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Abstract

The first main goal of this thesis is to develop a concept of approximate dif-
ferentiability of higher order for subsets of the Euclidean space that allows to
characterize higher order rectifiable sets, extending somehow well known facts
for functions. We emphasize that for every subset A of the Euclidean space and
for every integer k ≥ 2 we introduce the approximate differential of order k of
A and we prove it is a Borel map whose domain is a (possibly empty) Borel
set. This concept could be helpful to deal with higher order rectifiable sets in
applications.

The other goal is to extend to general closed sets a well known theorem of
Alberti on the second order rectifiability properties of the boundary of convex
bodies. The Alberti theorem provides a stratification of second order rectifiable
subsets of the boundary of a convex body based on the dimension of the (con-
vex) normal cone. Considering a suitable generalization of this normal cone for
general closed subsets of the Euclidean space and employing some results from
the first part we can prove that the same stratification exists for every closed
set.

The content of Chapters 2 and 3 has been published on ArXiv, see [San17].



Zusammenfassung

Das erste Ziel dieser Arbeit ist die Entwicklung eines Konzepts zur Beschrei-
bung von Differenzierbarkeit höherer Ordnung für Teilmengen des euklidischen
Raumes, welche es erlaubt von höherer Ordnung rektifizierbare Mengen zu cha-
rakterisieren. Wir betonen, dass wir für jede Teilmenge A des euklidischen
Raumes und jede ganze Zahl k ≥ 2 ein approximatives Differenzial der Ord-
nung k einführen und beweisen, dass es sich dabei um eine Borelfunktion handelt
deren Definitionsbereich eine (möglicherweise leere) Borelmenge ist. Unser Kon-
zept könnte hilfreich für die Behandlung von höherer Ordnung rektifizierbarer
Mengen in Anwendungen sein.

Das andere Ziel ist die Verallgemeinerung auf beliebige abgeschlossene Men-
gen eines bekannten Satzes von Alberti über Rektifizierbarkeit zweiter Ordnung
des Randes konvexer Körper. Für den Rand eines solchen konvexen Körper
liefert Albertis Resultat eine Stratifikation durch von zweiter Ordnung rektifi-
zierbare Teilmengen des Randes basierend auf der Dimension des (konvexen)
Normalenkegels. Für eine geeignete Verallgemeinerung dieses Normalenkegels
auf allgemeine abgeschlossene Teilmengen des euklidischen Raumes und unter
Verwendung einiger Resultate aus dem ersten Teil können wir zeigen dass eine
solche Stratifiaktion für alle abgeschlossenen Mengen existiert.

Der Inhalt der Abschnitte 2 und 3 wurde bereits auf ArXiv veröffentlicht,
siehe [San17].
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Chapter 1

Introduction

After we have provided the basic notation and the terminology, we introduce
the subject of the thesis and we give a detailed overview about its content.

Notation and basic definitions

The notation and the terminology used without comments agree with [Fed69,
pp. 669-676]. However, for the reader’s convenience, sometimes we use footnotes
to point out the references in [Fed69]. Moreover we add the following classical
definitions.

Fibers. Suppose X and Y are sets, Q ⊆ X × Y .
In addition to the standard notation for the domain, the image and the

restriction (over some subset of X) of Q (see [Fed69, p. 669]) we define the fiber
of Q at a point x ∈ X by

Q(x) = im(Q|{x}) = Y ∩ {y : (x, y) ∈ Q}.

In order to make our notation consistent with the universally accepted no-
tation for functions we additionaly use the following convention. In case Q is
a function and x ∈ dmnQ we identify the singleton Q(x) ⊆ Y with the point
y ∈ Y such that Q(x) = {y}. Therefore Q(x) = {Q(x)} whenever x ∈ dmnQ
and Q(x) = ∅ whenever x /∈ dmnQ.

Distance function and nearest point projection1. Suppose ∅ 6= A ⊆ Rn.
We define δA : Rn → R to be the function such that

δA(x) = inf{|x− a| : a ∈ A} for x ∈ Rn.

We define Unp(A) to be the set of x ∈ Rn such that there exists a unique
y ∈ A such that δA(x) = |y−x| and ξA : Unp(A)→ Rn to be the function such
that

δA(x) = |ξA(x)− x| whenever x ∈ Unp(A).

Affine hulls, cones and duals. A subset C ⊆ Rn is called cone if and only if
λx ∈ C whenever x ∈ C and λ > 0. For each subset S ⊆ Rn,

DualS = Rn ∩ {v : v • u ≤ 0 whenever u ∈ S};
1This notation agrees with [Fed59, 4.1].
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see [Fed59, 4.5] for further comments. Finally for each subset S ⊆ Rn we define

aff S

as the smallest affine set of Rn containing S (a set M ⊆ Rn is called affine set
if λx+(1−λ) ∈M whenever x ∈M , y ∈M and λ ∈ R); see [Roc70, Section 1]
for further comments.

Orthogonal projections. If 1 ≤ m ≤ n are integers we define G(n,m) to be the
set of all m dimensional subspaces of Rn. If T ∈ G(n,m) we define T\ : Rn →
Rn to be the linear map such that

T ∗\ = T\, T\ ◦ T\ = T\, imT\ = T,

and we define T⊥ = kerT\.

Pointwise differentiability for functions. Suppose X and Y are normed vector
spaces, k ≥ 0 is an integer, 0 ≤ α ≤ 1, g maps a subset of X into Y and a ∈ X.
We say that g is pointwise differentiable of order (k, α) at a if and only if there
exists an open set U ⊆ X and a polynomial function P : X → Y of degree at
most k such that a ∈ U ⊆ dmn g, g(a) = P (a),

lim
x→a

|g(x)− P (x)|
|x− a|k

= 0 if α = 0, lim sup
x→a

|g(x)− P (x)|
|x− a|k+α

<∞ if α > 0.

In this case P is unique and the pointwise differentials of order i of f at a are
defined by pt Di g(a) = Di P (a) for i = 0, . . . , k.

Functions and submanifolds of class (k, α). Suppose X and Y are normed
vector spaces, k ≥ 0 is an integer, 0 ≤ α ≤ 1, g maps some open subset of X
into Y and a ∈ X. We say that g is of class (k, α) if and only if g is of class k and
each point of dmn g has an open neighbourhood U such that (Dk f)|U satisfies
a Hölder condition with exponent α.

Suppose k ≥ 0 is an integer and 0 ≤ α ≤ 1. The notion of diffeomorphism of
class (k, α) is made by replacing “class k” with “class (k, α)” in [Fed69, 3.1.18].
Analogously the notion of µ dimensional submanifold of class (k, α) of Rn is
made by replacing “class k” with “class (k, α)” in [Fed69, 3.1.19].

Second fundamental form. If 1 ≤ m ≤ n are integers, M is an m dimensional
submanifold of class 2 of Rn and a ∈M then we call second fundamental form
of M at a the unique symmetric 2 linear function

bM (a) : Tan(M,a)× Tan(M,a)→ Nor(M,a)

such that bM (a)(u, v) • ν(a) = −D ν(a)(u) • v for each u, v ∈ Tan(M,a), when-
ever ν : M → Rn is of class 1 relative to M with ν(x) ∈ Nor(M,x) for every
x ∈M .

Higher order rectifiability2. Suppose 1 ≤ m ≤ n are integers and φ is a measure
over Rn. A subset A ⊆ Rn is called countably (φ,m) rectifiable of class (k, α) if
and only if there exist countably many m dimensional submanifolds Mj of class
(k, α) such that

φ
(
A ∼

⋃∞
j=1Mj

)
= 0.

A subset A ⊆ Rn is called (φ,m) rectifiable of class (k, α) if it is countably
(φ,m) rectifiable of class (k, α) and φ(A) <∞.

2When φ = H m this notion has been introduced in [AS94, 3.1].
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Some further notation. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
a ∈ Rn, T ∈ G(n,m), 0 ≤ κ < ∞ and suppose f : T → T⊥ is a function such
that f(T\(a)) = T⊥\ (a).

Then we define3

Xk,α(a, T, f, κ) = Rn ∩ {z : |f(T\(z))− T⊥\ (z)| ≤ κ|T\(z − a)|k+α};

alternatively Xk(a, T, f, κ) = Xk,0(a, T, f, κ). If f(χ) = T⊥\ (a) for every χ ∈ T
then we abbreviate X(a, T, κ) = X1(a, T, f, κ).

If 0 < s <∞ and 0 < t <∞ we define

C(T, a, s, t) = Rn ∩ {x : |T\(x− a)| < s, |T⊥\ (x− a)| < t}.

Finally let gr(f) = {χ+ f(χ) : χ ∈ T}.

Motivation

The concept of higher order rectifiability is a very natural (weak) notion of
regularity that can be considered in the setting of Geometric Measure Theory.

First of all this notion turns out to be an interesting concept in order to
study the regularity properties of solutions of variational problems involving
elliptic functionals (in particular the area functional). These solutions can be
modelled using the notion of varifold, originally introduced by Almgren in the
60’s. Roughly speaking a varifold is a model for non smooth surfaces having
multiple sheets (integral varifolds) and, more generally, non integer valued den-
sity (rectifiable varifolds). If we consider the class of varifolds V in Rn whose
first variation with respect to the area functional is represented by integrating
a function h(V, ·) ∈ Lloc

1 (‖V ‖,Rn) (usually called mean curvature), it is well
known that classical regularity almost everywhere fails to hold in many cases of
interest. For example, there are integral varifolds with bounded mean curvature
such that the set where the support does not locally correspond to a graph of
a function of class 1 has positive measure (see [All72, 8.1(2)]). Therefore the
need arises to look for weaker notions of regularity that allow to further inves-
tigate such classes of objects. Recently, in [Men13], it has been proved that the
support of every m dimensional integral varifold V in Rn with mean curvature
in Lloc

1 (‖V ‖,Rn) is countably (‖V ‖,m) rectifiable of class 2. By [All72, 8.3] we
can deduce that if the mean curvature is in Lloc

m (‖V ‖,Rn) then the support of
‖V ‖ is countably (H m,m) rectifiable of class 2. Whether or not the support of
an m dimensional stationary varifold is countably (H m,m) rectifiable of class
k, for every integer k ≥ 1, is an open problem.

Rectifiability of class 2 is a natural concept of regularity in convex geometry.
Moreover rectifiable sets of class k arise naturally as level sets of maps between
Euclidean spaces with distributional derivatives up to order k representable
by integration, see [BHS05, 1.6]. A sufficient condition for rectifiability of class
(1, α) is obtained in [Kol16] using discrete curvatures. Higher order rectifiability
of graphs is investigated in [Del14, Theorem 3.1].

3Compare this definition with similar ones introduced in [Fed69, 3.3.1] and [Mat95, 15.12].
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Overview

The first main goal of this thesis is to develop a concept of approximate dif-
ferentiability of higher order for subsets of the Euclidean space that allows to
characterize higher order rectifiable sets. For functions whose domain is a sub-
set of the Euclidean space this is a well known fact that it has been established
in [Whi51], [Fed69, § 3.1] and [Isa87]. More specifically these results can be
combined in order to get the following result, see 2.10 and 2.11.

1.1 Theorem (Federer, Isakov, Whitney). If 1 ≤ m < n and k ≥ 1 are
integers, 0 ≤ α ≤ 1, A ⊆ Rm is Lm measurable and f : A→ Rn−m is Lm xA
measurable, then f is approximately differentiable4 of order (k, α) at Lm a.e.
a ∈ A if and only if there exist countably many functions gj : Rm → Rn−m of
class (k, α) such that

Lm
(
A ∼

⋃∞
j=1{x : gj(x) = f(x)}

)
= 0.

We establish this result for subsets of the Euclidean space. In fact, employing
the notion of approximate differentiability of higher order for sets introduced in
3.8 we can prove, in 3.23 and 3.41, the following result.

1.2 Theorem. If 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆ Rn is
H m measurable and H m(A) < ∞, then A is approximately differentiable of
order (k, α) at H m a.e. a ∈ A if and only if A is (H m,m) rectifiable of class
(k, α).

It is worth to compare this result with other results in the literature. First
of all this result can be seen as a generalization to the case of higher order differ-
entiability of the well known fact in Geometric Measure Theory that (H m,m)
rectifiable sets5 of class 1 can be characterized among all the H m measurable
subsets of Rn with finite m dimensional Hausdorff measure through the exis-
tence of an m dimensional “measure theoretic tangent” plane at H m a.e. points
of the set. There are essentially two natural ways to define this notion of mea-
sure theoretic tangency. One uses a blow up procedure and the other one uses
densities of Hausdorff measures.

1.3 Definition (Simon6). Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and
a ∈ Rn. Anm dimensional plane T ∈ G(n,m) is them dimensional approximate
tangent plane of A at a if and only if there exists 0 < θ <∞ such that

lim
r→0+

r−m
∫
A

f((x− a)/r)dH mx = θ

∫
T

fdH m whenever f ∈ K (Rn).

1.4 Definition (Federer7). Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and
a ∈ Rn. A vector v ∈ Rn is an (H m xA,m) approximate tangent vector at a if
and only if Θ∗m(H m x A∩E(a, v, ε), a) > 0 for every ε > 0. An m dimensional
plane T ∈ G(n,m) is the m dimensional approximate tangent plane of A at a
if and only if T equals the set of all (H m xA,m) approximate tangent vectors
at a.

4For the definition of approximate differentiability for functions, see 2.2.
5By [Fed69, 3.2.29] the notion of rectifiability of class 1 coincides with the classical notion

of rectifiability phrased in terms of images of Lipschitzian maps, see [Fed69, 3.2.14].
6See [Sim83, 11.2, 11.4] and [FM99, 2.2].
7See [Fed69, 3.2.16].
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In 1.3 and in 1.4 it is not difficult to see thatm and T are uniquely determined
by A and a. Either employing the notion in 1.3 or the one in 1.4 the following
well known classical result holds.

1.5 Theorem (Federer8, Simon9). Suppose 1 ≤ m ≤ n are integers and A ⊆
Rn is H m measurable with H m(A) < ∞. Then A is (H m,m) rectifiable of
class 1 if and only if A admits the m dimensional approximate tangent plane at
H m a.e. a ∈ A.

Suppose now A ⊆ Rn and a ∈ Rn. For the case of order 1 the defini-
tion of approximate differentiability that we have introduced in 3.8 (see also
3.19) is equivalent to require the existence of a measure theoretic tangent space,
ap Tan(A, a), at a. In particular if T ∈ G(n,m) for some integer 1 ≤ m ≤ n
then, as it is proved in 3.21 and 3.14,

T satisfies 1.3 =⇒ T = ap Tan(A, a) =⇒ T satisfies 1.4.

The examples in 3.4 and 3.17 show that there are sets with finite m dimensional
Hausdorff measure for which the reverse implications do not hold at every point.
However if A is H m measurable and H m(A) <∞ the reverse implications hold
at H m a.e. points of A.

The problem of generalizing 1.5 to the case of higher order rectifiability has
been already addressed in [AS94]. In that paper a notion of differentiability of
order 2 and order (1, α), for every 0 < α ≤ 1, are introduced by means of a
blow up procedure naturally generalizing 1.3. However, as it is pointed out in
[AS94, pp. 7–8], examples show that (H m,m) rectifiable sets of class 2 may
fail to be differentiable of order 2 in the sense of [AS94] at H m a.e. points.
Therefore, in order to generalize 1.5 they need, in [AS94, 3.5, 3.12], additional
technical hypotheses on the structure of the sets. This pathological behaviour
suggests that a different notion of differentiability for the case of order greater
than 1 has to be considered. The definition introduced in this chapter rules out
the pathologies of [AS94] and allows to get the generalization of 1.5 in the most
natural setting.

For every integer k ≥ 2 the notion of approximate differentiability of order
k for a subset A ⊆ Rn naturally induces a notion of approximate differential of
order k, ap Dk A, of A; see 3.20. For every A ⊆ Rn this is always a Borel map
with values in

⊙k
(Rn,Rn) whose domain is a (possibly empty) Borel subset

of Rn, see 3.40. Moreover the approximate differential of order 2 naturally
induces a notion of “approximate second fundamental form”. In fact, for every
a ∈ dmn ap D2A this can be defined as the symmetric bilinear form

ap D2A(a)| ap Tan(A, a)× ap Tan(A, a).

In 3.24 and 3.36 two classical properties of the second fundamental form of
submanifolds of class 2 are extended to our setting.

A notion of pointwise differentiability for subsets of the Euclidean space
has been recently developed in [Men16] to study higher order differentiability
properties of stationary varifolds. In 3.35 we establish the connection between
the notion of approximate differentiability and pointwise differentiability.

8See [Fed69, 3.2.19, 3.3.17].
9See [Sim83, 11.6, 11.8].
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The other goal of this thesis is to generalize a well known theorem of Alberti
in convex geometry. In order to state this result we first introduce the following
normal cone for convex sets.

1.6 Definition (Alberti10). Suppose C is a closed convex subset of Rn and
a ∈ C. We define

N (C, a) = Rn ∩ {v : v • (x− a) ≤ 0 whenever x ∈ C}.

1.7 Theorem (Alberti11). Suppose C is a closed convex subset of Rn with non
empty interior. Then the set

Σm(C) = C ∩ {a : H n−m(N (C, a)) > 0}

is countably (H m,m) rectifiable of class 2 whenever m = 0, . . . , n.

Evidently Σ0(C) ⊆ . . . ⊆ Σn−1(C) ⊆ Σn(C) = C and Σn−1(C) = BdryC.
A classical result due to Anderson and Klee, see [Sch14, 2.2.5], states that
Σm(C) is a countable union of compact sets with finite m dimensional Hausdorff
measure and the theorem of Alberti strenghtens, up to a set of H m measure
zero, their result. It could be thought that the second order rectifiability prop-
erty of the sets Σm(C) is a prerogative to work in the context of convex sets.
We prove that this is actually not the case. In fact 1.7 can be seen as a special
instance of a general fact that holds for every closed subset of the Euclidean
space. In order to describe our result we introduce the following definitions.

If A ⊆ Rn is closed and a ∈ A we define the closed convex cone

nor(A, a) = Clos{λu : λ > 0, u ∈ Rn, δA(a+ u) = |u|},

and for each integer m = 0, . . . , n we introduce the sets

Σm(A) = A ∩ {a : H n−m(nor(A, a)) > 0}.

Evidently Σ0(A) ⊆ Σ1(A) ⊆ . . . ⊆ Σn−1(A) ⊆ Σn(A) = A. We prove in 4.3
that Σm(A) is countably (H m,m) rectifiable of class 2 whenever m = 0, . . . , n.
As it is pointed out in 4.1 and 4.2, if A ⊆ Rn is a closed convex set then
nor(A, a) = N (A, a) whenever a ∈ A. Therefore 1.7 is a special case of our
theorem. Our result is new for sets of positive reach. In fact, if A ⊆ Rn is a
set of positive reach then the stratification given by the sets Σm(A) has been
already considered in [Fed59, 4.15(3)] (see 4.2 for further details), where it is
proved that Σm(A) is countably m rectifiable for each m = 0, . . . , n. Our result
strenghtens this conclusion up to a set of H m measure zero. It is worth to
recall here that if A ⊆ Rn is a set of positive reach with non empty interior
then it is not difficult to prove that Σn−1(A) = BdryA.

For each integer m = 1, . . . , n − 1 there are examples of m (Hausdorff)
dimensional closed sets A ⊂ Rn such that H m(Σm(A)) = 0. For exam-
ple if A ⊆ R2 is the graph of a function f : R → R of class 1 such that
L 1{x : f(x) = g(x)} = 0 whenever g : R → R is of class 2 (see, for instance,
[Koh77]) then H 1(Σ1(A)) = 0. This simple example raises the problem to

10See [Alb94, Definition 1.7].
11See [Alb94, Theorem 3].

7



find geometric characterizations for (some subclasses of) the class of all m di-
mensional closed subsets A of Rn for which H m(A ∼ Σm(A)) = 0. Observe
that, by [Fed59, 4.15(4)], if A ⊆ Rn is an m dimensional set of positive reach
then Σm(A) = A. The result in 4.3 links the aforementioned problem with the
reseach of sufficient criteria for second order rectifiability.

Finally we mention that the result in 4.3 raises the question about how the
second order rectifiability property of the sets Σm(A) is related to the principal
curvatures (support measures) on the normal bundle NA (see 4.19 for the defini-
tion of NA) introduced in [HLW04, §2]. An answer to this question is unknown
even in the special case of sets of positive reach, for which case the principal
curvatures on the normal bundle were introduced in [Zäh86].

A solution for the aforementioned problems will be part of the forthcoming
work of the author.
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Chapter 2

Approximate
differentiability for
functions

Here we present the classical theory of approximate differentiability for functions
developed by the work of Federer, Whitney and Isakov. This theory will be
applied in the subsequent chapters and it provides a scheme for the novel theory
of approximate differentiability for sets introduced in chapter 3.

2.1. Suppose 1 ≤ m < n are integers, A ⊂ Rm, a ∈ Rm and P : Rm → Rn−m

is a polynomial function of degree at most k such that1

ap lim
x→a

(P |A)(x)

|x− a|k
= 0.

In particular Θm(Lm x Rm ∼ A, a) = 0. Therefore we can use a lemma due to
De Giorgi, see [Cam64, Lemma 2.I], to conclude that P = 0.

2.2 Definition. Let 1 ≤ m < n and k ≥ 0 be integers, 0 ≤ α ≤ 1, A ⊂ Rm,
f : A→ Rn−m and a ∈ Rm.

We say that f is approximately differentiable of order (k, α) at a (f is ap-
proximately differentiable of order k at a if α = 0) if

Θm(Lm x Rm∼A, a) = 0

and there exists a polynomial function P : Rm → Rn−m of degree at most k
such that P (a) = f(a) if a ∈ A,

ap lim
x→a

|f(x)− P (x)|
|x− a|k

= 0 if α = 0, ap lim sup
x→a

|f(x)− P (x)|
|x− a|k+α

<∞ if α > 0.

1Let f be a function mapping a subset of Rm into some set Y and let a ∈ Rm. If Y is a
normed vector space, a point y ∈ Y is the approximate limit of f at a if and only if

Θm(L m x Rm ∼ {x : |f(x)− y| ≤ ε}, a) = 0 for every ε > 0

and we denote it by ap limx→a f(x). If Y = R, a point t ∈ R is the approximate upper limit
of f at a if and only if

t = inf{s : Θm(L m x {x : f(x) > s}, a) = 0}
and we denote it by ap lim supx→a f(x). This concept is a special case of [Fed69, 2.9.12].
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2.3 Remark. The condition Θm(Lm x Rm∼A, a) = 0 in 2.2 is redundant if
α = 0. By 2.1 we deduce that the polynomial function P in 2.2 is uniquely
determined by f and a.

2.4 Definition. Let A ⊂ Rm and let f : A → Rn−m. For every non negative
integer k the function ap Dk f is defined to be the function whose domain consists
of all a ∈ Rm such that f is approximately differentiable of order k at a and
whose value at a equals Dk P (a), where P satisfies 2.2.

2.5 Remark. If a ∈ A ⊂ Rm and f : A→ Rn−m then f is approximately differ-
entiable of order 0 at a if and only if f is (Lm, V ) approximately continuous2

at a. In this case ap D0 f(a) = f(a). Here V is the standard Lm Vitali relation,
V = {(a,B(a, r)) : a ∈ Rm, 0 < r <∞}.

In case a ∈ A the notion of approximate differentiability of order 1 has been
introduced in [Fed69, 3.1.2].

2.6 Lemma. Suppose 1 ≤ m < n are integers, A ⊆ Rm, a ∈ Rm, f : A →
Rn−m, γ ≥ 1, 0 < M <∞ and 0 ≤ λ <∞ such that

lim sup
r→0+

Lm(B(a, r) ∩ {x : |f(x)| > λrγ})
α(m) rm

< M.

Then Θ∗m(Lm x {x : |f(x)| > 2γλ |x− a|γ}, a) < M(1− 2−m)−1.

Proof. Let δ > 0 such that

Lm(B(a, r) ∩ {x : |f(x)| > λrγ}) < M α(m) rm for 0 < r ≤ δ.

Therefore for 0 < r ≤ δ we observe

B(a, r) ∩ {x : |f(x)| > 2γλ |x− a|γ}

= {a} ∪
∞⋃
i=0

(B(a, r/2i) ∼ B(a, r/2i+1)) ∩ {x : |f(x)| > 2γλ |x− a|γ}

⊆ {a} ∪
∞⋃
i=0

B(a, r/2i) ∩ {x : |f(x)| > λ (r/2i)γ},

Lm(B(a, r) ∩ {x : |f(x)| > 2γλ |x− a|γ}) < M α(m)rm(1− 2−m)−1

and the conclusion follows.

2.7 Theorem. Let 1 ≤ m < n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊂ Rm,
a ∈ Rm and f : A→ Rn−m.

Then f is approximately differentiable of order (k, α) at a if and only if there
exists a function g : Rm → Rn−m pointwise differentiable of order (k, α) at a
such that f(a) = g(a) if a ∈ A and

Θm(Lm x Rm∼{x : g(x) = f(x)}, a) = 0.

In this case pt Di g(a) = ap Di f(a) for i = 0, . . . , k.

2See [Fed69, 2.9.12].
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Proof. Since one implication is elementary we suppose f is approximately dif-
ferentiable of order (k, α) at a.

First we consider the case α = 0. There exists a polynomial function
P : Rm → Rn−m of degree at most k such that, if for every integer i ≥ 1 we
define

Si = {x : |f(x)− P (x)| < i−1|x− a|k},

then there exists δi > 0 such that Lm(B(a, r) ∼ Si) < 2−irm for 0 < r ≤ δi.
We can assume δi+1 < δi for each i ≥ 1 and δi → 0 as i→∞. Let

T =
⋃∞
i=1 [Si ∩B(a, δi) ∼ B(a, δi+1)] .

If r > 0 and j ≥ 1 is an integer such that δj+1 < r ≤ δj we compute

Lm(B(a, r) ∼ T ) ≤ Lm(B(a, r) ∼ Sj) +

∞∑
l=j+1

Lm(B(a, δl) ∼ Sl) < rm
∞∑
l=j

2−l

and we conclude Θm(Lm x Rm ∼ T, a) = 0. Moreover

lim
T3x→a

|f(x)− P (x)|
|x− a|k

= 0.

If we define g : Rm → Rn−m as g(x) = f(x) if x ∈ T and g(x) = P (x) if
x ∈ Rm ∼ T , then we have Θm(Lm x Rm ∼ {x : g(x) = f(x)}, a) = 0,

lim
x→a

|g(x)− P (x)|
|x− a|k

= 0 and g(a) = P (a) (since a /∈ T ).

For the case α > 0, once we have chosen 0 ≤ λ <∞ such that

ap lim sup
x→a

|f(x)− P (x)|
|x− a|k+α

< λ,

we can use the same argument above replacing the sets Si with the set

S = {x : |f(x)− P (x)| < λ |x− a|k+α}.

2.8 Remark. The proof of 2.7 has been adapted from [Fed69, 3.2.16] and [Fed69,
3.1.22].

2.9 Remark. Let 1 ≤ m < n and k ≥ 1 be integers, 0 ≤ α ≤ 1, let A ⊂ Rm be
Lm measurable and let f : A → Rn−m be Lm xA measurable. If there exist
countably many functions gj : Rm → Rn−m of class (k, α) such that

Lm
(
A ∼

⋃∞
j=1Aj

)
= 0

where Aj = A∩ {z : gj(z) = f(z)} for j ≥ 1, then using [Fed69, 2.10.19(4)] and
2.7 we can easily prove that f is approximately differentiable of order (k, α) at
Lm a.e. a ∈ A and, for each j ≥ 1,

Di gj(z) = ap Di f(z) for Lm a.e. z ∈ Aj and i = 0, . . . , k.

2.10 Theorem. Let 1 ≤ m < n and k ≥ 0 be integers, A ⊂ Rm and let
f : A→ Rn−m be approximately differentiable of order (k, 1) at Lm a.e. a ∈ A.
Then the following statements hold.
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(1) f is approximately differentiable of order k + 1 at Lm a.e. x ∈ A.

(2) A is Lm measurable and the functions ap Di f are Lm xA measurable for
i = 0, . . . , k + 1.

(3) There exist countably many functions gj : Rm → Rn−m of class k + 1
such that

Lm
(
A ∼

⋃∞
j=1{x : gj(x) = f(x)}

)
= 0.

Proof. First we observe that A is Lm measurable, f is (Lm, V ) approximately
continuous3 at Lm a.e. a ∈ A and f is Lm xA measurable by [Fed69, 2.9.11,
2.9.13].

If k = 0 the conclusions are consequences of [Fed69, 3.1.8, 3.1.4, 3.1.16]
respectively. We use induction over k. Since f is approximately differentiable
of order (k − 1, 1) at Lm a.e. point of A we inductively assume that ap Di f are
Lm xA measurable for i = 0, . . . , k. We use now [Isa87, Theorem 2] and [Fed69,
3.1.15] to deduce the existence of countably many functions gj : Rm → Rn−m

of class k + 1 satisfying (3). Now (1) and (2) follow from 2.9.

2.11 Theorem. Suppose 1 ≤ m < n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
A ⊂ Rm and f : A → Rn−m is approximately differentiable of order (k, α) at
Lm a.e. a ∈ A.

Then the following statements hold.

(1) A is Lm measurable and the functions ap Di f are Lm xA measurable for
i = 0, . . . , k.

(2) There exist countably many functions gj : Rm → Rn−m of class (k, α)
such that

Lm
(
A ∼

⋃∞
j=1{x : gj(x) = f(x)}

)
= 0.

Proof. Since f is approximately differentiable of order (k− 1, 1) at every x ∈ A
then (1) follows from 2.10(2). Now we can apply [Isa87, Theorem 1] if α = 0 or
[Isa87, Theorem 2] if α > 0 to get (2).

3As usual, V = {(a,B(a, r)) : a ∈ Rm, 0 < r <∞}.
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Chapter 3

Approximate
differentiability for sets

In this chapter we introduce a novel theory of approximate differentiability for
subsets of Euclidean space.

Basic properties and characterization

Here we provide the definition of approximate differentiability and approximate
differentials of higher order for sets, a technical characterization in 3.14 and
some examples. Moreover we study the approximate differentiability properties
of higher order rectifiable sets in 3.23 and 3.24.

3.1 Definition (Lower and upper tangent cones to a measure). Suppose X is a
normed vector space, φ is a measure over X, m is a positive integer and a ∈ X.

We define the m dimensional approximate upper tangent cone of φ at a by1

Tan∗m(φ, a) = X ∩ {v : Θ∗m(φ xE(a, v, ε), a) > 0 for every ε > 0}

and the m dimensional approximate lower tangent cone of φ at a as the set
Tanm∗ (φ, a) of v ∈ X such that for every ε > 0 there exists η > 0 such that

φ(U(a+ rv, εr)) ≥ ηrm whenever 0 < r ≤ η.

In case Tan∗m(φ, a) = Tanm∗ (φ, a), this set is denoted by Tanm(φ, a) and we
call it the m dimensional approximate tangent cone of φ at a.

3.2 Remark. Evidently Tanm∗ (φ, a) ⊆ Tan∗m(φ, a). Moreover one may easily
verify that Tanm∗ (φ, a) and Tan∗m(φ, a) are closed cones. Finally

Θ∗m(φ, a) > 0 [Θm
∗ (φ, a) > 0] ⇐⇒ 0 ∈ Tan∗m(φ, a) [0 ∈ Tanm∗ (φ, a)].

3.3 Remark. Observe that, in this case, our notation does not agree with [Fed69,
3.2.16]. In fact, Tan∗m(φ, a) is denoted by Tanm(φ, a) in [Fed69, 3.2.16].

It is often useful to recall that if C is a compact subset of X ∼ Tan∗m(φ, a)
and T = {a + rv : r ≥ 0, v ∈ C} then Θm(φ xT, a) = 0. This is proved in
[Fed69, 3.2.16].

1As in [Fed69, 3.2.16], E(a, v, ε) = X ∩ {x : |r(x− a)− v| < ε for some 0 < r <∞}.

13



3.4 Remark. It is natural to consider the following cone

T = X ∩ {v : Θm
∗ (φ xE(a, v, ε), a) > 0 for every ε > 0}.

Evidently Tanm∗ (φ, a) ⊆ T , but simple examples show that the opposite inclusion
does not hold. In fact, if we consider X = R, φ = L 1 xA, m = 1 and a = 0,
where

A =

∞⋃
i=0

R ∩ {t : 2−2i−1 < |t| < 2−2i},

then Tan1
∗(φ, 0) = {0} and T = R.

3.5 Remark. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn, B ⊆ Rn and a ∈ Rn.
If Θm(H m x A ∼ B, a) = 0 then it is not difficult to see that

Tanm∗ (H m xA, a) ⊆ Tanm∗ (H m xB, a),

Tan∗m(H m xA, a) ⊆ Tan∗m(H m xB, a).

3.6 Lemma. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn, a ∈ Rn and
T ∈ G(n,m).

Then the following three conditions are equivalent:

(1) Tan∗m(H m xA, a) ⊆ T ,

(2) Θm(H m x A ∼ X(a, T, ε), a) = 0 whenever ε > 0,

(3) whenever ε > 0

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥\ (z − a)| > ε r})
α(m) rm

= 0.

Proof. The fact that (1) implies (2) is a consequence of 3.3 and the fact that
(3) follows from (2) is evident. If the condition in (3) holds for some ε > 0 then
we can argue as in 2.6 to show that

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥\ (z − a)| > 2ε |z − a|})
α(m) rm

= 0.

Therefore (3) implies (1).

3.7 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, 0 ≤ λ < ∞,
0 < M <∞, A ⊆ Rn, a ∈ Rn, T ∈ G(n,m) and let f : T → T⊥ be a function
of class 1 such that f(T\(a)) = T⊥\ (a) and D f(T\(a)) = 0. Suppose

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥\ (z)− f(T\(z))| > ε r})
α(m) rm

= 0 for every ε > 0,

lim sup
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥\ (z)− f(T\(z))| > λrk+α})
α(m) rm

< M.

Then
Θ∗m(H m x A ∼ Xk,α(a, T, f, κ), a) < M(1− 2−m)−1

for every κ > 2k+αλ.
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Proof. Arguing as in the proof of 2.6 we conclude that

Θ∗m(H m x A∩{z : |f(T\(z))−T⊥\ (z)| > 2k+αλ|z−a|k+α}, a) < M(1−2−m)−1.

Since D f(T\(a)) = 0 we can easily get that

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥\ (z − a)| > ε r})
α(m) rm

= 0 for every ε > 0

and applying 3.6 we conclude that Θm(H m x A ∼ X(a, T, ε), a) = 0. Since

X(a, T, ε) ∩ {z : |f(T\(z))− T⊥\ (z)| ≤ 2k+αλ|z − a|k+α}

⊆ Xk,α(a, T, f, 2k+αλ(1 + ε2)(k+α)/2) for every ε > 0,

the conclusion follows.

3.8 Definition (Approximate differentiability for sets). Let n ≥ 1 and k ≥ 1
be integers, 0 ≤ α ≤ 1, A ⊆ Rn, a ∈ Rn and A1 = {x−a : x ∈ A}. We say that
A is approximately differentiable of order (k, α) at a if there exist an integer
1 ≤ m ≤ n, T ∈ G(n,m) and a polynomial function P : T → T⊥ of degree at
most k such that P (0) = 0, DP (0) = 0 and the following two conditions hold.

(1) For every ε > 0 there exists ρ > 0 and η > 0 such that

H m(C(T, z, εr, εr) ∩A1) ≥ ηrm

for every z ∈ T ∩B(0, r) and 0 ≤ r ≤ ρ.

(2) For every ε > 0

lim
r→0

H m
(
A1 ∩B(0, r) ∩ {z : δgr(P )(z) > ε rk}

)
α(m)rm

= 0

and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(
A1 ∩B(0, r) ∩ {z : δgr(P )(z) > λrk+α}

)
α(m)rm

= 0.

3.9 Remark. If k = 1 and α = 0 the conditions in 3.8 are equivalent to [Mat95,
15.7].

3.10 Remark. We prove that the condition

T ⊆ Tanm∗ (H m xA, a)

is necessary and sufficient to have 3.8(1). The condition is clearly necessary. To
prove the sufficiency assume a = 0, suppose 0 < ε < 1 and observe there exist
an integer l ≥ 1, v1, . . . , vl ∈ Sn−1 ∩ T and a positive number η such that

T ∩ Sn−1 ⊆
⋃l
i=1 U(vi, ε) ∩ T,

H m(A ∩U(rvi, εr)) ≥ ηε−mrm whenever 0 < r ≤ η and i = 1, . . . , l.

15



Since Θm
∗ (H m x A, 0) > 0 by 3.2, we can choose η > 0 smaller, if necessary, in

order to have

H m(A ∩U(0, εr)) ≥ ηrm whenever 0 < r ≤ η.

We fix 0 < r ≤ η and z ∈ B(0, r). If |z| ≤ εr then U(0, εr) ⊆ U(z, 2εr) and

H m(A ∩U(z, 2εr)) ≥ ηrm.

If |z| ≥ εr then we choose 1 ≤ i ≤ l such that |(z/|z|)− vi| < ε and we observe

U(|z|vi, |z|ε) ⊆ U(z, 2ε|z|) ⊆ U(z, 2εr),

H m(A ∩U(z, 2εr)) ≥ ηε−m|z|m ≥ ηrm.

3.11 Lemma. Suppose 1 ≤ m ≤ n are integers, 0 < r <∞, w ∈ Rn ∩B(0, r),
T ∈ G(n,m) and f : T → T⊥ is a locally Lipschitzian function such that
f(0) = 0.

Then δgr f (w) ≤ |T⊥\ (w)− f(T\(w))| ≤
(
2 + Lip(f |B(0, 2r))

)
δgr f (w).

Proof. If we choose χ ∈ T so that δgr f (w) = |w − χ− f(χ)| then χ ∈ B(0, 2r)
and we get

δgr f (w) ≤ |T⊥\ (w)− f(T\(w))|
≤ |w − χ− f(χ)|+ |χ+ f(χ)− T\(w)− f(T\(w))|
≤
(
2 + Lip(f |B(0, 2r))

)
δgr f (w).

3.12 Lemma. Suppose 1 ≤ m ≤ n are integers, γ > 0, A ⊆ Rn, B ⊆ Rn such
that 0 ∈ ClosB, f : Rn → Rn is an univalent map onto Rn such that f(0) = 0
and f and f−1 are locally Lipschitzian maps.

Then the following two conditions are equivalent.

(1) For every ε > 0 [for some 0 ≤ ε <∞]

lim
r→0

H m(A ∩B(0, r) ∩ {z : δB(z) > ε rγ})
α(m)rm

= 0.

(2) For every ε > 0 [for some 0 ≤ ε <∞]

lim
r→0

H m(f [A] ∩B(0, r) ∩ {z : δf [B](z) > εrγ})
α(m)rm

= 0.

Proof. Since f [ClosB] = Clos f [B] we assume B to be closed. Moreover if we
prove one implication we immediately get the other one. Therefore we prove
that (1) implies (2). Suppose 1 < Γ <∞ is such that

Γ−1|z − w| ≤ |f(z)− f(w)| ≤ Γ|z − w|,
Γ−1|z − w| ≤ |f−1(z)− f−1(w)| ≤ Γ|z − w|

whenever z, w ∈ B(0, 2). Evidently it is enough to show that

f−1[f [A] ∩B(0, r/Γ2) ∩ {w : δf [B](w) > εrγ}]
⊆ A ∩B(0, r/Γ) ∩ {w : δB(w) > Γ−1εrγ}
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for ε > 0 and 0 < r ≤ 1. Suppose z ∈ f [A]∩B(0, r/Γ2) such that δf [B](z) > εrγ .
Let w ∈ f [B] such that |f−1(z)− f−1(w)| = δB(f−1(z)) and observe

δB(f−1(z)) ≤ |f−1(z)|, |f−1(w)| ≤ 2|f−1(z)| ≤ 2Γ|z| ≤ 2Γ−1r ≤ 2,

|w| ≤ Γ|f−1(w)| ≤ 2r ≤ 2,

δB(f−1(z)) ≥ Γ−1|z − w| ≥ Γ−1δf [B](z) > Γ−1εrγ .

3.13 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, T ∈ G(n,m) and let
P : T → T⊥ and Q : T → T⊥ be polynomial functions of degree at most k such
that P (0) = 0 and DiQ(0) = 0 for i = 0, . . . , k − 1. Suppose for every ε > 0
there exists ρ > 0 such that

C(T, z, εr, εrk) ∩ {w : δgr(Q)(w) ≤ εrk} 6= ∅

whenever z ∈ gr(P ) ∩B(0, r) and 0 < r ≤ ρ.
Then P = Q.

Proof. Let 0 ≤ c < ∞ such that |P (χ)| ≤ c|χ| whenever χ ∈ T ∩ B(0, 1). If
0 < ε ≤ 1 and 0 < ρ ≤ 1 are as in the hypothesis, χ ∈ B(0, (1 + c)−1ρ) ∩ T and
z = χ+ P (χ) then |z| ≤ (1 + c)|χ| ≤ ρ. Therefore there exists

w ∈ C(T, z, ε(1 + c)|χ|, ε(1 + c)k|χ|k)

such that δgr(Q)(w) ≤ ε(1+c)k|χ|k. If y ∈ gr(Q) is such that |w−y| = δgr(Q)(w)
then

|T\(y)− χ| ≤ |T\(y − w)|+ |T\(w)− χ| ≤ 2ε(1 + c)k|χ|,
|P (χ)−Q(χ)| ≤ |T⊥\ (z)− T⊥\ (w)|+ |T⊥\ (w)− T⊥\ (y)|+ |T⊥\ (y)−Q(χ)|,

and the Taylor’s formula (see [Fed69, p. 46]) implies

Q(T\(y))−Q(χ) =

k∑
i=1

〈(T\(y)− χ)i/i!� χk−i/(k − i)!,DkQ(0)〉,

|Q(T\(y))−Q(χ)| ≤ c1ε|χ|k,

where c1 = ‖DkQ(0)‖
∑k
i=1 2i(1 + c)ki/(i!(k − i)!). Therefore |Q(χ)− P (χ)| ≤

(2(1 + c)k + c1)ε|χ|k and the conclusion follows.

3.14 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
A ⊆ Rn, a ∈ Rn, A1 = {x − a : x ∈ A}, T ∈ G(n,m) and P : T → T⊥ is a
polynomial function of degree at most k such that P (0) = 0, DP (0) = 0.

Then the following two conditions are equivalent.

(1) T and P satisfy 3.8(1) and 3.8(2).

(2) If Pi(χ) = 〈χi/i!,Di P (0)〉 for χ ∈ T and i = 1, . . . , k and

Ai = {x− Pi−1(T\(x)) : x ∈ Ai−1} for i = 2, . . . , k,

then the following two conditions hold:

(a) for every i = 1, . . . , k and for every ε > 0 there exist ρ > 0 and η > 0
such that

H m(C(T, z, εr, εri) ∩Ai) ≥ ηα(m)rm

for every z ∈ gr(Pi) ∩B(0, r) and 0 ≤ r ≤ ρ,
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(b) for every i = 1, . . . , k and for every ε > 0

lim
r→0

H m
(
Ai ∩B(0, r) ∩ {z : δgr(Pi)(z) > ε ri}

)
α(m)rm

= 0

and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(
Ak ∩B(0, r) ∩ {z : δgr(Pk)(z) > λrk+α}

)
α(m)rm

= 0.

In this case P is uniquely determined by a, A and k,

Θm
∗ (H m x A, a) > 0, Tanm∗ (H m xA, a) = Tan∗m(H m xA, a) = T

and A is approximately differentiable of order (l, β) whenever either l < k and
0 ≤ β ≤ 1 or l = k and 0 ≤ β ≤ α.

Proof. Assume a = 0 and suppose sup
{

1,
∑k
j=1 2j‖Dj P (0)‖

}
< Γ <∞.

For i = 1, . . . , k we define Qi =
∑i
j=1 Pj and fi : Rn → Rn by

fi(x) = x−Qi(T\(x)) + Pi(T\(x)) for x ∈ Rn.

We observe that for every i = 1, . . . , k the map fi is a diffeomorphism of class ∞
onto Rn and, by induction over i, one may easily prove that

fi[A] = Ai, fi[grQi] = grPi.

Now, using 3.12, it is easy to see that (2) implies (1). Henceforth, we
assume (1). First we prove that

δgrP (z) ≥ δgrQi(z)− Γ|z|i+1 for every i = 1, . . . , k − 1 and z ∈ B(0, 1).

In fact if w ∈ gr(P ) such that |z − w| = δgr(P )(z) then

|w| ≤ 2|z|, |P (T\(w))−Qi(T\(w))| ≤ Γ|z|i+1,

|z − w| ≥ |z − T\(w)−Qi(T\(w))| − |Qi(T\(w))− P (T\(w))|
≥ δgrQi(z)− Γ|z|i+1.

It follows, for i = 1, . . . , k, that

lim
r→0

H m
(
A1 ∩B(0, r) ∩ {z : δgr(Qi)(z) > ε ri}

)
α(m)rm

= 0 for every ε > 0.

and, for i = 1, . . . , k − 1 that

lim
r→0

H m
(
A1 ∩B(0, r) ∩ {z : δgr(Qi)(z) > 2Γri+1}

)
α(m)rm

= 0.

Therefore (2b) is a consequence of 3.12. Moreover, using 3.12, it follows that A is
approximately differentiable of order (l, β) whenever either l < k and 0 ≤ β ≤ 1
or l = k and 0 ≤ β ≤ α. We prove now (2a), whose proof is slightly more
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involved. We fix 2 ≤ i ≤ k and we replace Γ by a larger number, if necessary,
in order to have

|f−1i (w)− f−1i (z)| ≤ Γ|w − z|, |fi(w)− fi(z)| ≤ Γ|w − z|

for w, z ∈ B(0, 4). Therefore we have

fi[A ∩C(T, z, εr/Γ, εr/Γ)] ⊆ Ai ∩C(T, z, εr/Γ, 3r),

H m(Ai ∩C(T, z, εr/Γ, 3r)) ≥ Γ−mH m(A ∩C(T, z, εr/Γ, εr/Γ)),

whenever 0 < r ≤ 1, 0 < ε ≤ 1 and z ∈ B(0, r/Γ). We fix 0 < ε ≤ 1 and, using
3.11, we can find 0 < ρ ≤ 1 and η > 0 such that

H m(Ai ∩B(0, 5r) ∩ {w : |T⊥\ (w)− Pi(T\(w))| > εri}) < ηΓ−mα(m)rm,

H m(C(T, z, εr/Γ, εr/Γ) ∩A) ≥ 2ηα(m)rm for every z ∈ T ∩B(0, r),

whenever 0 < r ≤ ρ. Let 0 < r ≤ ρ and z ∈ gr(Pi) ∩B(0, r/Γ). Then

C(T, z, εr/Γ, 3r) ⊆
(
B(0, 5r) ∩ {w : |Pi(T\(w))− T⊥\ (w)| > εri}

)
∪C(T, z, εr/Γ, 2εri).

In fact if w ∈ C(T, z, εr/Γ, 3r) and |Pi(T\(w))− T⊥\ (w)| ≤ εri then

|Pi(T\(w))− Pi(T\(z))|

=
∣∣∑i

j=1〈(T\(w − z)j/j!)� (T\(z)
i−j/(i− j)!),Di P (0)〉

∣∣
≤ i‖Di P (0)‖Γ−iεri ≤ εri

and we infer

|T⊥\ (z)− T⊥\ (w)| ≤ 2εri, w ∈ C(T, z, εr/Γ, 2εri).

We can now conclude that

H m(Ai ∩C(T, z, εr/Γ, 2εri)) ≥ Γ−mηα(m)rm

and (2a) is proved.
By 3.8(1) we immediately conclude that Θm

∗ (H m x A, 0) > 0 and T ⊆
Tanm∗ (H m xA, 0). By (2b) and 3.6 we conclude that Tan∗m(H m xA, 0) ⊆ T .
Finally let R : T → T⊥ be a polynomial function of degree at most k such that
R(0) = 0 and DR(0) = 0 and satisfying 3.8(1) and 3.8(2). Let

Ri(χ) = 〈χi/i!,DiR(0)〉 for χ ∈ T and i = 1, . . . , k,

B1 = A1, Bi = {x−Ri−1(T\(x)) : x ∈ Bi−1} for i = 2, . . . , k.

We prove by induction that Pi = Ri for i = 1, . . . , k. Assume, for j = 1, . . . , i
and i < k, that Pj = Rj and observe that Ai+1 = Bi+1. Let ε > 0, 0 < ρ ≤ 1
and η > 0 such that

H m(C(T, z, εr, εri+1) ∩Bi+1) ≥ ηα(m)rm for every z ∈ B(0, r) ∩ gr(Ri+1),

H m
(
Ai+1 ∩B(0, 2r) ∩ {z : δgr(Pi+1)(z) > ε ri+1}

)
≤ (η/2)α(m)rm

whenever 0 < r ≤ ρ. Therefore for every z ∈ B(0, r) ∩ gr(Ri+1) and for every
0 < r ≤ ρ we conclude that

H m(Bi+1 ∩C(T, z, εr, εri+1) ∩ {z : δgr(Pi+1)(z) ≤ ε r
i+1}) ≥ (η/2)α(m)rm

and Pi+1 = Ri+1 by 3.13.

19



3.15 Remark. A conceptually similar characterization has been proved for the
notion of pointwise differentiability in [Men16, 3.22]. Moreover the reader may
find useful to compare 3.14(2) and [AS94, 3.4], where a concept of approximate
tangent paraboloid is introduced by means of inhomogeneous dilations and weak
convergence of Radon measures.

3.16 Remark. Suppose A ⊆ Rn and a ∈ Rn. It is not difficult to see that the
condition

Tanm(H m xA, a) ∈ G(n,m) for some integer 1 ≤ m ≤ n

is necessary and sufficient to conclude that A is approximately differentiable
of order 1 at a. In fact the necessity is asserted in 3.14, while the sufficiency
follows from 3.10 and 3.6.

3.17 Remark. We describe now a simple example which illustrates some features
of the notion of approximate differentiability of order 1.

With each γ > 1 and γ−1 < α < (γ − 1)−1 we associate the family Fα,γ
consisting of the subsets

R2 ∩
(
{(n−α, t) : 0 ≤ t ≤ n−αγ} ∪ {(−n−α, t) : 0 ≤ t ≤ n−αγ}

)
correspoding to the integers n ≥ 1. We define

Aα,γ =
(
R2 ∩ {(s, 0) : −1 ≤ s ≤ 1}

)
∪
⋃
Fα,γ .

Since αγ > 1 then H 1(Aα,γ) <∞. Moreover, for each n ≥ 1,

(n− 1)α
∞∑
i=n

i−αγ ≥ (n− 1)α
∫ ∞
n

x−αγdL 1x = (n− 1)α(αγ − 1)−1n1−αγ →∞

as n → ∞. Therefore Θ1
∗(H

1 x Aα,γ , 0) = ∞. Finally Aα,γ is approximately
differentiable of order 1 at 0 by 3.16, since

Tan1(H 1 xAα,γ , 0) = R × {0}.

3.18 Remark. Let A ⊆ Rn, a ∈ Rn and let 0 ≤ µ ≤ ν be integers. Since

Tan∗ν(H ν xA, a) ⊆ Tan∗µ(H µ xA, a),

we deduce by 3.14 that the integer m in 3.8 is uniquely determined by A and a.

3.19 Definition (Approximate tangent space). Let A ⊆ Rn and a ∈ Rn. Sup-
pose A is approximately differentiable of order 1 at a and m and T are as in 3.8.
We define the approximate tangent space of A at a to be the m dimensional sub-
space T and we denote it by ap Tan(A, a). Moreover we define the approximate
normal space of A at a to be

ap Nor(A, a) = Dual ap Tan(A, a).

3.20 Definition (Approximate differentials of higher order). Let A ⊆ Rn, let
k ≥ 2 be an integer and a ∈ Rn. If A is approximately differentiable of order k
at a then we define the approximate differential of order k of A at a to be the
symmetric k linear map

ap Dk A(a) = Dk(P ◦ T\)(0) ∈
⊙k

(Rn,Rn),

where T = ap Tan(A, a) and P : T → T⊥ is as in 3.8.
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3.21 Remark. Suppose A ⊆ Rn.
Following [Sim83, 11.2, 11.4] (see also [FM99, 2.2]) we consider the map PA

whose domain is given by the set of a ∈ Rn such that there exist an integer
1 ≤ m ≤ n, T ∈ G(n,m) and 0 < θ <∞ such that

lim
r→0+

r−m
∫
A

f((x− a)/r)dH mx = θ

∫
T

fdH m whenever f ∈ K (Rn),

and whose value PA(a) at a equals T . In fact, one may readily verify that m,
T and θ are uniquely determined by A and a.

Then it is not difficult to check that if a ∈ dmnPA and m = dimPA(a) then

PA(a) ⊆ Tanm∗ (H m xA, a), Tan∗m(H m xA, a) ⊆ PA(a),

Θm(H m x A, a) = θ.

Using 3.16 and 3.14 we deduce

dmnPA ⊆ dmn ap Tan(A, ·), PA(a) = ap Tan(A, a) whenever a ∈ dmnPA.

If Aα,γ is defined as in 3.17, then 0 ∈ (dmn ap Tan(Aα,γ , ·)) ∼ (dmnPAα,γ ).

3.22 Remark. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊆ Rn,
B ⊆ Rn and a ∈ Rn. Suppose A is approximately differentiable of order (k, α)
at a, m = dim ap Tan(A, a) and

Θm(H m x A ∼ B, a) = 0, Θm(H m x B ∼ A, a) = 0.

Then B is approximately differentiable of order (k, α) at a with

ap Tan(A, a) = ap Tan(B, a),

ap DiA(a) = ap DiB(a) for i = 2, . . . , k.

3.23 Theorem. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1 and let
A ⊆ Rn be H m measurable and (H m,m) rectifiable of class (k, α).

Then for H m a.e. a ∈ A the set A is approximately differentiable of order
(k, α) at a with

ap Tan(A, a) ∈ G(n,m).

Proof. Since an m dimensional submanifold M of class (k, α) of Rn locally cor-
responds at each a ∈ M to a graph of function f : Tan(M,a) → Nor(M,a) of
class (k, α) with D f(Tan(M,a)\(a)) = 0, one readily checks that M is approx-
imately differentiable of order (k, α) at each of its points. Then the conclusion
follows from [Fed69, 2.10.19(4)] and 3.22.

3.24 Theorem. Let 1 ≤ m ≤ n be integers, let A ⊆ Rn be H m measurable
and (H m,m) rectifiable of class 1 and let ν : A → Rn be a map such that for
H m a.e. x ∈ A there exists 0 ≤ λ <∞ such that

Θm(H m x A ∩ {z : |ν(z)− ν(x)| > λ|z − x|}, x) = 0.

Then ν is H m xA measurable and (H m xA,m) approximately differen-
tiable2 at H m a.e. x ∈ A.

2See [Fed69, 3.2.16].
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If additionally ν(x) ∈ ap Nor(A, x) for H m a.e. x ∈ A and A is (H m,m)
rectifiable of class 2 then

(H m xA,m) ap D ν(x)(u) • v = − ap D2A(x)(u, v) • ν(x)

for every u, v ∈ ap Tan(A, x) and for H m a.e. x ∈ A.

Proof. By [Fed69, 3.2.29, 3.1.19(4), 2.10.19(4), 3.2.16] it is enough to prove the
statement in the following special case: let U ⊆ Rn, V ⊆ Rm be bounded open
sets and let φ : U → Rm, ψ : V → Rn be maps of class 1 (of class 2 if A
is (H m,m) rectifiable of class 2) such that A ⊆ imψ and φ ◦ ψ = 1V . Let
M = imψ and observe that φ|M = ψ−1, φ[A] is an H m measurable subset of
Rm. Moreover we can prove that ν is H m xA measurable by [Fed69, 2.9.13].
In fact one verifies that V = {(a,B(a, r)) : a ∈ Rn, 0 < r <∞} is an H m xA
Vitali relation by [Fed69, 2.8.18] and, since Θm(H m x A, x) = 1 for H m a.e.
x ∈ A by [Fed69, 3.2.19], we conclude that ν is (H m xA, V ) approximately
continuous3 at H m a.e. x ∈ A.

Let η = ν ◦ (ψ|φ[A]) and, by [Fed69, 2.9.11], we deduce that η is approxi-
mately differentiable of order (0, 1) at Lm a.e. χ ∈ φ[A]. Therefore by 2.10(3)
there exist countably many maps ηj : Rm → Rn of class 1 such that

Lm
(
φ[A] ∼

⋃∞
j=1{χ : ηj(χ) = η(χ)}

)
= 0.

We deduce, by [Fed69, 2.10.19(4)], that ν is (H m xA,m) approximately differ-
entiable at H m a.e. x ∈ A because

H m
(
A ∼

⋃∞
j=1{x : (ηj ◦ φ)(x) = ν(x)}

)
= 0.

If we further assume ν(x) ∈ ap Nor(A, x) for H m a.e. x ∈ A and A is
(H m,m) rectifiable of class 2 then, for every j ≥ 1, we define

νj(x) =
(

Nor(M,x)\ ◦ ηj ◦ φ
)
(x) for x ∈M,

we observe that νj is of class 1 relative toM and, by [Fed69, 2.10.19(4)] and 3.22,

H m
(
A ∼

⋃∞
j=1{x : νj(x) = ν(x)}

)
= 0.

Since, by [Fed69, 2.10.19(4), 3.2.16] and 3.22,

D νj(x)(u) • v = − ap D2A(x)(u, v) • νj(x) for every u, v ∈ ap Tan(A, x)

and (H m xA,m) ap D ν(x) = D νj(x) for H m a.e. x ∈ A, the conclusion fol-
lows.

3.25 Remark. The conclusion of the second part of 3.24 may fail to hold at H m

a.e. a ∈ A if we omit the hypothesis “A is (H m,m) rectifiable of class 2”, even
if we assume that A is an m dimensional submanifold of class 1. This fact can
be easily deduced from [Koh77] and 3.41.

Moreover the same conclusion may fail to hold at H m a.e. a ∈ A if we omit
the hypothesis “A is (H m,m) rectifiable of class 2” but we assume ν(x) = ζ
for H m a.e. x ∈ A for some ζ ∈ Sn−1. In fact it is proved in [AS94, Appendix]

3See [Fed69, 2.9.12].
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that for every 0 < α < 1 there exists a function f : R → R of class (1, α) and
a Cantor-type set E ⊆ R such that

L 1(E) > 0, D f(x) = 0 for every x ∈ E,
L 1
(
E ∩ {x : f(x) = g(x)}

)
= 0 whenever g : R → R is of class 2.

If A = gr(f |E) then, by 3.41, H 1(A ∩ dmn ap D2A) = 0.

Relation with pointwise differentiability

The concept of pointwise differentiability of higher order for sets has been re-
cently introduced in [Men16]. In 3.35 we study its relation with the concept of
approximate differentiability introduced in the previous section. As a corollary
we derive in 3.36(3) a one-sided estimate for the approximate differential of sec-
ond order at the set of points where the set can be touched by a full ball of the
ambient space.

3.26 Definition. Suppose X is a normed vector space, B ⊆ X and a ∈ X.
We define the upper tangent cone of B at a by

Tan∗(B, a) = X ∩ {v : lim inf
r→0+

r−1δB(a+ rv) = 0}

and the lower tangent cone of B at a by

Tan∗(B, a) = X ∩ {v : lim
r→0+

r−1δB(a+ rv) = 0}

In case Tan∗(B, a) = Tan∗(B, a), this set is denoted by Tan(B, a) and we call
it the tangent cone of B at a. Finally the (lower, upper) normal cone of B at a
is defined by

Nor∗(A, a) = Dual Tan∗(A, a), Nor∗(A, a) = Dual Tan∗(A, a)

Nor(A, a) = Dual Tan(A, a).

3.27 Remark. If 1 ≤ m ≤ n are integers and B ⊆ Rn then one may verify that

Tan∗m(H m xB, a) ⊆ Tan∗(B, a)

⊆ ⊆

Tanm∗ (H m xB, a) ⊆ Tan∗(B, a).

Moreover one may readily verify that Tan∗(B, a) and Tan∗(B, a) are closed
cones.

3.28 Remark. This notation does not agree with [Fed59, 4.3], [Fed69, 3.1.21]
and [Men16]. In fact Tan∗(B, a) is denoted by Tan(B, a) therein.

3.29 Definition. Let k and n be positive integers, 0 ≤ α ≤ 1 and B ⊆ Rn.
We say that B is pointwise differentiable of order (k, α) at a if there exists a
submanifold M ⊆ Rn of class (k, α) such that a ∈M ,

lim
r→0

r−1 sup{|δM (x)− δB(x)| : x ∈ B(a, r)} = 0,

lim
r→0

r−k sup{δM (x) : x ∈ B(a, r) ∩B} = 0 if α = 0,

lim sup
r→0

r−k−α sup{δM (x) : x ∈ B(a, r) ∩B} <∞ if α > 0.
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3.30 Remark. This concept has been introduced in [Men16, 3.3]. In 3.35 and
3.36 we employ the concept of pointwise differential of order i for sets, introduced
in [Men16, 3.12].

3.31 Remark. It is worth to mention that, for sets, pointwise differentiability
does not imply approximate differentiability. In fact, suppose n ≥ 1 is an
integer and B is a countable dense subset of Rn. Then for every integer k ≥ 1
the set B is pointwise differentiable of order k at every x ∈ Rn. But B is not
approximately differentiable of order 1 at every x ∈ Rn.

3.32 Lemma. Let B ⊆ Rn and a ∈ ClosB.
Then the following statements hold.

(1) If M = {a+ v : v ∈ Tan∗(B, a)} then

lim
r→0

r−1 sup{δM (x) : x ∈ B(a, r) ∩B} = 0.

(2) If M = {a+ v : v ∈ Tan∗(B, a)} then

lim
r→0

r−1 sup{δB(x) : x ∈ B(a, r) ∩M} = 0.

(3) The condition

Tan(B, a) ∈ G(n,m) for some integer 0 ≤ m ≤ n

is necessary and sufficient to conclude that A is pointwise differentiable of
order 1 at a.

Proof. Proof of (1). If there existed ε > 0, ri > 0, ri → 0 as i → ∞ and
xi ∈ B∩B(a, ri) such that δM (xi) ≥ εri then, possibly passing to a subsequence,
we could assume there would exist v ∈ Sn−1 such that (xi − a)/|xi − a| → v as
i→∞. Then v ∈ Tan∗(B, a),

ε ≤ r−1i
∣∣xi − a− |xi − a|v∣∣ ≤ |xi − a|−1∣∣xi − a− |xi − a|v∣∣ for i ≥ 1

and we would get a contradiction.
Proof of (2). Suppose ε > 0 and observe there exist an integer l ≥ 1,

v1, . . . , vl ∈ Tan∗(B, a)∩Sn−1 and η > 0 such that r−1δB(a+rvi) < ε whenever
i = 1, . . . , l and 0 < r ≤ η and

Tan∗(B, a) ∩ Sn−1 ⊆
⋃l
i=1 B(vi, ε).

If 0 < r ≤ η and v ∈ B(0, r)∩Tan∗(B, a) ∼ {0} then we choose i = 1, . . . , l such
that |(v/|v|)−vi| ≤ ε and, since Lip δB ≤ 1, we conclude that δB(a+v) ≤ 2ε|v|.

Proof of (3). For the necessity, suppose M is as in 3.29 when k = 1 and
α = 0, observe that Tan(M,a) = Tan∗(B, a) by [Men16, 3.4] and Tan(M,a) ⊆
Tan∗(B, a) because

lim
Tan(M,a)3v→0

|v|−1δM (a+ v) = 0.

For the sufficiency let M = {a + v : v ∈ Tan(B, a)} and, since a ∈ ClosB, one
verifies that

sup{|δB(x)− δM (x)| : x ∈ B(a, r)} ≤
≤ sup({δB(x) : x ∈ B(a, 2r) ∩M} ∪ {δM (x) : x ∈ B(a, 2r) ∩B}),

Therefore the conclusion comes from (1) and (2).
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3.33 Remark. Compare 3.32(3) with the analogous result for approximate dif-
ferentiability in 3.16. Moreover 3.32(3) is a restatement of [Men16, 3.19].

3.34 Remark. If M is an m dimensional submanifold of class 1 of Rn then, by
3.32(3), 3.16 and 3.27, one may readily infer that

Tan(M,a) = Tanm(H m xM,a) for every a ∈M .

3.35 Theorem. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊆ Rn

and a ∈ Rn. Suppose A is approximately differentiable of order (k, α) at a and
m = dim ap Tan(A, a).

Then there exists B ⊆ A pointwise differentiable of order (k, α) at a such that

Θm(H m x A ∼ B, a) = 0,

ap Tan(A, a) = Tan(B, a) = Tanm(H m xB, a),

pt DiB(a,Tan(B, a)) = ap DiA(a) for i = 2, . . . , k.

Proof. Assume a = 0 and suppose T = ap Tan(A, 0), P : T → T⊥ is defined by

P (χ) =
∑k
j=2〈χj/j!, ap Dj A(0)〉 for χ ∈ T

and Γ = sup{1,
∑k
j=2 ‖ ap Dj A(0)‖/j!}. By 3.11 and 3.7 we infer that

Θm(H m x A ∼ Xk(0, T, P, ε), a) = 0 for every ε > 0 if α = 0,

Θm(H m x A ∼ Xk,α(0, T, P, λ), a) = 0 for some 0 ≤ λ <∞ if α > 0.

We fix 0 ≤ λ <∞ as above if α > 0. We define, for every integer i ≥ 1,

Ai = A ∩Xk(0, T, P, (2i)−1) if α = 0, Ai = A ∩Xk,α(0, T, P, λ) if α > 0.

Let Qr = Rn ∩ {z : |T⊥\ (z)| ≤ r, |T\(z)| ≤ r} for 0 < r <∞. For every integer
i ≥ 1 let δi > 0 be such that

H m(A ∩Qr ∼ Ai) ≤ 2−iα(m) rm whenever 0 < r ≤ δi

and we assume δi+1 < δi, δi → 0 as i→∞,

δ1 ≤ (2Γ)−1 if α = 0, δ1 ≤ (λ+ Γ)−1/α if α > 0.

We define, for every integer i ≥ 1,

Ci = T−1\ [B(0, δi) ∼ B(0, δi+1)], B =
⋃∞
j=1Aj ∩ Cj .

Observe that B ⊆ X(0, T, 1) and

(Qδj ∼ Qδj+1
) ∩X(0, T, 1) ∼ Cj = ∅ whenever j ≥ 1.

We can prove now that Θm(H m x A ∼ B, 0) = 0. In fact, by 3.6 and 3.14 we
infer Θm(H m x A ∼ X(0, T, 1), 0) = 0. Moreover, if 0 < r ≤ δ1 and i ≥ 1 are
such that δi+1 < r ≤ δi then

Qr ∩A ∩X(0, T, 1) ∼ B ⊆ (Qr ∩A ∼ Ai) ∪
⋃∞
j=i+1Qδj ∩A ∼ Aj ,

H m(Qr ∩A ∩X(0, T, 1) ∼ B) ≤ α(m)rm
∑∞
j=i 2−j .
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Since this implies 0 ∈ ClosB by 3.14, it follows that

lim
r→0

r−k sup{|P (T\(z))− T⊥\ (z)| : z ∈ B ∩ T−1\ [B(0, r)]} = 0 if α = 0,

lim sup
r→0

r−k−α sup{|P (T\(z))− T⊥\ (z)| : z ∈ B ∩ T−1\ [B(0, r)]} ≤ λ if α > 0.

In particular, Tan∗(B, 0) ⊆ T . By 3.5 and 3.14 we get that

T = Tanm∗ (H m xA, 0) ⊆ Tanm∗ (H m xB, 0).

Therefore B is pointwise differentiable of order 1 at a with T = Tan(B, 0) =
Tanm(H m xB, 0) by 3.27 and 3.32(3). Moreover, since Tan(grP, 0) = T , we
can use 3.11 to check that the conditions in 3.29 hold with M replaced by grP .
Therefore, by [Men16, 3.12] and 3.20, we conclude that

pt DiB(0, T ) = ap DiA(0) for i = 2, . . . , k.

3.36 Theorem. Let A ⊆ Rn, a ∈ Rn, ν ∈ Sn−1, 0 < r <∞ and suppose

U(a+ rν, r) ∩A = ∅.

Then the following three statements hold.

(1) If A is a submanifold of class 2 and a ∈ A then

bA(a)(v, v) • ν ≤ r−1|v|2 whenever v ∈ Tan(A, a).

(2) If A is pointwise differentiable of order 2 at a then

pt D2A(a,Tan(A, a))(v, v) • ν ≤ r−1|v|2 whenever v ∈ Tan(A, a).

(3) If A is approximately differentiable of order 2 at a then

ap D2A(a)(v, v) • ν ≤ r−1|v|2 whenever v ∈ ap Tan(A, a).

Proof. Assume a = 0. Observe that ν ∈ Tan∗(A, 0)⊥ in case the hypothesis of
1 or 2 are satisfied.

The statement in (1) is classical. We give a proof here for completeness.
If T = Tan(A, 0) then there exist a function f : T → T⊥ of class 2 and an
open neighbourhood U of 0 ∈ Rn such that D f(0) = 0, T\[U ] = T\[U ∩ A] and
A ∩ U = {χ+ f(χ) : χ ∈ T\[U ]}. Since for every χ ∈ T\[U ]

|χ+ f(χ)− rν| ≥ r, 2r f(χ) • ν ≤ |χ|2 + |f(χ)|2,

we conclude that D2 f(0)(v, v) • ν ≤ r−1|v|2 for every v ∈ Tan(A, 0) and, since
bA(0) = D2 f(0), the statement in (1) follows.

The statement in (2) is an immediate consequence of [Men16, 3.18]. In fact
suppose T = Tan(A, 0), P : T → T⊥ is the homogeneous polynomial function
of degree 2 such that pt D2A(0, T ) = D2(P ◦ T\)(0) (whose existence can be
asserted, from instance, by [Men16, 3.22]) and B = {χ+ P (χ) : χ ∈ T}. If we
prove that U(rν, r)∩B = ∅ then (2) is a consequence of (1). By contradiction

26



let x ∈ B ∩U(rν, r) and, by [Men16, 3.18], for every positive integer i we can
select xi ∈ A such that

|iT\(xi) + i2T⊥\ (xi)− x| → 0 as i→∞.

Since |xi − rν| ≥ r for every i ≥ 1, we get

|iT\(xi) + i2T⊥\ (xi)− rν|2

= i2|xi − rν|2 + (i4 − i2)|T⊥\ (xi)|2 + r2 − i2r2

≥ (i4 − i2)|T⊥\ (xi)|2 + r2 for i ≥ 1;

yet |iT\(xi) + i2T⊥\ (xi)− rν| < r for i large. This is a contradiction.
Finally (3) is a consequence of (2) and 3.35.

Rectifiability and Borel measurability

In 3.37, 3.38 and 3.40 we study the measurability properties of the approximate
differentials. Then in 3.39 we prove a novel criterion for higher order rectifia-
bility. This result together with 3.23 provides a full characterization of higher
order rectifiable sets in terms of approximate differentiability.

3.37 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, γ = k+α and
A ⊆ Rn. Let Y be the set of

(a, T, φ0, . . . , φk) ∈ Rn ×G(n,m)×
k∏
i=0

⊙i
(Rn,Rn)

such that φ0 = T⊥\ (a) and

lim
r→0

H m
(
A ∩U(a, r) ∩ {z : |T⊥\ (z)−

∑k
j=0〈T\(z − a)j/j!, φj〉| > ε rγ}

)
α(m) rm

= 0

for every ε > 0 [for some 0 ≤ ε <∞].

Then Y is a Borel subset of Rn ×G(n,m)×
∏k
i=0

⊙i
(Rn,Rn).

Proof. Let Z = Rn ×G(n,m) ×
∏k
j=0

⊙j
(Rn,Rn). If 0 < ε < ∞, i ≥ 1 is an

integer and 0 < r < ∞ we define Wε,i,r to be the set of (a, T, φ0, . . . , φk) ∈ Z
such that φ0 = T⊥\ (a) and

H m
(
A ∩U(a, r) ∩

{
z : |T⊥\ (z)−

∑k
l=0〈T\(z − a)l/l!, φl〉| > ε rγ

})
≤ i−1 rm.

Then Wε,i,r is a closed subset of Z. In fact if (aj , Tj , φ0,j , . . . , φk,j) ∈ Wε,i,r,
j ≥ 1, is a sequence converging to (a, T, φ0, . . . , φk) ∈ Z as j →∞, we define

Pj(χ) =
∑k
l=0〈(χ− Tj \(aj))l/l!, φl,j〉 for χ ∈ Tj and j ≥ 1,

P (χ) =
∑k
l=0〈(χ− T\(a))l/l!, φl〉 for χ ∈ T ,

and we observe that Pj(Tj \(z))→ P (T\(z)) as j →∞, whenever z ∈ Rn. Let

Bj = A ∩U(aj , r) ∩ {z : |T⊥j \(z)− Pj(Tj \(z))| > ε rγ},
B = A ∩U(a, r) ∩ {z : |T⊥\ (z)− P (T\(z))| > ε rγ}
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and observe that

B ⊆
∞⋃
j=1

∞⋂
h=j

Bh.

Therefore, by [Fed69, 2.1.5(1)], we conclude that

H m(B) ≤ lim
j→∞

H m(

∞⋂
h=j

Bh) ≤ lim inf
j→∞

H m(Bj) ≤ i−1rm,

(a, T, φ0, . . . , φk) ∈Wε,i,r and Wε,i,r is closed.
Henceforth Y is a Borel set because

Y =
⋂∞
l=1

⋂∞
i=1

⋃∞
j=1

⋂
{Wl−1,i,r : 0 < r ≤ j−1},[

Y =
⋃∞
l=1

⋂∞
i=1

⋃∞
j=1

⋂
{Wl,i,r : 0 < r ≤ j−1}

]
.

3.38 Lemma. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and τa(x) = x − a
whenever a, x ∈ Rn. Let Y be the set of (a, T ) ∈ Rn ×G(n,m) such that for
every ε > 0 there exist η > 0 and ρ > 0 such that

H m(C(T, z, εr, εr) ∩ τa[A]) ≥ ηα(m)rm

for every 0 < r ≤ ρ and for every z ∈ T ∩B(0, r).
Then Y is a Borel subset of Rn ×G(n,m).

Proof. We prove that (Rn ×G(n,m)) ∼ Y is a Borel subset of Rn ×G(n,m).
For every ε > 0, η > 0 and 0 < ρ2 < ρ1 suppose Wε,η,ρ1,ρ2 is the set of
(a, T ) ∈ Rn ×G(n,m) such that

H m(C(T, z, εr, εr) ∩ τa[A]) ≤ ηα(m)rm

for some z ∈ B(0, r) ∩ T and some ρ2 ≤ r ≤ ρ1. We prove that Wε,η,ρ1,ρ2 is
a closed subset of Rn × G(n,m). Suppose (aj , Tj) ∈ Wε,η,ρ1,ρ2 , j ≥ 1, is a
sequence converging to (a, T ) ∈ Rn ×G(n,m) as j →∞. Therefore there exist
sequences ρ2 ≤ rj ≤ ρ1 and zj ∈ Tj ∩B(0, rj), for j ≥ 1, such that

H m(C(Tj , zj , εrj , εrj) ∩ τaj [A]) ≤ ηα(m)rmj for every j ≥ 1.

Then there exist z ∈ Rn and r ∈ R such that, possibly passing to a subsequence,
zj → z and rj → r as j → ∞. Observe that z ∈ B(0, r) ∩ T and ρ2 ≤ r ≤ ρ1.
For each j ≥ 1 we define

Bj = C(Tj , zj , εrj , εrj) ∩ τaj [A], B = C(T, z, εr, εr) ∩ τa[A],

and one may easily verify that

B ⊆
⋃
h=1

∞⋂
k=h

τa−ak [Bk].

Now we can use [Fed69, 2.1.5(1)] to conclude that

H m(B) ≤ lim inf
h→∞

H m
(
τa−ah [Bh]

)
≤ α(m)ηrm.
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Therefore (a, T ) ∈Wε,η,ρ1,ρ2 and Wε,η,ρ1,ρ2 is a closed subset of Rn ×G(n,m).
If E ⊆ R is a countable set such that inf E = 0 /∈ E then it is not difficult to
see that (

Rn ×G(n,m)
)
∼ Y =

⋃
ε∈E

⋂
η∈E

⋂
ρ1∈E

⋃
ρ2∈E

Wε,η,ρ1,ρ2 .

3.39 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆
Rn such that H m(A) <∞ and for every a ∈ A there exists an m dimensional
submanifold B ⊆ Rn of class (k, α) such that a ∈ B and the following condition
(∗) is satisfied. For every ε > 0

lim
r→0

H m
(
A ∩B(a, r) ∩ {z : δB(z) > ε rk}

)
α(m)rm

= 0

and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(
A ∩B(a, r) ∩ {z : δB(z) > λrk+α}

)
α(m)rm

= 0.

Then A is (H m,m) rectifiable of class (k, α).

Proof. If a ∈ A and B is an m dimensional submanifold of class 1 such that
a ∈ B and (∗) is satisfied then, by 3.11 and 3.6, we get that Tan∗m(H m xA, a) ⊆
Tan(B, a) and

Θm(H m x A ∼ X(a,Tan(B, a), ε), a) = 0 for every ε > 0.

Therefore by [Fed69, 2.10.19(2), 3.3.17, 3.2.29] we conclude that A is (H m,m)
rectifiable of class 1.

Let S ∈ G(n,m), let U ⊆ S be relatively open, let f : U → S⊥ be a function
of class 1, M = {χ + f(χ) : χ ∈ U}, Lip f < ∞ and H m(M) < ∞. We prove
that M ∩ A is (H m,m) rectifiable of class (k, α). This evidently implies that
A is (H m,m) rectifiable of class (k, α).

Let X be the set of points a ∈ Rn such that there exists an m dimensional
submanifold B of class (k, α) such that a ∈ B and (∗) is satisfied. Then X is
an H m measurable subset of Rn by 3.11, 3.37 and [Fed69, 2.2.13]. Let E ⊆M
be an H m hull4 of M ∩ A and we prove that E ∩X is (H m,m) rectifiable of
class (k, α). Observe that E ∩X satifies the same hypothesis A does. Let Y be
the set of points a ∈ E ∩X such that Θm(H m x M ∼ (E ∩X), a) = 0. We use
3.34, 3.5 and 3.27 to conclude that

Tan∗m(H m xE ∩X, a) = Tan(M,a) for every a ∈ Y .

By [Fed69, 2.10.19(4)] we have H m(E ∩X ∼ Y ) = 0. Let

C = S ∩ {χ : χ+ f(χ) ∈ E ∩X}, D = S ∩ {χ : χ+ f(χ) ∈ Y },

we observe that H m(C ∼ D) = 0 and

Θm(H m x S ∼ C,χ) = 0 for every χ ∈ D.

Let χ ∈ D, a = χ + f(χ) and suppose B is an m dimensional submanifold
of class (k, α) such that a ∈ B and (∗) is satisfied with A replaced by E ∩ X.

4See [Fed69, 2.1.4].
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Since Tan(B, a) ∩ S⊥ = {0} there exist a function g : S → S⊥ of class (k, α)
and an open neighbourhood V of a such that B ∩ V = {ζ + g(ζ) : ζ ∈ S} ∩ V .
Therefore, by 3.11,

lim
r→0

H m
(
E ∩X ∩B(a, r) ∩ {z : |g(S\(z))− S⊥\ (z)| > ε rk}

)
α(m)rm

= 0

for every ε > 0 and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(
E ∩X ∩B(a, r) ∩ {z : |g(S\(z))− S⊥\ (z)| > λrk+α}

)
α(m)rm

= 0.

Let P : S → S⊥ be the k jet of g at χ. If ε > 0 then, possibly replacing λ by a
larger number if α > 0, we can choose ρ > 0 such that

|g(ζ)− P (ζ)| ≤ λ rk+α if α > 0, |g(ζ)− P (ζ)| ≤ ε rk if α = 0,

for every ζ ∈ B(χ, r) and 0 < r ≤ ρ. Let Γ = (1 + (Lip f)2)1/2, γ = λ+ Γk+α λ
if α > 0 and observe that whenever 0 < r ≤ ρ

C ∩B(χ, r) ∩ {ζ : |f(ζ)− P (ζ)| > γ rk+α}
⊆ S\[E ∩X ∩B(a,Γ r) ∩ {z : |S⊥\ (z)− g(S\(z))| > λΓk+α rk+α}] if α > 0,

C ∩B(χ, r) ∩ {ζ : |f(ζ)− P (ζ)| > 2ε rk}
⊆ S\[E ∩X ∩B(a,Γ r) ∩ {z : |S⊥\ (z)− g(S\(z))| > ε rk}] if α = 0.

Since χ is arbitrarily chosen in D we infer by 2.6 and 2.11 that there exist
countably many functions gj : S → S⊥ of class (k, α) such that

H m
(
C ∼

⋃∞
j=1{ζ : f(ζ) = gj(ζ)}

)
= 0,

implying that E ∩X is (H m,m) rectifiable of class (k, α).

3.40 Theorem. Suppose n ≥ 1 and A ⊆ Rn.
Then ap Tan(A, ·)\ is a Borel map whose domain is a Borel subset of Rn.

The same conclusion is true for ap Dk A for every k ≥ 2.

Proof. This is a consequence of 3.37, 3.38 and [Men16, 4.1].

3.41 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
A ⊆ Rn such that H m(A) < ∞ and X is the set of a ∈ Rn such that A is
approximately differentiable of order (k, α) at a with dim ap Tan(A, a) = m.

Then X is a Borel subset of Rn and A ∩X is (H m,m) rectifiable of class
(k, α).

Proof. This is a consequence of 3.37, 3.38, [Men16, 4.1] and 3.39.
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Chapter 4

A second order rectifiable
stratification for sets

Statement

After we have introduced the necessary definitions in 4.2, we provide the state-
ment of the main result of this chapter in 4.3.

4.1. First of all it is convenient to recall some basic facts about sets of positive
reach and convex sets.

Suppose 0 ≤ m ≤ n are integers and A ⊆ Rn is a non empty closed set. Fol-
lowing [Fed59, 4.1] we define reach(A, a) = sup{r : U(a, r) ⊆ UnpA} whenever
a ∈ A and reachA = inf{reach(A, a) : a ∈ A}.

(1) The following fact is proved in [Fed59, 4.8(12)] and we state it here using
the terminology we have introduced above. If a ∈ A and reach(A, a) > 0
then

Tan∗(A, a) = Tan∗(A, a), Tan(A, a) = Dual Nor(A, a).

Moreover if reach(A, a) > r > 0 and

S = {λv : λ ≥ 0, |v| = r, ξA(a+ v) = a}

then either S = ∅ and Nor(A, a) = {0} or S = Nor(A, a).

(2) If A is convex then, by [Fed69, 4.1.16], we infer that reachA =∞. More-
over if a ∈ A one may readily verify that

Tan(A, a) = Clos{λ(x− a) : x ∈ A, 0 < λ <∞}

and, using [Roc70, 2.6.3, 6.2], one may infer that Tan(A, a) is the smallest
closed convex cone containing A. Finally we observe that

Nor(A, a) = Dual{x− a : x ∈ A} whenever a ∈ A.

In particular, N (A, a) = Nor(A, a) whenever a ∈ A (see 1.6).
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4.2. Suppose A ⊆ Rn is closed and a ∈ A. Since by [Fed59, 4.8(2)]

Rn ∩ {u : δA(a+ u) = |u|}

is a closed convex subset of Nor∗(A, a) containing 0 then, by 4.1 we define

nor(A, a) = Tan(Rn ∩ {u : δA(a+ u) = |u|}, 0)

and we observe that nor(A, a) ⊆ Nor∗(A, a). If reach(A, a) > 0 we can use 4.1
to infer that

Nor(A, a) = nor(A, a).

For each integer 0 ≤ m ≤ n we define

Σm(A) = A ∩ {a : H n−m(nor(A, a)) > 0}.

Evidently Σ0(A) ⊆ Σ1(A) ⊆ . . . ⊆ Σn−1(A) ⊆ Σn(A) = A and, by [Roc70,
6.2],

Σm(A) = A ∩ {a : H n−m(Rn ∩ {u : δA(a+ u) = |u|}) > 0}

whenever m = 0, . . . , n.

We can now state the main result of this chapter whose proof is postponed
to 4.16.

4.3 Theorem. Suppose 0 ≤ m ≤ n are integers and A ⊆ Rn is closed.
Then Σm(A) is a Borel subset of Rn and it is countably (H m,m) rectifiable

of class 2.

Preparation

Here we collect several technical lemmas that we use in the proof of 4.3.

4.4. Suppose A is a non empty closed subset of Rn and 0 < r < s < ∞. We
define

Sr(A) = Rn ∩ {z : δA(z) = r},

Ssr(A) = {a+ (r/s)u : a ∈ A, δA(a+ u) = |u| = s}.

By [Fed69, 3.2.12, 3.2.15] one may easily deduce, for L 1 a.e. r > 0, that

H n−1(Sr(A) ∩K) <∞ whenever K ⊆ Rn is compact,

Sr(A) is countably (H n−1, n− 1) rectifiable of class 1.

Evidently Ssr(A) is a Borel subset of Rn and Ssr(A) ⊆ Unp(A)∩Sr(A), whenever
0 < r < s <∞.

4.5 Lemma. Suppose A is a non empty closed subset of Rn and 0 < r < s <∞.
Then Lip(ξA|Ssr(A)) ≤ (s− r)−1s.
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Proof. The argument in this proof resembles the proof of [Fed59, 4.8(7), 4.8(8)].
Suppose ξ = ξA|Ssr(A). Let x ∈ Ssr(A), b ∈ A,

u =
x− ξ(x)

|x− ξ(x)|
, J = {t : δA(ξ(x) + tu) = t}.

Then sup J ≥ s. If t ∈ J we have

|ξ(x) + tu− b| ≥ δA(ξ(x) + tu) = t,

t2 ≤ |ξ(x)− b|2 + t2 + 2tu • (ξ(x)− b),

(x− ξ(x)) • (ξ(x)− b) ≥ −(2t)−1|ξ(x)− b|2|x− ξ(x)|

and, letting t→ s−, we conclude

(x− ξ(x)) • (ξ(x)− b) ≥ −(2s)−1|ξ(x)− b|2r.

If x, y ∈ Ssr(A) then

(x− ξ(x)) • (ξ(x)− ξ(y)) ≥ −(2s)−1|ξ(x)− ξ(y)|2r,

(y − ξ(y)) • (ξ(y)− ξ(x)) ≥ −(2s)−1|ξ(x)− ξ(y)|2r,

|x− y||ξ(x)− ξ(y)| ≥ (x− y) • (ξ(x)− ξ(y))

= (x− ξ(x)) • (ξ(x)− ξ(y)) + |ξ(x)− ξ(y)|2 + (ξ(y)− y) • (ξ(x)− ξ(y))

≥ s−1(s− r)|ξ(x)− ξ(y)|2.

4.6 Lemma. Suppose A is a non empty closed subset of Rn and 0 < r < s <∞.
If ν : Ssr(A) → Rn is defined by ν(x) = r−1(x − ξA(x)) whenever x ∈ Ssr(A)
then the following three conditions hold.

(1) Whenever x ∈ Ssr(A)

U
(
x− r

2ν(x), r2
)
∩ Sr(A) = ∅, U

(
x+ s−r

2 ν(x), s−r2
)
∩ Sr(A) = ∅.

(2) Whenever x ∈ Ssr(A)

lim sup
δ→0+

δ−2 sup{|ν(x) • (z − x)| : z ∈ Sr(A) ∩U(x, δ)} <∞.

(3) Whenever x ∈ Ssr(A)

lim sup
δ→0+

δ−2 sup{|ν(x) • (ξA(z)− ξA(x))| : z ∈ Ssr(A) ∩U(x, δ)} <∞.

In particular Ssr(A) is countably (H n−1, n− 1) rectifiable of class 2.

Proof. Suppose ξ = ξA|Ssr(A).
Let x ∈ Ssr(A), c = x+ ((s− r)/2)ν(x) and b = x− (r/2)ν(x). First observe

that U(b, r/2) ⊆ U(ξ(x), r) and U(ξ(x), r) ∩ Sr(A) = ∅. Suppose w ∈ Sr(A)
and a ∈ A so that

δSr(A)(c) = |w − c|, δA(w) = |w − a|.
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We observe that ξ(c) = ξ(x), |c−ξ(c)| = |c−x|+|x−ξ(x)| and |c−ξ(c)| ≤ |c−a|.
Therefore

|c− x| = |c− ξ(c)| − |x− ξ(x)| ≤ |c− a| − |x− ξ(x)|
≤ |c− w|+ |w − a| − |x− ξ(x)| = |c− w|.

This implies that δSr(A)(c) = |c − x| = (s − r)/2 and (1) is proved. Observe
that (2) is an immediate consequence of (1). Finally in order to prove (3) we
observe

(ν(z)− ν(x)) • ν(x) = −(1/2)|ν(z)− ν(x)|2,
(ξ(z)− ξ(x)) • ν(x) = r(ν(x)− ν(z)) • ν(x) + (z − x) • ν(x),

|(ξ(z)− ξ(x)) • ν(x)| ≤ (r/2) Lip(ν)2 |z − x|2 + |(z − x) • ν(x)|

whenever z, x ∈ Ssr(A). Therefore (3) follows from (2).
The postscript is a consequence of 3.39 and [Fed69, 3.1.15].

4.7. The following proposition is classical and it is based on [Fed69, 2.10.26].
Suppose X and Y are metric spaces, X is compact, f : X → Y is a contin-

uous map, F is a family of open subsets of X, ζ is a function such that

0 ≤ ζ(S) ≤ ∞ whenever S ∈ F ,

ψ is the result of the Caratheodory’s construction from ζ on F and φδ is the
size δ approximating measure for every 0 < δ ≤ ∞ (see [Fed69, 2.10.1]). Then
the function mapping y ∈ Y onto ψ(f−1{y}) is Borel. In fact, if t > 0, letting

V = Y ∩ {y : ψ(f−1{y}) ≤ t},

Vi = Y ∩ {y : φ1/i(f
−1{y}) < t+ (1/i)} for every integer i ≥ 1,

we observe that

V =

∞⋂
i=1

Vi

and Vi is open whenever i ≥ 1. The latter can be proved observing that if y ∈ Vi
then there exists a countable open covering G of f−1{y} such that

diameterS ≤ 1/i whenever S ∈ G,
∑
S∈G

ζ(S) < t+ (1/i);

since X is compact, there exists ε > 0 such that

f−1[U(y, ε)] ⊆
⋃
G.

4.8 Lemma. Suppose n ≥ m ≥ µ, ν ≥ µ,

W ⊆ Rn is countably (H m,m) rectifiable, H m measurable and
H m(K ∩W ) <∞ whenever K is a compact subset of Rn,

Z ⊆ Rν is countably (H µ, µ) rectifiable, H µ measurable and
H µ(Z ∩K) <∞ whenever K is a compact subset of Rν ,
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f : W → Z is a Lipschitzian map,

V = W ∩ {w : ap Jµf(w) = 0},

where the (H m xW,m) approximate µ dimensional Jacobian of f at w is defined
by the formula

ap Jµf(w) = ‖
∧
µ

(
(H m xW,m) ap D f(w)

)
‖

whenever Tanm(H m xW,w) ∈ G(n,m) and f is (H m xW,m) approximately
differentiable1 at w.

Then the following three statements hold:

(1) if X ⊆ Z is H µ measurable then f−1[X] ∼ V is H m measurable;

(2) if n = m, L n(V ) = 0 and H n−µ(f−1(z)) > 0 for H µ a.e. z ∈ Z then
there exists a countable collection G of H µ measurable subsets of W such
that H µ (Z ∼

⋃
{f [P ] : P ∈ G}) = 0 and, if P ∈ G, then

f |P is univalent, Lip
(
(f |P )−1

)
<∞,

P is contained in some affine set of Rn of dimension µ;

(3) if H m(V ) = 0 and H m−µ(f−1(z)) > 0 for H µ a.e. z ∈ Z then there
exists a countable collection G of H µ measurable subsets of W such that
H µ (Z ∼

⋃
{f [P ] : P ∈ G}) = 0 and, if P ∈ G, then

f |P is univalent, Lip
(
(f |P )−1

)
<∞,

P is µ rectifiable.

Proof. In order to prove (1) we observe, by [Fed69, 2.2.3], that there exists a
Borel set B ⊆ X such that H µ(X ∼ B) = 0 and another Borel set A ⊆ Z
such that X ∼ B ⊆ A and H µ(A) = 0. Noting [Fed69, 2.10.19(4)], by [Fed69,
3.2.22(3)] with W , Z and f replaced by f−1[A], A and f |f−1[A],∫

f−1[A]∼V
ap Jµf(w)dH mw =

∫
A

H m−µ (f−1(z)
)
dH µz = 0,

H m
(
f−1[A] ∼ V

)
= 0.

Since f−1[X] ∼ V =
(
f−1[B] ∼ V

)
∪
(
f−1[X ∼ B] ∼ V

)
we conclude that

f−1[X] ∼ V is H m measurable.
In order to prove (2) we first notice, by [Fed69, 2.10.19(4), 3.2.16] that (see

2.2)
(L n xW,n) ap D f(w) = ap D f(w) for L n a.e. w ∈W .

We consider the class Ω of all families G of H µ measurable subsets P of W
such that f [P ] ∩ f [Q] 6= ∅ if and only if P = Q and such that if P ∈ G then

H µ(P ) > 0, f |P is univalent, Lip
(
(f |P )−1

)
<∞,

P is contained in some µ dimensional affine set of Rn.

1For the notion of (φ,m) approximate differentiability for functions, where φ is a measure
over some normed vector space X and m is a positive integer, see [Fed69, 3.2.16].
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Let G be a maximal element of Ω with respect to inclusion and note that G is
countable. If the H µ measurable set

Z1 = Z ∼
⋃
{f [P ] : P ∈ G}

had positive H µ measure, then f−1[Z1] would be L n measurable by (1) and
L n(f−1[Z1]) > 0 by [Fed69, 3.2.22(3)]. Then one could choose T ∈ G(n, µ)
such that L n(W1) > 0, where

W1 = f−1[Z1] ∩ {w : ‖
∧
µ(ap D f(w)|T )‖ > 0},

and apply [Fed69, 2.6.2(3)] to infer that there exists η ∈ Rn such that

H µ(R) > 0

where R = W1 ∩ {ζ : ζ − η ∈ T}. Furthermore there exists a Lipschitzian
function F : Rn → Rν such that F |W = f by [Fed69, 2.10.43]. Since F is
pointwise differentiable at w with DF (w) = ap D f(w) whenever w ∈ W1 by
[Fed69, 3.1.5], we can use [Fed69, 3.2.2] to infer the existence of a Borel set
P ⊆ R such that the family G ∪ {P} belongs to Ω, in contradiction with the
maximality of G.

Finally we prove (3). Suppose Ki is a sequence of compact subsets of Rm

and ψi : Rm → Rn is a sequence of Lipschitzian maps satisfying the conclusion
of [Fed69, 3.2.18] with respect to W , for some 1 < λ < ∞. For every integer
i ≥ 1 let

Zi = Rν ∩ {z : H m−µ(f−1(z) ∩ ψi[Ki]) > 0},

and observe, by [Fed69, 3.2.22(3)], that H µ(Z ∼
⋃∞
i=1 Zi) = 0. By 4.7 the set

Zi is a Borel subset of Rν . We define

Wi = f−1[Zi] ∩ ψi[Ki] for every integer i ≥ 1

and we observe they are Borel subsets of Rn. For every integer i ≥ 1 let
fi : ψ−1i [Wi]→ Zi be given by

fi = f ◦ (ψi|ψ−1i [Wi])

and Vi = ψ−1i [Wi] ∩ {x : ‖
∧
µ(ap D fi(x))‖ = 0}. We use [Fed69, 2.10.19(4),

3.2.22(3)] to infer that

H m(ψi[Ki] ∼ f−1[Zi]) = 0 for every i ≥ 1.

Therefore
H m (W ∼

⋃∞
i=1Wi) = 0.

Moreover H m−µ(f−1i (z)) > 0 for every z ∈ Zi. Finally combining [Fed69,
2.10.43, 3.1.5, 3.2.17] we infer that

ψi[Vi ∩ {x : Θm(H m x W ∼Wi, ψi(x)) = 0}] ⊆ V ∩Wi

and, by [Fed69, 2.10.19(4)],

Lm(Vi ∼ {x : Θm(H m x W ∼Wi, ψi(x)) = 0}) = 0
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whenever i ≥ 1. Therefore we can apply (2) to conclude that for every i ≥ 1
there exists a countable family Gi of H µ measurable and µ rectifiable subsets
of Wi such that

H µ (f [Wi] ∼
⋃
{f [P ] : P ∈ Gi}) = 0,

f |P is univalent, Lip
(
(f |P )−1

)
<∞.

Applying [Fed69, 2.10.25] with A replaced by f−1
[
f [W ] ∼

⋃∞
i=1 f [Wi]

]
and

[Fed69, 2.10.26] we infer that H µ (f [W ] ∼
⋃∞
i=1 f [Wi]) = 0; therefore

H µ (f [W ] ∼
⋃∞
i=1

⋃
{f [P ] : P ∈ Gi}) = 0.

4.9. Suppose A is a non empty closed subset of Rn. We define

Q = (A×Rn) ∩ {(a, u) : δA(a+ u) = |u| ≤ 1},

N = (A×Rn) ∩ {(a, u) : u ∈ aff Q(a)}.
Observe that aff Q(a) is a linear subspace of Rn for every a ∈ A. Evidently

Q is a closed subset of Rn ×Rn. Moreover it is not difficult to see that N is a
countable union of compact sets. In fact, if

Qn = {(a, u1, . . . , un) : a ∈ A, ui ∈ Q(a) for i = 1, . . . , n}

and L : (Rn)n+1 ×Rn → Rn ×Rn is defined by

L(a, u1, . . . , un, λ1, . . . , λn) = (a,
∑n
i=1 λi ui),

we observe that Qn is a closed subset of (Rn)n+1 and N = L[Qn ×Rn].
Since Q(a) is convex (by [Fed59, 4.8(2)]) and

nor(A, a) = Clos{λu : λ > 0, u ∈ Q(a)}

for each a ∈ A, we can use [Roc70, 2.6.3, 6.2] to deduce that

aff nor(A, a) = N(a) whenever a ∈ A.

4.10 Lemma. Suppose A ⊆ Rn is closed.
Then for each integer 0 ≤ m ≤ n the set Σm(A) is a Borel subset of Rn.

Proof. We assume m < n since Σn(A) = A.
Since N is a countable union of compact sets then

{a : N(a) ∩W 6= ∅}

is a countable union of compact sets, whenever W ⊆ Rn is open. Therefore we
can apply [CV77, III.7] to infer the existence of countably many Borel functions
uj : A→ Rn such that

Clos{uj(a) : j ≥ 1} = N(a) whenever a ∈ A.

Since δN(a)(v) = inf{|v−uj(a)| : j ≥ 1} whenever (a, v) ∈ A×Rn, we conclude
that δN(a)(v) is a Borel function with respect to (a, v) ∈ A ×Rn. Let D be a
countable dense subset of G(n,m+ 1). Then it is not difficult to show that

A ∩ {a : dimN(a) ≤ m} =
⋂
S∈D

{
a : sup{δN(a)(v) : v ∈ S ∩ Sn−1} ≥ 1

}
.

Therefore dimN(a) is a Borel function with respect to a ∈ A. We use now 4.9
to conclude that A ∩ {a : dimN(a) ≥ n−m} = Σm(A).
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4.11. The following facts will be used in the proof of 4.12 and 4.15.

(1) If X is a metric space then every Borel subset of X is a Suslin subset of X.
This is proved in [Fed69, 2.2.10, p. 66].

(2) If X is a topological space, S is a Suslin subset of X and T is a Suslin
subset of S then T is a Suslin subset of X. In fact, using the notation of
[Fed69, 2.2.10], if C ⊆ X×N is a closed set such that T = p[C∩(S×N )]
then T = p[C] ∩ S, implying that T is a Suslin subset of X by [Fed69,
2.2.10, p. 66].

(3) If X is a complete separable metric space and B is a Borel subset of X
then the following conditions are equivalent for S ⊆ B.

(a) S is a Suslin subset of B;

(b) S is a Suslin subset of X;

(c) there exists a complete separable metric space Y and f : Y → X
continuous such that im f = S (this is the definition of Suslin subset
used in [CV77], see [CV77, III.17]).

By (1) and (2) we deduce that (3a) implies (3b), by [Fed69, 2.2.6] we may
infer that (3b) implies (3c) and by [Fed69, 2.2.10, p. 65] we get that (3c)
implies (3a).

(4) If X and Y are topological spaces, f : X → Y is continuous and F is
the Borel family generated by the Suslin subsets of X then f−1[S] ∈ F
whenever S is an element of the Borel family generated by the Suslin
subsets of Y . In fact, by [Fed69, 2.2.10, p. 66],

2Y ∩ {T : f−1[T ] ∈ F}

is a Borel family with respect to Y containing the Suslin subsets of Y .

4.12 Lemma. Suppose A ⊆ Rn is closed.
Then there exist ρ : Σn−1(A)→ R and ζ : Σn−1(A)→ Rn such that

ρ(a) > 0, ζ(a) ∈ N(a), U(ζ(a), ρ(a)) ∩N(a) ⊆ Q(a),

whenever a ∈ Σn−1(A). Moroever ρ is a Borel function and ζ is so that for
each open U ⊆ Rn the set ζ−1[U ] belongs to the Borel family generated by the
Suslin subsets of Σn−1(A).

Proof. For each integer i ≥ 1 let

Ri = N ∩ {(a, u) : either δA(a+ u) ≤ |u| − i−1 or δA(a+ u) = |u| ≥ 1}

and observe that Ri ⊆ Ri+1 whenever i ≥ 1, Ri(a) = ∅ whenever i ≥ 1 and
a ∈ A ∼ Σn−1(A), ⋃∞

i=1 dmnRi = Σn−1(A).

Fix i ≥ 1. Since N is a countable union of compact sets by 4.9, so is Ri.
Therefore {a : Ri(a) ∩W 6= ∅} is a countable union of compact sets whenever
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W ⊆ Rn is open and, applying [CV77, III.7], we conclude there exist countably
many Borel functions wi,j : dmnRi → Rn such that

Clos{wi,j(a) : j ≥ 1} = Ri(a) whenever a ∈ dmnRi.

Thereofore δRi(a)(v) = inf{|wi,j(a)−v| : j ≥ 1} is a Borel function with respect
to (a, v) ∈ (dmnRi)×Rn. Since2

δN(a)∼Q(a)(v) = inf{δRi(a)(v) : i ≥ 1}

whenever (a, v) ∈ Σn−1(A)×Rn, we conclude that

δN(a)∼Q(a)(v) is a Borel function with respect to (a, v) ∈ Σn−1(A)×Rn.

Therefore we define ρ : Σn−1(A)→ R by

ρ(a) = sup{δN(a)∼Q(a)(v) : v ∈ N(a)} whenever a ∈ Σn−1(A)

and observe3 it is a Borel function such that ρ(a) > 0 whenever a ∈ Σn−1(A).
Since N ∩{(a, v) : δN(a)∼Q(a)(v) = ρ(a)} is a Borel subset of Σn−1(A)×Rn, we
can apply [CV77, Theorem III.18] in combination with 4.11(3) to deduce the
existence of a function

ζ : Σn−1(A)→ Rn

such that for every open subset U of Rn the subset ζ−1[U ] belongs to the Borel
family generated by the Suslin subsets of Σn−1(A) and

ζ(a) ∈ N(a), δN(a)∼Q(a)(ζ(a)) = ρ(a),

whenever a ∈ Σn−1(A).

4.13 Lemma. Suppose A ⊆ Rn is a closed set and Q is defined as in 4.9. If
0 < r < 1, a ∈ A and C ⊆ Rn is a convex cone such that

∅ 6= C ∩ {u : |u| = r} ⊆ Q(a),

then δDualC(b− a) ≤ (2r)−1|b− a|2 whenever b ∈ A.

Proof. The proof resembles [Fed59, 4.18]. We fix b ∈ A. If v ∈ C, v 6= 0,
u = (r/|v|)v and

J = {t : δA(a+ tu) = t r},
then u ∈ Q(a) and sup J ≥ 1. Observe that if t ∈ J then |a + tu − b| ≥ tr.
Therefore we can compute

(a− b) • v ≥ −(2r)−1|a− b|2|v|,
|(b− a)− v|2 ≥ |b− a|2 + |v|2 − r−1|a− b|2|v|

= |b− a|2 + |v|2 − r−1|a− b|2|v|+ (4r2)−1|b− a|4 − (4r2)−1|b− a|4

≥ |b− a|2 − (4r2)−1|b− a|4.
2More precisely for each integer i ≥ 1 we define ψi : Σn−1(A) ×Rn → R as ψi(a, v) =

δRi(a)(v) if (a, v) ∈ (dmnRi)×Rn and ψi(a, v) = ∞ if (a, v) ∈ (Σn−1(A) ∼ dmnRi)×Rn

and we observe that it is a Borel function such that

δN(a)∼Q(a)(v) = inf{ψi(a, v) : i ≥ 1} whenever (a, v) ∈ Σn−1(A)×Rn.

3If the functions uj : A→ Rn are defined as in the proof of 4.10 for each j ≥ 1, then

ρ(a) = sup{δN(a)∼Q(a)(uj(a)) : j ≥ 1} whenever a ∈ Σn−1(A).
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Therefore [δC(b−a)]2 ≥ |b−a|2− (4r2)−1|b−a|4 and, by [Fed59, 4.16], we infer
that

[δDualC(b− a)]
2 ≤ |b− a|

4

4r2
.

4.14. In 4.15 we use the concept of universally measurable set as it is given in
[CV77, Definition 21]. For reader’s convenience we give an equivalent formula-
tion of this concept using the terminology of [Fed69].

Suppose F is a Borel family4 with respect to X. A subset of X is called F
universally measurable subset of X if and only if it is φ measurable for every
measure φ over X such that every element of F is φ measurable.

The family of all F universally measurable subsets of X is a Borel family
with respect to X containing F .

In case X is a topological space and F is the Borel family of the Borel subsets
of X then the term “F universally measurable” is replaced by “universally
measurable”.

Finally one may readily verify the following two statements.

(1) If F and G are Borel families with respect to X, H is the Borel family of
all F universally measurable subsets of X and F ⊆ G ⊆ H then the Borel
family of all G universally measurable subsets of X equals H.

(2) If X is a topological space, A is a Borel subset of X and S is a universally
measurable subset of A then S is a universally measurable subset of X

4.15. Suppose A is a non empty closed subset of Rn, Q and N are defined as
in 4.9 and ρ and ζ are as in 4.12. For every a ∈ Σn−1(A) we define

C(a) = {λ(ζ(a) + v) : v ∈ N(a), λ > 0, |v| < ρ(a), ζ(a) • v > 0} if ζ(a) 6= 0,

C(a) = N(a) if ζ(a) = 0.

For each a ∈ Σn−1(A) we observe that C(a) is a (non empty) convex cone by
[Roc70, 2.6.3]; by 4.12, 4.2 and 4.9,

C(a) ⊆ nor(A, a), aff C(a) = aff nor(A, a) = N(a),

and C(a) is relatively open in N(a) whenever a ∈ Σn−1(A). Moreover it is not
difficult to see that if a ∈ Σn−1(A), 0 < r <∞ and ρ(a) ≥ 2r then

∅ 6= C(a) ∩ {u : |u| = r} ⊆ Q(a).

In fact, recalling that U(ζ(a), ρ(a))∩N(a) ⊆ Q(a) by 4.12, we argue as follows.
The conclusion is evidently true if ζ(a) = 0. In case 0 < |ζ(a)| < r then, for each
u ∈ C(a) such that |u| = r we get |ζ(a)− u| < 2r ≤ ρ(a) and u ∈ Q(a). Finally
if |ζ(a)| ≥ r, u ∈ C(a), λ > 0 and v ∈ N(a) are such that u = λ(ζ(a) + v),
|v| < ρ(a), |u| = r and v • ζ(a) > 0 then

ζ(a) + v ∈ Q(a), r = |u| = λ|ζ(a) + v| ≥ λ|ζ(a)|,
λ ≤ 1, u ∈ Q(a),

since Q(a) is a convex set containing 0.

4Borel families are termed “tribes” or “σ fields” in [CV77, p. 60].
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Suppose 0 < r < s <∞, ξ = ξA|Ssr(A), ν(x) = r−1(x− ξ(x)) for x ∈ Ssr(A).
We prove that (notice 4.4)

Bsr = Ssr(A) ∩ {x : ν(x) ∈ C(ξ(x))}

is a universally measurable subset of Ssr(A). In fact let G be the set of all
(x, v) ∈ Ssr(A)×Rn such that

ν(x) =
ζ(ξ(x)) + v

|ζ(ξ(x)) + v|
, v ∈ N(ξ(x)), |v| < ρ(ξ(x)), ζ(ξ(x)) • v > 0.

Employing 4.9, 4.12 and 4.11(4) it is not difficult to see that the set G belongs to
the smallest Borel family with respect to Ssr(A)×Rn containing all the subsets
α × β where α belongs to the Borel family generated by the Suslin subsets of
Ssr(A) and β is a Borel subset of Rn. Therefore one may deduce that dmnG is a
universally measurable subset of Ssr(A) by suitably combining [CV77, Theorem
III.23], 4.11(1), [Fed69, 2.2.12] and 4.14(1). Moreover

Bsr ∩ {x : ζ(ξ(x)) = 0} = Ssr(A) ∩ {x : ν(x) ∈ N(ξ(x)), ζ(ξ(x)) = 0}

is a universally measurable subset of Ssr(A) by 4.9, 4.12, 4.11(4) and [Fed69,
2.2.12]. Since dmnG = Bsr ∩ {x : ζ(ξ(x)) 6= 0} we get the conclusion.

In particular, employing 4.4, 4.14(2) and 4.6 we conclude that Bsr is H n−1

measurable and countably (H n−1, n−1) rectifiable of class 2 whenever 0 < r <
s <∞.

Proof and discussion

Eventually the proof of 4.3 is given in 4.16. We provide few additional comments
and remarks at the end of the section.

4.16. The case m = n is trivial.
The case m = 0 is an elementary consequence of the fact that H n is finite

on bounded subsets of Rn. In fact for 0 < r <∞ and a ∈ A let

Xr(a) = {a+ λu : δA(a+ ru) = r, |u| = 1, 0 ≤ λ < r/2}.

These are Borel subsets of Rn contained in Unp(A) and Xr(a) ∩Xr(b) = ∅ if
a 6= b since Xr(a) ⊆ ξ−1A (a) whenever a ∈ A. Therefore if K ⊆ Rn is compact,
ε > 0 and 0 < r <∞ then

A ∩K ∩ {a : H n(Xr(a)) ≥ ε}

is a set of finite cardinality. Since by 4.2

Σ0(A) = A ∩ {a : H n(Xr(a)) > 0 for some r > 0},

we conclude that Σ0(A) has to be at most countable.
From now on we assume 1 ≤ m < n. Suppose ρ : Σn−1(A)→ R is given by

4.12 and

Σr = Σm(A) ∩ {x : ρ(x) ≥ 2r} whenever 0 < r <∞.
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Observe Σr is a Borel subset of Rn whenever 0 < r < ∞ by 4.12 and 4.10,
Σr ⊆ Σs if s < r, Σr = ∅ if r > 1/2 (since ρ(x) ≤ 1 whenever x ∈ Σn−1(A))
and

Σm(A) =
⋃
r>0

Σr.

Therefore we fix 0 < r < 1/2 and we prove that Σr is countably (H m,m)
rectifiable of class 2. Suppose C(a) is chosen as in 4.15 whenever a ∈ Σn−1(A),

S = Srr/2(A), B = Brr/2, ξ = ξA|S,

and ν : S → Rn is defined by ν(x) = (2/r)−1(x − ξ(x)) whenever x ∈ S. We
observe that

Σr ⊆ {a : H n−m−1(ξ−1(a) ∩B) > 0},

because if a ∈ Σr then {a+ u : u ∈ C(a), |u| = r/2} ⊆ ξ−1(a) ∩B by 4.15 and
H n−m−1({a + u : u ∈ C(a), |u| = r/2}) > 0 by [Fed69, 3.2.22(3)] (recall that
C(a) is a convex cone with aff C(a) = aff nor(A, a) according to 4.15). By 4.15
and [Fed69, 2.10.26, 3.2.31],

Rn ∩ {a : H n−m−1 (ξ−1(a) ∩B(0, i) ∩B
)
≥ j−1}

is H m measurable and (H m,m) rectifiable whenever i ≥ 1 and j ≥ 1 are
integers. Therefore we fix i ≥ 1 and j ≥ 1 integers, we use [Fed69, 2.2.3] and
[Fed69, 3.2.19] to select a Borel subset Y of Rn such that

Y ⊆ Σr ∩ {a : H n−m−1 (ξ−1(a) ∩B(0, i) ∩B
)
≥ j−1},

H m
(
Σr ∩ {a : H n−m−1 (ξ−1(a) ∩B(0, i) ∩B

)
≥ j−1} ∼ Y

)
= 0,

Tanm (H m xY, a) ∈ G(n,m) whenever a ∈ Y ,

and we prove that Y is (H m,m) rectifiable of class 2.
Suppose

V = ξ−1[Y ] ∩ {z : ap Jmξ(z) = 0},

X = Y ∩ {a : H n−m−1 (ξ−1(a) ∩ V
)

= 0},

observe that X is H m measurable by [Fed69, 2.10.26] and ξ−1[X] ∼ V is H n−1

measurable by 4.8(1). Moreover H m(Y ∼ X) = 0 by [Fed69, 3.2.22(3)] and

H n−m−1(ξ−1(a) ∩B ∼ V ) > 0 whenever a ∈ X.

We prove now that

lim sup
δ→0+

δ−2 sup{|T⊥\ (ξ(z)− ξ(w))| : z ∈ U(w, δ) ∩ S} <∞

whenever w ∈ ξ−1[X] ∩ B and T = Tanm(H m xY, ξ(w)). Arguing by con-
tradiction, we assume there exist w ∈ ξ−1[X] ∩ B and sequences δi > 0 and
zi ∈ U(w, δi) ∩ S such that, if T = Tanm(H m xY, ξ(w)), then

δi → 0, δ−2i |T
⊥
\ (ξ(zi)− ξ(w))| → ∞,

42



as i→∞. Let P = DualC(ξ(w)). Since Lip ξ ≤ 2 by 4.5, we use 4.15 and 4.13
to infer the existence of a sequence ci ∈ P such that

|ci − (ξ(zi)− ξ(w))| = δP (ξ(zi)− ξ(w))

≤ (2r)−1|ξ(zi)− ξ(w)|2 ≤ (2/r)|zi − w|2 ≤ (2/r)δ2i whenever i ≥ 1.

Therefore δ−2i |T⊥\ (ci)| → ∞ as i→∞. On the other hand by 4.6(3) there exists

M <∞ such that | (ξ(zi)− ξ(w)) • ν(w)| ≤Mδ2i whenever i ≥ 1. Therefore

|ci • ν(w)| ≤ | (ci − (ξ(zi)− ξ(w))) • ν(w)|+ | (ξ(zi)− ξ(w)) • ν(w)|
≤ (2/r)δ2i +Mδ2i whenever i ≥ 1

and, since ν(w) ∈ C(ξ(w)) and ci ∈ P , we conclude that

0 ≥ ci • ν(w) ≥ −(2/r)δ2i −Mδ2i whenever i ≥ 1.

Since P is a convex cone and T ⊆ P (since C(ξ(w)) ⊆ T⊥) we have

T⊥\ (ci) = ci − T\(ci) ∈ P whenever i ≥ 1.

Let γi = |T⊥\ (ci)|−1T⊥\ (ci) ∈ T⊥ ∩ P ∩ Sn−1 and assume γi → γ as i → ∞ for

some γ ∈ T⊥ ∩ P ∩ Sn−1. Noting that T\(ci) • ν(w) = 0 whenever i ≥ 1, we
conclude that

0 ≥ γi • ν(w) = |T⊥\ (ci)|−1 ci • ν(w) ≥ −|T⊥\ (ci)|−1((2/r) +M)δ2i ,

γi • ν(w)→ 0, γ • ν(w) = 0.

Since by 4.15 we have that aff C(ξ(w)) = T⊥ and C(ξ(w)) is relatively open
in T⊥ we finally get a contradiction.

We can now apply 4.8(3), with W = ξ−1[X]∩B ∼ V and Z = X, and 3.39 to
infer that X is (H m,m) rectifiable of class (1, 1). Therefore by [Fed69, 3.1.15]
we conclude that X is (H m,m) rectifiable of class 2 and the same conclusion
holds for Y .

4.17 Remark. In the last paragraph, in order to conclude the second order
rectifiability of X, it is important to notice that we use in a crucial way the fact
that X can be covered, up to a set of H m measure zero, by countably many sets
of the form ξA[P ], where P is an m rectifiable subset of ξ−1[X] ∩ B ∼ V such
that ξA|P is a bi-Lipschitzian homeomorphism (by 4.8(3)). This idea originates
from unplublished notes of Ulrich Menne, where a similar approach has been
used to prove 4.3 in case A is assumed to be convex (henceforth re-proving 1.7).

The extension of this approach to general closed sets is crucially based, first,
on the replacement of Nor∗(A, a) with nor(A, a) in the the definition of Σm(A)
and, second, on the fact that the Lipschitzian constant of ξA remains finite if we
consider its restriction on suitable second order rectifiable subsets of the level
sets of δA, see 4.5 and 4.6.

4.18 Remark. The proof of 1.7 is achieved in [Alb94] by a method that is com-
pletely different from the one employed here.

4.19. Finally we want to link our work with the results of [HLW04]. In this
important paper the authors, generalizing the results of [Sta79], introduce prin-
cipal curvatures on the (generalized) normal bundle NA of a general closed set
A ⊆ Rn and they use them to prove a Steiner type formula for NA.
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Following [HLW04, §2.1] if A ⊆ Rn is closed then we define

νA : (UnpA) ∼ A→ Sn−1

by νA(x) = |x − ξA(x)|−1(x − ξA(x)) whenever x ∈ (UnpA) ∼ A and the
(generalized) normal bundle of A by

NA = {(ξA(x),νA(x)) : x ∈ (UnpA) ∼ A}.

Since NA(a) = Sn−1 ∩ {λu : λ > 0, u ∈ Rn, δA(a+ u) = |u|} whenever a ∈ A,
we can use 4.2, [Roc70, 2.6.3, 6.2] and [Fed69, 3.2.22(3)] to conclude that

H n−m(nor(A, a)) > 0 ⇐⇒ H n−m−1(NA(a)) > 0

whenever a ∈ A and m = 0, . . . , n− 1.
It is proved in [HLW04, Lemma 2.3] that if A ⊆ Rn is closed then there

exists a sequence Ai ⊆ Rn of sets of positive reach such that

NA ⊆
∞⋃
i=1

NAi .

Therefore, instead of directly proving 4.3 for a general closed set, we could have
proved it for sets of positive reach and then use [HLW04, Lemma 2.3] to get the
same conclusion for every closed set. However this alternative approach, apart
from simplifying the measurability questions, would be essentially the same of
the one presented here.

On the other hand, the proof we give here is independent from the concept
of set of positive reach.
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