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Abstract 

Background: Consumption of whole-grain, coffee, and red meat were 
consistently related to the risk of developing type 2 diabetes in 
prospective cohort studies, but potentially underlying biological 
mechanisms are not well understood. Metabolomics profiles were shown 
to be sensitive to these dietary exposures, and at the same time to be 
informative with respect to the risk of type 2 diabetes. Moreover, 
graphical network-models were demonstrated to reflect the biological 
processes underlying high-dimensional metabolomics profiles. 

Aim: The aim of this study was to infer hypotheses on the biological 
mechanisms that link consumption of whole-grain bread, coffee, and red 
meat, respectively, to the risk of developing type 2 diabetes. More 
specifically, it was aimed to consider network models of amino acid and 
lipid profiles as potential mediators of these risk-relations.  

Study population: Analyses were conducted in the prospective EPIC-
Potsdam cohort (n = 27,548), applying a nested case-cohort design (n = 
2731, including 692 incident diabetes cases). Habitual diet was assessed 
with validated semiquantitative food-frequency questionnaires. 
Concentrations of 126 metabolites (acylcarnitines, phosphatidylcholines, 
sphingomyelins, amino acids) were determined in baseline-serum 
samples. Incident type 2 diabetes cases were assed and validated in an 
active follow-up procedure. The median follow-up time was 6.6 years. 

Analytical design: The methodological approach was conceptually based on 
counterfactual causal inference theory. Observations on the network-
encoded conditional independence structure restricted the space of 
possible causal explanations of observed metabolomics-data patterns. 
Given basic directionality assumptions (diet affects metabolism; 
metabolism affects future diabetes incidence), adjustment for a subset of 
direct neighbours was sufficient to consistently estimate network-
independent direct effects. Further model-specification, however, was 
limited due to missing directionality information on the links between 
metabolites. Therefore, a multi-model approach was applied to infer the 
bounds of possible direct effects. All metabolite-exposure links and 
metabolite-outcome links, respectively, were classified into one of three 
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categories: direct effect, ambiguous (some models indicated an effect 
others not), and no-effect.  

Cross-sectional and longitudinal relations were evaluated in 
multivariable-adjusted linear regression and Cox proportional hazard 
regression models, respectively. Models were comprehensively adjusted 
for age, sex, body mass index, prevalence of hypertension, dietary and 
lifestyle factors, and medication.  

Results: Consumption of whole-grain bread was related to lower levels of 
several lipid metabolites with saturated and monounsaturated fatty acids. 
Coffee was related to lower aromatic and branched-chain amino acids, 
and had potential effects on the fatty acid profile within lipid classes. Red 
meat was linked to lower glycine levels and was related to higher 
circulating concentrations of branched-chain amino acids. In addition, 
potential marked effects of red meat consumption on the fatty acid 
composition within the investigated lipid classes were identified.  

Moreover, potential beneficial and adverse direct effects of metabolites 
on type 2 diabetes risk were detected. Aromatic amino acids and lipid 
metabolites with even-chain saturated (C14-C18) and with specific 
polyunsaturated fatty acids had adverse effects on type 2 diabetes risk. 
Glycine, glutamine, and lipid metabolites with monounsaturated fatty 
acids and with other species of polyunsaturated fatty acids were classified 
as having direct beneficial effects on type 2 diabetes risk.  

Potential mediators of the diet-diabetes links were identified by 
graphically overlaying this information in network models. Mediation 
analyses revealed that effects on lipid metabolites could potentially 
explain about one fourth of the whole-grain bread effect on type 2 
diabetes risk; and that effects of coffee and red meat consumption on 
amino acid and lipid profiles could potentially explain about two thirds 
of the altered type 2 diabetes risk linked to these dietary exposures.  

Conclusion: An algorithm was developed that is capable to integrate single 
external variables (continuous exposures, survival time) and high-
dimensional metabolomics-data in a joint graphical model. Application 
to the EPIC-Potsdam cohort study revealed that the observed 
conditional independence patterns were consistent with the a priori 
mediation hypothesis: Early effects on lipid and amino acid metabolism 
had the potential to explain large parts of the link between three of the 
most widely discussed diabetes-related dietary exposures and the risk of 
developing type 2 diabetes. 
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Zusammenfassung 

Hintergrund: Evidenz aus prospektiven Kohortenstudien belegt, dass der 
gewohnheitsmäßige Verzehr von Vollkorn, Kaffee und rotem Fleisch 
mit dem Risiko an Typ 2 Diabetes zu erkranken assoziiert ist. Dieser 
Risikobeziehung eventuell zugrunde liegende Mechanismen sind 
allerdings noch weitgehend unklar. Des Weiteren wurde gezeigt, dass 
Metabolitenprofile im Blut durch die oben genannten Ernährungs-
expositionen beeinflusst werden und außerdem in Zusammenhang mit 
dem Typ 2 Diabetesrisiko stehen. Zusätzlich wurde beschrieben, dass 
grafische Netzwerkmodelle von Metabolitenprofilen die zugrunde 
liegenden Stoffwechselprozesse gut abbilden.  

Zielstellung: Das Ziel dieser Arbeit war es, Hypothesen bezüglich 
biologischer Mechanismen zu generieren, die die Assoziationen des 
Vollkornverzehrs, des Kaffeekonsums und des Fleischverzehrs mit dem 
Typ 2 Diabetesrisiko erklären könnten. Im speziellen sollten 
Aminosäure- und Lipidprofile als mögliche Mediatoren des 
Risikozusammenhangs untersucht werden. 

Studienpopulation: Analysen wurden auf Grundlage von Daten aus der 
prospektiven EPIC-Potsdam Kohortenstudie (n=27,548) durchgeführt, 
wobei ein Fall-Kohorten-Design verwendet wurde (n=2317, darunter 
692 inzidente Typ 2 Diabetesfälle). Ernährungsgewohnheiten wurden 
mit einem validierten, semiquantitativen Verzehrshäufigkeitsfragebogen 
erfasst. Die Konzentrationen von 126 Metaboliten (Aminosäuren, 
Acylcarnitine, Sphingomyeline und Phosphatidylcholine) wurden zur 
Basiserhebung genommen Blutproben gemessen. Inzidente Typ 2 
Diabetesfälle wurden im Rahmen einer aktiven Folgeerhebung detektiert 
und verifiziert. Die mediane Dauer des berücksichtigten prospektiven 
Erhebungszeitraums lag für diese Studie bei 6,6 Jahren. 

Aufbau der Analysen: Die theoretische Grundlage für den methodischen 
Ansatz dieser Arbeit bildete die kontrafaktische Theorie der 
Kausalinferenz. Die in Netzwerken kodierte konditionale 
Unabhängigkeitsstruktur wurde genutzt, um den Raum möglicher 
Modelle zu begrenzen, die die beobachteten Zusammenhänge zwischen 
den Metaboliten erklären könnten. Unter Annahme weniger 
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grundlegender Effektrichtungen (von der Ernährung auf die Netzwerke 
gerichtete Effekte; von den Netzwerken auf das Diabetesrisiko gerichtete 
Effekte) genügt die Adjustierung für eine Teilmenge der direkten 
Nachbarn im Netzwerk, um netzwerkunabhängige direkte Effekte 
konsistent zu schätzen. Eine weitere Spezifizierung der Modelle war 
allerdings aufgrund fehlender Richtungsinformationen zu den 
Metaboliten-abhängigkeiten nicht möglich. Deshalb wurde ein Multi-
Modellierungsansatz gewählt, um die Grenzen möglicher Effekte zu 
schlussfolgern. Alle möglichen Ernährungs-Metaboliten-Beziehungen 
und Metaboliten-Typ 2 Diabetesrisiko-Beziehungen wurden dadurch in 
eine der folgenden drei Kategorien klassifiziert: Direkter Effekt, Unklar, 
Kein Effekt. 

Querschnittsbeziehungen wurden in multivariabel adjustierten linearen 
Regressionsmodellen untersucht. Longitudinale Zusammenhänge 
wurden mit Cox-Regressionsmodellen geschätzt. Alle Modelle wurden 
für Alter, Geschlecht, Body-Mass-Index, prävalente Hypertonie, 
Ernährungs- und Lebensstilfaktoren und die Einnahme von 
Medikamenten adjustiert.  

Ergebnisse: Der Verzehr von Vollkornbrot stand im Zusammenhang mit 
niedrigeren Konzentrationen gesättigter und einfach ungesättigter 
Fettsäuren. Kaffee stand in Beziehung zu niedrigeren Konzentrationen 
verzweigtkettiger und aromatischer Aminosäuren und hatte potentielle 
Effekte auf das Fettsäureprofil in den Lipidmetaboliten. Rotes Fleisch 
zeigte einen Zusammenhang mit niedrigeren Glyzinspiegeln und mit 
höheren Konzentrationen verzweigtkettiger Aminosäuren. Außerdem 
stand das Fettsäureprofil in den verschieden Gruppen von 
Lipidmetaboliten in Zusammenhang mit dem Fleischverzehr. 

Des Weiteren wurden potentielle Effekte der Metabolite auf das Typ 2 
Diabetesrisiko gefunden. Aromatische Aminosäuren und 
Lipidmetabolite mit geradzahligen, gesättigten (C14-C16) und mit 
spezifischen mehrfach ungesättigten Fettsäureseitenketten standen mit 
einem erhöhten Typ 2 Diabetesrisiko in Beziehung. Glyzin, Glutamin 
und Lipidmetabolite mit einfach ungesättigten und anderen mehrfach 
ungesättigten Fettsäureseitenketten zeigten einen günstigen 
Zusammenhang mit dem Diabetesrisiko. 

Mögliche Mediatoren der Beziehung der Ernährungsexpositionen 
wurden identifiziert, indem diese Informationen in gemeinsamen 
grafischen Modellen integriert wurden. Mediationsanalysen zeigten, dass 
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die möglichen Effekte von Vollkornverzehr auf die Lipidmetabolite 
ungefähr ein Viertel des günstigen Einflusses von Vollkornverzehr auf 
das Diabetesrisikos erklären könnten. Die möglichen Effekte von 
Kaffeekonsum und von Fleischverzehr auf Aminosäuren und 
Lipidmetabolite könnten jeweils ungefähr zwei Drittel der 
Zusammenhänge mit dem Diabetesrisiko erklären. 

Schlussfolgerung: Grundlage für die Ergebnisse dieser Arbeit war die 
Entwicklung eines Algorithmus, der externe Faktoren (kontinuierlich 
Expositionsvariablen, Ereigniszeit-Daten) und hochdimensionale 
Metabolitenprofile in einem gemeinsamen grafischen Modell integriert. 
Die Anwendung dieses Algorithmus auf Daten aus der EPIC-Potsdam 
Kohortenstudie hat gezeigt, dass die beobachteten konditionalen 
Unabhängigkeitsstrukturen mit der a priori Mediationshypothese 
konsistent waren. Der frühe Einfluss auf den Aminosäure- und 
Lipidstoffwechsel könnte die beobachteten Zusammenhänge zwischen 
drei wichtigen Ernährungsfaktoren und dem Risiko an Typ 2 Diabetes 
zu erkranken zu großen Teilen erklären.  
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1 Introduction 

1.1 Overview of the chapter 

The following section of this chapter outlines public health issues with 
diabetes mellitus type 2 to underscore the importance of successful 
prevention approaches (1.2). In terms of prevention, observational 
evidence suggests that specific foods are involved in the etiology of 
diabetes mellitus type 2. Trials on potentially underlying biological 
mechanisms, however, remain inconclusive so far. According evidence 
will be subject of the central part of this chapter (1.3). The last section 
will make a case for systems epidemiology based complex models. 
Moreover, metabolomics will be introduced as tool that is sensitive to 
habitual diet and informative with regard to type 2 diabetes risk (1.4).  

1.2 Diabetes mellitus type 2  

1.2.1 Definition and diagnostic criteria 

Type 2 diabetes is acquired relative lack of insulin which is generally 
based on both, impaired beta cell function and peripheral insulin 
resistance [4]. In combination, these two pathomechanisms lead to a 
slowly developing dysregulation of blood glucose levels. Accordingly, 
current diagnostic criteria for type 2 diabetes of the World Health 
Organization (WHO) are fasting plasma glucose ≥7.0 mmol/L (126 
mg/dL) or plasma glucose ≥11.1mmol/L (200mg/dL) two hours after 
oral tolerance test (OGTT) with 75g glucose or glycated hemoglobin 
(HbA1c) ≥6.5% [5]. The American Diabetes Association (ADA) accepts 
random plasma glucose ≥11.1 mmol/L (200mg/dL) in combination 
with classic symptoms of hyperglycemia or hyperglycemic crisis as 
diagnostic criterion [6]. The European Association for the Study of 
Diabetes (EASD) refers to the WHO-criteria. The current code for type 
2 diabetes mellitus in the international classification of disease (ICD) 
system is ICD-10-GM-2017 E11 [7]. 
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1.2.2 Prevalence 

In 2015, an estimated 415 million adults (aged 20-79 years) worldwide 
lived with diabetes [8]. In Europe, over 90% of these cases were 
considered as type 2 diabetes [9]. This corresponds to an age-adjusted 
global diabetes prevalence of 8.8% (95%CI 7.2% - 11.3%), and 
approximately 8.3% prevalence of type 2 diabetes [8]. Estimations are 
that among all type 2 diabetes cases in 2015, approximately 193 million 
persons were not aware of the disease, i.e. they were not medically 
diagnosed. This is particular worrisome because early diagnosis of type 2 
is considered an important step in efficient management of the disease 
and controlling the risk of complications [10]. Another 318 million adults 
were estimated to being affected by impaired glucose tolerance in 2015, 
putting them at high risk of developing overt type 2 diabetes in the near 
future. If these trends are not drastically mitigated over 640 million 
people are projected to suffer from diabetes by 2040 [8].  

1.2.3 Expenditures 

Estimated healthcare expenditures amounted to between 673 billion and 
1,197 billion spent on treatment of diabetes and its direct complications 
in 2015, corresponding to 12% of worldwide total healthcare 
expenditures [8]. Treatments of diabetic complications were the major 
driver of this heavy burden on global healthcare systems. There is an 
ongoing trend of rising healthcare costs of type 2 diabetes. This trend is 
expected to continue particularly because of population growth and 
increasing prevalence rates in low- and middle-income countries [8]. 
Progress and development should hopefully allow better access to 
healthcare for large population groups. However, large disparities in 
healthcare spending per diabetes case across global regions prevail. More 
than 75% of total diabetes cases occurred in low- and middle income 
countries, yet less than 20% of total healthcare expenditures due to 
diabetes were spent on these cases [8]. 

Besides the direct costs of diabetes treatment, indirect costs were 
attributed to diabetes-related mortality and disability. It was estimated 
that diabetes caused around 5.0 million deaths in 2015 [8]. In Africa, 
South and South-East Asia and parts of South America the majority of 
these deaths occurred in people under the age of sixty [8]. Disability-
adjusted life years (DALYs) constitute a composite measure of disease 
burden capturing both, premature death and prevalence and severity of 
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disease-related disabilities. For 2010 it was estimated that 47 million 
(95% CI 41 – 55 millions) DALYs were attributable to diabetes [11]. 

The financial burden with diabetes also affects individuals. 
Particularly in countries with less well-developed public healthcare 
systems the socioeconomic situation of type 2 diabetes patients and their 
families is often severely compromised [12]. This is due to treatment 
costs but importantly also due loss of income because of disability or 
death. 

These figures largely rely on extrapolations and have to be 
interpreted with caution. The data is most reliable for Western Europe 
and the Northern America. Estimates from other global regions often 
rely on few studies in particular contexts and the validity of such 
estimates is at least matter of debate. The general message, however, is 
clear. Type 2 diabetes is a major public health concern. Due to 
worldwide population growth and increased lifespan, type 2 diabetes 
prevalence will continue to rise. This implies large benefits of effective 
preventive actions on modifiable risk factors on the population level. 

1.2.4 Prevention 

The sharp increase of global diabetes prevalence over the last decades is 
partly attributable to a prolonged lifespan [13]. In addition, a changed 
lifestyle plays a role. Industrialization, urbanization and computerization 
go along with elevated exposure to particular stressors and pollutants. 
Furthermore, infrastructural changes favor a sedentary lifestyle. Taken 
together, these factors are considered environmental driver that 
contributed to increasing diabetes prevalence over the last decades [14]. 
Moreover, food production and supply chains have undergone drastic 
changes on the global scale. This has led to and is currently leading to 
nutrition transition in most countries of the world. Changes in the 
common diet are generally characterized by easier accessibility of energy-
dense foods and higher intake levels of processed foods [14]. Thereby 
dietary compositions have changed with general global trends towards 
higher intake of starch, free sugars, saturated and trans-fatty acids, foods 
from animal origin, salt and preservatives and lower contents of fiber 
and phytochemicals, a dietary pattern which has been associated with 
increased type 2 diabetes incidence in prospective cohort studies [13]. 
Undoubtedly, diabetes prevention is of top public health priority. Yet 
many of the outlined global changes that effect diabetes prevalence 
cannot or should not be reversed. Hence diabetes prevention on the 
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macro-level needs to be complemented by precise interventions on 
smaller scales that compensate for potentially adverse environmental 
influences [15].  

Primary prevention of type 2 diabetes on the individual level is 
possible and cost effective [16]. The Finnish Diabetes Prevention Study 
demonstrated a sustained reduction of type 2 diabetes incidence by 
lifestyle intervention in a high-risk group of overweight participants with 
impaired glucose tolerance [17]. In this trial, 522 men and women were 
randomly assigned to an intervention group and a control group. The 
intervention aimed to achieve weight loss of >5%, to limit the intake of 
saturated fat (<10%), to enhance intake of fiber (>15g per 1000 kcal), 
and to promote moderate physical activity. The mean duration of the 
intervention was 3 years. The diabetes incidence was reduced by 58% in 
the intervention group [17] and this risk reduction was largely sustained 
after 3 years of follow-up [18]. A similar reduction of diabetes incidence 
was achieved by a lifestyle intervention focusing on weight loss and 
physical activity in the American Diabetes Prevention Program [19].  

 
In summary, due to the undebated public health relevance, successful 
type 2 diabetes prevention programs are of top priority. Evidence-based 
allocation of resources to particular preventive strategies, however, 
requires sound knowledge on the factors that drive type 2 diabetes risk. 
On the population level, quantification of the effects of major risk 
drivers can help to prioritize interventions on these factors [20]. On the 
individual level, precise and effective prevention must rely on 
understanding the causal role that major risk factors play in disease 
development [21]. To put it simply, manipulation of a risk factor will 
only affect disease occurrence if the factor plays a causal role in the 
disease development. Furthermore, effectiveness-estimates for 
preventive interventions will at most be as accurate as estimates on the 
causal role of the manipulated factor in the target population. 

1.3 Diet and type 2 diabetes etiology 

1.3.1 Dietary composition and type 2 diabetes risk 

The main topic of this thesis is the impact of dietary composition on 
diabetes development. The understanding of the impact of specific 
dietary components on type 2 diabetes development is currently limited 
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by the fact that consistently observed long-term risk relations are not 
well explained by the knowledge on short-term metabolic effects of 
these foods. This will be illustrated by contrasting the evidence from 
prospective epidemiological studies with evidence from dietary 
intervention trials.  

The Spanish PREDIMED study demonstrated that a complex 
intervention with a strong focus on dietary composition reduced the 
diabetes incidence by over 50% in patients with prevalent cardiovascular 
diseases without leading to substantial weight loss [22]. The 
PREDIMED dietary intervention promoted high consumption of olive 
oil, fruits, vegetables, legumes, fish, and sofrito (homemade tomato 
sauce), reduced intake of total meat (particularly fresh and processed red 
meat), avoidance of butter, cream, fast food, sweets, pastries, and sugar-
sweetened beverages and moderate consumption of red wine [23]. 
Diabetes prevention by modification of the dietary composition is in line 
with meta-analyses of prospective cohort studies. Consistent associations 
of dietary habits with type 2 diabetes incidence have been observed on 
the nutrient-, the food-, and the dietary pattern level [13,24,25].  

In this work, three food groups receive particular consideration as 
risk factors for type 2 diabetes: habitual consumption of whole-grain, 
coffee and red meat. These food groups were selected as exposures of 
interest in the present study because of two main reasons. Firstly, all 
three were consistently related to diabetes risk in meta-analyses of 
prospective cohort studies. The aggregated evidence suggests reduced 
type 2 diabetes risk in relation to high consumption of whole-grain and 
coffee. High habitual consumption of red meat, in contrary, was 
associated with elevated risk of type 2 diabetes [13]. Secondly, these three 
food groups were also linked to type 2 diabetes risk in the study 
population that provided data for this thesis [26]. For other dietary 
exposures such as consumption of soft drinks, white rice, dairy products 
and green leafy vegetables there is evidence for a link to type 2 diabetes 
risk in other populations [13]. However, they were on average not 
consumed in relevant amounts at baseline or not clearly linked to 
diabetes risk in the present study cohort.  

1.3.2 Whole-grain and fiber 

The proposed protective effect of whole-grain consumption on type 2 
diabetes development largely relies on observational studies. The 
association of dietary fiber intake with type 2 diabetes risk was evaluated 
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in a large meta-analysis of sixteen prospective cohorts with a total of 
572,665 participants including 36,578 incident type 2 diabetes cases [27]. 
This meta-analysis included data from the European Prospective 
Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort study 
which was the primary data-source for the present study. In a dose-
response analysis, additional 10g total fiber intake per day was associated 
with a 9% lower diabetes risk (95%CI 0.87 – 0.96). If analyses were 
restricted to cereal fiber (including fiber from whole-grain bread) the 
relative diabetes risk was reduced by 25%per 10g additional daily intake 
(95%CI 0.65-0.86) [27]. The focus on fiber in these studies implicates the 
hypothesis that the fiber content is primarily responsible for the health-
benefits by whole-grain consumption. It was argued, however, that the 
favorable metabolic impact of whole-grain cereals might likely go beyond 
the isolated effect of fiber. Probably other bioactive secondary 
compounds in the endosperm of grains play a synergistic role [28]. 
However, meta-analyzes of prospective cohort studies primarily from the 
U.S. showed a beneficial association of whole-grain intake with reduced 
type 2 diabetes risk [29]. The extensively validated German Diabetes Risk 
Score [30,31] that was derived from the EPIC-Potsdam cohort yielded a 
hazard ratio of 0.92 (95%CI 0.85 – 0.99) associated with 50g (≈ one 
slice) higher intake of whole-grain bread per day [30]. Thus, evidence 
from observational studies suggests a diabetes-protective effect of high 
habitual whole-grain consumption over years. 

Dietary intervention studies tested the effect of daily 
consumption of fiber or whole-grain products in course of weeks to 
months on parameters of glucose metabolism. Taken together these 
studies did not indicate a direct effect of whole-grain intake on glucose 
disposal and insulin sensitivity [32-36]. In particular the two largest 
randomized trials did not observe an effect of whole-grain intake on 
markers of glucose homeostasis. In a parallel-arms intervention trial in 
the U.S. 266 participants were randomized to one of three groups. In 
two arms whole-grain foods were supplied in different amounts. The 
third arm served as control group. No effect of whole-grain content of 
the diet on insulin-sensitivity was detected by the Quantitative Insulin 
Sensitivity Check Index (QUICKI) method [33]. In a study of 
comparable size (n=206) in Great Britain participants were similarly 
randomized to one of three study arms [36]. The two intervention 
groups received whole-grain products in similar amounts over 12 weeks. 
The diets between the two intervention groups, however, differed in the 
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oat content of the whole-grain products. The third control group was 
advised to restrict their fiber intake. No significant differences in fasting 
blood glucose concentrations and Homeostasis Model Assessment 
Insulin Resistance (HOMA-IR) were observed. Still significantly lower 
blood pressure was detected after the intervention [36]. Relatively short-
term effect of whole-grain intake on glucose metabolism was reported in 
context of a weight loss intervention [37]. A group of 31 obese 
participants received hypocaloric diets to induce weight loss. In one of 
two groups the intervention diet was supplemented with powdered, 
double-fermented whole-grain. Improvement in HOMA-IR was 
significantly better in the whole-grain intervention arm after adjusting for 
weight loss [37]. These results, however, are probably less relevant for 
the general population because of the caloric restriction and the unusual 
form of whole-grain administration.  

Interestingly, the notion of null findings on a potential whole-
grain effect on glucose metabolism does not apply to interventions in 
patients with prevalent type 2 diabetes. A meta-analysis of randomized 
controlled trials from 2013 concluded that evidence from 13 trials 
indicated beneficial effects of increased dietary fiber intake over at least 8 
weeks on HbA1c levels and fasting blood concentration in diabetic 
patients. Fiber-rich dietary interventions reduced on average absolute 
HbA1c values by 0.55%, and lowered blood glucose concentrations by 
10mg/dL [38]. Recent trials are in line with these findings. A recent 
Chinese intervention trial further corroborated beneficial effects of high 
dietary fiber intake on blood sugar homeostasis in  type 2 diabetes 
patients [39]. Participants were randomized to one of four groups, either 
control or different levels of fiber intake (30g to 100g). Beneficial 
metabolic effects of the whole-grain content of the intervention diets 
followed a dose-response relation and comprised sustained 
improvements in insulin sensitivity, HbA1c, and blood lipids [39]. It 
should be noted that high whole-grain intake was part of several 
complex lifestyle interventions that successfully reduced diabetes 
incidence [18,40] but it is difficult to trace back the effect to the single 
components of the intervention. 

To summarize, observational studies suggest a protective effect of 
dietary fiber intake on type 2 diabetes. Moreover, interventions with 
fiber-rich diets showed the potential to ameliorate disturbed blood 
glucose homeostasis in type 2 diabetes patients. Whole-grain 
interventions over several weeks in participants without prevalent type 2 
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diabetes, however, did not result in improved insulin sensitivity or lower 
blood sugar concentrations. 

1.3.3 Coffee 

A potential role for high coffee consumption in lowering type 2 diabetes 
risk was likewise raised by observations in prospective cohort studies. A 
recent meta-analysis of prospective cohort studies on total, caffeinated 
and decaffeinated coffee identified 28 studies with a total of 1,109,272 
participants and median follow-up time of 11 years including 45,335 
incident type 2 diabetes cases [41]. Included studies were from the U.S. 
(13 studies), Europe (11 studies) and Asia (4 studies) and the overall 
quality of the evidence was high (median Newcastle-Ottawa Scale-sore: 7 
of 9 possible points). The pooled analyses of the evidence indicated a 
strong inverse association between total coffee consumption and the risk 
of developing type 2 diabetes. A non-linear dose-response curve 
indicated for example a 25% reduction in the relative risk of developing 
type 2 diabetes in persons with consumption of 4 cups coffee per day 
compared to non-consumers. The dose-response relation between coffee 
consumption and reduced diabetes risk seemed not to rely on caffeine 
content and was relatively independent of the covariables included as 
potential confounders [41]. 

Observed long-term beneficial associations between high coffee 
consumption and low diabetes incidence do not easily match with results 
from coffee-interventions in the range of several weeks in non-diabetic 
participants. Result from different randomized trials are somewhat 
inconsistent with reports of moderate improvements in glucose disposal 
after several weeks of frequent coffee consumption [42] but null results 
on glucose load after OGTT in other studies [43,44]. Further coffee 
interventions with intermediate duration (up to 8 weeks) did not detect 
beneficial effects on glucose homeostasis but reported beneficial effects 
on markers of liver metabolism [45] and subacute inflammation [46]. 
Somewhat puzzling with respect to a proposed protective role against 
diabetes is the established deteriorating effect of acute caffeine challenge 
on insulin sensitivity [47] which seems to be robust against habituation.  

In summary, evidence from observational studies suggests a 
beneficial effect of high habitual coffee consumption on the risk of 
developing type 2 diabetes. Intervention trials show that this potential 
diabetes-protective role of coffee cannot be attributed to the acute effect 
of coffee intake on insulin sensitivity. Also coffee intake of intermediate 
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duration seems not to have direct effects on markers of glucose 
homeostasis in non-diabetic participants.  

1.3.4 Processed and unprocessed red meat 

A potential adverse effect of unprocessed and processed red meat on 
type 2 diabetes risk was again inferred from observations in prospective 
cohort studies. Across these studies processed (red) meat consumption 
was consistently associated with elevated type 2 diabetes risk. In a pooled 
analysis of three large prospective cohort studies from the U.S. with a 
total of 204,157 participants including 13,759 incident diabetes cases 
32% higher risk of type 2 diabetes per additional daily serving of 
processed red meat (HR 1.32, 95%CI 1.25 – 1.40) was estimated [48]. 
Portion-sizes for processed meat used in this study ranged from 28g 
(bacon) to 45g (e.g. hot dogs or hamburgers). The EPIC-Interact study 
provided the largest European prospective analyses on meat intake and 
diabetes risk with 11,559 incident diabetes cases and 14,529 non-cases. 
In this study, 50g increments in daily processed meat intake were 
associated with 12% higher risk of type 2 diabetes (HR 1.12, 95%CI 1.05 
- 1.13) [49]. Habitual intake of unprocessed red meat showed an equally 
directed but somewhat weaker association with diabetes risk. 
Additionally, the two types of meat exposure were collapsed into a single 
food group (for convenience referred to as red meat for the remainder of 
this work). Risk estimates for the pooled analysis in the U.S. cohorts 
were 1.12 (95%CI 1.08 - 1.16) and 1.14 (95%CI 1.10 - 1.18) per daily 
serving (85g) of unprocessed red meat and total red meat [48], 
respectively, and 1.08 (95%CI 1.03 – 1.13) and 1.09 (95%CI 1.05 – 1.13) 
per 50g increments of unprocessed red meat and total red meat, 
respectively, in the EPIC-Interact study [49]. These findings were in line 
with meta-analyses that relied on a larger range of studies including data 
from Asia [48,50-52]. Additional analyses prospective cohort studies 
including substitution modeling [48], analysis of change [53], and 
mediation analysis [54] further supported the association of high meat 
intake and development of type 2 diabetes. 

This observational evidence is not clearly linked to results from 
randomized trials that investigated metabolic effects of red meat dietary 
interventions. Randomized intervention studies in the range of several 
weeks that used lean red meat as major protein source compared to 
other animal protein sources reported null findings on an effect of 
animal protein source on glucose homeostasis [55-57]. In contrary, a 
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randomized cross-over trial that compared strictly controlled animal 
protein-based diet with plant protein-based diet each over four weeks in 
fifteen postmenopausal non-diabetic but at risk women found improved 
glucose homeostasis in the non-meat group [58]. In addition a 
randomized crossover-trial in 25 young, iron-deficient women compared 
diets each over 8 weeks that only differed in red meat vs. oily fish 
content [59]. Improved insulin sensitivity was found in response to the 
oily fish dietary intervention [59].  

Randomized trials in patients with type 2 diabetes indicated that 
diets favoring plant protein over animal protein had beneficial effects on 
glucose control [60]. Which role red meat in particular played for these 
findings, however, remains speculative. A meta-analysis of randomized 
trials in diabetic patients with dietary interventions over 4 - 8 weeks 
found moderate improvements in HbA1c (-0.15%; 7 studies, 149 
participants), fasting glucose (-0.53 mmol/L; 8 studies, 197 participants), 
and fasting insulin (-10.09 pmol/L; 5 studies, 118 participants) in plant-
protein groups compared with animal-protein diet control groups. 
Animal protein diets generally included high amounts of red meat. The 
authors, however, claimed the need of larger well conducted trials 
because of heterogeneity of results and suggestive evidence for 
publication bias [60]. A long-term randomized trial compared soy 
protein-based with animal protein-based dietary interventions. In this 
trial 41 type 2 diabetes patients with nephropathy were randomized to 
one of two parallel study arms. Fasting plasma glucose was significantly 
improved the soy-protein group after four years (mean change -18 ± 
3mg/dL in soy protein vs. +11 ± 2mg/dL in the control group) along 
with improvements in markers of cardiovascular health and renal 
function [61].  

To summarize, habitual red meat consumption was consistently 
related to an elevated type 2 diabetes risk in prospective cohort studies. 
Results from randomized trials that tested red meat-rich intervention 
diets are not consistent with some showing improvements in markers of 
glucose homeostasis and others not. Interpretation with respect to the 
observational evidence is further complicated by the fact that 
intervention studies mostly focused on red meat as protein source. 
Several trials actively aimed to avoid effects of altered lipid composition 
on glucose homeostasis by choosing lean meat cuts [62,63]. Also, the 
control diet in trials including red meat-rich intervention diets was fairly 
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heterogeneous, ranging from manufactured soy-protein, over white meat 
and lean fish, to oily fish. 

 
Taken together, evidence from prospective cohorts clearly points 
towards a relation of the habitual consumption of whole-grain bread, 
coffee, and red meat with type 2 diabetes risk. Intervention studies, 
however, do not indicate a generalizable short-term effect of these 
dietary components on markers of glucose homeostasis. Interpretation 
of the observational findings should be concerned with potential sources 
of bias such as residual confounding. The interpretation of results from 
dietary intervention trials with respect to population based observations, 
however, might be compromised by the design of the trials. The 
intervention studies, for example, often target high-risk study groups; 
complexity of dietary composition and compensatory dietary behavior 
complicate definition, administration and monitoring of intervention and 
control treatments; the choice of surrogate markers for hard endpoints is 
often debatable; and the duration of the trials seems often not to clearly 
rely on biological reasons. Foods are complex exposures and type 2 
diabetes is a slowly developing disease preceded by several stages of 
disturbed metabolic conditions. Models that can capture the obvious 
complexity of the relation between long-term dietary habits and type 2 
diabetes risk to a certain degree might help to better integrate 
observational and interventional evidence on the topic. Beyond that 
complex models of dietary effects on type diabetes risk could also help 
to identify gaps in the available evidence and thereby inform aims and 
design of future studies. 

1.4 Systems epidemiology 

1.4.1 Complex systems 

This work is about the use of complex observations on molecular 
phenotypes under real-life conditions to generate biological hypotheses 
on biological mechanisms that could link diet to type 2 diabetes 
incidence. Conceptually this approach was referred to as systems 
epidemiology [64,65]. It was argued that metabolomics can be a key tool 
to uncover the biology underlying observed diet-disease links [65-67]. 
The combination of sensitivity to dietary exposures and relevance for 
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type 2 diabetes incidence qualifies metabolomics as a tool to investigate 
the mechanisms that might link these two entities. 

An early attempt to formalize a general perspective on systems 
theory with a focus on biology was the General Systems Theory by Ludwig 
van Bertalanffy (1909-1972), which was developed between World Wars 
I and II [68]. Today contributions to the understanding of systems on a 
general level come mainly from the field of complex systems sciences [69]. 
While important distinctions were made [70] the basic understanding 
that systems behavior arises from specification of the interactions 
between its parts remains. Both approaches share that abstract models, at 
best mathematically formalized, are at the core of understanding and 
possibly modifying complex systems behavior [71]. 

Regarding living organisms, systems approaches emphasize that 
characteristic organizational principles differentiate between living 
systems and the non-living world [72]. As for any system, the 
organization of living systems cannot be deduced from its parts 
(antireductionism). The structure of living systems is primarily determined 
by self-maintaining interactions of their components. Only to a relatively 
low degree it is determined by the environment, a principle that was 
labeled autopoiesis [73]. The molecular composition of an average 
biological cell, e.g., is completely renewed about 104 times over its life-
cycles but the inherent organization remains stable [74]. Thus living 
systems constantly incorporate information and material from the 
environment but as soon as they are incorporated these parts are 
integrated in the organizational structure of the organism. Amongst 
other implications, this shifts the attention from states and molecules to 
relations and dynamics. 

Studying complex systems needs appropriate tools. Mathematical 
models play a key role in this regard [71]. Emphasis on complexity and 
wholeness of systems should not obscure, however, that translating 
observations into models necessarily involves reductionism. Limitations 
on our ability to picture complexity are imposed by limited capacities to 
measure, process and interpret information. Network models are suitable 
tools to provide guidance in focusing on the relevant information 
[75,76]. In systems biology, networks are used to break systems into 
modular subsystems [77] and to identify a manageable number of key 
components of a system that can be used to approximate the systems 
internal state as a whole [78,79]. 



Introduction Wittenbecher 

[13] 

Applications of network approaches in epidemiology have 
received considerable attention (e.g. [80,81]) and various examples of 
metabolomics networks derived from blood screenings in observational 
human cohorts are available [82-84]. It should be noted that the use of 
certain tools is not what is perceived as a systems approach in this work. 
The working definition of a systems perspective on epidemiological 
observations used in this work is one that integrates information from 
various levels according to a model that reflects complex interrelations 
between humans’ internal states and the environmental challenges they 
are exposed to. Moreover, observations on the key variables of the 
model should enable predictions or explanations on behavior of the 
system as a whole. Behavior in this sense includes the transition from the 
healthy into the diseased state in longitudinal studies in the bio-medical 
field.  

1.4.2 Metabolomics 

The human metabolism is a subsystem of the human organism. 
Regulated interactions between its components (i.e. metabolites) 
maintain an elaborate equilibrium on a systemic level. On a molecular 
level systemic feedback e.g. via endocrine or neuronal processes regulates 
enzyme and transport activities. Moreover metabolic states interact with 
behavioral states. On the one hand metabolic activities provide the fuel 
for physical and cognitive activities and deliver building blocks for 
morphological maintenance and adaptation. On the other hand behavior 
is organized to compensate consumption of metabolic substrates and 
ameliorate disturbances of metabolic equilibrium. Thus metabolic 
activities are sensitive to environmental challenges. Particularly diet plays 
a major role because it supplies substrates for major metabolic processes. 
A long-term unbalanced diet has the potential to disturb the metabolic 
balance. Type 2 diabetes is classified as a metabolic disease. The 
physiopathology of type 2 diabetes can be summarized as an inability to 
maintain the metabolic equilibrium that controls physiological systemic 
glucose levels in the healthy state. Thus the constant metabolic impact of 
the habitual diet can be viewed as an intermediary step in the effect it 
exerts on diabetes development. 

Metabolomics approaches can be regarded as snapshots of the 
metabolic state [85]. These snapshots can be narrow or wide (e.g. 
targeted vs. untargeted approaches), the picture can have different 
resolutions (e.g. qualitative vs. quantitative approaches), and it can be 
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taken on different locations (e.g. blood vs. other tissue samples), with a 
different focus (e.g. water-soluble vs. lipophilic compounds) and in 
different frequencies (e.g. single time-points vs. time series). Technically, 
metabolomics rely on coupling liquid or gas chromatography with mass 
spectrometry [86]. Definitions of metabolomics often refer to the 
approach as to assess all small molecules (small molecules <1500 Da) 
present in a biological sample (cell, tissue or organ) at a specific time-
point [85]. This, however, is a too optimistic definition for metabolomics 
applications to human studies that typically assess hundred(s) of 
metabolites. Even though the precise number of metabolites in human 
blood is still unknown, estimates based on untargeted screenings surpass 
the ten thousand [86]. Progress of analytical chemistry and combination 
of different analytical approaches constantly expands the number of 
metabolites that are detectable [86]. Due to the highly dynamic nature 
and the compartmentalization of the metabolome, however, any 
measurement will still be limited to a very limited reflection of the 
complexity of the underlying metabolic processes. Metabolomics 
applications in human cohort studies, for example, almost exclusively 
rely on blood or urine samples from single time-points. Therefore 
metabolomics applications in human cohorts might be appropriately 
defined as a subfield of analytical chemistry that aims to simultaneously 
measure relatively broad spectra of small molecules (metabolites) in 
biological samples [28].  

Dietary composition and metabolomics 
Metabolomics applications to nutrition sciences can be subdivided as 
follows. First, metabolomics approaches were used as a novel dietary 
assessment tool to surveille the compliance to nutritional interventions 
and for discovery of biomarkers of intake of single foods or adherence 
to dietary patterns in observational studies. Though promising results 
were achieved on specific foods [87,88], food group [88-90], and dietary 
pattern [91-94] level, such an approach is generally viewed as particularly 
useful when complemented by traditional dietary assessment tools [95]. 
In other human nutrition studies, metabolomics was applied to elucidate 
the impact of diet on metabolic processes [96-98]. The two motivations 
differ important in some regards. Biomarkers of dietary intake need to be 
specific for the exposure and should reflect the time under exposure. At 
best they should allow estimating quantitatively the amount of exposure 
which is hindered by the interindividual variation of metabolic processes 
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[99]. For etiological research sensitivity of metabolite levels to dietary 
challenges is the major concerns and this is where the two motivations 
converge. 

The general notion on sensitivity of the metabolome to dietary 
challenges extends to evidence for an association of metabolic profiles 
with the particular foods considered as exposure in this study. Whole-
grain bread consumption was associated with alterations in the serum 
concentrations of phosphatidylcholines and acylcarnitines in previous 
analyses in EPIC-Potsdam [83,100]. This observation was supported by a 
cross-over dietary challenge trial in 15 healthy participants. In this trial 
whole-grain had an acute effect on the circulating concentrations of 
several amino acids, phosphatidylcholines, and lysophosphatidylcholines 
[101]. Moreover, a cross-over trial in thirty three postmenopausal women 
from Finland demonstrated that an intervention with rye bread (≥20% 
of the total energy) over eight weeks lowered branched-chain amino acid 
levels compared to refined grain bread over eight weeks [102]. 

Most studies investigating metabolomics markers of coffee 
consumption focused on coffee-derived secondary compounds and their 
metabolites [87,103-105]. Still, previous analyzes in the EPIC-Potsdam 
study, however, detected associations between coffee consumption and 
serum concentrations of sphingomyelins, phosphatidylcholines and 
amino acids [83,100,106]. Other observational cohort studies also 
reported associations of habitual coffee consumption with acylcarnitines 
[107,108], sphingomyelins [108], and lysophosphatidylcholines [109].  

Several observational and interventional studies indicate an effect 
of red meat consumption on lipid and amino acid metabolism. Previous 
findings in EPIC-Potsdam comprise red meat-related alterations in the 
sphingomyelin- and glycerophospholipid-compartments as well as in the 
amino acid profiles [54,100]. These findings were in agreement with 
analyzes in the EPIC-Oxford cohort that compared metabolomic 
profiles between vegan and vegetarians vs. omnivores [110,111]. 
Compared to non-meat consumers, acylcarnitines, glycerophospholipids 
and sphingolipids were markedly elevated [110] and amino acid profiles 
were altered in meat eaters [111]. Several intervention studies showed 
alterations of lipid [90] and amino acid profiles [112-114]. 

Metabolomics and type 2 diabetes risk 
Beyond sensitivity to dietary habits, the metabolomics data used in this 
study are informative with respect to type 2 diabetes risk. Previous 
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studies in EPIC-Potsdam showed that accurate prediction of type 2 
diabetes incidence was possible based on circulating concentrations of 
amino acids, glycerophospholipids, sphingomyelins and acylcarnitines 
and these findings were replicated in an independent cohort [115,116]. A 
recent meta-analysis of six to nine (number depending on the amino acid 
in question) prospective cohort studies from Europe, the U.S. and Asia 
evaluated the longitudinal association of metabolomics-assessed amino 
acids with type 2 diabetes incidence. The study comprised data from up 
to 8000 participants including 1940 incident cases of type 2 diabetes 
[117]. Blood concentrations of branched-chain amino acids (valine, 
leucine, and isoleucine) and aromatic amino acids were associated with 
elevated type 2 diabetes risk.  The circulating concentrations of glycine 
and glutamine in contrary were associated with reduced risk of type 2 
diabetes. Lipid metabolites were evaluated with respect to type 2 diabetes 
risk in at least 18 cohorts with numerous significant findings [117]. Due 
to large variety of lipid metabolites and less harmonized measurements, 
however, across study comparisons are more complicated. Significant 
findings on acylcarnitines and type 2 diabetes risk were reported from 
several cohorts [118,119]. Besides aforementioned replicated associations 
with type 2 diabetes incidence in EPIC-Potsdam the relevance of 
glycerophospholipids for type 2 diabetes development was indirectly 
illustrated by analyzes of the fatty acid profile in this lipid compartment 
[120,121]. Profiles of saturated and polyunsaturated fatty acids 
glycerophospholipids were strongly associated with type 2 diabetes risk 
in large scale studies in EPIC-Interact [120,121]. Circulating 
concentrations of specific sphingomyelins have been associated with a 
prediabetic insulin resistant state [122] and were strongly affected several 
months after bariatric surgery in morbidly obese patients in remission of 
type 2 diabetes [123].  

 
Taken together the available evidence indicates that circulating 
concentrations of amino acids, acylcarnitines, sphingolipids and 
glycerophospholipids are sensitive to dietary exposures, in particular to 
consumption of whole-grain, coffee, and unprocessed and processed red 
meat. This conclusion relies on evidence from observational cohorts as 
well as intervention studies in humans. In addition, metabolomics 
applications in prospective cohort studies detected associations of 
circulating concentrations of amino acids, acylcarnitines, sphingolipids 
and glycerophospholipids with type 2 diabetes risk which implicates 



Introduction Wittenbecher 

[17] 

amino acid and lipid metabolism in early biological processes that 
predispose for development of type 2 diabetes. Therefore, lipid- and 
amino acid-focused metabolomics seems to be applicable as sensors for 
both, dietary exposures and early diabetes-relevant metabolic alterations. 

Modeling metabolomics data 
From a modeling perspective metabolomics data pose several challenges. 
The high intercorrelation between metabolites is biologically informative. 
To analyze and to communicate the information content of the 
correlation structure, however, is not trivial. Besides classical data 
reduction approaches such as principal component analysis, systems 
biology provides useful graphical tools [124]. Metabolomics data-driven 
network models have been demonstrated to correspond well with 
knowledge-based charts of human metabolism [84]. Beyond that 
network-models have elucidated unknown enzymatic links and have 
helped to chemically identify unknown metabolites [125]. 

Conceptual ambiguities remain as to analyzing external variables 
(such as diet or disease risk) in relation to metabolomics data. The strong 
intercorrelation between metabolites data corresponds to mechanistical 
links in metabolic pathways. In other words, most metabolites are 
sensitive to the levels of several other metabolites. From a 
methodological perspective this implies severe concerns with the role of 
confounding. The fact that single metabolite levels commonly integrate 
information from several pathways needs to be considered. In analyses 
that aim to interpret metabolites as markers for biological meaningful 
activities the influence of other pathways should be controlled. 
Therefore, etiological studies on the metabolites and external variables 
might better take into account the correlation structure of metabolomics 
data. Over the past decades epidemiological methods were refined to 
formally approach the issue of confounding and other sources of bias in 
complex systems of interdependent factors. 

1.5 Causal Inference 

1.5.1 Counterfactual thinking 

There is an intriguing overlap between network-models of complex 
systems and the graphical approaches used in counterfactual-based 
causal inference from observational data. This overlap forms the 
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methodological basis of this work. Therefore a brief introduction to the 
counterfactual concept of causality and to the relevance causal inference 
theory for the analysis of observational data will occupy the remainder of 
this chapter. 

Summarizing or commenting the philosophical debate on 
concepts of causality is beyond the scope of this work. As a general note, 
counterfactual thinking is one of several partly competing approaches to 
define causality. Philosophical debates on the nature of causality date 
back to ancient Greece and a universal definition of causation is still not 
agreed upon [126]. The counterfactual theory of causation is one of 
several relevant theories of causation, and prominent contributions to its 
formalization were made by David Lewis [127,128]. Basically a cause is 
defined as a factor that would change the occurrence of the effect in 
some respect if everything else in the universe remained the same but the 
cause (contrary to the facts) had been different [127]. A formal analysis 
of causal question according to this concept is not as trivial as it sounds. 
Causal questions need to be stated in the form of would outcome E have been 
different (say E*) if at some point in the past the state of the potential cause C was 
manipulated (say to the state C*). Judea Pearl and others (see [129] for 
comprehensive citations), however, formalized a well-defined 
mathematical framework to analyze causal claims in observational 
settings according counterfactual-based causal models.  

1.5.2 Observing causal relations? 

Methodological literature on modern epidemiology has pinpointed that 
for biomedical research in observational settings the focus must lay on 
estimating effects rather than statistical hypothesis testing [130,131]. 
Apart from evaluating randomness as potential explanation for observed 
data patterns, epidemiological modeling has to consider structural 
sources of biases [132]. In particular, issues of effect directionality 
including concepts of confounding [133], mediation [21,134], interaction 
[135] and collider bias [129] need to be addressed in the model building 
process. This implies the epidemiological model being generally 
dependent on prior knowledge and assumptions on the nature of the 
modeled relation. The model must also consider potential sensitivity of 
the relation of interest to other influential factors and the degree to 
which information on these factors is available. 

In case prior knowledge suffices to unambiguously specify a 
causal model and sufficient information on the relevant variables is 
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available, estimates from that model can be given a causal interpretation 
[129]. The theory to specify assumptions and to identify causal models in 
complex systems of interrelated variables has been developed in the 
causal inference literature over the last decades. Apart from well-defined 
exposure and outcome, analysis of causal effects requires consideration 
of the direction of effects between the modeled variables. In this regard 
directed acyclic graphs (DAGs) are a key-tool. DAGs are graphical 
models that specify directed links between variables and can be viewed 
as visualization of structured systems of functional dependencies. 
Therefore translation of DAGs into algebraic models is straightforward 
and the corresponding framework is well-defined [129]. Examples of 
applications of causal modeling in epidemiological studies to date were 
mostly carried out in the restricted potential outcome framework [136-
138] which defines exposures as (theoretically) feasible interventions 
[139]. There is no notion on human feasibility in counterfactual concepts 
per se. Therefore the original contributions on counterfactual-based 
structural models by Pearl are in principle not restricted to scenarios 
where a human intervention is theoretically possible [140].  

Counterfactual-based restricted potential outcome models are 
arguably the best developed formal framework to derive quantitative 
estimands on causal effects in settings where they apply [139]. They 
cannot substitute, however, alternative approaches to evaluate causality 
of observed relationships because of their rather narrow 
conceptualization of well-defined exposures and outcomes [141]. To 
pose one example, social movements have changed health inequities 
across social classes and must therefore be considered important 
determinants (or causes) of population health [142]. The population-
health effects of such movements, however, can only be understood 
with respect to the interaction with the social environment in the specific 
historical context. As illustrated by this example, important 
epidemiological problems might resist formal analysis in restricted 
potential outcome models due to their wide-spread and context-specific 
effects and cyclic nature.  

Another major obstacle for counterfactual-based causal inference 
in epidemiological studies is that prior knowledge is seldom (if ever) 
complete in the sense that it suffices to define a singular causal model. 
Counterfactual-based causal quantities inferred from observations are 
always derived, however, with reference to a specific causal model. It is 
important to keep in mind that causal quantities are only as valid as the 



Wittenbecher   Introduction 

[20] 

underlying model is. Therefore, counterfactual models depend on deep 
subject-matter knowledge. In this respect, inference to the best 
explanation [143] can inform a working model, which in turn can be 
tested for consistency with observational data. Accordingly, Hills famous 
viewpoints [144] are still of use, for example by evaluating consistency of 
association over different source populations or coherence of results 
from different study types. With the concept of triangulation, the latter has 
recently received a more formal definition in epidemiology. Triangulation 
puts a focus on making use of the different sources of bias in different 
study designs [141]. Ideally, the systematic combination of designs 
mutually excludes all relevant sources of bias and leaves a causal relation 
as only explanation of associations coherently observed across studies of 
complementary designs [141].  

Still another approach to handle incomplete knowledge on the 
data-generating mechanisms is to specify the family of causal models that 
are possible given the prior knowledge and the observations. In other 
words the space of possible causal relations underlying the observations 
between two variables is restricted although no single model is defined. 
Inference is then based on exploring this space in a multi-model 
procedure rather than on one single presumably correct estimate [145]. 
This approach was taken in the present work. 

1.6 Summary 

Increasing prevalence of type 2 diabetes is a major public health concern 
on the global scale. Public health actions to prevent type 2 diabetes are 
justified by the tremendous costs of the disease and they are encouraged 
by the notion that effective diabetes prevention is possible. It is generally 
accepted that the habitual diet is an important determinant of type 2 
diabetes risk. If it comes to the level of specific foods, however, the 
biological mechanisms that might generate the observed relations with 
type 2 diabetes risk remain largely speculative. This thesis propagates to 
integrate metabolomics-based network-models in the analysis of 
observed links between habitual consumption of specific foods and 
future type 2 diabetes risk. The aim is to generate hypothesis on the 
underlying biological mechanisms that are consistent with the observed 
data patterns. 
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2 Hypothesis and study question 

In the following rational (2.1) and hypothesis (2.2) of the study are 
summarized and operationalized into primary and secondary aims (2.3). 

2.1 Rational 

Effective type 2 diabetes prevention strategies are urgently needed. 
Based on observational evidence and results of complex lifestyle 
interventions habitual diet is considered a prime target for preventive 
interventions. The biological role that specific foods paly in predisposing 
for type 2 diabetes development is not well understood. Elucidation of 
the biological mechanisms that link dietary habits to type 2 diabetes 
development will enable evidence-based nutrition interventions to 
prevent and treat type 2 diabetes. 

2.2 Hypothesis 

This work relies on the assumption that habitual consumption of specific 
foods (whole-grain bread, coffee, and unprocessed and processed red 
meat) causally affects the risk of developing type 2 diabetes. It is further 
hypothesized that this effect on type 2 diabetes risk is (partially) 
mediated by prolonged metabolic alterations due to chronic exposure to 
the respective foods. The study hypothesis is summarized in Figure 1. 
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2.3 Aims 

The primary aim of this study was the identification of potential 
metabolic links between exposure to dietary risk factors and latter type 2 
diabetes incidence based on metabolomics networks. This global aim 
included following steps: 

1. To evaluate the common variance among metabolically closely 
related metabolites in relation to both, exposure to dietary risk 
factors and type 2 diabetes incidence. 

2. To identify effects of habitual consumption of diabetes-related 
foods on the metabolomics network. 

3. To identify effects of the metabolomics network on type 2 
diabetes risk. 

4. To evaluate paths in the metabolomics network as potential 
mediators of an effect of specific foods on type 2 diabetes risk. 

A secondary study aim was to develop an algorithm to link external 
variables (food consumption, time-to-diabetes incidence) to data-driven 
network models of metabolism. This was a precondition to achieve the 
primary aim but the developed method might be of use beyond its 
application to this work. This included evaluation of key assumptions 
and tools in simulation studies before building the developed method 
upon them.  

Figure 1: Study hypothesis 
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3 Data sources and methods 

3.1 Overview of the chapter 

This chapter will give a brief introduction into causal inference 
terminology (3.2), describe simulation studies and the EPIC-Potsdam 
cohort study as data sources (3.2), and lay out the statistical design 
including methodological developments of this work (3.4). 

3.2 Excurse: Causal inference theory 

Counterfactual-based causal inference theory is the conceptual 
foundation of this work. The analytical design relied on the well-defined 
relation between graphical causal models and conditional independence 
structures of multivariate distributions. In a supplemental chapter the 
formal definitions of causal model and causal effect and the criteria for effect 
identifiability from observational data are provided, from which the 
methodological approach taken in the present study was logically 
deduced. In the following, basic concepts and terminology of graphical 
causal models will be outlined in an illustrative manner. 

 
To begin with, consider the simplest causal claim: X causes Y. 
Expressing this causal claim in a causal graph is straightforward: 

We say that X has a direct effect on Y, thus they are connected by an 
arrow emanating from X and pointing into Y. The variable X is called a 
parent of Y. The variable Y is called a child of X. It should be noted that 
this simple causal relationship cannot be expressed in standard statistical 
notation. X = Y implies Y = X. Statistical relations describe coincidences 
whereas causal models define mechanistical dependencies. 

To put an example: Rain causes wet streets (rain → wet streets). 
According to this causal claim we would expect to always observe wet 
streets in relation to rainfall. Observation of rain without wet streets 
would require another causal explanation of how the mechanism was 

X Y 
Figure 2: Simple causal graph 

with two variables and one effect 
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blocked. (Maybe the street runs under a bridge.) An alternative 
explanation would be a misspecified causal model. This would be hardly 
considered an explanation in the example. But in most research contexts 
the subject-matter knowledge is not as sound. Commonly, we have to 
deal with a certain degree of uncertainty about the causal model. 

Now consider two additional factors, a parental variable P which 
has a causal effect on both, X and Y, and a descending variable D which 
is causally affected by both, X and Y. This is expressed in the following 
graph: 

 
With regard to the causal effect of X on Y, the variable P (which is 
parent of both, X and Y) is a confounder. It constructs a relationship 
between X and Y that does not correspond to a causal path between the 
two. In the contrary, P is the causal factor. If the aim was to observe the 
causal effect between X any Y we would need to control for the levels of 
P. In an observational study such control can be exhibited for example 
by stratification according to P or most commonly by adjusting of a 
regression X on Y for P. The descendent variable D, however, is a 
collider with respect to the causal effect of X on Y. Controlling for a 
common consequence, i.e. a collider, introduces bias. Adjusting for a 
collider should be avoided.  

Last consider a mediating variable M, which is affected by X and 
in turn has an effect on Y: 

X Y 

D 

P 

Figure 3: Causal graph with a main 
effect, a confounder, and a collider 

M Y X 

Figure 4: Causal graph including a direct 
effect and a mediated effect 
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We say that M is a mediator of the causal effect of X on Y. The total 
effect of X on Y is thus constituted of two components: an indirect or 
mediated proportion which can be explained by the effect of X on M; 
and a proportion which is independent of the effect of X on M. The 
former is called indirect effect, the latter direct effect, and the sum of the two 
is the total effect of X on Y.  

Let us now put together these variable types in a common causal 
diagram: 

This causal diagram is called a directed acyclic graph or shortly DAG. 
Directed because the arrows specify the direction of effects from the 
variable from which they emanate towards the variable in which they 
point into. Acyclic because no loops are contained, i.e. claims of the type 
A causes B causes C causes A are not included. It should be noted that 
the absence of arrows specifies the absence of direct effects.  

If we delete the directionality information from the causal 
diagram we obtain the skeleton of the underlying DAG: 

The skeleton of a DAG specifies the family of causal models that imply the 
same conditional dependencies on observation of the included variables. 

X Y 

P 

D 

M 

X Y 

P 

D 

M 

Figure 5: Directed acyclic graph with a mediator, a 
collider, and a confounder 

Figure 6: Skeleton of a DAG 
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Therefore, the underlying causal model, i.e. the data-generating 
mechanisms, cannot be inferred from observational data. Still the family 
of causal models, i.e. the skeleton of the underlying DAG, can be 
inferred from observations. The skeleton above includes the information 
for example the information that P and M are conditionally independent, 
i.e. that they are not directly mechanistically linked. In other words, 
observations on conditional dependencies cannot define the data-
generating model but can still be used to reduce the space of possible 
causal explanations. (Every explanation that involves a dependency 
between P and M for example would not be consistent with the 
observed data if the data-generating DAG belonged to the family 
specified by the skeleton above.) It might be possible to direct parts of 
the links, e.g. by chronologically structured data-assessment or by 
subject-matter knowledge, but others not. Partially directed acyclic 
graphs further reduce the space of possible causal explanations for 
observed data patterns.  

DAGs are not limited in terms of number of variables to include. 
DAGs are also not specific on the type of functional relationship that 
underlies the links. Therefore, DAGs can be translated in structural 
equation models of any size and with any kind of parametric or non-
parametric link-functions. 

3.3 Data sources 

3.3.1 Simulation studies 

Completely specified causal structures 
Causal structures with four variables were manually defined as DAGs 
including indirect and direct effects along with collider variables. 
According to these, data-generating models joint Gaussian distributions 
of random variables were simulated on 1000 observations using the 
dagR-package [146] and under the assumption of exclusively linear 
relations. Details on the setting of parameters were reported along with 
the results (4.2.1). 

The well-defined causal structures included four variables: an 
exposure Xi; an outcome Xj; a parental variable P that was affected by 
the exposure Xi and affected the outcome Xj; and a descendent D that 
was affected by both, the exposure Xi and the outcome Xj. Based on 
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these four variables, two types of data-generating causal systems were 
defined, one entailing a direct effect of the exposure on the outcome and 
one without a direct effect between the two. Effect sizes were set to 
absolute values of |0.15| for all effects emanating from the exposure Xi, 
and to |0.30| for other effects involving the outcome Xj and all relevant 
combinations of signs of the model effects were simulated. 

Random causal structures 

Simulating data according to a random directed acyclic graph 
Simulation algorithms implemented in the pcalg-package were used to 
generate random DAGs and joint distributions of random variables 
according to these graphical models [147]. For a given sparseness 
parameter (or connection probability) between zero (i.e., no connected 
nodes) and one (i.e., all nodes are interlinked) this approach draws a 
topologically ordered DAG with randomly directed edges. This graphical 
model is translated into a structural equation system. Model-effects 
correspond to standardized coefficients of the data-generating linear 
structural equation model [148]. 

Varying the parameter-settings to generate the directed acyclic graph 
Settings of parameters in the simulation procedure that were suspected 
to have an impact on sensitivity and specificity of the PC-algorithm were 
systematically varied to cover the ranges observed in EPIC-Potsdam 
metabolomics networks. These parameters included the characteristics of 
the simulated DAGs: number of variables (network size); connection 
probability between variables (network density); and strength of the 
modeled effects that generated these connections (effect strength). 
Furthermore impact of the number of observations (sample size) on 
performance of the PC-algorithm was evaluated in simulations. 

Simulations to evaluate the dependency of the PC-algorithm on 
network sizes and network densities were based on the following scenarios. 
Data-generating models with 11, 26, and 81 variables (network sizes) were 
considered. The network density was simulated in the range of an average 
number of direct neighbors of network variables (local density criterion) 
between one and seven. For each simulation-run the average number of 
neighbors per node was fixed and 100 data-generating models were 
randomly generated with constant parameter settings. This procedure 
was repeated by increasing the average number of neighbors per node 
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from 1 (sparsest scenario) to 7 (densest scenario) in steps of 0.5. Effect 
strengths were randomly generated (range 0.15 to 0.80) and Gaussian 
data were simulated on 2000 observations. 

To evaluate performance of the PC-algorithm according to effect 
strength all standardized regression coefficients in data-generating 
structural model equations were fixed to a specific value for each set of 
100 simulations. This value was stepwise increased from 0.01 to 0.91 in 
steps of 0.05. This framework was applied to three different network 
densities (2, 4, and 7 neighbors per node on average) and three different 
network sizes (11, 26, and 81 nodes) resulting in nine (3x3) scenarios. Per 
simulation Gaussian data were generated on 2000 observations. 

Varying the sample-size 
In addition to varying the parameter-settings of the data-generating 
model also the number of simulated observations per data-generating 
model was varied. In this set of simulations networks with 11, 26, and 81 
nodes, respectively, were used, the average number of neighbors per 
node was set to four and model-effects were randomly generated in the 
range from 0.2 to 0.7. For each setting 100 data-generating models were 
created randomly. The simulated sample size per data-generating model 
was gradually increased from 25 observations to one million 
observations (steps: 25; 50; 100; 250; 500; 1000; 2000; 4000; 8000; 
12,000; 25,000; 50,000; 100,000; 500,000; 1,000,000). 

Evaluating the performance of the PC-algorithm 
Performance of the PC-algorithm was evaluated according to sensitivity 
and specificity of the algorithm to detect links between variables that 
correspond to data-generating mechanisms. Three indicators were 
calculated. True positive rate is equivalent to sensitivity and is defined as ratio 
of true positives (number of detected links that corresponded to data-
generating mechanisms) relative to real positives (data-generating 
mechanisms in the underlying DAG). 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑎𝑎𝑡𝑡𝑡𝑡 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 

 
False positive rate is defined as ratio of false positives (number of 

links that did not correspond to data-generating mechanisms) relative to 
all real negatives (pairs of variables not connected by a data-generating 
mechanism). False positive rate is thus an inverse indicator of specificity. 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

= 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 
The true discovery rate or positive predictive value indicates the fraction 

of all findings that correspond to true links.  
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 
The true discovery rate therefore assessed the likelihood that a detected link 
corresponded to a data-generating mechanism. 

3.3.2 The EPIC-Potsdam cohort study 

Overview 
This subsection will explain design and data assessment of the EPIC-
Potsdam study and is organized chronologically. After some general 
information on the multicenter EPIC-study, recruitment of EPIC-
Potsdam participants and protocols of the baseline assessment will be 
outlined, including description of the assessment of habitual diet and 
lifestyle routines, physical examination and blood sampling protocol. 
Thereafter follow-up procedures of EPIC-Potsdam participants will be 
explicated including detection and verification strategies for incident type 
2 diabetes. Then the construction of the diabetes case-cohort for 
molecular phenotyping will be specified. Finally chemical measurements 
of biological molecules in the blood will be described.  

The European investigation into cancer and nutrition study 
The EPIC-Potsdam study is part of the multicenter EPIC-study [149]. 
The design of the EPIC-study was dedicated to investigate the impact of 
habitual diet on the risk of developing chronic diseases [149,150]. In one 
of the largest epidemiological cohort studies worldwide 521,448 study 
participants were recruited in a cooperative effort of 23 research 
institutions located in 10 European countries [151].  

The core protocol in all EPIC centers comprised baseline 
assessment of information on lifestyle and diet, and anthropometric 
measurements [150]. Furthermore biological samples were taken at 
baseline of the majority of study participants. All centers followed up 



Wittenbecher  Data sources and methods 

[30] 

participants with a focus on the detection of incident chronic diseases 
including cardiometabolic events and cancer. 

Recruitment 
The city of Potsdam in Brandenburg, federal state of Germany, had been 
selected to host one of the two German EPIC centers. The target 
population of the EPIC-Potsdam study was defined as the general 
population of middle to older age, i.e. in an age range of 35 to 64 for 
women and from 40 to 64 for men at the time of recruitment, living in 
the city of Potsdam and the surrounding municipalities [152]. Therefore, 
the study region comprised a larger city with above 100,000 inhabitants 
as well as small towns and rural areas. Random samples of inhabitants 
meeting the age criteria were periodically provided by the registration 
offices of the study region and by the end of the recruitment period 
100% of eligible individuals in the study region were contacted [152]. 

The study was approved by the ethics committee of the Medical 
Society of the State of Brandenburg. Prerequisite for study participation 
was an a priori signed informed consent [152]. The consent covers 
biomedical research in the public interest and could and can be 
withdrawn by the study participant at any time for the future without 
further explanations. In addition, individuals eligible for participation had 
to complete the basic interview as well as questionnaires on diet and 
lifestyle to be included in the study [149]. Of the invited individuals 
22.7% participated in the study [152]. 

In Potsdam the recruitment phase took place between August 
1994 and September 1998 [152]. In total 27,548 participants from the 
general population were included in the study, comprising 16,644 women 
and 10,904 men. The large majority of participants were in the targeted 
age range from 35 to 64 years. Compared to population survey data, 
EPIC-Potsdam participants tended to have more favorable socio-
economic and health indicators [152]. 

Baseline assessment 

Recruitment and assessment tools 
Potential study participants who responded to the invitation letter and 
agreed to a personal appointment received a food frequency 
questionnaire [153] and a questionnaire on non-dietary lifestyle aspects 
[149] per mail, approximately ten days prior to the visit at the 
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examination center. The questionnaires were completed at home and 
brought to the examination center. At the examination center a physical 
examination and a personal interview were carried out by trained 
personnel. Baseline assessment tools of the EPIC Potsdam study are 
summarized in Table 1. All baseline assessment tools were monitored 
according to predefined procedures. These procedures covered 
qualitative and quantitative aspects of data quality and took into account 
potential technical and human sources of bias [154].  

Table 1: Baseline assessment tools of the EPIC-Potsdam study [adapted from [154]] 

The habitual diet 
Dietary assessment in the EPIC-Potsdam study comprised a self-
administered food frequency questionnaire, a computer-guided interview 
to correct missing or implausible information in the questionnaire and 
for a subsample of study participants repeated 24-hours dietary recalls. 

The food frequency questionnaire was designed to assess 
individual habitual intake estimates for food groups, single food items 
and nutrients. Based on German national survey data on the detailed 
food consumption of a population-based sample over one week, a food 
list of 158 foods and mixed dishes was compiled that contained all foods 
that notably contributed to food group and nutrient intake at the 
population level [155].  

For each food item in the list participants were asked to indicate 
whether they consumed it or not during the last year [155]. In case they 
reported to having consumed the food item, participants were further 

Data assessment area Applied assessment tool 

Habitual diet Self-administered food frequency questionnaire  

Computer-guided face-to-face correction 
interview for the food frequency questionnaire 

24-hour recall (EPIC-Soft) (subsample) 

Lifestyle and 
medication  

Self-administered questionnaire, scanner-
readable 

Computer-guided face-to-face interview 

Anthropometry and 
blood pressure 

Standardized measurement procedures by 
trained medical personnel 

Molecular markers Blood sampling and specimen storage in liquid 
nitrogen / deep freezers for biochemical analyses 



Wittenbecher  Data sources and methods 

[32] 

asked to estimate intake frequency and usual portion size. Participants 
could select their typical portion size from a range of predefined portion 
sizes. For food items for which the habitual portion size was not easily 
expressible in usual household measures, colored pictures were prepared 
to aid the participants’ estimate on the usually consumed portion size. 
For the intake frequency participants were to choose among a frequency 
(1-6 times) and a time frame (per day / week / months / year). The 
available frequency and portion size categories were designed to cover 
the range of reported frequencies and portion sizes in German national 
survey data. Furthermore, for some foods information on seasonal 
variation of the intake was considered [155]. 

The self-administered food frequency questionnaire was 
completed at home. After scanning, missing and implausible information 
was reviewed and corrected in a face-to-face interview with the 
participant. This correction procedure led to complete and logically 
consistent dietary data on all participants [154]. 

Participants tended to overestimate intake frequencies of food 
items from food groups including many slightly different items relative 
to intake frequencies of food items from groups with few items only 
[156]. Therefore, summary questions on the overall intake of global food 
groups were used to calibrate reported intake frequencies of items within 
the food groups [157]. Technically, reports of intake frequencies of 
single food items were linearly adjusted for reported intake frequency of 
the corresponding food group. Weighting factors were calculated by 
dividing reported intake frequency of the global food group by the sum 
of reported intake frequencies of all single items within that group. 
Intake frequencies of single food items were then calibrated by 
multiplication with the group-specific weighting factor [157]. 

On the single food level, this study included information from the 
calibrated food frequency questionnaire on the exposure to diabetes-
related dietary items, including the habitual intake of unprocessed and 
processed red meats, whole-grain bread, and coffee consumption 
[26,158]. Adjustment for potential confounding effects by other foods 
also relied on food frequency questionnaire information and models 
were adjusted for total energy intake calculated over reported intake 
levels of all food items with the use of the German Federal Food Code 
[159]. 

No single method is considered gold standard to assess habitual 
diet in large human studies. Therefore, the quality of the intake estimated 
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by the food frequency questionnaire used in the EPIC-Potsdam study 
was evaluated with regard to consistency and relative validity. 
Reproducibility was checked by repeated administration of the same 
questionnaire to the same participants six months apart. Relative validity 
was appraised against repeated 24 hours dietary recalls [153,155,157,160]. 
In the 24 hours recalls participants were asked to report in a computer-
assisted face-to-face interview all food and drinks consumed within the 
last 24 hours [161]. A subsample of participants underwent a series of 
interviews spread across days of the week and seasons [155]. 

Measures of reproducibility and relative validity of the EPIC-
Potsdam food frequency questionnaire are summarized in Table 2. On 
the food group level, the reproducibility as indicated by the 
intraindividual correlation of reported intake levels from the repeated 
food frequency questionnaires was moderate to good, ranging from 0.49 
for bread to 0.89 for alcoholic beverages. Correlation between intake 
levels estimated with frequency questionnaire and intake levels estimated 
by repeated 24 hours recalls indicated moderate to good validity, ranging 
from 0.65 for meat to 0.86 for alcoholic beverages [155]. On an 
aggregated level, total energy and dietary fiber intake estimates from the 
frequency questionnaire and the dietary recalls were moderately 
correlated, whereas a high correlation was assessed for total protein 
intake [157,162]. In comparison to protein intake objectively measured 
by urinary nitrogen excretion, dietary protein intake was underreported 
in the frequency questionnaire by about 23 % [162]. Total energy intake 
was underreported by approximately 22 % when compared to energy 
expenditure objectively measured with the doubly labeled water method 
[162]. The amount of misreporting seemed not to depend, however, on 
the intake levels [162]. 
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Table 2: Reproducibility and validity of intake levels estimated with the EPIC-
Potsdam food frequency questionnaire [adapted from [155] and [162]] 

*The same food frequency questionnaire was repeated after six months 
#Relative to intake estimates from a series of 24 hours dietary recalls 
§Spearman rank order and Pearson (energy, protein, and fiber intake) correlation 

coefficients; all such values 

Lifestyle habits 
The lifestyle questionnaire was composed of questions on family 
circumstances and on socioeconomic indicators, i.e. educational 
background and working situation. The personal interview was designed 
to assess details on health-related non-dietary behaviors and on the 
health status and the medical history of the participants. It included 
questions on smoking status, physical activity, health status, and 
medication. Prevalence and history of chronic diseases was also assessed.  

Phenotypical traits 
At the study center, participants underwent a physical examination by 
trained medical personnel. The physical examination included various 
anthropometric measurements [163], of which data on weight and height 
were used in this study. Weights of participants in light underwear and 
with emptied bladder was measured with an electronic digital scale 
(Soehnle, type 7720/23, Murrhardt, Germany) accurate to 100 g. Heights 
were measured with a flexible anthropometer to the nearest 0.1 cm. 
Body mass index was calculated as body weight in kilograms divided by 
squared height in meters. Measurement error of the anthropometric 
measures was neglectable in comparison to the between person variance. 
Reliability coefficients above 0.99 for intra-interviewer as well as 

Dietary exposure Reproducibility* Relative validity# 

Bread 0.49§ 0.77 

Cereals 0.73 0.70 

Processed meat 0.73 0.70 

Meat 0.77 0.65 

Coffee, tea 0.71 0.70 

Total energy 0.68 0.65 

Dietary fiber  0.64 0.50 
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between-interviewer variability indicated superior reproducibility of all 
included anthropometric parameters [163]. 

Blood pressure was measured with an automated oscillometric 
device (BOSO Oscillomat, Jungingen, Germany). In a standardized 
procedure participants rested in an upright sitting position and a series of 
three consecutive measures was performed with time intervals of two 
minutes between the single measurements and the device located on the 
right upper arm [164,165]. Thus, three measures of systolic and diastolic 
blood pressure, respectively, were obtained per participant. An average 
over the second and third measurement used because this was shown to 
being the most stable and consistent parameter of blood pressure [166]. 
Participants with systolic blood pressure ≥140 mm Hg or diastolic 
systolic blood ≥90 mm Hg, or both, with self-reported hypertension 
diagnosis, or with self-reported use of antihypertensive medication at 
baseline were classified as cases of prevalent hypertension. 

Blood sampling 
Blood samples were collected of approximately 95.7% of the participants 
[149]. In total, thirty milliliters of venous blood was taken of each 
participant who agreed. Thereof, twenty milliliters were stored with 
citrate (plasma) and ten milliliters were stored without adding any 
anticoagulant (serum). The blood samples were fractioned into serum, 
plasma, buffy coat, and erythrocytes. Fractions were aliquoted into 
straws of 0.5 mL each and stored in tanks of liquid nitrogen 
(approximately –196°C) and in deep freezers (approximately –80°C), 
respectively, until further analyses. Sampling and handling of blood was 
realized according to a highly standardized protocol by qualified and 
specifically trained medical personnel [149].  

Longitudinal data collection 

The follow-up procedure 
Approximately every two years, information on the study participants 
was collected in course of an active follow-up procedure [167]. 
Participants were mailed a questionnaire with amongst others questions 
on current medication and on the incidence of 24 chronic diseases within 
the follow-up time. Furthermore, for incident diseases age at diagnosis as 
well as place of diagnosis and the treating physician were assessed. This 
study included follow-up information until the end of August 2005. 
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Several measures were taken to maximize response rates in the 
EPIC-Potsdam study and to validate the self-reported information [167]. 
Participants were reminded by telephone calls and additional letters if 
they did not respond within two weeks to the initial follow-up letter, and 
reminder activities were continued for up to one year if necessary. If 
neither the participant nor close relatives were available, vital status and 
eventually new contact data were derived from local registration offices. 
The intense follow-up strategy resulted in information on the vital status 
of close to 100% of the study population, and the final follow-up rate in 
the first follow-up round was 96%, comprising responders to the 
questionnaire and identified deaths [167]. In the follow-up rounds two 
and three response rates were 95% and 91%, respectively. The fourth 
follow-up round was ongoing at the censoring date (31 August 2005) 
with a preliminary response rate of 90% [168]. 

Incident diabetes mellitus type 2 
Participants were classified as non-verified (or potential) incident case of 
type 2 diabetes if the follow-up questionnaire gave any indication of new 
onset type 2 diabetes. For participants without documented prevalent 
type 2 diabetes, self-reports on a diagnosis of diabetes mellitus type 2 
within the follow-up period, taking antidiabetic drugs, or being dietary 
treated because of diabetes mellitus type 2 were considered as evidence 
of potential incident type 2 diabetes. Systematic information sources for 
incident cases were self-reports of a type 2 diabetes diagnosis, type 2 
diabetes-relevant medication, and dietary treatment due to type 2 
diabetes during follow-up. Furthermore, additional information from 
death certificates or from random sources was obtained, such as the 
tumor centers, physicians, or clinics that provided assessments from 
other diagnoses. Although self-reports of type 2 diabetes were generally 
reliable, by including other sources of information, the completeness of 
case ascertainment was even improved. Once a participant was identified 
as a potential case, disease status was further verified by sending a 
standard inquiry form to the treating physician. Only physician-verified 
cases with a diagnosis of type 2 diabetes (International Classification of 
Diseases, 10th revision code: E11) and a diagnosis date after the baseline 
examination were considered confirmed incident cases of type 2 diabetes 
[169]. 
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The diabetes case-cohort 
A case-cohort was constructed within the EPIC-Potsdam cohort. The 
case-cohort design was established as resource efficient way of molecular 
phenotyping in large prospective cohort studies [170]. In short, a 
statistically representative subsample of the full cohort, the so called 
subcohort, was randomly drawn for molecular studies. In addition to the 
cases randomly included in the subcohort, all other incident cases of the 
targeted disease, in this case type 2 diabetes, were included in molecular 
studies. Applying the appropriate statistical analyses this study design 
offers valid effect estimates and conserved statistical efficiency compared 
to the full cohort but largely reduces the costs and the use of resources 
[170,171]. Another advantage is that the subcohort can be in principle 
used as control group for several outcomes. 

The case-cohort was based on all participants who provided 
blood at the baseline-examination in the EPIC-Potsdam cohort 
(n=26,444). Follow-up information was considered until 31st of August 
2005 (censoring date for longitudinal analyses), corresponding to a mean 
follow-up of 7 years. In this timespan, a total of 820 type 2 diabetes cases 
with complete biological material for molecular phenotyping had been 
identified. According to appropriate sample size calculations the 
subcohort representative for the EPIC-Potsdam cohort comprised 2,500 
randomly selected participants, among them 74 randomly selected 
participants with incident type 2 diabetes during follow-up (internal 
cases). Participants were excluded due to prevalent type 2 diabetes at 
baseline (n=122); prevalent cancer, myocardial infarction or stroke 
(n=238); missing information or inconsistent information on baseline 
covariables (n=4); missing follow-up information (n=59); incomplete 
biological material (n=14); and missing or implausible metabolomics data 
(n=78). The analytical type 2 diabetes-cases cohort used for the present 
study therefore comprised 2731 participants. Descriptive statistics and 
cross-sectional analyses relied on 2092 members of the subcohort 
(representative sample of healthy participants in the full cohort). 
Longitudinal analyses further included 692 incident type 2 diabetes cases 
of which 53 were also members of the random subcohort (internal 
cases). 

Biomarker measurements 
Serum concentrations of 163 metabolites were determined in plasma 
samples from baseline in the case-cohort applying a kit-based targeted 
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metabolomics approach. The AbsoluteIDQTM p 150 Kit (Biocrates Life 
Sciences AG, Innsbruck, Austria) used isotope-labeled internal standards 
to quantify the targeted metabolites. High throughput flow injection 
analysis tandem mass spectrometry (FIA-MS/MS) technique was applied 
to measure metabolite specific signals. This kit based approach 
simultaneously targeted the quantification of hexoses (sum of six-carbon 
monosaccharides), 14 amino acids, 92 glycerophospholipids, 15 
sphingomyelins, and 41 acylcarnitines. The group of phospholipids 
comprised lysophosphatidylcholines, diacyl phosphatidylcholines, and 
acyl-alkyl phosphatidylcholines (Figure 7). Metabolites were only 
included in the analyses after surpassing preset reliability criteria in a pilot 
study. Metabolites were excluded because of mean concentrations below 
the limit of detection (n = 30) or because of high analytical variance 
(n = 6).  

The targeted metabolomics approach was conducted at the 
Genome Analysis Center of the Helmholtz Zentrum München. Samples 
were prepared as indicated in the manufacturer’s protocol (Biocrates 
user’s manual UM-P150). The procedure was described in detail 
previously [172]. Briefly, 10 µL serum was inserted into a filter on a 96-
well sandwich plate. The plate already contained stable isotope-labeled 
internal standards. Amino acids were derivated with 5% 

Figure 7: Molecular formulas of the targeted metabolite groups; R: fatty acid residual. 
Source: Human Metabolome Database (www.hmdb.ca/metabolites) 
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phenylisothiocyanate reagent. Extraction of metabolites (including 
isotope-labeled internal standards) was realized by adding 5 mmol/L 
ammonium acetate in methanol. After centrifugation through a 
membranous filter and dilution with mass spectrometry running solvent, 
final extracts were analyzed by flow injection analysis mode tandem mass 
spectroscopy (FIA-MS/MS). Metabolites were quantified in mmol/L by 
relating their signals to those of the isotope-labeled internal standards. 
For validation procedures of the method, and analytical specifications 
the reader is referred to Biocrates manual AS-P150 and previous 
publications [172]. For the lipid metabolites, fatty acid residues were 
abbreviated Cx/y, where x represented the cumulative number of carbon 
atoms in fatty acid residues and y the cumulative number of double 
bonds. Whenever a single fatty acid was contained in the lipid metabolite 
the standard short annotation for fatty acids (Cx:y) was used to indicate 
chain length (x) and number of desaturations (y). 
Selection of the targeted set of metabolites by the manufacturer was 
based on the robustness of their measurements. Hence, uncertainty of 
the measurements was below 10% for most of the metabolites and 
accuracy was relatively high with all included metabolites ranging 
between 80% and 115% of their theoretical values. Within-plate and 
between-plate coefficients of variation based on the median analytical 
variance were 7.3% and 11.3%, respectively, for the analyzed samples 
[173]. Run-order effects were accounted for by randomization of the 
sample-sequence during measurements, regardless of the case status.  

In a previous study reliability of the measurements was 
investigated by conducting repeated measurements within a small 
subsample of the study population. Most metabolites were found to have 
moderate (>0.40) to high (>0.70) intraclass correlation coefficients 
(ICCs) over a 4-months period [173], and metabolites with an 
ICC < 0.40 were not considered in the analyses. Consequently, single 
measurements of the included metabolites were assumed to be applicable 
for epidemiological risk assessment. 

3.4 Statistics & algorithms 

This section will describe the statistical procedure including 
transformation and standardization of the data (3.4.1), factor analysis 
(3.4.2), estimating causal networks (3.4.3), and regression models used 
for cross-sectional and longitudinal analysis (3.4.4). Furthermore, the 
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methods applied for effect decomposition in terms of mediation analysis 
will be explicated (3.4.6). 

3.4.1 Data processing 

Dietary information on solid foods was energy standardized. Technically, 
daily intake individual of each food in grams was divided by daily energy 
intake. Models were further adjusted for daily energy intake according to 
the nutrient density method [174]. Beverages were not energy 
standardized. Assessment of coffee in categories of cups (150 mL) per 
day or per week resulted in a multimodal distribution. Based on this 
coffee intake-distribution a categorical variable with seven levels (0-6) 
was generated: <0.5 cups/day; ≥0.5 and <1.8 cups/day; ≥1.8 and <2.8 
cups/day; ≥2.8 and <3.8 cups/day; ≥3.8 and <4.8 cups/day; ≥4.8 and 
<7.8 cups/day; ≥7.8 cups/day. Dietary exposure-variables were 
standardized to two standard deviations as unit of variance. Thus effect-
estimates for food-exposures indicated change in outcome-level 
observed in relation to two standard deviations higher exposure-level. 

Serum concentrations of metabolites were log-transformed and 
standardized on all phenotypical characteristics that were regarded as 
potential confounders. Standardization was done by regressing age, sex, 
BMI [kg/m²], and prevalence of hypertension (yes/no) on each 
metabolite and using the residual variance in further models. It should be 
noted that this procedure had the same effect on significance of 
estimates compared to adjusting for phenotypical traits in multivariable 
models. Still the remaining variance in the metabolite-residuals was 
explained to a larger extent by external factors (e.g. diet). Metabolites 
were then z-standardized (mean of zero and standard deviation of one). 

Metabolomics data were parted into subgroups according to 
biochemically closely related metabolites: amino acids, acylcarnitines, 
sphingomyelins, lysophosphatidylcholines, diacyl phosphatidylcholines, 
and alkyl-acyl phosphatidylcholines. Apart from biological plausibility 
subgrouping was further supported by the fact that covariance was 
particular high within these groups and they tended to cluster in previous 
network-analyses in EPIC-Potsdam [83]. Furthermore, a comparison 
across four independent cohorts revealed that the links between 
metabolites were very stable within these metabolite groups but that 
different cohorts were not well comparable with respect to between 
metabolite group links (Stefan Dietrich, 2017, unpublished). 
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3.4.2 Factor analysis 

Factor analysis was used to estimate the level of hidden variables based 
on measured variables that were assumed to being sensitive to the factor 
levels [175,176]. The hypothesis was that the largest dimension of 
common variance among groups of biochemically closely related 
metabolites was indicative for the all-over synthesis and turnover level of 
that group. It was therefore a priori aimed for a one factor solution per 
metabolite group. Still scree plots and the Eigenvalues were additionally 
evaluated according to consistency with the one factor solution [175]. 

As appropriate for the case-cohort design, the study sample to 
derive the factor loadings was restricted to the random subcohort (which 
is representative for the full cohort). Subsequently, standardized 
individual factor scores were imputed in external cases based on the 
standardized scoring coefficients. Factor analysis was applied restricted 
to metabolite groups, i.e. separately among amino acids, acylcarnitines, 
sphingomyelins, lysophosphatidylcholines, diacyl phosphatidylcholines, 
and alkyl-acyl phosphatidylcholines, respectively. Analyses were based on 
the metabolite-residuals standardized for the participants’ age, sex, BMI, 
and prevalence of hypertension. 

3.4.3 Estimating skeletons of acyclic directed graphs: the PC-
algorithm 

An implementation of the PC-algorithm [177] was used to estimate the 
skeleton of the data-generating DAG within metabolite groups. The 
skeleton of a DAG is the undirected graph that is common to a family of 
causal models characterized inducing the same conditional independence 
structure on the observed variables (i.e., the equivalence class of causal 
models). Application of the PC-algorithm implied the assumption of 
observed joint distributions being faithful to underlying DAGs but this is 
generally the case for multivariate normal distributions [148]. Table 3 
describes the population version of the PC-algorithm. 
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Table 3: PC-algorithm [177], Table adapted from [148] 
The PC-algorithm part I (to estimate the skeleton of the underlying DAG) 
INPUT: Vertex Set V, Conditional Independence Information 

Form the complete undirected graph 𝐶̃𝐶 on the vertex set V. 
𝑙𝑙 =  −1;  𝐶𝐶 = 𝐶̃𝐶 
repeat 

𝑙𝑙 =  𝑙𝑙 + 1 
repeat 

Select a (new) ordered pair of nodes i, j that are adjacent in 𝐶𝐶 such that 
|𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗}| ≥ 𝑙𝑙 
repeat 

Choose (new) 𝒌𝒌 ⊆  𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗} 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝒌𝒌| ≥  𝑙𝑙  
if i and j are conditionally independent given k then 

Delete edge i; j 
Denote this new graph by C 

end if 
until edge i; j is deleted or all 𝒌𝒌 ⊆  𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗} 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝒌𝒌| =  𝑙𝑙 have been 
chosen 

until all ordered pairs of adjacent variables i and j such that 
|𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗}| ≥  𝑙𝑙 and 𝒌𝒌 ⊆  𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗} 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝒌𝒌| ≥  𝑙𝑙 have been tested 
for conditional independence 

until for each ordered pair of adjacent nodes i, j: |𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶, 𝑖𝑖) ∖ {𝑗𝑗}| <  𝑙𝑙 

OUTPUT: Estimated skeleton C, separation sets S 
 
Order-dependency which was still an issue for the original version was 
resolved for the applied version of the PC-algorithm [178]. In addition 
applicability of the used implementation of the algorithm to big 
observational datasets was demonstrated [145,179]. The application of 
the algorithm to random samples of the population involved decision-
making. Therefore, conditional independence needed to be estimated 
[148] and significance testing was applied to the inner if-condition. As 
the algorithm was applied to Gaussian data this decision relied on 
Fisher’s z-transform [148]. Outcome of the algorithm was a graphical 
model G (network) in which pairs of variables were connected only if 
they were dependent conditional on any subset of other network-
variables. This network was passed to the NetCoupler-algorithm (3.4.5). 

3.4.4 Multi-model procedures 

Multiple models to infer the confidence range of possible effects 
Inference on the relation between external variables and metabolites was 
based on a multi-model procedure. The estimated skeleton of the DAG 
did not allow inferring a single correct adjustment set to estimate 
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network-independent direct effects. Still at least one subset of direct 
neighbors of any metabolite in the estimated skeleton was theoretically 
sufficient to block all network-mediated effects and was therefore also 
sufficient to estimate network-independent direct relations of that 
metabolite with external variables. Hence the applied multi-model 
strategy ensured to certainly including the correct estimate in a multitude 
of possible estimates. Inference was then based on summaries over these 
estimates. 

Cross-sectional analyses 
Multiple multivariable-adjusted linear regression models were used to 
estimate ranges of possible direct effects of dietary exposures E on 
metabolites based on the metabolite network. Each metabolite (Meto) 
was defined as outcome, and a fixed set of potential confounders 
C = �𝐶𝐶1, … ,𝐶𝐶𝑞𝑞� was included as covariables in all models. The adjacency 
set  adj(Met𝑜𝑜) = {𝑉𝑉1, … ,𝑉𝑉𝑖𝑖} was defined as the set of direct neighbors 
of Met𝑜𝑜 in the metabolomics network. In the flexible model part, the 
dependency of the metabolite on exposure levels Met𝑜𝑜~𝐸𝐸 was adjusted 
for all possible subsets of the adjacency set 𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜|adj(Met𝑜𝑜)𝑛𝑛~𝐸𝐸. Given 
i direct neighbors, 2𝑖𝑖 models were calculated, corresponding to a distinct 
model for each element of the power set of adj(Met𝑜𝑜). 

Met𝑜𝑜 [𝐸𝐸, adj(Met𝑜𝑜)𝑛𝑛,𝐶𝐶] = 𝛽𝛽0 + 𝛽𝛽𝐸𝐸 ∗ 𝐸𝐸 + � 𝛽𝛽𝑘𝑘

𝑝𝑝

𝑘𝑘=𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

∗ V𝑘𝑘 + �𝛽𝛽𝑙𝑙

𝑞𝑞

𝑙𝑙=1

∗ 𝐶𝐶𝑙𝑙 + 𝜀𝜀 

With 0 ≤ 𝑝𝑝 ≤ 𝑖𝑖 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 0 if adj(Met𝑜𝑜)𝑛𝑛 = { }, and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 1 
otherwise. Accordingly for each exposure-metabolite pair 2𝑖𝑖 potential 
effect estimates were generated with 𝑖𝑖 being the number of direct 
neighbors of the metabolite in the metabolomics network. 

The fixed set of potential confounders comprised age [years], sex, 
BMI [kg/m²], hypertension (yes/no) (respected by standardization, see 
3.4.1), sports [h/week], biking [h/week], fasting status (3 stages: fasted, 
not-eaten-but-drunken, non-fasted), smoking (4 stages: never smoker, 
former smoker, current smoker <20 Units/day, current heavy smoker 
>20 Units/day), education (4 stages: no certificate, skilled worker, 
professional school, college of higher education/university), moderate 
alcohol consumption (10–40 g/day), antihypertensive medication 
(yes/no), lipid-lowering medication (yes/no), total energy intake [MJ/d], 
habitual consumption of: other diabetes-related foods (two of the 
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following whole-grain bread [g/MJ], total meat [g/MJ], coffee 
[cups/day]); foods (consumption of other bread, cornflakes, pasta & rice, 
vegetarian dishes, cakes & cookies, confectionary, eggs, raw vegetables, 
cooked vegetables, garlic, cabbage, mushrooms, fried potatoes, low fat 
dairy, high fat dairy, low fat cheese, high fat cheese, butter, margarine, 
other fat, sauce, fish, soup, all in [g/MJ]) and beverages (tea, sugar-
sweetened beverages, wine, all in [g/day]) that were significantly 
correlated with one (or more) of the diabetes-related foods. 

Prospective analyses 
Longitudinal analyses were conducted applying Cox proportional 
hazards regression with Prentice weighting as appropriate for case-
cohort design [170] with age as underlying time-scale. The multi-model 
procedure was organized analogous to the cross sectional analyses. The 
estimates from the multiple models calculated per metabolite 
corresponded to the range of possible effects of each metabolite on type 
2 diabetes risk. Let Met𝑒𝑒 be the metabolite considered as potentially type 
2 diabetes-relevant exposure and let adj(Met𝑒𝑒) = {𝑉𝑉1, … ,𝑉𝑉𝑖𝑖} be the 
adjacency set of this metabolite in the metabolomics network and 
C = �𝐶𝐶1, … ,𝐶𝐶𝑞𝑞� a set of fixed exogenous confounders. Given i direct 

neighbors, 2𝑖𝑖 models were calculated, corresponding to a distinct model 
for each element adj(Met𝑒𝑒)𝑛𝑛 of the power set of  adj(Met𝑒𝑒). 

𝜆𝜆(𝑡𝑡|Met𝑒𝑒 ,𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒)𝑛𝑛,𝐶𝐶) = 𝜆𝜆0(𝑡𝑡) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒�𝛾𝛾Met𝑒𝑒∗Met𝑒𝑒+∑ 𝛽𝛽𝑘𝑘
𝑝𝑝
𝑘𝑘=𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

∗𝑉𝑉𝑘𝑘+∑ 𝛽𝛽𝑙𝑙
𝑞𝑞
𝑙𝑙=1 ∗𝐶𝐶𝑙𝑙+𝜀𝜀� 

With 0 ≤ 𝑝𝑝 ≤ 𝑖𝑖 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 0 if adj(Met𝑒𝑒)𝑛𝑛 = { }, and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 1 
otherwise. The fixed set of covariables was the same as in cross-sectional 
analyses, with the exception of age which was included as strata-variable, 
corresponding to allowing for random baseline risks (intercepts) but 
assuming fixed effects within age strata of one year.  
 
The software implementation of the multi-model procedure was based 
on the generalized linear models function in R. For this work Gaussian 
link functions (diet → metabolite relations) and Cox proportional 
hazards functions (metabolite → time-to-type 2 diabetes) were used. The 
glmulti-package in R basically provided a wrapper for generalized linear 
models that parted independent variables into three groups: first the 
main effect of interest (fixed, i.e. part of all generated formulae); second 
a group of flexible independent variables (flexible means that these 
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variables were included in some but not all generated formulae); and 
third a group of fixed confounders. An implemented enumerator in the 
package derived all possible non-redundant combinations of the flexible 
independent variables, generated according non-redundant formulae and 
passed them to R’s glm environment. The output was a list with detailed 
information on and results from all calculated models. This information 
was used by the NetCoupler-algorithm to classify possible links into 
direct effects, ambiguous links, and non-direct effects. For this work 
applications were limited to linear models and Cox models without 
interactions but the tool can handle other types of link functions and 
interactions as well. 

3.4.5 NetCoupler 

An algorithm to identify effects between external variables and causal 
networks 
Secondary aim of this thesis was to develop a method to link dietary data 
and information on disease risk to metabolomics networks in 
observational studies. To this end the NetCoupler algorithm was created. 
Links in DAG-skeleton-like networks mark direct effects. Key issue to 
couple external variables to an existing causal network structure thus was 
differentiation between direct and indirect (network-mediated) effects. 
The algorithm relied on the fact that under Markov assumptions the set 
of direct neighbors of a metabolite in the metabolomics network 
necessarily included the set of Markovian parents of that metabolite. 
Furthermore, it was shown that conditioning on Markovian parents 
renders a variable (metabolite) independent of all other variables in the 
network, which rules out any explanation but a direct effect for an 
association [129], under the assumption of sufficient information on the 
data-generating mechanisms. Missing directionality information on links 
between metabolites, however, implied that only limited partial 
information on the data-generating causal model was available. 
Unambiguous identification of the Markovian parents among the direct 
neighbors of metabolites was thus not possible. This was a challenge 
because adjusting for descendants implied the possibility to bias effect 
estimates. With these considerations at hand, a multi-model approach 
was pursued adjusting the relation of interest for all non-redundant 
combinations of direct neighbors of the involved metabolite in the 
metabolite network. Inference on network-independent direct effects 
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between metabolites and external variables was based on summarizing 
results from this multi-model procedure. 

Different nature of the relation between diet and metabolite levels 
and between metabolite levels and disease incidence was assumed. Diet 
was postulated to potentially affect metabolite concentrations (diet → 
metabolite). Metabolite levels in turn were assumed to potentially affect 
time-to-type 2 diabetes incidence (metabolite → type 2 diabetes risk). 
This had implications for the design of the algorithm. Hence, two 
versions were developed, NetCoupler.IN to link external variables that 
were assumed to potentially affect network variables, and 
NetCoupler.OUT to link external variables that were potentially affected 
by network variables. 

NetCoupler.IN 
The NetCoupler.IN-algorithm retrieved the range of possible direct 
effects of potentially influential exogenous factors on network variables. In 
this study, the direct effects of specific foods on metabolite 
concentrations were modeled given the metabolic network structure. 
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Table 4: NetCoupler.IN retrieves direct effects of exogenous variables on network 
variables 
NetCoupler.IN  
Input: DAG-skeleton 𝐺𝐺 (Graphical model) 
observations on: network variables 𝑀𝑀, exogenous exposure 𝑋𝑋; confounders 𝐶𝐶 

start 𝐷𝐷𝐷𝐷 = { } 
repeat  

add all new direct effect to 𝐷𝐷𝐷𝐷 
start 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑀𝑀 
repeat 

select a variable 𝑀𝑀𝑖𝑖 ∈ 𝐴𝐴𝑀𝑀𝑀𝑀 
select all nodes adjacent to 𝑀𝑀𝑖𝑖 in 𝐺𝐺, 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 

repeat 
select a subset 𝑆𝑆 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 
estimate 𝑀𝑀�𝑖𝑖~𝑋𝑋 | 𝑆𝑆,𝐷𝐷𝐷𝐷, 𝐶𝐶 
add effect estimate 𝑃𝑃𝑃𝑃 for 𝑋𝑋 on 𝑀𝑀𝑖𝑖  to 𝐶𝐶𝐶𝐶𝑖𝑖 

until no further non-redundant 𝑆𝑆 can be selected from 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 
if (lower bound of 𝐶𝐶𝐶𝐶𝑖𝑖 > 0 or upper bound 𝐶𝐶𝐶𝐶𝑖𝑖 < 0) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝1) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝2) for every pair of estimates in 𝐶𝐶𝐶𝐶𝑖𝑖: classify 𝑀𝑀𝑖𝑖 as affected by 𝑋𝑋 
else if (lower bound of 𝐶𝐶𝐶𝐶𝑖𝑖 > 0 or upper bound 𝐶𝐶𝐶𝐶𝑖𝑖 < 0) and (0 ∈ 𝐶𝐶𝐶𝐶𝑖𝑖 or 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝1) ≠ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝2) for any pair of estimates in 𝐶𝐶𝐶𝐶𝑖𝑖): classify 𝑀𝑀𝑖𝑖 as 
ambiguous with respect to 𝑋𝑋 
else classify 𝑀𝑀𝑖𝑖 as non-affected by 𝑋𝑋 
end if 

until all 𝑀𝑀𝑖𝑖 ∈ 𝐴𝐴𝑀𝑀𝑀𝑀have been selected 
until no further 𝑀𝑀𝑖𝑖 is classified as 𝐷𝐷𝐷𝐷 

Output: Confidence set CS for effects of 𝑋𝑋 on 𝑀𝑀 based on 𝐺𝐺 

classification of every 𝑀𝑀𝑖𝑖 ∈ 𝑀𝑀 as affected (𝑋𝑋 → 𝑀𝑀𝑖𝑖), non-affected (𝑋𝑋   𝑀𝑀𝑖𝑖) or 
ambiguous (𝑋𝑋---𝑀𝑀𝑖𝑖) 
|=conditional on; 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖)=set of nodes adjacent to 𝑀𝑀𝑖𝑖 in 𝐺𝐺 ≡direct neighbors 

of 𝑀𝑀𝑖𝑖 in 𝐺𝐺;  

Table 4 shows a version of NetCoupler.IN that assumes full information 
on the source population. Application to limited samples of the source 
implied hypothesis-testing and following decision rules were applied: 

1. Consider exposure-metabolite pairs only if significantly associated 
at false discovery rate-controlled p-value <0.1 based on a model 
not adjusted for adjacent metabolites (𝑆𝑆 = { }, marginal model) 

2. Consider effect estimates as 0 if p-value >0.05 
Thus with respect to a given exposure a metabolite was classified as non-
affected if the false discovery rate-adjusted p-value was non-significant in 
the marginal model. Metabolites were classified exposure-affected with 
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significant false discovery rate-controlled p-value in the marginal model 
and all estimates in the confidence set significant and consistent. Other 
metabolites were classified ambiguous with respect to the exposure. 

The outer loop of the algorithm included identified directly 
affected metabolites into the fixed model part. Then the multi-model 
procedure was repeated on the still ambiguous metabolites to check 
whether further unambiguous classification was possible based on that 
additional information. In the applied version of the algorithm this was 
limited to metabolites in the same connected components. Connected 
components were defined as group of two or more directly linked 
metabolites that were all associated with the exposure in the marginal 
model. The rational was that indirect effects could only be mediated by 
metabolites that were themselves (directly or indirectly) affected by the 
exposure. These metabolites were expected to be marginally associated 
with the exposure. In theory, one could construct scenarios in which 
incidental cancellation of several direct and indirect effects concealed 
exposure-dependency in the marginal model [129]. Still high abundance 
of incidental cancellation was considered unlikely based on observed 
correlation structures and the chance to unambiguously resolve such 
complicated scenarios in the applied modeling approach was low. 
Therefore the pragmatic decision was taken to adjust still ambiguous 
metabolites only for directly affected metabolites identified within the 
same connected component. 

NetCoupler.OUT 
The OUT-version of the NetCoupler-algorithm retrieved direct effects 
of network variables on later occurring events. In this study, the direct 
effects of metabolite concentrations at baseline on time-to-diabetes 
incidence were modeled given the metabolic network structure. 

Table 5 reveals analogy of the OUT-version of the algorithm to 
the IN-version. Reversing assumptions on effect directionality (𝑀𝑀𝑖𝑖 ←
X  but 𝑀𝑀𝑖𝑖 → 𝑡𝑡(𝐸𝐸)), however, had implications for decision rules. Effect 
directionality from the network towards the outcome implied other 
network-variables as potential confounders of the effect of 𝑀𝑀𝑖𝑖 on 𝑡𝑡(𝐸𝐸). 
Some network-variable 𝑀𝑀𝑐𝑐 might have introduced spurious association 
by affecting metabolite 𝑀𝑀𝑖𝑖 and time-to-event 𝐸𝐸 (𝑀𝑀𝑖𝑖 ← 𝑀𝑀𝑐𝑐 → 𝑡𝑡(𝐸𝐸)). In 
the IN-version (that assumed effect-directionality from the exposure 
towards the network) network adjustments were used to sort out indirect 
effects mediated by another network variable say 𝑀𝑀𝑀𝑀 (𝑋𝑋 → 𝑀𝑀𝑀𝑀 → 𝑀𝑀𝑖𝑖). 
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Table 5: NetCoupler.OUT generates estimates on direct effects network-variables on 
time-to-event data 
NetCoupler.OUT 
Input: DAG-skeleton 𝐺𝐺 (Graphical model) 
observations on: network variables 𝑀𝑀, time-to-event 𝑡𝑡(𝐸𝐸); confounders 𝐶𝐶. 

start with 𝐷𝐷𝐷𝐷 = { } 
repeat 

add all new direct effect to 𝐷𝐷𝐷𝐷 
start with 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑀𝑀 
repeat 

select a variable 𝑀𝑀𝑖𝑖 ∈ 𝑀𝑀 
select all nodes adjacent to 𝑀𝑀𝑖𝑖 in 𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 

repeat 
select a subset 𝑆𝑆 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 
estimate 𝑡𝑡(𝐸𝐸)~𝑀𝑀𝑖𝑖| 𝑆𝑆,𝐶𝐶 
add effect estimate 𝑃𝑃𝑃𝑃 for 𝑋𝑋 on 𝑀𝑀𝑖𝑖  to 𝐶𝐶𝐶𝐶𝑖𝑖 

until no further non-redundant 𝑆𝑆 can be selected from 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖) 
if (lower bound of 𝐶𝐶𝐶𝐶𝑖𝑖 > 0 or upper bound 𝐶𝐶𝐶𝐶𝑖𝑖 < 0) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝1) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝2) for every pair of estimates in 𝐶𝐶𝐶𝐶𝑖𝑖: classify 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 as affecting the 
risk of 𝐸𝐸 
else if (lower bound of 𝐶𝐶𝐶𝐶𝑖𝑖 > 0 or upper bound 𝐶𝐶𝐶𝐶𝑖𝑖 < 0) and (0 ∈ 𝐶𝐶𝐶𝐶𝑖𝑖 or 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝1) ≠ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝2) for any pair of estimates in 𝐶𝐶𝐶𝐶𝑖𝑖): classify 𝑀𝑀𝑖𝑖 as 
ambiguous with regard to risk of 𝐸𝐸 
else classify 𝑀𝑀𝑖𝑖 as non-affecting risk of 𝐸𝐸 
end if 

until all 𝑀𝑀𝑖𝑖 have been selected 
until no further 𝑀𝑀𝑖𝑖 is classified as 𝐷𝐷𝐷𝐷 

Output: confidence set CS for effects of 𝑀𝑀 on 𝑡𝑡(𝐸𝐸) based on 𝐺𝐺 
classification of every 𝑀𝑀𝑖𝑖 ∈ 𝑀𝑀 as effector ( 𝑀𝑀𝑖𝑖  → 𝑡𝑡(𝐸𝐸)), non-effector ( 𝑀𝑀𝑖𝑖   𝑡𝑡(𝐸𝐸)) or 
ambiguous (𝑀𝑀𝑖𝑖---𝑡𝑡(𝐸𝐸)). 
|=conditional on; 𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺, 𝑀𝑀𝑖𝑖)=set of nodes adjacent to 𝑀𝑀𝑖𝑖 in 𝐺𝐺 ≡direct neighbors 

of 𝑀𝑀𝑖𝑖 in 𝐺𝐺;  

It should be noted that an indirect effect unlike confounding is not 
biased. Decision rules were adjusted to avoid bias: 

1.  Consider metabolite-outcome pairs only if significantly 
associated at false discovery rate-controlled p-value <0.1 based 
on a model adjusted for all adjacent metabolites (𝑆𝑆 = adj(𝑀𝑀𝑖𝑖)) 

2. Consider effect estimates as 0 if p-value >0.05 
Thus metabolites were classified as affecting type 2 diabetes risk if the 
false discovery rate-adjusted p-value was significant in the model 
adjusted for the full adjacency set and all estimates in the confidence set 
were significant and consistent. Metabolites were considered to not 
directly affect type 2 diabetes risk if they were not significantly associated 
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in the model adjusted for the full adjacency set. All other metabolites 
were classified ambiguous with respect to type 2 diabetes risk. 

NetCoupler: stepwise-application example 
Figure 8 and Figure 9display NetCoupler in operation in a stepwise 
fashion. This example was based on data on sphingomyelins, red meat 
consumption, and time-to-diabetes incidence. Layout of graphs here 
aimed to explain the logic of the algorithm, and graphs based on the 
same data will be presented in a content-oriented layout in the next 
chapter (4.3.3 - 4.3.5).  

First the PC-algorithm was used to estimate the metabolite 
network based on metabolomics data (skeleton of the underlying DAG). 
Second preliminary links (dashed lines, colored border) of red meat-
exposure with metabolites were identified based on significance of the 
marginal associations. Third information from the confidence set of 
possible model-effects was used to classify one of the links as direct 
effect (arrow pointing towards the network). Fourth the direct effect was 
added to the fixed model part and the multi-model procedure was 
repeated. It should be noted that all marginally associated metabolites 
belonged to the same connected component. This explained the 
marginal association of two metabolites (unambiguously non-affected, 
dashed lines were deleted). No new direct effect was detected and the 
multi-model procedure for the exposure was stopped. Preliminary links 
and direct effects of metabolites on type 2 diabetes risk were identified in 
steps five and six in an analogous multi-model procedure. In step seven 
the information was displayed in a joint graphical exposure-metabolites-
disease model. For some external variable-metabolite pairs multi-model 
information remained inconclusive (dashed lines), for some there was no 
indication of a direct effect (no link), and some were classified as direct 
effects (arrows). Direction of the arrows was based on a priori 
assumptions. 
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 Figure 8: NetCoupler schematic application example (part I).  
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 Figure 9: NetCoupler schematic application example (part II). 
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3.4.6 Mediation analysis 

Potential mediating paths were selected manually according to following 
selection criteria: Metabolites were considered as potential mediators if 
they were (i) within an exposure-connected component (definition of 
connected components see 3.4.5) and (ii) classified as potential direct 
effectors of type 2 diabetes risk based on the multi-model procedure. 
Furthermore, (iii) effect directions needed to be consistent with a 
mediation hypothesis. Formally the product of the regression coefficient 
from the exposure-metabolite model and the regression coefficients 
from the metabolite-diabetes model was required to have the same sign 
as the regression coefficient from the exposure-diabetes model. 
Metabolites that fulfilled the three criteria were regarded as potential 
mediators of the exposure-diabetes relation.  

The proportion potentially mediated by the selected mediators 
was estimated. Therefore, the network independent variation of the 
metabolite was estimated by adjusting the metabolite for all direct 
neighbors in the metabolite-network that were not on the shortest path 
from the exposure to the directly diabetes-linked mediator. The resulting 
residuals were used for decomposition of the total exposure-effect into a 
part that was potentially explainable by the selected mediator (i.e., an 
indirect effect or mediated proportion) and a part that was independent 
of the selected mediator (i.e., a direct effect or non-mediated 
proportion). Technically, two fully confounder-adjusted Cox-models 
were calculated, one with and the other without adjusting for the 
network-independent variation of the mediator. The proportion 
potentially mediated was estimated as difference between non-adjusted 
and adjusted exposure-estimates relative to the non-adjusted exposure-
estimate. This is a valid approach to estimate mediated proportions 
based on proportional hazards models in scenarios where the outcome is 
rare [180]. Measures of central tendency and variation of the proportion 
mediated were obtained as median and 2.5th and 97.5th percentile from a 
bootstrapping-procedure with a sampling rate of eighty percent and 1000 
repetitions. A logical upper bound of 100% was set for the proportion 
mediated. 
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3.4.7 Software applications 

Descriptive analyses and factor analyses were performed with SAS 
software (Version 9.4, Enterprise Guide 6.1, SAS Institute Inc., Cary, 
NC, USA). 

Other statistical analyses were performed in the R environment (R Core 
Team (2016). R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria). The corrplot-
package was used to generate (partial) correlation plots 
(https://CRAN.R-project.org/package=corrplot).The dagR-package was 
used to simulate data according to predefined causal graphs 
(https://CRAN.R-project.org/package=dagR).The pcalg-package was 
used to simulate and to estimate causal networks ([147], https://
CRAN.R-project.org/package=pcalg).The glmulti-package was used 
to generate multi-model estimates (https://CRAN.R-
project.org/package=glmulti).The igraph-package was used to identify 
connected components within networks (http://igraph.org/).The 
RCytoscape-package was used to export network-files to Cytoscape 
(https://www.bioconductor.org/packages/release/bioc/html/RCytosca 
pe.html). The dplyr-package was used to manipulate data-frames 
(https://CRAN.R-project.org/package=dplyr). The ReporteRs-package 
was used to generate formatted tables (https://CRAN.R-
project.org/package=ReporteRs). All packages were used in a version 
updated on January 16th 2017. 

Cytoscape version 3.4 was used to visualize and analyze the output-
networks ([181], http://www.cytoscape.org).  

Adobe Photoshop CC 2014 (www.adobe.com) was used for the final 
layout of figures. 

https://cran.r-project.org/package=corrplot
https://cran.r-project.org/package=dagR
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=glmulti
https://cran.r-project.org/package=glmulti
http://igraph.org/
https://www.bioconductor.org/packages/release/bioc/html/RCytoscape.html
https://www.bioconductor.org/packages/release/bioc/html/RCytoscape.html
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=ReporteRs
https://cran.r-project.org/package=ReporteRs
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4 Results 

4.1 Overview of the chapter 

This chapter comprises a section with results on quantitative impact of 
collider bias and on the performance of the PC-algorithm based on 
simulated data (4.2) and a section with results on the mediating role of 
metabolomics network substructures that connect dietary exposures to 
type 2 diabetes incidence that was generated in the prospective EPIC-
Potsdam cohort study (4.3). The structure reflects the chronology of the 
workflow. Simulation studies were used to a priori evaluate assumptions 
and test applicability of available tools to develop the NetCoupler-
algorithm. Then the algorithm was developed and applied to human 
cohort data.  

4.2 Illustrating concepts & testing tools: results from the 
simulation studies  

4.2.1 Analyzes of bias in completely specified causal structures 

In System 1 (S1), Xi had a direct effect 
on Xj (Figure 10). Furthermore, Xi 
affected variable P which was parent of 
Xj, and variable D which was 
descendent of Xj. Effect sizes were set 
to absolute values of |0.15| for all 
effects emanating from Xi (𝛼𝛼, 𝛿𝛿, 𝛾𝛾), and 
to |0.30| for other effects involving Xj 

(𝛽𝛽, 𝜁𝜁). All relevant combinations of signs of the effects in the system 
were considered. The effect of Xi on Xj was target parameter of the 
estimation procedure. 

According to causal inference theory the total effect (𝜏𝜏) of Xi on 
Xj was correctly estimated by a model not adjusted for covariables 
(𝑋𝑋𝑗𝑗 =  𝜏𝜏 ∗ 𝑋𝑋𝑖𝑖 + 𝜀𝜀). No confounding mechanisms were active because 
none of the arrows aimed at Xi (backdoor criterion). The total effect in this 
case was composed of two portions, a direct effect (𝛿𝛿) and an indirect 
effect (𝜄𝜄 =  𝛼𝛼 ∗ 𝛽𝛽). To estimate the direct effect of Xi on Xj, the model 

𝛾𝛾 𝛼𝛼 
𝛿𝛿 

𝜁𝜁 𝛽𝛽 Xj D 

Xi 

P 
Figure 10: Data-generating model S1 
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needed to be adjusted for the levels of P (to subtract the indirect portion 
of the effect mediated by P), but not for the levels of D. Thus the model 
 𝑋𝑋𝑗𝑗 = 𝛿𝛿 ∗ 𝑋𝑋𝑖𝑖 + 𝜄𝜄 ∗ 𝑃𝑃 +  𝜀𝜀 was expected to generate a valid estimate on 

the direct effect (𝛿̂𝛿). 
In the first set of simulations of S1, the direct effect 𝛿𝛿 was set to 

+0.15 and the components of the indirect effect had equally positive 
signs (𝛼𝛼 = +0.15, 𝛽𝛽 = +0.30). The direct effect was well 
approximated in a regression model adjusted for P (𝛿̂𝛿 = 0.149, M12 in 
Table 6). It should be noted that the estimate of Xi from the unadjusted 
model closely resembled the expectations on the total effect (τ� = 0.194, 
M11), which was composed of the direct effect (𝛿̂𝛿), and the indirect 
portion mediated by P (𝜄𝜄 ̂ =  τ� − 𝛿̂𝛿 = 0.045). Consequently, the 
estimated indirect effect also reflected a priori theoretical expectation 
of  𝛼𝛼 ∗ 𝛽𝛽 = 0.3 ∗ 0.15 = 0.045. Whereas M11 and M12 provided valid 
estimates for different dimensions of the effect of Xi on Xj, adjusting for 
D introduced bias into the effect estimate of Xi on Xj (M13-M16). The 
fact that D was affected by both Xi and Xj rendered it a collider in 
relating these two variables (d-separation). The estimate for the effect of Xi 

on Xj was biased towards the null if the signs of the effects of Xi and Xj 
on D were the same (sgn(𝛾𝛾)=sgn(𝜁𝜁), M13 and M14). On the contrary, 
effect inflation was observed in collider-adjusted models if the signs of 
the effects of Xi and Xj on D were different (sgn(𝛾𝛾) ≠sgn(𝜁𝜁), M15 and 
M16). Notably, the presence of a collider in the model also compromised 
the efficacy of controlling for a parental variable (e.g., the strongest bias 
towards the null was observed in a model adjusted for the parental 
variable P and the descendent D, rather than in a model adjusted for D 
only; compare M13 and M14). It should also be noted that albeit the 
effect estimates were biased in models adjusted for collider-variable D, 
all models M11-M16 consistently indicated a significant positive effect of 
Xi on Xj. 

In the second set of simulations of S1, the direct effect 𝛿𝛿 was 
again set to +0.15 but the components of the indirect effect had 
different signs now (𝛼𝛼 = −0.15,𝛽𝛽 = +0.30) corresponding to a 
negative indirect effect. Again, non-adjusted model M21 and parental 
variable-adjusted model M22 delivered valid estimates for the total and 
the direct effect, respectively (Table 6). Generally, as described above 
adjusting for the collider D introduced bias. Still, there were some 
particularities to be pointed out here. Firstly, adjusting for an indirect 
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effect and a collider could lead to additive effect attenuation. The effect 
of Xi on Xj in model M23, e.g., was still significant (p=0.04). Slight 
changes of the data-generating effect sizes or of the significance cutoff 
(to account for multiplicity, e.g.) would have obscured, however, 
presence of a direct effect Xi on Xj. Secondly, various indirect 
mechanisms have the potential to incidentally cancel out. In M25, e.g., 
positive collider bias compensated for the negative indirect effect. 
Therefore, an incorrectly specified model delivered an estimate that 
quantitatively closely resembled the true underlying direct effect. 

Table 6: Estimates for the effect of Xi on Xj from differently adjusted regression 
models based on simulated data according to System 1  
ID Regression model (adjustments) Estimate p-Value Bias 
Positive indirect effect: sgn(α)=sgn(β) 

M11 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 0.194* 3.7E-16 +0.045# 
M12 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 0.149 1.0E-10 reference 

Equal signs of the effects of Xi and Xj on D: sgn(γ)=sgn(ζ) 

M13 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.122 9.5E-08 -0.027 
M14 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.088 7.2E-05 -0.061 

Unequal signs of the effects of Xi and Xj on D: sgn(γ)≠sgn(ζ) 

M15 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.221 <2e-16 +0.072 
M16 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.177 <2e-16 +0.028 
  
Negative indirect effect: sgn(α)≠sgn(β) 

M21 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 0.107 5.7E-06 -0.042 
M22 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 0.149 1.0E-10 reference 

Equal signs of the effects of Xi and Xj on D: sgn(γ)=sgn(ζ) 

M23 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.046 0.04 -0.103 
M24 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.088 7.2E-05 -0.061 

Unequal signs of the effects of Xi and Xj on D: sgn(γ)≠sgn(ζ) 

M25 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.143 4.3E-10 -0.006 
M26 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.177 2.9E-15 0.028 

Data were generated by structural equation models according to the DAG depicted in 
Figure 10. Effect sizes were set to absolute values of |0.15| for all effects emanating 
from Xi (𝛼𝛼, 𝛿𝛿, 𝛾𝛾), and to |0.30| for other effects involving Xj (𝛽𝛽, 𝜁𝜁). Signs were 
varied, i.e. positive and negative regression coefficients were varied as indicates in 
the subheadings.*Regression coefficient of Xi; #Bias if interpreted as direct effect of 
Xi on Xj was calculated as difference to the reference model. 
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In contrast to S1, Xi had no direct 
effect on Xj in System 2 (S2, Figure 11). 
Analogously to causal structure S1, 
however, Xi affected a variable P, 
which was parent of Xj, and a variable 
D, which was descendent of Xj . As laid 
out above, the total effect was expected 
to be validly estimated by the non-
adjusted model, whereas the model adjusted for the mediating variable P 
was expected to correctly indicate absence of a direct effect of Xi on Xj. 

In the first set of simulations of S2, the components of the 
indirect effect had equally positive signs (𝛼𝛼 = +0.15,𝛽𝛽 = +0.30). 
Absence of a direct effect was inferable from the regression model 
adjusted for P (𝛿̂𝛿 = −0.001, M12 in Table 7), whereas the non-adjusted 
model provided an accurate estimate on the total effect (τ� = 0.044, 
M11), which was due to an indirect mechanism in this case. Again, the 
estimated indirect effect corresponded well with theoretical expectations 
(𝛼𝛼 ∗ 𝛽𝛽 = 0.3 ∗ 0.15 = 0.045). Albeit accurately estimated, this solely 
indirect effect would not have been considered significant at a 95% 
confidence level. Similar to S1, including the collider variable D into the 
model again introduced bias (M13-M16). It should be noted that effect 
estimates of Xi on Xj, were unstable with some suggesting positive and 
others suggesting negative effects. Moreover, given that the sought 
quantity was the direct effect of Xi on Xj, bias of the estimate was not 
always ameliorated by including the parental variable P along with the 
collider D (compare M13 and M14). 

Analogous to S1, the second set of simulations of S2 evaluated 
collider bias in the presence of a negative indirect effect (𝛼𝛼 =
−0.15,𝛽𝛽 = +0.30). As expected, the models M21 and M22 provided 
accurate estimates of the total and the direct effect, respectively. 
Unsurprisingly, in absence of a direct effect, the sign of the indirect 
effect did not make a difference with regard to the absolute bias 
introduced by adjusting for collider-variable D. The pattern of unstable 
associations was comparable to the first set of S2 simulations. Results 
from either set included positive and negative estimates. Furthermore, 
some models indicated a significant effect of Xi on Xj due to collider-bias 
in either set of S2 simulations. 
  

Figure 11: Data-generating model S2 
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Table 7: Estimates for the effect of Xi on Xj from differently adjusted regression 
models based on simulated data according to System 2 

Data were generated by structural equation models according to the DAG depicted in 
Figure 11. Effect sizes were set to absolute values of |0.15| for all effects emanating 
from Xi (𝛼𝛼, 𝛿𝛿, 𝛾𝛾), and to |0.30| for other effects involving Xj (𝛽𝛽, 𝜁𝜁). Signs of effects 
were varied as indicated the subheadings.*Regression coefficient of Xi; #Bias if 
interpreted as direct effect of Xi on Xj was calculated as difference to the reference 
model. 

To summarize, simulation of data according to manually defined DAGs 
with four variables was used to evaluate the possible ramifications of 
collider bias. In most cases, adjusting for a collider produced 
quantitatively biased effect estimates. Still, based on significance testing, 
presence of a direct effect was correctly indicated by most models (S1), 
whereas some models always correctly indicated the absence of a direct 
effect when this was the underlying truth (S2). In some unusual cases an 
indirect effect and collider bias incidentally cancelled each other out 
leading to accurate estimates on the direct effect. Simulations also 
illustrated the potential of collider bias to obscure true effects or to 
suggest a direct effect where none was present. These concerns would 
particularly apply if inference on direct effects was based on a single 

ID Regression model (adjustments) Estimate p-Value Bias 
Equal signs of the components of the indirect effect: sgn(α)=sgn(β) 

M11 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 0.044* 0.064 0.045# 
M12 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 -0.001 0.963 reference 

Equal signs of the effects of Xi and Xj on D: sgn(γ)=sgn(ζ) 

M13 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 -0.014 0.544 -0.015 
M14 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 -0.049 0.027 -0.050 

Unequal signs of the effects of Xi and Xj on D: sgn(γ)≠sgn(ζ) 

M15 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.083 <0.001 0.082 
M16 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.038 0.086 0.037 
  
Unequal signs of the components of the indirect effect: sgn(α)≠sgn(β) 

M21 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 -0.046* 0.050 -0.048** 
M22 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 0.002 0.940 reference 

Equal signs of the effects of Xi and Xj on D: sgn(γ)=sgn(ζ) 

M23 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 -0.095 <0.001 0.097 
M24 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 -0.049 0.027 0.050 

Unequal signs of the effects of Xi and Xj on D: sgn(γ)≠sgn( ζ ) 
M25 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝐷𝐷 0.000 0.986 0.001 
M26 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑖𝑖 + 𝑃𝑃 + 𝐷𝐷 0.043 0.054 -0.042 
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model without having valid knowledge of the underlying data-generating 
mechanisms. If any non-significant submodel would have been 
considered as evidence against a direct effect, to summarize over the 
estimates from all possible models, however, would have consistently 
indicated a direct effect in S1, and revealed its absence in S2. 

4.2.2 Discovering causal structures in larger random networks 

Overview 
In this section, the causal inference algorithm later applied to discover 
metabolomics networks (PC-algorithm) was tested on simulated data. 
Settings of parameters in the simulation procedure, that might have 
influenced sensitivity and specificity of the PC-algorithm, were 
systematically varied to cover the ranges observed in EPIC-Potsdam 
metabolomics networks. Conceptually, network-simulations were divided 
into two parts: firstly, variation of the parameters that determined the 
random generation of the underlying DAG; secondly, variation of the 
sample size. The first part corresponded to applying the evaluated 
algorithm to varying biological settings, whereas the second part 
accounted for modifications of the study design. 

Dependency of the PC-algorithm on the underlying DAG 

Network density and network size 
Figure 12 shows dependencies of the performance of the PC-algorithm 
on network densities in the different network sizes. Overall, the true positive 
rate as indicator of sensitivity of the PC-algorithm was good to excellent 
(>0.75) for networks with up to four (11 nodes network) or five (larger 
network) neighbors per node on average, with a tendency to be more 
accurate and precise in the larger networks. In the densest simulated 
scenarios, with on average seven neighbors per node, the true positive 
rate was moderate. The false positive rate as indicator of specificity was 
close to zero and thus generally neglectable over the whole range of 
modeled connection probabilities.  

In accordance with very low false positive rates and moderate to 
excellent true positive rates, the PC-algorithm generally showed excellent 
true discovery rates in networks of moderate to high densities. Only in 
large and sparse networks (81 nodes, 1-2 neighbors per node) a relevant 
fraction of false positives among all detected links was assessed.  
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Figure 12: Performance of the PC-algorithm according to network size and density. 
For each simulation-run the average number of neighbors per node was fixed and 100 
DAGs were randomly generated. Rates (95 % CI) = Median (2.5th, 97.5th percentile). 
The average number of neighbors per node was increased from 1 to 7 by 0.5, and 
spline functions were fitted to the data points. A: 11 nodes; B: 26 nodes; C: 81 nodes. 
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Effect strength 
Figure 13 shows that in sparse networks with two neighbors on average 
(row I), sensitivity of the PC-algorithm to detect effects over 0.1 was 
excellent across all three simulated network sizes (column A = 11 nodes, 
column B = 26 nodes, column C = 81 nodes). True positive rates were 
consistently one ore close to one. In addition, in sparse settings, 
specificity for effects above 0.1 was very high, as indicated by false 
positive rates close to zero in simulated sparse scenarios over all network 
sizes. The fraction of true discoveries among all detected links was 
accordingly high. Only in large sparse networks with weak effects (C-I in 
Figure 13) a relevant fraction of false discoveries among all links were 
identified, which was indicated by moderate true discovery rates for 
effects below 0.5.  

For networks with four neighbors on average (row II in Figure 
13) good to excellent sensitivity was assessed over a wide range of effect 
strengths in the three evaluated network-sizes. Only in small networks 
(11 nodes) with strong effects (>0.5), the true positive rate dropped 
below 0.75. In general, there was a tendency to higher sensitivity for 
weak effects in smaller networks. Strong effects were more accurately 
detected in larger networks. False positive rates were very low with 
estimates of zero or very close to zero and true discovery rates were 
accordingly high.  

In the densest networks, the PC-algorithm was considerably less 
sensitive for detect strong effects (row III in Figure 13), particularly in 
small networks (column A). The false positive rates and true discovery 
rates, however, were excellent. This suggested difficulty of the PC-
algorithm to differentiate between direct and indirect effects in settings 
where each network-variable was strongly affected by a large fraction of 
the other network variables. The ability of the PC-algorithm to detect 
effects below 0.1 was only moderate. False positive rates were not 
affected by small effect sizes and were consistently zero or close to zero. 

 
To summarize, the PC-algorithm showed excellent sensitivity and 
specificity for discovering the skeleton of the data-generating DAG for 
models with an average number of direct neighbors per node below four 
(smallest simulated network) or five (larger networks). In dense models 
(>5 neighbors per node on average), the sensitivity of the PC-algorithm 
was moderate. In large and very sparse networks (≤2 neighbors per node 
on average), despite high true positive and low false positive rates, a 
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relevant fraction of all discoveries was false. Good to excellent sensitivity 
of the PC-algorithm was observed for the detection of moderately weak 
effects (≥0.1), regardless of network density and also moderate to strong 
effects in moderately dense networks of moderate density (≤4 neighbors 
per node on average). Sensitivity of the PC-algorithm was moderate to 
detect medium to strong effects in very dense networks (7 neighbors per 
node on average), particularly, if this setting was modeled in small 
networks (11 nodes). 
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Figure 13: Performance of the PC-algorithm according to effect strengths and 
network size. For each simulation-run, model effects were fixed at the same level and 
100 DAGs were randomly generated. Rates (95 % CI) are median (2.5th, 97.5th 
percentile) of these models. Effect strength was increased from 0.01 to 0.91 by 0.05 
and spline functions were fitted to the resulting data points. Rows: Network densities–
I = 2, II = 4, and III = 7 neighbors per node on average. Columns: Network sizes- A: 
11 nodes; B: 26 nodes; C: 81 nodes. 
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Dependency of the PC-algorithm on the sample size 
Figure 14 shows performance of the PC-algorithm according to the 
number of observations (sample size). True positive rates of close to one 
or one indicated excellent sensitivity of the PC-algorithm, whenever 
estimation procedures were based on 2000 or more observations. 
Furthermore, false positive rates were close to zero or zero regardless of 
sample size, and accordingly true discovery rates were consistently 
excellent. With considerably less than 2000 observations, however, 
sensitivity of the PC-algorithm markedly dropped. In a sample of 1000 
observations, e.g., the true positive rates were only moderate in all 
simulated network sizes. 

It should be noted that the impact of different settings of the 
significance threshold (α-level) was already evaluated in simulations 
[147]. 

 
Taken together, these simulations indicated applicability of the PC-
algorithm to infer the equivalence class of data-generating structures 
(skeleton of DAGs) based on joint Gaussian distribution generated by 
one DAG of this class. Prerequisites for an excellent performance were 
network size between 11 and 81 variables, between 3 and 5 neighbors 
per node on average, moderate to strong model effects (0.1 to 0.7), and a 
sample size of at least 2000 observations. The sensitivity and specificity 
of the PC-algorithm to reveal the skeleton of the data-generating DAG 
was excellent in the range of parameters, which was expected for 
applications in the EPIC-Potsdam cohort study. Therefore, the PC-
algorithm was considered a valid tool to estimate causal metabolomics 
networks in the current study. 
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Figure 14: Performance of the PC-algorithm by sample size (number of simulated 
observations). Average neighbors per node = 4; effect strength randomly generated in 
the range from 0.2 to 0.7; Network sizes: A = 11, B = 26, and C = 81 nodes. 
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4.3 Metabolic links between habitual diet and type 2 diabetes 
risk: results from the EPIC-Potsdam cohort  

4.3.1 Distributions, confounding structure, and covariance 

Whole-grain bread 
The median habitual consumption of whole-grain bread was 3.2g per MJ 
(IQR 0.9-8.4). The distribution of intake levels was right-tailed with over 
10% non-consumers and the upper five percent with 19g whole-grain 
bread intake per MJ or above. Table 8 displays the distribution of 
potential confounders over five categories according to whole-grain 
bread intake (exposure). Categories were built by splitting the 
representative sample of the EPIC-Potsdam cohort (subcohort, n=2092 
after exclusions) into subgroups at quintiles of the exposure-distribution. 
The resulting five groups were labeled Q1–Q5 (lowest to highest whole-
grain bread intake). 

The percentage of women was markedly higher in categories with 
higher whole-grain bread intake, and so was the percentage of 
participants with academic education. In categories of higher whole-grain 
bread intake, average daily energy intake was markedly lower and average 
red meat intake, percentage of smokers, and percentage of participants 
with hypertension was also lower. BMI was lowest in the highest 
category but comparable over the others; average coffee intake was 
lowest in the two highest categories; lipid-lowering medication was least 
frequent in categories with moderately high whole-grain bread 
consumption (Q3 and Q4).  
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Table 8: Confounding structure over categories according to whole-grain bread 
consumption 
 Categories according to WGB consumption   

 Q1 Q2 Q3 Q4 Q5 ALL 

Participants (n) 418 419 418 419 418 2092 
WGB [g/MJ] 0.1 

(0.3)* 
1.2 

(0.7) 
3.2 

(1.4) 
7    

(2.7) 
14.8 
(7.1) 

3.2 
(7.5) 

Women 43%# 57% 63% 70% 77% 62% 
Age  51.5 

(15.4) 
48 

(14.5) 
48 

(15.3) 
48.4 

(15.9) 
50.5 
(16) 

49 
(15.6) 

BMI [kg/m2] 25.4 
(5.7) 

25.7 
(5) 

25.3 
(4.8) 

25.7 
(5.3) 

24.8 
(5.2) 

25.4 
(5.2) 

Sports [h/week] 4.5 
(6.5) 

4       
(6) 

5        
(6) 

5       
(6) 

4.5 
(6.5) 

4.5    
(6) 

Coffee [cups/day] 3 (2) 3 (2) 3 (2) 2 (2) 2 (3) 2 (2.5) 
Red meat [g/MJ] 12.6 

(7) 
12.2 
(5.9) 

10.9 
(5.8) 

10.2 
(7.1) 

9.7 
(6.4) 

11.1 
(6.7) 

Total energy [MJ/day] 9    
(3.9) 

8.4    
(4) 

8.2 
(3.3) 

8.1 
(3.1) 

7.5 
(2.6) 

8.1 
(3.4) 

Alcohol: 10-40 g/day  33% 38% 33% 37% 32% 35% 

Fasted 32% 29% 27% 29% 25% 28% 

Education       

None or in training 5% 2% 2% 3% 3% 3% 

Vocational training 41% 32% 36% 29% 30% 34% 

Technical school 20% 25% 22% 25% 29% 24% 

University 34% 41% 40% 42% 38% 39% 

Smoking status       

Never smoker 37% 45% 46% 56% 53% 47% 

Former smoker 36% 32% 33% 28% 32% 32% 

Smoker <20 U/day  16% 17% 17% 12% 11% 15% 

Smoker ≥20 U/day 11% 6% 4% 3% 4% 6% 

Hypertension [Yes] 49% 48% 45% 46% 44% 46% 
Lipid-lowering 

medication [Yes] 
4% 5% 3% 2% 5% 4% 

Antihypertensive 
medication [Yes] 

15% 17% 16% 19% 18% 17% 

*Median (IQR), all such values; #Column percentages, all such values.  
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Coffee 
The median coffee intake was 2 cups per day (IQR: 1½-4). Over 25% of 
the participants had an average coffee consumption of approximately 
two cups per day, coffee intake of below half a cup per day, and one, 
three and four cups per day, were found in 10% to 20% of the 
participants, respectively. Higher coffee intake levels were less frequently 
observed. Five categories were built according to consumption of coffee 
in cups per day. Table 9 displays averages and frequencies of potential 
confounders within these groups. Fewer women and lower BMI were 
observed in the category of very high coffee consumption. Average daily 
energy intake and percentage of participants with moderate alcohol 
consumption and percentage of smokers were higher in participants who 
drank more coffee. Frequency of academic education was lower in 
participants who drank more coffee. Medication (lipid-lowering and 
antihypertensive) was least frequent among participants in the highest 
category of coffee consumption. 
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Table 9: Confounding structure over categories according to coffee consumption 
 Categories according to coffee consumption§   

 ≤1.5 Cup 2 Cup 3 Cups| 4 Cups ≥5 Cups All 

Participants (n) 523 553 375 417 224 2092 

Women 61%# 67.6% 60.8% 66.9% 42.9% 62% 
Age  48.9 

(16.2)* 
48 

(15.2) 
47.7 

(14.7) 
52.8 

(15.4) 
48.7 

(13.7) 
49 

(15.6) 

BMI [kg/m2] 25.1 
(5.7) 

25.3 
(4.9) 

25.3 
(4.5) 

25. 7 
(5.8) 

26.1 
(5.1) 

25.4 
(5.2) 

Sports [h/week] 4.5    
(7) 

4.5 
(5.5) 

4.5    
(6) 

5.5 
(6.5) 

4     
(5.3) 

4.5     
(6) 

Whole-grain bread 
[g/MJ] 

3.6 
(8.9) 

3.6 
(7.7) 

2.6 
(6.1) 

3.3 
(7.1) 

1.9 
(5.7) 

3.2 
(7.5) 

Red meat [g/MJ]  10.1 
(6.4) 

11.1 
(6.7) 

11.7 
(6.8) 

11.4 
(6.1) 

11.7 
(7.7) 

11.1 
(6.7) 

Total energy [MJ/day] 7.9 
(3.3) 

7.9    
(3) 

8.3 
(3.4) 

8.1 
(3.3) 

9.5 
(4.5) 

8.1 
(3.4) 

Alcohol: 10-40 g/day  30% 33 % 35% 40% 37% 35% 

Fasted 28% 29% 26% 32% 25% 28% 

Education       

None or in training 4% 3% 3% 2% 2% 3% 

Vocational training 29% 35% 33% 35% 38% 34% 

Technical school 25% 22% 23% 27% 24% 24% 

University 42% 39% 41% 36% 36% 39% 

Smoking status       

Never smoker 53% 50% 47% 50% 28% 47% 

Former smoker 31% 36% 30% 30% 33% 32 % 

Smoker <20 U/day  11% 12% 18% 14% 24% 15% 

Smoker ≥20 U/day 4% 2% 6% 6% 16% 6% 

Hypertension [Yes] 46% 48% 46% 44% 47% 46% 
Lipid-lowering 

medication [Yes] 3% 5% 5% 4% 2% 4% 

Antihypertensive 
medication  [Yes] 19% 17% 15% 19% 11% 17% 

§Coffee consumption in cups per day; |category contains participants that reported 
consumption of 3.5 cups/day (≈50%); #Column percentages, all such values; 
*Median (IQR), all such values.  
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Red Meat 
The median red meat intake was 11.1 g/MJ (IQR 8.0-14.7). Energy-
standardized habitual red meat consumption was approximately normally 
distributed. Categories according to habitual red meat consumption were 
built as described for whole-grain bread above. Fewer women, lower 
average sportive activity and consumption of whole-grain bread and 
lower percentage of academic education were observed in higher 
categories of red meat consumption. Average daily energy intake and 
frequencies of moderate alcohol consumption and smoking were higher 
in categories of higher red meat intake. Coffee consumption was highest 
in the two highest categories of red meat consumption.  
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Table 10: Confounding structure over categories according to total meat consumption 
 Categories according to red meat consumption   

 Q1 Q2 Q3 Q4 Q5 ALL 

Participants (n) 418 419 418 419 418 2092 
Red meat [g/MJ] 5.6 

(2.4) 
8.7 

(1.3) 
11.1 
(1.2) 

13.8 
(1.7) 

18.8 
(4.2) 

11.1 
(6.7) 

Age  48.4 
(16.7)# 

50.3 
(15.3) 

51.4 
(16.6) 

48.5 
(16) 

47.8 
(12.5) 

49 
(15.6) 

Women 73%§ 64% 63% 53% 57% 62% 
BMI [kg/m2] 25.0 

(5.3) 
24.9 
(5.2) 

25.2 
(4.7) 

25.5 
(5.4) 

26.2 
(5.4) 

25.4 
(5.2) 

Sports [h/week] 5.0 
(5.5) 

5.0 
(7.5) 

4.5 
(6.5) 

4.5 
(6.0) 

4.0 
(6.0) 

4.5 
(6.0) 

Whole-grain bread 
[g/MJ] 

5.6 
(11.1) 

3.8 
(7.5) 

3       
(7) 

1.9 
(5.5) 

2.2 
(5.8) 

3.2 
(7.5) 

Coffee [cups/day] 2 (2) 2 (3) 2 (2) 3 (2) 3 (2) 2 (2.5) 
Total energy [MJ/day] 7.7 

(3.1) 
8.2 

(3.2) 
7.9 

(3.1) 
8.4 

(3.5) 
8.5 

(3.9) 
8.1 

(3.4) 

Fasted 30% 28% 28% 28% 27% 28% 

Alcohol: 10-40 g/day 26% 35% 34% 39% 40% 35% 

Education       

None or in training 3% 3% 4% 3% 3% 3% 

Vocational training 30% 33% 35% 33% 37% 34% 

Technical school 25% 22% 25% 24% 24% 24% 

University 42% 42% 36% 41% 36% 39% 

Smoking status       

Never smoker 52% 51% 48% 45% 41% 47% 

Former smoker 33% 31% 32% 32% 33% 32% 

Smoker <20 U/day  11% 13% 15% 16% 18% 15% 

Smoker ≥20 U/day 3% 5% 5% 7% 8% 6% 

Hypertension [Yes] 42% 43% 47% 48% 52% 46% 
Lipid-lowering 

medication [Yes] 4% 3% 4% 4% 5% 4% 

Antihypertensive 
medication  [Yes] 18% 16% 17% 15% 19% 17% 

#Median (IQR), all such values; §Column percentages, all such values.  
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Distribution and covariance of metabolites 
Distributions of metabolite serum concentrations in the EPIC-Potsdam 
subcohort have been described before [116]. Figure 15 plots the 
correlation (lower-left triangle) and the partial correlation (upper right 
triangle) structure among lysophosphatidylcholines, which were overall 
strongly intercorrelated. Strongest partial correlations, however, were 
observed between pairs of metabolites for which the chain-length of the 
fatty acid residue differed by two carbon atoms (e.g. C16:0 and C18:0, or 
C16:1 and C18:1) or between pairs of metabolites for which bound fatty 
acids differed by one desaturation (e.g. C18:1 and C18:2, or C20:3 and 
C20:4). Comparable observations were made in the other metabolite 
groups and the corresponding correlation-partial correlation plots are 
shown in the Annex (Supplementary Figure 1 and Supplementary Figure 
2, 8.1). 

 
Figure 15: Correlation (below the diagonal) and partial correlation (adjusted for all 
other metabolites within the group, above the diagonal) among lysophosphatidyl-
cholines; It should be noted that analogous plots for other metabolite-groups are 
shown in the Annex (8.1). 

Type 2 diabetes 
After exclusions 53 cases (29 men and 24 women) of type 2 diabetes 
occurred within the subcohort during a median follow-up time of 6.6 
years (IQR 6.1-8.7). From the total study population 692 incident type 2 
diabetes cases were considered after exclusions (406 men and 286 
women), with 639 of those external to the subcohort (377 men and 262 
women). 
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4.3.2 Common variation among metabolites of the same 
group 

Factor analysis within metabolite classes 
The first factor derived within the group of 14 amino acids had an 
Eigenvalue of 23.8 and explained 84% of the variance within the 
metabolite group. All amino acids except glycine (0.3) loaded above 0.5 
on factor 1. The highest loadings were contributed by aromatic and 
branched-chain amino acids (tyrosine, phenylalanine, tryptophan and 
valine, leucine/isoleucine) and methionine (all loadings >0.75). 

The first factor derived within the group of 17 acylcarnitines had 
an Eigenvalue of 18.7 and explained 71% of the variance within the 
metabolite group. The majority of acylcarnitines loaded above 0.5 on 
factor 1, and only 2 out of 17 acylcarnitines, i.e. carnitine (0.15) and 
propionylcarnitine (C3) (0.09) had factor loadings below 0.4. 

The first factor derived within the group of 14 sphingomyelins 
had an Eigenvalue of 101 and explained 80% of the variance within the 
metabolite group. Loadings on factor 1 were above 0.7 for all 
sphingomyelins, except for sphingomyelin C 20:2 with a loading of 0.22. 

The first factor derived within the group of 10 
lysophosphatidylcholines had an Eigenvalue of 19.5 and explained 87% 
of the variance within the metabolite group. All lysophosphatidylcholines 
loaded above 0.5 on factor 1, with the exception of 
lysophosphatidylcholines C 28:1 which displayed a factor loading of 0.26. 

The first factor derived within the group of 34 diacyl 
phosphatidylcholines had an Eigenvalue of 281 and explained 58% of 
the variance within the metabolite group. The majority of diacyl 
phosphatidylcholines loaded above 0.5 on factor 1, and only 3 out of 34 
diacyl phosphatidylcholines had factor loadings below 0.4 (diacyl 
phosphatidylcholines C 38:1, C 42:0, and C 42:1 with factor loadings of 
0.15, 0.26 and 0.35, respectively).  

The first factor derived within the group of 37 alkyl-acyl 
phosphatidylcholines had an Eigenvalue of 198 and explained 61% of 
the variance within the metabolite group. All alkyl-acyl 
phosphatidylcholines except alkyl-acyl phosphatidylcholine C 30:0 (0.3) 
loaded above 0.5 on factor 1. Scree plots used to evaluate the 
appropriateness of the one factor solution are shown in the Annex 
(Supplementary Figure 3, 8.2). 
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Association of dietary exposures with group factors 
Habitual consumption of whole-grain bread was associated with 
significantly lower scores in the diacyl phosphatidylcholine factor 1 
(Table 11). Habitual coffee consumption was associated with higher 
scores in the amino acid factor 1 and diacyl phosphatidylcholine factor 1 
but with higher scores in the alkyl-acyl phosphatidylcholine factor 1. 
Higher red meat consumption was associated with higher scores in the 
alkyl-acyl phosphatidylcholine factor 1. 

Table 11: Association of dietary exposures with metabolite group factors 
  Whole-grain bread    Coffee     Red meat   
Factor 1 Estimate fdr P 

 
Estimate fdr P 

 
Estimate fdr P 

Amino acids 0.028 0.826 
 

-0.067 0.004 
 

0.007 0.776 
Acylcarnitines 0.010 0.826 

 
-0.039 0.115 

 
0.037 0.164 

Sphingomyelins -0.002 0.940 
 

0.024 0.206 
 

-0.033 0.164 
Lyso-PCs -0.012 0.826 

 
0.030 0.178 

 
0.006 0.776 

Diacyl PCs -0.050 0.030 
 

-0.063 <.001 
 

-0.032 0.144 
Alkyl-acyl PCs 0.008 0.826 

 
0.052 0.001 

 
0.042 0.034 

Variance-standardized betas (Estimate) and false discovery corrected p-values (fdr P) 
for an association of dietary exposures with the first common factor within each 
metabolite class; Estimates were derived from a linear regression model 
comprehensively adjusted for significantly correlated other metabolite factors and 
for age, sex, BMI, lifestyle, diet, fasting status at blood draw occasion, and 
prevalence of hypertension and medication. PC: phosphatidylcholine.  

Association of group factors with type 2 diabetes incidence 
An elevated risk of type 2 diabetes was observed in relation to higher 
scores of the amino acid factor 1 with a hazard ratio of 1.24 (95% CI 
1.10, 1.41) per standard deviation. An elevated diabetes risk was also 
found in relation to higher scores in the diacyl phosphatidylcholine 
factor 1 with a hazard ratio of 1.44 (95% CI 1.23, 1.69) per standard 
deviation (Table 12). Reduced risk of type 2 diabetes was associated with 
higher scores in the alkyl-acyl phosphatidylcholine factor 1 (hazard ratio 
per standard deviation 0.65, 95%CI 0.54, 0.78). 
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Table 12: Association of metabolite group factors with the risk of developing type 2 
diabetes 
  Type 2 diabetes incidence  
Factor 1 HR (95% CI) fdr P 

Amino acids 1.24 (1.10, 1.41) 0.001 
Acylcarnitines 1.01 (0.90, 1.15) 0.826 
Sphingomyelins 1.05 (0.93, 1.19) 0.531 
Lysophosphatidylcholines 0.87 (0.77, 0.99) 0.059 
Diacyl phosphatidylcholines 1.44 (1.23, 1.69) <.001 
Alkyl-acyl phosphatidylcholines 0.65 (0.54, 0.78) <.001 

Hazard Ratios (HR) per standard deviation in the factor score with 95% Confidence 
Intervals (CI) and corresponding false discovery corrected p-values (fdr P) indicate 
the relative risk of developing type 2 diabetes in relation to the first common factor 
within each metabolite group; Hazard ratios were derived from a Cox proportional 
hazard regression model comprehensively adjusted for significantly correlated other 
metabolite factors and for age, sex, BMI, lifestyle, diet, fasting status at blood draw, 
prevalence of hypertension and medication.  

4.3.3 Linking diet and diabetes incidence to metabolite 
networks 

Amino acids 
The plasma amino acid network was sensitive to habitual consumption 
of coffee and of red meat, however, not sensitive to whole-grain bread 
consumption (Figure 17). One out of eight associations between dietary 
exposures and amino acids was classified as direct effect. Five amino 
acids were linked to type 2 diabetes risk. Four of these amino acids were 
unambiguously classified as direct effects based on the multi-model 
procedure. 

Acylcarnitines 
The plasma acylcarnitine network was affected by red meat and by 
whole-grain bread consumption, but no evidence for an effect of coffee 
consumption on acylcarnitine levels was found (Figure 16). Out of four 
remaining diet-acylcarnitine links one was classified as direct effect, and 
the others remained ambiguous. Five acylcarnitines were related to type 
2 diabetes risk. Four of these links were classified as direct effects. 
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 Figure 16: Joint network: diet, diabetes risk, and acylcarnitines 

Figure 17: Joint network: diet, diabetes risk, and amino acids 
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Sphingomyelins 
The plasma sphingomyelin network was sensitive to habitual 
consumption of coffee and red meat, but not to whole-grain bread 
consumption (Figure 19). Five out of seven links between dietary 
exposures and plasma sphingomyelin concentrations were 
unambiguously classified as direct effects. Seven sphingomyelins were 
network-independently related to type 2 diabetes risk and were therefore 
classified as direct effects. 

Lysophosphatidylcholines 
The lysophosphatidylcholine-network was sensitive to all three dietary 
exposures, i.e. to consumption of whole-grain bread, consumption of 
coffee, and consumption of red meats (Figure 18). Two out of nine links 
were unambiguous and thus classified as direct effects. Six 
lysophosphatidylcholines were linked to type 2 diabetes risk. All six were 
classified as direct effects based on the multi-model-estimates. 

Diacyl phosphatidylcholines 
The diacyl phosphatidylcholine-network was also linked to consumption 
of whole-grain bread, of coffee, and of red meat (Figure 20). Seventeen 
links between diacyl phosphatidylcholine and one of the dietary 
exposures were detected. Three of these links were classified as direct 
effects. Ten diacyl phosphatidylcholines were linked to type 2 diabetes 
risk. Five of these links were classified as direct effects based on 
unambiguous multi-model information. 

Alkyl-acyl phosphatidylcholines 
The alkyl-acyl phosphatidylcholine-network was similarly sensitive to all 
three dietary exposures (Figure 21). Twelve links of the investigated 
foods and alkyl-acyl phosphatidylcholine serum concentrations were 
present in the joint network of which two were classified as direct 
effects. Ten alkyl-acyl phosphatidylcholines were linked to type 2 
diabetes risk. Nine of these links were classified as direct effect according 
to consistency of the multi-model estimates. 
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 Figure 18: Joint network: diet, diabetes risk, and lysophosphatidylcholines 

Figure 19: Joint network: diet, diabetes risk, and sphingomyelins 
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 Figure 20: Joint network: diet, diabetes risk, and diacyl phosphatidylcholines  
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 Figure 21: Joint network: diet, diabetes risk, and alkyl-acyl phosphatidylcholines   
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4.3.4 Direct effects of dietary exposures on metabolites 

Digital only supplemental material 
Summary information on the multi-model procedure for all diet-
metabolite links and comprehensive information on all submodels is 
provided as digital only supplemental material on the accompanying CD. 

Whole-grain bread 
Habitual whole-grain bread consumption was related to lower levels of 
various lipid metabolites from different lipid classes (Table 13). Lower 
serum concentrations of saturated long-chain fatty acid-containing 
metabolites were observed among acylcarnitines [i.e. palmitoylcarnitine 
(C16:0) and stearoylcarnitine (C18:0)]; for lysophosphatidylcholine 
C16:0; for diacyl phosphatidylcholine C32/0; and for alkyl-acyl 
phosphatidylcholine C36/0. Furthermore, the diacyl 
phosphatidylcholines C32/1, C34/1 and C36/1, and alkyl-acyl 
phosphatidylcholine C34/1 contained one saturated fatty acid along with 
one monounsaturated fatty acid and were also lower concentrated in 
participants with higher whole-grain bread consumption. Lower serum 
concentrations in relation to higher whole-grain bread consumption were 
also observed for the monounsaturated fatty acid-containing 
lysophosphatidylcholines C16:1 and C18:1. In addition the lower 
concentrations of diacyl phosphatidylcholines C34/3, C36/3, C36/5, 
and C38/5 implicated lower abundance of specific polyunsaturated fatty 
acids in relation to higher consumption of whole-grain bread in this lipid 
compartment.  

Figure 22 shows whole-grain bread connected components 
extracted from the joint networks. Substructures illustrate that the effects 
of whole-grain bread on saturated and monounsaturated were 
interlinked. However, most of the links between whole-grain bread 
consumption and lipid metabolites could not be unambiguously 
classified based on multi-model information according to predefined 
criteria. Consequently, the algorithm did not resolve the exact entry 
point(s) into the network, i.e. did not differentiate between direct and 
indirect effects within the identified whole-grain-connected components. 
An exception was the direct effect of whole-grain bread consumption to 
lower levels of alkyl-acyl phosphatidylcholine C36/0, which was not 
explainable by any other alteration in the alkyl-acyl phosphatidylcholine 
network and thus classified as direct effect. Subnetworks further 
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indicated that the suggested effects of whole-grain bread consumption 
on polyunsaturated fatty acids in diacyl phosphatidylcholines was not 
directly linked with the effects of whole-grain on saturated and 
monounsaturated fatty acid-containing metabolites within that lipid 
compartment. 

Table 13: Multi-model inference on possible effects of whole-grain bread 
consumption on metabolite-levels 
 Whole-grain bread consumption 
 Estimate range (betas) fdr P Upper P Lower P 

Acylcarnitine 
C16:0 -0.13 (-0.15, -0.02) 9.7e-02 4.7e-01 6.2e-04 
C18:0 -0.14 (-0.14, -0.05) 9.7e-02 1.9e-01 7.4e-03 

Lysophosphatidylcholine 
C16:0 -0.13 (-0.16, -0.04) 7.4e-02 3.2e-01 2.0e-04 
C16:1 -0.12 (-0.12, -0.02) 7.4e-02 5.0e-01 2.0e-02 
C18:1 -0.12 (-0.14, -0.04) 7.4e-02 3.5e-01 1.3e-04 

Diacyl phosphatidylcholine 
C36/1 -0.26 (-0.26, -0.06) 3.1e-05 5.2e-02 1.1e-09 
C34/1 -0.24 (-0.24, -0.04) 4.1e-05 1.7e-01 2.4e-06 
C32/1 -0.18 (-0.18, 0.03) 5.4e-03 7.2e-01 4.8e-04 
C36/5 -0.15 (-0.15, -0.04) 2.7e-02 2.3e-01 1.5e-03 
C32/0 -0.15 (-0.15, 0.05) 3.9e-02 9.1e-01 8.2e-04 
C38/5 -0.14 (-0.14, -0.01) 4.2e-02 6.3e-01 7.4e-03 
C36/3 -0.14 (-0.14, -0.01) 5.0e-02 5.5e-01 2.7e-03 
C34/3 -0.13 (-0.13, -0.01) 7.1e-02 7.1e-01 1.9e-03 

Alkyl-acyl phosphatidylcholine 
C36/0 -0.19 (-0.19, -0.11) 1.0e-02 4.8e-03 1.1e-04 
C34/1 -0.16 (-0.16, -0.04) 4.7e-02 7.3e-02 2.5e-03 

Summary of standardized estimates from multiple linear regression models 
(consumption of whole-grain bread as exposure and concentration of the single 
metabolite as outcome), with single models corresponding to adjustment for a 
specific subset of direct neighbors of the respective metabolite in the 
subgroup-specific metabolite-network; Metabolite concentrations were standardized 
on age, sex, BMI and prevalence of hypertension, and all models were 
comprehensively adjusted for lifestyle, diet, fasting status at blood draw occasion, 
and medication. 

Estimate range (betas) indicates the effect of 2 standard deviation higher intake of 
energy-standardized whole-grain bread on the variance standardized metabolite 
concentrations (lowest estimate, highest estimate from the multi-model procedure); 
fdr P= false discovery rate corrected p-value (based on the model adjusted for 
external confounders but not for other network-variables); upper/lower P = highest 
and lowest p-values from the multi-model procedure. 
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 Figure 22: Whole-grain bread effects on metabolomics network structures 
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Coffee 
Habitual coffee consumption was linked to lower serum concentrations 
of several amino acids, and to alterations of the concentration of 
metabolites in various lipid compartments (Table 14). Among the amino 
acids, higher coffee consumption was related to lower concentrations of 
the branched-chain amino acids valine and leucine/isoleucine, the 
aromatic amino acid phenylalanine, and of methionine and proline. The 
extracted subnetwork showed that all coffee-related amino acids were 
interlinked, i.e. they belonged to a single coffee-connected component 
(Figure 23). None of the coffee-related amino acids was unambiguously 
classified as direct effect based on the multi-model estimates. 

The effects of habitual coffee consumption on lipid composition 
differed between lipid compartments. Frequent coffee intake was related 
to higher levels of eight sphingomyelins, three of which were classified as 
directly affected based on multi-model information. The effect of coffee 
intake on higher sphingomyelin C26:0 concentrations was not directly 
linked to other coffee related alterations in the sphingomyelin network. 
Other coffee-affected sphingomyelins, however, were interlinked (i.e., 
they formed one coffee-connected component). The direct effects on 
hydroxy-sphingomyelin C16:1 and sphingomyelin C20:2 fully explained 
the coffee-association of the other sphingomyelins within the connected 
component rendering them indirect effects according to the preset 
criteria (Table 14). Marginal associations of hydroxy-sphingomyelins 
OH-C22:2 and OH-C22:1, and sphingomyelins C16:0, C18:0 and C18:1 
were explained by considering direct effects within the connected 
component, i.e. adjusting for hydroxy-sphingomyelin C16:1 and 
sphingomyelin C20:2. 

Within the phosphatidylcholine compartments, coffee intake was 
related to lower serum concentrations of lysophosphatidylcholines C14:0 
and C16:1, and to lower concentrations of diacyl phosphatidylcholines 
C32/1, C32/2 and C34/3. Diacyl phosphatidylcholine C32/1 was 
classified as direct effect but was a singleton. The other two were part of 
the same connected component but remained ambiguous. 
Lysophosphatidylcholines C17:0 and C18:2, and alkyl-acyl 
phosphatidylcholine C34/3 and C36/2 were higher in relation to higher 
coffee consumption. These potential coffee effects were not interlinked 
and margaric acid (C17:0) enrichment in lysophosphatidylcholines was, 
therefore, classified as direct effect. 
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Table 14: Multi-model inference on possible effects of coffee-consumption on 
metabolite-levels 
 Coffee consumption 
 Estimate range (betas) fdr P Upper P Lower P 

Amino Acid 
Met -0.12 (-0.12, -0.00) 4.8e-02 9.9e-01 3.9e-03 
Pro -0.12 (-0.13, -0.06) 4.8e-02 1.6e-01 1.4e-03 
Val -0.11 (-0.11, 0.00) 4.8e-02 9.0e-01 1.4e-02 
Leu/Ile -0.13 (-0.15, -0.02) 4.8e-02 3.2e-01 8.3e-05 
Phe -0.10 (-0.12, -0.01) 6.0e-02 6.7e-01 2.0e-03 

Sphingomyelin 
OH-C16:1 0.15 (0.06, 0.15) 7.2e-03 3.6e-03 7.8e-06 
C20:2 0.12 (0.09, 0.12) 3.1e-02 4.6e-02 6.6e-03 
C26:0 0.11 (0.07, 0.11) 4.9e-02 3.1e-02 6.7e-03 
OH-C22:2 -0.04 (-0.04, 0.00) 4.8e-01 9.8e-01 9.5e-02 
OH-C22:1 -0.03 (-0.03, 0.02) 4.8e-01 8.0e-01 1.7e-01 
C16:0 -0.03 (-0.03, 0.02) 4.8e-01 9.3e-01 2.2e-01 
C18:0 -0.03 (-0.03, -0.01) 4.8e-01 7.1e-01 1.2e-01 
C18:1 -0.00 (-0.00, 0.04) 9.0e-01 9.0e-01 1.2e-02 

Lysophosphatidylcholine 
C17:0 0.14 (0.09, 0.15) 1.4e-02 4.8e-03 1.7e-05 
C14:0 -0.13 (-0.13, -0.05) 2.3e-02 1.6e-01 3.0e-04 
C16:1 -0.12 (-0.14, -0.04) 2.3e-02 2.6e-01 1.6e-05 
C18:2 0.09 (0.05, 0.09) 9.8e-02 1.8e-01 6.8e-03 

Diacyl phosphatidylcholine 
C32/1 -0.16 (-0.16, -0.07) 1.2e-02 4.1e-03 6.8e-05 
C32/2 -0.13 (-0.13, -0.01) 5.9e-02 5.6e-01 5.2e-03 
C34/4 -0.13 (-0.13, -0.01) 5.9e-02 5.6e-01 4.2e-03 

Alkyl-acyl phosphatidylcholine 
C34/3 0.13 (0.04, 0.13) 8.3e-02 1.2e-01 2.0e-03 
C36/2 0.13 (0.04, 0.13) 8.3e-02 7.2e-02 2.8e-03 

Summary of standardized estimates from multiple linear regression models (coffee 
consumption as exposure and metabolite concentration as outcome), with single 
models corresponding to adjustment for a specific subset of direct neighbors of the 
metabolite in the subgroup-specific metabolite-network; Metabolite concentrations: 
standardized on age, sex, BMI and prevalence of hypertension; All models adjusted 
for lifestyle, diet, fasting status at blood draw occasion, and medication. 

Estimate range (betas) indicates the effect of 3 cups (2 standard deviation) higher coffee 
intake on the variance standardized metabolite concentrations, adjusted for thus far 
identified directly affected metabolites within the connected component (lowest 
estimate, highest estimate from the multi-model procedure); fdr P= false discovery 
rate corrected p-value (based on the model adjusted for external confounders but 
not for other network-variables); upper/lower P = highest and lowest p-values from 
the multi-model procedure. 
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 Figure 23: Coffee effects on metabolomics network structures 
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Red meat 
Habitual red meat consumption was linked to alterations in the 
concentration of particular serum amino acids, and to pronounced 
alterations in the fatty acid composition of all evaluated lipid 
compartments (Table 15). 

Higher red meat intake was related to higher concentrations of 
the connected branched-chain amino acids valine and leucine/isoleucine 
(Figure 24). These links, however, were not unambiguously classified as 
direct or indirect effects. In contrast, the relation of higher red meat 
consumption with lower glycine serum concentrations was a singleton 
and consistent and significant across all submodels. Glycine was thus 
classified as directly affected by red meat consumption. 

Among acylcarnitines, higher red meat consumption was related 
to higher serum concentrations of a group of five interrelated 
acylcarnitines, i.e. stearoylcarnitine (C18:0), octadecenoylcarnitine 
(C18:1), propionylcarnitine (C3:0), acetylcarnitine (C2:0), and carnitine. 
Among these metabolites, stearoylcarnitine was classified as directly 
affected by red meat intake based on unambiguous multi-model 
estimates. Adjusting for stearoylcarnitine explained the association of red 
meat consumption with all other acylcarnitines within the connected 
component (therefore classified as indirect effects), except for the 
association of red meat intake with propionylcarnitine. Here, effect 
estimates remained positive after adjusting for stearoylcarnitine levels but 
the highest p-value from the multi-model procedure surpassed the preset 
significance threshold. The red meat-propionylcarnitine link was 
therefore classified as ambiguous (direct or indirect effect). 

Within the sphingomyelin compartment, red meat consumption 
was related to elevated levels of six connected metabolites. All contained 
saturated and monounsaturated fatty acids of long and very long chain-
length. Adjusting for sphingomyelins C18:1 and 24:1 (classified as direct 
effects based on multi-model estimates) explained red meat-associations 
of sphingomyelins C18:0 and C26:1 (accordingly classified as indirect 
effects), but not red meat-associations of sphingomyelins C16:0 and 
C16:1 (which remained thus marked as ambiguous). 

In contrast to sphingomyelins and acylcarnitines, red meat 
consumption was also related to lower concentrations of specific 
metabolites within the phosphatidylcholine compartments. Primarily 
metabolites were inversely affected which contained saturated and 
monounsaturated fatty acids with a chain-length of sixteen carbon atoms 
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or less (Figure 25). In particular, lower red meat-associated serum 
concentrations were observed of lysophosphatidylcholine C16:1, diacyl 
phosphatidylcholines C30/0, C28/1, C32/1, and C32/2 (which all 
belonged to one red meat-connected component), and alkyl-acyl 
phosphatidylcholines C30/0, C34/0, C34/1, and C36/1 (also belonging 
to one red meat-connected component). None of these inversely 
affected metabolites was unambiguously classified as direct effect based 
on multi-model estimates.  

Still, a larger number of phosphatidylcholines, however, was 
elevated in relation to higher red meat consumption. Two groups of 
phosphatidylcholines positively associated with red meat could be 
distinguished. On the one hand, elevated concentrations of primarily 
saturated and monounsaturated (very) long-chain (≥C18) fatty acid 
containing metabolites were detected in the diacyl phosphatidylcholine 
compartment (C38/0, C38/1 and C36/0, forming a connected 
component) and in the alkyl-acyl phosphatidylcholine compartment 
(C36/0, C40/1, C42/1, also forming a connected component). Among 
diacyl phosphatidylcholines, the red meat link with C38/0 was classified 
as direct effect, and adjusting for this direct effect explained the red meat 
association with C38/1 and C36/0 (indirect effects). None of the three 
above-mentioned alkyl-acyl phosphatidylcholines was unambiguously 
classified as direct effect based on multi-model estimates.  

On the other hand, red meat was positively associated with 
several polyunsaturated fatty acid-containing phosphatidylcholines. 
Among lysophosphatidylcholines, red meat directly affected the serum 
concentrations of C20:4. Furthermore, red meat consumption was 
related to higher concentrations of the two connected diacyl 
phosphatidylcholines C38/4 and C36/4. Based on the multi-model 
estimates C38/4 was classified as directly affected, and adjusting for this 
direct effect rendered the red meat-association with C36/4 non-
significant (indirect effect). Red meat consumption was also positively 
associated with twelve polyunsaturated fatty acid-containing alkyl-acyl 
phosphatidylcholines that together formed the largest red meat-
connected component (C34/2, C34/3, C36/3, C36/4, C36/5, C38/4, 
C38/5, C38/6, C40/4, C40/5, C40/6, and C42/5). Among these, only 
alkyl-acyl phosphatidylcholine C36/4 was classified as directly affected 
based on multi-model estimates. Adjusting for this direct effect rendered 
all other links of red meat with metabolites of that connected 
component non-significant (or even reversed the effect to a slight 
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significant inverse relation in some cases – which was however not stable 
over multi-model estimates and thus not further considered for 
interpretation). Therefore the effect of red meat on all other alkyl-acyl 
phosphatidylcholines of that connected component were classified as 
indirect, mediated by the direct effect of red meat consumption on alkyl-
acyl phosphatidylcholine C36/4. 

 
 

Table 15: Multi-model inference on possible effects of red meat-consumption on 
metabolite-levels 
 Red meat consumption 
 Estimate range (betas) fdr P Upper P Lower P 

Amino Acid 
Gly -0.16 (-0.20, -0.15) 4.1e-02 3.0e-03 1.6e-05 
Val 0.12 (0.02, 0.14) 7.4e-02 5.2e-01 3.0e-04 
Leu/Ile 0.12 (0.01, 0.13) 7.4e-02 5.6e-01 2.0e-04 

Acylcarnitine 
C18:0 0.17 (0.08, 0.17) 1.4e-02 4.4e-02 8.3e-04 
C3 0.16 (0.07, 0.16) 1.9e-02 8.6e-02 1.2e-03 
C2 0.09 (0.08, 0.11) 1.1e-01 5.8e-02 8.0e-03 
Carnitine 0.07 (-0.00, 0.07) 1.9e-01 9.6e-01 1.4e-01 
C18:1 0.03 (-0.02, 0.06) 5.1e-01 8.1e-01 5.7e-02 

Sphingomyelin 
C24:1 0.25 (0.11, 0.25) 7.5e-06 3.7e-05 3.3e-08 
C18:1 0.21 (0.05, 0.21) 3.0e-04 1.7e-02 3.1e-05 
C16:0 0.16 (-0.04, 0.16) 5.8e-03 9.8e-01 1.5e-03 
C16:1 0.14 (-0.03, 0.14) 1.7e-02 9.9e-01 6.7e-03 
C18:0 -0.04 (-0.04, 0.00) 1.2e-01 9.9e-01 8.8e-02 
C26:1 -0.05 (-0.05, 0.03) 1.3e-01 7.7e-01 1.3e-01 

Lysophosphatidylcholine 
C20:4 0.18 (0.15, 0.21) 2.5e-03 2.5e-04 1.1e-09 
C16:1 -0.12 (-0.16, -0.05) 9.1e-02 2.0e-01 9.1e-06 

Diacyl phosphatidylcholine 
C38/0 0.32 (0.09, 0.33) 4.7e-09 1.8e-03 9.8e-22 
C38/4 0.21 (0.08, 0.21) 4.5e-04 3.0e-03 9.8e-09 
C30/0 -0.20 (-0.20, -0.03) 7.7e-04 3.2e-01 5.0e-11 
C32/1 -0.17 (-0.17, -0.03) 3.8e-03 4.1e-01 1.3e-07 
C32/2 -0.18 (-0.18, -0.03) 3.8e-03 4.2e-01 3.4e-11 
C28/1 -0.15 (-0.15, -0.04) 1.2e-02 3.3e-01 3.0e-03 
C36/4 -0.02 (-0.02, 0.05) 4.0e-01 7.1e-01 1.1e-02 
C38/1 0.05 (0.05, 0.07) 5.5e-01 2.8e-01 1.4e-01 
C36/0 0.01 (-0.02, 0.05) 8.0e-01 9.3e-01 9.3e-02 
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 Red meat consumption 
 Estimate range (betas) fdr P Upper P Lower P 

Alkyl-acyl phosphatidylcholine 
C36/4 0.43 (0.05, 0.43) 1.2e-15 1.8e-02 3.1e-17 
C34/0 -0.13 (-0.13, -0.01) 2.2e-02 5.6e-01 5.3e-03 
C30/0 -0.13 (-0.14, -0.03) 2.3e-02 3.7e-01 6.7e-04 
C42/1 0.13 (0.04, 0.13) 2.4e-02 2.4e-01 2.0e-03 
C36/0 0.12 (0.04, 0.14) 3.7e-02 2.7e-01 5.3e-04 
C36/1 -0.12 (-0.13, -0.00) 3.7e-02 8.7e-01 1.5e-05 
C40/1 0.12 (0.01, 0.13) 3.7e-02 8.3e-01 5.9e-05 
C34/1 -0.11 (-0.14, 0.01) 4.4e-02 9.4e-01 1.8e-05 
C40/5 -0.13 (-0.13, -0.01) 1.4e-02 5.6e-01 2.5e-03 
C34/2 -0.12 (-0.12, 0.00) 1.4e-02 9.5e-01 2.0e-03 
C34/3 -0.12 (-0.13, 0.02) 1.8e-02 9.2e-01 6.2e-04 
C38/4 -0.07 (-0.09, 0.01) 3.0e-02 7.5e-01 8.9e-04 
C40/4 -0.10 (-0.10, 0.05) 3.8e-02 9.2e-01 1.7e-02 
C42/5 -0.09 (-0.09, 0.06) 6.6e-02 7.0e-01 3.1e-03 
C36/3 -0.07 (-0.07, 0.04) 6.6e-02 9.2e-01 1.5e-02 
C40/6 -0.06 (-0.08, 0.08) 2.6e-01 9.8e-01 4.1e-03 
C38/5 0.02 (0.02, 0.05) 3.0e-01 3.7e-01 1.1e-02 
C36/5 0.02 (0.00, 0.06) 4.9e-01 8.4e-01 3.6e-02 
C38/6 0.02 (-0.01, 0.07) 6.4e-01 9.6e-01 4.2e-04 

Summary of standardized estimates from multiple linear regression models 
(consumption of red meat as exposure and concentration of the single metabolite as 
outcome), with single models corresponding to adjustment for a specific subset of 
direct neighbors of the respective metabolite in the subgroup-specific metabolite-
network; Metabolite concentrations were standardized on age, sex, BMI and 
prevalence of hypertension, and all models were comprehensively adjusted for 
lifestyle, diet, fasting status at blood draw occasion, and medication. 

Estimate range (betas) indicates the effect of 2 standard deviation higher red meat intake 
on the variance standardized metabolite concentrations, adjusted for thus far 
identified directly affected metabolites within the connected component (lowest 
estimate, highest estimate from the multi-model procedure); fdr P= false discovery 
rate corrected p-value (based on the model adjusted for external confounders but 
not for other network-variables); upper/lower P = highest and lowest p-values from 
the multi-model procedure. 
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 Figure 24: Red meat effects on amino acids, acylcarnitines, and sphingomyelins  



Results  Wittenbecher 

[93] 

 Figure 25: Red meat effects on phosphatidylcholines 
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4.3.5 Metabolites that directly affected type 2 diabetes risk 

Digital only supplemental material 
Summary information on the multi-model procedure for all metabolite-
diabetes links and comprehensive information on all submodels is 
provided as digital only supplemental material on the accompanying CD. 

Amino acids 
Glycine and glutamine were directly related to a reduced risk of type 2 
diabetes (Table 16). For glutamine, this relation was revealed only after 
adjusting for other directly diabetes-related amino acids. Phenylalanine 
and tyrosine were directly related to an elevated type 2 diabetes risk. For 
tryptophan, a direct link to higher diabetes risk was suggested, but not all 
multi-model estimates reached significance and the link was therefore 
classified as ambiguous. It should also be noted that the two 
interconnected but differentially diabetes related groups of amino acids, 
with risk-elevating aromatic amino acids-on the one side and risk-
reducing amino acids glycine and glutamine on the other (Figure 26) 

Acylcarnitines 
Two unsaturated fatty acid-containing acylcarnitines, i.e. tetradecenoyl-
carnitine (C14:1) and lineoylcarnitine (C18:2) were related to a reduced 
risk of type 2 diabetes (Table 16). Palmitoylcarnitine (C16:0) and 
propionylcarnitine (C3) were directly related to an elevated diabetes risk. 
Furthermore, a direct link of glutarylcarnitine (C5DC-C6OH) with an 
elevated diabetes risk was suggested but not all estimates reached the 
significance threshold. Hence this link was classified as ambiguous. It 
also should be noted that the direct link between the two directly but 
differentially diabetes related acylcarnitines C16:0 and C 14:1 (Figure 26). 

Sphingomyelins 
Five mono- and polyunsaturated fatty acid-containing sphingomyelins 
were directly related to a reduced risk of developing diabetes (Table 16). 
In particular, enrichment of sphingomyelins containing C16:1, C18:1, 
C24:1, C20:2 and of hydroxysphingomyelin C22:2 had a beneficial effect 
on type 2 diabetes risk. For sphingomyelin C18:1 and 
hydroxysphingomyelin C22:2, the direct effect was only revealed after 
adjusting for other directly diabetes-affecting sphingomyelins. An 
elevated type 2 diabetes risk was observed in participants with higher 
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serum concentrations of sphingomyelin with stearic acid (C18:0), and of 
hydroxysphingomyelin C22:1. Both links were classified as direct effect 
only after adjusting for other directly diabetes-linked sphingomyelins. 

It should be noted that two pairs of directly linked 
sphingomyelins were particularly strongly but oppositely related to type 2 
diabetes risk: sphingomyelin C18:0 and C18:1; and 
hydroxysphingomyelin C22:1 and C22:2 (Figure 26). Metabolites within 
either pair were highly correlated (the partial correlation coefficient 
adjusted for all other sphingomyelins was 0.74 between sphingomyelins 
C18:0 and C18:1, and 0.65 between hydroxysphingomyelins C22:1 and 
C22:2). Accordingly, full strength of the risk relation was revealed only 
after mutual adjustment. In the mutually adjusted models, however, on 
the one hand, each pair of risk estimates for the none/lower unsaturated 
metabolite were the highest among all metabolites (hazard ratios per 
standard deviation of 2.55 and 2.98 for sphingomyelin C18:0 and 
hydroxysphingomyelin C22:1, respectively). On the other hand, the 
higher unsaturated metabolites showed to be among the strongest 
relations to reduced risk of type 2 diabetes (hazard ratios per standard 
deviation of 0.62 and 0.44 for sphingomyelin C18:1 and 
hydroxysphingomyelin C22:2, respectively). 

Phosphatidylcholines 
Among phosphatidylcholines, metabolites that were related to an 
elevated risk of type 2 diabetes can be summarized into two groups: one 
contained saturated fatty acids with 14 to 18 carbon atoms; and the other 
contained specific polyunsaturated fatty acids (Table 16, Figure 27). The 
first group comprised lysophosphatidylcholines that contained myristic 
acid (C14:0) and palmitic acid (C16:0), respectively, and alkyl-acyl 
phosphatidylcholine C38/0. The group of high-risk polyunsaturated fatty 
acid-containing metabolites was constituted by lysophosphatidylcholine 
C20:3, diacyl phosphatidylcholines C38/3 and C42/5, and alkyl-acyl 
phosphatidylcholines C36/4 and C38/2. Other phosphatidylcholines 
with odd chain, monounsaturated, and polyunsaturated fatty acid partly 
with very long chains were directly related to lower risk of type 2 
diabetes. Lysophosphatidylcholines containing margaric acid (C17:0), 
C18:1 and C18:2; diacyl phosphatidylcholines C32/3, C38/5, and C42/1; 
and alkyl-acyl phosphatidylcholines C30/1, C32/2, C34/3, C38/5, 
C42/3, and C44/6 were directly related to a reduced type 2 diabetes risk.  
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Elevated type 2 diabetes risk was also suggested in relation to 
higher serum concentrations of diacyl phosphatidylcholine C40/2 and of 
alkyl-acyl phosphatidylcholine C42/2, and reduced diabetes risk was 
suggested in relation to higher serum concentrations of diacyl 
phosphatidylcholines C36/6, C42/0, C40/3 and C42/2. Still, for these 
metabolites multi-model information did not allow unambiguous 
classification. 

It should be noted that also among phosphatidylcholines there 
were pairs of linked metabolites that were both directly related to 
diabetes risk, but one had a beneficial and the other an adverse effect 
(Figure 27). Highlighting two of these pairs, lysophosphatidylcholines 
C18:2 and C20:3 were partially correlated (r=0.25) but had an oppositely 
directed relation to type 2 diabetes risk (hazard ratios per standard 
deviation of 0.75 for the former and of 1.33 for the latter in mutual 
adjusted models). Furthermore, alkyl-acyl phosphatidylcholines C36/4 
and C38/5, which were also partially correlated (r=0.32), had a 
particularly strong direct relation with type 2 diabetes risk, with hazard 
ratios of 2.24 per standard deviation of C 36/4 and of 0.55 per standard 
deviation of C 38/5. 
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Table 16: Multi-model inference on possible effects of metabolites on diabetes risk 
 RR of type 2 diabetes 

 Estimate range (HRs) fdr P Upper P Lower P 

Amino Acid 
Gly 0.74 (0.70, 0.81) 4.6e-05 4.4e-04 1.3e-07 
Tyr 1.51 (1.24, 1.74) 4.6e-05 9.2e-03 1.1e-10 
Phe 1.35 (1.18, 1.66) 1.7e-03 3.6e-02 7.1e-14 
Gln 0.78 (0.72, 0.83) 5.9e-03 1.4e-02 6.8e-06 
Trp 1.22 (1.13, 1.22) 3.4e-02 1.6e-01 3.4e-02 

Acylcarnitine 
C16:0 1.54 (1.13, 1.58) 5.8e-05 4.4e-02 8.0e-07 
C14:1 0.77 (0.72, 0.89) 4.9e-03 4.7e-02 1.1e-05 
C18:2 0.77 (0.77, 0.87) 4.9e-03 1.1e-02 3.6e-04 
C3 1.18 (1.13, 1.23) 7.2e-02 3.3e-02 2.6e-03 
C5-DC(C6-OH) 1.16 (1.13, 1.23) 7.2e-02 1.3e-01 1.9e-03 

Sphingomyelin 
C18:0 2.55 (1.43, 2.63) 3.6e-07 1.1e-04 9.1e-10 
OH-C22:1 2.98 (1.34, 3.09) 5.2e-07 6.1e-03 2.4e-11 
OH-C22:2 0.44 (0.44, 0.56) 7.1e-05 1.2e-04 9.2e-06 
C18:1 0.62 (0.62, 0.62) 2.1e-03 2.1e-03 2.1e-03 
C24:1 0.71 (0.63, 0.81) 6.6e-03 1.6e-02 1.2e-07 
C16:1 0.70 (0.67, 0.84) 9.3e-03 2.2e-02 6.5e-05 
C20:2 0.87 (0.82, 0.87) 4.8e-02 3.0e-02 7.2e-04 

Lysophosphatidylcholine 
C14:0 1.33 (1.21, 1.33) 1.1e-03 7.2e-04 7.3e-05 
C18:2 0.75 (0.66, 0.84) 1.6e-03 3.0e-02 8.7e-08 
C17:0 0.78 (0.77, 0.89) 2.9e-03 4.4e-02 2.0e-04 
C20:3 1.33 (1.28, 1.33) 5.0e-03 4.2e-03 2.3e-03 
C18:1 0.70 (0.69, 0.84) 1.2e-02 4.4e-02 2.2e-03 
C16:0 1.35 (1.33, 1.50) 1.9e-02 2.3e-02 2.1e-04 

Diacyl phosphatidylcholine 
C38/5 0.47 (0.47, 0.70) 6.9e-05 2.0e-04 6.9e-06 
C42/5 1.48 (1.11, 1.48) 1.8e-03 4.6e-02 1.2e-05 
C38/3 1.54 (1.33, 1.54) 4.8e-03 1.5e-03 2.5e-07 
C42/1 0.73 (0.61, 0.77) 1.9e-02 1.5e-02 3.4e-13 
C36/6 0.63 (0.61, 0.97) 3.0e-02 7.7e-01 5.1e-03 
C40/3 0.74 (0.74, 0.91) 3.0e-02 2.5e-01 5.1e-03 
C42/2 0.80 (0.79, 0.92) 3.5e-02 3.3e-01 1.4e-02 
C40/2 1.31 (1.03, 1.34) 3.5e-02 6.8e-01 8.3e-03 
C32/3 0.82 (0.75, 0.85) 3.6e-02 2.5e-02 7.6e-05 
C42/0 0.82 (0.80, 0.87) 6.8e-02 1.7e-01 3.7e-02 
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 RR of type 2 diabetes 

 Estimate range (HRs) fdr P Upper P Lower P 

Alkyl-acyl phosphatidylcholine 
C34/3 0.49 (0.48, 0.68) 6.0e-11 1.8e-08 5.9e-13 
C36/4 2.24 (1.31, 2.28) 8.9e-05 7.8e-03 1.9e-07 
C32/2 0.59 (0.59, 0.80) 9.2e-05 2.6e-02 3.7e-05 
C42/3 0.66 (0.63, 0.77) 1.6e-03 1.4e-02 6.3e-05 
C36/0 1.35 (1.22, 1.40) 2.0e-03 5.7e-03 3.2e-05 
C38/5 0.55 (0.55, 0.60) 4.1e-03 2.1e-03 1.4e-03 
C44/6 0.69 (0.65, 0.73) 8.1e-03 3.9e-03 1.1e-11 
C30/1 0.83 (0.83, 0.86) 1.2e-02 1.0e-02 3.5e-03 
C38/2 1.28 (1.19, 1.37) 4.1e-02 4.3e-02 3.7e-05 
C42/2 1.24 (1.20, 1.29) 4.5e-02 8.2e-02 1.3e-02 

Hazard Ratios (HR) (lowest estimate, highest estimate from the multi-model 
procedure) per standard deviation in serum metabolite concentrations; fdr P= false 
discovery rate corrected p-value (based on the model adjusted for external 
confounders and for adjacent network-variables); upper/lower P = highest and lowest 
p-values from the multi-model procedure. Hazard ratios were derived from a Cox 
proportional hazard regression model comprehensively adjusted for age, sex, BMI, 
lifestyle, diet, fasting status at blood draw occasion, prevalence of hypertension and 
medication.  
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 Figure 26: Direct effects on diabetes risk: amino acids, acylcarnitines, sphingomyelins 
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 Figure 27: Direct effects on type 2 diabetes risk: phosphatidylcholines 
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4.3.6 Potential metabolic links between diet and diabetes 
incidence 

Whole-grain bread effects on diabetes risk: potential metabolic mechanisms 
All three identified potential metabolic links between whole-grain bread 
consumption and diabetes risk consistently pointed at lower levels of 
saturated fatty acids. In particular, serum concentrations of palmitate in 
the acylcarnitine and the lysophosphatidylcholine compartment, as well 
as levels of alkyl-acyl phosphatidylcholine C36/0, were lower with higher 
whole-grain bread consumption, and were at the same time directly 
related to an elevated diabetes risk. 

Only a slight attenuation of the whole-grain bread-effect on 
diabetes risk was observed after adjusting for lysophosphatidylcholine 
C16:0. The explainable proportion of the whole-grain effect on type 2 
diabetes risk was larger after adjusting for palmitoylcarnitine (C16:0) with 
14% effect attenuation and after adjusting for alkyl-acyl 
phosphatidylcholine C36/0 with 16% effect attenuation. In the mutual 
mediator-adjusted model 28% of the whole-grain bread effect on 
diabetes risk was potentially explained by the network-independent 
variation in selected mediators.  

Table 17: Quantitative mediation analysis for whole-grain bread effect on type 2 
diabetes risk  

Potential mediating paths were selected manually based on the joint diet-
metabolomics-type 2 diabetes networks. Network independent variation of the 
metabolite was estimated by adjusting the metabolite for all direct neighbors in the 
metabolite-network that were not on the shortest path from the exposure to the 
directly diabetes-linked mediator. The resulting residuals were used to estimate the 
explainable proportion. Two fully confounder-adjusted Cox models were calculated, 
with and without adjusting for the network-independent variation of the mediator. 
The proportion explainable was estimated as difference between non-adjusted and 
adjusted exposure-estimates relative to the non-adjusted exposure-estimate. The 
proportion explainable (95% CI) was estimated as median (2.5th, 97.5th percentile) of 
a bootstrapping-procedure with 1000 replicates and a sampling rate of eighty 
percent. CI=Confidence Interval. 

Potential Mediator  
Mediator-adjusted HR 

(95% CI) 
Proportion explainable 

(95% bootstrap CI) 
Confounder-adjusted 0.85 (0.67, 1.08) reference 

Acylcarnitine C16:0 0.87 (0.69, 1.10) 14% (4% to 62%) 
Lyso-PC16:0 0.86 (0.68, 1.08) 3% (-6% to 15%) 
Alkyl-acyl PC C36/0 0.88 (0.69, 1.11) 16% (0% to 62%) 

All 0.89 (0.71, 1.13) 28% (11% to 96%) 
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Figure 28: Potential mediators of the whole-grain bread effect on type 2 diabetes risk 
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Coffee effects on diabetes risk: potential metabolic mechanisms 
Six network-independent variations in metabolites were identified as 
potential metabolic mediators of the assumed coffee-effect on diabetes 
risk. These were lower concentrations of aromatic amino acids; higher 
serum concentrations of specific polyunsaturated fatty acid-containing 
metabolites; alterations in saturated fatty acid containing metabolites. 

Lower coffee-related serum concentrations of amino acids 
involved phenylalanine, which was estimated to have a direct adverse 
effect on type 2 diabetes risk. This link potentially explained 14% of the 
coffee-related diabetes risk. Coffee-related higher serum concentration 
of the beneficial polyunsaturated fatty acid-containing sphingomyelin 
C20:2, lysophosphatidylcholine C18:2 and alkyl-acyl phosphatidylcholine 
C34:3 potentially explained 7%, 18% and 33% of the coffee-related type 
2 diabetes risk. Among saturated fatty-acid containing metabolites, 
lysophosphatidylcholine with margaric acid (C17:0) was higher 
concentrated in plasma in relation to higher coffee consumption and was 
classified as having a direct beneficial effect on type 2 diabetes risk. 
Lysophosphatidylcholine with myristic acid (C14:0), in contrast, was 
lower in relation to higher coffee consumption but directly linked to 
elevated diabetes risk. Adjusting the coffee-diabetes relation for 
lysophosphatidylcholine C17:0, however, hardly changed the estimate, 
whereas adjusting the relation for lysophosphatidylcholine C14:0 
potentially explained 11% of the risk reduction by coffee intake 

In sum, network-independent variation in metabolites selected as 
potential mediators had the potential to explain about two thirds of the 
coffee-diabetes risk relation. The protective coffee effect on type 2 
diabetes risk was attenuated by 66% after mutual mediator adjustment. 
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Table 18: Quantitative mediation analysis for coffee effect on type 2 diabetes risk 

Potential Mediator  
Mediator-adjusted HR 

(95% CI) 
Proportion explainable 

(95% bootstrap CI) 
Confounder-adjusted 0.76 (0.62, 0.94) reference 

Phenylalanine 0.79 (0.64, 0.98) 14% (4% to 32%) 
Sphingomyelin C20:2  0.78 (0.63, 0.96) 7% (3% to 16%) 
Lyso-PC C14:0 0.79 (0.64, 0.97) 11% (5% to 22%) 
Lyso-PC C17:0 0.76 (0.62, 0.95) 1% (-7% to 13%) 
Lyso-PC C18:2 0.80 (0.65, 0.99) 18% (10% to 33%) 
Alkyl-acyl C34:3 0.84 (0.67, 1.04) 33% (17% to 64%) 

All 0.94 (0.75, 1.17) 66% (38% to 100%) 

Potential mediating paths were selected manually based on the joint diet-
metabolomics-type 2 diabetes networks. Network independent variation of the 
metabolite was estimated by adjusting the metabolite for all direct neighbors in the 
metabolite-network that were not on the shortest path from the exposure to the 
directly diabetes-linked mediator. The resulting residuals were used to estimate the 
explainable proportion. Two fully confounder-adjusted Cox-models were calculated, 
with and without adjusting for the network-independent variation of the mediator. 
The proportion explainable was estimated as difference between non-adjusted and 
adjusted exposure-estimates relative to the non-adjusted exposure-estimate. The 
proportion explainable (95% CI) was estimated as median (2.5th, 97.5th percentile) of 
a bootstrapping-procedure with 1000 replicates and a sampling rate of eighty 
percent. CI=Confidence Interval. 
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 Figure 29: Potential mediators of the coffee effect on type 2 diabetes risk 
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Red meat effects on diabetes risk: potential metabolic mechanisms 
Network-independent variations in concentrations of five metabolites 
were identified as potential metabolic link between habitual red meat 
consumption and elevated risk of type 2 diabetes. The potential links 
comprised elevated levels of saturated and polyunsaturated fatty acids 
and lower levels of glycine. 

Higher consumption of red meat was directly linked to lower 
circulating glycine concentrations, whereas in turn glycine was related to 
a reduced diabetes risk. The red meat-related alterations in glycine levels 
potentially explained 35% of the red meat-related diabetes risk. Among 
lipid metabolites propionylcarnitine (C3) was preselected as potential 
metabolic link according to predefined criteria. Mediation analysis did 
not support, however, a relevant role of that metabolite in metabolically 
linking red meat consumption to diabetes risk. The long-chain fatty acid-
containing sphingomyelin C18:0 and alkyl-acyl phosphatidylcholine 
C36/0 were higher concentrated in the plasma of participants with 
higher red meat consumption, and were related to elevated diabetes risk. 
The proportion of the red meat-related diabetes risk explainable by these 
two metabolites was 11% and 27%, respectively. Furthermore, red meat 
consumption was network-independently related to higher serum 
concentrations of alkyl-acyl phosphatidylcholine C36/4, which in turn 
was directly linked to higher type 2 diabetes risk. Adjusting the red meat-
diabetes relation for that metabolite attenuated the effect by 18%. 

The major proportion of the red meat-related type 2 diabetes risk 
was explainable by network-independent variation in glycine and three 
saturated and polyunsaturated fatty-acid containing metabolites. The 
effect-estimate of red meat intake on type 2 diabetes risk was attenuated 
by 70% after adjusting for these selected potential mediators. 
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Table 19: Quantitative mediation analysis for the red meat effect on type 2 diabetes 
risk 

Potential Mediator  
Mediator-adjusted HR 

(95% CI) 
Proportion mediated 
(95% bootstrap CI) 

Confounder-adjusted 1.25 (1.00, 1.55) reference 
Glycine  1.16 (0.93, 1.44) 35% (22% to 67%) 
Propionylcarnitine (C3) 1.25 (1.00, 1.55) 0% (-7% to 9%) 
Sphingomyelin C18:0  1.22 (0.98, 1.51) 11% (0% to 24%) 
Alkyl-acyl PC C36/0 1.17 (0.94, 1.46) 27% (14% to 64%) 
Alkyl-acyl PC C36/4 1.19 (0.95, 1.49) 18% (2% to 49%) 

All 1.06 (0.84, 1.32) 70% (43% to 100%) 

Potential mediating paths were selected manually based on the joint diet-
metabolomics-type 2 diabetes networks. Network independent variation of the 
metabolite was estimated by adjusting the metabolite for all direct neighbors in the 
metabolite-network that were not on the shortest path from the exposure the 
directly diabetes-linked mediator. The resulting residuals were used to estimate the 
explainable proportion. Two fully confounder-adjusted Cox-models were calculated, 
one with and the other without adjusting for the network-independent variation of 
the mediator. The proportion explainable was estimated as difference between non-
adjusted and adjusted exposure-estimates relative to the non-adjusted exposure-
estimate. The proportion explainable (95% CI) was estimated as median (2.5th, 97.5th 
percentile) of a bootstrapping-procedure with 1000 replicates and a sampling rate of 
eighty percent. CI=Confidence Interval. 
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 Figure 30: Potential mediators of the red meat effect on type 2 diabetes risk 
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5 Discussion 

5.1 Summary of the results & overview of the chapter 

A causal inference framework was developed to detect potential effects 
of whole-grain bread, coffee, and red meat consumption on 
metabolomics networks, and to infer potential direct effects of 
metabolites on type 2 diabetes risk. After successfully testing the validity 
of the integrated tools, the developed algorithm was applied to data from 
the prospective EPIC-Potsdam cohort study.  

Findings of the present work suggested that consumption of 
whole-grain bread was related to lower levels of several lipid metabolites 
with saturated and monounsaturated fatty acids. Coffee was related to 
lower aromatic and branched-chain amino acids, and had potential 
effects on the lipid profile and the fatty acid profile within lipid classes. 
Red meat was linked to lower glycine levels and was related to higher 
circulating concentrations of branched-chain amino acids. In addition, 
potential marked effects of red meat consumption on the fatty acid 
composition within the investigated lipid classes were identified. 
Moreover, beneficial and adverse effects on type 2 diabetes risk were 
detected of metabolites within each metabolite group. Aromatic amino 
acids and lipid metabolites with even-chain saturated fatty acids (C14-
C18) and with specific polyunsaturated fatty acid had adverse effects on 
type 2 diabetes risk. Glycine, glutamine, and lipid metabolites with 
monounsaturated fatty acid and other polyunsaturated fatty acid were 
classified as having direct beneficial effects on type 2 diabetes risk.  

Potential mediators were identified by graphically overlaying this 
information in network models. Mediation analysis revealed that effects 
on lipid metabolites could potentially explain about one fourth of the 
whole-grain bread effect on type 2 diabetes risk; and that effects of 
coffee and red meat consumption on amino acid and lipid profiles could 
potentially explain about two thirds of the altered type 2 diabetes risk 
linked to these dietary exposures. Thus, analyses of observational data 
from a large prospective cohort were consistent with the a priori 
mediation hypothesis: Early effects on lipid and amino acid metabolism 
showed the potential to explain large parts of the link between three of 
the most widely discussed diabetes-related dietary exposures and the risk 
of developing type 2 diabetes. 
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In the following, the analytical concepts will be discussed, including 
assumptions and application-related constraints of the analytical design 
as well as limitations by data quality and potential sources of bias 
inherent in the study design (5.2). Thereafter, the results of the study will 
be biologically interpreted (5.3). The chapter will close with a brief 
discussion of transferability of the findings within research and their 
relevance for the public and giving an outlook (5.4).  

5.2 Analytical concepts 

5.2.1 Etiological research in observational settings 

The present study aimed to use metabolomics data to identify potential 
mechanisms that link dietary exposures to type 2 diabetes risk. 
Methodologically, this task goes beyond classification and prediction. It 
searches for the explanations of observed data patterns. Many interesting 
approaches to infer mechanisms from observational data have been 
developed over the last two decades [139,182]. Still, few examples are 
available that methodologically approached related research questions 
[54,106,183], i.e. to use complex biomarker profiles to infer the 
mechanisms underlying a classical epidemiological exposure-outcome 
relation in by one comprehensive study design. Network models, 
however, were not integrated in these studies and, thus, methods were 
not implemented in a way which was applicable to the present study’s 
question and setting. From a methodological perspective, the large 
majority of metabolomics applications to large-scale epidemiological 
studies so far have focused on identifying stable predictors on the single 
metabolite level [115-119,184-186]. Naturally, interpretations often 
brought into play biological mechanisms and some observation-based 
metabolomics findings have already been linked to biological 
mechanisms. Some of the hypotheses that were generated by 
metabolomics applications in observational studies were successfully 
followed up in experimental work [187,188]. Methods, however, are best 
chosen in accordance to the task. To inferring potential biological 
mechanisms, a causal inference framework was considered the 
appropriate choice for the present work.  
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5.2.2 Factor analysis 

One of the major motivations for methodological innovations of the 
present study was the concern that multiple influences on single 
metabolite levels might hamper the biological interpretability. Therefore, 
the analytical design aimed to rule out indirect effects and confounding, 
and to focus on direct effects that concerned single metabolites. An 
obvious source of overlapping information was the strong covariance 
among metabolites of the same metabolite group. On one hand the level 
of a single metabolite integrates information on metabolic processes that 
might be rather specific for this particular metabolite. On the other hand 
metabolites are most commonly also markers of the abundance of the 
metabolite group as a whole. The approach to control for the local 
neighborhood of a metabolite in the network should have blocked the 
influence by the overall group level. First, however, factor analysis was 
applied to support the hypothesis that the common variance within the 
metabolite indeed played a role and to investigate this common variance 
in relation to both, dietary exposures and type 2 diabetes risk.  

Factor analysis is a tool to derive information on latent variables 
that were not directly assessed but that are reflected in the data by impact 
on groups of measured variables [175,176]. Accordingly, factor analysis 
was used to evaluate the hypothesis that the high correlation among 
metabolites of the same biochemical class [84,189] reflected common 
biological determinants. For this work, metabolites were sorted and 
looked at in groups characterized by apparent biochemical similarities. 
Within the groups (amino acids, acylcarnitines, sphingomyelins, diacyl 
phosphatidylcholines, alkyl-acyl phosphatidylcholines, and 
lysophosphatidylcholines), the dominant component of common 
variance was assumed to being induced by shared synthesis, transport 
and degradation pathways. Therefore, a one factor solution per 
metabolite group was a priori aimed at. The first factor of common 
variance was assumed to explain a major proportion of common 
variance. The plausibility of this assumption was evaluated by examining 
the scree plots and the Eigenvalues of the maximum factor solution 
[175]. Indeed major proportions of the variance within metabolite classes 
were explained by the first factor. In addition, an elbow-like bend in the 
scree plot after the first factor indicated one factor to be the preferable 
solution. The variance of well above 50% explained by the first common 
factor in each of the groups suggested that the knowledge-driven 
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groupings indeed reflected highly relevant common biological 
determinants. 

5.2.3 Causal inference 

Causal modeling 
Estimating potential effects rather than associations implied that the 
estimation procedure was informed by and results were interpreted with 
respect to a causal model. The subject-matter knowledge that was 
considered sound enough to inform the causal model was relatively 
general.  

The first group of directionality assumptions specified by the a 
priori models was that diet affects metabolite concentrations and not the 
other way around. The claim that metabolite profiles are sensitive to 
dietary composition was supported by numerous studies 
[90,91,93,110,190-192]. Still, special cases where metabolite levels in the 
blood determine dietary behavior cannot be excluded in principle. That 
such cases might have specifically affected one of the dietary 
components investigated in this study, however, seems rather unlikely. 
Broader effects on dietary composition and energy intake should have 
been blocked because all models were comprehensively adjusted for 
correlated food intakes and energy intake. Thus, effect directionality 
from habitual food intake towards the metabolite level is in general the 
most likely explanation for observed network-independent associations.  

TEXTBOX 1: Effect estimates 

For regression modeling, dietary exposures were standardized to two 
standard deviations. This corresponds to marked but frequently 
observed difference in the exposure level: for example low vs. high, 
very low vs. average, or average vs. very high consumption of the 
food. Solid foods were further energy standardized. For participants 
with an average energy intake of 9 MJ per day, for example, the 
reported estimates correspond to differences in the average daily 
intake of approximately 60g for whole-grain bread and of almost 
200g for red meat. Coffee consumption was not energy-standardized, 
reported estimates correspond to a difference of 4 cups per day. 
Metabolites were standardized to one standard deviation. Estimates 
on metabolites are therefore comparable on a relative scale. 
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The second group of directionality assumptions specified by the a 

priori causal model was that metabolite levels affected type 2 diabetes 
risk and not the other way round. This relationship was modeled in 
longitudinal data. Therefore, the second group of directionality 
assumptions was strongly supported by the prospective design. 
Chronological structure of the events is considered a reliable criterion for 
effect directionality. 

PC-Algorithm 

Assumptions 
The PC-algorithm was used to estimate the skeleton of the data-

generating DAG based on metabolomics data. This certainly relied on 
the assumption that the data-generating processes were adequately 
represented by a DAG. Several studies have applied metabolomics-based 
network models to observational cohort studies [124]. For exclusively 
continuous measurements of blood metabolite concentrations, Gaussian 
graphical models have been used most frequently to estimate conditional 
independence graphs [84,124]. Gaussian graphical models of 
metabolomics data have been shown to correspond well with known 
metabolic reactions [84]. Moreover, Gaussian graphical models have 
been used to identify unknown metabolites and to detect unknown 
enzymatic reactions [193]. Recently, Gaussian graphical models that 
relied on the same targeted metabolomics approach were compared 
across four cohorts including the EPIC-Potsdam study. The high 
consistency of network links within the metabolite groups suggested that 
these links were indeed generated by stable biological mechanisms (Stefan 
Dietrich, 2017, unpublished). In contrast to purely association-based 
methods to estimate partial correlation networks, causal inference 
algorithms aim to avoid linking two variables due to conditioning on a 
collider by more sophisticated adjustment strategies. Otherwise the 
network-structures are comparable between conditional independence 
graphs and DAG skeletons [147,148]. Therefore, the assumption that 
metabolomics data in the blood reflect directed metabolic processes is 
supported by the literature.  

The simulations in this study were performed to evaluate whether 
the PC-algorithm was suitable to estimate the skeleton of the DAG 
presumably underlying the metabolomics data. Data were simulated by 
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structural equations according to random DAGs based on Gaussian link 
functions. The simulation procedure could be modified, e.g. to more 
closely resemble metabolic reaction systems. Such simulations, however, 
were already applied for Gaussian graphical models [84]. These 
simulations demonstrated that links in conditional independence 
networks indeed reflected mechanistic links by enzymatic reactions. An 
exception was that substrates of a common product were often linked in 
the network albeit not directly connected by a metabolic reaction [84]. 
This was defined as a collider situation and these links should be omitted 
by the PC-algorithm [145,148]. Therefore, systematic comparison of the 
networks generated by the PC-algorithm to those generated by Gaussian 
graphical modeling would be of interest to generally define overlap and 
differences, and to derive appropriate application scenarios. Such 
simulations, however, were not within the scope of this work. Simulation 
studies on effects of the setting of the alpha level on performance of the 
PC-algorithm showed that results hardly depended on tuning of this 
parameter [148]. 

Moreover, estimating the skeleton of a DAG based on observed 
data implies the assumption that the data is faithful to the generating 
DAG. This assumption, however, is generally fulfilled for non-negative 
multivariate normal distributions and therefore applies to metabolomics 
data [179].  

Applications 
Results of simulation studies suggested that the PC-algorithm was 
suitable to estimate the skeleton of the data-generating DAGs in the 
settings to which it was applied in the present study. In the range of 
sizes, densities, and effect strengths that was observed for metabolomics 
networks in EPIC-Potsdam, the PC-algorithm performed excellently. 
Furthermore the PC-algorithm reached close to optimal performance at 
sample sizes of around 2000 observations, which again corresponds well 
with the present study. It should be noted that this cannot necessarily be 
generalized to other settings because the performance of the PC-
algorithm was clearly dependent on the settings of the network 
parameters and the size of the study sample. Possible use of the 
methodology developed in the present study in other settings should 
always rely on cautious evaluation of the applicability of the tools. In 
smaller samples, e.g., an algorithm that estimates networks based on few 
observations with higher robustness might be preferable. 
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NetCoupler 

Assumptions 
The NetCoupler-algorithm relied on effect directions specified by the 
underlying causal model and on the PC-algorithm to estimate the 
skeleton of DAGs. Therefore, assumptions discussed in the paragraphs 
above also apply with respect to the NetCoupler-algorithm. In addition, 
interpretation of the identified links as effects relies on the assumption 
that confounding was efficiently controlled for by the comprehensive 
adjustment strategy.  

Implications of the different directionality assumptions on the 
exposure–metabolite relation vs. the metabolite-outcome relation were 
already explained (3.4.5). To briefly summarize, the NetCoupler.IN-
version relies on the assumption that the exposure affects the metabolite 
levels and not the other way round. Thus, other metabolites are not 
considered as potential confounders but only as mediators of indirect 
effects. The NetCoupler.OUT-version, on the contrary, assumes effect 
directionality from the metabolites towards the outcome. Adjacent 
metabolites are thus considered as potential confounders. Consequently, 
ambiguous estimates on exposure-metabolite relations can still be 
interpreted as total effects, whereas ambiguous estimates on metabolite-
outcome relations need to be treated as potentially confounded. 

Application 
The biological interpretation of the results will be subject of the next 
section (5.3). Biologically consistent and interpretable findings alone, 
however, cannot prove that the NetCoupler-algorithm indeed detected 
biological effects. Improved biological interpretability in comparison to 
other metabolomics studies can still be graded as indication for 
meaningful methodological innovations of this work. It should be noted 
that the aim of the current study was to generate well-defined hypotheses 
on the metabolic mechanisms that link dietary habits to type 2 diabetes 
risk, which are consistent with observational data. Options to 
consolidate these hypotheses by the use of other study designs will be 
discussed below (5.4.2). 

Unambiguous classification relied on the detection of direct 
effects based on consistent and significant effects across submodels. This 
was only partly given for diet-metabolite relations. For each food 
exposure several links remained ambiguous. Two explanations might be 
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worthwhile to consider. Firstly, dietary effects on metabolites were 
relatively weak in the first place and adjustment for descendants of the 
metabolites might have further diluted these effects to result in non-
significant estimates. It should be noted that the weak effects, which are 
further discussed below (5.2.4), might to some extent be artefacts of 
generally imprecise dietary assessment-tools [194]. More sophisticated 
search strategies might still be able to detect a few explanatory models 
that are consistent with the observed patterns of conditional 
dependencies [179]. Secondly, dietary effects might have included latent 
factors that affected several metabolites at a time. In this case causal 
modeling techniques involving inference on latent variables could be 
considered [178]. As discussed above, the interpretation of ambiguous 
exposure-metabolite links as total effects was still meaningful.  

The classification of metabolite-diabetes risk links as direct and 
indirect effects was successful and the minority of links remained 
ambiguous. In the present study, by considering network-adjusted 
estimates, both, beneficial effects and adverse effects, were revealed 
within each of the metabolite classes. This agrees with biologically 
motivated prior expectations, which will be discussed in the next section 
(5.3). Based on theoretical considerations and supported by the results of 
the present study, confounding by metabolically-related factors has the 
potential to conceal biologically interesting links. Metabolomics 
applications in etiological diabetes research should consider strategies to 
deal with this issue. The present study offers a computationally feasible 
and graphically informed approach to generate confidence sets of 
possible estimates. By graphical specification a priori assumption on 
effect directionality can be integrated. Links within the graphical model 
can be translated into equations of any parametric or non-parametric 
form [195]. Without major changes of the general framework, the 
approach could be extended to include other link functions, repeated 
measurements of the exposure, or interaction terms, to give some 
examples of increased model complexity.  

Mediation analysis 

Assumptions 
Four main assumptions have to be fulfilled to derive quantitatively valid 
estimates on the natural indirect effect, i.e. the proportion mediated or 
proportion explained by mediation in the context of this study [196,197].  
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1. No unmeasured confounding of the exposure-outcome effect. 
2. No unmeasured confounding of the exposure-mediator effect. 
3. No unmeasured confounding of the mediator-outcome effect. 
4. No confounder (measured or unmeasured) of the mediator-

outcome effect that is affected by the exposure. 

Recent methodological contributions have relaxed some of these 
assumptions, particularly (4) [198,199]. The major point is that 
quantitative interpretation of estimates on mediated proportions implies 
strong assumptions on the absence of confounding. A further limitation 
is that a different extent of measurement error can also compromise the 
quantitative estimates on mediated proportions [200]. Most importantly, 
the concept of mediation again relies on a valid underlying causal model. 
Because of the hypothesis-generating nature of this work, the term 
proportion explainable is used. In contrary, the term “proportion explained” 
or “proportion mediated” would only be applicable if a very distinct 
causal hypothesis strongly supported by subject-matter knowledge was 
tested in a setting, where all (possibly) relevant information was available. 
Certainly, the mediation analysis could also be refined. For example, 
more sophisticated search algorithms could be used to identify additional 
potential mediators [201,202]. Mediation analysis involving multiple 
mediators could be extended to include interactions [203-205]. 
Sophisticated statistics should not distract, however, from the emphasis 
on a clearly specified causal hypothesis, which mediation analysis 
underlies the application of mediation analysis to observational data. 

5.2.4 Limitations of the data quality & sources of bias 

Limited data-assessment 
Dietary data was assessed as habitual consumption over the last year by 
validated food frequency questionnaires. Based on the questionnaires, 
average intake levels were estimated for 49 food groups [153]. In the 
present study it was not differentiated between different subtypes of the 
evaluated food exposures. Possible modifying effects of different total 
exposure durations (life-time exposure) or differences in the dietary 
composition in the days before blood sampling were not considered. 
Fasting status was included as adjustment variable but fasting duration 
for example was not considered. 

Metabolomics were measured on a targeted platform [173]. The 
targeted metabolite spectrum was shown to be sensitive to the dietary 
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habits [83,100] and to be informative with respect to type 2 diabetes risk 
[115,116]. The coverage of the metabolome or a subsystem thereof (e.g. 
lipid metabolites) by the targeted approach, nevertheless, was very 
limited. Furthermore, a major limitation of the targeted metabolomics 
approach of the study was low resolution of information on fatty acid 
residues. Only the cumulative number of carbon atoms and 
desaturations over all fatty acids contained in a single metabolite were 
provided. Neither information on the localization nor information on 
the stereochemistry of desaturations was available. In metabolites with 
two fatty acids, the chain-length of the single fatty acids was also not 
provided but a summary measure of C-atoms from the two fatty acids. 
Moreover, the metabolomics approach did not differentiate between 
leucine and isoleucine and provided a summary measure only. In 
addition, other types of biomarkers were not considered for the present 
study but could be of interest. Genetic data, for example, could be used 
to consolidate causality of the observed effect in terms of Mendelian 
randomization studies [206] or to identify relevant subgroups of 
participants in terms of interaction analyses [207]. 

Measurement error  
Dietary assessments with validated food frequency questionnaires deliver 
relatively crude estimates on average intake levels over the year. The 
dietary assessment tools in EPIC-Potsdam were shown to deliver valid 
estimates on average intake levels [155,157], but these can be considered 
as rather imprecise. In complex systems of interrelated variables, 
scenarios can be constructed were estimates are either inflated or biased 
towards the null by measurement error [130]. In most cases, however, 
random noise due to imprecise assessment of the exposure is expected 
to produce underestimated effects [130]. The metabolomics 
measurements relied on blood samples from a single time point. Intra-
individual biological variation is again considered a source of random 
noise. It has been estimated that even under the assumption of excellent 
reliability of a biomarker the imprecision related to single measurements 
could again lead to relevant underestimation of effect sizes [208,209]. 
Due to rigorous validation of the case assessment, false positives among 
the diabetes cases are unlikely. Despite the multi-source assessment 
strategy, some cases might have remained undetected, which again bears 
the potential to underestimate real effects. In summary, measurements in 
large-scale human cohorts are limited in terms of precision. In general, 
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this imprecision would be expected to produce a tendency to 
underestimate effects.  

Erroneous decisions 
In the present study, hypothesis testing was involved in terms of decision 
making. Test-based decisions are prone to two types of error, the 
possibility of false discoveries (type I error) and the possibility to 
overlook real dependencies (type II error). Moreover, each decision in 
the workflow of this study involved multiple tests. 

First, models adjusted for a comprehensive set of confounders 
were used to select pairs of metabolites and external variables (dietary 
exposure or type2 diabetes risk) that required explanation. The different 
metabolite groups reflected different biological hypotheses but within 
the metabolite groups multiplicity was considered an issue. Within 
metabolite groups, false discovery rate [210] was controlled at 0.1 within 
metabolite groups. Thus, a relatively liberal significance-threshold was 
used at the first screening step. Type II error at the screening step 
implied that the respective relation was not further consider in the multi-
model procedure. 

Second, multiple models were calculated and if any of these 
models was non-significant the relation of the pair was not classified as 
unambiguous effect. This is to some extent the inverse of the multiplicity 
problem and the approach taken by the present study is in some respect 
analogous to Bonferroni correction: regardless of the number of 
submodels, if any estimate was non-significant the link was not classified 
as direct effect but remained ambiguous. Thus, a fairly conservative 
threshold was set at the second classification step. For the metabolite-
diabetes relation 34 metabolites were classified as directly affecting type 2 
diabetes risk in the present work. This closely resembled the number of 
metabolites that were considered as predictors of diabetes incidence in a 
previous regression selection, in which thirty-three metabolites from the 
same set were significantly associated with type 2 diabetes risk after 
Bonferroni correction over all tests [116]. Therefore, difference in the 
findings between the former study and the present work cannot mainly 
be attributed to threshold-effects. Of course, multiple tests also imply 
multiple opportunities to commit a type II error.  

Two points are important: Firstly, p-values were used to aid the 
selection procedure for promising explanations as handy summary 
information on precision and size of the estimate. For single estimates, 
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the focus on confidence intervals and effect ranges was preferred. 
Secondly, to partially rely on p-values in the present study was a 
pragmatic decision. Depending on the study size and the data-type, 
potential future applications of a similar workflow to other study settings 
should consider the option to use other selection criteria. 

Sources of bias 
Cohort studies are generally prone to various sources of bias. Firstly, 
outcome-related misclassification of the exposure (or vice versa) can lead 
to biased estimates of the exposure-outcome relation. For example, 
selective misreporting is related to anthropometric traits, which are in 
turn related to the risk of type 2 diabetes. Therefore, selective 
underreporting of dietary intake levels by overweight participants can be 
a possible source for outcome-related misclassification of the exposure. 
Bias due to background factors that motivated misreporting should have 
been improved by comprehensively adjusting statistical models for 
phenotypical traits and lifestyle factors. Misclassification of the outcome 
is unlikely due to the rigorous case validation in the EPIC-Potsdam 
study. Reverse causation will be discussed below, under the heading 
misspecification of the causal model. Confounding generally is a major concern 
in observational studies. This study has accounted for confounding 
within the metabolomics network and this is a novelty for metabolomics 
applications in observational settings. Residual confounding, however, 
cannot be excluded and has the potential to having biased the results 
obtained in this study. Unstable confounding mechanisms can be 
revealed by external validation in similar studies and stable confounding 
mechanisms can probably be ruled out by combining different study 
designs [141]. Both approaches will be revisited in the last section of the 
discussion. 

Misspecification of the causal model 
Any misspecification of the causal model could have severely 
compromised the interpretation of the estimates as effects, and the 
interpretation of the results in general. A priori assumptions were clearly 
specified and are thus open to discussion. Wherever subject-matter 
knowledge was not detailed enough, a multi-model approach was taken 
to restrict the space of possible causal explanations for the observed data 
patterns. The multi-model procedure was informed by a graphical causal 
model estimated with the PC-algorithm. Failure of this tool to detect 
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mechanistic links might have resulted in a misspecified causal model. 
Furthermore, missing or erroneous information on important variables 
could have also resulted in a false model. On several occasions, the final 
causal model remained blurry by classifying effects as ambiguous. Due to 
the observational nature of the study, any causal claims including the 
causal models as a whole have a hypothetical character. This limitation is 
explicitly recognized. However, in nutritional epidemiology with chronic 
disease endpoints, specification of causal mechanisms consistent with the 
data is rather uncommon. Specifying a complex causal model that 
involves mediation hypothesis implies that model assumptions and 
claims on single links or groups of links are explicitly stated which 
should ease the falsification or validation in other studies.  

5.3 Biological interpretation 

5.3.1 Metabolites as pathway sensors 

Accumulating evidence indicates that concentrations of metabolites in 
the blood are predictive markers of type 2 diabetes risk [117,187,211]. 
Causality of observed links between circulating metabolite 
concentrations and type 2 diabetes incidence, however, is often 
questioned. But such an unspecific question is hard to answer in general. 
Physiopathological processes underlying type 2 diabetes development are 
not mainly located in the vascular system. Thus, it is rather unlikely that 
metabolite concentrations in the blood are causal factors in a molecular 
biological sense. (Some metabolites might exhibit systemic signaling 
functions with the circulation as major site of action but these can be 
considered as special cases.) For the following discussion, it might 
therefore be helpful to put the question more accurately: Are metabolite 
concentrations in the circulation sensitive markers for metabolic 
processes and signaling activities (which likely take place in other tissues) 
that causally affect type 2 diabetes risk? 

There is another important consideration attached to the 
interpretation of circulating metabolites as sensors for pathway activities. 
The finding that a serum metabolite is sensitive to the activity of a 
diabetes-related pathway does not necessarily imply specificity of that 
marker. On the contrary, most metabolite concentrations in the blood 
likely integrate information on the activity of several pathways in various 
tissues. Using the example of lipid metabolites, integration of multiple 
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pathway signals can be well illustrated. Lipid metabolites contain fatty 
acid residues. The nature of the attached fatty acid clearly depends on 
the availability of specific fatty acids within cells and tissues. Therefore, 
the circulating concentration of a particular metabolite includes 
information on fatty acid metabolism. At the same time, however, the 
circulating metabolite concentration depends on the availability of the 
head-group and backbone of that metabolite, e.g. sphingosine in case of 
sphingolipids or phosphatidylcholine in case of glycerophospholipids. 
These two processes are not necessarily equally related to type 2 diabetes 
risk. They might, but maybe in the opposite way - one with a beneficial 
and the other with an adverse effect on type 2 diabetes risk. This 
example is an oversimplification. The strong intercorrelation between 
metabolites implies that any effect on metabolites spreads across the 
network. Thus, single metabolite concentrations must be assumed to 
being affected by a variety of influential processes. The example 
underscores, however, that the aim of identifying the best sensors for 
pathways that are causally involved in type 2 diabetes development from 
a metabolomics dataset must rely on a modeling approach that controls 
for indirect effects by other signals.  

Compared to the above discussed connections between 
metabolites and type 2 diabetes risk, linking dietary determinants to 
metabolic markers is easier in some regards. Evidently, dietary effects on 
circulating concentration of metabolites involve a variety of metabolic 
processes, including facilitated transport over membranes and 
enzymatically catalyzed reactions. Whenever a metabolite concentration 
in the blood is sensitive to the exposure level, however, the 
interpretation as effect is intuitive and plain. For the purpose of 
mediation analyses a general notion on total effects is, however, not 
sufficient. Observed diet-related alterations in circulating metabolite 
concentration need to be considered with respect to possible modulation 
of diabetes-relevant pathway activities. That is not given by observed 
effects on circulating metabolite concentrations per se because, as 
mentioned above, metabolite concentrations in the blood are likely to be 
sensitive to several metabolic processes in various tissues.  

In the following the biological role of circulating metabolites as 
pathway sensors in relation to both, dietary exposures and type 2 
diabetes risk, will be discussed. Therefore, metabolites will be organized 
in groups according to metabolic processes that might be relevant for 
type 2 diabetes risk. 
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5.3.2 Amino acids 

Physiology 
All tissues metabolize amino acids but the liver is the central site of 
nitrogen metabolism in the organism [212]. Surplus supply of amino 
acids with the diet leads to the storage of the carbon chains of amino 
acids as glucose (gluconeogenesis) or fatty acids (ketogenesis). 
Exclusively ketogenic amino acids are lysine and leucine. Aromatic 
amino acids and isoleucine can be used in gluconeogenic and in 
ketogenic pathways. All other amino acids are exclusively gluconeogenic, 
which means that their catabolism leads to intermediates of the Krebs 
cycle. In times of starvation amino acids are used for energy production. 
Furthermore, amino acids form building blocks for proteins and 
biologically active molecules, such as hormones [212].  

Dietary effects on amino acids 
In the present study the first factor of common variance among amino 
acids was inversely related to coffee consumption. Alterations of amino 
acid abundance in the blood in response to coffee consumption might 
be related to a regulatory effect of coffee on hepatic intermediary 
metabolism, which will be discussed below.  

Whole-grain bread consumption was not related to amino acid 
levels in the blood. Coffee was related to lower circulating 
concentrations of branched-chain amino acid, phenylalanine, methionine 
and proline. An inverse relation of coffee intake with phenylalanine in 
men was reported by a previous study in EPIC-Potsdam [106]. Red meat 
consumption was related to higher concentrations of circulating 
branched-chain amino acids. Red meat is an important dietary source of 
branched-chain amino acids [213]. Furthermore, red meat intake was 
directly related to lower glycine levels, which is consistent with previous 
reports from EPIC-Potsdam [54]. Elevated glycine utilization for 
biosynthesis of heme or creatinine or glutathione in response to high 
iron intake and related oxidative challenges could be possible 
explanations of lower glycine levels in relation to high red meat 
consumption.  

Effects of amino acids on type 2 diabetes risk 
Metabolomics approaches have reignited the interest in the hypothesis 
raised by a study from 1969 on a potential etiological role of circulating 
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branched-chain amino acids in type 2 diabetes pathogenesis [187,214]. 
The first analysis of metabolomics data in relation to type 2 diabetes 
incidence by Wang et al. (2011) reported strong associations of 
branched-chain amino acids with type 2 diabetes risk [215]. A recent 
meta-analysis that comprised data from up to eight thousand participants 
including 1,940 incident cases of type 2 diabetes corroborated these 
findings [117]. Consistently, valine and the sum of leucine and isoleucine 
were significantly associated with type 2 diabetes risk in EPIC-Potsdam 
[116]. These associations were rendered non-significant, however, by 
mutually including metabolites that were associated with type 2 diabetes 
risk at the single metabolite level a joint regression model [116]. 
Accordingly, the potential link of branched amino acids with type 2 
diabetes risk was not classified as direct effect in the present study. A 
possible explanation for this unstable association might relate to the 
measurements. As discussed above (5.2.4), the targeted metabolomics 
approach in EPIC-Potsdam only provided summary measures of 
isoleucine and leucine and differentiation between the two was thus not 
possible. An alternative biological explanation suggests that the link 
between branched-chain amino acids is of indirect nature and might be 
explainable by the adverse effect of aromatic amino acids on type 2 
diabetes risk. Genetic evidence, however, supported a role for alterations 
in branched-chain amino acid catabolism in the development of type 2 
diabetes [216]. Another Mendelian randomization study suggested that 
alterations in branched-chain amino acids were most likely early 
consequences of insulin resistance [217].  

The association between aromatic amino acids, tyrosine and 
phenylalanine in particular, and elevated type 2 diabetes risk was similarly 
consistent across different prospective cohort studies [117], which was 
again in line with previous analyzes in EPIC-Potsdam [116]. In the 
present study phenylalanine and tyrosine were classified as having direct 
adverse effects on type 2 diabetes risk. Aromatic amino acids are also 
substrate for ketogenic pathways and might therefore sensitive to the 
same disturbances of degradation diabetes-related pathways as branched-
chain amino acids. According to the results of the current study they 
might be even better sensors. Phenylalanine and tyrosine are, however, 
also substrate for the synthesis of a number of very potent signaling 
molecules including thyroxin and catecholamines [212]. These hormones 
are key-regulators of systemic energy metabolism and thereby implicated 
in metabolic homeostasis [218]. In light of the present results and former 
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observational studies, however, the strong inclination in the field to 
consider branched-chain amino acid over aromatic amino acids for 
biological interpretation and follow-up studies seems arbitrary to some 
extent.  

In the present study, circulating concentrations of glycine and 
glutamine were classified as having direct beneficial effects on type 2 
diabetes risk. Both findings are in line with the already cited meta-
analysis of prospective cohort studies [117] and are further corroborate 
by recent studies in Chines cohorts [119,219]. Mendelian randomization 
studies did not support a direct causal effect of circulating glycine levels 
on type 2 diabetes risk [220]. However, equipped with the interpretation 
of metabolites as non-specific pathway sensors, it is evident that 
Mendelian randomization studies can only be interpreted with regard to 
the particular pathway by which considered genes affect the metabolite 
[221]. The consistent association of glycine with type 2 diabetes risk still 
requires explanation. Glycine is centrally involved in many metabolic key 
processes, e.g. oxidative stress response, folate metabolism, 
gluconeogenesis, and of course protein biosynthesis [212]. Therefore, 
studies on determinants of the circulating glycine concentrations in terms 
of quantitative contributions by different glycine-producing and -utilizing 
pathways would be highly desirable. Similar considerations apply to 
glutamine. Until such evidence is available, speculation on the processes 
underlying the beneficial direct effect of these two amino acids on type 2 
diabetes risk remain difficult.  

5.3.3 Acylcarnitines 

Physiology 
The major biological function of acylcarnitines is commitment of fatty 
acids to energy-generating oxidation [222]. Acylcarnitines are, however, 
not all oxidized immediately. Their export from cells is evident by 
detectability in the blood. Besides exercise, physiological determinants of 
acylcarnitine concentrations in the circulation include fasting status and 
dietary composition [223-227]. 

Dietary effects on acylcarnitines 
Among food-exposures, whole-grain bread consumption was related to 
lower circulating concentrations of long-chain saturated acylcarnitines in 
the present study, stearoylcarnitine (C18:0) and palmitoylcarnitine 
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(C16:0) in particular. None of the two was unambiguously classified, 
however, as directly or indirectly affected due to non-significant but 
directionally consistent estimates in some network-adjusted submodels. 
In EPIC-Potsdam inverse associations between whole-grain bread intake 
and acylcarnitines in general were previously described [83] but not 
specifically for stearoylcarnitine and palmitoylcarnitine. Whole-grain 
dietary interventions in humans that investigated acylcarnitine responses 
were not identified in the literature. Yet an animal study demonstrated a 
clear effect of fiber supplementation on lipid metabolism including 
acylcarnitine levels in the muscle [228]. Unfortunately circulating 
acylcarnitine concentrations were however not reported. 

 
Previous studies observed inverse associations between coffee 
consumption and long-chain and medium-chain acylcarnitines [107,108]. 
That was not the case in the present study. A possible explanation of this 
inconsistency might be the different fasting status between the studies 
with primarily non-fasted serum samples in the present study.  

 
In the present work a direct effect of red meat consumption on higher 
serum concentrations of stearoylcarnitine (C18:0) was detected. Stearic 
acid is one of the most abundant saturated fatty acids in red meat [229]. 
Therefore, enrichment of stearoylcarnitine in response to high habitual 
red meat consumption seems plausible. Propionylcarnitine was also 
associated with red meat consumption and this association was not 
explained by controlling for the direct effect on stearoylcarnitine. 
Information on the relation of red meat consumption with higher serum 
propionylcarnitine concentration was still classified as ambiguous based 
on consistent but partly non-significant estimates in the submodels. 
Combined analysis of observational and interventional data in a study on 
biomarkers of dietary intake identified propionylcarnitine as marker for 
unprocessed and processed red meat intake [90] , which is in line with 
other observations [230]. Therefore, non-significance of some estimands 
might have been a power problem. Another possible explanation is that 
effect-attenuation in some submodels hints towards a partly indirect 
effect of red meat intake on propionylcarnitine concentrations in the 
blood. Propionylcarnitine is a product of branched-chain fatty and amino 
acid catabolism and this notion coincides with red meat being among the 
most important dietary sources of branched-chain amino acids [231]. 
The observation that higher red meat-related levels of 
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octadecenoylcarnitine (C18:1), acetylcarntine (C2:0) and carnitine (C0) 
were explainable by the direct red meat-effect on stearoylcarnitine 
seemed plausible because these metabolites are involved in long-chain 
fatty acid oxidation [232].  

Effects of long-chain acylcarnitines on type 2 diabetes risk 

Consistency with other studies 
The present study observed direct effects of several acylcarnitines on 
type 2 diabetes risk. Long-chain saturated fatty acid containing 
palmitoylcarnitine (C16:0) was classified as having direct adverse effects 
on type 2 diabetes risk based on multi-model estimates. This metabolite 
was not among predictive markers for type 2 diabetes risk incidence in a 
previous regression-based selection procedure on the single metabolite-
level in EPIC-Potsdam [116]. Palmitoylcarnitine was selected, however, 
as predictive diabetes risk-marker in a random survival forest-based 
selection procedure of predictors for type 2 diabetes risk [115]. 
Relevance of palmitoylcarnitine for type 2 diabetes risk is also supported 
by findings in other cohorts. A Chinese study applied targeted 
metabolomics (52 metabolites) in two case-control samples nested within 
independent prospective cohorts (1039 and 520 incident type 2 diabetes 
cases and the same number of controls). This prospective study 
identified palmitoylcarnitine as one of four metabolites that were 
consistently associated with type 2 diabetes risk across the two cohorts 
[119]. Another Chinese study in 2,103 participants aged 50–70 years and 
including 507 type 2 diabetes cases found elevated type 2 diabetes risk in 
relation to higher long-chain acylcarnitines [118].  

In the present study, unsaturated long-chain and medium-chain 
acylcarnitines were classified as having a beneficial direct effect on type 2 
diabetes incidence. This applies to tetradecenoylcarnitine (C14:1) and 
octadecadienylcarnitine (C18:2). These results stand in contrast to one of 
the aforementioned Chinese cohort studies where acylcarnitines C14:1 
and C18:2 were markedly higher concentrated in the plasma of 
participants that later on developed type 2 diabetes [118]. Still the 
comparison is not straightforward because on the single acylcarnitine 
level the Chinese study presented unadjusted means in incident type 2 
diabetes cases compared to controls only [118]. Moreover, the potential 
beneficial effect of unsaturated fatty acid containing acylcarnitines on 
type 2 diabetes risk in the present work was revealed only after 
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controlling for potential 
confounding by other 
acylcarnitines. This also 
explains why prior analyses in 
EPIC-Potsdam that did not 
take into account network 
information did not detect 
beneficial associations of 
acylcarnitines with type 2 
diabetes risk [116]. Beneficial 
effects of acylcarnitines C14:1 
and C18:2 on type 2 diabetes 
risk in the present studies 
coincide with lower plasma 
concentrations of these 
metabolites in patients with 
prevalent metabolic syndrome 
and type 2 diabetes compared 
to healthy controls (n≈40 per 
group) [233].  

Circulating long-chain 
acylcarnitine concentrations 
were thus related to type 2 
diabetes risk in several prospective studies. Some heterogeneity of the 
results might point towards dependencies of the relation between 
specific acylcarnitines and type 2 diabetes risk on characteristics of the 
source population. Other possible explanations of inconsistencies are 
differences in ethnicity, age, health status, fasting status, analytical 
chemistry and statistical design between the studies. Taken together the 
available evidence yet suggests that acylcarnitine concentrations in the 
blood are markers for diabetes-related processes.  

Possible mechanisms 
Efflux of acylcarnitines from cells is believed to largely depend on the 
intracellular concentrations [234]. Still, physiological studies comparing 
acylcarnitine concentrations in arterial and venous blood samples from 
muscle and liver showed that the release of acylcarnitines to the 
circulation is complexly regulated. Several tissues contribute differently 
to the different circulating acylcarnitine species and the contribution 

TEXTBOX 2: Fatty acid oxidation [2] 

Inside cells long-chain fatty acids 
are determined for energy-
generating catabolism by 
esterification with coenzyme A. 
For the transport over the 
mitochondrial membrane they need 
to be converted into acylcarnitines 
by palmitoyltransferases and shuttled 
over the membrane by carnitine 
acylcarnitine translocases. Under 
physiological conditions this is the 
rate limiting step of fatty acid 
oxidation. Within mitochondria 
acylcarnitines are reconverted into 
acyl coenzyme A. This fuels the 
mitochondrial energy-generation (β 
oxidation). Resulting acetyl 
coenzyme A is further utilized as 
substrate for citrate formation, 
which feeds the Krebs cycle. 
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depends on the metabolic status [225,235]. Liver and muscle are 
considered major sources of circulating acylcarnitines because of the 
high content of mitochondria. Contribution of distinct tissues to the 
concentration of specific acylcarnitines in the peripheral blood, however, 
was not yet studied in detail [222,225]. On a systemic level acylcarnitines 
take part in energy transport between tissues [225,235]. To some extent 
acylcarnitines, however, simply leak into the circulation. In metabolically 
challenged cells acylcarnitine formation and export plays a role to relieve 
coenzyme A and to thereby secure continuation of intracellular 
metabolic processes [222,236]. Therefore, high abundance of long-chain 
acylcarnitines in the circulation was proposed to indicate a mismatch 
between fatty acid oxidation and the following utilization of resulting 
tricarboxylic acids in the Krebs cycle [222]. According to this model 
mitochondrial overload in metabolically active tissues leads to increased 
systemic levels of acylcarnitines, which could entail adverse metabolic 
effects. 

Accumulating experimental evidence involves signaling activities 
of long-chain acylcarnitines in diabetes-relevant processes [2]. 
Physiopathological implications of dysregulated acylcarnitine metabolism 
are also indicated by observations in patients with genetic defects in fatty 
acid oxidation [237]. In vitro studies found that higher abundance of 
acylcarnitines locally affected inflammatory pathways [238,239]. 
Proinflammatory activities might partly explain observed relations of 
acylcarnitines with insulin resistance [240,241]. It was also demonstrated 
in vitro that palmitoylcarnitine blunts insulin-simulated phosphorylation 
of the serine/threonine-specific protein kinase Akt [242], and modulates 
protein kinase C activity [243,244] and ion-flux via calcium-depend 
transmembrane channels [245,246]. Moreover, in vitro models 
demonstrated that palmitoylcarnitine in high concentrations adversely 
affects cellular membrane integrity thereby leading to cellular stress 
responses [247].  

Taken together, experimental mechanistical evidence suggests 
possible direct and indirect modulation of insulin signaling by 
palmitoylcarnitine. The concentrations of palmitoylcarnitine used in the 
in vitro model systems were much higher, however, than those found in 
vivo in the circulation [2]. Yet the actual site of action of 
palmitoylcarnitine within cells is unclear. It might therefore well be that 
metabolically produced acylcarnitines have regulatory effects at much 
lower concentrations compared to externally applied acylcarnitines. This 
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remains speculative nonetheless based on the available evidence. 
Mechanistical studies on the effects of unsaturated fatty acid-containing 
acylcarnitines were not identified in the literature. With regard to the 
beneficial effects of acylcarnitines C18:2 and C14:1, the suggested 
regulatory functions of acylcarnitines are of particular interest. Signaling 
activities would likely be sensitive to the different spatial conformation 
that distinguishes saturated from unsaturated fatty acids. 

 
To conclude, adverse effects of palmitoylcarnitine on type 2 diabetes risk 
are in line with findings from other cohorts. Furthermore, in vitro 
evidence suggests regulatory effects of acylcarnitines on insulin-signaling 
and other diabetes-related processes. Another line of argument interprets 
circulating palmitoylcarnitine as a marker of a challenged energy 
metabolism. The findings on beneficial effects of desaturated fatty acid-
containing acylcarnitines (C18:2 and C14:1) in the present study were not 
reported from other cohorts so far and need thus to be interpreted with 
caution. The absence of comparable results might be explained by the 
innovative analytical approach of this study that accounted for potential 
negative confounding by other acylcarnitines.  

Short-chain fatty acid-containing acylcarnitines 
Among short-chain fatty acid containing acylcarnitines 
propionylcarnitine was classified as having a direct adverse effect on type 
2 diabetes risk in the present study. A similar risk estimate was reported 
from the EPIC-Norfolk study 1.15 (95%CI 0.98-1.34) [216]. Moreover, 
elevated plasma concentrations of propionylcarnitine were reported in 
relation to impaired glucose disposal [118] and insulin resistance in 
humans [215]. Higher propionylcarnitine concentrations were also 
observed in patients with prevalent type 2 diabetes and metabolic 
syndrome, respectively, compared to healthy controls [233].  

Experimental studies on effects of propionylcarnitine on type 2 
diabetes risk were not identified. As mentioned earlier in this section, 
propionylcarnitine is a marker for oxidation of branched-chain carbon 
chains and should therefore be interpreted apart from long-chain fatty 
acid utilization. Multi-model information on glutarylcarnitine [C5-
DC(C6-OH)] was classified as ambiguous with regard to a direct effect 
on diabetes risk. Evidence on the metabolic role of this metabolite was 
not identified.  
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5.3.4 Sphingomyelins 

Physiology 
Sphingolipid synthesis in cells commences with condensation of a fatty 
acid acyl-coenzyme A (particularly palmitoyl-coenzyme A) with an amino 
acid, i.e. serine, glycine, or alanine. This reaction is catalyzed by the 
serine-palmitoylcarnitine reductase. Several enzymatic steps lead to the 
formation of ceramide [248]. Ceramide is precursor for the synthesis of 
other complex sphingolipids, including sphingomyelin. Sphingomyelins 
are synthesized by assembly of ceramide with a phosphatidylcholine-
moiety [249]. Sphingomyelin is therefore the sphingolipid that 
structurally most closely resembles glycerophospholipids.  

Dietary effects on sphingomyelins 
Group levels of sphingomyelins were not sensitive to the investigated 
food exposures. Furthermore, whole-grain bread had no direct effect on 
single sphingomyelins. Coffee and red meat consumption, however, 
directly affected certain sphingomyelins. The direct effect of coffee 
consumption on unsaturated fatty acid-containing sphingomyelins 
explained the higher abundance of a large coffee-connected component. 
In addition, a direct effect on higher levels of C26:0 in sphingomyelins 
was observed. Higher sphingomyelin levels in relation to coffee 
consumption were already reported in a previous study [108], in which 
alterations in sphingomyelins correlated with coffee-related changes in 
blood lipids. Still, the associations with coffee consumption were 
stronger for sphingomyelins [108]. These observations might suggest 
that blood lipids and sphingomyelins are targeted by the same regulatory 
actions of coffee compounds on lipid metabolism. Red meat 
consumption also affected an interlinked component of several 
sphingomyelins, with some overlap to the coffee-connected component. 
Still, red meat seemed to affect other sphingomyelins, which contained 
long-chain and very long-chain monounsaturated fatty acid. Higher levels 
of sphingomyelins in consumers vs. non-consumers of red meat were 
recently reported from a study applying an untargeted lipidomics 
approach [190]. Furthermore, enrichment of long- and very long-chain 
saturated and monounsaturated fatty acids in sphingomyelins matches 
the fatty acid composition in red meat [250].  
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Effects of sphingomyelins on type 2 diabetes risk 
Ceramide was implicated in insulin resistance [251-255] and 
inflammatory processes [256-258] by numerous studies. Consistent with 
the literature sphingomyelin group levels were not related to type 2 
diabetes risk. Associations of sphingomyelins with metabolic traits were 
reported to depend on the fatty acid residues [259]. The investigated 
food items in the present study were not found to associate with the first 
component of common variance among sphingomyelins. General 
tendencies towards beneficial effects of monounsaturated and 
biunsaturated fatty acids on the risk of type 2 diabetes were in line with 
observations in phosphatidylcholines and will be discussed in the 
following section. In this section, the focus is on two particular pairs of 
sphingomyelins: sphingomyelins C18:0 and C18:1; and hydroxy-
sphingomyelins C22:1 and C22:2. For both pairs, the partners were 
particularly strongly associated with type 2 diabetes risk, but in the 
opposite directions. The lower unsaturated metabolite (C18:0 and 
OHC22:1, respectively) had a strong adverse effect, whereas the higher 
unsaturated partner (C18:1 and OHC22:2, respectively) was highly 
beneficial. Still, the pairs were strongly correlated so that the strength of 
the association was only revealed in mutually adjusted models. The 
mutual dependency also explains why only few of the diabetes risk 
relations of sphingomyelins, that were detected in the present study, 
were also observed in previous studies in EPIC-Potsdam that operated at 
the single metabolite level [115,116]. Interestingly, a recent study on 
genetic association with metabolite ratios detected an association of 
diabetes-related variants in the sphingosine-1-phosphate phosphatase 1 
gene with the ratio of hydroxy-sphingomyelin C22:1 to C22:2 (Susanne 
Jäger, Scientific reports, under review). A role of sphingosine-1-phosphate 
signaling in type 2 diabetes development is well established [260-262]. 
From a functional perspective, such metabolically closely related 
metabolites with an oppositely directed relation to type 2 diabetes risk 
could perhaps qualify as sensors for physiopathological relevant 
metabolic steps, e.g. as markers for enzymatic activities. Such pairs of 
interest also occurred in other lipid classes (e.g. lysophosphatidylcholines 
C18:2 and C20:3, and alkyl-acyl phosphatidylcholines C36/4 and C38/5) 
and are easily identified by visual inspection of the diabetes-linked 
networks.  
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5.3.5 Phosphatidylcholines 

Physiology 
Phosphatidylcholines are among the most abundant phospholipids in 
human cells and constitute the major lipid fraction in most cellular 
membranes [263]. The major fraction of phosphatidylcholines is 
produced by bonding of a CDP-choline moiety to diacylglycerol. 
Another pathway to produce phosphatidylcholine is conversion of 
phosphatidylethanolamine by step-wise methylation of the head-group, 
which particularly in hepatocytes can play a quantitative role [248]. 

Dietary effects on phosphatidylcholines  
Diacyl phosphatidylcholine and alkyl-acyl phosphatidylcholine group 
levels (as reflected in the first factor of common variance) were sensitive 
to dietary exposures in the present study. A potential effect of diet on 
the abundance of whole groups of metabolites could be interpreted in 
two ways. Either specific foods might modulate substrate availability for 
synthesis of key components of that metabolite group; or foods might 
exhibit regulatory functions on synthesis and degradation processes, e.g. 
by targeting transcription factors or modulating enzymatic activities. 
 
Whole-grain bread consumption was inversely related to the first factor 
of common variance among diacyl phosphatidylcholines. Observations 
of an inverse relation of whole-grain consumption with 
phosphatidylcholines were previously reported from EPIC-Potsdam 
[74,90]. In the present, study this relation was traced back to diacyl 
phosphatidylcholines rather than other phosphatidylcholine-groups. 
 
Coffee consumption was inversely related to the first factor of common 
variation among diacyl phosphatidylcholines but positively related to the 
first alkyl-acyl phosphatidylcholine-factor. Coffee does not contribute 
relevant amounts of lipids or other building blocks for lipid metabolites 
to the diet. Coffee, however, is exceptionally rich in phytochemicals 
[264]. A regulatory effect of coffee consumption on lipid metabolism in 
general is well documented in the literature. Coffee is the major dietary 
source of kahweol and cafestol. The cholesterol- and triglyceride-raising 
effect of coffee that was demonstrated in intervention trials [265] was 
mainly attributed to biological actions of these of two diterpenes [266]. 
Coffee, however, affects lipid metabolism in the liver, the adipose tissue 
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and in other tissues in a complex way by the action of several 
compounds [267]. Human intervention studies also revealed beneficial 
changes in the high density lipoprotein (HDL)- to low density 
lipoprotein (LDL)-cholesterol ratio in response to coffee consumption 
[46]. Glycerophospholipid composition was reported to be related to the 
HDL-to-LDL ratio [268,269]. Human trials further showed that coffee 
intake had beneficial effects on the composition of LDL-particles 
including lower contents of apolipoprotein B and AI [46] and higher 
antioxidant capacity [270-272]. The latter point might be related to 
observations in the present study where higher coffee intake was related 
to higher alkyl-acyl phosphatidylcholine levels. These ether-lipids have 
antioxidant properties [273]. Taken together, the summarized evidence 
indicates regulatory effects of coffee consumption on lipid metabolism. 
This might point towards a biological explanation for the observed 
association of coffee consumption with the common variance in several 
phosphatidylcholine-groups.  

 
Red meat consumption was related to the first factor of common 
variance among alkyl-acyl phosphatidylcholines. This is related to 
previous EPIC-Potsdam analyses where red meat loaded positively on a 
dietary factor that was associated with higher alkyl-acyl 
phosphatidylcholine levels [100]. This finding might simply reflect the 
contribution of red meat to dietary lipid intake. Another possible 
explanation relates to pro-oxidative processes that were suggested to be 
induced by red meat-related high heme intake [52]. Upregulation of the 
antioxidant alky-acyl phosphatidylcholines [273] might hint towards a 
compensatory response. These interpretations, however, are mostly 
speculative because other studies have not yet investigated effects of red 
meat consumption on ether lipid metabolism.  

Effects of phosphatidylcholines on type 2 diabetes risk 
Within cells the major proportion of incoming fatty acids is bound to 
glycerol backbones [274,275]. The major route to lipid storage goes from 
monoacyl glycerol via diacyl glycerol to triacyl glycerol [274]. Triacyl 
glycerols are metabolically relatively inert but diacyl glycerol levels in cells 
were involved in insulin resistance [276]. The particular biological role of 
diacyl glycerols in cells remains, however, matter of debate [277]. One 
line of reasoning considers diacyl glycerol as precursor for 
glycerophospholipid synthesis. Glycerophospholipids could therefore be 
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the functional relevant downstream factors. In this regard, experiments 
in genetically modified mice are of interest. Muscle-specific knockout of 
ethanolamine-phosphate cytidylyltransferase in mice lead to an increase 
in muscular diacyl glycerol content. These animals were nevertheless 
protected against insulin resistance and had an improved metabolic 
flexibility [278]. In wildtype animals and humans, high diacyl glycerol 
levels were associated with disturbed insulin signaling [276]. These 
findings suggest that high diacyl glycerol levels might be sensors for 
adverse alterations in downstream glycerophospholipid metabolism 
rather than being directly involved in insulin signaling. 

Consistent with these considerations, alterations in the relative 
abundance of glycerophospholipids were related to dysregulated energy 
and glucose metabolism [249]. In the present study, higher diacyl 
phosphatidylcholine concentrations were associated with higher risk of 
type 2 diabetes. These findings resemble previous analyses in EPIC-
Potsdam where the first component of common variance among all 
metabolites was dominated by diacyl phosphatidylcholines and was 
associated with an elevated type 2 diabetes risk [116]. Diacyl 
phosphatidylcholines were associated with adverse metabolic traits 
including higher 2-hours glucose after oral challenge [279] and higher 
BMI [280] in other studies. For other traits, such as non-alcoholic fatty 
liver disease (NAFLD), the relation with metabolically closely related 
phosphatidylethanolamines was suggested to be of interest [281,282]. 
The targeted metabolomics approach of the present study did not cover 
phosphatidylethanolamines.  

Alkyl-acyl phosphatidylcholine concentrations were associated 
with a reduced type 2 diabetes risk in the present study. Again, these 
findings are to some extent replication of previous results from EPIC-
Potsdam where the second component of common variance among all 
metabolites was dominated by alkyl-acyl phosphatidylcholine and was 
associated with a reduced type 2 diabetes risk [116]. Alkyl-acyl 
phosphatidylcholines were reported to be inversely related with obesity 
[280], prediabetes, prevalence of type 2 diabetes, and glucose clearance 
after oral challenge [279]. To sum up, present findings are in line with 
results from other studies. This suggests that the abundance of 
glycerophospholipid-subgroups in the circulation is related to the risk of 
type 2 diabetes. 
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5.3.6 The role of fatty acid residues  

Lipid metabolites and fatty acid composition 
Lipid metabolites in the circulation integrate information on fatty acid 
metabolism. Circulating glycerophospholipids predominantly reflect lipid 
metabolism in the liver [249]. Fatty acid composition in lipid 
compartments is sensitive to dietary habits [121,283]. Moreover, several 
lines of evidence relate specific fatty acids to type 2 diabetes risk 
[3,120,121,284]. Lipids are structurally highly diverse and metabolomics 
approaches are still heterogeneous with regard to lipid characterization, 
which makes across study comparisons of metabolomics findings on 
lipids difficult [117]. This is different for the highly reliable analyses of 
total phospholipid-bound plasma fatty acids [121]. To measure total 
plasma phospholipid fatty acids, phospholipids are separated and acyl 
side-chains are chemically cleaved from whichever backbone bound to. 
Then single fatty acids are quantitatively determined by gas 
chromatography. Results on the role of specific fatty acid residues in 
phospholipids will therefore be compared to the association of cleaved 
fatty acids from the phospholipid compartment with the risk of type 2 
diabetes. Dietary effects on fatty acid composition will also be discussed 
in this context. 

Saturated and monounsaturated fatty acids 

Dietary effects 
Whole-grain bread was related to lower concentrations of saturated fatty 
acids. Particularly palmitate-containing metabolites were lower in several 
phosphatidylcholine-compartments (i.e., lysophosphatidylcholine C16:0, 
likely diacyl phosphatidylcholine 32/0, C32/1, C34/1, and alkyl-acyl 
phosphatidylcholine C34/1) and in acylcarnitines. In addition, stearate-
containing metabolites were less abundant in the circulation of 
participants with high whole-grain bread consumption (acylcarnitine 
C18:0, lysophosphatidylcholine C18:0, diacyl phosphatidylcholine 
C36/0). These observations might suggest reduced de novo lipogenesis 
in relation to high habitual whole-grain bread intake. Evidence from 
animal model demonstrated modulatory effects of microbiota derived 
short-chain fatty acids on hepatic de novo lipogenesis by regulating 
transcription factors in the liver [285-287]. These mechanisms were 
shown to mediate the effect of fiber intake on hepatic lipid metabolism 
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in animals [288,289]. Whole-grain rich diet was shown to modulate the 
microbiota in humans [290].  

The most important triggers of de novo lipogenesis still are high 
sugar and insulin levels in the blood [1]. Whole-grain rich foods are 
believed to be related to a favorable blood-sugar and insulin response 
[291]. Insulin-signaling is the major regulator of hepatic lipogenesis. 
Whole-grain bread consumption might also exhibit direct modulatory 
effects on insulin secretion. This hypothesis is supported gene diet 
interactions. The beneficial effect of whole-grain bread consumption 
seemed to depend on a functional variant of the transcription factor-7-
like 2 (TCF7L2) gene and was abolished in carriers of the deleterious 
variant [292-294]. Genetic polymorphisms in TCF7L2 are believed to 
trigger early defects in insulin secretion and were consistently associated 
with type 2 diabetes risk [295]. Reduced de novo lipogenesis seems also a 
reasonable explanation for the lower concentrations of monounsaturated 
fatty acid-containing metabolites that were observed in all 
phosphatidylcholine-groups.  
Among saturated fatty acids, coffee consumption was related to higher 
levels of the odd-chain margaric acid (C17:0), very long-chain cerotic 
acid (C26:0), and monounsaturated hydroxysphingomyelin C16:1. All 
three links were classified as direct effects. Sphingomyelins with stearate 
(C18:0), C18:1 (likely oleate), palmitate (C16:0), and C22:1 were indirectly 
affected by coffee consumption. On the contrary, myristic acid (C14:0) 
and C16:1 in lysophosphatidylcholines were inversely linked to coffee 

TEXTBOX 3: De novo lipogenesis [1] 

De novo lipogenesis characterizes the synthesis of fatty acids from 
acetyl-coenzyme A. The main products are saturated (C14:0 to 18:0) 
and monounsaturated fatty acids (C16:1 and C18:1). The biochemical 
process takes place primarily in the liver. The substrate acetyl-
coenzyme A is most commonly derived from carbohydrate 
catabolism. Thus hepatic de novo lipogenesis is the major route to 
convert dietary sugars into storage lipids. To this end hepatic de 
novo lipogenesis is activated by high blood sugar levels and insulin 
signaling but inhibited by malonyl-coenzyme A and fatty acyl-
coenzyme A. The latter prevents futile cycling of carbon chains 
between fatty acid oxidation and de novo lipogenesis. De novo 
lipogenesis was implicated in the development of hepatic insulin 
resistance, non-alcoholic fatty liver-disease and type 2 diabetes. 
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consumption. The same inverse relations might have also been reflected 
in the direct coffee effect to lower diacyl phosphatidylcholine C32/1.  

Animal models have unraveled that several compounds in coffee 
have the potential to modulate the activity of key transcription factors of 
hepatic lipid metabolism. Effects of coffee (and its components caffeine, 
chlorogenic acid, and polyphenols) to reduce hepatic steatosis in animal 
models were traced back to altered activities of transcription factors 
including sterol regulatory element-binding protein 1-c (SREBP1-c) 
peroxisome-proliferator activated receptors alpha and gamma (PPAR-α 
and PPAR-γ), cluster of differentiation 36 (CD36), and fatty acid binding 
protein 4 (FABP4). Accordingly, dependent lipid metabolizing enzymes 
were also regulated by coffee administration including acetyl-
coenzyme A carboxylase-1 (ACC1) and stearoyl-coenzyme A desaturase-
1 (SCD1) [296-299]. Taken together, these experiments in animals 
indicate that fatty acid oxidation and lipid export from the liver is 
enhanced and de novo lipogenesis is reduced by coffee intake. It might 
be speculated that the higher content of saturated and monounsaturated 
fatty acids in sphingomyelins is related to enhanced lipid export from the 
liver [300] in relation to coffee consumption. Lower phosphatidylcholine 
levels might rather point towards reduced de novo lipogenesis [1]. 
Systematic investigation of the metabolomics signature of these traits in 
the blood in large human samples, however, is still missing. 
 
Phosphatidylcholines with saturated and monounsaturated fatty acids of 
14 to 16 carbon atoms chain-length were lower in relation to red meat 
consumption. This might again be interpreted as reflection of reduced 
hepatic de novo lipogenesis. Reduced hepatic lipogenesis would be 
expected to some extent in response to high intake of fat-rich foods [1]. 
Long-chain saturated fatty acids and monounsaturated fatty acids of 18 
and more C-atoms were enriched in relation to red meat consumption 
across all analyzed lipid groups. In particular stearate-containing 
metabolites were classified as directly affected by red meat consumption 
(acylcarnitine C18:0 and diacyl phosphatidylcholine C38/0). This seems 
also plausible because red meat importantly contributes to stearate 
content of mixed diets [301]. 

Effects on type 2 diabetes risk 
In the present study, enrichment of several saturated fatty acid 
containing lipid metabolites was estimated to have direct adverse effects 
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on type 2 diabetes risk. This applies to myristic acid (C14:0) in 
lysophosphatidylcholines; to palmitic acid (C16:0) in acylcarnitines and 
lysophosphatidylcholines; and to stearic acid (C18:0) in sphingomyelins. 
Furthermore, saturated fatty acids (C16:0, C18:0, and/or C20:0) 
contained in alkyl-acyl phosphatidylcholine C36/0 had a direct effect on 
type 2 diabetes risk. The largest prospective study on the association of 
individual saturated phospholipid-bound fatty acids with type 2 diabetes 
incidence was conducted in the EPIC-Interact cohort [120]. This study 
included 12,403 participants with incident type 2 diabetes and a 
subcohort of 16,154 participants in a case cohort design. Thus, results 
are generalizable to the EPIC-source cohort with 340,234 European 
participants. Among saturated fatty acids in the phospholipid 
compartment, myristic acid (C14:0), palmitic acid (C16:0), and stearic 
acid (C18:0) were associated with a higher type 2 diabetes risk. The 
strongest risk relation was observed for palmitic acid (C16:0) with a 
hazard ratio of 1.26 (95%CI 1.15 - 1.37) per standard deviation.  

Heptadecanoic acid (C17:0) lysophosphatidylcholine was 
associated with reduced type 2 diabetes risk in the present study. This is 
also supported by the association of odd-chain saturated fatty acids with 
reduced risk of type 2 diabetes in EPIC-Interact. Among odd-chain fatty 
acids, the strongest risk reduction was associated with heptadecanoic 
acid [HR per standard deviation 0.67 (95%CI 0.63 - 0.71)] [120]. 

Very long-chain fatty acids were very likely contained in diacyl 
phosphatidylcholine C42/1 and perhaps also in alkyl-acyl 
phosphatidylcholine C42/3. In the present work, both metabolites were 
classified as having direct beneficial effects on type 2 diabetes risk. This 
is in line again with EPIC-Interact analyses, where very long-chain fatty 
acids were associated with reduced type 2 diabetes risk [120]. 

In the present study, lipid metabolites from several lipid 
compartments that contained monounsaturated fatty acids were 
classified as having direct beneficial effects on type 2 diabetes risk. This 
applies to C14:1 in acylcarnitines; to C16:1 sphingomyelins; to C18:1 
lysophosphatidylcholines and sphingomyelins; to C24:1 in 
sphingomyelins; and to C42/1 in diacyl phosphatidylcholines and C30/1 
alkyl-acyl phosphatidylcholines. Data on the longitudinal association of 
monounsaturated fatty acids with type 2 diabetes risk are sparser and the 
picture is more heterogeneous [283,302].  
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Polyunsaturated fatty acids 

Dietary effects 
Among polyunsaturated fatty acids, whole-grain bread consumption was 
related to lower circulating concentrations of diacyl phosphatidylcholines 
C34/3, C36/3, C36/5, and C38/5. None of these links were classified as 
direct whole-grain bread effect. In contrary to the very consistent picture 
for the whole-grain bread effect on saturated fatty acids and 
monounsaturated fatty acids across metabolite-groups, these findings 
stood alone and were therefore not further interpreted. 
 
Coffee was related to higher levels of several metabolites that contained 
fatty acids with two desaturations. The higher coffee-related levels of 
lysophosphatidylcholine C18:2 most likely correspond to linoleic acid 
enrichment, and higher concentrations of alkyl-acyl phosphatidylcholines 
C34/3 and C36/2, and the direct effect on sphingomyelin C20:2 might 
point to the same or metabolically closely related fatty acids. The 
potential regulatory effect of coffee on hepatic de novo lipogenesis was 
already discussed above in relation to saturated fatty acids. It should be 
noted that it is the ratio of palmitic to linoleic acid that is used as indirect 
index for de novo lipogenesis in the liver [303]. 
 
Red meat was associated with higher concentrations of 
lysophosphatidylcholine C20:4, which most likely contained arachidonic 
acid. The interpretation is again straightforward because red meat is 

TEXTBOX 4: Fatty acid desaturation and elongation [3] 

Fatty acid desaturases are important endogenous determinants of the 
fatty acid profiles in cells and tissues. The stearoyl coenzyme A 
desaturase catalyzes the conversion of saturated into 
monounsaturated fatty acid; Δ5 and Δ6 desaturases constitute the 
rate limiting factors of conversion of ω-3 and ω-6 polyunsaturated 
fatty acid into higher unsaturated products. The two enzymes have 
different substrate specificities. The grade of desaturation determines 
the spatial structure of fatty acids thereby their physiological 
function. Desaturase activities have been implicated in type 2 
diabetes development. 
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among the most important dietary sources for arachidonic acid 
[159,250]. This finding seems to be related to the higher concentrations 
of diacyl phosphatidylcholine C38/4 and alkyl-acyl phosphatidylcholine 
C36/4 that were also linked to high red meat intake in the present study. 
These metabolites likely contained arachidonic acid or metabolically 
closely related fatty acids. 

Effects on type 2 diabetes risk 
Among polyunsaturated fatty acids, enrichment of C18:2 (likely linoleic 
acid) in lysophosphatidylcholines and acylcarnitines was classified as 
having a direct beneficial effect on type 2 diabetes risk. In line with these 
observations, significant inverse association of linoleic acid (18:2ω6) with 
the risk of type 2 diabetes were reported from EPIC-Interact [121]. An 
attractive hypothesis is that the beneficial effects of diacyl 
phosphatidylcholine C32/3, and of alkyl-acyl phosphatidylcholines 
C32/2, C34/3, and C42/3 might also reflect the beneficial associations 
of linoleic acid and eicosadienoic acid (20:2ω6) with type 2 diabetes risk. 
Possibly, these metabolites also (partly) contain alpha-linolenic acid 
(18:3ω3) which was also related to a lower risk of type 2 diabetes in 
EPIC-Interact [121]. Comparisons regarding polyunsaturated fatty acids 
remain somewhat speculative, however, because of the limitation of the 
targeted metabolomics approach of the present study. Localization of 
the desaturation was not resolved and chain-length of the individual fatty 
acids was not specified for metabolite with two bound fatty acid 
residues. Other lipid metabolites with polyunsaturated fatty acid were 
classified as having a direct adverse effect on type 2 diabetes risk: C20:3 
in lysophosphatidylcholines; C38/3 and C42/5 in diacyl 
phosphatidylcholines; and C36/4 in alkyl-acyl phosphatidylcholines. In 
EPCI-Interact, adverse associations with type 2 diabetes risk were 
detected for γ-linolenic acid (18:3ω6), dihomo-γ-linolenic acid (20:3ω6), 
docosatetraenoic acid (22:4ω6). Therefore effects of fatty acid residues in 
lysophosphatidylcholines correspond intriguingly well with results from 
the EPIC-Interact cohort [121]. For the other metabolites with two fatty 
acids bound comparison comparisons with cleaved fatty acids are more 
speculative again. It seems still likely that above mentioned metabolites 
partly contain long-chain fatty acids with three or four desaturations that 
might correspond to above mentioned omega-6 polyunsaturated fatty 
acids. Arachidonic acid was not significantly associated with type 2 
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diabetes risk [121], which is also in line with the present observation that 
lysophosphatidylcholine C20:4 was not related to type 2 diabetes risk. 

With respect to the importance of fatty acid residues for type 2 
diabetes risk, results from the present study were well in line with EPIC-
Interact results on cleaved fatty acid from plasma phospholipids [121]. It 
should be noted that the role of fatty acid residues was not apparent 
from results of a p-value based regression selection on the single 
metabolite level [116]. The primary aim of this previous study was 
diabetes prediction and in this respect it was successful. For biological 
interpretation, however, the most obvious pattern was that all diacyl 
phosphatidylcholines were related to elevated type 2 diabetes risk 
whereas all alkyl-acyl phosphatidylcholines were related to reduced risk 
of type 2 diabetes. There were some suggestions of rather adverse 
association of saturated fatty acids with shorter chains and rather 
beneficial association of polyunsaturated fatty acids with longer chains. 
The picture on the role of fatty acid residues remained blurry and the 
interpretation remained vague. Consistent patterns across metabolite 
groups could not be easily inferred from the results [116]. Prediction of 
type 2 diabetes was slightly improved by applying a random survival 
forest-based metabolite selection [115]. Learning predictive metabolites 
with this machine did not, however, did also not facilitate greatly the 
biological interpretation of the results.  

The network adjustment approach was intended to block 
confounding mechanisms, e.g. influence of the metabolite group level on 
type 2 diabetes risk or other metabolites that affected type 2 diabetes 
risk. Consistency of the results on fatty acid residues across metabolite 
groups and with analyses of cleaved fatty acids suggests that this aim was 
achieved. A major advantage of the network adjustment approach taken 
by the present study over analyses of cleaved fatty acid is that the 
information on the backbone is conserved. The backbone locates fatty 
acids in the cell and is thus biologically informative. 

5.3.7 Fatty acids in lipid compartments 

Lipid trafficking 
Biosynthesis of glycerophospholipids and cholesterol within the cell 
primarily takes place within the endoplasmatic reticulum [304]. 
Cholesterol is immediately trafficked towards the plasma membrane. 
Ceramide synthesis is also localized in the endoplasmatic reticulum [305]. 
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Glycerophospholipids and ceramide are trafficked to the Golgi 
apparatus. This is where sphingolipids are synthesized from the ceramide 
backbone [306]. From the Golgi apparatus lipids are further trafficked to 
the plasma membrane and other subcellular domains via vesicular and 
alternative routes. Endocytosis routes organize the revers transport of 
lipids from the cell surface towards inner organelles via early endosomes, 
late endosomes and lysosomes [307].  

Along these biosynthetic and degradation routes the lipid 
composition is differentially regulated. The membrane of the 
endoplasmatic reticulum is dominated by glycerophospholipids [304]. 
Contents of sterols and sphingolipids increase along the outlined 
intracellular trafficking routes. The inner layer of the plasma membrane 
is still relatively rich in glycerophospholipids whereas the outer layer is 
dominated by sphingolipids and cholesterol [304]. The complex 
regulation extends from intracellular organization to differences between 
cell types and tissues [308]. 

A functional perspective on subcellular fatty acid localization 
The highly organized and regulated lipid composition clearly has major 
functional implications. Lipid composition in membranes modifies the 
content and activity of membrane proteins and membrane-associated 
proteins (i.e. receptors, transporters and signaling factors) by different 
mechanisms [309]. Lipid signaling per se has been implicated in diabetes 
pathogenesis in many ways. Metabolites of arachidonic acid and related 
polyunsaturated fatty acids (e.g. thromboxanes, prostaglandins, 
leukotrienes, and lipoxins) modulate inflammatory responses [310] and 
were implicated in insulin resistance [311,312] and β-cell decay [313,314].  

These lipid mediators, however, are very short-lived and mainly 
exhibit autocrine and paracrine functions [311]. These reflections 
support the hypothesis that the subcellular localization of the 
polyunsaturated fatty acid substrates for inflammatory-mediator 
production matters. The evidence on lipid trafficking implicates that this 
information is partly inferable from the backbone of fatty acid-
containing metabolites. The short-living nature of inflammatory lipid 
signals makes it particularly difficult to find markers for these processes 
in observational human studies. According to these considerations, 
phospholipid remodeling has been centrally implicated in acute and 
chronic inflammation by a line of experimental works over the last 
decade [315]. Possibly the results of this work on specific 
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polyunsaturated fatty acid-containing metabolites with adverse effects 
and others with beneficial effects on type 2 diabetes risk might point 
towards sensors of lipid-mediated inflammation. To validate such 
sensors would involve considerable effort, including mechanistical 
studies and tracer studies in humans. Given that lipid-mediated 
inflammation has been proposed to be sensitive to diet [316-319] and 
can be pharmacologically targeted [320] it seems warranted to further 
investigate in this direction. 

Lipid signaling was also implicated in other diabetes-relevant 
pathways, among them direct effects on insulin signaling [312,321], 
binding of transcription factors [322], and modulation of the 
endoplasmatic reticulum stress response [323]. These pathways provide 
alternative explanations for the effects of saturated and unsaturated fatty 
acids on type 2 diabetes risk that were observed in the present study. 
Developing stable biological markers applicable to epidemiological 
studies would open a range of opportunities to study the relevance of 
lipid signaling in humans under real-life conditions. 

5.3.8 Mediation 

Whole-grain bread and type 2 diabetes risk 
In the current study, high whole-grain bread consumption was linked to 
lower levels of three saturated fatty acid-containing lipid metabolite, 
which in turn were related to higher type 2 diabetes risk. Adjusting the 
whole-grain bread-type 2 diabetes association for the network-
independent residual variance in the metabolite levels attenuated the 
whole-grain bread effect on type 2 diabetes by more than one quarter. 
This observation is consistent with the hypothesis of an important 
contribution of the metabolic pathway reflected by these metabolites to 
mediate the beneficial effect of whole-grain bread on type 2 diabetes risk. 

As discussed above (5.3.6), the lower concentrations of saturated 
fatty acids in relation to high whole-grain bread intake might reflect 
reduced de novo lipogenesis. Possible explanations for reduced hepatic 
lipogenesis in response to whole-grain bread consumption could be an 
effect on the microbiota-derived short-chain fatty acids, and subsequent 
regulatory actions of short-chain fatty acids; or direct effects on insulin 
signaling, for example by modulatory effects on insulin secretion. 
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Coffee and type 2 diabetes risk 
Frequent coffee consumption was related to lower phenylalanine levels, 
and to alterations of lipid metabolites. More specifically, people who 
drank more coffee had higher levels of several polyunsaturated fatty 
acid-containing sphingomyelins and phosphatidylcholines, and lower 
levels of myristic acid (C14:0) in lysophosphatidylcholines. The 
polyunsaturated fatty acid-containing metabolites in turn beneficially 
affected type 2 diabetes risk, whereas phenylalanine and 
lysophosphatidylcholine C14:0 had direct adverse effects on type 2 
diabetes risk. Adjusting for the network-independent residual variance in 
the circulating levels of these metabolites attenuated the coffee effect on 
type 2 diabetes by two thirds. This observation is consistent with the 
hypothesis of the selected potential mediators reflecting key pathways 
that link coffee consumption to type 2 diabetes risk. 

A role of circulating phenylalanine in type 2 diabetes development 
is suggested by observational evidence but, so far, this hypothesis has 
hardly been investigated in mechanistical studies. A protective role of 
particular polyunsaturated fatty acid on type 2 diabetes risk is well 
supported by the literature [121,283]. For example, linoleic acid (18:2ω6) 
was related to anti-inflammatory effects [318], improved insulin 
sensitivity [324], and anti-oxidative effects [325,326]. Unfortunately, the 
targeted metabolomics approach did not provide the location and 
conformation of unsaturations in fatty acids. In similar European 
populations, linoleic acid (18:2ω6) was on average at least tenfold higher 
concentrated compared to other polyunsaturated fatty acid with two or 
three unsaturations within the phospholipid compartment [121]. 
Therefore, it seems likely that observed alterations were at least partly 
attributable to alteration in the content of linoleic acid in the investigated 
metabolite groups. Accordingly, above discussed regulatory impact of 
coffee consumption on hepatic lipid metabolism (5.3.5, 5.3.6) might 
affect polyunsaturated fatty acid metabolism (including enrichment of 
linoleic acid), which could in turn have beneficial effects on various 
diabetes-related processes including local insulin sensitization and anti-
inflammatory actions. The lower levels of myristic acid in 
lysophosphatidylcholines in relation to high coffee consumption might 
point towards reduced hepatic de novo lipogenesis, which would also be 
in line with a beneficial effect of coffee consumption on hepatic lipid 
metabolism. 
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A previous study on potential metabolomics-based biomarkers as 
potential mediators of the link between coffee consumption and risk of 
type 2 diabetes in EPIC-Potsdam took another approach [106]: 
Metabolites were considered as potential biomarkers only if they were 
selected as independent predictors of type 2 diabetes risk in a p-value-
based regression selection before [116]. Whereas results agreed upon a 
potential mediating role of phenylalanine with the present study, none of 
the investigated lipid metabolites was selected as potential mediator in 
the former analyses [106]. This might have two reasons. Firstly, most of 
the lipid metabolites that were identified as potential mediators in the 
present study were simply not included in the former work (due to the 
focus on previously selected significant predictors). Secondly, 
consideration of network-adjusted residual variance should have helped 
to focus on the unconfounded direct effects. Results of the current study 
in line with experimental evidence suggested complex effects of coffee 
consumption on lipid metabolism. Therefore, control of network-
inherent indirect influences might have revealed real effects that were 
not visible by considering single metabolites apart from the network 
information.  

Red meat and type 2 diabetes risk 
Red meat was directly related to lower circulating glycine concentrations. 
Glycine in turn was classified as having a beneficial effect on type 2 
diabetes risk. Furthermore, red meat consumption was directly linked to 
higher levels of saturated and polyunsaturated fatty acid-containing 
metabolites, which in turn adversely affected type 2 diabetes risk. 
Adjusting for the network-independent residual variance in the serum 
concentration of these metabolites attenuated the red meat effect on type 
2 diabetes by 70%. The observed effect attenuation is consistent with the 
hypothesis of the selected potential mediators being sensitive to 
pathways that are centrally involved in linking red meat consumption to 
type 2 diabetes risk. 

The role of lipid signaling in diabetes development was discussed 
above. Among saturated fatty acids, particularly palmitate has been 
implicated in cellular stress responses [327,328] and inflammation [329-
331] in the liver. Polyunsaturated fatty acid metabolites are even more 
directly involved in inflammatory responses. Ω-6-polyunsaturated fatty 
acids are precursors of many very potent local inflammatory signals, i.e. 
eicosanoids [310,323]. Moreover, eicosanoid-mediated inflammation has 
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been related to β-cell decay [313,314]. Again, it is important to clarify 
that the exact structure of fatty acids was not provided by the applied 
analytical chemistry. Data on cleaved fatty acids from phospholipids in 
large population-based European samples showed that beside linoleic 
acid  arachidonic acid (20:4ω6) and dihomo-γ-linoleic acid (20:3ω6) are 
by far the highest concentrated polyunsaturated fatty acids with four or 
less unsaturations [121]. Therefore, one of the two is likely contained in 
alkyl-acyl phosphatidylcholine C36/4. Only dihomo-γ-linoleic acid 
(20:3ω6) was related to risk of type 2 diabetes on the level of cleaved 
fatty acids from phospholipids [121]. Analyses in Dutch and German 
cohorts were not consistent with a role for C-reactive protein in 
mediating the red meat-related type 2 diabetes risk [332,333]. Therefore, 
defining possibly more specific markers for red meat-related subacute 
inflammatory processes is of considerable interest. According to the 
discussion above, however, lipid signaling might also affect diabetes 
pathogenesis by non-inflammatory pathways, e.g. by interfering directly 
with insulin signaling (5.3.7).  

A red meat effect on lipid signaling could be related to the lipid 
content of red meat, which might provide bioactive lipids or substrate 
for synthesis thereof. Another potential explanation for red meat effects 
on lipid signaling involves regulatory factors. For example, oxidative 
stress related to heme-iron might trigger cellular stress responses that 
involve systemic lipid signaling [334]. A quite novel line of reasoning 
involves the non-human sialic acid N-glycolylneuraminic acid, which is 
primarily taken up by consumption of meat from large mammals [335] 
and subsequently incorporated in membranes of meat eaters [336]. 
Membrane-standing N-glycolylneuraminic acid has the potential to 
trigger inflammatory immune responses [337,338]. Several alternative 
hypotheses on red meat compounds that could affect cellular and 
systemic stress signals are available, which were comprehensively 
reviewed elsewhere [52,213,336,339]. 

In a previous study in EPIC-Potsdam, the same metabolomics 
dataset was considered for the identification of mediators of the red 
meat-associated type 2 diabetes risk on a single metabolite level. This 
former study identified several lipid metabolites as potential mediators 
[54]. By the comparison of the results from this former to the present 
study, some points can be further clarified.  

First, there were some differences in the red meat-related 
metabolites between the studies but the major interpretation was similar: 
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Red meat was linked to enrichment of long-chain saturated and specific 
polyunsaturated fatty acids in several lipid groups. By the network-
adjusted selection approach of the present study, however, this 
information was more consistently shown across different lipid groups.  

Second, the selected lipid mediators seemed to partly incorporate 
similar information across the studies although different metabolites 
were selected. For example, diacyl-phosphatidylcholines C36/4 and 
C38/4 (selected in as mediators in the former study) might contain 
closely related or the same fatty acids as alkyl-acyl phosphatidylcholine 
C36/4 (selected as mediator in the present study). Alkyl-acyl 
phosphatidylcholine C36/4 was not selected as a potential mediator the 
single metabolite level although the metabolite was associated with red 
meat consumption. The reason was that an association with type 2 
diabetes risk was not detected in the previous study [54]. Meanwhile, the 
interpretation of this difference between the studies might be easily 
comprehensible. Particularly for alkyl-acyl phosphatidylcholines, the 
beneficial effect of the ether lipids on the group level concealed all 
adverse effects of specific fatty acid residues within the group if the 
network information was not considered. Confounding by the group 
level was blocked by the network adjustment. The potential mediating 
role of saturated fatty acid enrichment in alkyl-acyl phosphatidylcholines 
was also not detected on the single metabolite level in the former study 
[54], but explained a major proportion of the red meat effect on type 2 
diabetes risk in the present work.  

Third, the proportion of the red meat effect on type 2 diabetes 
risk explainable by lipid mediators was improved by the network-
adjusted approach of the present study. For example, the proportion 
mediated by network-adjusted residuals of alkyl-acyl phosphatidylcholine 
C36/4 (18%) was larger compared to the proportions mediated by diacyl 
phosphatidylcholines C36/4 and C38/4 (≤14%). The notion of a larger 
explainable proportion also applied to selected lipid mediators in general, 
which suggests that network-informed metabolite residuals might be 
more accurate sensors for red meat- and diabetes-related metabolic 
processes. 

Glycine was estimated to explain a major proportion of red meat-
related type 2 diabetes risk. Glycine is a central molecule in intermediary 
metabolism and, by that, involved in a variety of diabetes-related 
metabolic processes (5.3.2). Identification of glycine as potential 
mediator of the red meat effect on type 2 diabetes risk replicates findings 
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from the previous mediation analysis on the single metabolite level [54]. 
Again, the explainable proportion was slightly increased by using 
network-adjusted residuals. More strikingly, however, variance of the 
estimated proportion mediated by glycine was markedly reduced in the 
present study. In the previous study, evaluating the stability of the 
proportion of the red meat-related type 2 diabetes risk mediated by 
glycine in a bootstrapping procedure yielded a 95% confidence interval 
that covered the whole range from below five percent up to hundred 
percent. The majority (95%) of bootstrapping estimates on the mediated 
proportion by using network-adjusted glycine residuals in the present 
analysis fell into the range of roughly twenty to seventy percent. 
Increased precision of the estimates on mediated proportions in the 
present compared to the previous study was observed in general. The 
marked increase in precision could be interpreted as another hint 
towards having identified more accurate sensors for biological effects in 
the current study. In general, biological effects should be stable over 
subgroups of the study population. 

5.4 Outlook 

5.4.1 Integrating evidence: systems perspective 

The systems perspective on diet as risk factor for type 2 diabetes allowed 
subdividing the black-box model (diet → diabetes) into parts (diet → 
metabolomics network and metabolomics network → type 2 diabetes). This allows 
distinct study designs to investigate the separate model parts. Trials, e.g., 
could be used to evaluate the diet-metabolite links, whereas the 
metabolite-diabetes connections could be further investigated with the 
help of instrumental variables. Therefore, systems epidemiology can 
inform translational research on dietary risk factors for chronic diseases. 
Integration of study designs according to observation-based complex 
models is a promising approach to generate valid and relevant 
knowledge. 

5.4.2 Validation & Translation 

The current study aimed to generate hypotheses on biological 
mechanisms. Biological mechanisms can be expected to be stable across 
populations. However, generalizability of findings from a single study, 
even if it is conducted in a large population-based sample such as the 
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EPIC-Potsdam cohort, can always be questioned. Therefore, results 
from the current study need to be validated. 

Evaluation of the consistency of the results over independent 
cohort studies is warranted. The mediation model implies that 
consistency of the diet-metabolomics links could be evaluated separately 
from the consistency of the metabolomics-type 2 diabetes links. This 
allows independent replication of the separate model parts according to 
the available data, possibly relying on several cohorts. Metabolomics 
networks can also be used to evaluate whether different study 
populations are biologically comparable. If a cohort had for example a 
different ethnical background, observing the same metabolomics 
network structure would still suggest the same data-generating 
mechanisms. Therefore, such a cohort would qualify for replication. 
Different network-structures would require explanation. 

For validation of the diet-metabolite links (diet → metabolomics 
network), intervention studies could be performed. Randomized trials 
that replicate a proposed diet-metabolite link would rule out 
confounding as explanation for the observations. In this case, specific 
mechanisms could be evaluated in detail. For example, dose-response 
curves of metabolites could be compared between different subtypes of 
the investigated exposures: different whole-grain varieties, different 
brewing types of coffee, or different types of unprocessed and processed 
red meat. As another example, metabolic flux experiments could be 
performed to trace the mechanisms by which dietary exposures induce 
changes in the metabolic profiles. Even though the described study types 
have already been broadly applied in nutrition sciences, the explicit 
design of trials based on a causal model that is consistent with large-scale 
observational data could add novel aspects. 

In order to validate the part of the model dealing with the link 
between metabolomics networks and type 2 diabetes incidence, the use 
of instrumental variables is of interest. The directionality assumption 
implied that diet was treated a as quasi-instrumental variable with respect 
to metabolite-disease links in the current study. Observed diet-disease 
links are of course prone to various sources of bias, such as residual 
confounding, measurement error, and misreporting. The same modeling 
framework, however, could be applied to identify direct effects of more 
reliable instruments (e.g. genetics or pharmacological interventions) on 
metabolomics networks. Furthermore, non-human models, such as 
animal models or cell cultures, could be considered to investigate 
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potential biological mechanisms. As discussed above, metabolomics 
networks could be used to evaluate comparability between the model 
system and the human situation. Evaluation of a human biomarker in a 
non-human model system implies the assumption that it reflects the 
same biological processes in both settings. Confidence in that 
assumption could be considerably strengthened by demonstrating that 
the biomarker is integrated in a similar network of local dependencies in 
both, observational and experimental data. 

5.4.3 Public relevance 

Based on the available evidence, it is recommended to include whole-
grain products in the daily diet, and to reduce red meat consumption to a 
moderate level are justified (see, e.g., www.dge.de). The results of the 
current study are in line with these recommendations. Furthermore, it is 
supported that coffee has a rather beneficial metabolic effect.  

Elucidating the biological mechanisms underlying observed diet-
disease links is relevant from a public health perspective. Accurate cost-
effectiveness calculations for preventive interventions, for example, rely 
on valid causal effect estimates [340]. Therefore, a quantitative 
understanding of the biological mechanisms linking diet to disease 
occurrence is important to inform and prioritize public health actions. 
The identification of metabolic mediators of the health effects of dietary 
exposures might also help to identify groups for which changes in the 
habitual diet are particularly useful, and thereby allow giving more 
precise dietary recommendations. Moreover, markers of the metabolic 
mechanisms linking dietary exposures to disease risk could illustrate the 
success of changes in the habitual diet on the individual level. 
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6 Conclusions 

Secondary aim of the current work was to establish a methodological 
approach to link data on dietary habits and time-to-event data to 
metabolomics networks. Conceptually, the analytical design was based 
on causal inference theory. The developed NetCoupler-algorithm 
generated joint graphical models that illustrated direct effects of dietary 
exposures on metabolite networks, and network-independent direct 
effects of metabolites on the risk of developing type 2 diabetes. Based on 
observations in the EPIC-Potsdam-cohort study, biologically coherent 
and consistent information was obtained. Beyond current applications, 
the modeling framework might be useful to integrate high-dimensional 
biomarker profiles in etiological epidemiological research in other studies 
in the future. 

The primary aim of the present work was to evaluate complex 
lipid and amino acid profiles in the circulation as mediators of the effect 
of whole-grain bread, coffee, and red meat, respectively, on the risk of 
developing type 2 diabetes. Skeletons of causal networks within 
metabolite groups were estimated based on the observed conditional 
dependency patterns. These network models were assumed to integrate 
information on metabolic processes taking place at the tissue level. 
Dietary exposures and type 2 diabetes risk were linked to these 
metabolomics networks in a multi-model procedure. Paths through the 
network were evaluated as potential mediators of the effect of dietary 
exposures on type 2 diabetes risk. For each of the dietary exposures, 
metabolites of interest as potential mediators were identified. 

For whole-grain bread, observations were consistent with a partial 
mediation hypothesis. The whole-grain bread effect on type 2 diabetes 
risk might be partly mediated by an effect of whole-grain bread 
consumption on lipid metabolism, most likely in the liver. Lower levels 
of saturated fatty acids, palmitate in particular, were observed in 
acylcarnitines and phosphatidylcholines. Adjusting for these potential 
mediators attenuated the whole-grain bread relation to the risk of type 2 
diabetes by about one fourth.  

Furthermore, the observed conditional independence structures 
were consistent with the hypothesis of a major role of lipid and amino 
acid metabolism in mediating the coffee effect on type 2 diabetes risk. 
High coffee consumption was related to higher levels of polyunsaturated 
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fatty acids, among them likely linoleic acid, in sphingomyelins and alkyl-
acyl phosphatidylcholines, and lower levels of phenylalanine and 
lysophosphatidylcholine C14:0. Adjusting for these potential mediators 
attenuated coffee-related type 2 diabetes risk by about two thirds. 

Lastly, observations were also consistent with the hypothesis that 
red-meat related alterations in lipid and amino acid metabolism mediate 
the major proportion of the red meat-related type 2 diabetes risk. Red 
meat-related higher levels of saturated fatty acids, particularly stearate, 
and of alkyl-acyl phosphatidylcholine C36/4, and of lower levels of 
glycine had the potential to explain seventy percent of the red meat-
related type 2 diabetes risk. 

Taken together, these observations suggest that three widely 
discussed diabetes-related dietary factors might influence systemic lipid 
and amino acid metabolism long before type 2 diabetes occurs. Possibly, 
the identified metabolic mediators are sensors for early biological 
processes that are triggered by the habitual dietary behavior and that 
protect of, or predispose for, type 2 diabetes development. Thus, the 
current thesis enhanced the quest for the biological mechanisms that link 
consumption of whole-grain bread, coffee, and whole-grain bread to 
type 2 diabetes risk by providing mediation hypotheses that are 
consistent with the observations in a large prospective cohort study. 
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8 Annex 

8.1 Correlation-partial correlation plots of metabolite groups 

  

Supplementary Figure 1: Correlation-partial correlation plots of amino acids, 
acylcarnitines, and sphingomyelins.  
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Supplementary Figure 2: Correlation-partial correlation plots of phosphatidylcholines  
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8.2 Factor analysis 

Supplementary Table 1: Loadings of the metabolites in the first group-specific factor 
Factor loadings 
Amino Acids 

Arg 0.61 Met 0.63 Thr 0.80 
Gln 0.66 Orn 0.79 Trp 0.75 
Gly 0.30 Phe 0.55 Tyr 0.81 
His 0.71 Pro 0.55 Val 0.85 

Leu/Ile 0.89 Ser 0.62   
Acylcarnitines 

C10:0 0.76 C18:0 0.45 C5-OH(C3-DC-M) 0.63 
C10:2 0.60 C18:1 0.65 C7-DC 0.82 
C14:1 0.72 C18:2 0.60 C8:1 0.45 
C14:2 0.87 C2 0.60 C9:0 0.42 
C16:0 0.63 C3 0.09 Carnitine 0.15 
C16:2 0.77 C5-DC(C6-OH) 0.48   

Sphingomyelines 
OH-C14:1 0.79 C16:0 0.87 C24:0 0.80 
OH-C16:1 0.86 C16:1 0.81 C24:1 0.74 
OH-C22:1 0.91 C18:0 0.85 C26:0 0.70 
OH-C22:2 0.92 C18:1 0.82 C26:1 0.70 
OH-C24:1 0.85 C20:2 0.23   

Lysophosphatidylcholines 
C14:0 0.60 C18:0 0.80 C20:4 0.74 
C16:0 0.86 C18:1 0.90 C28:1 0.26 
C16:1 0.72 C18:2 0.70   
C17:0 0.60 C20:3 0.79   

Diacyl phosphatidylcholines 
C28/1 0.50 C36/2 0.63 C40/3 0.51 
C30/0 0.70 C36/3 0.76 C40/4 0.75 
C32/0 0.79 C36/4 0.75 C40/5 0.78 
C32/1 0.70 C36/5 0.70 C40/6 0.66 
C32/2 0.65 C36/6 0.78 C42/0 0.26 
C32/3 0.63 C38/0 0.48 C42/1 0.35 
C34/1 0.78 C38/1 0.15 C42/2 0.50 
C34/2 0.62 C38/3 0.76 C42/4 0.62 
C34/3 0.74 C38/4 0.73 C42/5 0.67 
C34/4 0.78 C38/5 0.86 C42/6 0.7 
C36/0 0.51 C38/6 0.68   
C36/1 0.76 C40/2 0.48   

Alkyl-acyl phosphatidylcholines 
C30/0 0.65 C36/4 0.66 C40/5 0.85 
C30/1 0.30 C36/5 0.70 C40/6 0.75 
C30/2 0.50 C38/0 0.62 C42/1 0.59 
C32/1 0.81 C38/1 0.55 C42/2 0.74 
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Factor loadings 
C32/2 0.81 C38/2 0.74 C42/3 0.74 
C34/0 0.71 C38/3 0.73 C42/4 0.68 
C34/1 0.76 C38/4 0.79 C42/5 0.71 
C34/2 0.68 C38/5 0.74 C44/3 0.52 
C34/3 0.65 C38/6 0.73 C44/4 0.56 
C36/0 0.61 C40/1 0.69 C44/5 0.58 
C36/1 0.68 C40/2 0.65 C44/6 0.58 
C36/2 0.71 C40/3 0.83   
C36/3 0.71 C40/4 0.82   

As appropriate for the case-cohort design, the study sample to derive the factor 
loadings was restricted to the random subcohort (which is representative for the full 
cohort). Factor analysis was applied restricted to metabolite groups, i.e. separately 
among amino acids, acylcarnitines, sphingomyelins, lysophosphatidylcholines, diacyl 
phosphatidylcholines, and alkyl-acyl phosphatidylcholines, respectively. Analyses 
were based on the metabolite-residuals standardized for the participants’ age, sex, 
BMI, and prevalence of hypertension. 

Supplementary Table 2: Correlation between group-specific factors 
 AA F1 DPC F1 AC F1 AEPC F1 LPC F1 SM F1 
AA F1 1 0.20* -0.09 0.21 0.25 0.06 
DPC F1  1 0.09 0.71 0.40 0.33 
AC F1   1 0.12 0.07 0.30 
AEPC F1    1 0.33 0.52 
LPC F1     1 0.20 
SM F1      1 

Pearson correlation coefficient between group-specific first factors of common 
variance (F1) in the subcohort (n=2,092). AA=amino acids; DPC = diacyl 
phosphatidylcholines; AC = acylcarnitines; AEPC = alkyl-acyl phosphatidylcholines; 
LPC = lysophosphatidylcholines; SM = sphingomyelins.  
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Supplementary Figure 3: Scree plots of group-specific factors
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8.3 Theoretical background 

8.3.1 Overview 

This supplemental chapter on causal inference theory largely relies on the 
contributions by Judea Pearl as comprehensively summarized in his 
fundamental book Causality [129]. First, causal models and causal diagrams 
will be defined. Second, the terms effect and effect identifiability will be 
defined with respect to their use in causal inference literature. Third, 
criteria for the identifiability of effects from observational data will be 
derived including reflections on confounding and other sources of bias. 
Inference of causal structures from complex biological data will be 
subject of the last section.  

8.3.2 Causal models and causal diagrams 

Reiteration of the global biological research question of this work 
underscores its causal nature: How does the habitual diet affect the metabolic 
pathway activities – and how does this translate into an altered risk of developing type 
2 diabetes? To answering such global causal questions from observational 
data, involves numerous variables to characterize exposure (dietary 
habits), potential mediators (metabolic activities), potential confounders 
(e.g. phenotypical characteristics and other diet & lifestyle factors) and 
outcome (time-to-type 2 diabetes incidence). Per definition, these 
variables are not randomly distributed with regard to the others, but 
show rather complex patterns of interdependencies. For metabolomics 
data this mutual dependency is of particular interest because of strong 
and biologically meaningful intercorrelation. Considering such high-
dimensional intertwined information in large joint distribution functions 
rapidly reaches its limits – in terms of computation but even more so in 
terms of interpretability.  

For most cases, however, each single variable directly depends on 
only a small subset of variables. An efficient and intuitive way to encode 
conditional independence information on multivariate distributions is the 
graphical representation as a network. Graphical approaches allow 
decomposing large joint distribution functions on complex observational 
data into several small distributions including only small subsets of 
variables [129]. The information from such small joint distributions can 
then be handled and interpreted separately but can be also coherently 
assembled again to generate a global picture. In other words, instead of 
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handling overly complex joint distributions, graphical approaches can be 
used to decompose global problems into “atomic” pieces [129].  

Graphical models in this context can be used to encode the direct 
determinants of each variable in a joint model. Links encode data-
generating mechanisms. From a graphical causal model of the data-
generating process, sparse functions can be deduced to model the 
relation between any two variables in the system [140]. Thus a fully 
defined graphical causal model can be interpreted as a system of 
structured equations which in turn algebraically represents the data-
generating mechanisms [195]. Partly specified causal models can still be 
of use to integrate incomplete knowledge on the data-generating process 
with observations on the conditional independency structure of the data 
[179,341]. Now the term causal model will be defined and causal diagrams 
will be specified as a subclass of graphical models.  

In words, a causal model can be described as composite of three 
main ingredients. First, a set of variables U represents background 
factors that are not affected by variables inside the model. The set U can 
thus be seen as influential exogenous determinants that define the setting 
in which the actual mechanisms of interest are studied. Second, the set V 
represents variables within the model. Variables in V are sensitive to the 
setting U but might also be mutually dependent. The factors that 
determine the level of variable 𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉 are called parents 𝑃𝑃𝑃𝑃𝑖𝑖 with respect 
to 𝑉𝑉𝑖𝑖. The set of parents 𝑃𝑃𝑃𝑃𝑖𝑖 might comprise variables from V or U or 
both. Thus, V comprises variables of high interest for epidemiological 
models, for example the outcome but also mediators and the more 
“tricky” type of confounders that depend on the realization of other 
influential variables. The third ingredient of a causal model is a set of link 
functions F. These functions connect each set of parents to its child. 
Functions in F can be of any parametrical or non-parametrical form. In a 
causal model functions correspond to directed processes. This is in line 
with common understanding of epidemiological models in which 
exposure levels are used to estimate the occurrence of the outcome 
(perhaps via affecting some mediators) and not the other way round. The 
formal definition of a causal model reads as follows. 
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1 Causal Model1 

A causal model is a triple 
𝑀𝑀 = 〈𝑈𝑈,𝑉𝑉,𝐹𝐹〉, 
where: 

i. U is a set of background variables (also called exogenous), that are 
determined by factors outside this model; 

ii. V is a set  {𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑛𝑛} of variables, called endogenous, that are 
determined by variables in the model – that is variables in 𝑈𝑈 ∪ 𝑉𝑉; and 

iii. F is a set of functions {𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑛𝑛} such that each 𝑓𝑓𝑖𝑖 is mapping from (the 
respective domain of) 𝑈𝑈𝑖𝑖 ∪ 𝑃𝑃𝑃𝑃𝑖𝑖 to 𝑉𝑉𝑖𝑖, where 𝑈𝑈𝑖𝑖 ⊆ 𝑈𝑈 and 𝑃𝑃𝑃𝑃𝑖𝑖 ⊆ (𝑈𝑈 ∪
𝑉𝑉) ∖ 𝑉𝑉𝑖𝑖 and the entire set of F forms a mapping from U to V.  
 

In other words, each 

 𝑓𝑓𝑖𝑖 in 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑝𝑝𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖),            𝑖𝑖 = 1, … , 𝑛𝑛 
assigns a value to 𝑉𝑉𝑖𝑖 that depends on (the values of) a select set of variables in 𝑈𝑈 ∪
𝑉𝑉, and the entire set F has a unique solution 𝑉𝑉(𝑢𝑢). 
 
Definition 1 specifies the causal model corresponding to an observed 
multivariate distribution as an unambiguous description of the structured 
process that generated these data. Each function corresponds to a direct 
mechanistical link, and no specified function implicates absence of a 
direct mechanistical link between two variables. The choice of the 
parents PAi of Vi expresses the modelers’ understanding of the variables 
that are mechanistically linked to Vi which will be subject to further 
elaborations below. 

A causal model M can be associated with a directed graph G(M), 
named causal diagram. Nodes in such diagrams correspond to variables 
and directed edges (arrows) depict a directed causal link, i.e. a functional 
relation between a pair of variables. The encoded information depicted 
in causal diagrams is thus limited to qualitative assumptions on the direct 
influence of endogenous and exogenous variables on each Vi and does not 
specify the functional form of 𝑓𝑓𝑖𝑖 . Graph G1 (Supplementary Figure 4), 
e. g., encodes causal claims on the relation between the included 
variables. The graph contains endogenous variables {𝑋𝑋,𝑌𝑌, Z} corresponding 
to set V in definition (1) and exogenous variables {𝑊𝑊,𝑉𝑉, U} corresponding 
to set U in definition (1). It should be noted that the absence of edges in 

                                              
1 Definition 1 literally quotes p.203 from  129. Pearl J (2009) Causality: Cambridge 

university press. 
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Supplementary Figure 4 claims the absence of direct influences (and 
non-correlated error terms for the exogenous variables {𝑊𝑊,𝑉𝑉, U}). The set 
of structural equations in algebraically expresses the causal claims 
encoded in G1, and functions {fX, fY, fZ} can generally be of any 
parametric or non-parametric form. 
Translation from graphical into algebraic models and vice versa will be a 
key-characteristic of the methodological approach taken by this study. 
Causal modeling theory will inform this process in terms of variable 
selection and interpretation of thee obtained estimates. 

8.3.3 Causal effects and effect identifiability 

This work aims to identify metabolic mechanisms that connect diet to 
type 2 diabetes incidence. Therefore, a clear definition of effects (in 
distinction to associations) and criteria for effect identifiability from 
observational data is crucial. In plain language an effect refers to a 
mechanism that links exposure and outcome. The interpretation of 
statistical dependency as a causal effect cannot rely on observed 
associations alone. A causal interpretation of statistical estimates is only 
possible with reference to a causal model. If the causal model is wrong, 
insufficiently specified or not sufficiently covered by measurements a 
causal interpretation of estimates would be false and probably 
misleading. Causal inference thus depends on well-informed assumptions 
and cannot be driven by the data alone.  

The reflections on causal inference will be limited to data-
generating mechanisms that can be adequately described by structural 
equation models (SEM) and graphs that are Markovian (i.e. acyclic with 
uncorrelated error-terms of exogenous variables). In graphical models 
directed edges (i.e. arrows) will be used to represent specified causal or 
temporal relationships. The theoretical considerations treated here can 
be in principle extended to semi-Markovian models (i.e. acyclicity but 

Supplementary Figure 4: Causal graph G1 
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correlated error-terms of exogenous variables) but this will not be 
discussed specifically. Estimating effects within semi-Markovian models 
includes inference on latent (non-measured) variables and was not 
subject of this work. 

In the last two decades, well-defined semantics and a well-
founded logic have been developed for mathematically formalizing 
causal claims and encoding them in graphical models. Now the term effect 
as used in the causal inference literature will be defined and criteria for 
effect identifiability will be derived. It should be noted that an effect is a 
causal quantity, and is therefore defined relative to an underlying causal 
model M, unlike statistical parameters such as associations which are 
defined relative to a joint distribution PM(ν̇) over a set of observed 
variables V.  

2 Causal Effect [129]2 

Given two sets of disjoint variables, X and Y, the effect of X on Y, denoted either as 
𝑃𝑃(𝑦𝑦|𝑥𝑥�) or as 𝑃𝑃(𝑦𝑦|𝑑𝑑𝑑𝑑(𝑥𝑥)), is a function of X to the space of probability 
distributions on Y. For each realization x of X, 𝑃𝑃(𝑦𝑦|𝑥𝑥�) gives the probability of Y 
= y induced by deleting all equations corresponding to variables in X and substituting 
X=x in the remaining equations. 
 
In other words, the effect of X on Y is defined as the variance in Y that 
is attributable to setting X to the level x (in contrary to the facts, X is 
assumed to being set to the alternative level without “touching” variables 
in the system others than X). Assuming that the level of Y is sensitive to 
such hypothetical manipulation of X entails the claim of a mechanistical 
link directed from X to Y. If this effect does not (necessarily) involve 
other variables in the system we say that X and Y have a parent-child-
relation which will later be defined in a formal way. For now recall that 
X is considered as parent with respect to Y if X directly affects Y ; in 
turn Y is directly affected by X and Y is thus considered as child with 
respect to X; graphically such parent-child-relation is depicted by an 
arrow emanating from X with the arrow-head pointing into Y (X→Y). 
An effect is defined as the mechanism linking a cause to a consequence, 
and the graphical notation provides the mathematical formalism to 
express such simple and intuitive directionality assumption. 

                                              
2 Definition 2 literally quotes p.70 from  129. Pearl J (2009) Causality: Cambridge 

university press. 
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The information provided by observational data, however, is on the joint 
distribution PM(ν̇) alone, and as explicated below in further detail the 
equivalence class of causal models generates the same distribution. Thus, it is 
generally not possible to infer the data-generating causal processes based 
on observed data alone and the causal quantity of interest might possibly 
not be unambiguously discernible – even assuming complete information 
on PM(ν̇) over V in the source population. Identifiability applies if the 
prior knowledge suffices to specify the causal model M to an extent that it 
conveys the necessary assumptions to derive valid estimates on the 
sought quantity. This does not necessarily imply M being explicated in 
full detail.  

3 Identifiability3 

Let 𝑄𝑄(𝑀𝑀) be any computable quantity of a model 𝑀𝑀. We say that 𝑄𝑄 is identifiable 
in a class 𝑀𝑀 of models if, for any pair of models 𝑀𝑀1 and 𝑀𝑀2 from 𝑀𝑀, 𝑄𝑄(𝑀𝑀1) =
 𝑄𝑄(𝑀𝑀2) whenever 𝑃𝑃𝑀𝑀1(𝜈𝜈)= 𝑃𝑃𝑀𝑀2(𝜈𝜈). If our observations are limited and permit 
only a partial set FM of features of 𝑃𝑃𝑀𝑀(𝜈𝜈) to be estimated, we define 𝑄𝑄 to be 
identifiable from FM if 𝑄𝑄(𝑀𝑀1) = 𝑄𝑄(𝑀𝑀2) whenever 𝐹𝐹𝑀𝑀1=𝐹𝐹𝑀𝑀2 . 
 
Identifiability is essential for integrating statistical data with incomplete 
causal knowledge. Particularly, identifiability enables to estimate 
quantities Q consistently from P(ν) without necessarily specifying M in 
full detail; specifying the general characteristics of the class of M suffices. 
In this work the quantity Q of interest is the effect of X on Y, i.e. 𝑃𝑃(𝑦𝑦|𝑥𝑥�). 
Computation of this quantity from a fully specified model M is 
straightforward. More sophisticated is the task,  whenever 𝑃𝑃(𝑦𝑦|𝑥𝑥�) needs 
to be computed without full specification of M; we might rather have an 
incomplete specification of M in form of some qualitative assumption, 
e. g. directionality assumption on the relation between (sets of) variables 
based on causal reasoning or temporal order of the data.  

To this end, consider a class M of models sharing the same 
characteristics, i.e. the same parent-child families; and assume that all 
models induce a positive distribution on the observed variables 
(𝑃𝑃𝑀𝑀(𝜈𝜈) > 0). Relative to such classes effect identifiability from 
observational data is defined in the following. 

                                              
3 Definition 3 literally quotes p.82 from  129. Pearl J (2009) Causality: Cambridge 

university press. 
 



Wittenbecher   Annex 

[190] 

4 Effect Identifiability4 

The causal effect of 𝑋𝑋 on 𝑌𝑌 is identifiable from a graph 𝐺𝐺 if the quantity 𝑃𝑃(𝑦𝑦|𝑥𝑥�) 
can be computed uniquely from any positive probability of the observed variables – 
that is, if 𝑃𝑃𝑀𝑀1

(𝑦𝑦|𝑥𝑥�)= 𝑃𝑃𝑀𝑀2
(𝑦𝑦|𝑥𝑥�) for every pair of models 𝑀𝑀1 and 𝑀𝑀2 with 

𝑃𝑃𝑀𝑀1(𝜈𝜈)= 𝑃𝑃𝑀𝑀2
(𝜈𝜈) > 0 and 𝐺𝐺(𝑀𝑀1) = 𝐺𝐺(𝑀𝑀2) = 𝐺𝐺. 

 
Simply speaking, an effect is identifiable from observational data if 
assumptions on the class of causal models are specific enough to render 
the sought quantity which is assumed to be invariant to the non-specified 
causal relationships. It should be noted that even in the cases where the 
degree of model specification does not suffice to infer a unique estimate 
on the causal effect we might still be able to infer a limited set of possible 
effects based on available observations. In other words, in case of non-
identifiability of a single effect it might still be informative to estimate the 
set of possible effects based on the correlation-derived equivalence class of 
causal models or a subset thereof, taking into account prior causal 
assumptions. 

8.3.4 Deconfounding adjustment sets 

Given information on unbiased samples of the source population, 
invariance of observation-based effect estimates generally depends upon 
adequate control of confounding in statistical models. Confounding itself 
is a causal concept, and as such inherits directionality assumptions. The 
causal nature of the concept of confounding becomes obvious when 
compared to the concept of mediation. Relative to the effect of X on Y, 
a confounder C is defined as affecting both X and Y (X←C→Y). Only 
directionality assumptions allow distinguishing between a confounder C 
and an intermediary factor I (aka mediator) that lies on a causal path 
from X to Y (X→I→Y). It is not possible to distinguish between 
confounders and mediators based on information on the joint 
distribution alone! Not adjusting for a confounder, however, would bias 
estimates for the effect of X on Y, whereas adjustment for mediators in 
contrary would result in biased estimates if the sought quantity is the 
total effect of X on Y. (If the sought quantity is the direct effect of X on 
Y, however, we have to adjust for mediators as well – direct effects will be 

                                              
4 Definition 4 literally quotes p.77 from  129. Pearl J (2009) Causality: Cambridge 
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defined below.)  Appropriate selection of adequate adjustment sets 
therefore necessarily relies on structural assumptions – be it implicitly or 
explicitly.  

Graphical criteria to selecting sufficient (or deconfounding) 
adjustment sets to estimate valid effects from observational data will now 
be stated. An obvious choice for a sufficient adjustment set would be to 
estimate the effect of X on Y conditional on all (potential) predecessors 
of X. This set is often too large to be handled and information is often 
limited to a subset of (potential) predecessors. In fact, to efficiently 
control for potential confounding of any other variables, we need only to 
concern ourselves with the set of Markovian parents or shortly parents of X. 

5 Markovian parents5 

Let 𝑉𝑉 = {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} be an ordered set of variables, and let 𝑃𝑃(𝜈𝜈) be the joint 
probability distribution on these variables. A set variables 𝑃𝑃𝑃𝑃𝑖𝑖 is said to be 
Markovian parents of 𝑋𝑋𝑖𝑖 if 𝑃𝑃𝑃𝑃𝑖𝑖 is a minimal set of predecessors of 𝑋𝑋𝑖𝑖 that renders 
𝑋𝑋𝑖𝑖 independent of all its other predecessors. In other words, 𝑃𝑃𝑃𝑃𝑖𝑖 is any subset of 
{𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1} satisfying 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑖𝑖) = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1) and such that no 
proper subset of 𝑃𝑃𝑃𝑃𝑖𝑖 satisfies the above-stated equation. 
 

A useful property of Markovian models is that the set of 
Markovian parents d-separates each variable Xi from all its 
nondescendants. In other words, “each variable Xi is independent of all its 
nondescendants, given its parents PAi in G” (Pearl and Verma [342]). Every 
flow of information from distal predecessors of Xi has to be transmitted 
by a path involving the set of Markovian parents. In a graph G, the 
adjacency set of a node Xi denoted adji(G) is defined as the group of nodes 
directly connected to Xi by a single edge. Given G, the set of Markovian 
parents of Xi is a subset of the adjacency set (pai ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖).   

                                              
5 Definition 5 literally quotes p.14 from  129. Pearl J (2009) Causality: Cambridge 
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To define d-separation consider three disjoint sets of variables X, Y, and 
Z, which are represented as a directed acyclic graph G.  

6 d-Separation6

A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if 

i. p contains a chain i→m→j or a fork i←m→j such that the middle node is
in Z, or

ii. p contains an inverted fork (or collider) i→m←j such that no descendant of
m is in Z

A set Z is said to d-separate X from Y if and only if Z blocks every path from a 
node in X to a node in Y. 

Collider bias describes the phenomenon that observations on a common 
consequence of two independent causes provides information on the 
likelihood of both causes having occurred thereby introducing a 
dependency of the causes in every stratum of the consequence. This 
pattern of conditional dependencies was described by Joseph Berkson in 
1946 [343] and is therefore known as Berkson’s paradox. For illustration 
consider the following artificial example: A genetic variant has a high 
prevalence (say 20% heterozygote carriers of the rare variant). Now 
assume that heterozygote carriers have no disadvantages but that the 
homozygote genotype of the rare variant is embryonically lethal. 
Assuming this particular genetic variant not having any influence on 
selecting a partner and not taking into account evolution we would await 
to find an inverse association between the heterozygote genotype in 
parents of the same children, just because the prevalence of the 
heterozygote genotype in both parents clearly affects the probability to 
give birth to a healthy child. Stratifying on the effect of common causes 
renders the causes mutually dependent in the strata. For this simplified 
and artificial example the conclusion that the genotype of one parent 
cannot affect the genotype of the other parent can be unmistakable 
drawn based on well-established biological knowledge. In real-world 
biological problems, such conclusion would perhaps not be as obvious. 
The point is that it is not always safe to adjust for additional variables 
because adjusting for colliders would bias effect estimands.   

6 Definition 6 literally quotes p.16 from  129. Pearl J (2009) Causality: Cambridge 
university press. 
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Now criteria to select sufficient adjustment sets to control 
confounding will be deduced from the graphical definition of d-separation 
under the assumption that the underlying causal structure is known. 
Applying these criteria to the problem of estimating the effect of X on Y 
from a sample P(ν) given the assumptions encoded in G, it can be tested 
whether a set of variables is sufficient for identifying 𝑃𝑃(𝑦𝑦|𝑥𝑥�) from 
observational data. 

7 Back-Door criterion7 

A set of variables Z satisfies the back-door criterion relative to an ordered pair of 
variables (Xi, Xj) in a DAG G if: 

i. no node in Z is a descendant of Xi; and 
ii. Z blocks every path between Xi and Xj that contains an arrow into Xi. 

Similarly, if X and Y are two disjoint subsets of nodes in G, then Z is said to satisfy 
the back-door criterion relative to (X, Y) if it satisfies the criterion relative to any pair 
(Xi, Xj) such that 𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋 and 𝑋𝑋𝑗𝑗 ∈ 𝑌𝑌. 
 
Thus, the effect of X on Y is identifiable from observational data 
whenever a deconfounding set Z of variables is available and the back-door 
criterion is applicable based on the causal assumption encoded in G. The 
effect is then identifiable by adjusting the relation between X and Y for Z. 
 

𝑃𝑃(𝑦𝑦|𝑥𝑥�) =  �𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑧𝑧)𝑃𝑃(𝑧𝑧)
𝑧𝑧

 

 
Back-door refers to the fact that back-door paths contain variables with 
arrowheads pointing into the potential causal variable X in a considered 
cause-effect pair (X, Y). Analogously a front-door path contains arrows 
emanating from X.  

8 Front-Door criterion8 

A set of variables Z satisfies the front-door criterion relative to an ordered pair of 
variables (Xi, Xj) in a DAG G if: 

i. Z intercepts all directed paths from X to Y; 
ii. there is no unblocked back-door path from X to Z; and  
iii. all back-door paths from Z to Y are blocked by X. 

                                              
7 Definition 7 literally quotes p.79 from 129. Pearl J (2009) Causality: Cambridge 

university press. 
8 Definition 8 literally quotes p.82 from 129. Pearl J (2009) Causality: Cambridge 

university press. 
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The front-door criterion implies that the effect of X on Y is also 
identifiable given information on a set of variables Z that block every 
causal path from X to Y but have no effect on X.  
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