931 8 66 0 9 82
85 67372 2931 220 104 0 2 2645
91 67454 2932 7 20 0 0 82

100 67458 2932 21 21 0 0 263

Table H.23.: Commons IO (Rete network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
2 133858 212 1255 316422 0 0 133858
3 155119 216 354 221 0 0 21261
4 155139 216 83 313 0 27 1292
7 155064 216 104 22 0 2 1296
8 155050 216 80 299 0 10 991
9 161485 241 47 279 0 0 6435

12 161460 241 30 8 78 0 292
13 161422 241 69 48 0 4 896
14 161422 241 0 3 0 0 0
16 161458 241 71 454 0 12 997
17 161423 241 75 30 0 0 1135
18 161436 241 22 8 0 0 349
19 161405 241 19 4 0 0 210
20 161356 241 40 25 0 0 470
21 161411 241 93 7 0 0 1035
22 161466 241 166 151 0 31 1975
23 161457 241 16 5 0 0 167
24 161466 241 16 40 0 12 267
25 161477 241 535 279 0 0 6494
26 165728 245 399 863 0 41 7612
29 165728 245 3 5 0 0 54
30 168753 245 45 28 0 0 3025
32 179908 258 344 841 0 0 11155
38 179906 258 10 20 0 0 146
39 179906 258 2 3 0 0 19
40 181526 261 288 334 0 0 3717
42 181521 261 13 159 0 0 153
48 182816 262 704 358 0 45 7662
49 182815 262 4 3 0 0 40
50 182824 262 194 29 0 0 2022
51 182706 262 408 614 0 73 3719
52 182440 262 109 121 0 2 1086
53 182448 262 1 5359 0 0 17
54 182472 262 1 3 0 0 31
55 182478 262 1 2 0 0 13
56 182505 262 7 7 0 2 91
58 182805 265 36 39 0 5 539
60 182806 265 9 5 0 4 67
61 182859 265 83 27 0 0 1115
62 183084 265 12 5 0 0 374
63 183085 265 24 5 0 0 265
64 183612 265 4 5 0 0 527
65 183510 265 20 3 0 0 102
66 183467 265 83 24 0 0 892
67 183444 265 39 13 0 0 518
68 183444 265 0 2 0 0 0
71 183442 265 12 18 0 8 117
73 183439 265 7 29 0 0 85
76 183449 265 156 31 0 11 1772
77 183480 265 3 159 0 0 72
78 183470 265 7 161 0 0 79
79 183637 265 27 6 0 3 373
80 183773 265 67 17 0 0 992
81 184391 265 377 45 0 0 3852
82 184387 265 65 33 0 4 908
83 184383 265 23 10 0 0 151
84 185242 265 90 25 0 0 1917
85 185288 265 116 59 0 4 1324
86 185407 265 85 683 0 60 1436
87 185261 265 85 32 0 3 908
88 185296 265 41 31 0 0 616
90 185327 265 6 2 0 0 109
91 185323 265 28 5 0 0 413
92 191262 265 267 55 0 0 5939
93 191267 265 1 2 0 0 5
94 191270 265 0 2 0 0 3
95 191270 265 0 2 0 0 0
96 191270 265 0 2 0 0 0
97 191314 265 51 7 0 0 480
98 191407 265 17 5 0 0 289
99 191407 265 0 2 0 0 0

100 191415 265 20 10 0 0 275

Table H.24.: Xerces (Gator network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
2 133858 47452 1739 330567 0 0 133858
3 155119 48189 391 2532 0 0 21261
4 155139 48189 3812 6088 0 144 1292
7 155064 48189 4453 511 0 9 1296
8 155050 48185 3152 2422 196 492 991
9 161485 51202 86 3764 0 0 6435

12 161460 51200 1240 41 3496 1519 292
13 161422 51191 3508 232 680 314 896
14 161422 51191 0 20 0 0 0
16 161458 51199 3473 2899 681 911 997
17 161423 51199 4065 289 140 402 1135
18 161436 51199 1149 48 68 147 349
19 161405 51191 1031 32 205 140 210
20 161356 51171 2133 258 1090 648 470
21 161411 51176 4033 121 820 985 1035
22 161466 51175 7027 3218 1230 991 1975
23 161457 51173 452 31 98 4 167
24 161466 51177 625 591 0 84 267
25 161477 51175 18223 1639 1410 542 6494
26 165728 51463 10272 9287 25938 18564 7612
29 165728 51463 102 29 0 0 54
30 168753 51463 41 1061 0 0 3025
32 179908 52800 298 7073 0 0 11155
38 179906 52800 393 164 0 9 146
39 179906 52800 57 20 0 0 19
40 181526 53038 6696 8320 507 836 3717
42 181521 53040 531 6881 0 0 153
48 182816 53319 24185 4340 5269 495 7662
49 182815 53319 113 22 0 0 40
50 182824 53289 6314 402 815 1429 2022
51 182706 53246 12433 9995 6923 1412 3719
52 182440 53236 5294 1892 631 145 1086
53 182448 53236 12 15979 0 50 17
54 182472 53236 21 20 0 0 31
55 182478 53236 20 20 0 0 13
56 182505 53244 260 108 380 148 91
58 182805 53303 770 182 190 270 539
60 182806 53303 216 34 0 6 67
61 182859 53316 3511 253 381 223 1115
62 183084 53316 432 53 0 30 374
63 183085 53314 858 51 126 259 265
64 183612 53318 3 43 0 0 527
65 183510 53318 904 18 0 0 102
66 183467 53307 3103 257 321 365 892
67 183444 53307 1665 81 0 18 518
68 183444 53307 0 16 0 0 0
71 183442 53307 368 352 0 151 117
73 183439 53304 285 906 65 8 85
76 183449 53304 7533 566 951 64 1772
77 183480 53304 113 7411 0 0 72
78 183470 53304 366 7576 0 0 79
79 183637 53318 803 55 118 128 373
80 183773 53342 2848 227 353 455 992
81 184391 53328 12161 543 3166 94 3852
82 184387 53332 2983 497 120 275 908
83 184383 53332 381 182 59 4 151
84 185242 53449 3751 293 1181 428 1917
85 185288 53436 4471 676 11331 587 1324
86 185407 53481 3716 21996 2022 241 1436
87 185261 53478 3754 552 9953 544 908
88 185296 53480 1827 518 291 685 616
90 185327 53480 253 22 0 4 109
91 185323 53484 1297 63 0 17 413
92 191262 54038 251 1153 0 0 5939
93 191267 54038 1 14 0 0 5
94 191270 54038 0 15 0 0 3
95 191270 54038 0 15 0 0 0
96 191270 54038 0 14 0 0 0
97 191314 54042 1411 69 239 16 480
98 191407 54044 701 53 179 247 289
99 191407 54044 0 26 0 0 0

100 191415 54038 873 110 333 135 275

Table H.25.: Xerces (Rete network, incremental maintenance)
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Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 228423 323 4258 321894 0 0 228423
2 228423 321 110 12 197 1 598

14 228542 321 98 66 0 4 1191
15 228541 321 395 49 0 0 4018
23 228541 321 67 15 0 6 750
27 229795 320 318 110 62 5 4216
28 229795 320 4 5 0 2 24
29 229794 320 2 113 0 26 20
41 229794 320 12 12 0 4 126
55 230166 320 303 212 0 4 2994
57 230165 320 6 3 0 0 42
59 230151 320 159 51 0 5 1620
60 230204 320 95 15 0 0 1017
61 230233 320 165 185 0 0 1471
62 230347 320 62 18 0 0 731
63 230418 320 91 45 0 13 756
65 230418 320 30 6 0 0 273
66 230418 320 33 5 0 0 347
67 230611 321 103 21 0 6 1028
72 230641 321 209 180 0 0 1974
74 230645 321 6 4 0 0 68
75 230769 321 21 6 0 0 318
80 230786 323 59 36 0 0 568
85 230786 323 49 8 0 0 517
92 230784 323 33 6 0 0 284

Table H.26.: Commons Collections (Gator network, incremental maintenance)

Revision Artifacts Annotations Build (ms) Create (ms) Delete (ms) Update (ms) Events
1 228423 25830 4271 528306 0 0 228423
2 228423 25750 505 84 2740 4622 598

14 228542 25750 662 2156 0 1277 1191
15 228541 25752 2490 199 303 9 4018
23 228541 25752 453 85 0 20 750
27 229795 25786 1874 650 322 116 4216
28 229795 25786 20 34 0 12 24
29 229794 25785 12 2559 87 94 20
41 229794 25785 75 106 0 9 126
55 230166 25863 1669 1886 0 37 2994
57 230165 25863 32 20 0 0 42
59 230151 25863 1045 400 172 150 1620
60 230204 25866 653 84 394 229 1017
61 230233 25864 958 1802 823 28 1471
62 230347 25871 394 54 0 4 731
63 230418 25871 424 343 0 51 756
65 230418 25871 179 27 0 0 273
66 230418 25871 212 32 0 4 347
67 230611 25905 560 164 0 9 1028
72 230641 25907 1429 2007 175 56 1974
74 230645 25907 39 17 0 0 68
75 230769 25907 130 33 0 0 318
80 230786 25991 374 358 218 987 568
85 230786 25991 329 84 0 0 517
92 230784 25991 210 32 44 90 284

Table H.27.: Commons Collections (Rete network, incremental maintenance)
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H.3. Comparison with EMF-IncQuery

Pattern Name Proposed Approach (sec) IncQuery (sec) Speedup
Composite1 0,26 0,25 0,96

DefaultConstructor 0,2 0,2 1,00
ExtractInterface 0,28 0,24 0,86

FieldAssignment2 0,17 0,21 1,24
Generalization 0,18 0,2 1,11

InterfaceImplementation 0,18 0,2 1,11
InterfaceImplementationWithGeneralization 0,21 0,19 0,90

InterfaceImplementationWithGeneralization2 0,25 0,2 0,80
MultiLevelGeneralization1 0,16 0,19 1,19
MultiLevelGeneralization2 0,18 0,19 1,06
MultiLevelGeneralization3 0,2 0,19 0,95

OwnFieldReference 0,19 0,19 1,00
PrivateConstructor 0,17 0,19 1,12

PrivateField 0,19 0,19 1,00
ProtectedField 0,18 0,18 1,00

PublicField 0,19 0,18 0,95
PublicInstanceField 0,25 0,22 0,88

PublicInstanceMethod 0,19 0,19 1,00
PublicMethod 0,18 0,21 1,17

ReadOperation 0,25 0,19 0,76
Singleton1 0,23 0,19 0,83
Singleton2 0,19 0,18 0,95
Singleton3 0,2 0,19 0,95

TypedElement 0,19 0,19 1,00
WriteOperation 0,47 0,21 0,45

Table H.28.: Maintenance time of EMF-IncQuery and proposed approach

Pattern Name Proposed Approach (bytes) IncQuery (bytes) Memory Reduction
Composite1 12544 33936 2,71

DefaultConstructor 7792 7480 0,96
ExtractInterface 9736 17360 1,78

FieldAssignment2 11264 21416 1,90
Generalization 8200 9256 1,13

InterfaceImplementation 8200 6904 0,84
InterfaceImplementationWithGeneralization 9400 15168 1,61

InterfaceImplementationWithGeneralization2 11784 25512 2,16
MultiLevelGeneralization1 9400 19664 2,09
MultiLevelGeneralization2 11784 33168 2,81
MultiLevelGeneralization3 17128 42536 2,48

OwnFieldReference 13072 38112 2,92
PrivateConstructor 8128 7768 0,96

PrivateField 8992 10304 1,15
ProtectedField 8992 9584 1,07

PublicField 8992 9760 1,09
PublicInstanceField 12024 26920 2,24

PublicInstanceMethod 10936 23416 2,14
PublicMethod 8592 13760 1,60

ReadOperation 12056 24760 2,05
Singleton1 12024 27312 2,27
Singleton2 11928 28080 2,35
Singleton3 12024 27112 2,25

TypedElement 13480 38080 2,82
WriteOperation 79280 30376 0,38

Table H.29.: Memory Consumption of EMF-IncQuery and proposed approach
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H.4. Evaluation Discussion
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Figure H.62.: Comparison of maintenance algorithms for Subclipse data set
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Figure H.63.: Comparison of maintenance algorithms for Apache Commons IO data set
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Figure H.64.: Comparison of maintenance algorithms for Apache Xerces data set
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Figure H.65.: Comparison of maintenance algorithms for Apache Commons Collections data
set
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Figure H.66.: Performance comparison of Gator and Rete network structure for Subclipse
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Figure H.67.: Performance comparison of Gator and Rete network structure for Apache
Commons IO
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Figure H.68.: Performance comparison of Gator and Rete network structure for Apache Xerces
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Figure H.69.: Performance comparison of Gator and Rete network structure for Apache
Commons Collections
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H.5. EMF-IncQuery Graph patterns

pattern PrivateField(field : Field) {
Field.annotationsAndModifiers(field, privateModifier);
Private(privateModifier);

}
(a) Private field

pattern ProtectedField(field : Field) {
Field.annotationsAndModifiers(field, ProtectedModifier);
Protected(ProtectedModifier);

}
(b) Protected field

pattern PublicField(field : Field) {
Field.annotationsAndModifiers(field, PublicModifier);
Public(PublicModifier);

}
(c) Public field

Figure H.70.: Visibility of fields

pattern ReferenceContainer(reference : Reference) {
Reference.next(_, reference);

}
(a) Reference container

pattern FieldReferenceA(identifierReference : IdentifierReference, field : Field) {
IdentifierReference.target(identifierReference, field);
neg find ReferenceContainer(identifierReference);

}
(b) Field reference without this keyword

pattern FieldReferenceB(selfReference : SelfReference, field :Field) {
SelfReference.next(selfReference, identifierReference);
IdentifierReference.target(identifierReference, field);
neg find ReferenceContainer(selfReference);

}
(c) Field reference with this keyword

Figure H.71.: Field references
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pattern WriteOperation(method : Method) {
find FieldAssignment(assignment, assignmentField);
find PrivateField(assignmentField);
find PublicMethod(method, _);
ClassMethod.statements(method, expression);
ClassMethod.parameters(method, parameter);
OrdinaryParameter(parameter);
ExpressionStatement.expression(expression, assignment);
AssignmentExpression.value(assignment, assignmentValue);
IdentifierReference.target(assignmentValue, parameter);

}
(a) Write Operation

pattern ReadOperation(method : Method, privateField : Field) {
find PublicMethod(method, _);
Class.members(clazz, method);
ClassMethod.statements(method, returnStatement);
Return.returnValue(returnStatement, reference);
find PrivateField(privateField);
Class.members(clazz, privateField);
find FieldReferenceA(reference, privateField);

} or {
find PublicMethod(method, _);
Class.members(clazz, method);
ClassMethod.statements(method, returnStatement);
Return.returnValue(returnStatement, reference);
find PrivateField(privateField);
Class.members(clazz, privateField);
find FieldReferenceB(reference, privateField);

}
(b) Read Operation

Figure H.72.: Getter and setter
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pattern Generalization(subClass : Class, superClass : Class) {
Class.ˆextends(subClass, classifier);
NamespaceClassifierReference.classifierReferences(classifier, namespace);
ClassifierReference.target(namespace, superClass);

NamespaceClassifierReference(classifier);
ClassifierReference(namespace);

}
(a) Generalization

pattern MultiLevelGeneralization(subClass : Class, superClass : Class) {
Class(classInTheMiddle);
find Generalization(subClass, classInTheMiddle);
find Generalization(classInTheMiddle, superClass);

} or {
Class(classInTheMiddle);
find MultiLevelGeneralization(subClass, classInTheMiddle);
find Generalization(classInTheMiddle, superClass);

} or {
Class(classInTheMiddle);
find MultiLevelGeneralization(subClass, classInTheMiddle);
find MultiLevelGeneralization(classInTheMiddle, superClass);

} or {
Class(classInTheMiddle);
find Generalization(subClass, classInTheMiddle);
find MultiLevelGeneralization(classInTheMiddle, superClass);

}
(b) Multi-Level Generalization

pattern InterfaceImplementation(class : Class, interface : Interface) {
Class.implements(class, namespaceClassifier);
NamespaceClassifierReference.classifierReferences(namespaceClassifier, classifierReference);
ClassifierReference.target(classifierReference,interface);

}
(c) Interface Implementation

pattern InterfaceImplementationWithGeneralization(class : Class, interface : Interface) {
find Generalization(class, superClass);
find InterfaceImplementation(superClass, interface);

} or {
find MultiLevelGeneralization(class, superClass);
find InterfaceImplementation(superClass, interface);

}
(d) Multi-Level Interface Implementation

Figure H.73.: Hierarchies
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pattern FieldAssignment(assignmentExpression : AssignmentExpression, field : Field) {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceA(firstReference, field);
find PrivateField(field);
Class.members(_, field);

} or {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceA(firstReference, field);
find ProtectedField(field);
Class.members(_, field);

} or {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceA(firstReference, field);
find PublicField(field);
Class.members(_, field);

} or {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceB(firstReference, field);
find PrivateField(field);
Class.members(_, field);

} or {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceB(firstReference, field);
find ProtectedField(field);
Class.members(_, field);

} or {
AssignmentExpression.assignmentOperator(assignmentExpression, assignment);
AssignmentExpression.child(assignmentExpression, firstReference);
Assignment(assignment);
find FieldReferenceB(firstReference, field);
find PublicField(field);
Class.members(_, field);

}
(a) Field Assignment

Figure H.74.: Assignments
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pattern ArrayField(field : Field, targetClassifier : ConcreteClassifier) {
Field.arrayDimensionsBefore(field, array);
Field.typeReference(field, namespace);
NamespaceClassifierReference.classifierReferences(namespace, reference);
ClassifierReference.target(reference, targetClassifier);

ArrayDimension(array);
NamespaceClassifierReference(namespace);
ClassifierReference(reference);

}
(a) ToN associations

pattern ListField(list : Field, targetClassifier : ConcreteClassifier) {
Field.typeReference(list, namespace);
NamespaceClassifierReference.classifierReferences(namespace, reference);
ClassifierReference.target(reference, referenceTarget);
ClassifierReference.typeArguments(reference, type);
QualifiedTypeArgument.typeReference(type, typeNamespace);
NamespaceClassifierReference.classifierReferences(typeNamespace, typeReference);
ClassifierReference.target(typeReference, targetClassifier);

NamespaceClassifierReference(namespace);
ClassifierReference(reference);
QualifiedTypeArgument(type);
ConcreteClassifier(referenceTarget);
NamespaceClassifierReference(typeNamespace);
ClassifierReference(typeReference);

}
(b) ToMany associations

Figure H.75.: Associations

pattern TypedElementA(type : Type, typedElement : TypedElement) {
TypedElement.typeReference(typedElement, type);
PrimitiveType(type);

}
(a) Primitive types

pattern TypedElementB(type : Type, typedElement : TypedElement, typeArgumentable : TypeArgumentable)
{

TypedElement.typeReference(typedElement, namespaceClassifier);
NamespaceClassifierReference.classifierReferences(namespaceClassifier, typeArgumentable);
ClassifierReference.target(typeArgumentable, type);
NamespaceClassifierReference( namespaceClassifier);

}
(b) Classifier types

Figure H.76.: Typed elements
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pattern PrivateConstructor(constructor : Constructor) {
Constructor.annotationsAndModifiers(constructor, modifiier);
Private(modifiier);

}
(a) Private constructor

pattern PublicInstanceField(classField : Member) {
Field.annotationsAndModifiers(classField, publicModifier);
Public(publicModifier);
Field.annotationsAndModifiers(classField, staticModifier);
Static(staticModifier);
Field.initialValue(classField, call);
NewConstructorCall.typeReference(call, namespace);
NamespaceClassifierReference.classifierReferences(namespace, classifier);
ClassifierReference.target(classifier, class);
Class.members(class, classField);

}
(b) Public instance field

pattern PublicInstanceMethod(classMethod : Member) {
find TypedElementA(class, classMethod);
find PublicMethod(classMethod, _);

Class.members(class, classMethod);
ClassMethod.annotationsAndModifiers(classMethod, staticModifier);
Static(staticModifier);

} or { find TypedElementB(class, classMethod, _);
find PublicMethod(classMethod, _);

Class.members(class, classMethod);
ClassMethod.annotationsAndModifiers(classMethod, staticModifier);
Static(staticModifier);

}
(c) Public instance method

pattern Singleton(class : Class) {
find PrivateConstructor(constructor);
find PublicInstanceMethod(member);
Class.members(class, constructor);
Class.members(class, member);

} or {
find PrivateConstructor(constructor);
find PublicInstanceField(member);
Class.members(class, constructor);
Class.members(class, member);

}
(d) Singleton

Figure H.77.: Singleton design pattern
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pattern Composite(subClazz : Class, superClazz: Class) {
find Generalization(subClazz, superClazz);
find ArrayField(field, superClazz);
Class.members(subClazz, field);

} or {
find Generalization(subClazz, superClazz);
find ListField(field, superClazz);
Class.members(subClazz, field);

} or {
find MultiLevelGeneralization(subClazz, superClazz);
find ArrayField(field, superClazz);
Class.members(subClazz, field);

} or {
find MultiLevelGeneralization(subClazz, superClazz);
find ListField(field, superClazz);
Class.members(subClazz, field);

}
(a) Composite

Figure H.78.: Composite design pattern

pattern ConstructorWithParameters(constructor : Constructor) {
Constructor.parameters(constructor, _);

}

pattern DefaultConstructor(constructor : Constructor) {
neg find ConstructorWithParameters(constructor);

}
(a) Default Constructor

pattern ExtractInterface(class : Class) {
neg find InterfaceImplementation(class, _);
neg find InterfaceImplementationWithGeneralization(class, _);
Class.members(class, method);
Method.annotationsAndModifiers(method, public);

Method(method);
Public(public);

}
(b) Extract Interface

Figure H.79.: Simple and complex negations
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