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Abstract
In the current paradigm of cosmology, the formation of large-scale structures is mainly driven by
non-radiating dark matter, making up the dominant part of the matter budget of the Universe.
Cosmological observations however, rely on the detection of luminous galaxies, which are biased tracers
of the underlying dark matter.

In this thesis I present cosmological reconstructions of both, the dark matter density field that
forms the cosmic web, and cosmic velocities, for which both aspects of my work are delved into, the
theoretical formalism and the results of its applications to cosmological simulations and also to a galaxy
redshift survey.

The foundation of our method is relying on a statistical approach, in which a given galaxy catalogue
is interpreted as a biased realization of the underlying dark matter density field. The inference is
computationally performed on a mesh grid by sampling from a probability density function, which
describes the joint posterior distribution of matter density and the three dimensional velocity field.
The statistical background of our method is described in Chapter ”Implementation of argo”, where
the introduction in sampling methods is given, paying special attention to Markov Chain Monte-Carlo
techniques.

In Chapter ”Phase-Space Reconstructions with N-body Simulations”, I introduce and implement
a novel biasing scheme to relate the galaxy number density to the underlying dark matter, which I
decompose into a deterministic part, described by a non-linear and scale-dependent analytic expression,
and a stochastic part, by presenting a negative binomial (NB) likelihood function that models deviations
from Poissonity. Both bias components had already been studied theoretically, but were so far never
tested in a reconstruction algorithm. I test these new contributions against N -body simulations to
quantify improvements and show that, compared to state-of-the-art methods, the stochastic bias is
inevitable at wave numbers of k ≥ 0.15hMpc−1 in the power spectrum in order to obtain unbiased
results from the reconstructions. In the second part of Chapter ”Phase-Space Reconstructions with
N -body Simulations” I describe and validate our approach to infer the three dimensional cosmic velocity
field jointly with the dark matter density. I use linear perturbation theory for the large-scale bulk
flows and a dispersion term to model virialized galaxy motions, showing that our method is accurately
recovering the real-space positions of the redshift-space distorted galaxies. I analyse the results with
the isotropic and also the two-dimensional power spectrum.

Finally, in Chapter ”Phase-space Reconstructions with Galaxy Redshift Surveys”, I show how I
combine all findings and results and apply the method to the CMASS (for Constant (stellar) Mass)
galaxy catalogue of the Baryon Oscillation Spectroscopic Survey (BOSS). I describe how our method
is accounting for the observational selection effects inside our reconstruction algorithm. Also, I
demonstrate that the renormalization of the prior distribution function is mandatory to account for
higher order contributions in the structure formation model, and finally a redshift-dependent bias factor
is theoretically motivated and implemented into our method. The various refinements yield unbiased
results of the dark matter until scales of k ≤ 0.2hMpc−1 in the power spectrum and isotropize the
galaxy catalogue down to distances of r ∼ 20 h−1 Mpc in the correlation function.

We further test the results of our cosmic velocity field reconstruction by comparing them to a
synthetic mock galaxy catalogue, finding a strong correlation between the mock and the reconstructed
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velocities.
The applications of both, the density field without redshift-space distortions, and the velocity

reconstructions, are very broad and can be used for improved analyses of the baryonic acoustic
oscillations, environmental studies of the cosmic web, the kinematic Sunyaev-Zel’dovic or integrated
Sachs-Wolfe effect.
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1 Introduction
Cosmology is the science of the origin and the evolution of the Universe, of which the cornerstone was
laid with Einstein’s theory of General Relativity. Later, in the 1920s, Friedmann and Lemâıtre derived
the laws describing the expanding Universe. When Zwicky in 1933 measured the escape velocities of
galaxies in large clusters, he could not explain the gravitational stability of these clusters with the
pure observed stellar masses. These observations gave rise to the concept of dark matter. However,
due to the lack of observations, research in cosmology was initially on hold as the available data could
not validate most of the cosmological models. As an example, Hubble’s measurement of the expansion
rate of the Universe (Hubble, 1929) was off by an order of magnitude and with large uncertainties. Up
to the 1940s-50s observational data in cosmology was rare and inaccurate. This changed dramatically
in the 1990s when measurements of the Cosmic Microwave Background (CMB) with COBE (Smoot
et al., 1992) detected for the first time the fluctuations of the early Universe, making the most accurate
measurement of a black body spectrum in nature. Great progress had already been made in the
1980s, mapping for the first time the distribution of thousands of galaxies with the CfA survey (e.g
Davis & Huchra, 1982; Geller & Huchra, 1989). This led to the cold dark matter model (CDM model:
Blumenthal et al. (1984) , Davis et al. (1985)) in which structure grows in a hierarchical way, where
objects are assumed to collapse under self-gravity and merge to form larger objects. After observations
of Type Ia Supernovae (Riess et al. (1998), Perlmutter et al. (1999)) showed the accelerated expansion
of the Universe, the cosmological constant was introduced into the CDM model, leading to the ΛCDM
model (Λ for dark energy, i.e. the cosmological constant as special case), which has become the
standard model in cosmology. This model can be determined by a set of six parameters and has
been proven to explain a large variety of observations to great accuracy.

Modern galaxy surveys have shown that galaxies are spatially not randomly distributed, but form a
characteristic pattern, clustering in knots that are connected through a filamentary network, leaving
large void areas. This network is commonly called the cosmic web, which is believed to have arisen
from primordial fluctuations through gravitational evolution.

In the standard cosmological paradigm these primordial fluctuations are assumed to have been
formed from quantum fluctuations in an inflationary evolution stage, which were stretched and frozen
through an inflationary expansion epoch shortly after the origin of the Universe, also known as the Big
Bang.

Ideally, at the largest scales, the evolution of fluctuations is close to a linear growth, allowing a
precise analysis of the cosmological parameters. However, gravitational clustering is impeding a robust
analysis at smaller scales. Therefore, a detailed understanding and modelling of the transition from
the linear to the non-linear range of structure formation is a key to overcome these complications.
Systematical cumbrousness, such as the survey geometry or selection effects, caused by the limited
sensitivity of the observations, introduce uncertainties on large scales. In addition to systematics,
other effects which are due to intrinsic physical phenomena, must be understood and modelled in
order to extract maximum information of cosmological parameters and processes. The research of the
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CHAPTER 1. INTRODUCTION

Large-Scale Structure (LSS) of the Universe addresses all above mentioned issues. It is the study of
the physics of clustering and structure formation at cosmological scales. Two major objectives of the
LSS research are to understand how galaxies spatially trace the distribution of dark matter, called
galaxy bias, and, how cosmic velocities and the cosmic web are connected. The wealth of information,
which we can extract from the LSS, is indispensably relying on the amount and the quality of the
observational data. Since increasingly larger surveys become possible, cosmology has made a transition
to a data driven science. This unprecedented amount of data also come with new challenges and pushes
cosmology furthermore to develop methods for big data analyses. The large variety of accurate data
today paved the way to test models at percentage accuracy, reaching the era of precision cosmology.

Observations play undeniably an significant role in cosmology, nevertheless, according to the current
ΛCDM model, the majority of the matter density in the Universe, which is dark, is not directly
accessible via measurements. Moreover, ΛCDM model predicts that the dynamics of the galaxies are
mainly driven by the underlying dark matter. As a consequence of this inaccessibility, we need a
profound understanding of the bias in order to study the full matter density in the Universe.

All these challenges can only be addressed, if adequately precise reconstructions of the dark matter
density, the cosmic web, cosmic flows, and other interrelated observational quantities that are not
accessible by pure observations, are available. These reconstructions are inferred from tracers, i.e,
galaxies or halos (commonly called tracers as they trace the dark matter density) and rely on a
statistical Bayesian framework utilizing Markov Chain Monte-Carlo techniques. As reconstructions
make (amongst others) dark matter density and velocity accessible for studies, they work as a link
between theoretical predictions and galaxy surveys. Reconstruction algorithms demand an accurate
handling of the observational data, compensating for systematic effects induced by the survey geometry
or the sensitivity of the telescopes. The distance estimation at cosmological scales is done via redshift
measurements, which, in absence of additional velocities, is determined by the expansion rate of the
Universe. Peculiar velocities of individual galaxies however, may distort the distance measurement,
called redshift-space distortions (RSDs). Also, sophisticated theoretical models must be elaborated to
adequately describe galaxy bias and structure formation models.

For all the above mentioned reasons the reconstructions of cosmic density and velocity fields are
crucially needed to proof or falsify models and to infer physical quantities precisely and study the
physics of structure formation.

These are the challenges that precision cosmology addresses and that my thesis is dedicated to.
In my thesis I explored the numerical and theoretical domains of cosmological reconstruction

techniques based on synthetic galaxy catalogues from simulations, and of observed galaxies from
surveys. In the following I will describe the projects that my thesis comprises. In three separate
projects we applied the reconstruction code, called argo, to data-sets and included vital refinements,
which we found to be inevitable in order to yield robust results.

We rely on a statistical approach and formulate a probability density function (PDF), that expresses
the joint probability to infer the dark matter density, cosmic velocities, and other related quantities,
given a set of galaxy positions. Within this approach we account for the systematic effects due to
the observational strategy of the galaxy survey, and also model intrinsic physical processes, including
growth of structures, galaxy bias, distortion of galaxy positions due to RSDs, and higher order effects
of structure formation beyond linear theory.

We solve the PDF in a Gibbs-sampling scheme by splitting the joint probability into separate
conditional probabilities. Within this scheme, the dark matter density is inferred with an (adaptive)
Hybrid Monte-Carlo algorithm, linking the dark matter density to the galaxy number counts via a
galaxy bias model, whereas the cosmic velocities are obtained from the inferred densities, using linear
theory and an additional random dispersion term.
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In order to statistically examine density and velocity perturbations, we use the power spectrum, which
measures the amplitude of fluctuations as a function of distance scales in Fourier space. Cosmological
information is encoded in the shape and the amplitude of the power spectrum. With upcoming very
large surveys that will provide a dense cosmological cartography of the Universe, (e.g. LSST Dark
Energy Science Collaboration, 2012), the precise understanding of the power spectrum at all scales is
an urgent challenge. The monopole power spectrum measures the fluctuations isotropically, as the
fluctuation modes are computed spherically averaged. However, the quadrupole power spectrum can
be used to estimate the power of fluctuations depending on the direction. Thus the quadrupole power
spectrum is an important tool to study anisotropies. Current reconstruction models that are based on
Poisson statistics and/or unrealistic bias models for galaxy counts are failing to be accurate on a wide
range of scales. We implement several crucial improvements to address this problem.

Firstly we applied a deterministic bias model that assumes the form of a power law and takes also
a Heaviside step-function into account. Secondly we overcome the problem to model the stochastic
component of the bias by introducing a super-Poissonian distribution function, in our case a negative
binomial (NB) distribution, for the data, which has a larger variance than a Poisson distribution at the
same mean. We will use the term over-dispersion throughout this thesis to describe super-Poissonian
behaviour. Galaxy surveys are relying on the measurements of redshifts to estimate the distance of
galaxies. RSDs spoil the distance measurement to some extend. Thus, it is impossible to bypass the
problem of RSDs if we do not precisely reconstruct the galaxies’ peculiar velocities. We distinguish
between the coherent bulk flow, which is entirely characterized by the gradient of the potential and
velocities caused by collapsed, quasi-virialized objects. We can model bulk flows analytically within
linear theory, however, the quasi-virialized motions are highly non-linear effects. In our approach we
address this problem with a statistical treatment and a classification of the cosmic web.

Structure of the thesis

The structure of my thesis is in the same order as the papers we published. The abstracts are given at
the end of this introduction.

In Chapter 2, I revise the necessary theory of the Friedmann-Robertson-Walker cosmology for a
isotropic and homogeneous Universe in Section 2.2, and the ΛCDM standard model in Section 2.3. I
put special emphasis on the fluctuations that lead to the cosmic structures in the Universe, shown in
Section 2.6. The galaxy bias and RSDs, which are the main ingredients of our model, are discussed in
Section 2.8 and 2.9 respectively.

In chapter 3, I give an overview of the Sloan Digital Sky Survey (SDSS) and a brief introduction to
simulation techniques in the cosmological context.

Further, I present the statistical background and the argo framework in Chapter 4.
In Section 4.1 the Bayesian approach up to the Hybrid Monte-Carlo (HMC) technique is described.

The argo-code is presented in detail in Sections 4.5, 4.7, and 4.8.
Chapter 5 is entirely focusing on reconstructions with synthetic data from simulations with special

emphasis on the deviation from Poissonity in Section 5.2. In Sections 5.3 and 5.3.1 the corrections
of RSDs are discussed as we focus on the reconstruction of the peculiar velocities. The convergence
behavior of our statistical inference model is shown in 5.3.2.

Chapter 6 is showing the results we obtained for the joint density and velocity reconstruction
by applying the argo code to the SDSS galaxy redshift survey. In particular, the density field
reconstruction is shown in Section 6.3, whereas the velocity reconstructions are presented in Section
6.4. This Chapter then is concluded in Section 6.4.4.
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CHAPTER 1. INTRODUCTION

I summarize the thesis in Chapter 7 and give a perspective of the future work that can follow up the
here presented results and findings.

Bayesian inference of cosmic density fields from non-linear, scale-dependent, and
stochastic biased tracers

We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark
matter field from halo catalogues. Our new contribution consists of implementing a non-Poisson
likelihood including a deterministic non-linear and scale-dependent bias. In particular we present the
Hamiltonian equations of motions for the negative binomial (NB) probability distribution function.
This permits us to efficiently sample the posterior distribution function of density fields given a sample
of galaxies using the Hamiltonian Monte Carlo technique implemented in the Argo code. We have
tested our algorithm with the Bolshoi N-body simulation at redshift z = 0, inferring the underlying
dark matter density field from sub-samples of the halo catalogue with biases smaller and larger than
one. Our method shows that we can draw closely unbiased samples (compatible within 1-σ) from the
posterior distribution up to scales of about k ∼ 1hMpc−1 in terms of power-spectra and cell-to-cell
correlations. We find that a Poisson likelihood yields reconstructions with power spectra deviating
more than 10% at k = 0.2hMpc−1. Our reconstruction algorithm is especially suited for emission line
galaxy data for which a complex non-linear stochastic biasing treatment beyond Poissonity becomes
indispensable.

Bayesian redshift-space distortions correction from galaxy redshift surveys

We present a reconstruction method which maps a galaxy distribution from redshift-space to real-space
inferring the distances of the individual galaxies. The method is based on sampling density fields
assuming a lognormal prior with a likelihood given by the negative binomial distribution function
modelling a stochastic bias. We assume a deterministic bias given by a power law relating the dark
matter density field to the expected halo or galaxy field. Coherent redshift-space distortions are
corrected in a Gibbs-sampling procedure by moving the galaxies from redshift-space to real-space
according to the peculiar motions derived from the recovered density field using linear theory with the
option to include tidal field corrections from second order Lagrangian perturbation theory. The virialised
distortions are corrected by sampling candidate real-space positions (being in the neighbourhood of the
observations along the line of sight), which are compatible with the bulk flow corrected redshift-space
position adding a random dispersion term in high density collapsed regions. The latter are defined
according to the eigenvalues of the Hessian. This approach presents an alternative method to estimate
the distances to galaxies using the three dimensional spatial information, and assuming isotropy. Hence
the number of applications is very broad. In this work we show the potential of this method to constrain
the growth rate up to k ∼ 0.3hMpc−1. Furthermore it could be useful to correct for photometric
redshift errors, and to obtain improved BAO reconstructions.

The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic
Survey: Phase-space Reconstructions of Cosmic Flows and Cosmic Web from Luminous
Red Galaxies

We present a space reconstruction of the cosmic large-scale matter density and velocity fields from the
SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy
clustering catalogue. We rely on a given ΛCDM cosmology, a mesh resolution of 6.25 h−1 Mpc, and a
lognormal-Negative Binomial model with a redshift dependent non-linear bias. The bias parameters
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are derived from the data and a general renormalized perturbation theory approach. We use combined
Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark
matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for
coherent redshift-space distortions (RSD). Our tests relying on accurate N -body based mock galaxy
catalogues, show unbiased real-space power spectra of the non-linear density field up to k = 0.2hMpc−1,
and vanishing quadrupoles down to ∼ 20h−1 Mpc. We also demonstrate that the non-linear cosmic
web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed
density field. We find that the reconstructed velocities have a statistical correlation coefficient compared
to the true velocities of each individual lightcone mock galaxy of r ∼ 0.65 including about 10% of
satellite galaxies with virial motions (about r = 0.79 without satellites). The power spectra of the
velocity divergence agree well with theoretical predictions up to k = 0.2hMpc−1. This work will be
especially useful to improve, e.g. BAO reconstructions, kinematic Sunyaev-Zel’dovich (kSZ), warm hot
inter-galactic medium (thermal SZ or X-rays), and integrated Sachs-Wolfe (ISW) measurements, or
environmental studies.
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2 Theoretical Background
This chapter is a brief revision of the theoretical background which is necessary to follow up cosmological
relations and quantities we are using, mostly relying on textbooks and recent reviews (Peebles (1980),
Peacock (1999), Liddle & Lyth (2000) Coles & Lucchin (2002), Dodelson (2003),Carroll (2004),
Mukhanov (2005), Plebanski & Krasinski (2006), Grøn & Hervik (2007), Weinberg (2008)). I emphasize
quantities that are a crucial part of our reconstruction algorithm and refer to the corresponding section
of the thesis, where these quantities are referred to.

2.1 Einstein’s field equations
Cosmology is the study of the Universe, describing the evolution and origin of its structures, based
upon Einstein’s theory of general relativity (GR). According to GR, cosmic space-time is described by
a metric gµν , that defines the coordinate invariant distance defined as

ds2 = gµνdxµdxν , (2.1)

where the indices µ, ν are space-times coordinates, assuming values from 0 (time) till 1, 2, 3 (space).
The metric is obtained by solving Einstein’s field equation

Rµν −
1
2Rgµν + Λgµν = 8πG

c4 Tµν , (2.2)

where Λ is called cosmological constant or vacuum energy and was introduced by Einstein himself
initially to yield a static universe solution, Rµν is the Ricci tensor, R the Ricci scalar, Newton’s
gravitational constant G, the speed of light c and the energy-stress-momentum tensor Tµν .

So generellay, Equation 2.2 represents a system of ten nonlinear differential equations of second
order.

2.2 Friedmann-Robertson-Walker Cosmology
Modern cosmology relies on the cosmological principle. This principle states that the distribution of
matter in our Universe is homogeneous and isotropic when measured on large enough scales. Thus
we can rewrite Equation 2.1 to obtain the Robertson-Walker metric in terms of comoving coordinates
(r, ϑ, ϕ) and the cosmic time of an comoving observer t

ds2 = gµνdxµdxν = −c2dt2 + a2(t)
[

dr2

1−Kr2 + r2dϑ2 + r2 sin2 ϑdϕ2
]
, (2.3)
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CHAPTER 2. THEORETICAL BACKGROUND

where in most general form the scale factor a(t) is a function of time to be determined by Equation 2.2,
and K spatial curvature parameter. The spatial part of Equation 2.3 can be interpreted by embedding
a three-dimensional sphere (pseudo-sphere, depending on K) in a four-dimensional Euclidean space.

We have the freedom to rescale the quantities a,K and r mutually,

a → λa ,

r → r/λ ,

K → λ2K , (2.4)

so that the geometry of space-time is not altered and consequently this transformation leaves Equation
2.3 invariant. In literature, a common choice is a rescaling so that K becomes dimensionless, achieved
by setting λ2 = 1/|K| in Equations 2.4. In this way, the coordinate r is dimensionless as well. However,
the scale factor a(t) inherits the dimension of length. For K = 1 the spatial part of the line element
reduces to a three-dimensional sphere with fixed radius a(t)r, called closed universe. In the case of
K = 0, we obtain a spatially flat Euclidean space, and finally K = −1 describing a pseudo-sphere
called open universe. A particularly convenient definition of the comoving radial coordinate, χ, is
related to r by

dχ = dr√
1−Kr2

. (2.5)

With this coordinate choice, the Robertson-Walker metric writes as (setting c = 1 in natural units)

ds2 = −dt2 + a2(t)
[
dχ2 + Σ2(χ)(dϑ2 + sin2 ϑdϕ2

]
, (2.6)

where

Σ(χ) =


sinχ , if K = +1 ,
χ , if K = 0 ,
sinhχ , if K = −1 .

(2.7)

Only for zero curvature K = 0, the coordinates χ = r are identical and thus the normalization of a(t)
is arbitrary. Therefore, in flat space, we can set set a(t0) = a0 = 1 at present time t0 so that the metric
coordinate r has the dimension of length (just as K−1/2).

In cosmology, the energy-stress tensor is described by a perfect, frictionless fluid specified by an
energy density % and an isotropic pressure p in its rest frame, written as

Tµν = (%+ p)uµuν + pgµν , (2.8)

where uµ is the four-velocity of the fluid, assuming the form uµ = (1, 0, 0, 0) at rest.
Now we can solve Equations 2.2 for the metric given in Equation 2.3 and write the two so-called

Friedmann equations as

ä

a
= −4πG

3 (%+ 3p) + Λ
3 , (2.9)

H2 =
(
ȧ

a

)2
= 8πG

3 %− K

a2 + Λ
3 , (2.10)

that connect the scale factor a to curvature and energy density in the Universe. H(t) = ȧ/a is
called Hubble parameter and gives the expansion rate of the Universe. Its present value H0 is the
Hubble constant, given by H0 = h 100 km s−1 Mpc−1, where h is a parameter. Let us further look at
Equation 2.10, defining an energy density of the vacuum, %Λ = Λ/(8πG), we now identify the different
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2.2. FRIEDMANN-ROBERTSON-WALKER COSMOLOGY

contributions to the total energy density as %tot = %M + %R + %Λ, with the matter energy density
%M and radiation density %R. The energy density of neutrinos %ν is neglected in this work (in some
textbooks however, the neutrino energy density is absorbed inside the radiation density). The resulting
model is called Friedmann-Robertson-Walker (FRW) cosmology.

Equation 2.10, describing the time-time component, and Equation 2.9, describing the space-space
component, are not independent but connected by the dynamical eqaution Tµν;ν =0. Therefore, the
expansion is adiabatic, meaning that the entropy is not changing, dS = 0, so that

dU + dW = TdS = 0 ⇒ d(%a3) = −pda3 , (2.11)
d
dt(%a

3) = −p d
dta

3 , (2.12)

where W is the work and T the temperature. This equation shows that for isotropic and homogeneous
models the expansion is adiabatic, since homogeneity and isotropy forbids temperature gradients.
Further, we assume that the fluid is described by its equation of state, also called barotropic equation,
as

p = w% . (2.13)

We find the solution to Equation 2.12 to be

%a3(w+1) = %0 , (2.14)

with %0 being the present density and a dimensionless parameter w describing the fluid. Equation 2.9
also shows that the total gravitational source term is %+ 3p, so that pressure itself also contributes
to gravity and that gravitation is repulsive if p < −%/3. Ordinary matter, often called dust, is
characterized by wM = 0. Vacuum energy is described by wΛ = −1, which means that this energy
density is constant. Finally, radiation defined by wR = 1/3.

Equation 2.14 illustrates that the radiation energy density scales like %R ∝ a−4. This is due to the
scaling with a−3 like ordinary matter including an extra a−1 term due to redshift (defined in Equation
2.20), caused by the expansion rate of the Universe.

We now may rearrange Equation 2.10 and find

%tot = 3H2

8πG + 3K
8πGa2 . (2.15)

Thus, by defining the critical energy density

%crit(t) = 3H2

8πG , (2.16)

we can constrain the curvature term depending on the total energy density as

%tot > %crit ⇒ K = 1 ,
%tot = %crit ⇒ K = 0 ,
%tot < %crit ⇒ K = −1 . (2.17)

It is convenient to write any energy density of X in terms of the critical energy density as ΩX =
%X/%crit. Also, by defining an energy density that corresponds to curvature, ΩK = −K/(H2a2), we
find the Friedmann equation to be

H2(a) = H2
0 (ΩR,0(a0/a)4 + ΩM,0(a0/a)3 + ΩK,0(a0/a)2 + ΩΛ,0) = H2

0E
2(a) , (2.18)
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CHAPTER 2. THEORETICAL BACKGROUND

where we also defined the function E(a) for convenience.
If the vacuum energy density is not constant, we can replace ΩΛ with Ωde(1 + z)3(1+w).
The above equation is formulated with all density parameter and the Hubble parameter at present

time, denoted by subscript 0. We find that for all times the Friedmann equation is equivalent to

1 = ΩR + ΩM + ΩK + ΩΛ . (2.19)

Special solutions of the Friedmann equation for flat space are of particular interest:

• Matter dominated universe:
If non-relativistic matter is the only contribution to the energy density, we can write %M =
%M,0(a0/a)3, with %M,0 being the present energy density of matter. We find a(t) ∝ (3/2H0t)2/3 is
a solution of the Friedmann equation. This model is also referred as the Einstein-de Sitter (EdS)
universe and states that the Universe is decelerating due to gravitational attraction.

• Radiation dominated universe:
Applying only %R = %R,0(a0/a)4 in the Friedmann equation leads to the solution a(t) ∝ (2H0t)1/2.
We find also a decelerating behavior as in the EdS universe, but with different scaling of a(t).

• Cosmological constant dominated universe:
Here we solve ȧ/a = H0 and find a(t) = a0 exp (H0t), which is an exponential expansion without
an initial singularity at a = 0. Thus, this model has no Big Bang and expands forever.

2.2.1 Cosmic time and distance measures
To describe large-scale structures, we have to introduce time and distance measures in an expanding
universe. Also, we introduce redshift as a key observable in cosmology that is defined in terms of the
scale factor and wavelength as

z ≡ λo − λe
λe

= a(to)
a(te)

− 1 , (2.20)

between the time of emission te and observation to.
The concept of distance for an expanding universe is a little more challenging. For light propagation,

ds = 0 in Equation 2.3, we can write the radial distance as1

c
dt
a(t) = dχ . (2.21)

The right-hand site of Equation 2.21 corresponds to comoving distance r for zero curvature (which we
will assume from now on for the distance measures). For the left-hand side we utilize Equation 2.23
and write

χ = c

H0

∫ da
a2E(a) = c

H0

∫ dz
Ẽ(z)

, (2.22)

where we introduced Ẽ(z) as the parametrization of E(a) in terms of redshift, according to Equation
2.20. This distance measure is constant for all objects that have no peculiar motion but reside at fixed
comoving coordinates in the RW metric. Thus, we can compare distances of objects at different cosmic
times.

1Only the radial distance is crucial, as we can always place the observer in the origin. Also we reintroduced c for
clarification of the units.
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2.2. FRIEDMANN-ROBERTSON-WALKER COSMOLOGY

Let us now define the time scale for the present, thus the age of the Universe

t0 =
t0∫

0

dt = H−1
0

a0∫
0

da
aE(a) = H−1

0

∞∫
z0

dz
(1 + z)Ẽ(z)

, (2.23)

using z0 = 0 for present (for zero curvature models we use a0 = 1). In this way we can also estimate
the time scale corresponding to a particular scale factor or redshift.

Complementary to the comoving distance measure there is the proper physical distance x, defined by
the distance the light is travelling from one object to the other. It is written as

x(t) = a(t)r = a
c

H0

∫ da
a2E(a) . (2.24)

There are two more widely used distance measures in cosmology:

• Angular diameter distance
The angular diameter distance dA is defined by the size of an object s and the angle ϑ as dA = s/ϑ.
Integrating the RW metric we obtain s = a(t)rϑ, and therefore we write

dA(z) = r(z)
1 + z

. (2.25)

If the diameter s is scaling according to the expansion of the Universe, we write s = (1 + z)s0.
This distance scale is interesting when analyzing standard rulers, objects that have the same
(comoving) size at different redshifts.

• Luminosity distance
The luminosity distance is defined as the relationship between the absolute luminosity L of an
object and the flux F as

dL =

√
L

4πF . (2.26)

The relation to the angular diameter distance is given as

dL = (1 + z)2dA(z) , (2.27)

where the two powers of (1 + z) are firstly due to redshift and secondly due to the cosmological
time dilation when receiving the emitted radiation.

2.2.2 Horizons
As distances increase following the expansion of the Universe, superluminal recession velocities may
occur at large enough distances. This is why determine horizons.

• Particle horizon
The particle horizon dPH is defined as the maximum proper distance over which two objects can
be causally connected at a time t

dPH = a(t)
t∫

0

cdt′

a
. (2.28)

Thus, the particle horizon is also defining the size of the observable universe.
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CHAPTER 2. THEORETICAL BACKGROUND

• Event horizon
A universe that is dark energy dominated undergoes accelerated expansion. This means, that
objects that an observer may see today (within the particle horizon) will however never receive
light that the observer emits today. If this is the case, the objects is outside the today’s event
horizon, defined as

dEH = a(t)
∞∫
t

cdt′

a
. (2.29)

• Hubble radius
Additionally of interest is the Hubble radius dH, defined as

dH(t) = c

H(t) . (2.30)

In an ever accelerating universe, two galaxies separated by a distance greater than the Hubble
radius today, stay causally disconnected in future.

In a matter dominated universe the Hubble radius and the particle horizon, although being different
concepts, are roughly the same. Thus, to judge horizon problems, it can be more convenient to use the
Hubble radius.

2.3 Λ Cold Dark Matter model
We discussed all possible energy sources in the FRW Universe but there is no theory atop which does
predict the composition of the density parameters. As a consequence, we need observations to measure
them. Also we need to incorporate these findings in a complete picture of the history of the Universe.
The current concordance model for the dynamics in our Universe is called Λ Cold Dark Matter (ΛCDM).
It is based on the FRW cosmology, implying a hot big bang as the origin of space-time. In this section
I will discuss the concept of the ΛCDM model to lay the foundation in order to comprise the work
done in this thesis. I will further discuss the most important observations in cosmology which led to
the present ΛCDM model.

2.3.1 Dark Matter
The earliest hint for dark matter is due to Zwicky (1933). He observed that the relative velocities of
galaxies in galaxy clusters were much larger than the velocity to escape the gravitational bound due to
the mass of the cluster. Within this assumption, he estimated the total cluster mass from the amount
of light emitted by the galaxies. This suggested that there must actually be much more mass in the
galaxy clusters than only the luminous galaxies we can see. He was not able to give a solution to this
mismatch. However, he mentioned it could be overcome by the existence of (cold) and dark matter
that only interacts gravitationally.

Similar discrepancies were measured when rotation curves of galaxies were observed. Kepler’s third
law states that the velocity of an orbiting body around a central mass should scale with distance like
v ∝ 1/

√
r. However, the rotation velocities found in Rubin et al. (1980) were deviating significantly

from Kepler’s predictions, being flat over a large distance range. This can be explained by a dark
matter halo in which a galaxy is placed. As dark matter is interacting gravitationally, we also expect
lensing effects. These are also found to be in agreement with the dark matter assumptions, shown in
Clowe et al. (2007).
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2.3. Λ COLD DARK MATTER MODEL

2.3.2 Supernova Cosmology Project & High-z Supernova Search Team

The Supernova Cosmology Project & High-z Supernova Search Team are two research groups who found
that the Universe today is undergoing an accelerated expansion and therefore proved that a positive
cosmological constant is dominating the present energy density in the Universe by analyzing redshifts
and apparent magnitudes mB (alternatively the distance modulus µ(z) = 5 log10(dL(z)/10 pc) of Type
Ia supernovae (SNIa). Supernovae of type Ia are standard candles, as their intrinsic luminosity is
related to the decay rate and can therefore be robustly determined. Within these analyzes, the apparent
magnitude of a SNIa is plotted against the redshift. The teams found that the data is supporting a
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Figure 2.1: Original plot from the Supernova Cosmology project (Perlmutter et al., 1999). The magnitude
mB of the observed Supernova Ia is plotted as function of redshift z. Solid and dashed lines corresponds to the
theoretical predictions for different combinations of ΩM and ΩΛ. The residuals of the fits and also the standard
deviations are shown below.

positive cosmological constant as the observed supernovae at a given redshift appeared fainter than a
decelerating universe would predict, shown in Figure 2.1. The plot shows that a dominating ΩΛ is
favored by the statistical analysis of the data.

13



CHAPTER 2. THEORETICAL BACKGROUND

2.3.3 Cosmic Microwave Background & Baryonic Acoustic Oscillations
The cosmic microwave background (CMB) radiation is the best observational confirmation of the Big
Bang model. It was predicted by Gamow in the 1940s (Gamow, 1946) to be a relic radiation from the
epoch when the Universe became transparent, also known as decoupling, as before matter and radiation
formed a primordial plasma. The spatial origin of the CMB is also called last scattering surface. The
CMB radiation possess a nearly perfect black-body spectrum of 2.726±0.005 K. The temperature
anisotropies of the CMB contain a wealth of information that are analyzed with a multipole expansion
in spherical harmonics as ∆T/T (ϕ, ϑ). An application of particular interest for this thesis is the

Figure 2.2: Most recent CMB temperature map taken with the Planck satellite (Planck Collaboration, 2015).
The color code represents the temperature fluctuations, hotter regions shown in red, colder in blue.

Sachs-Wolfe effect (Sachs & Wolfe, 1967), which causes photons from the cosmic microwave background
to be gravitationally redshifted or blueshifted due to a changing gravitational field in between the
source of radiation and the observer. A photon coming from a overdense region will have a slightly
larger redshift due to the deeper gravitational well at the surface of last scattering. Conversely, a
photon coming from an underdense region will have a slightly smaller redshift. Thus, we can calculate
the CMB temperature anisotropy due to the varying potential Φ from density fluctuations at the
surface of last scattering given by ∆T/T ∝ Φ, shown in Figure 2.2.

The fluctuations in the CMB are well described by a Gaussian random field, that we will discuss in
Section 2.6.5.

Also an inhomogeneous distribution of matter between the observer and the last scattering surface
may induce anisotropy by inverse Compton scattering of CMB photons by free electrons in a hot
intergalactic plasma (Sunayev-Zel’dovich effect Sunyaev & Zeldovich (1970)). The Baryonic Acoustic
Oscillations (BAO) are related to the CMB. Before decoupling, the photons are coupled tightly to the
baryons, forming a primordial plasma. The perturbations in the baryon-photon fluid are oscillating,
whereas dark matter perturbations grow. Characteristic for these oscillations is the sound horizon in
comoving coordinates

s =
tdec∫
0

cS dt
a
∼ 100h−1 Mpc , (2.31)

with cS being the speed of the sound waves. These waves freeze when baryons and radiation decouple.
The sound horizon is imprinted in the CMB and also in the perturbations of the matter density,
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although the non-linear evolution under gravitational interaction is diminishing this effect. The
galaxy correlation function can be seen in Figure 2.3 on the left, showing an excess at separations
∼ 100h−1 Mpc. The geometric interpretation of the BAO is shown on the right of Figure 2.3. At
distances of 100h−1 Mpc the probability to find another galaxy is increased wrt a random distribution.

Figure 2.3: Left: original plot from (Eisenstein et al., 2005) showing two-point correlation function. Right:
schematic illustration of the BAO, showing a density ring around the central galaxies (courtesy http://www.astro.
ucla.edu.

The first significant detection of a BAO signal was reported in Eisenstein et al. (2005) using
the two-point correlation function with luminous red galaxies observed with the SDSS survey, and
simultaneously in Cole et al. (2005) in a power spectrum analysis with the 2dF Galaxy Redshift Survey.
Around the characteristic scale of the BAO we expect a higher chance to find a galaxy at a distance of
the sound horizon around another galaxy. We will see later that the bump in the correlation function
in configuration space will assume the form of wiggles when the density perturbations are analyzed in
Fourier space.

2.3.4 Number counts
The evolution of the Universe and properties of homogeneity can also be tested with the cumulative
number of objects one sees in samples that probe larger and larger distances. The counts per volume
and galaxy type, color or other spectral properties can be a helpful statistical tool. By defining models
for the evolution of the galaxy’s luminosity (luminosity function), one can predict how many sources
one should see above an certain threshold and as a function of redshift. If one accounts for evolution of
the intrinsic properties of the sources correctly, then any residual dependence on redshift is due to the
volume of space encompassed by a given interval in redshift; this depends quite strongly on Ωtot. Also
the matter statistics can be derived from these kind of analyses (Yang & Saslaw, 2011). In Figure 2.4
an illustration of the SDSS galaxies are shown, with the rest-frame g − r color (Zehavi et al., 2011).

2.4 The horizon & the flatness problem
Gravity has a tendency to enhance inhomogeneities. This irreversible process causes structures like
galaxies to form. Hence, if gravity steadily is clumping matter together and forms inhomogeneities,
then the Universe must have been in an extreme state of homogeneity initially. This seems very unlikely
because one expects that the Universe was formed from tiny fluctuations in the initial conditions. A
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Figure 2.4: Slice through the SDSS main galaxy sample, with galaxies color-coded based on rest-frame g − r
color. The slice shows galaxies within ±4 deg of the celestial equator, in the north Galactic cap. (Zehavi et al., 2011)

homogeneous and isotropic state is quite special; an inhomogeneous state is by far a more general state
than a homogeneous one.

The related horizon problem disturbed the cosmologists for a long time. The cosmic microwave
background was seen to be very homogeneous and isotropic. Actually, it is the most perfect black-body
radiation known, better than any spectrum that can be produced in the laboratory. The isotropy in
the radiation indicates that the radiation had thermal contact once in the past, before it was emitted.
Photons of the CMB must have been in thermal contact even if coming from different directions. This
is what is called the horizon problem because the particle horizon to each photon in the last scattering
surface only covers a small patch of the sky of about two degrees.

It can be solved within the theory of inflation. This theory predicts an era with exponential growth
in the very early Universe shortly after the Big Bang. Matter and radiation domination predict a
decelerating expansion ä < 0, so two objects within the particle horizon will stay connected. But
for models with ä > 0, like in the cosmological constant dominated universe, two objects that were
within their particle horizon are able to leave it and being outside the horizon at a later time. So, this
scenario explains how photons in the CMB may have had physical interactions when they were within
the horizon of each other and later left the horizon due to exponential expansion.
Another crucial issue inflation is potentially solving is the flatness problem. With the Friedmann
Equations we derived that Ωtot = 1 at any time. Models with zero spatial curvature demand

Ωtot − 1 = ΩK = 0 . (2.32)

We showed that the energy density of curvature can be expressed as |ΩK| = |K|/(H2a2). For a radiation
dominated universe the scale factor evolves as a(t) ∝ t

1
2 , so that ΩK ∝ t, while a matter dominated
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universe implies that a(t) ∝ t
2
3 so that ΩK ∝ t

2
3 . This means that ΩK must be fine-tuned to zero in

the early Universe as ΩK grows with time. Tiny deviations from the curvature energy density from
zero would have grown largely until today.

The concept of inflation is solving this problem. If the Universe would have gone through an
exponential expansion like the cosmological constant dominated universe with a(t) ∝ exp (Ht) from
just ti = 10−36 s to tf = 10−34 s, this would flatten the space like ΩK ∝ exp (−2Ht) by 60 e-holds.
The inflation could have been driven by a scalar field undergoing a phase-transition (summarized
in Guth (1984)). The dynamics of such a field is described by a Lagrangian of a spin-0 particle
L = 1

2∂
µφ∂µφ−V (φ), where the first term described the kinetic energy and the second is the potential

function.

2.5 Reference model for this thesis
We adopt the most recent set of cosmological parameters in the findings of the CMB analysis (Planck
Collaboration, 2015), called Planck Cosmology, if nothing else is stated. Besides the cosmological
parameters we also assume the initial conditions of the early Universe to be Gaussian from which
today’s structures grew. The cosmological parameters assert a spatial flat space and that the Universe
is undergoing an accelerated expansion due to the density parameter of the dark energy ΩΛ. The
radiation density is negligible today and also the major part of the matter density in the Universe is
dark.

2.6 Perturbed Universe
Up to this point I have described the Universe with a homogeneous and isotropic model. I will keep
this FRW model to describe the background. In this Section I will discuss a formalism to analyze
the generation and evolution of inhomogeneities. I therefore solve the equations of a fluid in presence
of gravity and an expanding universe. In order to keep the handling of the perturbations feasible I
will focus on the linear regime of the solutions. Perturbation theory in cosmology ( Peebles (1980),
Fry (1984), Bernardeau et al. (2002)) is further developed to higher orders (McDonald & Roy, 2009).
Also renormalized perturbation formalism up to a certain scale have been developed (e.g. Crocce &
Scoccimarro, 2006).

2.6.1 Eulerian description of non-relativistic density perturbations
A Newtonian non-relativistic fluid with mass density %, pressure p and potential Φ is described in
Eulerian space by
• the continuity equation, which results from mass conservation, revealing change of a local density

in time is equal to the flux through the surface,

• the Euler equation, which describes the force acting on a fluid due to the gradient of the pressure
and a gravitational potential,

• the Poisson equation, describing the potential induced by the mass inhomogenity.
We write the continuity equation for the mass density %(x, t) and the flux %u(x, t), where x is the
proper physical distance, as

∂%

∂t
= −∇x(%u) . (2.33)
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The Euler equation with pressure p writes as(
∂

∂t
+ u ·∇x

)
u = −∇xp

%
−∇xΦ . (2.34)

The potential Φ is derived from the Poisson equation

∇2
xΦ = 4πG% . (2.35)

Perturbation analyses assume that the equations can be expanded in series, e.g. expanding the
mass density like %(x, t) = %̄(t) + δ%(x, t), with a time dependent background density, but independent
of spatial position %̄(t), and a small perturbation at position x, written as δ%(x, t) << 1. We can
expand all other quantities in our equations according to this scheme, namely, pressure, velocity, and
finally potential. Also we assume a curl-free velocity field ∇× u = 0, as any initial curl would have
asymptotically vanished with the expansion of the Universe.

Linearization implies now that only linear terms are considered and all higher orders can be neglected,
i.e. the product of two and more perturbations, e.g. δ%2 or δuδ%. Assuming no expansion and no
gravity, we obtain the linear expressions

∂δ%

∂t
= −∇x · (%̄u) (2.36)

%̄
∂u

∂t
= −∇xδp . (2.37)

We can connect pressure and density perturbations for adiabatic processes by introducing the adiabatic
sound speed c2

S =
(
δp

δ%

)
s

, where subscript s denotes that the entropy does not change. Combining
these equations we find the differential equation for the density fluctuation

∂2δ%

∂t2
− c2

S∇2
xδ% = 0 . (2.38)

This differential equations for a non-expanding universe is solved by a plane wave δ% = A exp [i(ωt− k · x)]
with constant amplitude and frequency ω = cSk. It is customary to define the density contrast δ = δ%/%̄
and also to consider the peculiar potential Φ, that is a perturbation of the mean background potential
as

Φ = 2πG
3 %̄r2 + Φ . (2.39)

The gravitational interaction is described by the perturbed Poisson equation

∇2
xΦ = 4πG%̄δ , (2.40)

and consequently we obtain
∂2δ

∂t2
− c2

S∇2
xδ = 4πG%̄δ . (2.41)

The solutions to this equation are oscillation in which frequency ω2 = c2
Sk

2 − 4πG%̄. This shows that
the fluctuations with wavelength larger that λJ = 2πcS√

4πG%̄
grow exponentially while at smaller scales

the fluctuations oscillate. This wavelength is called Jeans’ length.
We switch from physical to comoving coordinates, using the convention we introduce above as

x = a(t)r, and decompose the total velocity as

u = ẋ = ȧr︸︷︷︸
Hx

+ aṙ︸︷︷︸
vp

, (2.42)
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which is a composition of the Hubble recession velocity and the peculiar velocity. We also need to
refine the time derivative as (

∂

∂t

)
r

=
(
∂

∂t

)
x
−Hx ·∇x , (2.43)

where we defined ∇r = 1
a

∇x. We drop the subscripts in the following. Applying all these relations
into the continuity equation we obtain

%̇+ 3H% = 0 , (2.44)

which is simply the evolution of the background density and independent of perturbations, and on the
other hand the perturbative part

δ̇ = −1
a

∇ · vp . (2.45)

The Euler equation is now written as

v̇p +Hvp = − 1
a%̄

∇δp = 1
a

∇Φ . (2.46)

The Poisson equation in Equation 2.40 is already linear. We combine the equations that describe a
fluid in an expanding coordinate system and obtain the so-called perturbation equation

δ̈ + 2Hδ̇ = 4πG%δ , (2.47)

where we dropped the pressure term as we assume cS = 0 for cold dark matter (CDM). Equation 2.47
is generally solved by the ansatz

δ(r, t) = A(r)D(t) +B(r)C(t) . (2.48)

D(t) is the growing solution (called growth factor) and C(t) the decaying one. We will only consider
the growing solution in the following to be physically relevant. Thus we see that in the linear solutions
of perturbations the spatial and time depending parts factorize. This means that as long as this
approximation is valid, the fluctuations grow in space in comoving coordinates. A solution for D(t)
can be given up to a normalization. A common choice is to normalize D(z) = 1 at z = 0. So we write
the solution for flat space as

D(z) = H(z)
H0

∞∫
z

dz′

H3(z′)

 ∞∫
0

dz′

H3(z′)

−1

. (2.49)

The density contrast of point r at time t can be calculated from the initial density contrast as
δ(r, t) = δ(r, ti)

D(t)
D(ti)

.

This solution predicts:

• D(t) ∝ a(t) in a matter dominated epoch (also called Einstein–de Sitter universe, EdS),

• D(t) ∝ a2(t) in the radiation dominated universe,

• and D(t) ∝ a−2(t) if the universe is Λ dominated.
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Applying these relations to Equation 2.45 we find

∇ · vp = −δ̇ = −ȧ ∂δ
∂a

= −H ∂δ

∂ ln a . (2.50)

This can be more elegantly written defining the growth rate

fΩ = 1
H

Ḋ

D
= d lnD

d ln a , (2.51)

as
∇ · vp = −aHfΩδ . (2.52)

In linear theory the divergence of the peculiar velocity field is proportional to the density contrast in
comoving coordinates.

A non-linear treatment of perturbations has also been studied in literature (Goroff et al., 1986; Jain
& Bertschinger, 1994). They rely on a Fourier decomposition of the terms that are neglected in the
linear approach. These functions are described as convolutions in Fourier space, thus introducing terms
that are known as mode couplings.

2.6.2 Statistical description
Pioneering work in statistical descriptions of the density fluctuations stems from Peebles (1973), Peacock
& Heavens (1985). We will stick to the common notations and discuss the most important findings
for large-scale structure analyses. To understand better the validity of perturbation theory and also
being able to statistically describe the density fluctuations we discuss now the Fourier decomposition
of density and velocity perturbations. We decompose the density contrast and the divergence of the
velocity field θ = −∇ · v in terms of plane waves as

δ(k, t) = 1
(2π)3

∫
d3x δ(r, t)eik·r (2.53)

θ(k, t) = 1
(2π)3

∫
d3x θ(r, t)eik·r , (2.54)

where k is the wave vector of a particular plane wave, also called mode. The magnitude of |k| ≡ k is
connected to the wavelength via k = 2π

λ
.

By definition the mean of the density contrast δ = %

%̄
− 1 is 〈δ〉 = 0. However, the variance of the

density contrast does not vanish and is one of the most important observables in cosmology, given as

σ2 =
〈
δ2
〉
− 〈δ〉2 =

〈
δ2
〉
. (2.55)

As we are interested in the variance as a function of different modes, it is convenient to use the
power spectrum defined as

〈δ(k)δ(k′)〉 = P (k)δD(k − k′) , (2.56)

where the Dirac delta function states that all modes of δ(k) are uncorrelated. Isotropy implies that
P (k) = P (k), i.e. the power spectrum is only a function of |k| ≡ k. For large enough volumes we can
write

σ2 = 1
2π2

∫
dk k2 P (k) . (2.57)
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The spatial (auto-)correlation function ξ (also called two-point correlation function ξ2, see below) is
defined as a excess probability dP , relative to a random distribution, of finding a pair of galaxies at a
distance r12 in the volumes dV1 and dV2

dP = n̄2(1 + ξ(r12))dV1dV2 , (2.58)

where n̄ is the mean number density. The correlation function can be expressed for a spatial separation
of ∆ as ξ(∆) = 〈δ(r)δ(r + ∆)〉.

It is straight forward to generalize the correlation function to higher degrees (called two-point,
three-point, ..., N -point correlation function) as

〈δ(r1)δ(r2)〉 = ξ2 , (2.59)
〈δ(r1)δ(r2)δ(r3)〉 = ξ3 , (2.60)

...
〈δ(r1)δ(r2)δ(r3)...δ(rN )〉 = ξN . (2.61)

The correlation function is the counterpart to the power spectrum in configuration space.

〈δ(r)δ(r + ∆)〉 =
〈∫ d3k′

2π3

∫ d3k

2π3 δ(k
′)δ(k)eik

′·re−ik·(r+∆)
〉
, (2.62)

= 2π
∫ d3k′

2π3

∫ d3k

2π3 δ
D(k − k′)P (k)eir·(k

′−k)−ik∆ , (2.63)

=
∫ d3k

2π3P (k)e−ik∆ . (2.64)

This is also known as the Wiener-Khinchin theorem: The power spectrum is the Fourier transform of
the (auto-)correlation function.

We use the condition of isotropy to simplify the argument of the correlation function as ξ(|r|) = ξ(r).
In this case we can simplify Equation 2.64 by directly integrating the angular dependencies of the wave
vector k and obtain

ξ(r) = 1
2π2

∫
dkP (k)k2 sin(kr)

kr
. (2.65)

Obviously, we find that ξ(r = 0) = 〈δ2〉 = σ2, thus the correlation function at zero separation
corresponds to the variance of the mean density squared. Density fluctuations appear on all scales of k.
It is often useful to apply a window function Wrs(k) on the density contrast, which is either convoluted
in configuration space or multiplied in Fourier space. The resulting density will be smoothed according
to the smoothing length of the window δsmooth(k) = δ(k)Wrs(k) and thus the power spectrum becomes
Psmooth(k) = P (k)W 2

rs(k). Of particular interest is the fluctuation in a spherical volume of radius
rs = 8h−1 Mpc, filtered with a top-hat window function in Fourier space

Wrs(k) = 3(sin krs − krs cos krs)
(krs)2 , (2.66)

assuming the form

σ2
8 = 1

2π2

∞∫
0

dkk2P (k)|Wrs(k)|2 . (2.67)
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2.6.3 Discretization effects
The power spectrum supposes continuous density fields. However, galaxies are discrete objects. Here
I will discuss the numerical effects, when discrete objects’ positions are interpolated to a mesh grid.
Due to the discrete number counts the total power spectrum will have another constant additive term,
called shot noise

P (k)tot = P (k)shot + P (k) . (2.68)

P (k)shot is also also called the Poissonian white noise and is written as P (k)shot = 1
n̄ , where n̄ is the

mean number density of galaxies in the considered volume.
The interpolation of the galaxy position on a mesh grid is done with a mass assignment kernel

(MAK), which can be written as a polynomial function. In this thesis I use only the nearest grid point
(NGP) and the cloud in cell (CIC) scheme. The interpolated density fields are a convolution of the
original field, e.g. δ(k) and the kernels W (k). The kernels can be written as a product over the spatial
dimensions i

W (k) =
[∏
i

(
sin(πki/2kNy)
πki/2kNy

)]ζ
, (2.69)

where ζ gives the order of the MAK, ζ = 1, 2 corresponds to NGP or CIC respectively (Jing, 2005).
kNy = π/∆ is the one-dimensional Nyquist frequency and ∆ the mean spacing on the mesh grid.
Mistreatment of the Nyquist frequency would lead to so-called aliasing effects.

Finally there is the variance of the power spectrum σ2
P. We define the effective volume of a galaxy

catalogue with real volume Vsurvey (I will discuss surveys and simulations in Chapter 3) as

Veff(k) =
[

n̄P (k)
1 + n̄P (k)

]2
Vsurvey , (2.70)

which is the volume that can be used in clustering analyses in Fourier space at a certain mode k
(Feldman, Kaiser & Peacock, 1994). Then the square root of the variance of the power spectrum is
defined as

σP =
√

2π3

VkVsurvey

(
P (k)− 1

n̄

)
, (2.71)

where Vk is the volume of the shell in Fourier space, belonging to mode k. The cosmic variance is the
main contribution of the uncertainty of the power spectrum on large scale, described by the first term
of Equation 2.71

2.6.4 Power spectrum entering the horizon
I described above how scales get causally disconnected while exponential expansion during inflation.
However, as the particle horizon rPH is growing again after inflation, i.e. in the radiation and matter
dominated universe, the different scales of the density fluctuations are going to enter the horizon
again. We can estimate when a mode enters the horizon and thus predict the rough shape of the power
spectrum. A perturbation of scale λ = 2π/k enters the horizon when its wavelength is equal to the
particle horizon

λ ' dPH = a
c

H0

aEnter∫
0

da
a2E(a) . (2.72)

In linear theory, we can also predict the evolution of the power spectrum after inflation with

P (k, t) = D2(t)P0(k) , (2.73)
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with the initial power spectrum P0(k) and linear growth function D(t). The question arises how P0(k)
may look like. An interesting concept for P0(k) is the Zel’dovich-Harrison-Peebles (Harrison (1970),
Zeldovich (1972)) power spectrum, which is called scale-invariant. It is written as a power law

P0(k) = Akn . (2.74)

The normalization of the power spectrum A is not predicted by ΛCDM and thus is a free parameter.
The power law index n describes how the density fluctuations vary with scale k. Harrison, Zel’dovich,
and Peebles argued, that the spectral index n = 1 would ensure that the peculiar potential fluctuations
entering the horizon would be constant. This can be seen when defining the dimensionless power
spectrum

∆2(k) ≡ 1
2π2k

3P (k) , (2.75)

which is the power in a logarithmic unit length of k. Thus, we write ∆0 ∝ k3+n. Further we define the
power spectrum for the potential fluctuations and yield

∆2
Φ(k) ≡ 1

2π2k
3PΦ(k) ∝ k−4∆2(k) ∝ kn−1 , (2.76)

where we used PΦ(k) = k−4P (k) (see Equation 2.40). For n = 1 we have no preferred scale of the
initial power spectrum, this is equivalent with P (k)k3 = const. Impressively, also inflation predicts a
spectral index close to unity. The initial power spectrum is modified due to the radiation dominated
phase of the Universe. These modifications are described by the transfer function T (k). The power
spectrum assumes the form

P (k, t) ∝ knT 2(k)D2(t) ; (2.77)

Eisenstein & Hu (1998) developed a powerful fitting formula to compute the transfer function.
Obviously small scales/wavelengths will enter the horizon first in the radiation dominated era and

will grow accordingly with D(t) ∝ a2(t) while larger scales will enter the horizon later while the
energy density of matter dominate and therefore grow with D(t) ∝ a(t). The growth in the radiation
dominated universe is smaller w.r.t. time, as free-streaming and pressure of radiation is impeding
structures to collapse as long as radiation is dominating. We define the horizon L0 at the time teq, when
radiation and matter was equal. Thus, the transfer function is T ∼ (kL0)−2 when radiation dominated
the Universe and T ∼ 1 for matter domination. Putting all together, we have an approximate estimate
of the linear power spectrum. We expect:

• P (k) ∝ k at scales k � 1
L0

;

• P (k) ∝ k−3 at scales k � 1
L0

;

• P (k) to have wiggles due to BAO, at the sound horizon s.

The scale-invariant power spectrum is also predicted by inflation as the spectral index n was measured
with the Planck satellite to be n ' 0.968± 0.006.

2.6.5 Random Fields
Random fields are widely used in cosmology to describe statistical properties that we discussed in
Section 2.6.2. Particularly important is the Gaussian random field (GRF), in which δ(x) or δ(k) is a

23



CHAPTER 2. THEORETICAL BACKGROUND

random variable and C = 〈δ†δ〉 the covariance matrix. The probability distribution of a n-dimensional
GRF is written as

Pn(δ1, ..., δn) = 1√
(2π)ndetC

exp
[
−1

2δ
†C−1δ

]
(2.78)

A GRF comes with many useful properties as:

• a Fourier transformed GRF remains a GRF;

• a GRF is entirely described by its first two moments, the mean µ and the covariance C;

• real and imaginary parts of the coefficients of the variables (the density in Fourier space) are
independent Gaussian fields;

• the phases of the Fourier modes are randomly distributed.

Although today’s density fluctuations are highly non-Gaussian, the CMB and also the LSS at early
epochs can be reasonably described with a GRF. We will also discuss density transformations in Section
4.4, in order to gaussianize density fields to extract the information of the linear density field.

For this work also the lognormal random field (LNRF) is vital. If a quantity x is distributed
lognormally, then y = log x is distributed according to a Gaussian. Thus we write

Pn(y1, ..., yn) = 1√
(2π)ndetC

exp
[
−1

2 log(y)†C−1 log(y)
]∏

y−1 . (2.79)

In Section 2.7.1 we discuss the importance of lognormal solutions for density fields in more detail.

2.6.6 Collapsed objects & density peaks
After scales entered the horizon, an independent growth of scales is not given anymore, hence the
scales will be affected by non-linear growth in amplitude and mode coupling, meaning that fluctuations
can transfer power from one scale to another. Large-scale fluctuations enter the horizon later than
small scales, so we expect non-linearities to have a stronger impact on small-scale fluctuations.

Also, a linear perturbative approach is not able to describe any gravitational collapse nor virialization,
two processes that are crucial to describe halo formations. Therefore, it is crucial to know the limit for
which perturbative calculations are valid.

One rather intuitive model is to assume a spherical over-density δ which grows independently of
the background density (called Birkhoff’s theorem in general relativity). Assuming a mass M , the
gravitational constant G, and an initial mass perturbation δ0, we can parametrize the cyclic behaviour
of the mass shell as

r(θ) = A(1− cos θ) , (2.80)
t(θ) = B(θ − sin θ) , (2.81)
A3 = GMB2 , (2.82)

where θ, A and B are parameters of the collapse model. The shell expands from r = 0 at θ = 0, reaches
its maximum rmax (t = tmax = πB) at θ = π and collapses back to r = 0 at θ = 2π (t = 2tmax). We
Taylor expand these expressions for small θ and combine the equations, finding

r ∼=
A

2

(6t
B

) 2
3
[
1− 1

20

(6t
B

) 2
3
]
. (2.83)
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Also, we showed that in linear theory and a matter dominated universe, the scale factor was written
as a(t) = (3/2H0t)

2
3 . We can match the above equation with linear theory and write for the density

contrast in the mass shell

δ ∼=
3
20

(6t
B

) 2
3
. (2.84)

We have assumed CDM cosmology only, neglecting the contribution from Λ. Fortunately, it can be
shown that the dependence on ΩΛ is negligible.

Let us consider a complete collapse, which happens at θ = 2π, or t = ttax = 2πB. Equation 2.84
then describes the critical density contrast of

δC = 3
5

(3π
2

) 2
3
≈ 1.686 . (2.85)

Rather a total collapse to r = 0, a gravitational system would evolve into a viral equilibrium with
the condition 2K = −U for the kinetic energy K and potential U . Utilizing this statement we find
that rvir = 1/2rmax (corresponds to θ = 3/2π). Inside this virialized system we compute the density
contrast to be %vir/%̄ ≈ 178 above the mean background density. In Section 3.3.4 we will discuss how
halos are identified using these assumptions.

The statistical distribution of massive objects given an underlying dark matter density has been
studied in Press & Schechter (1974). Later, also peak background split models have been introduced,
aiming to describe statistical properties of density peaks (Bardeen et al. (1986), Mo et al. (1996), Sheth
et al. (2001)).

The Press-Schechter formalism postulates that the fraction of mass in objects, that is larger than a
certain mass M , is given by the probability that a density exceeds the critical linear density contrast δC

P (> M) =
∞∫
δC

dδ 1√
2πσ2(M)

exp
(
− δ2

2σ2(M)

)
, (2.86)

where σ2(M) is the variance in terms of the mass. This formula can be rewritten substituting
ν = δC/σ(M), Thus we obtain

P (> M) = 1− erfc
(
ν√
2

)
, (2.87)

saying that the fraction of mass larger than M is determined by σ(M) only. For a given mean density
%̄, the Press-Schechter formula gives us the number density of objects of a certain mass

n(M) =
√
π

2
%̄

M2

∣∣∣∣ d ln σ
d lnM

∣∣∣∣ ν exp
(
−ν

2

2

)
, (2.88)

also denoted as mass function. The pristine Press-Schechter model has been further developed, e.g.
by the peak-background split (PBS) formalism. In the PBS the density contrast is split into a long-
wavelength perturbation for the background, denoted as δb, and a short-wavelength part δp for the
peaks. The perception of this model is now that the short wavelength perturbations are located on top
of the background and describe the density peaks. Therefore, the threshold of collapse is not a fixed
δC anymore, but δC − δb. We can now expand Equation 2.88, assuming n(ν) ∝ ν exp (−ν/2):

n(ν + δν) = n

(
δC − δb
σ

)
≈ n(ν) + dn

dν
dν
dδ (−δb) , (2.89)

= n(ν)
[
1 + ν2 − 1

νσ
δb

]
. (2.90)
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We find that
δn

n
= ν2 − 1

νσ
δb ≡ bLδb . (2.91)

Here, bL is the Lagrangian bias. We will discuss this quantity in Section 2.8 in detail. Also, we use a
threshold term in our bias model, described in Chapter 4, that is based on the density peak formalism.
The PBS formalism has been further developed to yield more precise mass functions (e.g. in Sheth &
Tormen (1999) and Tinker et al. (2010)).

2.6.7 Hierarchical clustering

The formation of structures is a result of the gravitational growth of the primordial density- and velocity
perturbations. Gravitational attraction in slightly denser regions will be stronger than the average
gravitational potential. In these regions the slowdown of the initial cosmic expansion is correspondingly
stronger, and when the region is sufficiently overdense, it even comes to a halt, turns around and
starts to contract again. If or as long as pressure forces are not sufficient to counteract the infall, the
structures will grow without bound, assemble more and more matter by accretion from its surroundings
and fully collapse to form a gravitationally bound and virialized object, such as dark matter halos.
Due to the lack of pressure, dark matter decouples before radiation and barynonic matter do. Thus,
dark matter will likely collapse earlier into virialized structures, providing a potential well in which
baryonic matter can stream inside.

Hierarchical clustering implies that the first objects to condense are small and that larger structures
form through the merging of smaller structures (Bernardeau & Schaeffer, 1992, 1999; Mart́ınez et al.,
2009). Usually an object forms through the accretion of all matter and the fusion of all substructures
within its surroundings, including the small-scale objects which had condensed out at an earlier stage.
The second fundamental aspect is the anisotropic gravitational collapse, which we will discuss in Section
2.10.

Following Mo et al. (2010), we can link the hierarchical growth of structures in the Einstein-de Sitter
universe to the initial power spectrum with a few simple assumptions. Let r be the length scale of a
spherical fluctuation in which the mass M is enclosed. We defined the variance of density fluctuations
in Equation 2.57. Therefore, the variance grows in time like σ2(r, t) ∝ D2(t). For a fixed time we can
then write σ2(r) ∝ r−(n+3), using the power law assumption of the power spectrum P (k) ∝ kn. Thus,
these relations yield

σ2(r, t) =
[

r

r∗(t)

]−(n+3)
=
[

M

M∗(t)

]−(n+3)/3
, (2.92)

where

r∗(t) ∝ [D(t)]2/(n+3) and M∗(t) ∝ [D(t)]6/(n+3) , (2.93)

are the mass and length scales for which σ2 = 1 at time t. As the spherical collapse model predicts a
critical density fluctuations of δC ≈ 1.686, we can assume that for σ(M, t) ∼ δC non-linear structures
of mass M form. As the growth function D(t) grows with time, so does M∗(t) if n > −3, which is the
case for a scale-invariant initial power spectrum with n = 1. In this case, structure formation develops
in a ‘bottom-up’ behaviour, meaning that smaller structures form prior to larger ones, as we discussed
above.
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2.7 Structure Formation Models
In this Section I discuss the different structure formation models beyond the linear theory. Important
models for this work are the lognormal model, derived from the continuity equation (Section 2.7.1),
and the Zel’dovich approximation (Section 2.7.2), which is the linear order Lagrangian model.

2.7.1 Lognormal model
Already Hubble found that when galaxies are counted in cells, the resulting galaxy distribution function
follows closely a lognormal distribution (Hubble, 1934). In Coles & Jones (1991) the authors found
that a lognormal solution also applies to describe structure formation. The continuity equation can be
written in terms of conformal time dτ = dt

a
and the convective derivative d

dτ = ∂

∂τ
+ u ·∇, as

1
%

d%
dτ = −∇ · u , (2.94)∫ 1
%

d% = −
∫

dτ∇ · u . (2.95)

This integral gives a lognormal solution for the density contrast if the divergence of the velocity field is
Gaussian distributed, as

%(x) = %0 exp (ε(x)τ2) , (2.96)

where ε(x) = 1/(2τ0)(∇ · u) is a Gaussian random field. We will discuss the lognormal model for
structure formation in detail in Sections 4.4 and 4.6.3, where also the constant of integration is taken
in account, that has been neglected in the original work of Coles & Jones (1991).

2.7.2 Zel’dovich Approximation
The Zel’dovich approximation (Zel’dovich, 1970) is describing a fluid element’s trajectory by the initial
Lagrangian position q, the comoving Eulerian position x(q, t) and the displacement field Ψ(q, t). At
the initial time t = t0 the displacement writes Ψ(q, t0) = 0. Every element of the fluid is uniquely
labeled by its Lagrangian coordinate q and mapped to the final position in Eulerian coordinates x
according to the displacement field Ψ.

The mapping is written as
x(q, t) = q(t0) + Ψ(q, t) . (2.97)

The displacement field now can be expanded in a perturbation series

Ψ = Ψ1 + Ψ2 + ...+ ΨN . (2.98)

The Zel’dovich approximation further assumes that the series can be truncated at linear order,
Ψ1 ' D(t)∇Φ(q). The conservation of mass allows us to write

%(x, t)dx = %(q)dq . (2.99)

In a good approximation we can neglect the density fluctuations in Lagrangian space, thus obtaining

1 + δ(x, t) = J−1(q, t) , (2.100)∣∣∣∣∂x∂q
∣∣∣∣ = J(q, t) , (2.101)
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where J is the Jacobian of the coordinate transformation, also called deformation tensor Dij . The
solution of Equation 2.100 can be written in terms of eigenvalues λ1,2,3 of the Jacobian as

1 + δ(q, t) = 1
(1−D(t)λ1(q))(1−D(t)λ2(q))(1−D(t)λ3(q)) , (2.102)

where the eigenvalues are sorted as λ1 > λ2 > λ3. Although intrinsically non-linear, the Zel’dovich
approximation is not able to describe virialization or shell-crossing. The displacement of the fluid
elements is just determined by the velocity v ∝ ∇Φ in Lagrangian coordinates. A term which is
commonly used in literature is the so-called Zel’dovich pancake. This term is related to the model how
cosmic structures are forming in the Zel’dovich approximation. According to Equation 2.102, a spherical
overdense region will likely start collapsing in direction of the first principle axis (corresponding to the
λ1). Thus, after the first collapse we will obtain a pancake-like structure. I will discuss this formalism
in more detail in Section 2.10.

2.8 Galaxy Bias
The term galaxy bias, introduced by Kaiser (1984), comprises the fact, that observations target the
spatial distribution of luminous galaxies and not directly the total masses. Galaxies (and halos)
are tracers of the underlying dark matter distribution and therefore connected by the bias function.
Ideally, this relation must be modelled by the gravitational collapse of dark matter into a halo, the
accumulation of baryonic gas inside the potential well of the halo, and finally the cooling of the gas
and fragmentation to a galactic structure. Rather than modelling all these stages of galaxy formation,
the concept of bias is a method to phenomenologically describe the statistical influence of the above
mentioned processes (Bardeen et al., 1986; Mo & White, 1996; Mo et al., 1997). So in general, the bias
is an effective theory to relate the distribution of galaxies to the underlying dark matter.

In most general form we can write the relation of the density field for galaxies %G (alternatively the
density contrast of galaxies δG) and dark matter fluctuations δDM as

%G = B(δDM) , (2.103)

where B(δDM) is a non-linear, non-local and stochastic function. Modelling the galaxy bias is not only
necessary to obtain unbiased cosmological information about the underlying dark matter, but it is also
useful to understand the physics of galaxy formation better.

Over the time many bias models have been formulated in the cosmological context. I will discuss a
few different concepts in the following, which are part of our reconstruction algorithm.

2.8.1 Deterministic Bias
On large scales, much larger than the typical scales of galaxy formation, a linear local bias model is a
good approximation (Matarrese et al., 1997). So, we write

δG = bδDM , (2.104)
PG(k) = b2PDM(k) . (2.105)

This linear model was initially proposed by Kaiser (1984, 1987). Although linear bias is valid for large
scales, the model breaks down at scales that are not described by linear theory. Also, the linear model
is scale-independent. However, we expect different scales to undergo different cosmic growth. This is
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why a scale-dependent bias model is desirable. Particularly in Fry & Gaztanaga (1993), the authors
suggest a series expansion of the galaxy density field:

δG = B(δDM) =
∞∑
k=0

bk
k! δ

k
DM , (2.106)

and linked each order of the bias factor bk (but b0) to an order of the density contrast. However this
model may lead to unphysical densities if the first order b1 is negative. Cen & Ostriker (1993) on the
other hand suggest to expand the logarithm of the density.

Based on this work, Mann et al. (1998) analyzed different bias relations in Eulerian space, showing
that the linear bias relation for the initial Gaussian density field under a lognormal transformation
leads to a deterministic, scale-dependent power law bias relation. Also Frusciante & Sheth (2012)
studied a formulation of a linear bias in Lagrangian space undergoing lognormal evolution. They found
that this bias description needs an additional normalization to ensure that 〈δDM〉 = 0, and therefore
suggested a renormalized model. In the following we will use a scale-dependent bias as

%G ≈ exp
( ∞∑
k=0

bk · log(1 + δk)
)
, (2.107)

%G ≈ (1 + δDM)b , (2.108)

for the deterministic part of our bias model for the rest of this work.

2.8.2 Stochastic Bias
Basically, the assumption of a stochastic bias is based on the interpretation that the underlying
dark matter density field is a multivariate probability density of which the galaxy density fields are
statistically random realizations. Already in Peebles (1993, p.500-512), the author found that the
variance of the density contrast δ is different from a Poisson process when discussing the Layzer-Irvine
Equation (Irvine, 1961; Layzer, 1963). Because of this finding the stochasticity of the galaxy bias
shifted into focus.

The stochastic relation of the galaxy and dark matter density was firstly studied in Dekel & Lahav
(1999). In this work the authors state that the biasing relation can be interpreted as a random process,
specified by the conditional probability distribution P(δG|δDM) of a galaxy density, given the dark
matter density. Thus, the joint probability of δG and δDM can be expressed with conditional one and
the prior one-point probability of δDM as

P(δG, δDM) = P(δG|δDM)P(δDM) . (2.109)

Further, they introduce the biasing scatter function σb(δDM), as

σ2
b(〈δDM〉) ≡ 〈ε2|δDM〉 , (2.110)

where ε is the random biasing field. The biasing scatter is defined as the δ-average over the biasing
scatter function

σ2
b = 〈ε2〉 . (2.111)

Dekel & Lahav (1999) find a deviation from the linear deterministic model up to 20 % in their studies.
The stochastic bias in context of higher order clustering was analyzed in Scoccimarro (2000) and also
was further tested with N -body simulations in Somerville et al. (2001). Interestingly, the authors found
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that for very massive halos beyond a redshift dependent masss scale, the correlation function turns over
at small distances of about r ∼ 1 h−1 Mpc due to so-called exclusion effects caused by the finite spatial
extent of the halos. This means, that a massive halo is likely to have accreted all surrounding matter
and thus, the probability to find another halo at typical galactic scales is lower then for a random
distribution. Therefore, an anti-correlation is expected at these scales for very massive halos. Together
with the decreasing correlation also the biasing scatter (shown in Equation 2.110) will be reduced and
the stochastic bias will be less important or can even lead to a smaller scatter compared to a random
Poisson process. This prediction agrees in general with our findings, which I will discuss in Chapter 5.
Stochastic bias models also have been analyzed in toy models (Baldauf et al., 2013). In all cases (but
for extreme cases where halo exclusion is dominating), stochastic bias leads to higher variance of the
density field as compared to a pure deterministic bias model.

In this work the stochastic bias is modelled by taking distribution functions into account, that have
a larger variance as compared to the Poisson distribution but the same mean, discussed in detail in
Section 4.6.2.

2.8.3 Non-local Bias
Besides deterministic and stochastic bias, also non-local contributions are studied in literature, con-
necting environmental dependencies, described e.b. by the deformation tensor of the density field to
the total biasing relation (Baldauf et al., 2012; Saito et al., 2014). I will discuss this issue in Section
2.10, where I introduce the tidal field tensor, which is necessary to follow up environmental studies of
the density field.

2.9 Redshift-Space Distortions
The observed redshifts of galaxies are a composition of the Hubble flow and the projection of the
peculiar velocity in line-of-sight direction, which can be written as

s = r + vp · r̂
aH(a) r̂ , (2.112)

where s and r are the comoving positions of the galaxy in redshift-space and real-space respectively,
and r̂ the unit vector in radial direction. I will use the terms redshift-space and real-space to stress
the mapping from s to r throughout this thesis. The resulting apparent displacement in line-of-sight
direction of objects is called redshift-space distortion (RSD). The peculiar velocity vp is generally
divided into two parts (Hamilton, 1998). These are the perturbative part (we will concentrate on the
linear terms, identical to the bulk flows), discussed in Section 2.9.1 and quasi-virialized or dispersed
velocities due to collapsed objects called fingers-of-god (FOG), described in Section 2.9.2.

RDSs can be used to constrain the nature of gravity and cosmological parameters as the peculiar
velocity is depending linearly on the growth rate fΩ (see e.g. Berlind et al., 2001; McDonald & Seljak,
2009; Nesseris & Perivolaropoulos, 2008; Percival & White, 2009; Song et al., 2011; White et al., 2009,
for recent studies). Common techniques to measure RSDs are presented in (Beutler et al., 2014; Blake
et al., 2013; Chuang & Wang, 2013; Cole et al., 1995; Jennings et al., 2011; Kwan et al., 2012; Okumura
et al., 2008, 2012; Peacock et al., 2001; Percival et al., 2004; Reid et al., 2012; Samushia et al., 2012,
2013; Wang, 2014; da Ângela et al., 2008; de la Torre et al., 2013).
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2.9.1 Bulk flows
Firstly we describe the coherent bulk flow, which is the velocity due to the potential perturbations that
dominates at large scales. We repeat Equation 2.52

∇ · vp = −aHfΩδ . (2.113)

To solve this equation, we apply ∇ on both sides and yield

∇(∇ · vp) = −aHfΩ∇δ . (2.114)

In the linear limit, the peculiar velocity fields are curl free, as primordial curls would have been
dissolved with the expansion of the Universe with ∇× vp ∝ 1/a. Thus we write

vp = −aHfΩ∇∇−2δ , (2.115)

and commuted the operators ∇,∇−2.
In the context of linear theory, Kaiser (1987) gave a solution to the power spectrum under the

distortions of bulk flows. We start with the conservation of the number of galaxies in redshift-space
and real-space. Therefore we write

ns(s)d3s = n(r)d3r (2.116)

with ns being the number density of objects in redshift-space and n the corresponding number density
in real-space in an infinitesimal volume element d3s and d3r.

We can relate these number densities via

ns(s)d3s = n(r)d3r (2.117)

ns(s) = n(r)J J =
∣∣∣∣∣d3r

d3s

∣∣∣∣∣ = dr
ds
r2

s2 . (2.118)

The Jacobian J describes the coordinate transformation and can be written as a scalar J of the radial
components of s and r, as the angular components are not affected by RSDs. Now we apply Equation
2.112 to the Jacobian and obtain

J '
(

1− ∂

∂r

(
vp · r̂
Ha

))
. (2.119)

If we further assume the same mean number n̄ in real- and redshift-space, we can write

δs = δ

(
1− ∂

∂r

(
vp · r̂
Ha

))
, (2.120)

where δs and δ are the density contrasts in redshift-space and real-space, respectively. We can use now
the approximation of a distant observer, setting the product r̂ · v = ẑ · v. This approximation assigns
the coordinate ẑ to the line-of-sight direction, being a good approximation for very distant galaxies.
Finally we can give an expression of the density in Fourier space as

δs(k) =
∫

d3re−ik·r
(
∂

∂r

(
v(r) · ẑ
Ha

))
. (2.121)

The integral is solved using the distant observer approximation and thus writes as

δs(k) =
[
1 + fΩµ

2
]
δ(k) , (2.122)
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where µ is the cosine of the angle of the wave vector k and the line of sight vector; fΩ is the growth
rate. We can immediately see that as µ2fΩ ≥ 0, the density contrast in redshift-space (on scales where
bulk flows dominate) is apparently enhanced. The power spectrum is now written as

Ps(k) = P (k)(1 + βµ2)2 , (2.123)

where we introduced β = fΩ/b, with the linear galaxy bias factor b. We can see that due to RSDs the
power spectrum is not isotropic anymore. One way to estimate the difference of the power spectra
in real and redshift-space is done by calculating the ratio of the isotropic power spectrum, called
monopole, and an anisotropic power spectrum, called quadrupole (at lowest anisotropic order). We
use the Legendre polynomials of the order l, Ll(µ), where µ is again the cosine of the angle between
the separation k and the line-of-sight direction. l = 0 → L0 = 1, is used for the monopole whereas
l = 2→ L2 = (3µ2 − 1)/2 is the second order term for the quadrupole. The result assumes the form

P 0
s (k) =

[
1 + 2

3β + 1
5β

2
]
P (k) , (2.124)

P 0
s (k) = K(fΩ, b)P (k) , (2.125)

where K is called Kaiser factor/boost in literature. The equation tells us that by blindly calculating
the monopole power spectrum in redshift-space, the power will be boosted by the Kaiser factor. The
intuitive explanation is as follows: as the galaxy velocities within clusters are mostly directed to the
center of a denser regions, the circumference of this cluster will appear to be squashed in line-of-side
direction in redshift-space. Thus, we will gain more power in Fourier space from this region due to
RSDs.

2.9.2 Fingers-of-God
The Fingers-of-god effect (FOG) was first described in Jackson (1972), where a radial arrangement
of galaxies pointing towards the earth, were observed. FOG are due to the random motion in quasi-
virialized objects so that the structures appear to be elongated in redshift-space in line-of-sight direction.
This is a non-linear effect that we can solve statistically. FOG become relevant on smaller non-linear
scales (see e.g. Reid et al., 2014) in the power spectrum, where we observe a decrease of power.

2.10 Cosmic web classifications
The cosmic web is an expression to characterize the structures on large scales when analyzing the
matter distribution in the Universe. As discussed above the coherent part of the peculiar velocity can
be determined from the potential as v ∝ ∇Φ. Utilizing this relation, we can estimate the velocity
divergence at a given position within the cosmic web. This procedure reveals environmental information
of the cosmic structures at this position. In literature, environmental effects on galaxy properties are
studied in detail (see e.g. Kauffmann et al., 2004).

Aspherical overdensities, on any scale and in any scenario, will contract such that they become
increasingly anisotropic. At first they turn into a flattened pancake, rapidly followed by contraction
into an elongated filament and possibly, total collapse into a galaxy or a cluster may follows. It is
evidently the major agent in shaping the web-like cosmic geometry.

To classify the structures of the cosmic web, we follow the description in Hahn et al. (2007). We
define the tidal field tensor at a position x as

Tij(x) ≡ ∂2Φ
∂xi∂xj

, (2.126)
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with the peculiar gravitational potential Φ = 4πG%̄∇−2δ and i, j denoting the three coordinates x, y, z.
The three eigenvalues λ1, λ2, λ3 of Tij define the dynamic behaviour of the particular structure. In
agreement with Zel’dovich (1970) one can define:

1. voids:
Tij(x) has no positive eigenvalues. All components of the peculiar velocity are directed outwards,

2. sheets:
Tij(x) has one positive and two negative eigenvalues. This is the famous Zel’dovich pancake,
meaning that in one direction the peculiar velocity is pointing inward the structure,

3. filaments:
Tij(x) has two positive and one negative eigenvalues. We can picture this structure as a tube
like configuration, where the peculiar velocity is streaming in perpendicular to the filament and
in one direction outwards, along the filament,

4. knots:
Tij(x) has three positive eigenvalues, all velocity components direct inside the structure.

This method is also called the T-web analysis (according to the tidal field tensor). A comparable
approach is the div V-web study, where the density field is obtained from the divergence of the velocity
field as

δv = −∇ · vp
fΩHa

, (2.127)

and the potential is calculated from δv. These kinds of analyses not only help to visually trace the
structure-forming regions within the cosmic web, but also allow us to use the statistical properties of
the structures. Further analyses of Forero-Romero et al. (2009) and Nuza et al. (2014) showed that
the threshold for a chosen structure must not be necessarily at λth = 0 and already at λth = 0.1 the
classification changed dramatically, putting emphasis to carefully choose the threshold scales within
each analysis. We are relying on the characterization of cosmic structures within our reconstruction
method to e.g. assign galaxies that are distorted by FOG to high density regions, i.e. knots. The
description is outlined in Section 5.3. Cosmic web classifications are therefore beneficial to achieve a
higher goodness of our reconstruction method.
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3 Galaxy Redshift Surveys &
N-body Simulations

In this chapter, I will describe the different sources of data that have been used as inputs for our
reconstruction method. In Section 3.1 I briefly describe the galaxy survey named Sloan Digital Sky
Survey (SDSS), and the particular galaxy redshift catalogue derived from this survey. In Section
3.3 I also describe the N -body simulations on which the mock galaxy data is based on, used in the
following analyses. I highlight the Baryon Oscillation Spectroscopic Survey (BOSS) and the CMASS
(for Constant (stellar) Mass) galaxy catalogue in detail in Section 3.1.1.

3.1 Sloan Digital Sky Survey

Figure 3.1: Picture of the SDSS 2.5-meter telescope at
the Apache Point Observatory, New Mexico (SDSS Collabo-
ration, 2000).

Starting from the year 2000 till 2014 the SDSS
collaboration observed in total a quarter of the
sky corresponding to about 10000 deg2 including
photometric observations of around 500 million
objects of which about 3 million objects have
been spectroscopically observed. Up to 2014, the
SDSS has been operating divided into three sur-
vey periods, namely SDSS-I: 2000-2005, SDSS-II:
2005-2008 and SDSS-III: 2008 till 2014. In this
time, 12 Data Releases (DR) have been made
public. Since 2014, SDSS-IV is operating.

The photometric system of the SDSS telescope
(Gunn et al., 1998) uses a CCD camera which is
composed of an array of 30 CCDs arranged in six
columns of five CCDs each. The telescope moves
along great circles on the sky so that images of
objects move along the columns of the CCDs at
the same rate. Therefore, the camera produces
five images of a given object, all from the same
column of CCDs, one from each CCD in that column. Each row corresponds to a different filter,
so each object has one image in each filter. SDSS utilizes 5 different filters, called u, g, r, i, z bands
(Fukugita et al., 1996).

The operating (mean) wavelengths, magnitude limits, and calibration errors (RMS) of the filters are
given in table 3.1
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Filter Wavelength [nm] Magnitude limit RMS [%]
u 355.1 22 1.3
g 468.6 22.2 0.8
r 616.5 22.2 0.8
i 748.2 21.3 0.7
z 893.1 20.5 0.8

Table 3.1: Photometric filter wavelengths, operating magnitudes, and accuracy for the SDSS CCD camera.
Calibration accuracy (RMS) is described in detail in Padmanabhan et al. (2008).

3.1.1 Baryon Oscillation Spectroscopic Survey

Additionally to the imaging system, SDSS-III also hosts three spectroscopic surveys that are focused
on different scientific goals1. The APOGEE survey focuses on the structure and evolution of our own
Milky Way galaxy using high-resolution infrared spectroscopy while the SEGUE survey was build to
study the kinematics and stellar populations at the high-latitude thick disk and halo of the Milky Way.
This work used the data taken by the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic
survey. BOSS observes the spectra of its targets using the double-armed BOSS spectrograph (Smee
et al., 2013). The algorithms that are used to perform a spectral classification and the redshift
measurements are described in Bolton et al. (2012).

Different from the imaging system, spectroscopy relies on the usage of fibers. In BOSS these fiber
positions are stamped in plates so that a fiber of 2 arcsec diameter can be placed on top (up to 1000
fibers per plate). The positions of the fibers are chosen by a primary target selection of the imaging
system based on two colors, g − r and r − i. The fibers then are read out with CCDs with extended
wavelength coverage to span 360 to 1000 nm.

3.1.2 CMASS galaxy catalogue

While the SDSS-I and SDSS-II is purely magnitude limited, CMASS and LOWZ employ color cuts in
order to target more distant galaxies. These cuts are designed to obtain a sample with approximately
constant stellar mass (Reid et al., 2016). The galaxy sample is split in a high-redshift sample called
CMASS (between 0.43 ≤ z ≤ 0.7) and a low-redshift sample called LOWZ ( z ≤ 0.43) which have
different magnitude limits (see Anderson et al. (2014) for details of the targeting strategy). The
combined sample of LOWZ and CMASS is discussed and has been analyzed in Alam et al. (2016).

In this thesis I use the North Galactic Cap (NGC) of the CMASS data from the twelfth Data Release
(DR12) (Alam et al., 2015) of the SDSS-III BOSS catalogue (Dawson et al., 2013) which is focused on
the observation of distant luminous red galaxies (LRGs) and thus creating a three dimensional spatial
distribution of the large-scale structure of the Universe.

The CMASS sample consists mainly of LRGs, constant in mass and volume limited. The target
selection of the CMASS sample together with the algorithms used to create large scale structure
catalogues (the mksample code), are presented in Reid et al. (2016) and also previously summarized
in Eisenstein et al. (2011).

1http://www.sdss.org/surveys/
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3.2 Survey geometry
The geometry of a galaxy redshift survey is a tedious task to deal with as the observing strategies
of modern galaxy surveys typically produce angular masks with complex boundaries and variable
completeness (Hamilton & Tegmark, 2004).

Completeness in terms of survey geometry denotes the ratio of galaxies that have been observed
photometrically and spectroscopically. We use the software package mangle (Hamilton & Tegmark,
2004; Swanson et al., 2008) to geometrically deal with the completeness. The fundamental idea is to
resolve a mask into a union of non-overlapping polygons each of whose edges is part of a circle (not
necessarily a great circle) on the celestial sphere. Each polygon then defines an area on the sky with
a completeness value between 0 and 1. mangle reads in completeness files provided by the SDSS
collaboration. These files contain patches of the sky that have been observed or vetoed, i.e. positions
that are excluded from the mask, e.g. due to bright stars or fiber collisions.
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Figure 3.2: Left: Radial selection function (RSF) f(r) = 4πr2 dn/dV . Right: Angular completeness mask of
the North Atlantic cap of the BOSS survey projected on a sphere. The color code corresponds to the completeness at
each point on the sky. Right ascension RA and declination DEC are shown in the range of the analysed BOSS data.

As the survey operates in a certain color/magnitude range (see Section 3.1.1), we also have to take
into account the so-called radial selection function (RSF) f(r). The RSF represents the galaxy counts
per spherical shell as function of comoving distance r (or redshift z). In Figure 3.2 on the left the RSF
is shown for the DR12 CMASS galaxy sample. The distances correspond to the redshifts between
0.43 ≤ z ≤ 0.7, exactly the range of the CMASS sample. The particular shape of the RSF is due to the
targeting strategy of the CMASS catalogue, applying magnitude and color cuts to trace predominantly
LRGs as described in Sections 3.1.1 and 3.1.2.

On the right of Figure 3.2 we can see the angular completeness mask projected on the sky for
the North Galactic Cap (NGC). This figure was created by applying a high-resolution mesh in right
ascension - declination plane (RA (α)-DEC(δ)) of 350 million (190002) points in the range of the NGC.

Each polygon is allocated with a completeness value. We apply our 350 million points of our mesh
on top of the polygons and screen for each point the completeness value with mangle. The different
completeness values can be seen in Figure 3.2, where also the polygon-like structure of the mask is
visible. Areas that have zero completeness within the observed region can either be caused by not
having been observed, fiber collisions on the plate or bright stars in front of the targeted galaxy, that
spoiled the spectroscopy in these regions. These effects are all incorporated into the angular mask.

In Sections 4.5.4 and 4.5.5, I describe the handling of the survey geometry and the observational
galaxy weights in our reconstruction algorithm.
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3.3 Dark Matter Simulations
In this section the main cosmological simulations that have been used for the reconstruction analyses
are briefly described. I will focus on dark matter only N -body simulations in the following.

3.3.1 Fundamentals of N-body Simulations
N -body solvers in simulations are used to sample the dynamics of the Universe. Dark matter
particles are collisionless, so the evolution of the Universe is driven by the mean potential rather
than two-body interactions of N dark matter particles. Therefore it is convenient to describe the
phase-space distribution of the particles within the simulation by a distribution function f(x,p, t) so
that f(x,p, t)d3xd3p represents the probability of a particle to be found in the volume between V and
V + dV , with a momentum range of p and p+ dp. This is a 6N + 1 dimensional equation for which
we can define the continuity equation in the collisionless limit. Therefore, we define the phase-space
derivative ∇ph = (∇x,∇p) and phase-space velocity vph = (vx,vp), which are the derivatives of the
phase-space positions w.r.t. time. The continuity equation then writes as

∂f

∂t
+ ∇ph(fvph) = 0 , (3.1)

∂f

∂t
+ ∇x · (fvx) + ∇p · (fvp) = 0 . (3.2)

As most cosmological simulations rely on a Newtonian description of gravity, we can thus specify
the time derivatives of our phase-space vector (x,p) as(dx

dt ,
dp
dt

)
= (v,−∇Φ(x, t)) , (3.3)

where Φ(x, t) is the potential function satisfying the Poisson equation of a given matter density %(x, t)

∇2Φ(x, t) = 4πG%(x, t) = 4πG
∫
f(x,v, t)d3v . (3.4)

Combining now Equation 3.1 with 3.3 we obtain the collisionless Boltzmann equation (CBE)

∂f

∂t
+ v ·∇xf −∇Φ ·∇vf = 0 . (3.5)

Equation 3.5 fulfills df/dt = 0, which means that the local phase-space density around a particle is
constant and does not change along the particles’ trajectories. This is also known as Lioville’s theorem.

Equation 3.5 has to be fulfilled by all N particles simultaneously. In other words, for any time t the
CBE must be solved by a set of phase-space trajectories (x(t),v(t)). These solutions can be found by
setting up an Initial Condition (IC) of the phase-space density and evolving the system of particles
according to Equation 3.3. So a N -body simulation can be dealt with as Monte Carlo mapping of a
probability function f(x,v, t) with N tracers for different time steps.

The matter density %(x, t) of a particle with mass m is described by a Dirac delta function

%(x) =
∑
j

mjδ(x− xj) . (3.6)
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In order to avoid divergences, namely for two particles to be at zero separation, a smoothing kernel
W (x− x′, ε) (typically a Plummer sphere) needs to be applied the particle density, so that the force is
softened at a certain length scale ε. The smoothing guarantees, that the force

F (xi) ∝
∑
j 6=i

1
|xi − xj |2 + ε2

(3.7)

on particle i has a minimum separation of ε instead of the pure inverse square law that would diverge
at close encounter. The time evolution is done numerically with the leapfrog scheme described in
Section 4.3.3.

During the years different methods have been developed, that are describing how to sum the
particles’ potential or the force acting on it respectively. The very straight forward method is the direct
summation of all particles’ contributions at each point x in space. However this method is not feasible
for large N -body simulations as the computing time scales like O(N2). Therefore, I will discuss briefly
methods that speed up the computation time.

• Tree codes
In order to reduce the number of particle-particle summations, Appel (1985) and later in
Astrophysics Barnes & Hut (1986) suggested not to calculate all direct connections between two
particles but sum up many clustered particles if the Multipole-Acceptance-Criterion (MAC) is
fulfilled in a clustering and connect them in a tree like structure. The MAC states that particles
are encapsulated to a single point if the distance is much larger compared to the diameter of the
cluster. The MAC is a free parameter.
This means that the structure is approximated by a point source for another distant structure
and so, all particles within this structure do not need to be summed up separately. This reduces
the number of computing steps to O(N logN).

• Particle-Mesh
For this method a grid is defined on top of the volume so that the particles are assigned to a
particular cell. Now the Poisson equation is solved on a grid using Fast Fourier Transformations
(FFTs) as

∆Φ = 4πG% (3.8)

Φ̂ = −4πG %̂

k2 , (3.9)

where k is the wave vector and the variables in Fourier space are denoted with the ˆ-symbol.

• TreePM
This method replaces the pure tree ansatz by a hybrid method consisting of a synthesis of the
particle-mesh method and the tree algorithm. The potential of Equation 3.8 is split in Fourier
space into a long-range and a short-range part. The long-range part is solved with the Fourier
method (Particle Mesh) whereas the short range part is solved with the tree method. This is the
method the GADGET-2 (Springel, 2005) code is using.

• Adaptive Mesh
The dynamic range of particle-mesh codes can be increased by using an adaptive rather than a
static grid to solve the Poisson Equation. In the Adaptive Mesh Refinement (AMR) (Kravtsov
et al., 1997) (parallel version in a Adaptive-Refinement-Tree Gottloeber & Klypin (2008)) method,
the grid elements are refined (a higher resolution is applied), e.g. around the highest density
regions where the particle number (potential gradient) is high.
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3.3.2 Bolshoi simulation
The Bolshoi simulation (Klypin et al., 2011) is a ΛCDM dark matter simulation run with the ART
code, which is an AMR code described in Section 3.3.1. Bolshoi was run with a volume of 250 h−1

Mpc per side with 20483 (∼ 8 billion) particles. Bolshoi used a set of cosmological parameters that are
compatible with WMAP measurements (Komatsu et al., 2009), namely H0 = 100 km s−1 Mpc−1, h =
0.7,ΩM = 0.27,ΩB = 0.047,ΩΛ = 0.73, ns = 0.95, σ8 = 0.82. The mesh is gridded into 2563 cells and
the comoving force resolution is ε = 1h−1 kpc.

3.3.3 MultiDark simulations
The BigMultiDark Planck (BigMDPL) simulation is one of a series of simulations, called the Multidark
simulations (Klypin et al., 2016). It was run with the GADGET-2 code, consisting of 38403 particles,
a force smoothing of ε = 10h−1 kpc and Planck cosmological parameters (Planck Collaboration, 2015):
H0 = 100 km s−1 Mpc−1, h = 0.678,ΩM = 0.307,ΩB = 0.048,ΩΛ = 0.693, ns = 0.96, σ8 = 0.83. The
volume of BigMDPL is 2.5h−1 Gpc per side.

3.3.4 Halo finding
As discussed in Section 2.6.7, dark matter halos play an vital role in ΛCDM cosmology. Halos are
considered to function as a host where baryonic matter condenses and thus star formation can take
place. Identifying dark matter halos within a (quasi-)continuous matter density field of a simulation
needs exact definitions (White, 2001). Although there were many different halo finding algorithms
developed over the past years, I will focus on the algorithms Bound-Density-Maxima (BDM) (Klypin
& Holtzman, 1997) and RockStar (Behroozi et al., 2013) .

The BDM algorithm finds the maxima of the density of dark matter particles. The radius of the
spherical halo is defined with the virial radius Rvir as the radius within the mean density is the virial
overdensity δvir times the mean universal matter density %M = ΩM%crit. Thus, the virial mass is given
by

Mvir = 4
3πδvir%MR

3
vir . (3.10)

Also widely used conventions are, δ200 (R200,M200), denoting an overdensity 200 times the critical
density %crit at a given redshift z. Unbound particles that can not be assigned to a halo are removed.
In this way, the BDM algorithm provides several statistics for halos including virial mass and radius,
as well as velocity.

RockStar uses a friends-of-friends algorithm (Davis et al., 1985) for a first classification of clustered
particles. Then spherical dark matter halos and subhalos are identified using an approach based on
adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one
time dimension. RockStar computes the halo mass using spherical overdensities of a virial structure.
Before calculating halo masses and circular velocities, the halo finder removes unbound particles from
the final mass of the halo.

3.3.5 Mock Catalogues
Assigning galaxies to halos is a key point for precise cosmological simulations. Numerous methods
have been developed to address this problem. The most enclosed method relies on the joint numerical
simulation of dark and baryonic matter with a hydrodynamic framework. Most prominent simulations
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using this approach are the Illustris (Vogelsberger et al., 2014) and Eagle (Schaye et al., 2015)
simulations. However, this approach is not yet computationally suited for volumes observed by BOSS.

If the underlying simulations contain dark matter only, the questions arises how the observable
galaxies can be predicted with all their properties, such as mass, position, velocity, and luminosity.
Furthermore, in order to fully imitate an observation from a galaxy redshift survey, these catalogues
must include so-called light-cone effects in geometry, structure growth with redshift, and selection
effects. In Rodŕıguez-Torres et al. (2016) the authors present the SUGAR code which they used to
create mock galaxy redshift survey catalogues based on the BigMDPL simulation. Within the SUGAR
framework, the authors used Halo Abundance Matching (HAM) (Conroy et al., 2006; Guo et al., 2010;
Kim et al., 2008; Nuza et al., 2013; Tasitsiomi et al., 2004; Trujillo-Gomez et al., 2011; Vale & Ostriker,
2004) to assign galaxies to a dark matter halo that was previously defined with BDM.

HAM supposes a correspondence between the luminosity or stellar and dynamical masses: galaxies
with more stars are assigned to more massive halos or subhalos. The luminosity in a red-band is
sometimes used instead of stellar mass. Also methods that include some degree of stochasticity in
the relation between stellar and dynamical masses due to deviations in the merger history, angular
momentum, halo concentration, and even observational errors have been elaborated (Behroozi et al.,
2010; Leauthaud et al., 2011).

Beside HAM, also another method is commonly used, called semi-analytic models (SAMs). These
methods serve to populate model galaxies with the evolving of dark matter halos. The SAMs use
simplified, partly phenomenological recipes to trace the evolution of model galaxies, so attempt to
predict the detailed properties of galaxies (White & Frenk (1991); Kauffmann et al. (1993); Somerville
& Primack (1999); Kauffmann et al. (2003); Kang et al. (2005)). In these models, adjustable parameters
are needed be calibrated against the observations for the efficiencies of poorly understood physical
processes such as star formation or feedback of Supernovae and active galactic nuclei. In recent years,
more details have been added into these models, increasing the accuracy of the representation of the
observed galaxy populations. The faithful representation of the observations and the relative low
computational costs make SAMs also suitable for building mock catalogues to compare them with the
large galaxy surveys.
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4 Implementation of argo
In this chapter I describe the reconstruction algorithm code argo (Algorithm for the Reconstruction
of the Galaxy traced Overdensities) (Kitaura & Enßlin, 2008). I begin with the basic prerequisite of
the statistical framework argo is build upon in Section 4.1. In modern cosmology statistical methods
are used in a broad field and I will mostly adopt the description given by Heavens (2009); Verde (2007,
2010) who summarized the statistical concepts in his context. Afterwards I discuss the physical model
of the reconstructed density field in Section 4.4. Finally I derive all quantities that the inference analysis
requires in detail in Section 4.5. I further describe the Bayesian inference method and advantages that
arise of a Bayesian treatment of parameter estimation.

4.1 Statistical background
Before I describe the method used in argo, I will firstly discuss the fundamental statistical background
necessary for a thorough understanding of the reconstruction procedure.

4.1.1 Bayesian Approach
The two standard approaches to statistics, frequentist and Bayesian interpretation, differ in the way
probability is perceived. The frequentist (originating from the term frequency) approach assumes that
a certain probability P(A) for an event A can be calculated by the ratio of number of successful (w.r.t
event A) trials nA and total number of trials N , thus P = nA/N .

This is a robust definition, independent of assumptions of the underlying random process. Never-
theless, this interpretation has shortcomings if the probability can not be expressed in a frequency of
trials. Therefore the Bayesian interpretation of probabilities has a broader validity and is colloquially
stated as degree of belief (Nußbaum, 1975) in a hypothesis. It is built upon the Bayes’ theorem which
writes for the parameter vector θ and the data vector x as

P(θ|x) = P(x|θ)P(θ)
P(x) . (4.1)

In this context:

• P(θ|x) is the probability (density) of the posterior function. The conditional probability of
the parameter vector θ given the data vector x;

• P(x|θ) is the probability of the data x given the parameter vector θ. This function is also called
likelihood and will be denoted with L (x|θ);
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• P(θ) is the probability of the parameter vector θ, i.e.. the underlying distribution from which θ
is realized. As this function is already known without prior1 knowledge of the data, this function
is called prior and will be denoted with π(θ);

• P(x) is called evidence and represents the often inaccessible probability of the data vector x.

We note that in many statistical problems a distinction is useful, whether parameters are to be inferred
by the analysis or are previously known. This knowledge is called information I . It is written in a
conditional probability, e.g. π(θ,I ). This notation is useful to update the prior given the posterior
of a Bayesian analysis and the previous information, if the prior and likelihood are conjugate (of the
same form). It is also important to note that the evidence acts as the normalization of the posterior
for parameter estimation problems. Thus we can express the evidence by marginalizing over θ as :

P(x) =
∫
θ
dθL (x|θ)π(θ) . (4.2)

We also immediately see that P(x|θ)P(θ) is the joint probability of x and θ, that is written as
P(x,θ).

4.1.2 Parameter estimation
In Equation 4.1 the pivotal concept of Bayesian statistics is shown. It gives the probability density
for a set of parameters θ conditioned on the data x. The upcoming question is now how the set of
parameters θ is estimated. Therefore, it is adequate to discuss the basic difference of Bayesian methods
to frequentist approaches like the Maximum Likelihood Estimate2 (MLE).

MLE is used to find the best estimate for θ, called θ̂, given the data x, that maximizes the likelihood
function L (x|θ). As no distribution of θ is assumed, θ̂ will be a point estimate. So in a Bayesian
formalism the MLE relies on the assumption that the ratio of prior and evidence is constant

π(θ)
P(x) = const , (4.3)

and thus does not contribute in the maximization. So the MLE is able to estimate the most probable
value of θ given the data, but does not predict the outcome of θ as such in a random process, meaning
that frequentist approached cannot estimate the probability density of θ, but only define a best guess
value. The likelihood is not a probability density in a strict sense as it is not necessarily normalized to
1 and does not assign a probability to a set of parameters. Nevertheless a likelihood is a useful tool if
it is used as a ratio.

A key difference between a Bayesian approach and frequentist parameter estimation methods, such
as χ2 or maximum likelihood, is that Bayesian inference is utilizing the whole support of π(θ) and not
only restricted to a single point estimate of θ, as done by MLE. This will however make a difference in
the conclusion drawn from a parameter estimation regarding the choice of the prior distribution (Gilks
et al., 1995).

The pendant to the MLE method in Bayesian statistics is the so-called Maximum a posteriori (MAP)
estimate. MAP estimates a point θMAP for which P(θ|x) assumes its maximum. In practice it is only
necessary to maximize a function that is proportional to the normalized posterior P(θ|x), thus

P(θ|x) ∝ L (x|θ)× π(θ) (4.4)
1This is not fully correct as the prior can be updated with constraints from data.
2In literature we usually encounter problems that are solved by minimizing the negative logarithm. This is numerically

more accessible than a (presumably) diverging maximization. Also this function then coincides with χ2 = −2 log L
parameter estimation for Gaussian PDFs.
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can be a better choice to be maximized.

4.1.3 Prior choice
Bayesian statistics relies on the assumption that a prior knowledge is given to a problem which is
received either due to a subjective estimate or a previous analysis. If there is good knowledge, e.g.
about an estimated parameter, this knowledge can be incorporated into the prior and thus will yield
more precise estimates (Gelman, 2010).

However, if there is just little known about the statistical occurrence and thus the choice of the prior
is not specific, empirical Bayesian methods may have benefits. They are constructed in a way that the
prior itself is derived from data. Furthermore, there is also the possibility to set up the analysis with
so-called uninformative priors that do not contribute any knowledge about the parameters of interest.
Two important types of priors that belong to this class are uniform distributions and Jeffrey’s priors
(Lee, 2012).

It is obvious that the choice of the prior will lead to different interpretations and results as compared
to frequentist methods. To some extend the arbitrary choice of a prior is a main point of criticism of
Bayesian statistics.

4.1.4 Hierarchical models
Many statistical applications contain multiple parameters that can be related or connected in some
way by the structure of the problem, implying that a joint probability model for these parameters
should reflect their dependence.

This problem can be addressed with a hierarchical probability model. If we recall Equation 4.1, we
face a single parameter vector θ. This parameter now may be depending on another parameter φ,
called hyperparameter. Straight on modelling this problem would yield up to the normalization

P(φ,θ|x) ∝ L (x|φ,θ)× π(φ,θ) . (4.5)

This is not only technically challenging due to dimensionality, moreover, this formalism also does not
mirror the knowledge of how θ depends on φ. Using Bayes rule we obtain

P(φ,θ) = P(φ)×P(θ|φ) , (4.6)
P(φ,θ|x) ∝ P(φ,θ)×P(x|φ,θ) , (4.7)

= P(φ,θ)×P(x|θ) , (4.8)

where the last simplification holds, if parameter φ has no direct influence on x but through θ. In
Figure 4.1 a more complex example is shown. Here parameters A and θ have direct influence on the
outcome of the data x. In the hyperplane there are still B and C modulating the parameter A, and φ
modulating parameter θ. Applying Equation 4.8, this posterior can be expressed up to a normalization
as

P(A,B,C,φ,θ|x) ∝ L (x|A,θ)× π(θ|φ)× π(A|B,C)︸ ︷︷ ︸
direct plane

×π(B)× π(C)× π(φ)︸ ︷︷ ︸
hyperplane

. (4.9)

We will show how to use this representation of the products of conditional probabilities in Section
4.3.2 to sample each parameter separately. This is an important scheme within our reconstruction
method.
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θA

x

Figure 4.1: Concept of hierarchical modelling given a data set x and parameters A, θ. These parameters
themselves depend on B, C and φ respectively. B, C, and φ only influence the data x via A and θ, illustrated in
the figure as no direct arrow is shown. The hyperparameter space is shown in the blue region. This represents a
typical setting where Bayesian hierarchical modelling is convenient to apply.

4.2 Sampling techniques
Having discussed the theoretical background of statistical parameter estimation (Section 4.1.2) with
Bayesian statistics (Section 4.1), I will now focus on methods to generate samples from a probability
density distribution (Murray et al., 2012), which is a key ingredient of the shown works. Attaching
importance to Markov Chain Monte-Carlo (MCMC) (Neal, 1993; Newman & Barkema, 1999) I introduce
different sampling schemes of which Section 4.3.2 and Section 4.3.3 are most relevant for argo.

4.2.1 Concept of Monte-Carlo samplers
Monte-Carlo (MC) algorithms are stochastic methods that rely on repeated random sampling of
independent and identically distributed (i.i.d.) random numbers to gain numerical results. As MC
algorithms have a very broad range of applications such as optimization, I will limit this discussion to
sampling and integration methods. Each of these methods are illustrated with an example.

• Rejection sampling:
Suppose we want to draw samples from the posterior P(θ|x) which must not be necessarily
normalized (no constrains on

∫
P(θ|x)dθ). If there is no closed analytic form of P or the given

function is very complicated to sample from, rejection sampling is a method to overcome this
problem. Therefore, we choose a distribution g(θ) which we can sample from (proposal function).
Moreover, g(θ) multiplied with a constant c must be greater than P(θ|x) at all θ. c · g(θ) then
is called envelope function. Now we draw θg from a distribution proportional to g(θ). Afterwards
the importance ratio R = P(θg |x)

c·g(θg) is calculated and accepted, if the ratio R is less then a uniform
random number between 0 and 1, R ≤ U [0, 1], otherwise rejected and a new random point θg is
drawn. The schematic procedure is shown in Figure 4.2.

• Importance sampling:
Different from rejection sampling, importance sampling cannot be used to draw samples of P.
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Figure 4.2: Concept of rejection sampling shown in one dimension. In blue color the desired PDF is plotted that
we want to draw samples from, P ∝ exp

((
cos θ1.5)1.2 sin θ + 2 exp (−θ)1.9

)
. The proposal function g(θ) is shown

in green, basically being a normal distribution with selected mean and variance, g(θ) ∝ N (µ, σ). The Importance
ratio R = P(θg |x)

c·g(θg) is compared to a uniform random number U [0, 1] between 0 and 1. The accepted draws of θ from
g are then effectively samples of P.

Instead, it is an efficient method to compute integrals of the form

EP [h(θ|x)] =
∫
h(θ)P(θ|x)dθ , (4.10)

where EP [h(θ|x)] is the expectation of the function h(θ) given the normalized probability
distribution P(θ|x). The dependency of h(θ) on x is therefore induced by P. If we are able to
draw samples θP of P, we can immediately solve the integral by

EP [h(θ|x)] =
∫
h(θ)P(θ|x)dθ ≈ 1

N

N∑
n=1

h(θnP) , (4.11)

summing up n = 1, ..., N draws. This is called Monte-Carlo integration. But what if the direct
sampling from P is not possible, e.g. due to dimensionality or not having a closed analytical
form? One possible solution to this problem is to rely on another normalized probability density
function (PDF) g(θ) of which we can directly draw samples from. Thus we write

EP [h(θ|x)] =
∫
h(θ)P(θ|x)dθ

=
∫
h(θ)P(θ|x)g(θ)

g(θ)dθ

=
∫ [

h(θ)P(θ|x)
g(θ)

]
g(θ)dθ

=
N∑
n=1

h(θng )w(θng ) , (4.12)

where w(θng ) = P(θng |x)
g(θng ) and θng is the n-th sample of θ drawn from PDF g(θ).
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4.3 Markov Chain Monte-Carlo
Rejection and importance sampling are grossly inefficient with soaring dimensionality of the inference
problem. It will be computationally unfeasible to explore a multidimensional PDF with pure rejection
sampling. However, instead of drawing i.i.d. samples from a single PDF, I will now introduce a method
sequentially sampling from a so-called Markov chain. A Markov chain is defined as a sequence of
random variables {θt} (i.e. parameters in Bayesian statistics, Section 4.1) whose current draw (or
state) θt only depends on the most recent draw θt−1. We can express this Markov property in terms of
probability as:

P(θt+1|θ1,θ2, ...,θt) = P(θt+1|θt) . (4.13)
The probability to move from state θ to θt+1 is induced by the transition kernel, a transition distribution
for a continuous case or transition matrix for a discrete case, frequently denoted with Tt+1(θt+1|θt)
(k × k matrix T for a k dimensional problem). Tt+1 has to stay the same for any t so that Equation
4.13 holds. The key point of Markov chains is the stationary distribution Pst. This distribution is
constructed to satisfy the equation∫

Tt+1(θt+1|θt)Pst(θt)dθ = Pst(θt+1) , (4.14)

expressing that once the chain has moved to the stationary distribution, the transition kernel has no
effect on Pst anymore, so that θt and θt+1 are drawn from the same PDF.

Markov chain Monte-Carlo (MCMC) now uses Equation 4.14 in a way that the distribution we want
to sample from, called target distribution, is the stationary distribution of a Markov chain. Once the
desired distribution Pst is obtained, MC methods are used to draw samples from. MCMC came to
newly popularity in the 90’s with Gelfand & Smith (1990) and so encouraged Bayesian statistical
analyses, which have been inaccessible due to computational reasons before. Yet there is still one
caveat using MCMC. As we mentioned before, samples from a MCMC are not i.i.d. random variables.
They slightly depend on each other given by condition 4.13, even if the stationary distribution of the
MCMC is reached3.

However, to have a well defined stationary distribution, a Markov chain must come up with the
following properties:

• Irreducibility:
This means, that the probability for any state moving from θi to θj is greater than 0,

Tij = P(θt+1 = θi|θt = θj) > 0 ,

which means that at any time step (iteration) the chain can assume any allowed state and Tij

can not be reduced into smaller matrices.

• Aperiodicity:
The chain must not get trapped into cycles. So the probability for θi moving to θi at iteration n
is Pn

i,i > 0.

• Positive recurrency:
A state i is recurrent if the expected time until the process returns to state θi is finite.

If these conditions are satisfied all states of the chain are ergodic, which means that the chain is ergodic
itself. Ergodicity for a chain means that the average over sufficient large time steps t is the same as
averaging over the ensemble of samples, which is effectively the same as i.i.d. sampling from a PDF.

3Also ergodicity is a condition for a MCMC to have a unique stationary distribution.
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4.3.1 Metropolis-Hastings sampling
Metropolis-Hastings algorithm (M-H) (Hastings, 1970) is the generalization of Metropolis et al. (1953)
method, useful for sampling from Bayesian posterior distributions. The basic idea of M-H is to sample
from the PDF of interest that corresponds to the stationary distribution of a Markov chain. We set up
an arbitrary starting state in parameter space θ0, so that the starting distribution P(θ0|x) > 0. To
evolve the chain from state t to t+ 1, we draw a new proposal sample θ′ from a proposal distribution
(jumping distribution) at time t+ 1, Jt+1(θ′|θt). This new proposal θ′ is used to calculate the ratio of
the PDFs

r = P(θ′|x)/Jt+1(θ′|θt)
P(θt|x)/Jt+1(θt|θ′)

. (4.15)

Thus, the transition probability Tt+1(θt+1|θt) for the state θt is a mixture of its probability and the
proposal distribution. In Equation 4.15 it can be seen that for a symmetric proposal distribution the

ratio is simplified to r = P(θ′|x)
P(θt|x)

.

We finally decide whether to keep the new proposal state θ′ or not by

θt+1 =
{
θ′ if U [0, 1] < min(r, 1)
θt else

. (4.16)

As Equation 4.16 already states, every iteration of M-H produces a sample, whether the chain
assumes a new state θ′ or not. Another very interesting (and totally necessary in many applications)
point of the presented MCMC methods is that the evidence, the normalization of the posterior, is
cancelling out as we are only interested in the ratio.

Equation 4.16 is derived from the joint probability of two states θa and θb which are drawn from
the stationary distribution as

P(θt = θa,θt+1 = θb) = P(θa|x)Jt+1(θb|θa) , (4.17)
P(θt+1 = θa,θt = θa) = P(θa|x)Jt+1(θa|θb) , (4.18)

where the joint probability is symmetric.
The choice of the proposal distribution is rather arbitrary. For many inference problems a proposal

function that relies on random walks is satisfactory, that can be proposals from a normal distribution
that are centered on the previous iteration with arbitrary width or even uniform distributions. However,
as the target distribution we want to sample from can be fairly complex, methods were developed that
do not rely on random walks but utilize the knowledge of the parameter space, such as steepness (see
Robert & Casella (2005) for more examples). One of these modifications are presented in the Langevin
algorithm, where the proposal state θ′ is given by

θ′ ∼ θt−1 + N (ε) + ∇ log P , (4.19)

where N (ε) is the normal distribution centered at θt−1 and width ε. It is obvious that this proposal
distribution will prefer phase-space regions with high gradient and thus help the algorithm to reach
the stationary distribution. An example for a two dimensional problem is shown in Figure 4.3.

4.3.2 Gibbs sampling
Proposed in Geman & Geman (1984) the Gibbs sampler is a particular interesting MCMC. It relies
on the ability to express a conditional probabilistic model for each parameter, nevertheless the Gibbs
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Figure 4.3: Example of a Metropolis-Hastings scheme shown for a two dimensional sampling from a bi-variate
normal distribution N = N1(µx = 2, µy = 5, σx = 3, σy = 2, σxy = −1.6) + N2(µx = 3, µy = −2, σx = 3, σy =
3, σxy = 1.6). The proposal distribution was chosen to be a normal distribution centered on the current state with
unity width. The color code with the corresponding numbers represent the density contours.

algorithm will not be applicable if there is no possibility to impose conditional probabilities. Denoting
the parameter vector θt = (θt1, ..., θtD) of the t-th iteration, the Gibbs sampler will evaluate D times
each corresponding conditional probability for every iteration t. Starting with θ0, we can now write
the probability for θ1 element-wise as

θ1
1 x P(θ1

1|θ0
2, ..., θ

0
D,x) . (4.20)

As the chain goes on through each vector component

θ1
2 x P(θ1

1|θ0
3, ..., θ

0
D,x) ,

...
θ1
D x P(θ1

1|θ1
2, ..., θ

1
D−1,x) ,

θ2
1 x P(θ1

2|θ1
3, ..., θ

1
D,x) ,

...

θND x P(θN1 |θN2 , ..., θND−1,x) ,

it will finally reach the stationary distribution after N sufficient large iteration steps so that effectively
θ is sampled from the target distribution P(θ|x).
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Therefore, in the Gibbs sampling scheme an arbitrary choice of the proposal distribution is obsolete,
as the model itself imposes the conditional distributions. This scheme is particularly helpful for
hierarchical models as discussed in Section 4.1.4.

4.3.3 Hamiltonian Monte-Carlo
Duane et al. (1987) presented a method they called Hybrid Monte Carlo (HMC) which was used in
lattice quantum chromodynamics. The name was chosen because they auxiliary included variables that
guided the Monte-Carlo simulation. Later, HMC arouse interest by the scientific community (Neal,
1993, 2012).

The model itself relies on Hamiltonian mechanics. The phase-space dynamics is described by the
Hamilton function (Hamiltonian) H (q,p, t), where q is the canonical coordinate, p the conjugate
momentum and t the time. The Hamiltonian also equals to the total energy in general cases 4. Any
quantity (e.g. f(q,p, t)) within this system is evolving in time according to the Hamiltonian (Hand &
Finch, 1998) as

df
dt = ∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
+ ∂f

∂t
,

= {f,H }+ ∂f

∂t
, (4.21)

where {} is called Poisson bracket. From Equation 4.21 we immediately derive the Hamiltonian
equations of motion:

dp
dt = −∂H

∂q
, (4.22)

dq
dt = ∂H

∂p
. (4.23)

Equations 4.22 only hold if the Hamiltonian H 6= H (t) is not explicitly depending on time t as

dH

dt = {H ,H }︸ ︷︷ ︸
=0

+∂H

∂t
, (4.24)

= 0 ,

which also means that the Hamiltonian equations of motion are energy conserving. We further derive
the derivative for any quantity that is independent of time, e.g. of the form %(H (q,p)), thus ∂%/∂t = 0,

d%
dt =

∑
i

(
∂%

∂pi

∂H

∂qi
− ∂%

∂qi

∂H

∂pi

)
, (4.25)

=
∑
i

(
∂%

∂H

∂H

∂pi

∂H

∂qi
− ∂%

∂H

∂H

∂qi

∂H

∂pi

)
, (4.26)

= 0 ,

for which % = exp
(
−H (q,p)

kbT

)
is a solution. This is the Boltzmann distribution, assigning a probability

to a state with Energy E = H , and temperature T , where kb is the Boltzmann constant.
4See Goldstein et al. (2001) for detailed discussions. We will only consider cases where H equals the energy of the

system.
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Now that we elaborated the Hamiltonian dynamics, we need to build the link to a probabilistic
measure. This is done by defining the canonical distribution P(q,p) to sample from, and the
Hamiltonian H (q,p) = U(q) + K(p), where U is the potential of Hamiltonian, depending on the
spatial coordinate q only, and the kinetic term K solely depending on the momentum p. Putting this
together the canonical distribution can be written as

P(q,p) = 1
Z

exp
(
−H (q,p)

kbT

)
, (4.27)

⇒P(q)P(p) = 1
Z

exp
(
−U(q)
kbT

)
exp

(
−K(p)
kbT

)
, (4.28)

where Z is the normalization of the distribution function. Thus we see that U(q) and K(p) are
factorizing into separate probabilities P(q) and P(p). Hamiltonian Monte-Carlo now defines the
(pseudo) spatial vector q to be the variable which we will sample, and p the auxiliary variable that will
allow the Hamiltonian to explore the phase-space. Therefore, we can write the above Equation 4.27 as

U(q) = − ln P(q) , (4.29)

linking the desired posterior probability distribution P(q) to the potential U(q), actually sampled by
HMC.

Equation 4.27 imposes that q and p are sampled independently. As we are only interested in drawing
samples from the posterior and not overmuch care about the exact probability of each sample, we
drop the normalization term Z and also set the temperate kbT = 1. We will later see anyway that
all constant terms will vanish due to the HMC method. The kinetic term corresponds to the kinetic
energy of a free particle

K(p) = 1
2p

TM−1p , (4.30)

where M is the symmetric positive semidefinite mass variance matrix (covariance of the momenta〈
pTp

〉
). In Duane et al. (1987) this matrix has been chosen to be the identity matrix I. However

Jasche & Kitaura (2010) and Neal (2012) elaborated methods to keep the diagonal shape of the mass
matrix but include preconditions to enhance the performance of the HMC.

Moreover, the form for the kinetic energy corresponds to minus logarithm of a Gaussian probability
density with mean zero and covariance matrix M, so that p can be drawn from a multivariate Gaussian
distribution P(p) for each step.

Now the Hamiltonian equations of motion in Equation 4.22 can be formulated for the phase-space
variables q and p as

dqi
dt = ∂H

∂pi
=
∑
j

M−1
ij pj , (4.31)

dpi
dt = −∂H

∂qi
= −∂U(q)

∂qi
. (4.32)

It is not possible to follow the Hamiltonian dynamics exactly due to the discretization of the equations of
motion. To evolve the Hamiltonian in (pseudo-) time, it is convenient to use the leapfrog scheme, which
has the properties of being time-reversible and to conserve the phase-space volume being necessary
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conditions to ensure ergodicity:

pi

(
t+ ε

2

)
= pi(t)−

ε

2
∂U(q)
∂qi

∣∣∣∣
qi(t)

, (4.33)

qi (t+ ε) = qi(t) + ε
∑
j

M−1
ij pj

(
t+ ε

2

)
, (4.34)

pi (t+ ε) = pi

(
t+ ε

2

)
− ε

2
∂U(q)
∂qi

∣∣∣∣
qi(t+ε)

. (4.35)

The dynamics of this system is now calculated for a period of time t = [0...τ ], with a discrete value
of ε small enough to give acceptable errors and for Nτ = ∆τ/ε leapfrog steps. In practice ε and Nτ

are randomly drawn from a uniform distribution to avoid resonant trajectories (see Neal, 1993). The
leapfrog method is a good compromise of accuracy, stability and efficiency (Athanassoula, 1993). The
solution of the equations of motion will move the system from an initial state (q,p) to a final state
(q′,p′) after each sampling step. Although the Hamiltonian equations of motion are energy conserving,
our approximate solution is not. For this reason a Metropolis-Hastings acceptance step has to be
introduced in which the new phase-space state (q′,p′) is accepted with a certain probability:

PA = min [1, exp(−∆H )] , (4.36)

with ∆H ≡H (q′,p′)−H (q,p). According to Gelman et al. (2013) the number of steps Nτ and the
step size ε should be chosen to have approximately 65% acceptance rate so that the HMC is maximally
efficient. Moreover, the initial guess distribution that the HMC is starting from is in general not
the target distribution. Thus, the equations of motion will move the system to the correct target
distribution of which we want samples from. The initial samples, before reaching the target belong to
the burn-in phase. The length of the burn-in phase depends on the target distribution. We will show
statistical criteria that help us to estimate the convergence behavior of the HMC.

4.4 Density field transformation
Transformation of density field of the dark matter is a well studied method to extract specific information
from the cosmic web. As we discussed in Section 2.3.3 the current picture of ΛCDM predicts early
Universe’s initial conditions to follow Gaussian statistics. This is very much encouraged by the highly
Gaussian CMB. Linear growth preserves the Gaussianity as each mode of the density field (i.e. the
wave vector k) evolves independently and thus the covariance matrix of the density field stays diagonal.
Non-linear growth of structures due to gravitational attraction however, yields mode coupling and
therefore introduces off-diagonal entries into the covariance. Density field transformations are beneficial
to reduce these unpleasant effects to recover the Gaussian statistics. Local field transformations have
been studied recently in literature (see Neyrinck, 2011; Neyrinck et al., 2011). These works emphasize
that a logarithmic local transformation of the density field approximates observables extremely well
and extracts vital information from the matter field, called ”sufficient statistics” in literature (Carron
& Szapudi, 2014b). It can also been shown that the logarithmic transformation to some extent restores
the Gaussian statistics of the density field (Neyrinck et al., 2009), unleashes cosmological information
from the two-point power spectrum and is a reasonably good estimate for the linear displacement field
(Falck et al., 2012; Kitaura & Angulo, 2012).

Methods like in Zhang et al. (2011) decompose the density field δ into Gaussian and non-Gaussian
components using a discrete wavelet transformation (DWT). In this way non-linearities in the power
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spectrum can be reduced relying on the distribution of the wavelet components. The most promising
Gaussianization is achieved when a transformation is applied to the density field so that the one-point
distribution of the density is being removed by all higher-order moments. In Neyrinck et al. (2009) the
authors present two promising Gaussianization schemes:

• Gaussian mapping G(δ) :
This transformation is written as

G(δ) ≡
√

2σ2erf−1
(

2f<δ − 1 + 1
N

)
, (4.37)

where f<δ is the fraction of volume elements less dense than δ, σ2 the variance of the Gaussian,
N the number of volume elements and erf the error-function.

• Logarithmic transform log(δ) :
Logarithmic transformation is a local mapping of the density field to its logarithm written as:

log(δ) ≡ ln (1 + δ) + C , (4.38)

where C is a constant of integration.

The physical meaning of the logarithmic transform was derived in 2.7.1. It is a direct consequence of
linear evolution in conformal time given by the continuity equation (Coles & Jones, 1991). We review
the lognormal distribution as the solution of the continuity equation for density %

〈%〉
= 1 + δ written in

conformal time dτ = dt
a

as

∫ 1
%

d%
dτ = −

∫
dτ∇ · u , (4.39)

ln (1 + δ) = −
∫

dτ∇ · u . (4.40)

In the Zel’dovich approximation 2.7.2, the evolution of structure is described by Lagrangian initial
coordinates q and Eulerian comoving coordinates x as

x = q + Ψ , (4.41)

with the linear displacement field is given by Ψ = −D∇Φ. D denotes the linear growth factor and Φ
the peculiar gravitational potential. The linear Poisson equation still relates the linear density contrast
δL to the gravitational potential with

δL = D∇2Φ , (4.42)

so that we find
δL = −∇ ·Ψ . (4.43)

The velocity in comoving frame x can be expressed via displacement as

u = dx
dτ = dΨ

dτ , (4.44)

∇ · u = ∇ · dΨ
dτ . (4.45)
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Combining Equations 4.40 and 4.45 we find

∇ ·Ψ = − log (1 + δ) + C , (4.46)

where C is a constant of integration and well approximated by 〈log (1 + δ)〉 (Kitaura & Angulo, 2012).
Equation 4.46 shows that the logarithmic transform of the density contrast yields a reasonable estimate
of the linear density, which is Gaussian distributed. All higher orders are comprised in the constant
mean, C = δ+ as

log (1 + δ) = δL + δ+ . (4.47)

Also it has been shown in Carron & Szapudi (2014a,b) that the logarithmic density transformation are
statistically very close to the sufficient statistics of the one-point probability density function of the
dark matter density field.
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Figure 4.4: Neyrinck et al. (2011): Ratio of the linear power spectrum without wiggles Plin,nowig with: (top) full
non-linear power spectrum Pδ, (middle) the power spectrum of the logarithmic transformed density Pln (1+δ), (bottom)
the power spectrum of the gaussianized density PG(δ). The non-linear increase of power at scales k = 10−1 Mpc−1 is
efficiently resolved up to k = 3 · 10−1 Mpc−1.

The results of Gaussianization are summarized in Figure 4.4. The power spectra of 37 simulations
have been measured and compared to the linear power spectrum (covariance of the linear density
constrast) of which the BAO wiggles have been removed (Plin,nowig). It can imposingly be seen that
non-linear deviations of the power pectrum Pδ are recovered mostly when Gaussianizations Pln (1+δ) or
PG(δ) are computed.

55



CHAPTER 4. IMPLEMENTATION OF ARGO

Gaussianiazation is not uniquely used for LSS but also is applied in weak lensing studies (Joachimi
et al., 2011; Yu et al., 2011) to obtain improved cosmological constraints. Also, linearised density fields
can yield improved displacement and peculiar velocity fields (Kitaura et al., 2012b).

4.5 Inference analysis with argo
The work presented here has been performed with a fundamentally refined and extended implementation
of the argo code as presented in Kitaura & Enßlin (2008); Kitaura et al. (2009, 2010). The philosophy
of argo follows Bayesian statistical inference. We interpret the underlying dark matter density field
as a probability distribution for which the resulting halo or galaxy distributions are statistical discrete
representations. The purpose of an inverse analysis, as the one presented, is to infer the underlying
distribution if only a statistical realization is known.

Obviously, galaxies/halos only form where the dark matter density contrast is high enough so that
the structures can collapse. Still, we can observe how the tracers follow the smooth dark matter
distribution on large enough scales. This means, that the number density of tracers is prone to a
statistical bias.

4.5.1 Bayesian analyses in cosmology
Bayesian inference analyses and reconstruction techniques are widely used in cosmology, especially LSS
and CMB analyses (Bunn et al., 1996; Fisher et al., 1995; Zaroubi et al., 1995). Cosmological inference
is about to undergo further development when joint inference studies are to be performed combining
CMB (Doré et al., 2001), LSS and also upcoming weak lensing (Alsing et al., 2016; Bull et al., 2016;
Heavens et al., 2016; Kitching et al., 2015).

Also the reconstruction of the large scale gravitational potential, from which the coherent peculiar
velocities can be derived, are studied. This is the case of the integrated Sachs-Wolfe effect (see e.g.,
Granett et al., 2008), the kinematic Sunyaev-Zeldovich effect (see e.g., Hernández-Monteagudo et al.,
2015; Planck Collaboration et al., 2016; Schaan et al., 2015), the cosmic flows (e.g. Branchini et al.,
2012; Courtois et al., 2012; Heß & Kitaura, 2016; Kitaura et al., 2012c; Lavaux et al., 2010; Watkins
et al., 2009), or the baryon acoustic oscillations (BAO) reconstructions (see e.g. Eisenstein et al., 2007;
Padmanabhan et al., 2012; Ross et al., 2015). Environmental studies of galaxies also demonstrated to
benefit from accurate density and velocity reconstructions (Erdoǧdu et al., 2004; Nuza et al., 2014).

Nevertheless, all these studies are affected by redshift-space distortions and the sparsity of the signal,
which must be handled carefully (McCullagh et al., 2016). Indeed, Seljak (2012) has pointed out that if
not properly modeled, non-linear transformations on density fields including redshift-space distortions
can lead to biased results. The majority of previous Bayesian density field reconstructions applied to
galaxy redshift surveys did not correct for the anisotropic redshift-space distortions (see e.g. Jasche
et al., 2010, 2015).

The RSD modelling is especially emphasized by the analysis presented in this thesis. A recent study
suggested to measure the growth rate from density reconstructions (Granett et al., 2015). However,
instead of correcting redshift-space distortions, these were included in the power spectrum used to
recover the density field in redshift-space.

4.5.2 Defining the posterior for argo
This work is entirely focused on LSS inference and the challenges within this charge. In order to infer
the underlying dark mater given a set of galaxy or halo (tracers hereafter) coordinates, we build up
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a statistical model that links the observed number density of the tracers to the sought dark matter
density. In the Bayesian framework, we define posterior distributions whose samples are statistical
representations of the quantity that we would like to infer. argo is designed to jointly infer several
conditional probabilities densities in a Gibbs sampling scheme. The presented work will mainly focus
on the inference of the the dark matter density and the real-space positions of the tracers as galaxies in
redshift surveys are observed in redshift-space (see Section 2.9). We will also discuss argo’s extensions,
e.g. in Section 4.8, the selection function sampling to overcome the Kaiser-rocket effect. This effect is
a systematic maladjustment of the radial selection when calculated from galaxies in redshift-space.

The relation of real-space positions r and observed positions in redshift-space sobs are obtained by
the following mapping (see Section 2.9):

r = sobs −
(
v(r, a) · r̂
H(a)a

)
r̂ , (4.48)

where r̂ is the unit velocity vector in line-of-sight direction and v(r, a) the velocity w.r.t. position r
and scale factor a.

Having defined this mapping we can now use velocity and real-space positions as synonyms in our
reconstruction model, as we will need the velocity to infer the real-space positions and vice versa. The
joint posterior for the Nc dimensional linear density field δL and real-space positions then is defined as:

Pjoint
(
δL, {r1...rN}|{sobs

1 ...sobs
N }, w(r),CL(pC),pB, fΩ

)
, (4.49)

where each ri ∈ R3 is the three dimensional vector of the volume element i
This posterior gives a joint probability for the linear density field δL and N three dimensional

velocity vectors {v1...vN} thus obtaining the real-space positions {r1...rN}, given

• observed redshift-space positions {sobs
1 ...sobs

N };

• completeness w(r),
a scalar between 0 and 1, denoting observational effects in a given region of the sky. Detailed
discussion follows in Section 4.5.4;

• cosmic covariance CL(pC) of the linear density field,
defined as CL = 〈δ†LδL〉, depending on a set of cosmological parameters pC (expressed as a vector)
within a ΛCDM framework;

• bias parameters pB,
the vector of the bias parameters described in Section 2.8;

• growth rate fΩ ≡
d logD(a)

d log a ,
the logarithmic derivative of the logarithm of the growth factor D(a) w.r.t. the scale factor a.

The direct inference from Equation 4.49 is not viable. That is why a hierarchical model of conditional
probabilities as described in Section 4.1.4 is build up, so that the resulting inference analysis can be
done in a Gibbs sampling scheme shown in Section 4.3.2.

δL x Pδ (δL|NG (r), w(r),CL(pC),pB) , (4.50)
{r1...rN} x Pr

(
{r1...rN}|{sobs

1 ...sobs
N }, {v1...vN} (δL, fΩ)

)
, (4.51)
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where each velocity vi itself is a function of of the linear density contrast and the growth rate.

Due to statistical advantages we will define all physical quantities in argo w.r.t. to the linear
density contrast (more details in Section 4.6.3) as this is the signal we are actually sampling. The only
exception is the bias relation described in Section 4.6.1, which has to be defined for the non-linear
density contrast.

4.5.3 Running argo on a mesh grid
We run argo on a cubic equilateral mesh grid of Nc ( 3√Nc per axis) cells. We use the nearest grid
point (NGP) algorithm to assign each of the NG tracers to a particular cell. argo reconstructs the
underlying dark matter density and also the velocity on this mesh grid, meaning that we will have to
solve equations 4.50 and 4.51 for Nc density and 3×Nc velocity parameters. We will elaborate the
Hamilton equations of motion for each cell identified with index i ∈ 0, ..., Nc − 1.

4.5.4 Window handling in argo
The radial selection function and the angular completeness, both discussed in Section 3.2, are the two
constituents for argo to be combined to the so-called window function w. We need to project the
angular completeness (see Figure 3.2) into each cell of a three dimensional cubic volume used for the
reconstructions. This is done by transforming equatorial coordinates (right ascension α and declination
δ) into comoving Cartesian coordinates x, y, z with

x = cosα cos δ ,
y = sinα cos δ ,
z = sin δ , (4.52)

at unit distance. Now having done this transformation we still need to evaluate the completeness in
line of sight, as Equation 4.52 only holds for a sphere with unity radius. If no further information is
given, we would simply assign all cells in the cubic volume with the completeness value of the angular
mask’s line-of-sight projection, indiscriminately of their radial distance r. We also need to average
the completeness of the projections within one cell, as several points of the angular completeness
mask mesh can correspond to the same cell in line-of-sight projection of the cubic box. This is due
to different resolutions of the angular mask and the cubic box. The resulting projection in a z − y
(top left) and z − x plane (top right) can be seen in Figure 4.5 for a cubic box with 512 cells per
side. These projections now assumes the completeness entirely depending on the angular coordinates
each cell is projected to, without taking its radial distance into account. The next step is to also
consider the variation of the completeness due to the radial selection function (RSF). This is done by
multiplying the value of the RSF given the cell’s radial distance r to each cell. So the final window
function, including angular mask and the RSF is shown for z − y (bottom left) and z − x (bottom
right) plane in Figure 4.5.

We will later see the advantage of this bipartite procedure as once the angular projection is done on
a mesh grid, any RSF can be multiplied trivially afterwards. This is a key advantage for the selection
function sampling, shown in Section 4.8.
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Figure 4.5: Top panel showing two slices of the pure angular completeness mask projected into a cubic box
with 512 cells per side. On the bottom panel the same slices are shown but with the RSF multiplied into. Regions
that have not been observed or vetoed are drawn in white.
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4.5.5 Galaxy weights handling in argo
Besides the mask and window handling we also need to apply weights to BOSS galaxies. These weights
are described in Reid et al. (2016) and correct for dependencies between target density and both, stellar
density and seeing. They are labeled and described in the following:

• Close Pairs:
For separations below 62′′ the pairs of targets are too close to obtain both spectra. In this case
the nearest neighbor is weighted with wcp.

• No Redshift:
For 1.8% of the CMASS targets, the spectroscopic pipeline fails to obtain a robust redshift. We
do not necessarily expect these to be distributed randomly with respect to e.g., plate center or
redshift, and so we again adopt a nearest neighbour upweighting scheme to account for these
objects. Redshift failure galaxies were permitted to be upweighted because of a nearest neighbour
fiber collision. We therefore transfer the total weight to the nearest neighbour of the redshift
failure, incrementing a weight wnoz.

• Angular Weights:
We remove non-cosmological fluctuations in CMASS target density with stellar density and seeing
and condense these weights to the total systematic effect wsystot = wsee × wstar.

The total weight for object i can now be written as

wtot,i = wsystot,i(wcp,i + wnoz,i − 1) . (4.53)

4.6 Density sampling
To set up a Bayesian framework we define a prior and a likelihood whose product then is proportional
to the posterior we want to sample from. As mentioned in Section 4.3, it is not required to explicitly
define the normalization of the posterior. This is because we only want to draw samples from this
posterior without having to know the exact probability of each drawn sample (implicitly this comes
with the density of the drawn samples). We define the total posterior for density sampling (Equation
4.50) up to a normalization as:

Pδ (δL|NG (r),w(r),C (pC) ,pB) ∝ (4.54)
π(δL|C (pC))×L (NG|B(λ|δ,pB)) ,

with λ being the expected number of galaxies per volume element averaged over all realizations of the
Markov chain λ ≡ 〈ρG〉Chain . The bias function B(λ|δ,pB) relates the the number count of galaxies
to the underlying dark matter density given the bias parameters pB. the bias function is in general
non-linear, non-local and stochastic as discussed in Section 2.8.

4.6.1 Likelihood
The likelihood defines the model of the data. It is the probability to draw a certain count of galaxies
per cell, NGi, given the expectation value of galaxy counts λi for this particular cell. This relation is
modelled by a distribution function f(λ,N). In general, the choice of the distribution function f is
depending on the statistical problem and the random process that has to be modelled. With regard to
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cosmological reconstructions, the distribution function depends on the galaxy population and the bias
function. A natural assumption for any point process is provided by the Poisson distribution, which
we will consider in the following. So we define the likelihood for a set of NG observations

L(NG|λ,pB) =
Nc∏
1
f(λi, NG,i,pB) . (4.55)

In Section 4.6.2 however, we elaborate deviations from Poissonity and introduce over-dispersion via
the negative binomial (NB) distribution, meaning that we seek to model a larger variance compared to
the Poisson distribution.

We define the expected number of tracers per cell as:

λi ≡ 〈ρG〉i = fN̄w(ri)B(δi) , (4.56)

where we defined the global quantity fN̄ . This is the normalization of our expectation value, ensuring
a mean number density given a bias model as

fN̄ = N̄∫
B(δ)dV/V = N̄

〈B(δ)〉 . (4.57)

N̄ is the completeness corrected mean number density N̄ =
∑
iNG,i∑
iw(ri)

. This normalization is important

as it relates the observed number density of tracers to the dark matter density δ via our bias model B.
As we can see in Equation 4.57, fN̄ = N̄ , if 〈B(δ)〉 = 1, meaning that the deterministic bias, described
in Section 2.8.1, is unity.

In argo, we use a scale dependent power law bias, written as

ρG ≈ exp
( ∞∑
k=0

bk · log(1 + δk)
)
, (4.58)

ρG ≈ (1 + δDM)b , (4.59)

based on the work of Cen & Ostriker (1993) (Equation 2.108).
This model has been further elaborated in de la Torre & Peacock (2013) to increase the resolution in

N -body simulations. Also Neyrinck et al. (2014) analyzed many halo mock catalogues from the Multum
In Parvo (MIP) simulations (Aragon-Calvo, 2012) and found the same relation up to an exponential
cut-off term exp

(
−ρDM

ρε

)
, where ρε is a free parameter to describe the scale of the cut-off. The relation

they found is shown in Figure 4.6.
We also account for the peak-background bias models, that we discussed in Section 2.6.6. According

to this model, the high density regions collapse first and form galaxies and clusters. The gravitational
collapse can only take place if the dark matter density fluctuation exceeds a certain threshold, called
critical density δC. Thus, we expect no collapsed objects below a certain threshold, supported by the
findings in Neyrinck et al. (2014). Accounting for this point, we also incorporate a threshold bias δth,
described by a Heaviside step function Θ . Summarizing the above Equations 4.56 and 4.59 we write
down the expected number of tracers per cell as

λi = fN̄w(ri)(1 + δi)bΘ(δi − δth) , (4.60)

where δ is the full matter density field, unless it is subscripted with capital L, in that case δL denotes
the linear density field. The variable b is the power law bias parameter.
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Figure 4.6: Neyrinck et al. (2014): Scatter plots of the MIP-ensemble-mean halo log-density versus the matter
log-density, for two mass ranges of halos. Each dot represents a 2h−1 Mpc (red) or 4h−1 Mpc (black) cubic grid
cell, with an NGP-estimated density. In the right-hand column, empirical power law-plus-exponential fits to the
curve are shown in dotted curves, with and without the exponential. The lighter, dashed curves show vertical one-σ
standard deviations in δh away from the mean, assuming Poisson statistics with mean given by the fit. The left-hand
column shows theory curves from the additive-excursion-set (AES) and local-growth-factor models. The black crosses
indicate the origin, (0, 0).

4.6.2 Deviation from Poissonity
The Poisson probability density function

fP(λ|N) = e−λλN

N ! .

has a well defined variance σ2
P equal to its expectation value λ = σ2

P. Thus, the Poisson distribution
is not capable to describe data that are over-dispersed, also called super-Poissonian distributions.
Distributions that can describe over-dispersed random processes are e.g. the negative binomial (NB)
and the gravitational thermodynamics (GT) (Saslaw & Hamilton, 1984) distribution, written as

fNB(λ,N, β) = λN

N !
Γ(β +N)

Γ(β)(β + λ)N
1(

1 + λ
β

)β , (4.61)

fGT(λ,N, b) = λ

N ! e
−λ(1−b)−bN (1− b) [λ(1− b) + bN ]N−1 , (4.62)

with the Gamma-function Γ(n+ 1) = n!.
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The parameters β and b are connected to the expectation value λ and the variance σ2 by β =
λ2/(σ2 − λ) and b = 1 −

√
λ/σ2, respectively. This implies that the over-dispersion term shows a

quadratic and a linear dependence of the expected halo number count λ for the NB σ2
NB = λ+ λ2/β

and the GT σ2
GT = λ/(1− b)2 = λ+ λ b(2− b)/(1− b)2, respectively (Ata, Kitaura & Müller, 2014).

To obtain a different dependence, one could take the NB expression and include a dependence of β on
λ. For β ∝ λ we find that the NB and the GT PDFs can equally describe over-dispersion.

In the following we will focus on the NB PDF.
We compare the NB and GT distributions for different β and b factors with expectation value λ = 4

in Figure 4.7 with the Poisson distribution of the same λ .
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Figure 4.7: Comparison of the NB and GT with the Poisson distribution with expectations value λ = 4. Left:
NB distribution for various β factors. For β →∞, the NB turns into a Poisson distribution. Right: GT distribution
for different b parameters. b = 0 corresponds to the Poisson distribution.

The variance is always larger than the mean (equal for β → ∞) for the negative binomial. Since
the Poisson distribution determines the mean and the variance to be equal, it is unsuitable for data
with greater variance than mean. Thus the negative binomial PDF is appropriate, as shown in Ata,
Kitaura & Müller (2015). The necessity of an over-dispersed modelling of tracers is a direct result of
the stochastic bias relation, as shown in Section 2.8.2. Also, it has been shown recently in Neyrinck
et al. (2014), that if analyzing an ensemble of simulations with the same initial conditions but different
halo finding criteria, the probability distribution of the density for a single cell is likely to deviate
from Poissonity, shown in Figure 4.8. A more appropriate modelling needs to take over-dispersion
into account. We can see from Figure 4.8 that the deviation from Poissonity is getting enhanced with
a rising number of halos per cell. This emphasizes that over-dispersion is therefore resolution and
type-of-tracer dependent.

We will discuss this point in more detail in Section 6.3, applying a NB reconstruction to the data.

4.6.3 Prior
The prior is the underlying structure formation model. As we work with the linearized density δL
(Kitaura & Angulo, 2012), we assume Gaussian statistics. However many different structure formation
models can be applied (Heß et al., 2013; Jasche & Wandelt, 2013; Kitaura, 2013; Kitaura et al., 2012c;
Wang, 2014; Wang et al., 2013). For the linearized density δL = log (1 + δ)−µ, with µ = 〈log(1 + δ)〉,
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Figure 4.8: Neyrinck et al. (2014): Probability distribution functions across the MIP ensemble of the number
of same mass halos in single cells of different mean halo densities. The PDFs (thick solid green) are wider than a
Poisson distribution of the same mean (thin solid grey). Also shown are the Saslaw-Hamilton (SH, called GT in our
case, dotted blue) and negative-binomial (NB, dashed red) distributions that model the super-Poissonity; both look
like good fits. The PDF means and variances are written in each panel.

we write
π(δL|CL(pC)) = 1√

(2π)Nc det(CL)
exp

(
−1

2δ
†
L C−1

L δL

)
, (4.63)

a multivariate Gaussian with zero mean and given covariance. The Nc ×Nc linear covariance matrix
CL(pC) = 〈δ†LδL〉 is diagonal due to the absence of mode coupling processes and can also be expressed
in form of the power spectrum.

4.6.4 Sampling with Hamiltonian Monte-Carlo
Reviewing the Hamiltonian Monte-Carlo (HMC) method in Section 4.3.3, we find the necessity to
compute the negative logarithm of the posterior and its derivative w.r.t. to the sampled quantity, the
linear density contrast δL in our case. Thus, we write

− ln (P) = − ln (π)− ln (L ) . (4.64)

The negative logarithm of the prior writes as

− ln π(δL|CL(pC)) = 1
2δ
†
L C−1

L δL + c , (4.65)

64



4.6. DENSITY SAMPLING

with all constants comprised into the term c.
Finally the negative logarithm of the likelihood for the Poisson and NB case can be computed. The

Poisson case writes as

LP(NG|λ) =
NC∏
i

e−λiλiNi
Ni!

, (4.66)

− ln LP =
∑
i

λi −Ni lnλi − c . (4.67)

We calculate the corresponding term for the NB distribution:

LNB(NG|λ, β) =
NC∏
i

λiNi
Ni!

Γ(β +Ni)
Γ(β)(β + λi)Ni

1(
1 + λi

β

)β
 , (4.68)

− ln LNB =
∑
i

−Ni lnλi +Ni ln(β + λi) + β ln(1 + λi/β)− c. (4.69)

We comprise terms that do not depend on the sampled variables again in the constant term c.
In total, the posterior function with the NB likelihood writes as

Pδ (δL|NG (r),w(r),C (pC) ,pB) =

1√
(2π)Nc , det(C)

exp

−1
2
∑
αβ

[log(1 + δα)− µ] , C−1
αβ [log(1 + δβ)− µ]

×
Nc∏
i=1

 [fN̄w(ri)(1 + δi)b]
Ni

Ni!
Γ(β +Ni)

Γ(β)(β + [fN̄w(ri)(1 + δi)b])Ni
1(

1 + [fN̄w(ri)(1+δi)b]
β

)β
 . (4.70)

The next step is now to compute the equations of motion to evolve the Hamiltonian in phase-space.
Recalling Equation 4.32 as

dpi
dt = −∂H

∂qi
= −∂U(q)

∂qi
, (4.71)

shows that we need to build the gradient w.r.t. δL. Equation 4.31 does not depend on U(q) and
therefore the term dqi

dt = ∂H

∂pi
can be estimated directly as

∑
jM

−1
ij pj .

The gradient term for the prior writes as

− ∂

∂δL,i
ln π = − ∂

∂δL,i
ln

 1√
(2π)Ncdet(CL(pC))

exp
(
−1

2δ
†
LC−1

L (pC)δL

) ,

= 1
2
∑
ij

(δK
ik(C−1

ij δL,j) + δK
jk(δL,iC

−1
ij )) ,

= 1
2

∑
j

(C−1
kj δL,j) +

∑
i

(δL,iC
−1
ik )

 ,
− ∂

∂δL
ln π = C−1

L δL , (4.72)
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where we used the Kronecker Delta δK
ik. Finally the derivative of the likelihood w.r.t. the sampled

variable δL is computed with chain rule

∂

∂δL,i
=
(
∂δL,i
∂δj

)−1
∂λk
∂δj

∂

∂λk
. (4.73)

So we obtain for the Poisson case:

− ∂

∂δL,i
ln LP = bλi ·

(
1− Ni

λi

)
. (4.74)

Corresponding to Equation 4.74 we can write the derivative of these likelihood functions for the negative
binomial case as

− ∂

∂δL,i
ln LNB = bλi ·

 1
λi
β + 1

+ Ni

β + λi
− Ni

λi

 . (4.75)

The numerical implementation of the evolution of the Hamiltonian system is done by the leapfrog
scheme described in Equations 4.33 and 4.34.

4.7 Velocity sampling
Different approaches have been proposed in the literature to recover the peculiar velocity field from
galaxy distributions (Branchini et al., 2002, 2012; Gramann, 1993; Heß & Kitaura, 2016; Kitaura et al.,
2012c; Lavaux et al., 2008; Wang et al., 2012; Yahil et al., 1991; Zaroubi et al., 1995), based on various
density-velocity relations (see Bernardeau, 1992; Chodorowski et al., 1998; Jennings & Jennings, 2015;
Kitaura et al., 2012b; Mohayaee & Tully, 2005; Nadkarni-Ghosh & Singhal, 2016; Nusser et al., 1991).

Our approach relies on an iterative Gibbs-sampling method, as proposed in Kitaura et al. (2012a)
and presented in more detail in Kitaura et al. (2016).

We write total velocity field as the sum of the curl-free coherent bulk flow, which can directly be
inferred from the large-scale density field within linear theory, and the random dispersion term vdisp
for each cell i as

vi = −fΩ(a)H(a) a∇∇−2δi + vdisp . (4.76)

We model the dispersion term as a randomly draw from a Gaussian with a particular standard deviation.
The mapping between real-space and redshift-space positions for each individual galaxy is described by
Equation 4.48. Within our Gibbs sampler, the velocity in step j + 1 is derived from the density field
that was sampled in the previous step j. Thus the velocity sampling to infer the real-space positions
writes as

rj+1 = sobs −
(
v
(
rj , a

)
· r̂

H(a) a

)
r̂ . (4.77)

The peculiar velocity needs to be evaluated in real-space, requiring an iterative sampling scheme. The
new sets of real-space positions are then used to update the number of tracers per cell NG(rj+1). These
new positions are then again used as input for the density sampling scheme.
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4.8 Selection function sampling
A novel sampling step we introduced in Ata et al. (2017) is the selection function sampling. As
explained in Section 4.5.4, the radial selection function is the normalized number density of galaxies
per distance bin. As the velocity sampling yields new positions mapped from redshift- to real-space
coordinates, it is straight forward to incorporate these updated positions into the radial selection
function. As shown in Figure 3.2, the radial selection function is written in terms of the distance r as

f(r) = 4πr2 dn
dV . (4.78)

The newly obtained real-space coordinates from step j are now used to update the radial selection
function,

f(r)j+1 x Pf

(
f(r)|rj

)
, (4.79)

where r is the distance to the origin.

4.9 Mean field sampling
The prior’s mean field µ needs to be iteratively adjusted as the linear density δL is sampled according
to Equation 4.63 (Kitaura et al., 2012a). This can be done as the mean of the non-linear density
contrast should vanish averaging over sufficiently large volumes, 〈δ〉 = 0. Now within our lognormal
assumption we can calculate µ as

〈δ〉 = 0 , (4.80)
〈exp (δL + µ)〉 − 1 = 0 , (4.81)
〈exp (δL)〉 · exp (µ)〉 = 1 , (4.82)

µ = − ln 〈exp(δL)〉 . (4.83)

The mean field will get especially important when large parts of the reconstructed volume are empty
and thus dominated by the prior function. We will discuss this issue in Section 6.3.1.

4.10 Normalization sampling
Equation 4.57 needs to be solved in each sampling step as it corrects the normalization of the expectation
value and therefore accounts to link the correct number density of tracers with the inferred density
contrast given the bias model. This writes

fN̄ = N̄∫
B(δ)dV/V = N̄〈

(1 + δ)bΘ(δ − δth)
〉 . (4.84)

4.11 Covariance sampling
We present two ways to estimate the covariance of the linear density contrast: firstly the direct sampling
method, where the individual modes can be obtained from a χ2-distribution and secondly by analysing
the variance of each mode of the power spectrum after the samples have been drawn.
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4.11.1 Direct sampling
According to the Wiener-Khinchin theorem the covariance matrix of a homogeneous (and periodic)
Gaussian process is diagonal in Fourier space (Loredo, 2012). In Jewell et al. (2004); Wandelt et al.
(2004) the authors showed that the signal covariance can be obtained from an inverse gamma distribution
where each mode of the power spectrum samples individually. It can also been shown that for a
particular variable shift the power spectrum modes can be sampled from a χ2-distribution of the form

P(xm|δL) = x
(βm2 −1)
m

Γ
(
βm
2

)
2(βm2 ) exp

(
−xm2

)
, (4.85)

where xm = σm/Pm is the power spectrum of the mode m over its spherical part σm (due to isotropy
this term can be summed over) and β = 2(α+ nm/2− 1), introducing the factor nm that counts the
number of different mode vectors belonging to the mth shell in Fourier space of our volume. α is
determined by the prior choice, α = 0 corresponds to a flat, α = 1 to the Jeffrey’s prior.

4.11.2 Post-sampling
Another way to estimate the covariance of the power spectrum is adopted from well tested methods
that were applied to mocks catalogues (e.g. Mohammed & Seljak, 2014; Pearson & Samushia, 2016).
The covariance is estimated by Equation 4.86, investigating how each individual mode of the power
spectrum is varying over the full set of mocks.

Cij = 〈P (ki)P (kj)〉 − 〈P (ki)〉〈P (kj)〉 , (4.86)

with P (ki) being the ith mode of the power spectrum regarding the wave vector k. The covariance of
the power spectrum is a very useful tool to estimate the variance of the cosmological parameters that
are inferred from the power spectrum.

4.12 argo-Extensions
I discuss two extensions of argo. In Section 4.12.1 I describe a reconstruction scheme that will enable
us to run argo on a multi-tracer problem. In Section 4.12.2 I discuss a possible effective method, in
which I show how to incorporate a growth of structures in an additional bias term.

4.12.1 Multi-tracer analysis
A multi-tracer analysis is required, if the reconstructed volume is populated with heterogeneous tracers,
e.g. galaxies with different biases, or if we combine several galaxy catalogues (Bull, 2016) that have
been observed with different color-magnitude cuts, meaning that the selection function would be
different. For these cases we elaborate a combined likelihood analysis for these tracers within one
reconstruction scheme.

Let us assume a set of N galaxy samples NG1, . . . ,NGN , and each set i to have NGi galaxies.
We can write the joint problem of inferring the dark matter field δ conditioned on the different

halo/galaxy samples by the following posterior PDF

P(δ|NG1, . . . ,NGN ,pC,B(NG1, . . . ,NGN |δ)) ∝
π(δ|pC)×L (NG1, . . . ,NGN |δ) , (4.87)
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with B(NG1, . . . ,NGN |δ) being the joint bias.
If the samples have distinct biasing parameters, we can assume that each of the samples is conditioned

on the underlying dark matter field only with:

L (NG1, . . . ,NGN |δ,B(NG1, . . . ,NGN |δ)) ∝ (4.88)
L (NG1|δ,B(NG1|δ))×, . . . ,×L (NGN |δ,B(NGN |δ)) ,

assuming the form of a product of different likelihood terms. Hence, we can write the posterior PDF as

P(δ|NG1, . . . ,NGN ,B(NG1|δ), . . . ,B(NGN |δ)) (4.89)
∝ π(δ|pC)

×L (NG1|δ,B(NG1|δ))×, . . . ,×L (NGN |δ,B(NGN |δ)) .

For the Hamiltonian sampler we need to compute the potential energy U = − ln P, which then writes
as

− ln (P (δ|NG1, . . . ,NGN,B (NG1|δ) , . . . ,B (NGN |δ)))
= const− ln (π (δ|pC))
− ln (L (NG1|δ,B (NG1|δ)))
...
− ln (L (NGN |δ,B (NGN |δ))) . (4.90)

This expression permits us to incorporate any additional galaxy sample and combine different galaxy
catalogues with the presented method. The above calculations demonstrate that the dark matter
field serves as a common denominator for different halo/galaxy samples and allows one to perform a
multi-tracer analysis.

4.12.2 Effective bias scheme
I will discuss here an approach to describe cosmic growth of structures at different redshifts with
a modified radial selection function in an effective description. The linear growth factor has been
introduced in Equation 2.49. For a given reference redshift zref and a redshift zi we write

Gi = D(zi)
D(zref)

. (4.91)

Further, we will denote the completeness as function of redshift w(z) in the following. Let B(%M(z))
be the bias function of the total matter density %M(z) at redshift z.

Now let us discuss different scenarios for which we write down the galaxy density %G(z) at redshift z.
Case A: Only considering effects of the selection function.

In this case we do not consider the growth function of each individual tracer, thus no evolution effects
are modelled, but we stick to one specific reference redshift zref . Instead, we incorporate the different
growth factors within the reconstruction into the selection function and consequentially into the window
function w(zi). The underlying matter density is therefore at the reference redshift zref . All variables
of this case are super-scripted with sel (for selection function).

Our bias model assumes the form
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%sel
G (zi) = wsel(zi)f sel

N̄
Bsel(%M(zref)) , (4.92)

= wsel(zi)
N̄ sel

〈Bsel(%M(zref))〉
Bsel(%M(zref)) . (4.93)

Case B: Only considering effects of growth function.
In this case we seek to eliminate the selection function (window) and assume that we can model all
selection effects with a modified growth function. We super-script this case with ev (for evolution).

%ev
G (zi) = f ev

N̄
B(%M(zi)) , (4.94)

= N̄ ev

〈Bev(%M(zi))〉
Bev(%M(zi)) . (4.95)

Case C: Combine evolution and selection function models.
As both upper cases are simplified models, we combine Equation 4.93 & 4.95. We will drop the variables
of this combined model and thus use %G(zi) = %sel+ev

G (zi). The same naming holds for N̄ and B.

%G(zi) = wsel(zi)
N̄

〈B(%M(zi))〉
B(%M(zi)) . (4.96)

Case D: Effective description.
Now we incorporate the evolution and selection effects in an effective model at reference redshift zref .
We denote the terms with superscript eff (for effective).

%eff
G (zi) = weff(zi)

N̄ eff

〈Beff(%M(zref))〉
Beff(%M(zref)) , (4.97)

⇒ weff(zi) = %eff
G (zi)

〈Beff(%M(zref))〉
N̄ effBeff(%M(zref))

. (4.98)

So far we have created idealized models. However, in order to link the models to a meaningful
formalism, we need to presume the following relations:

%eff
G (zi)

!= %G(zi) , (4.99)

Beff(%G(zi))
!= B(%G(zi)) , (4.100)

N̄ eff != N̄ . (4.101)

Basically, these relations link the effective model to the combined one. Thus, we use Equation 4.98
inside Equation 4.96 and yield

wsel(zi)
!= weff(zi)

B(%M(zi))
B(%M(zref))

〈B(%M(zref))〉
〈B(%M(zi))〉

. (4.102)

Further, we put Equation 4.102 into Equation 4.96:

%(zi) = weff(zi)N̄
B(%M(zi))2

B(%M(zref))
〈B(%M(zref))〉
〈B(%M(zi))〉2

. (4.103)
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Now we write down Equation 4.60 for the combined and effective model as

B(%M(zref)) = Θ(δM − δth)(1 + δM)beff , (4.104)
B(%M(zi)) = Θ(δM − δth)(1 + δM)Gib . (4.105)

In the last equation we also made the assumption that we can apply the linear growth factor Gi to
the exponential of the matter density. This is valid for the linear expansion term.

The resulting model now is written as

%(zi) = weff(zi)N̄
〈B(%M(zref)〉
〈B(%M(zi)〉2

Θ(δM − δth)(1 + δM)2Gib−beff . (4.106)

The exponential 2Gib− beff is a free parameter in total, although G is well defined within linear
theory.

4.13 Remarks
We showed in detail the principles of the argo code and its strategy to infer the underlying dark matter
density and velocity field given a set of tracers. The merits of a Bayesian treatment are numerous.
Each sample represents the statistical realization of the full posterior, sampled in different sequencing
Gibbs sampling steps, shown schematically in Figure 4.9.

The density sampling is the most tedious step. In order to accept an iteration of the Hamilton
Monte-Carlo, the densities of all cells within the reconstructed volume must be consistent with the
posterior of the density, no matter whether the individual cell of the mesh grid is dominated by the prior
or likelihood. The likelihood is constrained by the number counts of tracers and the bias parameters
we are applying, deterministic and stochastic. However, the cells where the observed number count of
tracers is zero totally rely on our structure formation model. This augmented field is dominated by the
prior and will be consistent with the given covariance of the prior, which is an equivalent description
for density fluctuations compared to the power spectrum. Only if the weights of prior and likelihood
are balancing each other, a decent underlying dark matter density field can be sampled. Otherwise
there will be an artificial gradient in the density that will be noticeable in the total power spectrum as
a discontinuity.

The physical meaning of the normalization factor fN̄ is particularly important. If we would not
iteratively sample the normalization, but leave fN̄ (Equation 4.57) as a free parameter or, as in Jasche
et al. (2010), fix this number to the mean number density of tracers, our inferred dark matter density
field would not correspond to the mean number of tracers given the bias model.

〈(1 + δ)b〉 6= 1 if b 6= 1 , (4.107)
fN̄ 6= N̄ if b 6= 1 . (4.108)

The incorrect normalization then will correspond to an additional linear bias term and thus, the applied
physical bias b would be meaningless, as it would be degenerate with the incorrect normalization.
Only if fN̄ is computed from the density field with given bias parameter b, and then applied to the
expectation value λ in this consistent way, the inferred dark matter density field will correspond to the
given set of galaxy tracers and their abundance.

The effective bias scheme with the additional parameter beff has no physical meaning as opposed to
the scale-dependent bias parameter b. However, the elaborated models shown in Section 4.12.2 may be
a fruitful method if the exact growth or bias of the galaxy catalogue is not entirely clear. This still
remains an effective description.
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Figure 4.9: Working cycle of argo. In blue the inferred quantities are shown, depending on the quantities
shown in black below. Gears that are not in direct contact still influence each other as argo follows a hierarchical
sampling model.
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5 Phase-Space
Reconstructions with
N-body Simulations

In this chapter I present the applications of argo that have been published in Ata et al. (2014,
2015) and Kitaura, Ata, Angulo et al. (2016). In each section I emphasize different aspects of our
reconstruction strategy and the refinements we applied. The aim of these works is to firstly apply
a cosmological density reconstruction using a scale-dependant and stochastic bias, and secondly to
test our Bayesian redshift-space distortions corrections. In both cases we validate the outcomes of our
reconstruction techniques by comparing them to the N -body simulations, on which the reconstruction
was applied.

We run argo on the Bolshoi simulation, described in Section 3.3.2. It is a dark matter only N -body
simulation with a cubic volume of 250h−1 Mpc per side. We choose a snapshot of the simulation at
redshift z = 0.

5.1 Halo subsamples based on the Bolshoi
simulation

In order to validate our method and evaluate the results of our reconstructions, we use the density field
of all dark matter particles of the N -body simulation on the one side and two samples of halos created
with the bound-density-maximum (BDM) halo finder (Section 3.3.4) on the other side. In this way we
have full knowledge of the entire dark matter density field but also created catalogues of halos, that
trace the dark matter field. The two subsamples distinguish themselves in the mass range of halos and
the number density. Subsample S1 is created by randomly picking 2× 105 halos in the full mass range
of 109 to 1015 M�. As most of the halos of S1 have low masses, the overall bias is smaller than one.

Subsample S2 is created by demanding a lower mass limit of 3 × 1012 M�, resulting in 1.6 × 104

halos, yielding a sample with bias larger than one. The cuts and the cumulative number of halos are
shown in Figure 5.1.

The creation of S2 is particularly interesting, as this subsample is not only down sampling the
catalogue but also selects more massive halos.

73



CHAPTER 5. PHASE-SPACE RECONSTRUCTIONS WITH N -BODY SIMULATIONS

109 1010 1011 1012 1013 1014 1015

Mcut [M�]

100

101

102

103

104

105

106

107

∫ M
cu

t

0
d
M

d
N

d
M

Bolshoi N -Body
Mcut = 3 · 1012M�

Figure 5.1: Cumulative mass function of the BDM halo catalogue based on the Bolshoi simulation at redshift
z = 0. The number of halos are shown as a function of the mass cut Mcut. A particular choice of Mcut = 3 · 1012 M�
is shown, yielding a number of 1.6× 104 halos. The blue colored area corresponds to the subsample S2 whereas S1
contains the whole mass range of the Bolshoi simulation.

5.2 Density inference with argo from the Bolshoi
simulation

We defined the expectation value of tracers per cell λi in Equation 4.60 as

λi = fN̄w(ri)(1 + δi)bΘ(δi − δth) . (5.1)

As discussed in Section 2.6.6, this model is in concordance with Press & Schechter (1974) and the peak
background split formalism (Kaiser (1984), Bardeen et al. (1986), Cole & Kaiser (1989), Mo & White
(1996), Sheth et al. (2001)), which permit the collapse of halos only above a certain density threshold.
Kitaura et al. (2015) also showed that a threshold bias model is crucial to have a decent match of the
three-point statistics of the density field.

We expect the threshold bias to be relevant for subsample S2 as the very massive halos represent
the peaks of the initial density field, discussed in Section 2.6.6. This has been illustrated in Figure 4.6.
Halos do not form below a certain threshold of underlying dark matter density contrast (overdensity)
δDM.

However, Equation 5.1 does only account for the deterministic bias. The stochastic bias, which is
altering the variance of the number counts of tracers per cell, is modelled with the negative binomial
(NB) distribution. The NB is able to describe distributions with the same mean but a larger variance
compared to the Poisson distribution.
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The reconstructions are performed on a regular cubic 1283 mesh grid. We assign the dark matter
particles of the Bolshoi simulation on a 1283 mesh grid as well using the CiC and the halos with the
NGP mass assignment scheme, respectively. We utilize the linear power spectrum created with camp
(Lewis et al., 2000) as covariance matrix CL for the linear density field δL of the prior.

5.2.1 Description of run chains
We apply the argo code by running a series of Hamiltonian Monte-Carlo (HMC) chains with different
likelihoods and bias settings on both subsamples:

1. Poisson likelihood and unity bias B = 1 with subsample S1,

2. Poisson likelihood and power law bias B = (1 + δ)b with subsample S1,

3. NB likelihood and power law bias B = (1 + δ)b with subsample S1,

4. NB likelihood and power law bias including thresholding B = (1 + δ)bΘ(δ− δth) with subsample
S2.

We further analyze the different models in two ways:

• Firstly, we compute the power spectra of the argo reconstructions. To have a realistic
comparison, we compute the power spectrum of the BDM halo catalogue together with the power
spectrum of the dark matter field from the Bolshoi simulation before the halo finder was applied.
We refer to this field the N -body dark matter field in opposite to the halo density field;

• Secondly, we validate the argo reconstructions by comparing the inferred density fields with
the N -body dark matter density field cell-to-cell. This will allow us to value the mean and scatter
of the reconstructions.

5.2.2 Power spectrum analysis of subsample S1

In Figure 5.2 the power spectra of the various density fields are shown. As we are focused on the
precise modelling of the power spectra on small scales, we must be sure that the power spectra which
we are comparing are not spoiled by observational effects. Therefore, we correct the N -body and
the halo power spectrum for the mass assignment kernels (CiC for the N -body and NGP for the
halo power spectrum) and also remove the shot-noise (see e.g. Jing, 2005). This makes sure that the
power we measure on small scales is due to our physical bias model. Because of these operations, the
power spectrum can be trusted up to approximately k = 0.8hMpc−1, which corresponds to about
50% of the Nyquist frequency. The power spectrum of the N -body density field is shown as the solid
black line. The power spectrum of the halo density (solid green line) has clearly a bias smaller than
one. The Poisson reconstruction with unity bias (dashed magenta line) is following closely the halo
power spectrum with no visible deviation. The Poisson reconstruction with power law bias and a
bias parameter of b = 0.79 (dashed red line) shows an agreement with the N -body power spectrum
only at the smallest wavenumbers. Already at k = 0.2hMpc−1 we note a deviation of more than
10%, increasing steadily with higher wavenumbers. This lack of power can be modelled with the
NB reconstruction including a power law bias (dashed blue line). We note an excellent agreement of
the NB reconstruction with the N -body power spectrum up to k = 0.95hMpc−1 within the scatter,
where we used a bias parameter of b = 0.92 and deviation from Poissonity of β = 1.47. The higher
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bias parameter is necessary as the NB increases the variance also to some extent at large scale, but
overproportionally on small scales, which can be seen in the power spectrum.

The scatter has been estimated by running each HMC chain for 12000 iterations, where the first
2000 so-called burn-in iterations have been discarded. The convergence behavior is estimated through
the Gelman & Rubin (1992) test and covariance of the overdensity in a scatter plot, shown in Section
5.3.2. The 10000 remaining iterations are then used to estimate the reconstruction’s mean and scatter
in the power spectrum. These are shown in a one and two σ band for Poisson (beige and brown) and
NB (cyan and dark blue). We can also see that the NB method leads to a higher variance in the power
spectrum as compared to the Poisson reconstruction. This is expected due to the higher dispersion of
the NB distribution. This result was firstly shown in Ata et al. (2015), in which the NB model and
also the power law bias have been introduced within a cosmological reconstruction algorithm.
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Figure 5.2: Top: Power spectra of the different density fields. N -body power spectrum shown as the solid
black line. Dashed blue line corresponds to the mean of the argo reconstructions with NB likelihood and power law
bias with one and two σ contours (cyan and dark blue). In red color the mean of the argo reconstructions with
Poisson likelihood and power law bias is shown with negligible variance, plotted in brown and beige, respectively.
The power spectrum of the BDM halos taken from the Bolshoi simulation is shown in solid green. The dashed
magenta line represents the mean of the argo reconstructions with Poisson likelihood and unity bias. Bottom:
Ratios of the above mentioned power spectra and the Bolshoi N -body power spectrum. The power spectrum of the
N -body density field has been corrected for shot-noise and deconvolved with the mass assignment kernel.

76



5.2. DENSITY INFERENCE WITH ARGO FROM THE BOLSHOI SIMULATION

5.2.3 Cell-to-cell analysis of subsample S1

To further asses the accuracy of the shown reconstructions, we test these against the N -body density
field within a cell-to-cell comparison shown in Figure 5.3. To have a fair comparison we smooth each

2 4 6 8 10
1 + δNBody

0

1

2

3

4

5

6

1
+
δ H

al
oe

s

100

101

102

103

2 4 6 8 10
1 + δNBody

0

1

2

3

4

5

6

1
+
δP

oi
ss

on
U

n
it

y
A

R
G

O

100

101

102

103

2 4 6 8 10
1 + δNBody

0

1

2

3

4

5

6

1
+
δP

oi
ss

on
A

R
G

O

100

101

102

103

2 4 6 8 10
1 + δNBody

0

1

2

3

4

5

6

1
+
δN

B
A

R
G

O

100

101

102

103

Figure 5.3: Cell-to-cell correlation comparison of the various density fields with the N -body density field after
applying a Gaussian smoothing with radius rS = 6h−1 Mpc. Top left: Comparison with the halo density field of
S1. Top right: Comparison to the reconstructed density with Poisson likelihood and unity bias, averaged over
10000 samples. Bottom left: Comparison to the reconstructed density with Poisson likelihood and power law bias,
averaged over 10000 samples. Bottom right: Comparison to the reconstructed density with NB likelihood and
power law bias, averaged over 10000 samples. The color bar represents the number density of cells.

catalogue with a Gaussian kernel with a smoothing radius of rS = 6h−1 Mpc. This smoothing is
applied in order to compensate for the different number densities of halos and dark matter particles.
Each cell-to-cell correlation of an argo reconstruction (excluding the halo density field) is shown for
the average of 10000 iterations. The halo-N -body density field correlation plot is reproducing the
findings of Neyrinck et al. (2014), shown in Figure 4.6. As we only considered one realization of the
halo field, the dispersion in our case is higher. We find that the halo density field and the Poisson
reconstruction with unity bias show very similar cell-to-cell correlations when compared to the N -body
density field, which are strongly biased towards high densities. The Poisson reconstruction with power
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law bias shows a more concurrent correlation, however, it is still clearly biased towards high densities.
The correlation for the NB reconstruction shows an almost entirely unbiased shape up to the very
high density cells. Another very interesting insight from the correlation plots is the scatter. While the
Poisson reconstruction show a more narrow correlation behaviour, we note a higher scatter in the NB
case. This finding is in agreement with the findings from the power spectrum analysis in Section 5.2.2.

5.2.4 Slice plots of subsample S1

In Figure 5.4 slices of the different density fields are shown on a 1283 mesh grid all with a thickness of
10h−1 Mpc In each case we show two different planes, x− y and y − z, respectively. On the top, the
slices of the N -body simulation are placed, where the smooth filamentary structure is visible. In the
middle the halo density of the same slices are shown. Finally on the bottom we eye the reconstructed
density slices obtained with a NB likelihood and a power law bias averaged over 10000 iterations. The
slices for the Poisson reconstruction are omitted as they are visually not very different from the NB
reconstructions. The averaging is an excellent tool to reduce the noise and emphasize structures with
high number density. Thus, the filamentary structure of our reconstructions pop up more significantly
in the averaged plot as compared to single reconstructions and also the noise is reduced (see Appendix
A.3 Figure A.3).

5.2.5 Power spectrum analysis of subsample S2

The purpose of the subsample S2 has been explained in Section 5.2 and is an interesting scenario not
only to test argo’s performance for a lower number density of tracers but also validate the additional
threshold bias, shown in Equation 5.1. This threshold is motivated e.g. by Neyrinck et al. (2014), as
shown in Figure 4.6. Although for higher densities there is a logarithmic proportionality of the halo
density and the N -body matter density, at densities lower that δm ≈ 0.5, the exponential cut-off is
visible, meaning that halos do not form if the background matter density is too low. This exponential
cut-off, shown in Figure 4.6, is approximated by a sharp Heaviside step function in our bias model.

In Figure 5.5 we find the corresponding power spectra plotted for the S2 subsample. We can clearly
see that subsample S2 has a bias greater than one as compared the the power spectrum of the full
Bolshoi N -body. The scatter of the reconstruction, which we run with δth = 1.5, is significantly larger
than in Figure 5.2 for S1. Further we found that overdisperion is negligible in this case, thus we set β
to a very high value in the NB. The large scatter is because the number density of tracers is more than
one order of magnitude smaller compared to S1, so that the reconstruction is less stable in low density
areas, and consequently the variance of the reconstruction is higher. Still we are mainly well within
the one σ error band for the mean of our reconstructions. We find the threshold model to be a useful
extension to our previously introduced bias model.

5.2.6 Cell-to-cell analysis of subsample S2

Now we will also have a look at the cell-to-cell comparison regarding subsample S2. This is shown in
Figure 5.6 after a Gaussian smoothing with radius rS = 6h−1 Mpc was applied. We show on the left
the cell-to-cell for the halos of S2 and on the right the averaged reconstruction obtained from 10000
samples. It is clearly visible that the halo density is tilted w.r.t. the N -body density, but opposed to
the trend in S1. This is in accordance to the bias found for S1 to be less than one and for S2 to be
larger than one. Also, the spreading towards high densities is much larger compared to S1. Another
interesting realizing from this plot is the shift in the low density region. It can be seen that the density
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Figure 5.4: Slices of the 1 + δ density with a thickness of 10h−1 Mpc, shown for three different planes. Top: N -
body density from the Bolshoi simulation, Middle: halo density of subsample S1, Bottom: argo NB reconstruction
with power law bias of subsample S1, averaged over 10000 iterations.
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Figure 5.5: Top: Power spectra of the different density fields. N -body power spectrum shown in solid black
line. In dashed blue the mean of the argo-reconstruction of the NB+Threshold model is plotted with one and two
σ contours. The power spectrum of the BDM halos is shown in solid green. As we restricted the mass range of the
halos in S2, we now created a sample with bias greater than one. Bottom: Ratio of the reconstructed power spectra
and the Bolshoi N -body power spectrum, that has been corrected for shot-noise and deconvolved with the mass
assignment kernel.

of halos drops much faster than the N -body density when compared to the line through the origin.
This is in agreement with the findings of Figure 4.6. The low and high density shifts are corrected
within our reconstruction and thus yielding unbiased realizations of the underlying dark matter field.
However, we also notice that the overall variance of the reconstruction in S2 is higher than in both
reconstruction cases of S1, the Poisson and NB likelihood with power law bias. This is because of the
lower number density of tracers.

5.2.7 Slice plots of subsample S2

We visualize the results of the S2 analysis in the same slices as done for subsample S1. As we can
see in Figure 5.7 the number density of halos is reduced significantly. Only the massive halos, that
are located in the highest density regions, are contained in subsample S2, due to the mass cut. The
information for the low density filaments get lost, for this reason the reconstruction of S2 is much
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Figure 5.6: Cell-to-cell correlation of the density fields with the N -body density field after applying a Gaussian
smoothing with radius rS = 6h−1 Mpc. Left: Comparison with the halo density field of S2. Right: Comparison
with the reconstructed density obtained by a NB likelihood and power law bias including a thresholding term,
averaged over 10000 samples. The color bar represents the number density of cells.

more challenging than for subsample S1. What is also clearly visible through all slices is the higher
variance in the reconstructions. The reconstructed structures in S1 have been more evidently tracing
the N -body structures, whereas in this case we see more variance in the mean of 10000 realizations.
This is a natural statistical behavior as less tracers reduce the signal-to-noise ratio.

5.2.8 Remarks & Conclusion
We have shown the results from the application of argo to the associated halo catalogues derived
from the Bolshoi N -body simulation (Ata et al. (2014, 2015)). The main emphasis of this analysis
was to establish and test a sophisticated bias model for two different scenarios of halo tracers with
different bias and also different number density. The novel bias model consist of two parts. The first
part is the deterministic definition of the expectation value of a halo density, given the dark matter
density described in Equation 4.60. Both, the power law ansatz and the threshold term in our bias
model implemented in argo are novelties in a reconstruction algorithm. To implement the second
part, the stochastic bias, we refined the likelihood model. Although a Poisson likelihood is a reasonable
choice to deal with discrete number counts from an underlying smooth distribution, it is inadequate
for populations whose dispersion is larger than the mean value. Our stochastic bias model therefore
relies on the sampling from the NB distribution and adjusting the additional parameter β to control
the overdispersion. We showed that within our bias model, the argo code is able to infer unbiased
sampled of the underlying dark matter given both, a halo catalogue with bias smaller than one, using
a power law bias and deviation from Poissonity, and also given a halo catalogue with bias greater than
one, using an additional threshold bias with negligible deviations from Poissonity. We note however
that the threshold bias and the power law bias may yield indistinguishable results regarding the two
point statistics. This can be shown using subsample S2. Nevertheless, Kitaura et al. (2015) showed
that threshold bias represents an indispensable ingredient also to have a reasonable matching with
the dark matter density in the three-point statistics. This is an ongoing development in argo and
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Figure 5.7: Slices of 1 + δ density with a thickness of 10h−1 Mpc shown for different planes. Top: N -body
density of the Bolshoi simulation, Middle: halo density of S2, Bottom: NB reconstructions with threshold bias,
averaged over 10000 iterations.
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may include a skewed prior and also non-local bias terms. Another remark concerns the numerical
deficiency within the HMC method including the threshold term. The density threshold component of
our bias model introduces a numerical instability, since the additional gradient terms diverge around
the density threshold and also represent a rigorous constrain on the density field. Reviewing Equation
4.73 we need to consider the additional derivative ∂λ

∂δ
, induced by the step function Θ(δ − δth). Up to

a constant we write
∂λ

∂δ
∝ b(1 + δ)b−1Θ(δ − δth) + (1 + δ)bδD(δ − δth) , (5.2)

where δD is the Dirac delta-function. Also, Equations 4.74 and 4.75 include logarithmic terms of the
expectation value λ. Therefore the Θ-function will cause severe numerical problems. We overcome this
numerical instability by introducing another Gibbs-sampling strategy and consider the step function to
be constant within one density sampling step. If this is the case, we can neglect all terms including the
derivative and logarithm of the threshold bias term, e.g. shown in Equation 4.74. The Gibbs strategy
to sample the density field δ then writes as

δ x Pδ (δ|NG (r), w(r),C (pC) ,pB) , (5.3)
Θ x PΘ(Θ|δ, δth) . (5.4)

For simplicity we assume no uncertainty on the threshold term which means that PΘ is a Dirac
delta-function. However this assumption may be further elaborated. Numerical tests show this method
to be stable but the sampling itself is highly inefficient. The analysis of subsample S2 with threshold
bias appears to have a significantly higher rejection rate in the HMC sampling step by a factor of ten
(see Section 5.3.2) and also equivalently increases the computational time by this factor.

Another aspect we did not mention in detail yet is addressing the aliasing effects. We write the exact
equations for the inferred density per grid cell in Equation 4.70, which means that the reconstructed
density field is not affected by noise as it is the case for the galaxy (halo) density field we assign to
the grid. In this way we are not limited by modes that are beyond the Nyquist-frequency, called
corner modes (e.g. Falck et al., 2016). Thus, the inferred density field does not need be deconvolved
with a mass assignment kernel and already yields the correct number density per cell. Finally an
interesting point worth mentioning in the cell-to-cell comparison is the low density regime of our shown
reconstruction using subsample S2. We note that argo reconstructs less low density cells as compared
to the full N -body density field. This is a consequence of the threshold bias term, which is not the case
for the run reconstructions with subsample S1. However, an imperfect adjustment of the combination
of power law bias and threshold bias parameter may have exaggerated this effect, as we already noted
a degeneracy in the two-point statistics. However, a detailed study including the higher-order statistics
will clearly help to understand this fact.

5.3 Velocity sampling with the BigMultiDark
Simulation

After we discussed the density inference with argo in detail, we now focus on the self-consistent
description of the velocity sampling techniques within our algorithm. The analysis presented in Kitaura,
Ata, Angulo et al. (2016) aims to correct for redshift-space distortions (RSDs), using a joint sampling
of the density and the velocity field with argo, applied on a mock galaxy catalogue at redshift z = 0.57
(Rodŕıguez-Torres et al., 2016) based on a snapshot of the BigMultiDark (BigMD) simulation, that
we introduced in Section 3.3.3. The mock catalogue provides galaxy positions and also the three
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dimensional velocities of the galaxies, ideal to test our method. We follow Kitaura et al. (2012a) with
several refinements. According to Hamilton (1998), we distinguish between two different components of
the RSDs, namely the coherent bulk velocity vbulk

r (r), being the velocity due to the peculiar potential
Φ(r), and the dispersed components due to quasi-virialization vσr (r). Thus we write

sobs = r + vbulk
r (r) + vσr (r) . (5.5)

The subscript r illustrates that we are working with the projections in line-of-sight direction. Now
according to Equation 4.48, we can write this expression inside our sampling method for iteration step
i as

rbulk
i = sobs − (vbulk

i (ri−1) · r̂)r̂/(Ha) , (5.6)

with the projection vbulk
r (r) = (vbulk(r) · r̂)r̂/(Ha).

The important fact here is the necessity that the coherent bulk velocities have to be evaluated at
the real-space position of each individual tracer, obtained in the previous Gibbs step, written as ri−1 .
Only with this procedure the sampler will be able to converge as described in Equation 4.50.

The dispersed component demands a statistical treatment as at those scales linear theory can
not be applied and on the local matter density contrast (Matsubara, 2008; Peacock & Dodds, 1994;
Scoccimarro, 2004). Therefore, it can be successfully modelled with a Gaussian distribution. In Kitaura
et al. (2014) the authors propose a velocity dispersion term given by a Gaussian G with zero mean and
a variance given by

σ(rbulk
i ) ∝ (1 + δDM)ε , (5.7)

where ε is a parameter depending on the amount of (quasi-)virialized clusters and the candidate position
rbulk
i is inferred from the sampling of the coherent bulk flow, shown in Equation 5.6. As discussed

in Section 2.9.2, the fingers-of-god (FOG) cause a decrease of apparent clustering therefore, also a
decrease in the power spectrum at these scales is expected.

In order to compensate for this effect, we run a web classification (Hahn et al., 2007) explained in
Section 2.10, to find knots that are characterized by three positive eigenvalues λ1,2,3 > 0 of the Hessian
H . So in line-of-sight direction we write

vσr (rbulk
i ) = (vσ · r̂)r̂/(Ha) = G (vσr (rbulk

i )|σ(rbulk
i ),∀λ(H (δDM) > 0)) . (5.8)

The new candidate position then is rbulk
new,i = rbulk

i +vσr (rbulk
i ), where vσr (rbulk

i ) was chosen in line-of-sight
direction to coincide with a knot type structure. Consecutively, we can select the minimum of the
position obtained from the steps of Equations 5.6 and 5.8: min(|rbulk

i − rbulk
new,i|). Now we have the

position of the particular tracer in real-space and also modelled the dispersion according to the local
density. Finally, we make sure that the density at the new iteration is larger or equal as compared to
the previous step by δ(rbulk

new,i) ≥ δ(rbulk
new,i−1). In this way we attempt to assign a galaxy to a overdense

region statistically and sequentially increase the power at small scales.

5.3.1 Results
We run argo on a 1283 mesh grid on the BDM mock galaxy catalogue obtained from the BigMD
simulation as described above. We use a subsample with a side length of 1.25h−1 Gpc with a galaxy
number density of n = 3.29× 104 h3 Mpc−3. We use the power law bias description, shown in Ata et al.
(2015) and a NB likelihood with negligible overdispersion. We run two chains:
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1. First chain.
The first RSDs corrections are based on coherent peculiar bulk motions directly derived from the
density field on a mesh using linear theory as described in Section 4.7, Equation 4.76. We apply
an additional Gaussian smoothing with radius rS = 7h−1 Mpc.

2. Second chain.
We add the velocity dispersion described in Equation 5.7 and thus correct for the FOG.

We analyze the chains with the following methods:

• Fourier space:
We calculate the monopole power spectra and show the deviations of the real-space and redshift-
space power due to RSDs and also the corrections we achieve. We calculate the 2D power spectra
P (k⊥, k‖), with which we test our method’s capability to overcome the anisotropy of the distorted
line-of-sight direction k‖.

• Configuration space:
We calculate the corresponding monopole two-point correlation function ξ(r) for the input
redshift-space catalogue as well as the corrected real-space catalogue obtained from the two chains
described above. Finally, we calculate the quadrupole correlation function Q(r) to estimate the
goodness of our method considering the isotropy in configuration space.
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Figure 5.8: Monopole power spectra shown for real-space positions of the mock galaxies in black, redshift-space
in green color. The dashed blue line corresponds to corrections only concerning the coherent bulk flows (Bulk)
obtained with linear theory. Finally, the dashed red line shows the RSDs corrections, if the treatment of the velocity
dispersion is added (Bulk+Disp). The reconstructions are plotted with their mean and one and two σ variances,
obtained by averaging over 1000 iterations.
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In Figure 5.8 we show the monopole power spectra of the mock galaxies in real-space, redshift-space,
and also the power spectra of the two different reconstruction schemes. The real-space power spectrum
is shown as the black solid line, redshift-space is shown in solid green. We see an overall increase of
power in redshift-space up to k ∼ 0.25hMpc−1, as predicted by the Kaiser’s linear theory of RSDs.
For scales greater than k ≥ 0.25hMpc−1, we witness the FOG effect, causing a decrease of power.
The corrected positions obtained from argo are shown as dashed lines, dashed blue for corrections
only concerning the coherent bulk flows (Bulk) obtained with linear theory, and dashed red where
we also applied the correction of the velocity dispersion (Bulk+Disp). Both chains are shown with
the one and two σ variances averaged over 1000 iterations after the burn-in phase. The two chains
overlap completely for the largest scales for our reconstructions, showing that argo is capable to
correct large-scale bulk motions if linear theory with a certain smoothing is applied. At the small
scales, when FOG are dominating however, we see a significant difference. The Bulk method is not
able to recover the lack of power due to FOG. This is improved clearly when the Bulk+Disp method is
applied. In that case we achieve a matching up to the smallest scales within our reconstructed volume
in the one σ band. This is evidently an improvement.

In Figure 5.9 the 2D power spectra are shown. On the left we only show the input catalogues;
color-coded contour plots correspond to the real-space mock catalogue. It can be seen, that on all
scales the power spectrum is isotropic. However, the anisotropic pattern in redshift-space (dotted lines)
can be clearly seen. In particular, the enhancement of power due to the Kaiser effect is very prominent
for small wave numbers (large scales) in k‖, whereas FOG tend to decrease the power on small scales.
We can see that the coherent bulk flow corrections alone (solid line), shown in the central plot perform
very well to correct for the Kaiser boost, wherras the the additional dispersion correction is fruitful
especially for smaller scales, seen in the right plot (solid line).
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Figure 5.9: 2D power spectra P (k⊥, k‖) of the mock galaxy catalogue in real-space (color-coded contour regions),
in redshift-space (dashed lines), including the reconstructed galaxy density field in real-space (solid lines): with an
smoothing of rS = 7h−1 Mpc (2nd panel), including virialized RSD correction (3rd panel).

In Figure 5.10 the monopole and quadrupole correlation functions are shown. From these plots we
can see that the two different reconstructions, Bulk and Bulk+Disp, both with Gaussian smoothing,
yield similar results. The left panel shows how accurately the real-space BAO can be obtained from
redshift-space. Interestingly, the full Bulk+Disp RSD correction algorithm also shows slightly better
agreement with the true real-space quadrupole not only on small scales, but also displaying less artificial
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spikes at large scales. Still, at the relevant scales of the BAO already the Bulk is indistinguishable
from Bulk+Disp. The ratios with the real-space catalogue show an excellent agreement within the
error bands.
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Figure 5.10: Left panel: two-point correlation function, Right panel: corresponding quadrupoles.
The green solid line corresponds to the real-space positions of the mock catalogue, whereas the redshift-space
positions are shown as red solid line. The magenta dashed line displays the Bulk reconstruction, where no dispersion
term was applied, and finally the blue dashed line indicates to the Bulk+Disp reconstruction with one and two σ
contour. The sampling of the coherent bulk velocities have been performed after a Gaussian smoothing with radius
rS = 7h−1 Mpc. The lower panel shows the ratio of each plotted correlation function with the real-space correlation
function.

5.3.2 Convergence
In this Section I show the behavior of argo exemplary for one reconstruction, how our code conver-
gences.

As we already mentioned in Section 5.2.2, we need to estimate the behavior of each Markov chain’s
evolution to ensure that the realizations that we obtain from the sampling procedure actually belong
to the desired target distribution. Different estimators have been proposed in literature of which we
choose the Potential Scale Reduction Factor (PSRF) R̂, introduced in Gelman & Rubin (1992). The
exact definition is shown in Appendix A.2. The PSRF estimator is applied by comparing m chains
that are supposed to have the same target distribution but have started at different initial points. Now
we can compare the variance of the m means of the different chains to the mean of the variance of
each individual chain.

A value of R̂ = 1.1 is assumed to represent a converged chain. Also, we estimate the covariance of
the density field given the first 500 iterations. We therefore use a similar definition of the covariance
given in Equation 4.86. However, we want the covariance to be expressed differently. Equation 4.86
averages over many realizations to estimate the covariance of the power spectrum’s mode ka with
another mode kb, assuming in total s modes (a, b ∈ {1, ..., s}). The resulting covariance will therefore
be a symmetric matrix with N2

s entries, where Ns is the total number of modes measured from each
power spectrum. For our convergence tests we however, seek to estimate the evolution of the density
field as a whole considering the first 500 iterations. Thus we write for two different iterations i, j

Cij = 〈δiδj〉 − 〈δi〉〈δj〉 . (5.9)
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In the exact same way we can also run this diagnostics for the evolution of the power spectra of each
individual iteration, averaging over the modes

Cij = 〈P iP j〉 − 〈P i〉〈P j〉 , (5.10)

where now P i corresponds to the power spectrum of iteration i as a whole, including all modes, and
must not be confused with the power of mode i. Nevertheless, in this chapter we will focus on PSRF
and density covariance entirely. These are shown in Figure 5.11. As the first 500 iterations shown in
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Figure 5.11: Left panel: the PSRF of each density cell is plotted. For better visualization we thinned out the
points by a factor of 1000. P̂ −1 is shown on the y-axis, so that values below 0.1 satisfy a convergence. Right panel:
the covariance for the first 500 iterations of all density cells. The correlation increases towards higher iterations,
indicated by the color bar.

the right panel show increasing covariance (correlation, when divided by the individual variances σi,
σj), we discard the first 1000 to be safe. The left panel shows the PSRF after discarding the first 1000
burn-in iterations for each density cell. P̂ − 1 is everywhere less than 0.1, which gives us the sureness
that our chain converged.

It is beneficial to have a good insight about the convergence behavior of a run chain in order to
adapt the parameters of the Hamilton equations of motion, such as the step size shown in the leap-frog
scheme, shown in Section 4.3.3, Equations 4.31 and 4.33. This will help the chain to converge faster
and also to draw more independent samples when converged. Therefore, an adaptive choice of the step
size ε is preferable.

5.3.3 Remarks & Conclusion
In this application of argo, we aimed to jointly sample the density and velocity fields given a mock
galaxy catalogue. We have shown that argo is capable of reconstructing the real-space positions on
large scales with linear theory, modelling the coherent bulk flows, called Bulk in our method, and a
stochastic description called Bulk+Disp to correct for the FOG effect, as the latter one is a highly
non-linear phenomenon. As Bulk+Disp requires a full web classification in order to assign a mock
galaxy position to a high density region, it is computationally still affordable on small mesh sizes,
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but will be much more expansive for higher resolutions though. Also, we showed that the gains of
Bulk+Disp at the BAO scales are not significant, and the Bulk reconstructions already correct the
RSD sufficiently. On small scales however, at least up to k = 0.3hMpc−1, shown in the isotropization
of the 2D power spectrum, the FOG corrections are indispensable to yield the correct power spectra.
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6 Phase-space
Reconstructions with
Galaxy Redshift Surveys

In this chapter I present the applications of argo on the BOSS galaxy redshift survey. The results
of the reconstructions are published in Ata et al. (2017), whereas in Alam et al. (2016) the general
analysis of the galaxy survey is presented. Several improvements were implemented to argo during
this work. Tests done without these refinements can be partly seen in Appendix A.1.

6.1 Applying argo on galaxy surveys
In order to apply argo on a galaxy catalogue obtained from a redshift survey like SDSS, as described
in Section 3.1, we need several ingredients that are not required by a mock catalogue. To use the
survey data, like the CMASS catalogue (Section 3.1.2) of BOSS (Section 3.1.1) within a cubic volume
as done by argo, we translate the positions of the galaxies from a equatorial coordinate system into
Cartesian coordinates. This is done by (in concordance to Equation 4.52)

x = r cosα cos δ ,
y = r sinα cos δ ,
z = r sin δ ,

r = H0
c

z∫
0

dz′√
ΩM(1 + z′)3 + ΩΛ

, (6.1)

where the parameters ΩM and ΩΛ are depending on the chosen cosmological model. We use the
parameters obtained from Planck Collaboration (2015) as fiducial cosmological model. Important to
note still is the impact of an incorrect assumption of a cosmological model to map redshift-space positions
into comoving real-space coordinates, called Alcock-Paczynski (AP) effect (Alcock & Paczynski, 1979).
These distortions are due to the fact, that measured distances along line-of-sight and perpendicular
to line-of-side are significantly different. Induced distortions by the AP effect are to a large extent
degenerate with the RSD, causing similar anisotropy in the clustering. Studies of anisotropies with
galaxy surveys (Peacock et al., 2001) including the AP effect are challenging and have been studied in
literature (see e.g. Ballinger et al., 1996; Matsubara & Suto, 1996). However, this degeneracy can be
overcome when analyzing the clustering at various distinct redshift ranges utilizing the fact that the
evolution of RSDs and the AP effect is different with redshift (Li et al., 2015). Other methods that seek
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to constrain cosmological parameters, such as the growth rate fΩ or bias in a reconstruction method
yet do not break this degeneracy caused by RSDs and the AP effect (see e.g. Granett et al., 2015).

As discussed in Section 4.5.4 the survey geometry is a highly challenging task to deal with, and
needs careful treatment. Most demanding is the steep decrease of completeness at the edges of the
observed region. A very small mistreatment may cause a gradient in the reconstructed density field,
which in turn may lead to a large velocity field in the reconstruction that is unphysical.

6.1.1 Renormalized lognormal priors
In the previous reconstructions the entire volume was populated with (mock) galaxies. This is not longer
the case when argo is applied to a galaxy redshift survey catalogue. As the reconstructed volume
needs to be cubic to preserve isotropy of the prior, large parts of the reconstructed volume may be
empty. The knowledge of the completeness of the cells within our reconstructed volume is comprised in
the window function, assuming values between w = 0 (not observed) and w = 1 (completely observed).
Problems still arise due to the random lognormal field that is used to fill these empty regions. The
lognormal model for structure formation yields a poor description of the three-point statistics (see
Chuang et al., 2015; White et al., 2014), and will have a different mean field µ which depends on the
higher order statistics of the dark matter field, shown in Equation 4.47.

This can be seen if we consider the one-point distribution of the lognormal distribution

P
(1)
LN(1 + δ) = 1√

2πσ2

[ ln(1 + δ)− µ
2σ2

] 1
1 + δ

, (6.2)

where σ2 is the variance and µ the expectation value of ln(1 + δ). Further we find that the expectation
value E[1 + δ] assumes the form

E[1 + δ] = eµ+σ2
2 . (6.3)

Using the mean of 〈(1 + δ)〉 = 1, we write

eµ+σ2
2 = 1⇒ µ = −σ2/2 . (6.4)

Equation 6.4 is the theoretical prediction of the mean for a perfect lognormal field. In Section 4.4,
we found that the mean µ is comprising all higher orders beyond the Gaussianization done with
the lognormal transformation. However, due to the different higher order contributions of the fully
non-linear evolved density contrast δ in the Universe, we expect µ to be different from the theoretical
predictions of (one-dimensional) µ = −σ2/2. In Ata et al. (2017) we therefore introduced a significant
improvement dedicated to this problem. According to Section 4.9 Equation 4.83 we can estimate
the mean field µ from the linear density field δL. We can extend this ansatz now and calculate µ in
dependency of the window function w(r). In this way µ is supposed to be more precisely renormalizing
the lognormal prior of the density field. We write consequently

µw(r) = − ln 〈exp(δL)〉w(r) . (6.5)

We expect the mean field to be very close to the theoretical expectation µ = −σ2/2 in the empty
regions of the reconstructed volume, whereas µ in the data dominated regions may strongly deviate
from this estimation. We will use up to 10 completeness bins in the latter work.
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6.1.2 Window function weighted normalization
Another important issue is concerning the redefinition of the normalization factor fN̄ introduced
in Equation 4.57. As we will yield a reconstruction, which is a composition of prior and likelihood
dominated regions, we must take care that both regions are equally weighted in terms of Hamilton
Monte-Carlo. Therefore we modify the normalization and apply the normalization to those cells of our
mesh grid only where the window function is larger than 0, w(r) > 0. Thus we write

fN̄ |w(r)>0 = N̄

/
Nw(r)>0∑
i=1

(1 + δi)b

Nw(r)>0

 , (6.6)

and the summation is applied to all density cells in which w(r) > 0 so that Nw(r)>0 ≤ Nc, with Nc

being the total number of cells in the volume. Only if this normalization is applied, the reconstruction
will successfully normalize the likelihood function in concordance to the prior.

6.1.3 Light-cone effects
When working with the data of a galaxy redshift survey, physical effects are arising that I summarized
as light-cone effects. I will explain these points in this Section separately. The main reason for light-cone
effects are the different redshifts each individual galaxy is observed at. Different redshifts mean different
stages of cosmic evolution. In linear theory and within ΛCDM this is described by the growth factor:

D(z) = H(z)
H0

∞∫
z
dz′ (1+z′)

H3(z′)
∞∫
0
dz′ (1+z′)

H3(z′)

, (6.7)

relating the density field at a given redshift to a reference redshift zref : δi(zref) = G(zref , zi) δi(zi) with

G(zref , zi) ≡ D(zi)/D(zref) . (6.8)

Given a redshift z one can define the ratio between the galaxy correlation function in redshift-space at
z, called ξsG(z) and the matter correlation function in real-space at zref , called ξM(zref) as

csL(z) ≡
√
ξsG(z)/ξM(zref) . (6.9)

The quantity ξsG(z) can be obtained from the data without having to assume any bias, nor growth rate.
Furthermore, one can use the Kaiser factor

K = 1 + 2
3
fΩ
bL

+ 1
5

(
fΩ
bL

)2
, (6.10)

with fΩ being the growth rate and bL the linear bias factor (Kaiser, 1987)) to relate the galaxy
correlation function in redshift-space to the matter real-space correlation function

ξsG(z) = K(z) ξG(z)
= K(z) b2L(z)G2(z, zref) ξM(zref) . (6.11)
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From the last two equations we find a quadratic expression for bL(z) for each redshift z

b2L(z) + 2
3fΩ(z)bL(z) + 1

5f
2
Ω(z)− (csL(z))2

G2(z, zref)
= 0 , (6.12)

with only one positive solution.

bL(z) = −1
3fΩ(z) +

√
− 4

45fΩ(z)2 + (csL(z))2
(
D(zref)
D(z)

)2
. (6.13)

We assume the bias measured in redshift-space on large scales csL(z) (with respect to the dark matter
power spectrum) to be constant for CMASS galaxies across the considered redshift range (see, e.g.,
Rodŕıguez-Torres et al., 2016). Nevertheless, the (real-space) linear bias bL(z) is not, as it needs to
precisely compensate for the growth of structures (growth factor) and the evolving growth rates. Now
we have elaborated an expression for the linear bias bL. Our bias model however is relying on a power
law bias description. This is why we also correct this by multiplying a non-linear bias correction factor
fb. The factor fb is expected to be less than unity, since we are using the linear bias in the power law
and thus we have to cancel the higher order terms.

As we seek to reconstruct the underlying dark matter field for a particular redshift zref , we have
to redefine Equation 4.60 with the refinements we needed to perform for a light-cone. In cell i we
therefore write the expectation value λ as

λi = fN̄w(ri)(1 +G(zi)δi)bL(zi)fb , (6.14)

where we neglect the threshold term in the following analysis.
Revising Equation 4.73

∂

∂δL,i
=
(
∂δL,i
∂δj

)−1
∂λk
∂δj

∂

∂λk
, (6.15)

we have to recalculate the term ∂λ

∂δ
, including the modifications in Equation 6.14.

∂λk
∂δj

= G(zk)bL(zk)fb
λk

1 + δk
δD
jk . (6.16)

Now the derivative of the Poisson likelihood function writes in total as

− ∂

∂δL,i
ln LP = G(zi)bL(zi)fbλi

( 1 + δi
1 +G(zi)δi

)(
1− Ni

λi

)
, (6.17)

and consequently for the negative binomial likelihood function as

− ∂

∂δL,i
ln LNB = G(zi)bL(zi)fbλi

( 1 + δi
1 +G(zi)δi

) 1
λi
β + 1

+ Ni

β + λi
− Ni

λi

 . (6.18)

6.1.4 Bias prediction from renormalized perturbation theory
One can predict fb from renormalized perturbation theory, which in general will be a function of
redshift. Let us Taylor expand our bias expression (Eq. 6.14) to third order

δg(zi) ≡
%g
%̄g

(zi)− 1 ' bL(zi)fb(zi)δ(zi) (6.19)

+1
2bL(zi)fb(zi)(bL(zi)fb(zi)− 1)

(
(δ(zi))2 − σ2(zi)

)
+

1
3!bL(zi)fb(zi)(bL(zi)fb(zi)− 1)(bL(zi)fb(zi)− 2) (δ(zi))3 ,
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with δ(zi) = G(zi, zref)δ(zref). The usual expression for the perturbatively expanded overdensity field
to third order ignoring non-local terms is given by

δg(zi) = cδ(zi)δ(zi) + 1
2cδ2(zi)(δ2(zi)− σ2(zi)) + 1

3!cδ3(zi)δ3(zi) . (6.20)

Correspondingly, one can show that the observed, renormalized, linear bias is given by (see McDonald
& Roy, 2009)

bδ(zi) = cδ(zi) + 34
21cδ2(zi)σ2(zi) + 1

2cδ3(zi) . (6.21)

By considering that in our case the observable linear bias is expected to be given by bL(zi) and
identifying the coefficients {cδ = fbbL, cδ2 = fbbL(fbbL − 1), cδ3 = fbbL(fbbL − 1)(fbbL − 2)} from
Eqs. 6.19 and 6.20 one can derive the following cubic equation for fb

f3
b

(1
2b

3
L(zi)σ2(zi)

)
(6.22)

+f2
b

(
−3

2b
2
L(zi)σ2(zi) + 34

21b
2
L(zi)σ2(zi)

)
+fb bL(zi)

(
1 +

(
−34

21 + 1
)
σ2(zi)

)
− bL(zi) = 0 .

Let us consider the case of a cell resolution of 6.25h−1 Mpc. The only real solutions for redshift
z = 0.57 (G = 0.78) and bL = 2.1± 0.1, are fb = 0.62±0.01 including the variance from the non-linear
transformed field (σ2(δ) = 1.75), and fb = 0.71 ± 0.02 including the variance from the linear field
(σ2(δL) = 0.91). Let us, hence, quote as the theoretical prediction for the bias correction factor
the average between both mean values with the uncertainty given by the difference between them
fb = 0.66± 0.1. These results show little variation (±0.01) across the redshift range. Leaving fb as a
free parameter and sampling it to match the power spectrum on large scales yields fb = 0.7± 0.05.
However, there is an additional uncertainty associated to this measure, since the result depends on the
particular k mode range used in the goodness of fit. Therefore, one can conclude that the theoretical
predictions account for the non-linear correction within the associated uncertainties.

6.2 Cosmic Web and Cosmic flows from SDSS
In this Section I present the results of argo run with the CMASS catalogue (Section 3.1.2) obtained
from the BOSS galaxy redshift survey (Section 3.1.1) that were published in Ata et al. (2017). For
validation we also run the exactly same configuration on a galaxy light-cone mock catalogue (Rodŕıguez-
Torres et al., 2016), which has the same number density and geometry compared to the galaxy
catalogue.

The runs are performed on a mesh grid of 5123 cells for a cubical volume of 3200h−1 Mpc side
length. In total we have NG = 571372 galaxies in the CMASS sample and NG = 612937 in the mock
catalogue that we assign to the mesh grid with the NGP kernel. This choice leads to a cell resolution
of dL = 6.25h−1 Mpc .

We choose the minima of the Cartesian coordinates to fit all galaxies inside the reconstructed volume,
leaving 90% of the cells empty

xmin = −2000h−1 Mpc ,
ymin = −1650h−1 Mpc ,
zmin = −500h−1 Mpc . (6.23)
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We choose the reference redshift, the redshift at which we reconstruct the density field, to be z = 0.43.
This choice guarantees that the growth ratio G(zref , zi) ≡ D(zi)/D(zref) remains below one for all
galaxies within our volume. Otherwise, negative densities (density contrasts below −1) will arise in
low density cells, causing singularities in the model.

Further, we discard the first 1000 samples to be safe against the burn-in phase of the Monte-Carlo
sampling. On average argo requires 10 Gb memory and approximately six minutes per Gibbs-iteration
after convergence, running on eight cores parallel. Only in each 50th iteration the velocity sampling
is applied, as in that sampling step the time consumption goes up beyond ten minutes due to the
computational costs of the Fast-Fourier-Transformations (FFTs).

6.3 Cosmic Web reconstructions
The results of argo applied to the CMASS catalogue are described in this section.

However, we first test the outcome of the Poisson and the NB likelihood model in argo with a
snapshot of a mock galaxy catalogue, based on the BigMultiDark simulations1. This is not a light-cone,
but a snapshot at fixed redshift of z = 0.57, which corresponds to the mean redshift of the the BOSS
galaxy catalogue and also the light-cone mock that we are going to use in the following. We will
use the terms snapshot mock and light-cone mock to avoid confusions. Using this snapshot mock
catalogue, we can calibrate the bias parameters without the disturbance of light-cone effects. We find
that the snapshot mock galaxy population is well described by a Poisson likelihood with negligible
over-dispersion shown in Figure 6.1.

This can be explained due to the resolution of the mesh grid and as the mock galaxies are created
here to mimic luminous red galaxies (LRGs), the most massive galaxies known. This means, in opposite
to the mock galaxies we analyzed with the Bolshoi simulation, that in a Lagrangian picture the LRGs
are located at the primordial density peaks that collapsed in a very early stage of the evolution of
the Universe and thus, by hierarchical merging, accumulated most of the matter in its surroundings.
This halo exclusion effect is well studied in literature (compare Section 2.8.2) and consequently can
reduce over-dispersion (and even reverse it). This is exactly the case for the BOSS-type galaxies.
The dependency on the mesh grid resolution is a very important component when analyzing the
dispersion of the galaxy counts per cell. Larger cell sizes for a given galaxy population will reduce the
over-dispersion, or as mentioned above even reverse it. These conditions have to be taken into account
for a proper treatment of the dispersion of galaxy counts per cell.

In the following we firstly work out the auxiliary variables that we have introduced to overcome
the physical effects a light-cone brings along in Section 6.3.1. Afterwards we will analyze the density
field of the reconstruction in Section 6.3.2. The distribution function of the linear density field is
investigated in Section 6.3.3. I show the different slices of the inferred density field in Section 6.3.4,
where we also apply a Zel’dovich like transformation and finally summarize our results in Section 6.3.5.

6.3.1 Light-cone auxiliaries
We calculate the mean field µ(w(r)) depending on the completeness in ten bins starting with w(r) = 0
as described in Equation 6.5. We find that the mean field at w(r) = 0 is comparable within 0.5%
to µG = −σ2

G/2 = 0.543 that is expected from the Gaussian random field created from the initial
1We obtained this catalogue with a query from the CosmoSim database created by the German Astrophysical Virtual

Observatory as a result of a collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the
Spanish MultiDark Consolider Project https://www.cosmosim.org.
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Figure 6.1: Comparison of small scale power spectrum for a snapshot mock catalogue at z = 0.57, between
Poisson and NB likelihood reconstructions.

covariance matrix at a resolution of 6.25h−1 Mpc , shown in Figure 6.2 on the left. It can also be
seen that µ is strongly varying within the volume from µmin = −0.63 and µmax = −0.46. This is a
deviation of up to 18% from µG which underlines the importance of a completeness dependent mean
field sampling as shown here.

Also as discussed in Equation 6.13, we translate the constant linear bias of the CMASS galaxies in
redshift-space at different redshifts to a real-space bias and weight all galaxies to a reference redshift
zref = 0.43, corresponding to the lower edge of the CMASS galaxy catalogue. The outcome of this
mapping is described in Equation 6.13 and demands a correction factor computed in Section 6.1.4.
The final bias values w.r.t. the position inside the reconstructed volume are shown in 6.2 on the right,
where the positions of the galaxies are illustrated with the grey shaded area.

6.3.2 Density inference
In this Section I describe the outcome of the density sampling applied on both, the CMASS galaxy
catalogue and also the light-cone mock catalogue. Although the focus here mainly lies on the density
field reconstruction, I emphasize that these results are obtained in real-space and thus the velocity
sampling has been applied simultaneously. Nevertheless I leave the discussion of the cosmic flows to
the next Section (6.4). In concordance with the theoretical prediction found in Equation 6.20 we set
the bias correction parameter fb to a value between 0.66± 0.1 and 0.70± 0.05 within the theoretical
uncertainty.

The resulting real-space power spectra and the consequent ratios with the theoretical linear power
spectrum of the reconstructions can be appreciated in Figure 6.3. The top panel shows the reconstruction
of the BOSS CMASS galaxy catalogue whereas the bottom panel shows the corresponding reconstruction
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Figure 6.2: Slices of the completeness dependent mean field µ shown on the right and position dependent bias
field b on the left are shown in three different cuts. All slices are shown with a thickness of 6.25h−1 Mpc. The
shaded area on the right hand side indicates where the data is located within the box.
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Figure 6.3: Power spectra of the reconstruction process are shown. the green solid line shows the raw galaxy
input, the solid black and red lines show the theoretical predictions for the non-linear and linear density power
spectrum, respectively, obtained from camb. Top: the reconstruction of the BOSS CMASS galaxy catalogue is
shown, Bottom: the corresponding reconstruction of the light-cone mock catalogue is shown. The mean of each
reconstruction is plotted as dashed blue line including the one and two σ variances. Both plots include a bottom
panel, in which the ratio of the power spectra with the theoretical linear prediction is shown.

of the light-cone mock catalogue. Both chains have been run with fb = 0.67. We show the theoretical
predictions from camb (Howlett et al., 2012; Lewis et al., 2000) (based on CMBFAST Seljak &
Zaldarriaga (1996)) in solid black for the full non-linear power spectrum created with Halofit and
the pure linear power spectrum in solid red. The solid green line represents the power spectrum of
the raw data, not corrected for the window function. Finally the blue dashed line shows the mean of
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6000 reconstructions obtained from argo after the burn-in phase. Additionally the one and two σ
variance bands are shown in cyan and dark blue. We achieve unbiased reconstructions up to scales of
about k ∼ 0.3hMpc−1 . As expected, we encounter a higher variance on largest scales that are prone
to cosmic variance. The negligible variance on small scales is due to the outweighing domination of
the prior function as 90% of the reconstructed volume is empty. For scales below k ∼ 0.3hMpc−1 we
can clearly see a lack of power. This is caused by the fact that in this analysis we did not apply any
correction for the FOG that are predominant at these scales and therefore reduce the power. However,
on scales relevant for BAO and LSS analyses, the reconstructions show excellent agreement with the
theoretical predictions.

6.3.3 Density distribution

Now we can analyze the validity of the lognormal model. We do this by evaluating the distribution
function of the linear density field δL by histogramming the matter overdensity at each cell, shown in
Figure 6.4. To estimate the one σ variance band, we took the mean over 6000 iterations.
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Figure 6.4: Distribution of the matter statistics for different completeness values from 6000 reconstructions on
a mesh of 5123 cells and resolution dL = 6.25h−1 Mpc, shown for the linear component δL of the reconstructed
density field. The corresponding skewness range is between −10−4 and −0.09 with means being always smaller
than |〈δL〉| < 0.13. The skewness is thus reduced by two orders of magnitude, as compared to a skewness of ∼7
corresponding to the galaxy overdensity on a mesh with the same cell resolution.

We find a good agreement through six different completeness domains by reducing significantly the
skewness of the galaxy distribution from 6.4 to less than 0.03. Also, the absolute average mean over
the different completeness domains is smaller than |〈δL〉| < 0.18.
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6.3.4 Zel’dovich transformation of matter overdensities
So far we have been reconstructing the linear component of the density field in Eulerian space at
a reference redshift within the lognormal approximation. We can, however, get an estimate of the
non-linear cosmic web by performing structure formation within a comoving framework, i.e., without
including the displacement of structures, as our reconstructed linear density fields already reside
at the final Eulerian coordinates. It is possible to derive this kind of mapping from cosmological
perturbation theory. We will rely here on the classical Zel’dovich (1970) framework. By demanding
mass conservation from Lagrangian q to Eulerian space r with %(q)dq = %(r)dr, we get an equation for
the cosmic evolved density field within comoving coordinates: 1 + δPT(q) = J−1 (with the supercript
PT for perturbation theory), where J is the Jacobian matrix often called the tensor of deformation

Dij ≡
∂2Ψ(q, z)
∂qi∂qj

. (6.24)

By doing the proper diagonalization one finds that the comoving evolved density field can be written
as

δPT(q, z) + 1 = 1
(1−D(z)λ1(q))(1−D(z)λ2(q))(1−D(z)λ3(q)) , (6.25)

where λi are the eigenvalues of the deformation tensor with λ1 ≥ λ2 ≥ λ3. This framework is helpful
to gain insight over the formation of the cosmic web (see Hahn et al., 2007). In fact we could use
the reconstructed velocity field to compute the shear tensor and study the cosmic web (Bond et al.,
1996). We will however, focus on the largest eigenvalue denoting the direction of first collapse along
the principal axis to form the filamentary cosmic web. We can Taylor expand the previous equation
within the Eulerian framework yielding

δPT(r, z) ' D(z)λ1(r) + λ+(r, z) , (6.26)

with λ+ being the higher order contributions including the rest of eigenvalues, which can be approxi-
mated by λ+(r, z) ' −〈D(z)λ1(r)〉. This expression avoids the problem of formation of caustics, as
present in Equation 6.25. We have tested other expansions including the rest of eigenvalues, however,
with less success in describing the non-linear cosmic web. The operation of retaining the information
of the largest eigenvalue can also be interpreted as filtering out the noisy part of the Gaussian field.
This technique could potentially be useful to effectively enhance the cosmic web of a low resolution
simulation for mock catalog production. Since this theory is based on the Gaussian density field, we
will compute the eigenvalues based on the linear component of the density field δL. In particular, we
will compute them from the gravitational potential φL ≡ ∇−2δL, solving the Poisson equation with
the inverse Laplacian operator in Fourier space, to obtain the corresponding tidal field tensor. By
applying Equation 6.26 we thus get the linear component of the gravitationally evolved density field
in Eulerian space, which we will denote as δPT

L (r). We now can compute the non-linear component
by doing the transformation δPT(r) = exp(δPT

L (r) + µ(δPT
L (r)) − 1, having the physical meaningful

property of yielding positive definite density fields. To ensure that this field shares the same power
spectrum, as the lognormal reconstructed density field δ(r) = exp(δL(r) + µ(δL(r)))− 1, we apply in
Fourier space

δ̂PT,f
L (k) =

√
P trans(k) δ̂PT

L (k)√
〈|δ̂PT

L (k)|2〉∆k
, (6.27)

where the non-linear transformed power spectrum P trans(k) is found iteratively. The ratio between the
target power spectrum and the one obtained at a given iteration is multiplied to P trans(k) from the
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Figure 6.5: Based on a light-cone mock the different slices in the z − y plane with 6.25h−1 Mpc resolution
represent: Top left: Window function. Top right: Galaxy count density. Middle left: One reconstructed linear
density field. Middle right: One reconstructed linear density field after Zel’dovich transformation. Bottom left:
Mean over 6000 reconstructed linear density fields. Bottom right: Mean over 6000 reconstructed linear density
fields after Zel’dovich transformation. Window is shown with 6.25h−1 Mpc , others with ∼30h−1 Mpc thickness.
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previous iteration until the non-linear power spectra averaged in ∆k-shells coincide 〈|δ̂PT,f(k)|2〉∆k '
〈|δ̂(k)|2〉∆k (i.e., the power spectrum from the non-linear transformed lognormal density field), in
a given k-range within a given accuracy. As a starting guess of P trans(k) we take 〈|δ̂L(k)|2〉∆k (i.e.,
the power spectrum from the linear lognormal density field). In practice, less than 15 iterations are
necessary to be accurate within better than 1% up to at least 70% of the Nyquist frequency using
about 100 ∆k-bins for meshes of 5123 cells on cubical volumes of 3200h−1 Mpc side, requiring less
than 20 min on six cores. This operation is justified, as we are dealing with the Gaussian component of
the density field, permitting us to define a pseudo white noise δ̂PT

L (k)/
√
〈|δ̂PT

L (k)|2〉∆k, which allows
modifications of the two point statistics. In fact, the PDF of δPT

L to a high precision Gaussian. This
calculation is parameter free, and does not require any further input than the lognormal field (and
the window function to compute the completeness dependent renormalized mean fields). Effectively,
these transformations retain the two-point statistics, while improving the three point statistics of the
lognormal field, hereby extracting the cosmic web structure of the density field, which is diluted in the
lognormal reconstructions. We note, that the distribution of peaks even prior to the non-linear tidal
field transformation do not correspond to a random lognormal realisation, as they are based on the
galaxy distribution within the posterior sampling analysis, which already suffered displacements due to
the action of gravity. In Figure 6.5 we show exemplary the whole evolution of the analysis in the z − y
plane for the light-cone mock. Firstly we show the completeness (window function) on the top left
with a thickness of a single cell. This is visually beneficial as one can see the polygons of the mask and
also rejected areas. Secondly on the top right we present the raw galaxy count density in the same
slice but now with a thickness of ∼30h−1 Mpc . The middle panel consists of a single reconstruction
of the pure lognormal prior on the left and also after our Zel’dovich transformation method on the
right with again ∼30h−1 Mpc thickness. One can easily see how the structures of the galaxy counts
are visible in the dark matter density field and the empty parts are filled with a prior field. Also it is
salient how the Zel’dovich transformation is promoting the filamentary structures of the cosmic web to
yield a more realistic structure formation. At the bottom we show the corresponding averages over
6000 iterations for the above motioned slices. As expected the mean of the random prior fields vanish
whereas the structures of the galaxy inputs are stable.

In the following we show samples of the Zel’dovich transformed BOSS DR12 CMASS reconstruction
in different slices in Figure 6.6.
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Figure 6.6: The Left panel shows slices of one reconstructed linear density field δL in different spatial
coordinates, The right panel shows the same slice averaged over 6000 samples. All slices are shown for a thickness
of ∼30h−1 Mpc and after Zel’dovich transformation was applied.

Within one reconstructed density field the data region is not distinguishable from the empty regions
that are augmented with argo and postprocessingly undergo a Zel’dovich like transformation utilizing
the first principal axis of collapse. In all spatial slice cuts, it can also be seen nicely how the reconstructed
data regions are robust against the averaging, as shown in Figure 6.5. In Figure 6.7 we show the
average of the reconstructions with the galaxies corrected to their real-space positions on top. We see
a good agreement of the galaxy positions and the reconstructed density field.

Finally we investigate the robustness of our reconstructions also by comparing the mean and the
standard deviation σ2

i of the density in each cell i. For this purpose we show in Figure 6.8 in the y − x
and z − y slice the variance over 6000 iterations.

These plots demonstrate that the variance at low densities and unobserved densities is higher than
in regions with high number density. In fact it can be disclosed that the variance depicts the inverse of
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Figure 6.7: Average over 6000 iterations of the y−x slice on the left and z− y slice on the right with a thickness
of ∼30h−1 Mpc , overplotted with the BOSS DR12 galaxies that have been mapped to real-space.
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Figure 6.8: Variance over 6000 iterations of the y − x slice on the left and z − y slice on the right with a
thickness of ∼30h−1 Mpc .

the cosmic web. It also can be seen, that the variance tends to increase at the edge of the light-cone
where the selection function is rapidly decreasing towards zero.

105



CHAPTER 6. PHASE-SPACE RECONSTRUCTIONS WITH GALAXY REDSHIFT SURVEYS

6.3.5 Remarks & Conclusions
We found it crucial to sample the mean field in a completeness dependent way. Premature attempts to
a reconstruct a light-cone catalogue with widespread empty regions through the reconstructed volume
showed that our sampling algorithm yielding a µ that was in between the range shown in Figure 6.2.
This value was neither right for the lognormal random field nor the data region, thus argo tries to
compensate for this within the HMC causing an overall gradient in the reconstruction. The gradient
then causes a severe excess of power at large scales. The renormalized lognormal prior is to some
extent compensating the poor three-point description of the lognormal model. Also the Zel’dovich
transformation, while retaining the two-point statistics, is improving the three-point statistics as
information of the Hessian of the potential is used to estimate the filamentary structures.

The over-dispersion of the galaxy distribution and therefore the stochastic bias is strongly depending
on the galaxy population, i.e., galaxy masses, luminosity etc. As we already showed in Section 5.2
more massive tracers tend to have less stochastic bias. This relation can even go beyond Poissonity
for very massive objects into under-dispersion (Baldauf et al., 2012, 2013). However in our case the
deviation from Poissonity has shown to be negligible for the S2 Bolshoi subsample as well as for the
LRG in the BOSS analysis and the mock galaxies. This has been verified in Figure 6.1 as snapshot
analyzed at z = 0.57 yielded the same power on small scales whether a Poisson or NB likelihood (up to
β = 0.4) model has been used for the inference analysis. The detailed understanding of each tracer’s
stochasticity is a crucial ingredient for a successful multi-tracer analysis.

The resconstructed density maps can be used for environmental studies (see, e.g., Nuza et al., 2014),
or to study the warm hot inter-galactic medium in filaments, cross correlating them with temperature
maps of the cosmic microwave background (see, e.g., Génova-Santos et al., 2015). They can further be
used as a reference for future applications including reconstructions of the initial conditions (see e.g.
Heß et al., 2013; Jasche & Wandelt, 2013; Wang et al., 2013, 2014). Another promising application is
to use the large scale potential derived from the density fluctuations Φ ∝ ∇−2δM to study the ISW
effect.

6.4 Cosmic flows reconstructions
In this section I show in detail how argo maps iteratively the galaxies in redshift-space (raw data) into
real-space for a galaxy catalogue from a galaxy redshift survey like BOSS or an equivalent light-cone
mock. We use the light-cone mock to test the results of our velocity sampling within argo with the
velocities given by the N -body simulation. As stated in Equation 4.76 we use linear theory including
a dispersion term vdisp. This dispersion is sampled from a Gaussian of zero mean and a variance
corresponding to ∼ 50 s−1 km, which has been confirmed by previous studies to yield good results on
large-scale structures (Kitaura et al., 2012b),

vi = −fΩ(ai)H(ai) ai ∇∇−2δi + vdisp . (6.28)

We solve this equation in Fourier space so that ∇∇−2 → − k
|k2| . From the above equation we see that

each galaxy requires the peculiar velocity to be computed at each individual redshift (scale factor) as
the growth rate and the Hubble function are functions of redshift. In practise this is not feasible. We
construct a number of 10-15 peculiar velocity fields defined on the same mesh but at different redshifts,
i.e., from density fields multiplied with the corresponding growth factors and rates. Each galaxy will
get assigned a peculiar velocity field, interpolated to its position within the cell taken from the peculiar
velocity mesh at the corresponding redshift bin. In this way we avoid ∼ 600000 FFTs on a 5123 mesh
grid.
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As we discussed Section 5.3.1, dealing with quasi-virialized RSDs within our framework requires a
complete web classification to identify the clusters (knots). In order to increase the power on small
scales, a statistical mapping is done to assign a galaxy within a specific range to these identified knots.
This is a computationally expansive operation already on a 1283 mesh and only affects scales k ≥
0.3hMpc−1 . More precise ways of dealing with quasi-virialized RSD are shown in Heß et al. (2013);
Jennings & Jennings (2015). In this project we focus on the coherent bulk flows.

We analyze the reconstructed density that I described in Section 6.3.4 and the velocity inference
using the monopole and quadrupole correlation functions in configuration space. With these methods
we can effectively explore the influence of RSDs and the outcome of our reconstructions. According to
Alam et al. (2016) we define the correlation functions in terms of Legendre polynomials as

ξl(s) = 2l + 1
2

1∫
−1

Ll(µ)ξ(µ, s)dµ , (6.29)

where l gives the order of the Legendre polynomial Ll(µ), µ is the cosine of the angle between
the separation s and line-of-sight direction and ξ(µ, s) the two dimensional correlation function.
l = 0 → L0 = 1, gives the monopole where as l = 2 → L2 = (3µ2 − 1)/2, gives the quadrupole
correlation function.

In the following we will call the monopole ξ and the quadrupole Q. The results are shown in Figure
6.9. On the left panel we show the monopoles ξ · r2 and on the right the quadruples Q · r2. Q = 0
implies that the clustering is isotropic. We start on top with the results from the light-cone mock,
and at the bottom panel the results of the BOSS DR12 catalogue. In each plot the red solid line
represents the uncorrected galaxy positions in redshift-space. The green solid line is computed from
the real-space positions of the mock catalogue. The blue dashed line with the corresponding one and
two σ bands are taken from averaging 6000 reconstruction iterations and calculating their mean and
variances. The corresponding ratios with the real-space mocks is shown below each plot. We note that
showing the real-space mocks for the BOSS reconstruction has solely visual purposes and does not
stand for real-space positions of the BOSS galaxy catalogue.

Let us firstly describe the findings for the monopole in the mock catalogue (top left panel). The
redshift-space monopole shows higher clustering at distances up to 60h−1 Mpc compared to the real-
space one. On large distances beyond the BAO peak (r ≥ 130 h−1 Mpc ) the redshift-space correlation
drops below the real-space function. Except for very close pairs where the green curve shows a little
peak around r ∼ 5 h−1 Mpc the reconstruction is in very good agreement within the variance bands
with the real-space mock over the entire distance range r. We also see, that the variance is increasing
for larger distances due to decreasing number of pairs. On the top right we show the quadrupole of
the mock catalogue. As stated above Q = 0 (consequently Q · r2 = 0h−2 Mpc2) indicates isotropy of
the clustering. As we analyze one single mock catalogue only, we cannot estimate the variance of the
anisotropy of the mock. Moreover, the real-space curve is up to small deviations close to Q = 0 at all
distances r, so that we can rely on it. The redshift-space quadrupole is peaking at small distances and
then drops below Q · r2 = 50h−2 Mpc2 at scales r ≥ 20 h−1 Mpc . The anisotropy at small distances is
manly driven by the fingers-of-god (FOG) effect whereas on all other distances the Kaiser effect is
dominating. The mean of the argo reconstructions is well recovering the real-space positions beyond
of the FOG dominated area larger than about r ∼ 40 h−1 Mpc . The real-space positions are well
within the one and two σ bands over the entire range (but a small dip appears at ∼ 140 h−1 Mpc
). We can see how the reconstruction is following closely the features in the real-space quadrupole,
tracking the ups and downs. For this reason we are confident to yield robust real-space positions within
our velocity sampling. We proceed with the correlation functions computed for the BOSS CMASS
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Figure 6.9: Left: Monopole correlation function. Right: Quadrupole correlation function. Top: Light-cone
mock based on BMD simulations. Bottom: BOSS DR12 data. In red the raw input data in redshift-space curve is
shown, in green the real-space curve of the light-cone mock. The dashed blue line represents the mean of 6000 argo
samples with the corresponding variances. All correlation functions are divided by the real-space mock correlation
function.

data sample at the bottom left panel. Different from the mock catalogue the BOSS data needs to be
weighted in the scheme that we described in Section 4.5.5, Equation 4.53. We apply these weights
within the NGP algorithm to estimate the galaxy number density on the mesh within argo and we
also account for these weights when calculating the correlation functions. In Appendix A.4 we show
the impact if the weights are not applied. The redshift-space monopole for the BOSS catalogue shows
a similar shape compared to the mock catalogue at small distances. However at large distances beyond
the BAO peak (r ≥ 130 h−1 Mpc ), the red curve does not drop as strongly as the counterpart in
the mock catalogue. These are well known systematics of the BOSS catalogue and partly overcome
by the applied weights. At r ≥ 150h−1 Mpc the correlation function is nearly constant, confirmed
also in Alam et al. (2016). Besides these systematic deviations the monopoles of mock and data are
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matchable (the real-space mock data are shown in green). The lower right panel shows the quadrupole
for the BOSS data. Interestingly at very small distances the FOG seem to be causing less anisotropy
in the data as compared to the mock. This is due to the FOG model in Rodŕıguez-Torres et al. (2016).
Beginning at r ∼ 45 h−1 Mpc the mean of our reconstructions’ quadrupole is in conformity with the
zero-line within the variance bands, concluding that the inferred real-space positions do isotropize the
BOSS data.

The raw quadrupole of the BOSS data in redshift-space shows less anisotropy at large distances
of r ∼ 120h−1 Mpc compared to the light-cone mock. This can be due to cosmic variance effects or
systematics in the data. However, with only one realization of the mocks we can not make a concrete
claim about this feature.

For visual reasons the real-space quadrupole of the mock catalogue is shown in the plot. The results
show that we yield entirely satisfactory recovery of real-space positions relevant for analyses of the
large-scale structures.

6.4.1 Comparison to mock velocities
In this section I will compare closely the inferred velocities of the mock light-cone catalogue to the
velocities obtained from the actual N -body simulation. The results are shown in Figure 6.10. Each
point in the two dimensional plot corresponds to the y-component of the velocity of a mock galaxy.
The inferred velocity is placed on the y-axis and the mock velocities on the x-axis, additionally the
color bar shows the density of galaxies. We use the correlation coefficient to estimate the degree of
correlation, which is defined as the off-diagonal covariance normalized over the individual variances
rij = COV(i,j)

σ2
i σ

2
j

. We start with a single reconstruction on the top left. Just by eye we can see the
tendency of points along the diagonal line though the origin that we plot in black solid. We yield a
correlation coefficient of r = 0.56, facing a small tilt also in the correlation. On the top right we show
the correlation for the mean of 6000 reconstructions. Clearly the correlation is improved significantly to
r = 0.64, removing the tilt. The majority of galaxies are located in the central reddish region along the
black line. This result is obtained despite the presence of 10% of the CMASS galaxy being satellites
that are dominated by viral motions around the central galaxy. As a proxy we consider two cases
shown in the bottom panel, excluding galaxies for which the velocity difference between mock and
reconstructed exceeds 650 and 400 s−1 km, respectively. The first one, shown at the bottom left panel,
removes ∼ 3.5% of the galaxies, and the second one on the bottom right removes ∼ 10%. Since not all
satellite galaxies will be outliers the true answer will be statistically closer to the first case, raising the
statistical correlation coefficient to about r = 0.75, which is a considerable improvement with respect
to other methods in literature.

We show the velocities reconstructed with argo on a 5123 mesh, and compare these to the mock
velocities on the same mesh grid. The mock velocity mesh is created by a modified NGP algorithm.
We assign the positions of the galaxies to the grid cells and average the peculiar velocities of these
galaxies in each dimension x, y, z. This method is sufficiently precise if the bulk flow is dominating, yet
gets spoiled by viral motions. To have a fair comparison we apply a Gaussian smoothing of rS = 4h−1

Mpc to mock velocities. The results are shown in Figure 6.11 with a thickness of 50h−1 Mpc in the
z − y slice.

We note that the general pattern is agreeing for the mocks and the reconstructions. However it
is important to note that due to the averaging of the mock galaxy velocities within a grid cell, the
amplitude of the mock slice is reduced as expected. We still see a correlation over the volume compared
to the mean of 6000 iterations. What is also noticeable in the mean reconstruction, is that although
most of the empty region is averaged to zero, empty regions immediately at the border to the data
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Figure 6.10: Correlation of the y-component of the velocity field of the light-cone mocks and for reconstructions
based on the mocks with resolutions of dL = 6.25h−1 Mpc with an additional Gaussian smoothing of rS = 2h−1

Mpc. Upper left panel: for one reconstructed sample yielding a correlation coefficient of r = 0.56, upper right
panel: for the mean over 6000 reconstructed samples with a correlation coefficient of r = 0.64, lower left panel:
same as upper right panel, but excluding galaxies for which the difference in the velocity reconstruction exceeds
|v| = 650 s−1 km (i.e., excluding about 3.5% of the sample) yielding r = 0.75, and lower right panel: same as
upper right panel, but excluding galaxies for which the difference in the velocity reconstruction exceeds |v| = 400 s−1

km (i.e., excluding about 10% of the sample), yielding r = 0.79. The color denotes the number density of mock
galaxies.

region seem to be more stable against averaging. This is in fact a reasonable result as in linear theory
the velocity is determined by the potential flow, which means that the flow will be directed from low
to high density regions. In turn, this means that the border of the empty regions will be constrained
by the data. Thus we do not expect the closest boundary region to completely vanish due to averaging.
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Figure 6.11: Slices shown in the z − y plane of the y and z-component of the velocity field with a thickness of
50h−1 Mpc , shown for the light-cone mock and for argo reconstructions based on the mock, with resolutions of
dL = 6.25h−1 Mpc and an additional Gaussian smoothing of rS = 4h−1 Mpc. Upper left panel: vz of the mock,
upper right panel: vz for the mean of 6000 argo reconstructions, lower left panel: vy of the mock, and lower
right panel: vy for the mean over 6000 reconstructions. The different magnitude for the mock velocities is due to
the averaging off all galaxies’ velocity within one grid cell, whereas the velocity of the argo reconstructions are
inferred on the mesh grid itself.

The color code represents the magnitude of the corresponding velocity, vz or vy respectively.
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Figure 6.12: Slice of a reconstructed density field from BOSS CMASS DR12 data in the z − y plane, smoothed
with a Gaussian kernel of radius rS = 10h−1 Mpc. The two dimensional vz + vy velocity is overplotted on top of the
density field. The color bar marks the magnitude of the velocity vector |v|. Red color denotes high density areas,
and blue color low densities.

In Figure 6.12 we show a streamline visualization of the bulk flows on top of a smoothed density
field reconstructed from BOSS data. For visual reasons we just show a patch of 1250h−1 Mpc side
length in the z − y plane with a thickness of 30h−1 Mpc . The density was smoothed additionally with
a radius of rS = 10h−1 Mpc. In this figure, the density of streamlines show the strength of the field,
i.e. the gradient of the potential, whereas the grey color code indicates the particular magnitude of the
velocity vector |v| in units of s−1 km. It can be nicely seen how the flow is pointing from underdense
areas, shown in blue, to overdense regions, shown in red. This is in good agreement with the previous
findings. Figure 6.12 visualizes impressively the findings of the cosmic web classification, which we
mathematically expressed with the tidal field tensor. Let us illustrate this point with three example
structures that we find in the figure:

1. At z ≈ 875 h−1 Mpc , y ≈ 75 h−1 Mpc .
This is a highly underdense region that we classified as a void. The eigenvalues of the tidal field
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tensor Tij of this structure are all negative, which can be seen as in all directions the velocity
field is streaming out of the void into the more dens structures around the void.

2. At z ≈ 760 h−1 Mpc , y ≈ −125 h−1 Mpc .
This is a filament, meaning that along the elongated axis the velocity is flowing through this
structure, whereas the filament itself is fed by the in-streaming flow perpendicular to this elongated
axis. This means, that the filament is fed from two perpendicular axes and flows along the axis,
that is not collapsed, in accordance to the two eigenvalues of the tidal field tensor larger than
one, and one eigenvalue less than one.

3. At z ≈ 900 h−1 Mpc , y ≈ −200 h−1 Mpc .
This is an isolated high density area, called knot. We can see that the surrounding densities
are lower, as shown by the blue color. Characteristically we see how the knot is fed by its
surroundings as the flows from all directions are pointed to the knot, corresponding to three
positive eigenvalues of the tidal field tensor.

6.4.2 Velocity correlation
Another useful tool to analyze the goodness of the reconstructed velocity field is the power spectrum
of the scaled divergence of velocity field Pθθ with

θ ≡ − 1
fΩHa

∇ · v . (6.30)

The outcome of the velocity field reconstruction with different smoothing scales is shown in Figure
6.13. As the smoothing scale could be considered as a free parameter within our model, we use the
velocity divergence power spectrum to estimate the optimal smoothing length.

In particular, one expects Pθθ to converge towards the linear power spectrum in the transition to the
non-linear regime at about k ∼ 0.15− 0.2h Mpc−1 (Hahn et al., 2015; Jennings, 2012).

This is expected as the velocity divergence is closer to the Gaussian field than the gravitationally
evolved density field (see, e.g., Kitaura et al., 2012b). In fact while the density is enhanced in
the potential wells, virialization prevents galaxies from getting larger and larger velocities. As a
consequence, the power spectrum of the velocity divergence is close to the linear density field in the
quasi-linear regime, eventually being even more suppressed at high k values. Figure 6.13 shows that
such an agreement down to scales of k ∼ 0.2h Mpc−1 is indeed achieved for smoothing scales of about
rS = 2h−1 Mpc. In fact for a smoothing scale rS between 1 and 2 h−1 Mpc one can potentially obtain
unbiased results beyond k = 0.5h Mpc−1. Therefore a smoothing scale for our reconstructions with
5123 mesh grid were run using rS = 2h−1 Mpc.

6.4.3 Radial selection function sampling
As RSDs affect the distances in line-of-sight direction, the radial selection function f(r) shown on the
left in Figure 3.2 will be affected by redshift-space positions on the galaxies. This is called Kaiser-Rocket
effect. Ideally the radial selection function should be evaluated in real-space. We address this problem
within argo and sample the radial selection function as described in Section 4.8. We therefore create
once the raw window function without any radial dependence from the angular mask at the beginning
of the Monte-Carlo chain. Then while sampling the velocities we can trivially multiply the newly found
radial selection function with the raw window iteratively. The outcome of this sampling is shown in
Figure 6.14.
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Figure 6.13: Upper panel: power spectrum of the scaled divergence of the peculiar velocity field θ, for
different smoothing scales (shown in units of h−1 Mpc ) for a typical realisation on a mesh of 5123 with resolution
dL = 6.25h−1 Mpc. Lower panel: ratio wr.t. the non-linear power spectrum from Heitmann et al. (2010). The
shaded region represents the theoretical fit for the velocity divergence bias bv = e−(k/a)b

by Hahn et al. (2015) with
the σ region being computed based on the largest uncertainty found with the parameters a and b. The wiggles
are due to the more pronounced baryon acoustic oscillations in the mean theoretical power spectrum than in the
particular realisation used in this plot.

It can be seen that the mean of the inferred radial selection functions coincides with f(r) in redshift-
space within the variances down to r = 1150 h−1 Mpc in consensus with the findings of Rodŕıguez-Torres
et al. (2016). Therefore, we see very little dependence whether the selection function is sampled or not.
However this may not represent the general case and might be exceptional to the CMASS survey. This
method can be still applied to any survey and may proof to be important for higher redshifts.

6.4.4 Remarks & Conclusion
I showed the velocity sampling method in argo for a light-cone galaxy catalogue and a mock light-cone.
This method relies entirely on linear theory with a dispersion term included, and is able to isotropize
the galaxy positions down to distances r ∼ 40h−1 Mpc . The relevant physical quantities are calculated
for 10-15 redshifts bins. Afterwards the galaxy positions are interpolated to these bins. After the
velocities are computed, the galaxy positions are corrected for the distortion due to peculiar velocities.
As linear theory tends to overestimate the coherent bulk flow, we apply a smoothing of the overdensity
field of which the velocities are calculated from. We estimate the optimal smoothing within our
reconstruction procedure from the power spectrum of the velocity divergence. Although we are using
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Figure 6.14: Radial selection function f(r) for the BOSS CMASS galaxy survey, normalized to unity before
(red solid line) and after RSDs corrections with argo (blue dashed line) with corresponding variance bands. The
mean is calculated by calculating f(r) for 6000 reconstructions.

only linear theory here, our method includes a couple of ingredients which can explain the improvement
we achieved compared to previous methods, such as being a self-consistent iterative method, yielding
linearized density fields, for which the pixel window function has been exactly solved (the counts in
cells, i.e., the nearest grid point). This is done as we reconstruct the density given the galaxy count
per cell exactly so that the reconstructed power spectrum is not suffering from shot noise effects. Also
the non-linear bias description with a power law is an important element yielding robust velocity
fields. Tidal field corrections could be included in the model. One could try to get improved velocity
reconstructions from the linear component rather than from the non-linear one, like it is done in
Falck et al. (2012); Kitaura & Angulo (2012). Nevertheless, there is a (nearly constant) bias from the
lognormal transformation present in the linear density field, which we intent to avoid to reduce the
number of parameters (see Neyrinck et al., 2009). The next aim of our reconstruction method is to
have less reliance on cosmological parameters. Therefore it is desirable to have a joint growth rate
sampling. A possible idea for this would be to use the two dimensional power spectrum or correlation
function and try to derive isotropy self-consistently. However degeneracies of growth rate, bias and the
mass fluctuation on the scale of 8 h−1 Mpc, σ8, impede this undertaking. An interesting outcome from
this analysis is that, before the redshift dependent bias was included we have not been able to receive
a quadrupole correlation function that was as much compatible with zero for the complete r range, as
we just showed. This demonstrates that without redshift dependent bias the density field is involving
an intrinsic gradient that induces an imbalance while reconstructing the velocity field.
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7 Summary and Outlook

The presented thesis is a contribution to study the physical properties of large-scale structure formation
within the ΛCDM cosmology model. The main aim of my work was to build a reliable algorithm that
is able to jointly reconstruct cosmic density and velocity fields.

Cosmological reconstructions offer a unique environment to combine observational data taken from
galaxy surveys and models that describe physical phenomena and interactions leading to structure
formation at large scales. On the other hand, within reconstructions the accurate statistical and
numerical modelling of large data sets and their interpretation in a probabilistic context is a growing
challenge in the era of precision cosmology today. In this thesis I addressed all these issues mentioned
above within the realized projects, putting emphasis to the reconstruction method argo. I recapitulated
the basics of the ΛCDM cosmology. Initially, I introduced the concept of a homogeneous and isotropic
universe which then was followed by analytic approaches to describe density and velocity perturbations.
Also, the most recent bias and structure formation models that we studied with our methods are
comprised. Subsequently, I provided a basic summary of both, N -body simulations with the associated
process of halo finding, and galaxy redshift surveys, especially the Sloan Digital Sky Survey. Further,
in a general introduction to Monte-Carlo methods I presented background knowledge necessary to
follow the functioning of our approach. I put strong emphasis on sampling methods, the historical
development of random walk solvers and then more sophisticated methods like the Hamiltonian Monte
Carlo method, to avoid random walks and route the direction of the sampled phase-space using
Hamiltonian equations of motion. Finally, I explain our reconstruction method argo in detail. This
algorithm relies on Bayesian inference that samples the density of dark matter perturbation and the
corresponding velocity field on the mesh grid given a set of tracers. argo intrinsically utilizes accounts
for observational masking effects, a complex biasing scheme that may or may not incorporate light-cone
effects such as growth functions, a prior model for structure formation, and also jointly infers the
velocity field.

In this work I focused on two main aspects, which are totally new to reconstruction methods, firstly
modelling a non-linear, stochastic galaxy bias; and secondly including redshift-space distortions within
the reconstruction process. I demonstrated that these ingredients are essential to obtain accurate
dark matter field reconstructions from galaxy redshift surveys by comparing them to state-of-the-art
procedures.
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The work comprised in this thesis led to three publications.

• The first project showed for the first time the importance of modelling the non-linear bias with
a power law relation, and the deviation from Poissonity to account for the discreteness of the
galaxy distribution. Also a threshold bias scheme has been applied in a reconstruction for the
first time. This work was based on a high resolution dark matter simulation.

• The second project presented the method to correct for redshift space distortions in a realistic
mock galaxy catalog of luminous red galaxies.

• The third and main project of my thesis joined all the knowledge gained in those previous works
to thoroughly verify the accuracy in the reconstruction method from galaxy redshift surveys
suffering additionally observational systematic uncertainties, such as, a radial selection function,
survey geometry, or cosmic evolution, and was applied to both accurate mock catalogs and
observational data. Moreover, I have shown that the method presented here yields accurate
reconstructions of the cosmic flows and the cosmic web on large scales.

A detailed summary of the conclusions extracted in these publications and improvements we achieved,
is presented below.

Non-Poisson likelihoods and stochastic bias

As more and more dense galaxy redshift surveys are about to scan the sky, a better understanding
and precise modelling of the power spectrum at a large range of scales is needed. However, the crude
assumption of galaxy counts per volume following a Poisson distribution fails especially at small scales.
We found that a reconstruction based upon a Poisson likelihood lacks power as compared to theoretical
predictions at already k = 0.2 hMpc−1 .

Therefore we developed a Bayesian reconstruction algorithm, able to produce unbiased samples of the
underlying dark matter field from non-linear stochastic biased tracers up to scales of k ∼ 1hMpc−1.
We divide the bias into a deterministic and a stochastic part. The deterministic bias is modelled
with an analytic relation linking galaxy and dark matter density, whereas the stochastic bias must
be modelled statistically. This is because stochastic bias alters the dispersion of the galaxy counts
per cell given an underlying dark matter density. Incomplete models only consider a linear relation of
galaxy and dark matter density, which is a very good approximation on largest scales, but fails on
smaller scales. We implemented a power law relation with additional threshold for the deterministic
bias, supported by the outcome of studies with simulations (most recently in Neyrinck et al., 2014)
and also theoretical predictions (Bardeen et al., 1986; Cen & Ostriker, 1992).

For the stochastic bias we focused on the negative binomial (NB) distribution function and discussed
its parameter to change the dispersion, showing that the disperion of the NB distribution is larger or
equal to the dispersion of a Poisson distribution.

We have also introduced an iterative sampling scheme to deal with strongly biased objects tracing
the high density peaks and thus are modelled with a threshold bias.

In particular, we have tested our algorithm with the Bolshoi N -body simulation, inferring the
underlying dark matter density field from a subsample of the corresponding halo catalogue. We
found that a Poisson likelihood yields reconstructions with power spectra deviating more than 10% at
k = 0.2hMpc−1. Our method shows that we can draw nearly unbiased ralizations of the underlying
dark matter density field (compatible within 1σ) from the posterior distribution up to scales of about
k ∼ 1hMpc−1 in terms of power-spectra and cell-to-cell correlations with the negative binomial
probability distribution function.
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We have furthermore analytically shown that our method is able to perform a multi-tracer analysis,
meaning that within our statistical approach we can account for different sets of tracers, e.g. galaxy
populations with different biases, combining them in the likelihood model of argo.

Bayesian redshift-space distortions correction

In this project we have presented a Bayesian technique to correct for both coherent and virialized
redshift-space distortions inherent in galaxy catalogues by estimating the distance to the individual
galaxies. We have demonstrated that this technique is accurate at least up to k <∼ 0.3 hMpc−1 in
the isotropization of the 2D power spectrum based on precise galaxy mock catalogues describing the
Constant Mass (CMASS) galaxy sample of the Baryon Oscillation Spectroscopic Survey (BOSS) of the
Sloan Digital Sky Survey (SDSS). However, the method is general enough to be precise down to far
smaller scales, as indicated by the recovered power spectra.

While traditional redshift-space distortions measurements focus on the growth rate, our approach is
complementary and more general with the advantage that it deals with non-linear structure formation,
non-linear and stochastic galaxy bias, yielding also, as a by-product the real-space positions of the
individual galaxies. This technique is promising for a broad number of applications, such as correcting
for photo-metric redshift-space distortions including the cosmic web information, or to make precise
environmental studies, as demonstrated in Nuza et al. (2014) with a similar forward method recovering
the corresponding primordial fluctuations. We have demonstrated in particular that it is a potentially
interesting technique for the estimation of the growth rate of the matter density by the isotropization
of the 2D power spectrum.

The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic
Survey: Phase-space Reconstructions of Cosmic Flows and Cosmic Web from Luminous
Red Galaxies

In this work, we have presented a Bayesian phase-space (density and velocity) reconstruction of the
cosmic large-scale matter density and velocity field from the SDSS-III BOSS DR12 CMASS galaxy
clustering catalogue. We have demonstrated that our models can yield accurate results on scales larger
than k ∼ 0.2h−1 Mpc.

In particular we have used a set of simple assumptions. Let us list them here:

• the statistical posterior distribution of galaxies is described by the lognormal-negative binomial
model,

• linear theory relates the peculiar velocity field to the density field,

• the volume is a fair sample, i.e. ensemble averages are equal to volume averages,

• cosmic evolution is modelled within linear theory with redshift dependent growth factors, growth
rates, and bias,

• a power law bias, based on the linear bias multiplied by a correction factor, which can be
derived from renormalized perturbation theory, relates the expected galaxy number counts to the
underlying density field.

This has permitted us to derive the three bias parameters, namely amplitude, dispersion and threshold,
consistently from the data, with a given smoothing scale and a particular ΛCDM cosmological parameter
set.
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CHAPTER 7. SUMMARY AND OUTLOOK

We have included a number of novel aspects in the argo code extending it to account for cosmic
evolution in the linear regime. These improvements are implemented within the statistical approach of
argo:

• the density fields with a lognormal-NB model,

• the mean fields of the lognormal renormalized priors for different completeness values,

• the number density normalization at different redshift bins,

• the real-space positions of galaxies from the reconstructed peculiar velocity fields,

• and the real-space radial selection function from the reconstructed real-space positions of galaxies
(accounting for the “Kaiser-rocket” effect).

Our results show that we can get unbiased dark matter power spectra up to k ∼ 0.2h Mpc−1, and
unbiased isotropic quadrupoles down to scales of about 20 h−1 Mpc, being far superior to redshift
space distortion corrections based on traditional BAO reconstruction techniques, which start to deviate
at scales below 60 h−1 Mpc.

As a test case study we also analyze deviations of Poissonity in the likelihood, showing that the
power in the monopole and the scatter in the quadrupoles increases towards smaller scales.

The agreement between the reconstructions with mocks and BOSS data is remarkable. In fact, the
identical algorithm with the same set-up and parameters were used for both mocks and observations.
This confirms that the cosmological parameters used in this study are already close to the true ones,
the systematics are well under control, and gives further support to ΛCDM at least on scales of about
0.01<∼ k <∼ 0.2hMpc−1. Our method to use the first eigenvalue of the displacement field in Eulerian
coordinated to reconstruct the filamentary large-scale structure is working remarkably well.

We also found that the reconstructed velocities have a statistical correlation coefficient compared
to the true velocities of each individual light-cone mock galaxy of r ∼ 0.7 including about 10% of
satellite galaxies with virial motions. The power spectra of the velocity divergence agree well with
theoretical predictions up to k ∼ 0.2hMpc−1. This is far superior to the results obtained from simple
linear reconstructions of the peculiar velocities directly applied on the smoothed galaxy field for which
statistical correlation coefficients of the order of 0.5 are obtained (Planck Collaboration et al., 2016).
Also, while linear theory tends to overestimate the peculiar velocity field, the chosen grid resolution
with the additional smoothing compensates for this yielding unbiased reconstructed peculiar motions.
We have seen that for a given resolution the additional Gaussian smoothing radius (and the cell
resolution) can be derived from the velocity divergence power spectrum to match the linear power
spectrum in the quasi-linear regime (0.1<∼ k <∼ 0.5hMpc−1). We demonstrated that the reconstructed
linear component reduces the skewness by two orders of magnitude with respect to the density directly
derived from smoothing the galaxy field on the same scale.

We have furthermore demonstrated how to compute the Zel’dovich density field from the lognormal
reconstructed density fields based on the tidal field tensor in a parameter free way. The recovered
filamentary network remarkably connects the discrete distribution of galaxies. The real space density
fields obtained in this work could be used to recover the initial conditions with techniques which rely
on knowing the dark matter field at the final stage (see e.g. Wang et al., 2014).

Summarizing, we found that Bayesian reconstruction methods are particularly suited to test bias
and structure formation models as the numerous reconstructions from one MCMC run are giving a
reliable estimate of the mean reconstruction and also a precise estimate of the variance within one run
chain. In this way, we tested the outcome of a data model over a large range of iteration steps.
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Future work based this thesis
My thesis work can be beneficial in two ways, firstly numerous projects may benefit from the outcome
of the reconstructions, and secondly promising extensions to argo can be implemented to broaden the
range of sampled quantities.

The reconstructed density and peculiar velocity fields obtained here can be used for a number of
studies. Among those, the cosmological effect of CMB photons scattered by electrons in the gas of
galaxy clustered (named after Sunyaev-Zel’dovich (SZ)) is promising to study with reconstructions.
It is an excellent tool for measuring the peculiar motions of clusters of galaxies and hence studying
the evolution of structure in the Universe. Commonly, the SZ is divided into the the thermal effect,
arising due to the electron temperature in the inter-cluster gas, and the kinetic effect, where electrons
scatter CMB photons due to their high bulk motion. A precise reconstruction of the large-scale velocity
fields therefore, are crucial to estimate the contribution of the energy of the CMB photons due to the
primodial last scattering surface or scattering with electrons at later times. A related analysis is the
integrated Sachs-Wolfe (ISW) effect, which is caused by the change of the temperature due to the
gravitational potential along its path to the observer. Therefore, cross correlating the potential of the
matter perturbations in the large-scale structure projected in line of sight, and the anisotropies of the
CMB is a promising project, for which our reconstructions are highly beneficial.

Baryon acoustic oscillations (BAO) measurements benefit from our reconstructions too, As we are
able to statistically infer the real-space positions of the analyzed galaxies. BAO scale being a standard
ruler is a key observation to constrain the Hubble parameter H(z), as we measure the angular diameter
distance dA(z) of the BAO without anisoptropies. This would be complementary to the standard BAO
analyses, such as done in Alam et al. (2016), in which the line-of-side and transverse angular diameter
distance is measured separately.

In addition, our presented method may be used for improved environmental studies, as web classifi-
cation methods can be directly applied on the dark matter density field.

Also, we seek to extend the usage of our reconstructions to study the influence of particle interactions
and properties to the formation of large-scale structures. A promising analysis with upcoming denser
and deeper surveys therefore is the probe of neutrino masses and their hierarchies (Lesgourgues et al.,
2004) or decaying dark matter sensitivity (Poulin et al., 2016). If these models are included to the
ΛCDM theory, we expect free streaming path lengths of particles to change the amplitude of matter
perturbations at small scales, due to interactions. These scales need to be precisely understood and
thus, the biasing relation we introduced to stochasticity is a vital ingredient for these scales.

The improvements I have shown for argo and the successful application to a large redshift survey
are vital in order to be prepared to apply argo to upcoming denser and deeper surveys. This will
allow us to probe ΛCDM cosmology on a broader range of scales with higher statistics, stressing the
importance of an improved biasing relation.
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A Additional
A.1 Inverse tests
Inverse tests are tools to analyze the outcome of our reconstructions if the target distribution is known.
To validate the various refinements within argo, we ran several tests and mock scenarios, which I will
list here.

• General window handling:
We use the snapshot BMD mock at z = 0.57 and dismiss half of the volume at the z-coordinate.
We account for the resulting empty volume by also weightingthe window function with w = 0.
Thus, we create an artificial mock catalogue however, with a perfectly matched window. This
analysis is ought to compare the prior lognormal field, augmented by argo in the empty area, and
the N -body density field constrained by the data, in order to test the influence of a renormalized
mean field µ and the godness of the prior assumtion.

• Light-cone without cosmic growth:
This test was performed in order to quantify the implementation of the growth factor in argo.
We used the snapshot mock catalogue and mimic the geometry of the BOSS survey with the
corresponding window function. The significant difference now is however, that all structures are
at the same redshift and thus evolved with the same cosmic growth. Comparing this reconstruction
with a light-cone sample from real data gives information about the correct growth model we
applied to argo.

• Lognormal-NB with light-cone geometry:
To check whether a single mean field µ is sufficient to describe the data and the prior dominated
regions, respectively, we create a lognormal random field of which we sample a random galaxy
mock catalogue with a NB distribution. We use the same geometry as in our light-cone galaxy
sample. In this test, we know that our lognormal-NB reconstruction model should be able to
perfectly reconstruct the initial power spectrum of the random field, as the mean field of the
random lognormal field is known by construction.

Figure A.1 shows the procedure to create a mock galaxy catalogue from a lognormal-NB field after
the window function has been applied. Firstly, the window is taken from the BOSS light-cone sample.
Then, we create a lognormal random field. Finally we apply the window to the lognormal random field
and sampling galaxies with a NB probability according to the window. In this way we know the exact
mean field µ by construction. We also use the BMD snapshot mock and mimic a light-cone mock,
however, without cosmic growth. The results can be seen in Figure A.2. We ran the reconstruction
with one µ for the whole box and the same NB likelihood and bias parameters. In red color the
reconstruction of the lognormal-NB mock is shown, yielding a smooth power spectrum very close to
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Figure A.1: Slices of the inverse tests. Left, the window function, central the lognormal random field, on the
right mock galaxies sampled with a NB probability from the lognormal field according to the window function.

the theoretical predictions of camb. The blue curve is the reconstruction of the BMD mock, which
shows a clear mismatch at large scales. This test proves that µ must be sampled according the the
completeness, as it will differ for the data dominated area and the predictions from lognormal random
field.
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Figure A.2: Power spectra of the different reconstruction tests after the artificial window function was applied,
showing the input power spectrum in green of the BMD mock galaxies of the full snapshot, in blue the reconstruction
of the BMD mock with window correction. In red color the reconstruction of the lognormal-NB mock is shown, also
with the artificial window function that was applied.
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A.2. POTENTIAL SCALE REDUCTION FACTOR

A.2 Potential Scale Reduction factor
We assume Nchains chains of length Nlength. The output of the chain is denoted as xc,s, with c ∈
{1, 2, ..., Nchains} and s ∈ {1, 2, ..., Nlength}. In our case x is the multidimensional ensemble {δi} of the
overdensity of cell i in our reconstructed volume. For simplicity we show the calculations for a one
dimensional observable x. Starting from an identical proposal distribution we calculate as follows

1. Calculate each chain’s mean value

x̄c = 1
Nlength

∑
s

xc,s .

2. Calculate each chain’s variance

σ2
c = 1

Nchains − 1
∑
s

(xc,s − x̄c)2 .

3. Calculate all chains’ mean

x̄ = 1
Nchains

∑
c

1
Nlength

∑
s

xc,s = 1
Nchains

∑
c

x̄c .

4. Calculate the weighted mean of each chain’s variance

B = Nlength
Nchains − 1

∑
c

(x̄c − x̄)2 .

5. Calculate the average variance within one chain

W = 1
Nchains

∑
c

σ2
c .

6. The potential scale reduction factor (R) then is defined as

R =
√
Nlength − 1
Nlength

+ Nchains + 1
NlengthNchains

B

W
.

If all chains converge to the same target distribution, we expect the variance within one chain to be
close to the variance between the Nchains chains, so that the R is close to one.

A.3 Single reconstructions sample of the Bolshoi
simulation

In Section 5.2.4 we showed the averaged slice plots for the ensemble mean only. In Figure A.3 two
different slices of a NB reconstruction of the Bolshoi simulation is shown. The structures look less
smooth as expected and are also more noisy compared to the average plots.
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Figure A.3: Slices of a single reconstruction sample with NB likelihood and a thickness of 10h−1 Mpc.

A.4 Importance of weights for BOSS correlation
function

In Figure 6.9 on the bottom left panel the monopole correlation function for the reconstructed real-space
positions of the BOSS DR12 galaxies were shown. As we mentioned, the data needs to be reweighted
to coup with various systematic effects. Here we show the huge impact if the weights are not applied.
This can be seen in Figure A.4. The correlation function at distanced of r ≥ 140 h−1 Mpc is rising,
which is contradicting the theoretical expectations. This is not the case if the weights are properly
applied. The weights also improve the scatter behaviour of the correlation function.
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A.4. IMPORTANCE OF WEIGHTS FOR BOSS CORRELATION FUNCTION
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Figure A.4: Monopole correlation function for BOSS galaxies without applying weights.
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G., Lupton R., Pauls G., Simcoe R., Hirsch R., Sanford D., Wang S., York D., Harris F., Annis J.,
Bartozek L., Boroski W., Bakken J., Haldeman M., Kent S., Holm S., Holmgren D., Petravick D.,
Prosapio A., Rechenmacher R., Doi M., Fukugita M., Shimasaku K., Okada N., Hull C., Siegmund

134

http://dx.doi.org/10.1080/01621459.1990.10476213
http://dx.doi.org/10.1126/science.246.4932.897
http://adsabs.harvard.edu/abs/1989Sci...246..897G
http://arxiv.org/abs/1001.2968
http://dx.doi.org/10.1109/tpami.1984.4767596
http://arxiv.org/abs/1501.01445
http://dx.doi.org/10.1088/0004-637X/806/1/113
http://adsabs.harvard.edu/abs/2015ApJ...806..113G
http://dx.doi.org/10.1086/164749
http://adsabs.harvard.edu/abs/1986ApJ...311....6G
http://arxiv.org/abs/0803.4343
http://dx.doi.org/10.1086/186762
http://adsabs.harvard.edu/abs/1993ApJ...405L..47G
http://arxiv.org/abs/0805.3695
http://dx.doi.org/10.1086/591670
http://adsabs.harvard.edu/abs/2008ApJ...683L..99G
http://arxiv.org/abs/1505.06337
http://dx.doi.org/10.1051/0004-6361/201526330
http://adsabs.harvard.edu/abs/2015A%26A...583A..61G


Bibliography

W., Mannery E., Blouke M., Heidtman D., Schneider D., Lucinio R., Brinkman J., 1998, The Sloan
Digital Sky Survey Photometric Camera, [arXiv:astro-ph/9809085], AJ, 116, 3040

Guo Q., White S., Li C., Boylan-Kolchin M., 2010, How do galaxies populate dark matter haloes?,
[arXiv:0909.4305], MNRAS, 404, 1111

Guth A. H., 1984, The new inflationary universe, Annals of the New York Academy of Sciences, 422, 1

Hahn O., Porciani C., Carollo C. M., Dekel A., 2007, Properties of dark matter haloes in clusters,
filaments, sheets and voids, [arXiv:astro-ph/0610280], MNRAS, 375, 489

Hahn O., Angulo R. E., Abel T., 2015, The properties of cosmic velocity fields, [arXiv:1404.2280],
MNRAS, 454, 3920

Hamilton A. J. S., 1998, Linear Redshift Distortions: a Review, in Hamilton D., ed., Astrophysics
and Space Science Library Vol. 231, The Evolving Universe. p. 185, [arXiv:astro-ph/9708102],
doi:10.1007/978-94-011-4960-0˙17

Hamilton A. J. S., Tegmark M., 2004, A scheme to deal accurately and efficiently with complex angular
masks in galaxy surveys, [arXiv:astro-ph/0306324], MNRAS, 349, 115

Hand L. N., Finch J. D., 1998, Analytical Mechanics. Cambridge University Press, doi:10.1119/1.19451

Harrison E. R., 1970, Fluctuations at the Threshold of Classical Cosmology, Phys. Rev. D, 1, 2726

Hastings W. K., 1970, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika, 57, 97

Heavens A., 2009, Statistical techniques in cosmology, preprint, [arXiv:0906.0664]

Heavens A., Alsing J., Jaffe A., Hoffmann T., Kiessling A., Wandelt B., 2016, Bayesian hierarchical
modelling of weak lensing - the golden goal, preprint, [arXiv:1602.05345]

Heitmann K., White M., Wagner C., Habib S., Higdon D., 2010, The Coyote Universe. I. Precision
Determination of the Nonlinear Matter Power Spectrum, [arXiv:0812.1052], ApJ, 715, 104

Hernández-Monteagudo C., Ma Y.-Z., Kitaura F. S., Wang W., Génova-Santos R., Maćıas-Pérez J.,
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Bersanelli M., Bielewicz P., Bock J. J., Bonaldi A., Bonavera L., Bond J. R., Borrill J., Bouchet F. R.,
Burigana C., Calabrese E., Cardoso J.-F., Catalano A., Chamballu A., Chiang H. C., Christensen
P. R., Clements D. L., Colombo L. P. L., Combet C., Crill B. P., Curto A., Cuttaia F., Danese L.,
Davies R. D., Davis R. J., de Bernardis P., de Zotti G., Delabrouille J., Dickinson C., Diego J. M.,
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Trivia
A flicker book can be appreciated in the lower right corner on each odd page, representing the walk
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