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Abstract in deutscher Sprache

In dieser Arbeit analysieren wir ein zufälliges und verrauschtes inverses Regressionsmodell im random

design. Wir konstruiueren aus gegebenen Daten eine Schätzung der unbekannten Funktion, von der wir

annehmen, dass sie in einem Hilbertraum mit reproduzierendem Kern liegt.

Ein erstes Hauptergebnis dieser Arbeit betrifft obere Schranken an die Konvergenzraten. Wir legen

sog. source conditions fest, definiert über geeignete Kugeln im Wertebereich von (reellen) Potenzen des

normierten Kern-Kovarianzoperators. Das führt zu einer Einschränkung der Klasse der Verteilungen in

einem statistischen Modell, in dem die spektrale Asymptotik des von der Randverteilung abhängigen

Kovarianzoperators eingeschränkt wird.

In diesem Kontext zeigen wir obere und entsprechende untere Schranken für die Konvergenzraten für

eine sehr allgemeine Klasse spektraler Regularisierungsmethoden und etablieren damit die sog. Minimax-

Optimalität dieser Raten. Da selbst bei optimalen Konvergenzraten Kernmethoden, angewandt auf große

Datenmengen, noch unbefriedigend viel Zeit verschlingen und hohen Speicherbedarf aufweisen, unter-

suchen wir einen Zugang zur Zeitersparnis und zur Reduktion des Speicherbedarfs detaillierter. Wir

studieren das sog. distributed learning und beweisen für unsere Klasse allgemeiner spektraler Regu-

larisierungen ein neues Resultat, allerdings immer noch unter der Annahme einer bekannten a priori

Regularität der Zielfunktion, ausgedrückt durch die Fixierung einer source condition. Das große Problem

bei der Behandlung realer Daten ist das der Adaptivität, d.h. die Angabe eines Verfahrens, das ohne eine

solche a priori Voraussetzung einen in einem gewissen Sinn optimalen Schätzer aus den Daten konstruiert.

Das behandeln wir vermöge einer Variante des balancing principle.
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Abstract

We analyse an inverse noisy regression model under random design with the aim of estimating the

unknown target function based on a given set of data, drawn according to some unknwon probability

distribution. Our estimators are all constructed by kernel methods, which depend on a Reproducing

Kernel Hilbert Space structure using spectral regularization methods.

A first main result establishes upper and lower bounds for the rate of convergence under a given source

condition assumption, restricting the class of admissible distributions. But since kernel methods scale

poorly when massive datasets are involved, we study one example for saving computation time and

memory requirements in more detail. We show that Parallelizing spectral algorithms also leads to minimax

optimal rates of convergence provided the number of machines is chosen appropriately.

We emphasize that so far all estimators depend on the assumed a-priori smoothness of the target function

and on the eigenvalue decay of the kernel covariance operator, which are in general unknown. To obtain

good purely data driven estimators constitutes the problem of adaptivity which we handle for the single

machine problem via a version of the Lepskii principle.
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Chapter 1

Introduction

1.1 Direct and Inverse Learning: Generalities

Let A be a known linear operator from a Hilbert space H1 to a linear space H2 of real-valued functions

on some input space X. In this thesis, we consider a random and noisy observation scheme of the form

Yi := g(Xi) + εi , g = Af , i = 1 , . . . , n , (1.1.1)

at i.i.d. data points X1, . . . , Xn , drawn according to a probability distribution ν on X, where εi are

independent centered noise variables. Here X is taken as a standard Borel space. For simplicity, we take

the output space Y as the set of real numbers, but this could be generalized to any separable Hilbert space.

More precisely, we assume that the observed data (Xi, Yi)1≤i≤n ∈ (X× Y)n are i.i.d. observations, with

E[Yi|Xi] = g(Xi) , so that the distribution of εi may depend on Xi , while satisfying E[εi|Xi] = 0 . This

is also commonly called a statistical learning setting, in the sense that the data (Xi, Yi) are generated by

some external random source and the learner aims to infer from the data some reconstruction f̂n of f ,

without having influence on the underlying sampling distribution ν. For this reason, we call the model

(1.1.1) an inverse statistical learning problem. The special case A = I is just non-parametric regression

under random design, which we also call the direct problem. Thus, introducing a general A gives a unified

approach to the direct and inverse problem.

In the statistical learning context, the relevant notion of convergence and associated reconstruction rates

to recover f concern the limit n → ∞ . More specifically, let f̂n be an estimator of f based on the

observed data (Xi, Yi)1≤i≤n. The usual notion of estimation error in the statistical learning context is

the averaged squared loss for the prediction of g(X) at a new independent sample point X:

EX∼ν [(g(X)−Af̂n(X))2] =
∥∥A(f − f̂n)

∥∥2

L2(ν)
. (1.1.2)

In this work, we are interested as well in the inverse reconstruction problem, that is, the reconstruction

error for f itself, i.e., ∥∥f − f̂n∥∥2

H1
.

Estimates in L2(ν)-norm are standard in the learning context, while estimates in H1-norm are standard
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for inverse problems, and our results will present convergence results for a family of norms interpolating

between these two. We emphasize that
∥∥A(f − f̂n)

∥∥2

L2(ν)
as well as

∥∥f − f̂n∥∥2

H1
are random variables,

depending on the observations. Thus the error rates above can be estimated either in expectation or in

probability.

In this thesis we will present convergence rates for these different criteria, as n tends to infinity, in

expectation for moments of all orders (in Cpapter 5, where we treat the problem of adaptivity via a

version of the balancing principle, we also consider estimates in probability). Our analysis always is in

the context of kernel methods: For the direct problem (i.e. A = 1), a reproducing kernel Hilbert space

(RKHS) structure is imposed on H1 by choosing a positive semi-definite kernel, while for the inverse

problem an RKHS structure is imposed on Im(A) by the operator A (assuming the evaluation functionals

f 7→ Af(x) being uniformly bounded).

As a general rule, sequences of estimators are produced throughout this thesis by general spectral reg-

ularization methods: The function g0(t) := t−1 is replaced, by use of an additional positive so called

spectral parameter λ, by a modified real function gλ(t), which in some sense converges to g0(t) as λ ↓ 0.

One then introduces the covariance operator

B : HK 3 g 7→
∫
g(x)K(x, .) dν(x) ∈ HK ,

which simply is the integral operator restricted to the RKHS HK and induced by the real symmetric

kernel K(x, y) and the sampling measure ν. Then, gλ(B) is self-adjoint, non-negative and trace class

and defines a spectral regularization operator of the ill-defined inverse B−1. Note that zero is necessarily

contained in the spectrum of the trace class operator B. One then chooses the regularization parameter

λ = λn depending on the sample size, and this induces our sequence of estimators.

The basic idea for choosing the regularization parameter is the following: One writes the overall error

as a sum of the approximation error (also called bias) and the sample error (also called variance), the

decomposition depending on λ. Predominance of the approximation error (large bias) gives underfitting,

predominance of the sample error (large variance) gives overfitting. The regularization parameter λn will

be chosen to make these conceptually very different types of error equal in magnitude, thus striking a

good compromise between under- and overfitting. Since this depends on the sample size, the procedure

will lead to convergence rates as a function of n. For more details on this well established procedure of

spectral regularization and a precise definition of the classes treated in this thesis we refer to Section 2.2.

1.1.1 Minimax error in classical nonparametrics

When upper bounds or convergence rates for a specific method are obtained, it is natural to ask to what

extent they can be considered optimal. The classical yardstick is the notion of minimax error over a set

M of candidates (hypotheses) for the data generating distribution ρ:

R(M, n) := inf
f̂

sup
ρ∈M

ED∼ρ⊗n
[
‖f̂ − fρ‖22,ν

]
, (1.1.3)

where the inf operation is over all estimators, and we added an index ρ to fρ to emphasize its dependence

on the data generating distribution.
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In the nonparametric statistics literature, it is commonly assumed that X is some compact set of Rd ,

the sampling distribution ν has an upper bounded density with respect to the Lebesgue measure and the

type of regularity considered for the target function is a Sobolev-type regularity, i.e., the target function

fρ has a squared-integrable r-th derivative. This is equivalent to saying that fρ belongs to a Sobolev

ellipsoid of radius R ,

fρ ∈
{
f :
∑
i≥1

i−
2r
d f2

i ≤ R2
}
, (1.1.4)

where fi denotes the coefficients of f in a (multidimensional) trigonometric function basis. Minimax rates

in such context are known to be of the order O(n−
2r

2r+d ) and can be attained for a variety of classical

procedures [83, 87].

1.1.2 Minimax error in a distribution-free context

In the statistical learning context, the above assumptions are unsatisfying. The first reason is that

learning using kernels is often applied to non-standard spaces, for instance graphs, text strings, or even

probability distributions (see, e.g., [22]). There is often no “canonical” notion of regularity of a function

on such spaces, nor a canonical reference measure which would take the role of the Lebesgue measure

in Rd . The second reason is that learning theory focuses on a distribution-free approach, i.e., avoiding

specific assumptions on the generating distribution. By contrast, it is a very strong assumption to posit

that the sampling distribution ν is dominated by some reference measure (be it Lebesgue or otherwise),

especially for non-standard spaces, or in Rd if the dimension d is large. In the latter case, the convergence

rate O(n−
2r

2r+d ) becomes very slow (the curse of high dimensionality), yet it is often noticed in practice

that many kernel-based methods perform well. The reason is that for high-dimensional data, more often

than not the sampling distribution ν is actually concentrated on some lower-dimensional structure, so

that the assumption of ν having bounded density in Rd is violated: convergence rates could then be

much faster. For these reasons, it has been proposed to consider regularity classes for the target function

having a form similar to (1.1.4), but reflecting implicitly the geometry corresponding to the choice of

the kernel and to the sampling distribution. More precisely, denote by Bν the (uncentered) covariance

operator of the kernel feature mapping Φ(X) and by (µν,i, ψν,i)i≥1 an eigendecomposition of Bν . For

r,R > 0 , introduce the class

Ων(r,R) :=
{
f ∈ H1 :

∑
i≥1

µrν,if
2
i ≤ R2

}
= BrνB(H1, R) , (1.1.5)

where B(H1, R) is the ball of radius R in H1 , and fi := 〈f, ψν,i〉 are the coefficients of f in the eigenbasis.

To be explicit, we here have indicated the dependence on the marginal distribution ν by a subscript; we

shall also allow ourselves the liberty to drop this subscript for reasons of brevity. Clearly, (1.1.5) has a

form similar to (1.1.4), but in a basis and scaling that reflects the properties of the distribution of Φ(X) .

If the target function fρ is well approximated in this basis in the sense that its coefficients decay fast

enough in comparison to the eigenvalues, it is considered as regular in this geometry (higher regularity

corresponds to higher values of r and/or lower values of R). This type of regularity class, also called a

source condition, has been considered in a statistical learning context by [23]. The authors in [24] have

established upper bounds for the performance of kernel ridge regression f̂λ over such classes. This has

been extended to other types of kernel regularization methods by [17, 20, 29]. These bounds rely on tools
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introduced in the seminal work of [94] and depend in particular on the notion of effective dimension 1 of

the data with respect to the regularization parameter λ , defined as

N(λ) := Tr
[
(Bν + λ)−1Bν

]
=
∑
i≥1

µν,i
µν,i + λ

. (1.1.6)

As before, the next question of importance is whether such upper bounds can be proved to be minimax

optimal over the classs Ων(r,R) , assuming the regularization parameter λ is tuned appropriately. This

question has been answered positively when a polynomial decay of the eigenvalues, µv,i � i−b , is assumed

(� stands for upper and lower bounded up to a constant). In this case N(λ) can be evaluated, and for an

appropriate choice of λ , the upper bound can be matched by a corresponding lower bound (see Chapter

2).

1.2 Overview of the results of this thesis and comparison to

related work

In this section we present a short, informal overview of the results of this thesis. Chapter 2 contains

generalities of relevance throughout the entire thesis as well as first results on minimax optimality in

the regular case. We start to show that, under appropriate assumptions, we can endow Im(A) with an

appropriate reproducing kernel Hilbert space (RKHS) structure HK with reproducing kernel K, such

that A is a partial isometry from H1 to HK . Through this partial isometry, the initial problem (1.1.1)

can be formally reduced to the problem of estimating the function g ∈ HK by some ĝ ; control of the error

(g − ĝ) in L2(ν)-norm corresponds to the direct (prediction) problem, while control of this difference in

HK-norm is equivalent to the inverse (reconstruction) problem. In particular, the kernel K completely

encapsulates the information about the operator A . This equivalence also allows a direct comparison to

previous existing results for convergence rates of statistical learning using an RKHS formalism (see the

next chapter). Letting B be the covariance operator introduced above, the rates of convergence presented

in this work will be governed by a source condition assumption on f of the form ‖B−rf‖ ≤ R for some

constants r,R > 0 as well as by the ill-posedness of the problem as measured by an assumed decay of

the eigenvalues of B. At first, in the so called regular case of our Chapter 2, we will assume that this is

precisely given by a power law specified by an exponent b > 1 . Our main upper bound result establishes

that for a broad class of estimators defined via spectral regularization methods, for s ∈ [0, 1
2 ] one has in

the sense of p-th moment expectation that

‖Bs(g − ĝλn)‖HK
. R

(
σ2

R2n

) (r+s)
2r+1+1/b

,

1N(λ) describes the capacity of the hypothesis space or some kind of effective volume, somewhat related to the phase
space volume in the classical Weyl estimates for the number of eigenvalues of an elliptic operator P (see e.g. [45] and [31]),
the covariance Bν being analog to the inverse P−1. In the special case considered in our Chapter 3 we shall amplify by
relating the effective dimension to a counting function for eigenvalues (by a rough estimate, see Lemma 3.4.2 for an upper
and Lemma 3.4.3 for a lower bound). The term effective dimension then simply refers (roughly) to the dimension of the
associated eigenspace, which coincides with the number of eigenvalues counted with multiplicity. In general, however, even
for finite rank operators or matrices, the rank of the operator might be larger than the effective dimension, since very
small eigenvalues different from zero contribute to the rank with weight 1, but with smaller weight, depending on λ, to the
effective dimension.
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for an appropriate choice of the regularization parameter λn . (Note that s = 0 corresponds to the

reconstruction error, and s = 1
2 to the prediction error, i.e., L2(ν) norm.) Here, σ2 denotes noise variance

(and we remark that classical Bernstein moment conditions are assumed to hold for the noise). The

symbol . means that the inequality holds up to a multiplicative constant that can depend on various

parameters entering in the assumptions of the result, but not on n, σ, nor R . An important assumption

is that the inequality q ≥ r + s should hold, where q is the qualification of the regularization method, a

quantity defined in the classical theory of inverse problems (see Section 2.2.6 for a precise definition) .

This result is complemented by a minimax lower bound which matches the above rate not only in the

exponent in n , but also in the precise behavior of the multiplicative constant as a function of R and

the noise variance σ2 . The obtained lower bounds come in two flavors, which we call weak and strong

asymptotic lower bounds, respectively (see Section 2.3).

Concerning related work, we remark that the analysis of inverse problems, discretized via (noisy) obser-

vations at a finite number of points, has a long history, which we will not attempt to cover in detail here.

The introduction of reproducing kernel Hilbert space-based methods was a crucial step forward in the end

of the 1970s. Early references have focused, mostly, on spline methods on [0, 1]d ; on observation point

designs either deterministic regular, or random with a sampling probability comparable to Lebesgue; and

on assumed regularity of the target function in terms of usual differentiability properties. We refer to

[88] and references therein for a general overview. An early reference establishing convergence rates in

a random design setting for (possibly nonlinear) inverse problems in a setup similar to those delineated

above and a Tikhonov-type regularization method is [69]. Analysis of the convergence of fairly general

regularization schemes for statistical inverse problems under a Hilbertian noise model was established in

[10]. While these authors make the argument that this model can cover random sampling, to compute

the regularized estimator they propose it must be assumed that the sampling distribution ν is known to

the user. In this thesis we consider the more challenging setting where this distribution is unknown (and

investigate if one can attain the same convergence rates).

We henceforth focus our attention on the more recent thread of literature concerning the statistical

learning setting, whose results are more directly comparable to ours. In this setting, the emphasis is on

general input spaces, and “distribution-free” results, which is to say, random sampling whose distribution

ν is unknown, quite arbitrary and out of the control of the user. The use of reproducing kernel methods

has enjoyed a wide popularity in this context since the 1990s, mainly for the direct learning problem.

The connections between (the direct problem of) statistical learning using reproducing kernel methods,

and inverse problem methodology, were first noted and studied in [26, 27, 38]. In particular, in [38] it was

proposed to use general form regularization methods from the inverse problem literature for kernel-based

statistical learning. There is a vast recent literature relating learning to regularization techniques for

inverse problems (see [66], [89], [40] to mention just a few), confirming the strong conceptual analogy

of certain learning algorithms with regularization algorithms. For example, Tikhonov regularization is

known as regularized least-squares algorithm or ridge regression, while Landweber iteration is related to

L2-boosting or gradient descent, see, e.g. [93] and [18].

Concerning the history of upper rates of convergence in an RKHS setting, covering number techniques

were used in [23] to obtain (non-asymptotic) upper rates. In [27], [78], [79] these techniques were replaced

by estimates on integral operators via concentration inequalities, and this is the path we follow in this

thesis. For a more detailed presentation we refer to Chapter 2. In some sense, the crucial step of all these
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results is in effectively computing the effective dimension introduced above, assuming power law decay of

the eigenvalues. The first comprehensive result in this direction was established by [24] ; our paper [17]

gives a sharp estimate of the convergence rate in this case including the dependence on the parameters

R and noise variance σ , namely O
(
R2
(
σ2

R2n

) r+s

2r+1+1
b

)
. Our presentation in Chapter 2 essentially follows

that paper. But, while the assumption of polynomially decaying eigenvalues yields explicit minimax rates

of convergence and ensures that kernel methods can achieve those optimal rates, it is unsatisfying from a

distribution-free point of view. Remember: The stucture of the eigenvalues reflects the covariance of the

feature mapping Φ(X); for complex data, there is no strong reason to expect that their decay should be

strictly polynomial.

As a first step in treating decay behavior of eigenvalues as general as possible we present some results

beyond the regular case in Chapter 3. We show that kernel methods are also able of achieving minimax

optimal rates in this more general case, for target function classes of the form (1.1.5).

We remark that, while direct and inverse kernel-based methods for solving non-parametric (direct or

inverse) regression problems are attractive because they attain asymptotically minimax optimal rates of

convergence, these methods scale poorly when massive datasets are involved. Large training sets give

rise to large computational and storage costs. For example, computing a kernel ridge regression estimate

needs inversion of a n× n- matrix, with n the sample size. This requires O(n3) time and O(n2) memory,

which becomes prohibitive for large sample sizes. For this reason, various methods have been developed

for saving computation time and memory requirements. Among them are e.g. low-rank approximation

of the kernel matrix, early-stopping and distributed learning . We shall give a quick overview.

During the last years, a huge amount of research effort was devoted to finding low-rank approximations

of the kernel matrix, both from an algorithmic and an inferential perspective (providing statistical guar-

antees). Important examples include Cholesky decomposition [3], Nyström sampling, see e.g. [90] , [2] ,

[77] , (randomized) sketches [92] , [1] , sparse greedy approximations [80] and others. The common fea-

ture of all these methods is to replace the theoretically optimal approximation obtained by a spectral

decomposition (which requires time at least O(n2)) by a less ambitious suitable low rank approximation

of the kernel matrix via column sampling, reducing run time to O(np2) where p denotes the rank of the

approximation. Clearly, the rules of the game are to choose p as small as possible while maintaining min-

imax optimality of convergence rates (hopefully in L2(ν)− norm and RKHS− norm) and to explicitely

determine this p as a function of the sample size n (hopefully for a general class of spectral regularization

methods), keeping track of the source condition and the rate of eigenvalue decay, entering the estimate via

the effective dimension. This is usually done by solving computational-statistical trade-offs. Compared

to that obviously very desirable standard there are yet only very partial results in the literature: Only

KRR has been analyzed, excluding higher smoothness of the regression function (the case r > 1 in the

source condition).

An alternative approach for reducing time complexity lies in early stopping of iterative regularization

algorithms, e.g. gradient descent, see [93], [72] and conjugate gradient regression, see [12] , [13]. The

number of iterations serves as regularization parameter. Optimal stopping is determined by some pa-

rameter selection rule, e.g. by solving a bias-variance trade-off (gradient descent) or by the discrepancy

principle (conjugate gradient regression). Early stopping both reduces run time and provides regulariza-

tion preventing overfitting. Similar to the results for low rank approximation, the early stopping index

turns out to depend on a priori assumptions, reflected in the source condition and effective dimension.

Time complexity is reduced to O(Tn2) where T is the stopping index. Since early stopping still suffers
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from high memory requirements, there is further research devoted to overcoming this issue by combining

early stopping with subsampling methods, see e.g. [19].

Another standard tool for saving computation time and memory requirements is distributed learning

(DL), and here this thesis will make a new contribution. In Chapter 4 we shall study the DL approach

for the aforementioned statistical learning problem

Yi := Af(Xj) + εi , j = 1 , . . . , n , (1.2.1)

at random i.i.d. data points X1, . . . , Xn drawn according to a probability distribution ν on X, where εj are

independent centered noise variables. We uniformly partition the given data setD = {(X1, Y1), ..., (Xn, Yn)} ⊂
(X×R)n into m disjoint equal-size subsets D1, ..., Dm. On each subset Dj , we compute a local estimator

f̂λDj , using a spectral regularization method (with qualification q ≥ r + s). The final estimator for the

target function fρ is obtained by simple averaging: f̄λD := 1
m

∑m
j=1 f̂

λ
Dj

.

Our aim is to extend our results from the non-distributed setting (m = 1) to distributed learning and to

provide conditions for retaining minimax optimal rates. As before, our rates of convergence are governed

by a source condition assumption on fρ of the form ||B−rfρ||H1 ≤ R for some constants r,R > 0 as

well as by some capacity assumption N(λ) . λ−
1
b , where in our case the rate b > 1 is induced from the

assumed eigenvalue decay. We show, that for s ∈ [0, 1
2 ] in the sense of p-th moment expectation

∥∥∥Bs(f − f̄λnD )
∥∥∥
H1

. R

(
σ2

R2n

) b(r+s)
2br+b+1

. (1.2.2)

Basic problems are the choice of the regularization parameter on the subsamples and, most importantly,

the proper choice of m, since it is well known that choosing m too large gives a suboptimal convergence

rate in the limit n → ∞, see, e.g., [91]. We show, that by choosing λn depending on the global sample

size n, the number of subsample sets is allowed to grow at most polynomially with n, namely

m ≤ nα , α =
2bmin(r, 1)

2br + b+ 1
.

Our approach to this problem is classical. Using a bias-variance decomposition and choosing the regular-

ization parameter according to the total sample size n yields undersmoothing on each of the m individual

samples and causes an inflation of variance, but m-fold averaging reduces the variance sufficiently to get

minimax optimality. The bias estimate is then straightforward.

For the hard part we write the variance as a sum of independent random variables, allowing to successfully

apply Rosenthal’s inequality (in the Hilbert space case), see [70]. Comparable results mostly focus on

KRR, corresponding to Tikhonov regularization. In [95] the authors derive minimax-optimal rates in

3 cases (finite rank kernels, sub - Gaussian decay of eigenvalues of the kernel and polynomial decay),

provided m satisfies a certain upper bound, depending on the rate of decay of the eigenvalues and an

additional crucial upper bound on the eigenfunctions φj of the integral operator associated to the kernel

K (see Section 4.4). Proving such a condition often turns out to be a great hurdle. In fact, it is not

understood for which kernels (and marginals ν) such an eigenfunction assumption is satisfied. It is

therefore of great interest to investigate if and how m can be allowed to go to infinity as a function of

n without imposing any conditions on the eigenfunctions of the kernel. Results in this direction have
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been obtained in the recent paper [58], for KRR, which is a great improvement on the worst rate of

[95]. The authors follow [95] in giving estimates only in L2(ν)− norm and dub their approach a second

order decomposition, which uses concentration inequalities and certain resolvent identities adapted to

KRR. These results are extended (independently from our work) in [97] to general spectral regularization

methods, but with a proof yet unpublished at the time of submission of this thesis. Our results cover

the whole range of interpolation norms between RKHS norm and prediction error. Restricted to L2(ν)−
norm, they match those given in [97] and [58], but are more precise concerning the scaling of the noise

variance σ2 and the radius R > 0 from the source condition.

This basically sums up the contributions of this thesis to minimax optimality. Our final result concerns

adaptivity via a version of the balancing principle. Here, our approach and our results are somewhat

different from the bulk of this thesis (e.g. we only derive estimates in large probability and we do not

push our estimates, as elsewhere, to estimates in expectation), and our results are possibly not yet in

final form. Clearly, the problem of adaptivity is both of great theoretical and practical interest: On one

side, an appropriate choice of the regularization parameter is essential for spectral regularization to work

well, while on the other side in any statistical problem any a priori choice of the regularization parameter

is bad since it should dependent on the unknown source conditions describing the given set of data.

There is a number of (sometimes very different) approaches to address this problem in the context

of learning, some of them depending on data-splitting (e.g. cross-validation). An attractive approach

avoiding data-splitting is the balancing principle which originated in the seminal paper of Lepskii [56] and

has been elaborated in quite a number of papers, see, e.g., [56], [57], [41], [8], [63] and references therein.

In the context of Learning Theory the first comprehensive version is the paper [25]. We basically follow

this approach, adapting it to the case of fast (minimax optimal) rates studied in the rest of this thesis.

As a technical complication, this leads to a conceptually important loss of uniformity (with respect to the

regularization parameter) in the constants appearing in the basic probabilistic error estimates needed for

balancing and finally results in an additional log log n term describing the data-driven estimator obtained

from balancing, somewhat spoiling the minimax optimal convergence rate. For slow rates, the slightly

different approach of [25] - based on an additive instead of a multiplicative error decomposition - gives

uniformity which our approach does not achieve, even if specialized to the case of slow rates. For more

details we refer to our discussion in Section 5.5.

Crucial for our approach is a two-sided estimate of the effective dimension in terms of its empirical

approximation. This in particular allows to control the spectral structure of the covariance operator

through the given input data. A further very convenient result is the fact that balancing in L2(ν)− norm

(which is easiest) automatically gives good balancing in all other (stronger) interpolation norms. An

analogous result is open for other approaches to data dependent choices of the regularization parameter,

e.g. for hold-out (see our Discussion in Section 2.4). We think that all of our contributions to this subject

are important and valid steps in a future and possibly more comprehensive solution of this important

problem, but at present it does not yet seem to be in final form.

The outline of the thesis is as follows: Chapter 2 covers the general introduction to the class of models

considered in this thesis and gives first results on minimax-optimality for the single machine problem in

the regular case. Chapter 3 presents some results beyond the regular case, relaxing the conditions on

the asymptotic behaviour of the eigenvalues of the covariance operator, but basically keeping the same

notion of source conditions. Chapter 4 covers the case of distributed learning, while Chapter 5 contains a
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discussion of adaptivity via the balancing principle. In Chapter 6 we present some thoughts about future

research, based on this thesis. The Appendix A collects (known) background information which is useful

for our discussion in Chapters 2 -5. It is put in the Appendix in order to avoid disturbing the flow of our

arguments, but, for the sake of the reader, we do not simply refer to the original literature but present

things in a form adapted to our line of argument in the main text. In Appendix B we add a first result

on a combination of a localized approach with subsampling methods.
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Chapter 2

First results on the Direct and

Inverse Learning Problem: Regular

case

2.1 Introduction and review of related work

As mentioned in Chapter 1, the general introduction of this thesis, we consider a random and noisy

observation scheme of the form

Yi := g(Xi) + εi , g = Af , i = 1 , . . . , n , (2.1.1)

at i.i.d. data points X1, . . . , Xn drawn according to a probability distribution ν on X, where εi are

independent centered noise variables. Here A is a known linear operator from a Hilbert space H1 to a

linear space H2 and we start with the assumption that the map (f, x) 7→ (Af)(x) is continuous in f and

measurable in x , which implies that A can be seen as a Carleman operator from H1 to L2(ν) . This

point of view goes back to [26], where this more general setting of the random discretization of an inverse

problem defined by a Carleman operator has been considered.

Moreover, we observe that Im(A) can be endowed with a RKHS structure HK such that A is a partial

isometry from H1 onto HK . While we do not expect this result to be considered as a true novelty, it

was not explicitly mentioned in [26] and in our opinion it helps to clarify the equivalence between inverse

statistical learning and direct learning with reproducing kernels. In particular, it makes possible a direct

comparison between our results and previous results for the direct (kernel) learning problem.

We shall now briefly review previous results which are directly comparable to ours: Smale and Zhou [79],

Bauer et al. [4], Yao et al. [93], Caponnetto and De Vito [24] and Caponnetto [20]. For convenience,

we try to condense the most essential points in Table 2.1. Compared with our more general setting, all

of these previous references only consider the special case A = I, but assume from the onset that H1

is a RKHS with given kernel. Thus, in the first column of Table 2.1, A is the identity and g = f , and
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∥∥∥A(f̂n − f)
∥∥∥
L2(ν)

∥∥∥f̂n − f∥∥∥
HK

Assumptions Method
(q: qualification)

Smale-Zhou [79]
(

1√
n

) 2r+1
2r+2

(
1√
n

) r
r+1

r ≤ 1
2
(= q − 1

2
) Tikhonov

Bauer et al. [4]
(

1√
n

) 2r+1
2r+2

(
1√
n

) r
r+1

r ≤ q − 1
2

General

Yao et al. [93]
(

1√
n

) 2r+1
2r+3

(
1√
n

) r

r+5
2 (q =∞) Landweber

iteration

Caponnetto-De Vito [24]
(

1√
n

) (2r+1)

2r+1+1
b N/A r ≤ 1

2
(= q − 1

2
) Tikhonov

Caponnetto [20]
(

1√
n

) (2r+1)

2r+1+1
b N/A r ≤ q − 1

2
General

Caponnetto-Yao [21] +unlabeled data
if 2r + 1

b
< 1

This thesis
(

1√
n

) (2r+1)

2r+1+1
b

(
1√
n

) 2r

2r+1+1
b r ≤ q − 1

2
General

Table 2.1: Comparison to upper rates available from earlier literature (for their applicability to the
inverse learning setting considered in the present paper, see Section 2.2.5).

in the second column H1 = HK . The more complicated form given in Table 2.1 is the reinterpretation

in our setting (see Section 2.2). The first three references ([79], [4], [93]) do not analyze lower bounds

and their upper bounds do not take into account the behavior of the eigenvalues of the integral operator

L corresponding to the assumed RKHS structure. But all three derive estimates on the error both in

L2(ν)-norm and in RKHS-norm. Only [4] considers a general class of spectral regularization methods.

The last two papers [24] and [20] obtain fast upper rates (depending on the eigenvalues of L) which are

minimax optimal. The estimates, however, are only given in L2(ν)-norm. Furthermore, only [20] goes

beyond Tikhonov regularization to handle a general class of spectral regularization methods. A closer

look at Table 2.1 reveals that in treating general spectral regularization methods, the results of [20]

require for certain parameter configurations (r < 1/2−1/2b) the availability of additional unlabeled data

from the sampling distribution ν . This appears somewhat suboptimal, since this does not reproduce the

previously obtained result for Tikhonov in [24] which does not require unlabeled data.

After completion of this work, we became aware of the independent work of Dicker et al. [29], which

has overlap with our results since they consider general regularization methods for regression using a

reproducing kernel. We briefly compare the present contribution to that work: Because we are motivated

by an inverse problem point of view, we derive convergence results for the reconstruction error (RKHS

H1− norm), while [29] only considers prediction error estimates (L2(ν)− norm). We also establish the

optimal dependence of the convergence rate in the important secondary parameters σ2 (noise variance)

and R (source condition or Sobolev radius). The authors in [29] give an upper bound depending explicitly

on those parameters, but with suboptimal dependence. In this sense even for the L2(ν)− norm alone
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our contribution brings something novel, including a matching minimax lower bound for all considered

norms with the correct dependence in σ2 and R . Finally, our estimates hold for normalized moments of

any order of the considered norms, and we also establish exponential deviation bounds, while [29] only

considers expected squared L2(ν)− norm (though under hypotheses weaker as ours concerning the noise).

We conclude this review by mentioning the recent work [60], which also concerns inverse statistical learning

(see also [61]), albeit in a quite different setting. In that work, the main focus is on classification (Y only

can take finitely many values or “classes”), and the inverse problem is that the sampling distribution for

X is transformed via a linear operator A. The method analyzed there is empirical risk minimization using

a modified loss which implicitly includes an estimation of the original class-conditional distributions from

the transformed ones. In the present paper, we consider an (inverse) regression setting with a continuous

output variable, the nature of the inverse problem is different since the transformation is applied to the

regression function, and we also use a different methodological approach.

The main question addressed in this chapter is that of minimax optimal rates of convergence as n grows

to infinity - first under the assumption of strictly polynomial eigenvalue decay of the covariance operator

B̄ = B̄ν which is adjoint to the integral operator L defining the RKHS structure, see Section 2.2.

Our contribution is to improve on and extend the existing results presented above, aiming to present a

complete picture. We consider a unified approach which allows to simultaneously treat the direct and

the inverse learning problem, derive upper bounds (non-asymptotic and asymptotic) as well as lower

bounds, both for the L2(ν)− and for the H1− norm (as well as intermediate norms) for a general class

of regularization methods, without requiring additional unlabeled data. In this generality, this is new. In

addition, we present a refined analysis of (both strong and weak) minimax optimal rates also investigating

their optimal dependence on radius parameter R of the source condition and on the variance σ2 of the

noise (our lower bounds come in slightly different strong and weak versions leading to the natural notion

of weak and strong minimax optimality). To the best of our knowledge, this has never been done before.

We emphasize that all derivations of fast rates rely on tools introduced in the seminal work of [94], and

depend in particular on the notion of effective dimension of the data with respect to the regularization

parameter λ , defined as

N(λ) := Tr
[
(Bν + λ)−1Bν

]
=
∑
i≥1

µν,i
µν,i + λ

. (2.1.2)

Using this tool is essential for obtaining the finer results (“fast rates” taking into account the spectral

structure of L) of this chapter since it determines the optimal choice of the regularization parameter. This

idea of [24] and [20] is fundamental for our approach, which extends and refines these previous results.

Furthermore, we recall from [24] that the effective dimension N(λ) seems to be just the right parameter to

establish an important connection between the operator theoretic and spectral methods and the results

obtained via entropy methods (see [28], [86]) since N(λ) encodes via L crucial properties of the marginal

distribution ν. However, this connection is not yet fully worked out and further progress in this direction

is a challenge for future research aimed at establishing a unified picture.

The importance of the notion of effective dimension will continue to unfold throughout this thesis. In

this chapter we will use it in an essential way in the proof of our upper rates: Using precisely poly-

nomial eigenvalue decay (or, perhaps more accurately, restricting to the associated classes of sampling

distributions introduced in (2.2.6) and (2.2.7)), we shall accurately compute the effective dimension and
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thereby establish our (fast) upper rates (for the regular case). In subsequent chapters we shall control

the effective dimension in some more general cases. This is a basic philosophy to improve on the results

of this chapter. For the sake of completeness, we also mention at this point that this approach could

be somewhat formalized: In one step, one derives minimax optimal rates under implicit assumptions on

the effective dimension only (the problem of obtaining lower bounds in this setting is not yet completely

solved), and in a second step one verifies these estimates on the effective dimension for certain model

classes, defined by specific source conditions and classes of marginals (corresponding e.g. to certain types

of eigenvalue decay of the covariance operator). In spirit, this is very much what is done in this thesis,

but the approach is not yet completely formalized (at least partially due to the above mentioned problem

for lower bounds in this setting).

The outline of the rest of the Chapter is as follows: In Section 2.2, we fix notation and describe our

setting in more detail. In particular, we adopt the theory of Carleman operators from the direct problem

to our more general setting, including the inverse learning problem. We describe the source conditions,

the assumptions on the noise and prior classes, and finally the general class of spectral regularization

methods. Granted these preliminaries, we then present in Section 2.3 our main results (Theorem 2.3.4,

Theorem 2.3.5 and Corollary 2.3.6). In Section 2.4, we present a concluding discussion on some further

aspects of the results. Section 2.5 contains the proofs of the upper bounds, Section 2.6 is devoted to the

proof of lower bounds. In the Appendix we establish the concentration inequalities and a perturbation

result needed in Section 2.5 and give some supplementary technical lemmata needed in Section 2.6.

2.2 Notation and Preliminaries

In this section, we specify the mathematical setting and assumptions for the model (2.1.1) and reduce it

to an equivalent model.

2.2.1 Inverse Problems induced by Carleman Operators

We assume that the input space X is a standard Borel space endowed with a probability measure ν, and

the output space Y is equal to R. Let A : H1 −→ H2 be a linear operator, where H1 is an infinite-

dimensional real separable Hilbert space and H2 some vector space of functions g : X −→ R. We do

not assume any specific structure on H2 for now. However, as will become clear shortly, the image

Im(A) ⊂ H2 will be endowed with a natural Hilbert space structure as a consequence of the following

key assumption:

Assumption 2.2.1. The evaluation functionals at a given point x ∈ X :

Sx : H1 −→ R

f 7−→ (Sx)(f) := (Af)(x)

are uniformly (w.r.t. x ∈ X) bounded, i.e., there exists a constant κ <∞ such that for any x ∈ X

|Sx(f)| ≤ κ ‖f‖H1
.
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For all x, the fact that Sx is continuous implies, by Riesz’s representation theorem, the existence of an

element Fx ∈ H1 such that

(Af)(x) = 〈f, Fx〉H1

with

‖Fx‖H1
= ‖Sx‖ ≤ κ ,

for any x ∈ X. Define the map

K : X× X −→ R

(x1, x2) 7−→ K(x1, x2) := 〈Fx1
, Fx2
〉H1

,

which is by construction a positive semidefinite (p.s.d.) kernel over X associated with the so-called feature

space H1, and the feature map F· : x ∈ X 7→ Fx ∈ H1. Observe that for any x ∈ X, we have the bound

K(x, x) = ‖Fx‖2H1
≤ κ2 . A fundamental result (see [81], Theorem 4.21) is that to every p.s.d. kernel can

be associated a unique reproducing kernel Hilbert space (RKHS). We reproduce this result here, adapted

to the considered context:

Proposition 2.2.2. (Unique RKHS associated with a p.s.d kernel) The real-valued function space

HK := {g : X −→ R | ∃ f ∈ H1 with g(x) = 〈f, Fx〉H1
= (Af)(x) ∀x ∈ X}

= Im(A) ⊂ H2,

equipped with the norm

‖g‖HK
:= inf

{
‖f‖H1

: f ∈ H1 s.t. ∀x ∈ X : g(x) = 〈f, Fx〉H1
= (Af)(x)

}
= inf
f∈A−1({g})

‖f‖H1

is the unique RKHS for which K is a reproducing kernel. Moreover, the operator A is a partial isometry

from H1 to HK (i.e., an isometry on the orthogonal of its kernel), and

HK = Span{K(x, .), x ∈ X} .

From now on, we can therefore forget about the space H2 and consider A as an operator from H1 onto

HK = Im(A). As a consequence of A being a partial isometry onto HK , note that this RKHS is separable,

since we have assumed that H1 is. Additionally, we assume

Assumption 2.2.3. For any f ∈ H1, the map x 7→ (Af)(x) = 〈f, Fx〉H1
is measurable.

Equivalently, it is assumed that all functions g ∈ HK are measurable. Furthermore, Assumption 2.2.1

implies that ‖Af‖∞ ≤ κ ‖f‖H1
for all f ∈ H1, so that all functions in HK are bounded in supremum

norm. Therefore, HK is a subset of L2(X, ν) ; let ι denote the associated canonical injection map HK ↪→
L2(X, ν) .

Together, Assumptions 2.2.3 and 2.2.1 thus imply that the map F· : X −→ H1 is a bounded Carleman
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map [44]. We define the associated Carleman operator, as

Sν : H1 −→ L2(X, ν)

f 7−→ Sνf := ι(Af) .

The operator Sν is bounded and satisfies ‖Sν‖ ≤ κ , since

‖Sνf‖2L2(ν) =

∫
X

|(Af)(x)|2 ν(dx) =

∫
X

|〈f, Fx〉H1
|2 ν(dx) ≤ κ2 ‖f‖2H1

.

To illustrate the general setting more concretely, we give as an example a classical family of integral

operators satisfying the above assumption, where the kernel K is completely explicit.

Example 2.2.4 (Integral operators). Let (Z,Z, µ) be a measured space. Assume H1 = L2(Z, µ) and the

operator we consider is given by

[Af ](x) =

∫
Z

ϕ(x, z)f(z) dµ(z) , x ∈ X ,

where ϕ is a known measurable function X× Z→ R. Then we have

[Af ](x) ≤ ‖f‖2,µ ‖ϕ(x, .)‖2,µ ,

so that Assumption 2.2.1 is satisfied iff supx∈X ‖ϕ(x, .)‖2,µ <∞. In this case, since [Af ](x) = 〈f, Fx〉H1

holds for any f ∈ H1, it follows Fx = ϕ(x, .) and

K(x, x′) = 〈Fx, Fx′〉H1 =

∫
Z

ϕ(x, z)ϕ(x′, z) dµ(z).

The two next examples are classical particular cases of the above.

Example 2.2.5 (Deconvolution). One of the most standard inverse problems is that of deconvolution.

We let H1 = L2([0, 1], dt) (with dt the Lebesgue measure) and the operator we consider be given by

[Af ](x) =

∫ 1

0

f(t)ϕ(x− t) dt , x ∈ R ,

where ϕ is a known filter belonging to Ck0 (R), the space of k times continuously differentiable functions

on the real line with compact support. Then it is clear that A maps into H2 = Ck(R) (see e.g. [47],

Theorem 1.3.1). It can be easily checked that Assumption 2.2.1 is fulfilled and [Af ](x) = 〈f, Fx〉H1
for

any f ∈ H1 with Fx = ϕ(x− ·). The kernel of Im(A) can explicitly calculated as

K(x, y) = 〈Fx, Fy〉H1
=

∫ 1

0

ϕ(x− t)ϕ(y − t) dt .

Example 2.2.6. (Differentiating a real function) We consider estimation of a derivative of a real func-

tion. To this end, we let H1 := {f ∈ L2[0, 1] : E[f ] = 0}, the subspace of L2([0, 1], dt) consisting

of functions with mean zero and H2 := C[0, 1], the space of continuous functions on [0, 1]. Define

A : H1 −→ H2 by

[Af ](x) =

∫ x

0

f(t) dt .
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Then Af = g if and only if f = g′. It is easily checked that Assumption 2.2.1 is satisfied. To identify the

kernel of Im(A), the reader can easily convince himself that

[Af ](x) = 〈f, Fx〉L2 ,

where Fx(t) = 1[0,x](t) − x. Thus, by definition K(x, t) = 〈Fx, Ft〉L2 = x ∧ t − xt and Im(A) coincides

with the real Sobolev space H1
0 [0, 1], consisting of absolutely continuous functions g on [0, 1] with weak

derivatives of order 1 in L2[0, 1], with boundary condition g(0) = g(1) = 0. The associated Carleman

operator is given by S = ι ◦ A with ι : H1
0 [0, 1] ↪→ L2[0, 1] and with marginal distribution ν = dt, the

Lebesgue measure on [0, 1].

We complete this section by introducing the shortcut notation F̄x := κ−1Fx, S̄ν := κ−1Sν , S̄?ν := κ−1S?ν .

We define Bν := S?νSν : H1 −→ H1 and B̄ν := κ−2Bν . Then B̄ν is positive, self-adjoint and satisfies∥∥B̄ν∥∥ ≤ 1 . The following Proposition summarizes the main properties of the operators Sν , S
?
ν and Bν .

Its proof can be found in the Appendix of [26] (Proposition 19).

Proposition 2.2.7. Under Assumptions 2.2.1 and 2.2.3, the Carleman operator Sν : H1 −→ L2(X, ν)

is a Hilbert-Schmidt operator with nullspace

ker(Sν) = Span{Fx : x ∈ support(ν)}⊥ .

The adjoint operator S?ν : L2(X, ν) −→ H1 is given by

S?νg =

∫
X

g(x)Fx ν(dx) ,

for any g ∈ L2(X, ν) and where the integral converges in H1- norm.

Furthermore, if Fx ⊗ F ?x denotes the operator f ∈ H1 7→ 〈f, Fx〉H1
Fx ∈ H1, then

Bν =

∫
X

Fx ⊗ F ?x ν(dx) , (2.2.1)

where the integral converges in trace norm.

It is natural to consider the inverse problem Sνf = g (rather than Af = g) as the idealized population

version (i.e., noise and discretization-free) of (2.1.1), since the former views the output of the operator

in the geometry of L2(X, ν), which is the natural population geometry when the sampling measure is ν .

Multiplying on both sides by S?ν , we obtain the inverse problem Bνf = S?νg (called “normal equation”

in the inverse problem literature).

Since Bν is self-adjoint and compact, the spectral theorem ensures the existence of an orthonormal set

{ej}j≥1 such that

Bν =

∞∑
j=1

µj〈·, ej〉H1
ej (2.2.2)

and

H1 = ker(Bν)⊕ Span{ej : j ≥ 1} .

The numbers µj are the positive eigenvalues of Bν in decreasing order, satisfying 0 < µj+1 ≤ µj for all

j > 0 and µj ↘ 0. In the special case where Bν has finite rank, the above set of positive eigenvalues
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and eigenvectors is finite, but to simplify the notation we will always assume that they are countably

infinite; formally, we can accommodate for this special situation by allowing that the decreasing sequence

of eigenvalues is equal to zero from a certain index on.

Remark 2.2.8. The considered operators depend on the sampling measure ν and thus also the eigenvalues

(µj)j≥1 . For the sake of reading ease, we omit this dependence in the notation; we will also denote

henceforth S = Sν , S̄ = S̄ν , B = Bν and B̄ = B̄ν .

2.2.2 Discretization by random sampling

For discretization, we consider a sample z = (x,y) = ((x1, y1), ..., (xn, yn)) ∈ (X×R)n and introduce the

associated sampling operator

Sx : H1 −→ Rn

f 7−→ Sxf ,

with (Sxf)j = 〈f, Fxj 〉H1
, j = 1, ..., n and where Rn is equipped with the inner product of the empirical

L2 structure,

〈y,y′〉Rn =
1

n

n∑
j=1

yjy
′
j .

Formally, Sx is the counterpart of Sν when replacing the sampling distribution ν by the empirical dis-

tribution ν̂ := 1
n

∑n
i=1 δxi , and identifying L2(X, ν̂) with Rn endowed with the above inner product.

Additionally, the sampled vector Sxf is corrupted by noise ε = (ε1, . . . , εn) to yield the vector of ob-

served values y = (y1, ..., yn) ∈ Rn:

yj = g(xj) + εj = (Sxf)j + εj , j = 1, ..., n , (2.2.3)

which can be interpreted as the discretized and noisy counterpart of the population problem Sνf = g .

Replacing the measure ν with the empirical measure ν̂ in Proposition 2.2.7 gives the following Corollary:

Corollary 2.2.9. The sampling operator Sx : H1 −→ Rn is a Hilbert-Schmidt operator with nullspace

ker(Sx) = Span{Fxj : j = 1, ..., n}⊥ .

Furthermore, the adjoint operator S?x : Rn −→ H1 is given by

S?xy =
1

n

n∑
j=1

yjFxj ,

and the operator Bx := S?xSx : H1 −→ H1 is given by

Bx =
1

n

n∑
j=1

Fxj ⊗ F ?xj .

With this notation, the normal equation associated with (2.2.3), obtained by multiplying both sides by

S?x , reads S?xy = Bxf+S?xε ; it is the discretized and noisy counterpart of the population normal equation
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introduced in the previous section. The advantage of looking at the normal equations is that both the

population and the empirical version act on the same space H1 , so that the latter can be considered as

a perturbation of the former (both for the operator and the noise term), an observation which is central

to the theory [27].

Similarly, as for the population operators we introduce S̄x := κ−1Sx, S̄?x := κ−1S?x and B̄x := κ−2Bx.

2.2.3 Statistical model, noise assumption, and prior classes

We recall the considered setting of inverse learning. The sampling is assumed to be random i.i.d., where

each observation point (Xi, Yi) follows the model Y = Af(X) + ε . More precisely, (Xi, Yi) are i.i.d. with

Borel probability distribution ρ on X × R . For (X,Y ) having distribution ρ, denoting ν the marginal

distribution of X , we assume:

Assumption 2.2.10. The conditional expectation w.r.t. ρ of Y given X exists and it holds for ν-almost

all x ∈ X :

Eρ[Y |X = x] = S̄xfρ , for some fρ ∈ H1 . (2.2.4)

Furthermore, we will make the following Bernstein-type assumption on the observation noise distribution:

Assumption 2.2.11. There exists σ > 0 and M > 0 such that for any integer m ≥ 2:

E[
∣∣Y − S̄Xfρ(X)

∣∣m | X ] ≤ 1

2
m! σ2Mm−2 ν − a.s. (2.2.5)

It is a generally established fact that given any estimator f̂ of fρ, one can construct a probability measure

ρ on X × R such that the rate of convergence of f̂ to fρ can arbitrarily be slow (see, e.g., [43]). Thus,

to derive non-trivial rates of convergence, we concentrate our attention on specific subsets (also called

models) of the class of probability measures. We will work with the same type of assumptions as considered

by [24] and introduce two sets of conditions concerning, on the one hand, the marginal distribution ν of

X, and on the other hand, the conditional distribution ρ(.|.) of Y given X.

Let P denote the set of all probability distributions on X. We define classes of sampling distributions by

introducing decay conditions on the eigenvalues µi of the operator B̄ν defined in Section 2.2.1.

For b > 1 and α, β > 0 , we define

P<(b, β) := {ν ∈ P : µj ≤ β/jb ∀j ≥ 1} , (2.2.6)

P>(b, α) := {ν ∈ P : µj ≥ α/jb ∀j ≥ 1} (2.2.7)

and

P>strong(b, α) := {ν ∈ P>(b, α) : ∃γ > 0 , j0 ≥ 1 s.th.
µ2j

µj
≥ 2−γ ∀j ≥ j0} .

In the inverse problem literature, such eigenvalue decay assumptions are related to the so-called degree of

ill-posedness of the inverse problem Bνf = S?g . In the present setting, the ill-posedness of the problem is

reflected by the eigenvalues of Bν and depends on both the fixed operator A and the sampling distribution
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ν.

Example 2.2.12. Coming back to our Example 2.2.6, the degree of ill-posedness is determined by the

decay of the eigenvalues (µj)j of the positive self-adjoint integral operator LK = SS? : L2[0, 1] −→ L2[0, 1]

[LKf ](x) =

∫ 1

0

K(x, t)f(t) dt .

Elementary calculations show that the SVD basis is given by ej(x) =
√

2 sin(πjx) with corresponding

eigenvalues µj = 1
π2j2 . Thus, b = 2 and P<(2, 1

π2 ) ∩ P>(2, 1
π2 ) as well as P<(2, 1

π2 ) ∩ P>strong(2,
1
π2 ) are

not empty.

For a subset Ω ⊆ H1, we let K(Ω) be the set of regular conditional probability distributions ρ(·|·) on

B(R) × X such that (2.2.4) and (2.2.5) hold for some fρ ∈ Ω. (It is clear that these conditions only

depend on the conditional ρ(.|.) of Y given X.) We will focus on a Hölder-type source condition, which

is a classical smoothness assumption in the theory of inverse problems. Given r > 0, R > 0 and ν ∈ P,

we define

Ων(r,R) := {f ∈ H1 : f = B̄rνh, ‖h‖H1
≤ R}. (2.2.8)

Note that for any r ≤ r0 we have Ων(r0, R) ⊆ Ων(r,R), for any ν ∈ P. Since Bν is compact, the source

sets Ων(r,R) are precompact sets in H1.

Then the class of models which we will consider will be defined as

M(r,R,P′) := { ρ(dx, dy) = ρ(dy|x)ν(dx) : ρ(·|·) ∈ K(Ων(r,R)), ν ∈ P′ } , (2.2.9)

with P′ = P<(b, β), P′ = P>(b, α) or P′ = P>strong(b, α) .

As a consequence, the class of models depends not only on the smoothness properties of the solution

(reflected in the parameters R > 0, r > 0), but also essentially on the decay of the eigenvalues of Bν .

2.2.4 Effective Dimension

We introduce the effective dimension N(λ), appearing in [24] in a similar context. For λ ∈ (0, 1] we set

N(λ) = Tr
[

(B̄ + λ)−1B̄
]
. (2.2.10)

Since by Proposition 2.2.7 the operator B̄ is trace-class, N(λ) <∞. Moreover, the following Lemma (see

[24], Proposition 3) establishes a connection between the spectral asymptotics of the covariance operator

B̄ and an upper bound for N(λ).

Lemma 2.2.13. Assume that the marginal distribution ν of X belongs to P<(b, β) (with b > 1 and

β > 0). Then the effective dimension N(λ) satisfies

N(λ) ≤ βb

b− 1
(κ2λ)−

1
b .
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Furthermore, for λ ≤ ||B̄||, since B̄ is positive

N(λ) =
∑

µj≥κ2λ

µj
µj + κ2λ

+
∑

µj<κ2λ

µj
µj + κ2λ

≥ min
µj≥κ2λ

{
µj

µj + κ2λ

}
≥ 1

2
,

since the first sum has at least one term.

2.2.5 Equivalence with classical kernel learning setting

With the notation and setting introduced in the previous sections, we point out that the “inverse learning”

problem (2.1.1) can, provided Assumptions (2.2.1) and (2.2.3) are met, be reduced to a classical learning

problem (hereafter called “direct” learning) under the setting and assumptions of reproducing kernel-

based estimation methods. In the direct learning setting, the model is given by (2.1.1) (i.e., Yi =

g(Xi) + εi) and the goal is to estimate the function g. Kernel methods posit that g belongs to some

reproducing kernel Hilbert space1 HK with kernel K and construct an estimate ĝ ∈ HK of g based on

the observed data. The reconstruction error (ĝ − g) can be analyzed in L2(ν)− norm or in HK− norm.

Coming back to the inverse learning setting (Yi = (Af)(Xi) + εi), let HK be defined as in the previous

sections and assume f ∈ ker(A)⊥ (we cannot hope to recover the part of f belonging to kerA anyway

and might as well make this assumption. It is also implied by any form of source condition as introduced

in Section 2.2.3).

Consider applying a direct learning method using the reproducing kernel K; this returns some estimate

ĝ ∈ HK of g. Now let A† be the inverse of A|Ker(A)⊥ , which is well defined since A is a partial isometry

as an operator H1 7→ HK (Proposition 2.2.2). Defining f̂ := A†ĝ , we have∥∥∥f̂ − f∥∥∥2

H1

=
∥∥A†ĝ − f∥∥2

H1
=
∥∥A(A†ĝ − f)

∥∥2

HK
= ‖ĝ −Af‖2HK

= ‖ĝ − g‖2HK
.

Note that f̂ is, at least in principle, accessible to the statistician, since A (and therefore A†) is assumed

to be known. Hence, a bound established for the direct learning setting in the sense of the HK−
norm reconstruction ‖ĝ − g‖2HK

also applies to the inverse problem reconstruction error
∥∥∥f̂ − f∥∥∥2

H1

.

Furthermore, it is easy to see that the eigenvalue decay conditions and the source conditions involving

the operator Bν introduced in Section 2.2.3 are, via the same isometry, equivalent to similar conditions

involving the kernel integral operator in the direct learning setting, as considered, for instance, in [4, 20,

21, 24, 79]. It follows that estimates in HK− norm available from those references are directly applicable

to the inverse learning setting. However, as summarized in Table 2.1, for the direct learning problem

the results concerning HK− norm rates of convergence are far less complete than in L2(ν)− norm. In

particular, such rates have not been established under consideration of simultaneous source and eigenvalue

decay conditions, and neither have the corresponding lower bounds. In this sense, the contribution of the

present paper is to complete the picture in Table 2.1, with the inverse learning setting as the underlying

motivation.

1This can be extended to the case where g is only approximated in L2(ν) by a sequence of functions in HK . For the
sake of the present discussion, only the case where it is assumed g ∈ HK is of interest.
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2.2.6 Regularization

In this section, we introduce the class of linear regularization methods based on spectral theory for self-

adjoint linear operators. These are standard methods for finding stable solutions for ill-posed inverse

problems, see, e.g., [34] or [38].

Definition 2.2.14 (Regularization function). Let g : (0, 1] × [0, 1] −→ R be a function and write

gλ = g(λ, ·). The family {gλ}λ is called regularization function, if the following conditions hold:

(i) There exists a constant D <∞ such that

sup
0<t≤1

|tgλ(t)| ≤ D,

for any 0 < λ ≤ 1.

(ii) There exists a constant E <∞ such that

sup
0<t≤1

|gλ(t)| ≤ E

λ
, (2.2.11)

for any 0 < λ ≤ 1.

(iii) Defining the residual

rλ(t) = 1− gλ(t)t , (2.2.12)

there exists a constant γ0 <∞ such that

sup
0<t≤1

|rλ(t)| ≤ γ0, (2.2.13)

for any 0 < λ ≤ 1.

Definition 2.2.15 (Qualification). The qualification of the regularization {gλ}λ is the maximal q such

that for any 0 < λ ≤ 1

sup
0<t≤1

|rλ(t)|tq ≤ γqλq.

for some constant γq > 0 .

The next lemma provides a simple inequality (see, e.g., [64], Proposition 3 ) that shall be used later.

Lemma 2.2.16. Let {gλ}λ be a regularization function with qualification q. Then, for any r ≤ q and

0 < λ ≤ 1:

sup
0<t≤1

|rλ(t)|tr ≤ γrλr, (2.2.14)

where γr := γ
1− rq
0 γ

r
q
q .

Given the sample z = (x,y) ∈ (X × R)n, we define the regularized approximate solution fλz of problem

(2.2.3), for a suitable a priori parameter choice λ = λn, by

fλnz := gλn(B̄x)S̄?xy . (2.2.15)
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Note that gλ(B̄x) is well defined since
∥∥B̄x

∥∥ ≤ 1 .

Remark 2.2.17. (On the explicit calculation of the estimator) Denoting by

K̄x = κ−2(
1

n
K(xi, xj))i,j

the (normalized) kernel matrix and letting α = (α1, ..., αn) = gλn(K̄x)y ∈ Rn, we have by recalling the

formula g(A∗A)A∗ = A∗g(AA∗) (holding for bounded operators A and measurable functions g on the

spectrum of A) and by Corollary 2.2.9

fλnz = S?xgλn(K̄x)y =
1

n

n∑
j=1

αjFxj . (2.2.16)

Thus the estimator fλnz for the target function can be calculated using the elements Fx1
, ..., Fxn (which, in

turn, determine K̄x, and then the coefficients (α1, ..., αn)) . For the integral operators of a general form

given in Example 2.2.4, this has been made completely explicit. In general, explicit formulae of course

depend on the operator A and the inner product on H1.

We now consider a different example setting. Assume now that H1 also is an RKHS consisting of

functions on some measurable space Z with a known, measurable kernel G. Then one finds

Fx(z) = 〈Fx, G(z, ·)〉H1
= [AG(z, ·)](x) , x ∈ X , z ∈ Z

and

K(x, x′) = 〈Fx, Fx′〉H1
= [AFx](x′) , x, x′ ∈ X .

Given the operator A, this is completely explicit and requires only forward applications of A. In practice,

if no closed-form formula can be derived, and since evaluation of Fx at a point z requires application of

A to the test function G(z, ·), a numerical approximation of AFx might include appropriate discretization

of Z, Fx and A.

We close this section by giving some examples which are common both in classical inverse problems [34]

and in learning theory [4].

Example 2.2.18. (Spectral Cut-off) A very classical regularization method is spectral cut-off (or

truncated singular value decomposition), defined by

gλ(t) =

{
1
t if t ≥ λ
0 if t < λ .

In this case, D = E = γ0 = γq = 1. The qualification q of this method can be arbitrary.

Example 2.2.19. (Tikhonov Regularization) The choice gλ(t) = 1
λ+t corresponds to Tikhonov reg-

ularization. In this case we have D = E = γ0 = 1. The qualification of this method is q = 1 with γq = 1.
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Example 2.2.20. (Landweber Iteration) The Landweber iteration (gradient descent algorithm with

constant step size) is defined by

gk(t) =

k−1∑
j=0

(1− t)j with k = 1/λ ∈ N .

We have D = E = γ0 = 1. The qualification q of this algorithm can be arbitrary with γq = 1 if 0 < q ≤ 1

and γq = qq if q > 1. The coefficients (αj)j in (2.2.16) can be calculated by using the following algorithm:

α0 = 0 ∈ Rn

for i= 1, ..., k − 1

αi = αi−1 + 2
n (y −Kxαi−1) .

Example 2.2.21. (ν- method) The ν− method belongs to the class of so called semi-iterative regu-

larization methods. This method has finite qualification q = ν with γq a positive constant. Moreover,

D = 1 and E = 2. The filter is given by gk(t) = pk(t), a polynomial of degree k − 1, with regularization

parameter λ ∼ k−2, which makes this method much faster as e.g. gradient descent. The coefficients (αj)j

in (2.2.16) can be calculated by using the following algorithm:

α0 = 0 ∈ Rn

ω1 = 4ν+2
4ν+1

α1 = α0 + ω1

n (y −Kxα0)

for i= 2, ..., k − 1

αi = αi−1 + ui(αi−1 − αi−2) + ωi
n (y −Kxαi−1)

ui = (i−1)(2i−3)(2i+2ν−1)
(i+2ν−1)(2i+4ν−1)(2i+2ν−3)

ωi = 4 (2i+2ν−1)(i+ν−1)
(i+2ν−1)(2i+4ν−1) .

For more details concerning the derivation we refer in particular to [34] .

2.3 Main results: upper and lower bounds on convergence rates

Before stating our main results, we recall some basic definitions in order to clarify what we mean by

asymptotic upper rate, lower rate and minimax rate optimality. We want to track the precise behavior

of these rates not only for what concerns the exponent in the number of examples n, but also in terms

of their scaling (multiplicative constant) as a function of some important parameters (namely the noise

variance σ2 and the complexity radius R in the source condition). For this reason, we introduce a notion

of a family of rates over a family of models. More precisely, in all the forthcoming definitions, we consider

an indexed family (Mθ)θ∈Θ , where for all θ ∈ Θ , Mθ is a class of Borel probability distributions on X×R
satisfying the basic general assumption 2.2.10. We consider rates of convergence in the sense of the p-th

moments of the estimation error, where p > 0 is a fixed real number.

Definition 2.3.1. (Upper Rate of Convergence)

A family of sequences (an,θ)(n,θ)∈N×Θ of positive numbers is called upper rate of convergence in Lp
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for the interpolation norm of parameter s ∈ [0, 1
2 ] , over the family of models (Mθ)θ∈Θ , for the sequence

of estimated solutions (f
λn,θ
z )(n,θ)∈N×Θ , using regularization parameters (λn,θ)(n,θ)∈N×Θ , if

sup
θ∈Θ

lim sup
n→∞

sup
ρ∈Mθ

Eρ⊗n
[
‖B̄sν(fρ − f

λn,θ
z )‖pH1

] 1
p

an,θ
<∞ .

Definition 2.3.2. (Weak and Strong Minimax Lower Rate of Convergence)

A family of sequences (an,θ)(n,θ)∈N×Θ of positive numbers is called weak minimax lower rate of con-

vergence in Lp for the interpolation norm of parameter s ∈ [0, 1
2 ] , over the family of models (Mθ)θ∈Θ ,

if

inf
θ∈Θ

lim sup
n→∞

inf
f•

sup
ρ∈Mθ

Eρ⊗n
[∥∥B̄sν(fρ − fz)

∥∥p
H1

] 1
p

an,θ
> 0 ,

where the infimum is taken over all estimators, i.e., measurable mappings f• : (X × R)n −→ H1 . It is

called a strong minimax lower rate of convergence in Lp if

inf
θ∈Θ

lim inf
n→∞

inf
f•

sup
ρ∈Mθ

Eρ⊗n
[∥∥B̄sν(fρ − fz)

∥∥p
H1

] 1
p

an,θ
> 0 .

The difference between weak and strong lower rate can be summarily reformulated in the following way:

If rn denotes the minimax risk, using n observations, then an = O(rn) must hold if an is a strong lower

rate, while an being a weak lower rate means that rn = o(an) is excluded.

Definition 2.3.3. (Minimax Optimal Rate of Convergence)

The sequence of estimated solutions (f
λn,θ
z )n using the regularization parameters (λn,θ)(n,θ)∈N×Θ is called

weak/strong minimax optimal in Lp for the interpolation norm of parameter s ∈ [0, 1
2 ], over the

model family (Mθ)θ∈Θ, with rate of convergence given by the sequence (an,θ)(n,θ)∈N×Θ, if the latter is

a weak/strong minimax lower rate as well as an upper rate for (f
λn,θ
z )n,θ.

We now formulate our main theorems.

Theorem 2.3.4 (Upper rate). Consider the model Mσ,M,R := M(r,R,P<(b, β)) (as defined in Sec-

tion 2.2.3), where r > 0, b > 1 and β > 0 are fixed, and (R,M, σ) ∈ R3
+ (remember that (σ,M) are

the parameters in the Bernstein moment condition (2.2.5), in particular σ2 is a bound on the noise vari-

ance). Given a sample z = (x,y) ∈ (X×R)n, define fλz as in (2.2.15), using a regularization function of

qualification q ≥ r + s, with the parameter sequence

λn,(σ,R) = min

((
σ2

R2n

) b
2br+b+1

, 1

)
. (2.3.1)

Then for any s ∈ [0, 1
2 ], the sequence

an,(σ,R) = R

(
σ2

R2n

) b(r+s)
2br+b+1

(2.3.2)

is an upper rate of convergence in Lp for all p ≥ 1, for the interpolation norm of parameter s, for the

sequence of estimated solutions (f
λn,(σ,R)
z ) over the family of models (Mσ,M,R)(σ,M,R)∈R3

+
.
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Theorem 2.3.5 (Minimax lower rate). Let r > 0, R > 0, b > 1 and α > 0 be fixed. Let ν be a distribution

on X belonging to P>(b, α). Then the sequence (an,(σ,R)) defined in (2.3.2) is a weak minimax lower rate

of convergence in Lp for all p ≥ 1 , for the model family MR,M,σ := M(r,R, {ν}) , (R,M, σ) ∈ R3
+ . If ν

belongs to P>strong(b, α), then the sequence an,(σ,R) is a strong minimax lower rate of convergence in Lp

for all p > 0 , for the model family MR,M,σ .

Finally, we have as a direct consequence:

Corollary 2.3.6 (Minimax optimal rate). Let r > 0, b > 1, β ≥ α > 0 be fixed and assume P′ =

P<(b, β)∩P>(b, α) 6= ∅ . Then the sequence of estimators f
λn,(σ,R)
z as defined in (2.2.15) is strong minimax

optimal in Lp for all p ≥ 1, under the assumptions and parameter sequence (2.3.1) of Theorem 2.3.4 ,

over the class MR,M,σ := M(r,R,P′) , (R,M, σ) ∈ R3
+ .

2.4 Discussion

We conclude by briefly discussing some specific points related to our results.

Non-asymptotic, high-probability bounds. The results presented in Section 2.3 are asymptotic in nature

and concern moments of the reconstruction error. However, the main underlying technical result is an

exponential deviation inequality which holds non-asymptotically. For simplicity of the exposition we

have chosen to relegate this result to the Appendix (Proposition 3.4.6 there). Clearly, thanks to such a

deviation inequality, we are able to handle moments of all orders of the error. Furthermore, while the

asymptotics considered in the previous section always assume that all parameters are fixed as n → ∞ ,

going back to the deviation inequality one could in principle analyze asymptotics of other nonstandard

regimes where some parameters are allowed to depend on n .

Adaptivity. For our results we have assumed that the crucial parameters b, r, R concerning the eigenvalue

decay of the operator Bν as well as the regularity of the target function are known, and so is the noise

variance σ ; these parameters are used in the choice of regularizing constant λn . This is, of course, very

unrealistic. Ideally, we would like to have a procedure doing almost as good without knowledge of these

parameters in advance. This is the question of adaptivity.

For what concerns the convergence in excess prediction error L2(ν) , and under the boundedness assump-

tion |Y | ≤ M , it is well known that a simple hold-out strategy (i.e., choosing, among a finite family of

candidate estimators f̂k, the one achieving minimal error on an held-out validation sample), performed

after trimming all candidate estimators f̂k to the interval [−M,M ] , generally speaking selects an estima-

tor close to the best between those considered. One could, for example, consider estimators corresponding

to an appropriately chosen discrete (typically geometric) grid of values for λ and adapt the corresponding

arguments from [21, 81] ; see also [14] for a general point of view on this question.

However, it remains an open question whether a similar strategy also applies to the error measured in

stronger norms: The prediction norm is the only one directly empirically accessible and it does not follow

that a value of λ which is good in the sense of prediction (one of which hold-out would select) would

automatically also yield good performance for the stronger norms.

In Chapter 5 we study such an adaptive procedure based on Lepski’s principle for the oracle selection of
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a suitable regularizing constant λ. We even show that an adaptive parameter choice based on Lepski’s

approach in L2(ν)− norm also applies to all other stronger interpolation norms and provides minimax

optimal learning rates (up to log-term).

Weak and strong lower bounds. The notion of strong and weak lower bounds introduced in this work

(corresponding respectively to a lim inf and lim sup in n) appear to be new. They were motivated by

the goal to consider somewhat minimal assumptions on the eigenvalue behavior, i.e., only a one-sided

power decay bound, to obtain lower minimax bounds under source condition regularity. It turns out

a one-sided power decay bound is the main driver for minimax rates, but excluding arbitrarily abrupt

relative variations µ2j/µj appears to play a role in distinguishing the weak and strong versions. Such a

condition is also called one-sided regular variation, see [7] for extensive considerations on such issues. We

believe that this type of assumption can be relevant for the analysis of certain inverse problems when the

eigenvalues do not exhibit a two-sided power decay.

Smoothness and source conditions. In considering source conditions (2.2.8) in terms of the operator Bν as

measure of regularity of the target f , we have followed the general approach adopted in previous works

on statistical learning using kernels, itself inspired by the setting considered in the (deterministic) inverse

problem literature. It is well established in the latter literature that representing the target function in

terms of powers of the operator to be inverted is a very natural way to measure its regularity; it can be

seen as a way to relate noise and signal in a geometry that is appropriate for the considered ill-posed

problem. In our setting, one can, however, wonder why a measure of regularity of the target function

should depend on the sampling distribution ν . A high-level answer is that the sampling can itself be

seen as a source of noise (or uncertainty), and that it is natural that it enters in the ill-posedness of the

problem. For instance, regions in space with sparser sampling will result in more uncertainty. On the

other hand, if, say, the support of ν is contained in a low-dimensional manifold, the problem becomes

intrinsically lower-dimensional, being understood that we must abandon any hope of estimating outside

of the support, and this should also be reflected in the measure of regularity. A more detailed analysis of

such issues, and relations to more common notions of regularity, is out of the scope of the present work

but certainly an interesting future perspective.

Relaxing Assumption 2.2.1. Assumption 2.2.1 is crucial for our results: It allows us to use the RKHS

structure, which is then entirely determined by the operator A. It would be certainly of interest to

consider the more general setting where this assumption does not hold, for instance if Af is only assumed

to lie in L2(ν). In order to follow a similar approach, one would have to introduce separately an RKHS

structure having adequate approximation properties. While this setting has been considered in the direct

problem case A = I for nonparametric regression (see e.g. [13, 20, 21, 82]), for the general inverse problem

this appears to be an open problem, which would in particular require the careful analysis of the interplay

between the RKHS structure, the operator A, and the suitable definition of source conditions.

2.5 Proof of Upper Rate

All along the proof, we will use the notation Ca to denote a positive factor only depending on the quantity

a. The exact expression of this factor depends on the context and can potentially change from line to

line.
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Bias-Variance Decomposition

We now consider the following bias-variance decomposition

B̄s(fρ − fλz ) = B̄s(fρ − gλ(B̄x)S̄?xy)

= B̄s(fρ − gλ(B̄x)B̄xfρ) + B̄sgλ(B̄x)(B̄xfρ − S̄?xy)

= B̄srλ(B̄x)fρ + B̄sgλ(B̄x)(B̄xfρ − S̄?xy) , (2.5.1)

where rλ is given in (2.2.12).

Definition 2.5.1. We refer to the norm

∥∥B̄srλ(B̄x)fρ
∥∥
H1

as the Approximation Error while the norm

∥∥B̄sgλ(B̄x)(B̄xfρ − S̄?xy)
∥∥
H1

is called Sample Error.

We continue with a preliminary inequality. Given η ∈ (0, 1], n ∈ N and λ ∈ (0, 1] assume

n ≥ 64λ−1 max(N(λ), 1) log2 (8/η) . (2.5.2)

We may apply Proposition A.1.4 to obtain the inequality

∥∥(B̄x + λ)−1(B̄ + λ)
∥∥ ≤ 2 ,

with probability at least 1− η. Combining this with (A.4.3), we get for any u ∈ [0, 1]:

∥∥B̄u(B̄x + λ)−u
∥∥ =

∥∥B̄u(B̄ + λ)−u(B̄ + λ)u(B̄x + λ)−u
∥∥

≤
∥∥(B̄ + λ)(B̄x + λ)−1

∥∥u ≤ 2 . (2.5.3)

From this we deduce readily that, with probability at least 1− η, we have for any f ∈ H1∥∥B̄sf∥∥
H1
≤ 2

∥∥(B̄x + λ)sf
∥∥
H1

. (2.5.4)

We upper bound
∥∥B̄s(fρ − fλz )

∥∥
H1

by treating separately the two terms corresponding to the above

decomposition, i.e.∥∥∥B̄s(fρ − fλz )
∥∥∥
H1

≤ 2
(∥∥(B̄x + λ)srλ(B̄x)fρ

∥∥
H1

+
∥∥(B̄x + λ)s(gλ(B̄x)(B̄xfρ − S̄?xy))

∥∥
H1

)
.

Proposition 2.5.2 (Approximation Error). Let s ∈ [0, 1
2 ], r > 0, R > 0, M > 0 . Suppose fρ ∈ Ων(r,R) .

Let fλz be defined as in (2.2.15) using a regularization function of qualification q ≥ r + s and put γ̄ :=

max(γ0, γq) . Moreover, let η ∈ (0, 1], λ ∈ (0, 1] and n ∈ N.
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1. (Rough Bound) With probability equal to one

∥∥B̄srλ(B̄x)fρ
∥∥
H1
≤ γ0R . (2.5.5)

2. (Refined Bound) If in addition assumption (2.5.2) is satisfied, then we have with probability at least

1− η: ∥∥B̄srλ(B̄x)fρ
∥∥
H1
≤ 16γ̄CrR log

(
4η−1

)
λs
(
λr +

1√
n
1(1,∞)(r)

)
, (2.5.6)

with Cr = max(rC, 1), where C is explicitly given in Proposition A.4.1, equation (A.4.2).

Proof of Proposition 2.5.2. 1. A rough bound immediately follows using (2.2.13) and from fρ ∈ Ων(r,R):

∥∥B̄srλ(B̄x)fρ
∥∥
H1
≤ γ0R . (2.5.7)

2. Since fρ ∈ Ων(r,R), we have

∥∥(B̄x + λ)srλ(B̄x)fρ
∥∥
H1
≤ R

∥∥(B̄x + λ)srλ(B̄x)B̄r
∥∥ . (2.5.8)

We now concentrate on the operator norm appearing in the RHS of the above bound, and distinguish

between two cases. The first case is r ≥ 1, for which we write

(B̄x + λ)srλ(B̄x)B̄r = (B̄x + λ)srλ(B̄x)B̄rx + (B̄x + λ)srλ(B̄x)(B̄r − B̄rx). (2.5.9)

The operator norm of the first term is estimated via

∥∥(B̄x + λ)srλ(B̄x)B̄rx
∥∥ ≤ sup

t∈[0,1]

(t+ λ)strrλ(t)

≤ sup
t∈[0,1]

ts+rrλ(t) + λs sup
t∈[0,1]

trrλ(t)

≤ 2γ̄λs+r, (2.5.10)

by applying (twice) Lemma 2.2.16 and the assumption that the qualification q of the regularization

is greater than r + s ; we also introduced γ̄ := max(γ0, γq) . The second term in equation (2.5.9) is

estimated via

∥∥(B̄x + λ)srλ(B̄x)(B̄r − B̄rx)
∥∥ ≤ ∥∥(B̄x + λ)srλ(B̄x)

∥∥ ∥∥B̄r − B̄rx∥∥
≤ 2γ̄rC λs

∥∥B̄ − B̄x

∥∥ ,
where C is given in Proposition A.4.1, equation (A.4.2). For the first factor we have used the same

device as previously for the term in (2.5.10) based on Lemma 2.2.16, and for the second factor we

used Proposition A.4.1. Finally using Proposition A.1.5 to upper bound
∥∥B̄ − B̄x

∥∥, collecting the

previous estimates we obtain with probability at least 1− η/2:

∥∥(B̄x + λ)srλ(B̄x)fρ
∥∥
H1
≤ γ̄rCR log

(
4η−1

)(
λr +

1√
n

)
λs . (2.5.11)

We turn to the case r < 1, for which we want to establish a similar inequality. Instead of (2.5.9)
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we use:

∥∥(B̄x + λ)srλ(B̄x)B̄r
∥∥ =

∥∥(B̄x + λ)srλ(B̄x)(B̄x + λ)r(B̄x + λ)−rB̄r
∥∥

≤ 2
∥∥(B̄x + λ)r+srλ(B̄x)

∥∥
≤ 8γ̄λr+s, (2.5.12)

where we have used the (transposed version of) inequality (2.5.3) (valid with probability at least

1−η/2); and, for the last inequality, an argument similar the one leading to (2.5.10) (using this time

that (t+λ)r+s ≤ 2(tr+s+λr+s) for all t ≥ 0 since r+s ≤ 2 in the case we are considering). Combining

this with (2.5.11) , (2.5.8) and (2.5.4) implies that inequality (2.5.6) holds with probability at least

1− η.

Proposition 2.5.3 (Sample Error). Let s ∈ [0, 1
2 ], r > 0, R > 0, M > 0 . Suppose fρ ∈ Ων(r,R) . Let fλz

be defined as in (2.2.15) using a regularization function of qualification q ≥ r+s and put γ̄ := max(γ0, γq) .

Moreover, let η ∈ (0, 1], λ ∈ (0, 1] and n ∈ N.

1. (Rough Bound) With probability at least 1− η:

∥∥B̄sgλ(B̄x)(B̄xf − S̄?xy)
∥∥
H1
≤ CE,M,σ log(2η−1)

1

λ
√
n
. (2.5.13)

2. (Refined Bound) If in addition assumption (2.5.2) holds, then we have with probability at least 1−η:

∥∥B̄sgλ(B̄x)(B̄xfρ − S̄?xy)
∥∥
H1
≤ Cs,D,E log(8η−1)λs

(
M

nλ
+

√
σ2N(λ)

nλ

)
. (2.5.14)

Proof of Proposition 2.5.3. 1. Using (2.2.11) and the second part of Proposition A.1.2 , we obtain that

with probability at least 1− η

∥∥B̄sgλ(B̄x)(B̄xfρ − S̄?xy)
∥∥
H1
≤ 2 log(2η−1)

E

λ

(
M

n
+

√
σ2

n

)

≤ CE,M,σ
1

λ
√
n

log(2η−1) .

2. We further split by writing

(B̄x + λ)sgλ(B̄x)(B̄xfρ − S̄?xy) = H(1)
x ·H(2)

x · hλz (2.5.15)

with

H(1)
x := (B̄x + λ)sgλ(B̄x)(B̄x + λ)

1
2 ,

H(2)
x := (B̄x + λ)−

1
2 (B̄ + λ)

1
2 ,

hλz := (B̄ + λ)−
1
2 (B̄xfρ − S̄?xy)

and proceed by bounding each factor separately.
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For the first term, we have (for any λ ∈ (0, 1] and x ∈ Xn), and remembering that s ≤ 1/2:∥∥∥ H(1)
x

∥∥∥ ≤ sup
t∈[0,1]

(t+ λ)s+
1
2 gλ(t)

≤ λs+ 1
2 sup
t∈[0,1]

gλ(t) + sup
t∈[0,1]

∣∣∣ts+ 1
2 gλ(t)

∣∣∣
≤ Eλs− 1

2 +

(
sup
t∈[0,1]

|tgλ(t)|

)s+ 1
2
(

sup
t∈[0,1]

|gλ(t)|

) 1
2−s

≤ Eλs− 1
2 +Ds+ 1

2E
1
2−sλs−

1
2 = Cs,D,Eλ

s− 1
2 , (2.5.16)

where we have used Definition 2.2.14 (i), (ii).

The probabilistic bound on H
(2)
x follows from Proposition A.1.4, which we can apply using assump-

tion (2.5.2), combined with Proposition A.4.2. This ensures with probability at least 1− η/4∥∥∥H(2)
x

∥∥∥ ≤ √2 . (2.5.17)

Finally, the probabilistic bound on hλz follows from Proposition A.1.2: With probability at least

1− η/4, we have ∥∥hλz∥∥H1
≤ 2 log(8η−1)

(
M

n
√
λ

+

√
σ2N(λ)

n

)
. (2.5.18)

As a result, combining (2.5.16), (2.5.17) and (2.5.18) with (2.5.15) gives with probability at least

1− η

∥∥(B̄x + λ)sgλ(B̄x)(B̄xf − S̄?xy)
∥∥
H1
≤ Cs,D,E log(8η−1)λs

(
M

nλ
+

√
σ2N(λ)

nλ

)
. (2.5.19)

Combining the last bound with (2.5.4) completes the proof.

Corollary 2.5.4. Let s ∈ [0, 1
2 ], σ > 0,M > 0, r > 0, R > 0, β > 0, b > 1 and assume the generating

distribution of (X,Y ) belongs to M(r,R,P<(b, β)) (defined in Section 2.2.3) . Let fλz be the estimator

defined as in (2.2.15) using a regularization function of qualification q ≥ r+ s and put γ̄ := max(γ0, γq) .

Then, there exists n0 > 0 (depending on the above parameters), so that for all n ≥ n0, if we set

λn = min

((
σ

R
√
n

) 2b
2br+b+1

, 1

)
, (2.5.20)

then with probability at least 1− η :

∥∥B̄s(fρ − fλnz )
∥∥
H1
≤ Cs,β,γ,D,ECb log(8η−1)R

(
σ

R
√
n

) 2b(r+s)
2br+b+1

,

provided log(η−1) ≤ Cb,β,σ,R n
br

2br+b+1 and with Cb =
√

b
b−1 .

Remark: In the above corollary, n0 can possibly depend on all parameters, but the constant in front of

the upper bound does not depend on R, σ, nor M . In this sense, this result tracks precisely the effect
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of these important parameters on the scaling of the rate, but remains asymptotic in nature: It cannot

be applied if, say, R, σ of M also depend on n (because the requirement n ≥ n0 might then lead to an

impossiblity.) If some parameters are allowed to change with n , one should go back to the non-asymptotic

statement of Proposition 2.5.2 and Proposition 2.5.3 for an analysis of the rates.

Proof of Corollary 2.5.4. We check that the assumptions of both Proposition 2.5.2 and Proposition 2.5.3

are satisfied provided n is big enough. Concerning assumption (2.5.2), let us recall that by Lemma 2.2.10:

N(λ) ≤ βb

b− 1
λ−1/b . (2.5.21)

Consequently, (2.5.2) is ensured by the sufficient condition

n ≥ Cb,β log2(8η−1)λ−
1
b−1 ⇐ log(η−1) ≤ Cb,β,σ,R n

br
2br+b+1 . (2.5.22)

Applying Proposition 2.5.2, Proposition 2.5.3, Lemma 2.2.10 again and folding the effect of the parameters

we do not intend to track precisely into a generic multiplicative constant, we obtain using decomposition

(2.5.1) that with probability 1− η

∥∥B̄s(fρ − fλz )
∥∥
H1
≤ C• log(8η−1)λs

(
R

(
λr +

1√
n
1(1,∞)(r)

)
+

(
M

nλ
+
σCb√
n
λ−

b+1
2b

))
. (2.5.23)

with • = (s, γ̄,D,E, β) and Cb =
√

b
b−1 .

Observe that the choice (2.5.20) implies that rn−
1
2 = o(λrn). Therefore, up to requiring n large enough

and multiplying the front factor by 2 , we can disregard the term r/
√
n in the second factor of the above

bound. Similarly, by comparing the exponents in n, one can readily check that

M

nλn
= o

(
Cb

√
1

n
λ
− b+1

b
n

)
,

so that we can also disregard the term M(nλn)−1 for n large enough (again, up multiplying the front

factor by 2) and concentrate on the two remaining main terms of the upper bound in (2.5.23), which

are Rλr and σλ−
b+1
2b n−

1
2 . The proposed choice of λn balances precisely these two terms and easy

computations lead to the announced conclusion.

We now come to the proof of our main Theorem for the upper bound. To simplify notation and argument

we will adopt the following conventions:

• The dependence of multiplicative constants C on various parameters will (generally) be omitted,

except for σ,M,R, η and n which we want to track precisely.

• The expression “for n big enough” means that the statement holds for n ≥ n0 , with n0 potentially

depending on all model parameters (including σ,M and R), but not on η.
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Proof of Theorem 2.3.4

Proof of Theorem 2.3.4. We would like to “integrate” the bound of Corollary 2.5.4 over η to obtain a

bound in Lp norm (see Lemma A.3.1), unfortunately, the condition on η prevents this since very large

deviations are excluded. To alleviate this, we use a much coarser “fallback” upper bound which is valid

for all η ∈ (0, 1]. From (2.5.5) and (2.5.13) , we conclude that

P
[ ∥∥B̄s(fρ − fλz )

∥∥
H1
≥ a′ + b′ log η−1

]
≤ η ,

for all η ∈ (0, 1] , with a′ := Cσ,M,R max
(

1
λ
√
n
, 1
)

and b′ :=
Cσ,M
λ
√
n

. On the other hand, Corollary 2.5.4,

ensured that

P
[∥∥B̄s(fρ − fλn,(σ,R)

z )
∥∥
H1
≥ a+ b log η−1

]
≤ η , for log η−1 ≤ log η−1

0 := Cσ,Rn
br

2br+b+1 ,

with a = b := CR
(

σ
R
√
n

) 2b(r+s)
2br+b+1

= Can,(σ,R) , provided that n is big enough.

We can now apply Corollary A.3.2, which encapsulates some tedious computations, to conclude that for

any p ≤ 1
2 log η−1

0 and n big enough:

E
[∥∥B̄s(fρ − fλn,(σ,R)

z )
∥∥p
H1

]
≤ Cp

(
apn,(σ,R) + η0

(
(a′)p + 2(b′ log η−1

0 )p
))

.

Now for fixed σ,M,R , and p , the quantities a′, b′ are powers of n , while η0 = exp(−Cσ,rnνb,r ) for

νb,r > 0 . The condition p ≤ 1
2 log η−1

0 is thus satisfied for n large enough and we have

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(fρ − fλn,(σ,R)

z )
∥∥p
H1

] 1
p

an,(σ,R)
≤ C ,

(where we reiterate that the constant C above may depend on all parameters including p , but not on

σ,M nor R). Therefore, taking the supremum over (σ,M,R) yields the desired conclusion.

2.6 Proof of Lower Rate

We will apply the general reduction scheme in Appendix A.5 , Proposition A.5.1 to our target distance

ds : Ων(r,R)× Ων(r,R) −→ R+, given by

ds(f1, f2) =
∥∥B̄s (f1 − f2)

∥∥
H1

,

with s ∈ [0, 1
2 ] and ν ∈ P>(b, α) . We will establish the lower bounds in the particular case where the

distribution of Y given X is Gaussian with variance σ2 (which satisfies the Bernstein moment condition

(2.2.5) with M = σ) . The main effort is to construct a finite subfamily belonging to the model of

interest and suitably satisfying the assumptions of Proposition A.5.1; this is the goal of the forthcoming

propositions and lemmata.

Proposition 2.6.1. Let ν ∈ P>(b, α), for b > 1, α > 0. Assume that r > 0, R > 0. To each f ∈ Ων(r,R)

39



and x ∈ X we associate the following measure:

ρf (dx, dy) := ρf (dy|x)ν(dx) , where ρf (dy|x) := N(S̄xf, σ
2) . (2.6.1)

Then:

(i) The measure ρf belongs to the class M(r,R,P>(b, α)), defined in (2.2.9).

(ii) Given f1, f2 ∈ Ων(r,R), the Kullback-Leibler divergence between ρ1 and ρ2 satisfies

K(ρ1, ρ2) =
1

2σ2

∥∥√B̄(f1 − f2)
∥∥2

H1
.

Proof. Point (i) follows directly from the definition of the class M(r,R,P>(b, α)) . For point (ii), note

that the Kullback-Leibler divergence between two Gaussian distributions with identical variance σ2 and

mean difference ∆ is ∆/2σ2 . Since ρ1, ρ2 have the same X-marginal ν, it holds

K(ρ1, ρ2) = E[K(ρ1(.|X), ρ2(.|X))] =
1

2σ2

∫ (
S̄x(f1 − f2)

)2
dν(x)

=
1

2σ2

∥∥S̄(f1 − f2)
∥∥2

L2(ν)
=

1

2σ2

∥∥√B̄(f1 − f2)
∥∥2

H1
.

The following lemma is a variant from [24], Proposition 6, which will be useful in the subsequent propo-

sition.

Lemma 2.6.2. For any m ≥ 28 there exist an integer Nm > 3 and π1, ..., πNm ∈ {−1,+1}m such that

for any i, j ∈ {1, ..., Nm} with i 6= j it holds

log(Nm − 1) >
m

36
>

2

3
, (2.6.2)

and
m∑
l=1

(πli − πlj)2 ≥ m, (2.6.3)

where πi = (π1
i , ..., π

m
i ).

Proposition 2.6.3. Assume ν ∈ P>(b, α) . Let 0 ≤ s ≤ 1/2, R > 0 and r > 0. For any ε0 > 0 there

exist ε ≤ ε0, Nε ∈ N and functions f1, ..., fNε ∈ H1 satisfying

(i) fi ∈ Ων(r,R) for any i = 1, ..., Nε and

∥∥ B̄s(fi − fj) ∥∥2

H1
> ε2 ,

for any i, j = 1, ..., Nε with i 6= j.

(ii) Let ρi := ρfi be given by (2.6.1)). Then it holds

K(ρi, ρj) ≤ Cb,r,s R2σ−2
( ε
R

) 2r+1
r+s

,
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for any i, j = 1, ..., Nε with i 6= j .

(iii) log(Nε − 1) ≥ Cα,b,r,s
(
R
ε

) 1
b(r+s) .

If ν belongs to the subclass P>strong(b, α), then the assertions from (i), (ii) and (iii) are valid for all ε > 0

small enough (depending on the parameters r,R, s, α, b as well as j0, γ coming from the choice of ν in

P>strong(b, α) ; the multiplicative constants in (ii), (iii) then also depend on γ .)

Proof. We first prove the proposition under the stronger assumption that ν belongs to P>strong(b, α). We

recall from (2.2.2) that we denote (el)l≥1 an orthonormal family of H1 of eigenvectors of B̄ corresponding

to the eigenvalues (µl)l≥1 , which satisfy by definition of P>strong(b, α):

∀l ≥ 0 : µl ≥ αl−b (2.6.4)

and

∀l ≥ l0 : µ2l ≥ 2−γµl , (2.6.5)

for some l0 ∈ N and for some γ > 0. For any given ε < R2−γ(r+s)
(

α1/b

max(28,l0)

)b(r+s)
we pick m = m(ε) :=

max{ l ≥ 1 : µl ≥ 2γ(εR−1)
1
r+s }. Note that m ≥ max(28, l0), following from the choice of ε and from

(2.6.4).

Let Nm > 3 and π1, ..., πNm ∈ {−1,+1}m be given by Lemma 2.6.2 and define

gi :=
ε√
m

2m∑
l=m+1

π
(l−m)
i

(
1

µl

)r+s
el , i = 1, ...,m . (2.6.6)

We have by (2.6.5) and from the definition of m

‖gi‖2H1
=
ε2

m

2m∑
l=m+1

(
1

µk

)2(r+s)

≤ ε2µ
−2(r+s)
2m ≤ ε222γ(r+s)µ−2(r+s)

m ≤ R2 .

For i = 1, ..., Nm let fi := B̄rgi ∈ Ων(r,R), with gi as in (2.6.6). Then

∥∥ B̄s(fi − fj) ∥∥2

H1
=
∥∥ B̄r+s(gi − gj) ∥∥2

H1

=
ε2

m

2m∑
l=m+1

(πl−mi − πl−mj )2

(
1

µl

)2(r+s)

µ
2(r+s)
l ≥ ε2 ,

by (2.6.3) , and the proof of (i) is finished. For i = 1, ..., Nε, let ρi = ρfi be defined by (2.6.1). Then,
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using the definition of m, the Kullback-Leibler divergence satisfies

K(ρi, ρj) =
1

2σ2

∥∥√B̄(fi − fj)
∥∥2

H1

=
1

2σ2

∥∥∥B̄r+1/2(gi − gj)
∥∥∥2

H1

=
ε2

2σ2m

2m∑
l=m+1

(πl−mi − πl−mj )2

(
1

µl

)2(r+s)

µ2r+1
l

≤ 2σ−2µ1−2s
m+1ε

2

≤ 21+γ(1−2s) σ−2R2
( ε
R

) 1+2r
r+s

,

which shows (ii). Finally, (2.6.2), (2.6.4), (2.6.5) and the definition of m imply

log(Nm − 1) ≥ m

36
≥ α1/b

36
µ−1/b
m ≥ α1/b

36
2−γ/bµ

−1/b
2m ≥ α1/b

36
2−2γ/b

(
R

ε

) 1
b(r+s)

,

thus (iii) is established.

We now assume that ν belongs to P>(b, α) and only satisfies condition (2.6.4). Let any ε0 > 0 be given.

We pick m ∈ N satisfying m ≥ 28 and the two following conditions:

µm ≤ 2b+1(R−1ε0)
1
r+s , (2.6.7)

µ2m

µm
≥ 2−b−1 . (2.6.8)

Since the sequence of eigenvalues (µm) converges to 0, condition (2.6.7) must be satisfied for any m big

enough, say m ≥ m0(ε0). Subject to that condition, we argue by contradiction that there must exist

m satisfying (2.6.8). If that were not the case, we would have by immediate recursion for any l > 0,

introducing m′ := 2lm0(ε0):

µm′ < 2−l(b+1)µm0(ε0) =

(
m′

m0(ε0)

)−b−1

µm0(ε0) = Cε0(m′)−(b+1) ,

which would (eventually, for l big enough) contradict (2.6.4) . Therefore, there must exist an m > m0

satisfying the required conditions. Now put

ε := 2−(b+1)(r+s)Rµr+sm ≤ ε0 , (2.6.9)

where the inequality is from requirement (2.6.7). For i = 1, ..., Nm, we define gi as in (2.6.6). Then

||gi||H1
≤ R. Again, let fi := B̄rgi ∈ Ων(r,R) and the same calculations as above (with γ replaced by

b+ 1) lead to (i), (ii) and (iii).

Proof of Theorem 2.3.5. Let the parameters r,R, s, b, α, σ be fixed for the rest of the proof, and the

marginal distribution ν ∈ P>(b, α) also be fixed.

Our aim is to apply Proposition A.5.1 to the distance ds(f1, f2) :=
∥∥B̄s (f1 − f2)

∥∥
H1

(s ∈ [0, 1
2 ] ), on the

class Θ := Ων(r,R) , where for any f ∈ Ων(r,R) , the associated distribution is Pf := ρ⊗nf with ρf defined

as from Proposition 2.6.1 (i) ; more precisely, we will apply this proposition along a well-chosen sequence

(nk, εk)k≥0 . From Proposition 2.6.3 , we deduce that there exist a decreasing null sequence (εk) > 0 such

that for any ε belonging to the sequence, there exists Nε and functions f1, ..., fNε satisfying (i)-(ii)-(iii).
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In the rest of this proof, we assume ε = εk is a value belonging to the null sequence. Point (i) gives

requirement (i) of Proposition A.5.1. We turn to requirement (A.5.2). Let ρj = ρfj be given by (2.6.1).

Then by Proposition 2.6.3 (ii)-(iii) :

1

Nε − 1

Nε−1∑
j=1

K(ρ⊗nj , ρ⊗nNε ) =
n

Nε − 1

Nε−1∑
j=1

K(ρj , ρNε)

≤ nCb,r,s R2σ−2
( ε
R

) 2r+1
r+s

≤ nCα,b,r,s R2σ−2
( ε
R

) 2br+b+1
b(r+s)

log(Nε − 1)

=: ω log(Nε − 1) .

Choosing n :=

⌊(
8Cα,b,r,s R

2σ−2
(
εR−1

) 2br+2r+1
b(r+s)

)−1
⌋

ensures ω ≤ 1
8 and therefore requirement (A.5.2)

is satisfied. Then Proposition A.5.1 entails:

inf
f̂•

max
1≤j≤Nε

ρ⊗nj

( ∥∥B̄s(f̂• − fj)∥∥H1
≥ ε

2

)
≥

√
Nε − 1

1 +
√
Nε − 1

(
1− 2ω −

√
2ω

log (Nε − 1)

)

≥ 1

2

(
3

4
−
√

3

8

)
> 0 .

This inequality holds for any (nk, εk) for εk in the decreasing null sequence and nk given by the above

formula; we deduce that nk →∞ with

εk ≥ Cα,b,r,sR
(

σ

R
√
nk

) 2b(r+s)
2br+b+1

.

Thus, applying (A.5.1) and taking the limsup gives the result.

Now suppose that that ν belongs to P>strong(b, α). Define

ε := R(8Cα,b,r,s)
− b(r+s)

2br+b+1

(
σ2

R2n

) b(r+s)
2br+b+1

,

then for any n sufficiently large, points (i)-(ii)-(iii) of Proposition 2.6.3 will hold. The same calculations

as above now hold for any n large enough. Finally, taking the lim inf finishes the proof.

Proof of Corollary 2.3.6. The main point is only to ensure that the strong minimax lower bound applies,

for this we simply check that P>strong(b, α) ⊃ P′ = P<(b, β) ∩ P>(b, α) . For any ν ∈ P<(b, β) ∩ P>(b, α) ,

the eigenvalues of the operator B̄ satisfy αj−b ≤ µj ≤ βj−b for all j ≥ 1 . It follows that for any j ≥ 1 :

µ2j

µj
≥ α

β
2−b ,

so that the conditions for ν ∈ P>strong(b, α) are met (with parameters γ := b + log2
β
α , l0 = 1). Since P′

is assumed to be non empty, for any ν ∈ P′ the strong lower minimax bound of Theorem 2.3.5 applies

to the family MR,M,σ := M(r,R, {ν}) and a fortiori to the family MR,M,σ := M(r,R,P′) whose models
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are larger. On the other hand since, M(r,R,P′) ⊂M(r,R,P<(b, β)), the upper bound of Theorem 2.3.4

applies and we are done.
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Chapter 3

Minimax Rates beyond the regular

Case

Up to now we have considered classes of marginals such that the induced covariance operator B̄ of the

kernel feature map - via equation (2.2.1) - has eigenvalues µj falling into a window [αj−b, βj−b] (see

Section 2.2.3), where upper and lower bound as a function of j ∈ N only differ by a multiplicative

constant. We call this the regular case. The aim of this chapter is to relax this condition on the allowed

window of eigenvalues. This will enlarge the class of allowed marginals (or sampling distributions).

We recall that in a distribution free approach it is imperative to avoid specific assumptions on the data

generating distribution and the induced marginal, the sampling distribution. We further recall that these

were restricted by our assumptions on the decay of the eigenvalues of the covariance operator B̄ = B̄ν .

It is therefore very much motivated by the general philosophy of a distribution free approach to the

regression problem to also consider classes of much more general eigenvalue decay as µj � j−b and

to prove minimax optimality for rates of convergence for the associated sets of allowed marginals. We

remind the reader that minimax optimality of rates of convergence is a global property of the set of

allowed marginals (or, more exactly, of the whole model class) depending in some sense on the worst

possible case of convergence within that set. One therefore expects that broadening that set will lead to

less refined notions of minimax optimal rates as compared to our previous more specific class. This is

precisely what we will see (compare Remark 3.1.1).

But, for complex data, there is no strong reason to expect that the decay of the eigenvalues of the

associated covariance operator should be strictly polynomial, and we would like to cover behavior as

general as possible for the eigenvalue decay, for instance:

• decay rates including other slow varying functions, such as µv,i � i−b(log i)c(log log i)d ;

• eigenvalue sequence featuring plateaus separated by relative gaps;

• shifting or switching along the sequence between different polynomial-type regimes,

which all might correspond to different types of structure of the data at different scales. With the
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distribution-free point of view in mind, we therefore try to characterize minimax rates for target function

classes of the form (2.5.8), striving for assumptions as weak as possible on the eigenvalue sequence. In

this section we present a first result in this direction (i.e. beyond the regular case) and show that kernel

methods also achieve minimax optimal rates in this general case.

3.1 Setting

For the sake of the reader we briefly recall the setting of Chapter 2 . We let Z = X×R denote the sample

space, where the input space X is a standard Borel space endowed with a fixed unknown probability

measure ν. Let P denote the set of all probability distributions on X. The kernel space H1 is assumed

to be separable, equipped with a measurable positive semi-definite kernel K. Moreover, we consider the

covariance operator B̄ = B̄ν = E[B̄x] = E[F̄X ⊗ F̄ ?X ], which can be shown to be positive, self-adjoint

and trace class (and hence in particular compact). Given a sample x = (x1, . . . , xn) ∈ Xn, we define the

sampling operator S̄x : H1 −→ Rn by (Sxf)i = 〈f, F̄xi〉H1 . The empirical covariance operator is given

by B̄x = S̄?xS̄x. Throughout we denote by µj the positive eigenvalues of B̄ in decreasing order, satisfying

0 < µj+1 ≤ µj for all j > 0 and µj ↘ 0. For any t > 0 we denote by

F(t) := #{j ∈ N : µj ≥ t} (3.1.1)

the cardinality of eigenvalues above the threshold t. Note that F is left-continuous and decreasing as t

grows with F(t) = 0 for any t > 1 , and F(t) has limit +∞ as t ↓ 0. Given r > 0, we set G(t) := t2r+1

F(t)

(possibly taking the value ∞ if F(t) = 0), which is left-continous and increasing on (0, 1] with G(0+) = 0.

Define the generalized inverse for any u > 0 by

G−1(u) := max {t : G(t) ≤ u} . (3.1.2)

Some properties of F,G and G−1 are collected in Lemma 3.4.1. The generalized inverse G−1 will be

convenient to formulate our main result in Section 3.2. We emphasize that the functions F,G and G−1 by

definition all depend on the sampling distribution ν (via the covariance operator B̄ = B̄ν). For brevity,

this dependence will be suppressed in our notation.

We shall keep the assumptions from our earlier Sections 2.2.3 and 2.2.6 with the exception of broadening

the allowed window of eigenvalues.

More precisely, we shall assume (2.2.10) for the conditional expectation wrt. ρ of Y given X, the

Bernstein-type assumption on the observation noise distribution (2.2.5) and the Source Condition (2.2.8).

The class of spectral regularization procedures is given in Section 2.2.6. We enlarge the allowed class of

marginals by introducing:

P>(ν∗) := {ν ∈ P : ∃j0 ≥ 1 s.th.
µ2j

µj
≥ 2−ν∗ ∀j ≥ j0} , (3.1.3)

P<(ν∗) := {ν ∈ P : ∃j0 ≥ 1 s.th.
µ2j

µj
≤ 2−ν

∗
∀j ≥ j0} . (3.1.4)

Let θ = (M,σ,R) ∈ R3
+ (remember that (σ,M) are the parameters in the Bernstein moment condition
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(2.2.5), in particular σ2 is a bound on the noise variance). Then the class of models which we will consider

will be defined as

Mθ := M(θ, r,P′) := { ρ(dx, dy) = ρ(dy|x)ν(dx) : ρ(·|·) ∈ K(Ων(r,R)), ν ∈ P′ } , (3.1.5)

with P′ = P>(ν∗) or P′ = P<(ν∗) and 1 < ν∗ ≤ ν∗ .

Remark 3.1.1. We emphasize that the classes of marginals considered in (3.1.3) and (3.1.4) are larger

than the classes introduced in Section 2.2.3, but the results which we shall obtain are less refined. To

clarify this point, we remark that it follows immediately from the definitions that

P>(b, α) ∩ P<(b, β) ⊂ P>
(
b− log2

(
α

β

))
and

P>(b, α) ∩ P<(b, β) ⊂ P<
(
b− log2

(
β

α

))
.

We shall prove that in the setting of this chapter rates of convergence depend on the values of ν∗ and ν∗.

Specialized to our previous classes this means that the prefactors α, β now enter the rates of convergence

(which previously only depended on the exponent b). In other words, the results of this section on the

enlarged classes of marginals do not reproduce the more refined results of Section 2.3 for the previous

classes of marginals.

Remark 3.1.2. Finally, we remark that the condition in (3.1.3) implies a ploynomial lower bound on

the eigenvalues in the following way: From µ2kj0 ≥ 2−kν∗µj0 one has

µj ≥ Cj0,ν∗j−ν∗ , for any j ≥ j0 , (3.1.6)

with Cj0,ν∗ = jν∗0 µj0 . In particular, if
µ2j

µj
≥ 2−ν∗ holds for any j ≥ 1, we have P>(ν∗) ⊂ P>(ν∗, µ1).

The bound (3.1.6) will be important for deriving an adaptive estimator in Chapter 5, Example 3 , since

it imposes a lower bound for the eigenvalue counting function F(λ), provided λ is sufficiently small (see

Lemma 3.4.4). A similar upper bound follows from (3.1.4):

µj ≤ Cj0,ν∗j−ν
∗
, for any j ≥ j0 , (3.1.7)

with Cj0,ν∗ = jν
∗

0 µj0 .

3.2 Main results

Here we present our main results: Upper rates and minimax lower rates (which in the setting of this

chapter turn out to be automatically strong), yielding minimax-optimality.

Concerning notation, we recall that, given a sample z = (x,y) ∈ (X × R)n, we define the estimator fλz

for a suitable a-priori parameter choice λ = λn by

fλnz := gλn(B̄x)S̄?xy . (3.2.1)

Theorem 3.2.1 (Upper rate). Consider the model Mθ := M(r,R,P>(ν∗)) as defined in 3.1.5, where
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r > 0 and ν∗ > 0 are fixed and θ := (R,M, σ) ∈ R3
+. Given a sample z = (x,y) ∈ (X × R)n, define fλz

as in (3.2.1), using a regularization function of qualification q ≥ r + s, with the parameter sequence

λn,θ = min

(
G−1

(
σ2

R2n

)
, 1

)
. (3.2.2)

Then for any s ∈ [0, 1
2 ], the sequence

an,θ = RG−1

(
σ2

R2n

)r+s
(3.2.3)

is an upper rate of convergence in Lp for all p ≥ 1, for the interpolation norm of parameter s, for the

sequence of estimated solutions (f
λn,θ
z ) over the family of models (Mθ)θ∈R3

+
, i.e.

sup
θ∈R3

+

lim sup
n→∞

sup
ρ∈Mθ

Eρ⊗n
[
‖B̄sν(fρ − f

λn,θ
z )‖pH1

] 1
p

an,θ
<∞ .

Theorem 3.2.2 (Minimax lower rate). Let r > 0, R > 0, θ := (R,M, σ) ∈ R3
+ and ν∗ > 0 be fixed.

Let ν be a distribution on X belonging to P>(ν∗). Then the sequence (an,θ) defined in (3.2.3) is a strong

minimax lower rate of convergence in Lp for all p ≥ 1 , for the model family Mθ := M(r,R,P>(ν∗)) , i.e.

inf
θ∈R3

+

lim inf
n→∞

inf
f•

sup
ρ∈Mθ

Eρ⊗n
[∥∥B̄sν(fρ − fz)

∥∥p
H1

] 1
p

an,θ
> 0 .

Corollary 3.2.3 (Minimax optimal rate). Let r > 0, ν∗ ≥ ν∗ > 0 be fixed and assume P′ = P<(ν∗) ∩
P>(ν∗) 6= ∅ . Then the sequence of estimators f

λn,θ
z as defined in (3.2.1) is strong minimax optimal in

Lp for all p ≥ 1, under the assumptions and parameter sequence (3.2.2) of Theorem 3.2.1 , over the class

Mθ := M(r,R,P′) , θ := (R,M, σ) ∈ R3
+ .

3.3 Discussion

Range of applications. The assumptions we made on the spectrum decay, namely (3.1.3) and (3.1.4),

are much weaker than the usual assumptions of polynomial decay on the eigenvalues. Therefore, our

results establish that in this much broader situation, usual kernel regularization methods can achieve

minimax rates over the regularity classes Ων(r,R). In particular, these conditions accommodate for

changing behavior of the spectrum at different scales, as well as other situations delineated in the intro-

duction. Still, our conditions do not encompass totally arbitary sequences: (3.1.3) in particular implies

that the eigenvalues cannot decrease with a polynomial rate with exponent larger than ν∗ . While the

latter constant can be chosen arbitrary large and only results in a change of constant factor in the rates,

it excludes for example exponentially decreasing eigenvalues.

While we do not prove results about exponential eigenvalue decay on the level of sharpness of our results

in this thesis (in particular, keeping track of the noise variance and the radius in the source condition), we

are convinced that - with some additional work - such results are entirely accessible using only techniques

of the present thesis (at least staying within the framework of our Hölder type source conditions). For
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somewhat less elaborate results in this direction we refer to [62] . However, we remark that in such

cases (typically observed when using the Gaussian kernel), in practice the kernel parameters (e.g. the

bandwidth) are also tuned in addition to λ , which might reflect the fact that for badly tuned bandwidth of

the kernel, tuning of the regularization parameter λ alone might not give satisfactory (minimax) results.

On the other hand, the results we obtained might provide an additional motivation for using “rougher”

kernels than Gaussian, leading to a softer decay of eigenvalues, in which case minimax adaptivity is at

hand over a large regularity class. The latter is true however only if the qualification of the method is

large, which is not the case for the usual kernel ridge regression: hence, rougher kernels should be used

with methods having a large qualification (for instance L2 boosting).We emphasize, however, that in the

inverse learning setting - in contradistinction to the direct learning setting - one ist not free to choose

the kernel; a given kernel is then part of the overall problem.

As a general remark we want to add that while we expect deep relations between a given structure of

data and types of eigenvalue decay, a precise analysis of such relations is very much open both on the

level of examination of special examples and general mathematical theorems.

Adaptivity. Our results establish the existence of a suitable regularization parameter λ such that the

associated estimator attains the minimax rate if the regularity class parameter are known in advance.

The latter is of course not realistic, but in the case of L2 (prediction) error, the principle of using a

grid for λ and then using a hold-out sample to select a value of λ from the data is known to be able to

select a value close to the optimal choice in a broad domain of situations (see, for instance, [21]), so that

in principle we can generalize our results to data-dependent minimax adaptivity even in the absence of

a priori knowledge of the regularity parameters. For a much more detailed discussion of adaptivity we

refer to the last chapter of this thesis. In particular, using a (new) version of the balancing principle or

Lepskii’s method adapted to the framework of this thesis - which is different from hold-out - we shall

obtain estimates in H1-norm and all interpolating norms.

3.4 Proofs

The proof of Theorem 3.2.1 and Theorem 3.2.2 will be given not only in both H1- norm and L2(ν)-norm,

but also for all intermediate norms ||Bsf ||H1 , where s ∈ [0, 1/2]. Note that s = 0 corresponds to H1-

norm, while s = 1/2 corresponds to L2(ν)-norm.

To simplify notation we will adopt the following conventions: The dependence of multiplicative constants

C on various parameters will (generally) be omitted, except for σ,M,R, η and n which we want to track

precisely . The expression “for n big enough” means that the statement holds for n ≥ n0 , with n0

potentially depending on all model parameters (including σ,M and R), but not on η .

3.4.1 Preliminaries

We start by collecting some useful properties for the functions F and G in the following lemma.
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Lemma 3.4.1. 1. Let c ≤ 1 be fixed. Then for any t ,

G(ct) ≤ cG(t) .

2. Assume ν ∈ P<(ν∗) holds. Let C ≥ 1 be fixed. Then for any t small enough,

F(t) ≤ 4C
1
ν∗ F(Ct) and G(Ct) ≤ 4C2r+1+ 1

ν∗ G(t) .

3. Assume ν ∈ P<(ν∗). For any u > 0 it holds G
(
G−1(u)) ≤ u and for u small enough,

G
(
G−1(u)) ≥ u

4
.

Proof of Lemma 3.4.1. For point 1 of the Lemma, let c ≤ 1 be fixed; just write by definition of G and

the fact that F is nonincreasing:

G(ct) =
c2r+1t2r+1

F(ct)
≤ c2r+1G(t) ≤ cG(t) .

For point 2, let j0 ≥ 1 such that
µ2j

µj
≤ 2−ν

∗
for any j ≥ j0 and let t0 be small enough such that

F(t0) ≥ j0 .

Let C ≥ 1 be fixed and t ≤ C−1t0, so that kt := F(Ct) ≥ j0 . By definition µkt+1 < Ct . Furthermore for

any i ≥ 1 we have µ2i(kt+1) ≤ 2−iν
∗
µ(kt+1) by repetition. Choosing i := 1 + b log2 C

ν∗ c, we have 2−iν
∗
C ≤ 1

and 2i ≤ 2C
1
ν∗ . Combining the first inequality with what precedes we deduce µ2i(kt+1) < t and thus

F(t) ≤ 2i(kt + 1)− 1 ≤ 4C
1
ν∗ F(Ct) . We deduce

G(Ct) =
C2r+1t2r+1

F(Ct)
≤ 4C2r+1+ 1

ν∗ t2r+1

F(t)
= 4C2r+1+ 1

ν∗ G(t) .

We turn to point 3. Since G is left-continuous, the supremum in the definition (2.2) of its inverse G−1 is

indeed a maximum (also the set over which the max is taken is nonempty since G(0+) = 0 and u > 0),

and therefore must satisfy G(G−1(u)) ≤ u.

Consider now F(t+) := # {j ∈ N : µi > t}, let t′0 be small enough such that F(t′0) ≥ 2j0 , and assume

t < min(t′0, µ1). The second component of the latter minimum ensures F(t+) ≥ 1. If t 6∈ {µi, i ≥ 1}, then

F is continous in t and F(t) = F(t+). Otherwise, t = µk with k = F(t) ≥ 2j0 , so that µk
µb k

2
c
≤ 2−ν

∗
< 1 ,

that is to say t < µb k2 c
, implying F (t+) ≥ bk2 c ≥

1
2F(t)− 1 and finally F(t) ≤ 4F(t+) .

Consider now u small enough such that t = G−1(u) < min(t′0, µ1) as above. Then G(t+) ≥ u and

G(G−1(u)) = G(t) =
t2r+1

F(t)
≥ 1

4

t2r+1

F(t+)
=

1

4
G(t+) ≥ u

4
.

Lemma 3.4.2 (Effective dimensionality, upper bound). Assume ν ∈ P<(ν∗). The effective dimension
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(defined in (2.1.2)) satisfies for any λ sufficiently small and some Cν∗ <∞

N(λ) ≤ Cν∗F(λ) . (3.4.1)

Proof of Lemma 3.4.2. Let j0 ≥ 1 such that
µ2j

µj
≤ 2−ν

∗
for any j ≥ j0 and let λ0 be small enough such

that F(λ0) ≥ j0 . For λ ≤ λ0, denote jλ := F(λ). Then, using µj < µj + λ and λ < µj + λ, we obtain

N(λ) =

jλ∑
j=1

µj
µj + λ

+
∑
j>jλ

µj
µj + λ

≤ jλ +
1

λ

∑
j>jλ

µj .

Focussing on the tail sum we see that

∑
j≥jλ

µj =

∞∑
l=0

(jλ+1)2l+1−1∑
j=(jλ+1)2l

µj ≤ (jλ + 1)µjλ+1

∞∑
l=0

2l2−lν∗ = (jλ + 1)µjλ+1(1− 21−ν∗)−1

≤ λ(F(λ) + 1)(1− 21−ν∗)−1 ,

where the first inequality comes from the fact that the sequence (µj)j is decreasing and by repetition;

and the second inequality comes from the definition of jλ. Collecting all ingredients we obtain for any

λ ≤ λ0:

N(λ) ≤ F(λ)(1 + 2(1− 21−ν∗)−1) .

Lemma 3.4.3 (Effective dimensionality, lower bound). The effective dimension (defined in (2.1.2))

satisfies for any λ ∈ [0, 1] and ν ∈ P

N(λ) ≥ 1

2
F(λ) . (3.4.2)

Proof. For λ ∈ [0, 1] denote jλ := F(λ). Since µj > λ for any j ≤ jλ, one has

N(λ) =

jλ∑
j=1

µj
µj + λ

+
∑
j>jλ

µj
µj + λ

≥
jλ∑
j=1

µj
µj + λ

≥ 1

2
jλ =

1

2
F(λ) .

Lemma 3.4.4 (Counting Function, lower bound). Assume ν ∈ P>(ν∗). Then for any λ small enough

F(λ) ≥ C ′ν∗λ
− 1
ν∗ ,

for some C ′ν∗ > 0.

Proof. Assume
µ2j

µj
≥ 2−ν∗ holds for any j ≥ j0. Denote jλ := F(λ). Let λ0 ∈ (0, 1] such that jλ ≥ j0 for

any λ ≤ λ0. Then, by definition of jλ and from (3.1.6), for any λ ≤ λ0

µjλ ≥ max
(
λ,Cν∗j

−ν∗
λ

)
.

51



In case Cν∗j
−ν∗
λ ≥ λ we have the chain of inequalities

µjλ ≥ Cν∗j
−ν∗
λ ≥ λ > µjλ+1 ≥ Cν∗(jλ + 1)−ν∗ .

Since 1 ≤ jλ, we obtain (jλ+1)−1 ≥ 1
2j
−1
λ and thus λ > Cν∗2

−ν∗j−ν∗λ , implying the result. If λ ≥ Cν∗j
−ν∗
λ

we immediately have the bound.

Corollary 3.4.5 (Counting Function, upper bound). Assume ν ∈ P<(ν∗). Then for any λ small enough

F(λ) ≤ Cν∗λ−
1
ν∗ , Cν∗ = 4µ

1
ν∗
1 .

Proof. The proof follows from Lemma 3.4.1 by setting C = µ1
1
λ , which is larger than 1 provided λ is

sufficiently small. Then

F(λ) ≤ 4
(µ1

λ

) 1
ν∗

F(µ1) .

Note that F(µ1) = 1.

3.4.2 Proof of upper rate

The proof of Theorem 3.2.1 relies on the non-asymptotic result, established in Section 2.5, Proposition

2.5.2 and Proposition 2.5.3. We repeat these results in streamlined form for better understanding.

Proposition 3.4.6. Let s ∈ [0, 1
2 ] and assume fρ ∈ Ων(r,R), with ν ∈ P, r > 0 and R > 0. Let fλz be

defined as in (3.2.1) using a regularization function of qualification q ≥ r + s . Then, for any η ∈ (0, 1),

λ ∈ (0, 1] and n ∈ N satisfying

n ≥ 64λ−1 max(N(λ), 1) log2 (8/η) , (3.4.3)

we have with probability at least 1− η:

∥∥B̄sν(fρ − fλz )
∥∥
H1
≤ CN log(8η−1)λs

(
R

(
λr +

1√
n
1(1,∞)(r)

)
+

(
M

nλ
+

√
σ2N(λ)

nλ

))
. (3.4.4)

Proof of Theorem 3.2.1: Let all assumptions of Theorem 3.2.1 be satisfied. Provided n is big enough, we

have F(λn) ≥ 1 and by Lemma 3.4.2 it holds N(λn) ≤ C·λ2r+1
n /G(λn), following from the definition of G.

By the definition of λn and by Lemma 3.4.1, (iii), for n sufficiently large, G(λn) ≥ Cσ,R 1
n , so assumption

(3.4.3) is satisfied if log (8/η) ≤ Cσ,Rλ−rn . Hence, with probability at least 1− η

∥∥B̄s(fρ − fλnz )
∥∥
H1
≤ CN log(8η−1)λsn

(
R

(
λrn +

1√
n
1(1,∞)(r)

)
+

(
M

nλn
+ σ

√
λ2r
n

nG(λn)

))
. (3.4.5)

Observe that the choice (3.2.2) implies that n−
1
2 = o(λrn), since σ2/R2n = G(λn) ≤ λ2r+1

n . Therefore, up

to requiring n large enough and multiplying the front factor by 2 , we can disregard the term 1/
√
n in

the second factor of the above bound. Similarly, one can readily check that

M

nλn
= o

(√
λ2r
n

nG(λn)

)
,
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so that we can also disregard the term (nλn)−1 for n large enough and concentrate on the two remaining

main terms of the upper bound in (3.4.5), which are Rλrn and σλrnG(λn)−
1
2n−

1
2 . The proposed choice

of λn balances precisely these two terms and easy computations lead to

∥∥B̄s(fρ − fλnz )
∥∥
H1
≤ CN log(8η−1)Rλr+sn , (3.4.6)

with probability at least 1− η, provided η ≥ ηn := 8 exp (−Cσ,Rλ−rn ) and provided n is sufficiently large.

Note that λ−rn is increasing and so ηn → 0 as n→∞.

For establishing a less accurate bound which covers the whole interval (0, 1] we may use (2.5.5) and 2.5.13

from the previous chapter. We conclude that

P
[ ∥∥B̄s(fρ − fλz )

∥∥
H1
≥ a′ + b′ log η−1

]
≤ η ,

for all η ∈ (0, 1] , with a′ := Cσ,M,R max
(

1
λ
√
n
, 1
)

and b′ :=
Cσ,M
λ
√
n

. The result follows exactly as in the

proof of Theorem 2.3.4 in the regular case by applying Corollary A.3.2.

3.4.3 Proof of minimax lower rate

Let r > 0, R > 0 and s ∈ [0, 1/2] be fixed. Assume the generating distribution ρ belongs to the class

Mθ := M(θ, r,P′), with θ = (M,σ,R) ∈ R3
+ and P′ = P>(ν∗), as defined in (3.1.5). In order to obtain

minimax lower bounds, we proceed as in the previous chapter by applying the general reduction scheme

from Section A.5. Again, The main idea is to find Nε functions f1, . . . , fNε belonging to the source

sets Ων(r,R) , depending on ε sufficiently small, with Nε → ∞ as ε → 0, such that any two of these

functions are ε-separated with respect to ||B̄s(·)||H1
- norm, but such that the associated distributions

ρfj =: ρj ∈M (see definition (3.4.8) below) have small Kullback-Leibler divergence K to each other and

are therefore statistically close. We shall use

inf
f̂•

sup
ρ∈Mθ

Ez∼ρ⊗n
[∥∥B̄s(fρ − fz)

∥∥p
H1

] 1
p ≥ ε inf

f̂•

max
1≤j≤Nε

ρj

[∥∥∥B̄s(fρ − f̂z)
∥∥∥
H1

≥ ε
]
, (3.4.7)

(see (A.5.1)) , where the infimum is taken over all estimators f̂• of fρ. The above RHS is then lower

bounded through Proposition A.5.1 given in Section A.5 which is a consequence of Fano’s lemma.

We will establish the lower bounds in the particular case where the distribution of Y given X is Gaussian

with variance σ2 (which satisfies the Bernstein noise assumption (2.2.5) with M = σ) . The main effort is

to construct a finite subfamily belonging to the model of interest and suitably satisfying the assumptions

of Proposition A.5.1 in Section A.5. More precisely, to each f ∈ Ων(r,R) and x ∈ X we associate the

following measure:

ρf (dx, dy) := ρf (dy|x)ν(dx) , where ρf (dy|x) := N(S̄xf, σ
2) . (3.4.8)

Then the measure ρf belongs to the class M(θ, r,P>(ν∗)) and given f1, f2 ∈ Ων(r,R) , the Kullback

divergence between ρ1 and ρ2 satisfies

K(ρ1, ρ2) =
1

2σ2

∥∥√B(f1 − f2)
∥∥2

H1
. (3.4.9)
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We will need the following Proposition:

Proposition 3.4.7. For any ε > 0 sufficiently small (depending on the parameters ν∗, r, R, s), there exist

Nε ∈ N and functions f1, . . . , fNε ∈ Ων(r,R) satisfying

1. For any i, j = 1, . . . , Nε with i 6= j one has
∥∥ B̄s(fi − fj) ∥∥2

H1
> ε2 and

K(ρi, ρj) ≤ Cν∗,s R2σ−2
( ε
R

) 2r+1
r+s

, (3.4.10)

2. log(Nε − 1) ≥ 1
36F(2ν∗

(
ε
R

) 1
r+s ) .

Proof of Proposition 3.4.7. We recall that we denote (el)l∈N an orthonormal family of H1 of eigenvectors

of B̄, corresponding to the eigenvalues (µl)l∈N. Assume the sampling distribution belongs to P>(ν∗) , i.e.
µ2j

µj
≥ 2−ν∗ for any j ≥ j0, for some j0 ∈ N. Let max := max(28, j0). Choose ε < 2−ν∗(r+s)R µmax and

pick m = m(ε) := F(2ν∗(εR−1)
1
r+s ). Note that m ≥ 28, following from the choice of ε, so Lemma 2.6.2

applies.

Let Nm > 3 and π1, . . . , πNm ∈ {−1,+1}m be given by Lemma 2.6.2 and define

gi :=
ε√
m

2m∑
l=m+1

π
(l−m)
i

(
1

µl

)r+s
el . (3.4.11)

We have by the definition of m

‖gi‖2H1
=
ε2

m

2m∑
l=m+1

(
1

µl

)2(r+s)

≤ ε2µ
−2(r+s)
2m ≤ ε222ν∗(r+s)µ−2(r+s)

m ≤ R2 .

For i = 1, . . . , Nm let fi := B̄rgi ∈ Ων(r,R), with gi as in (3.4.11). Then

∥∥ B̄s(fi − fj) ∥∥2

H1
≥ ε2 ,

as a consequence of Lemma 2.6.2. For i = 1, . . . , Nε, let ρi = ρfi be defined by (3.4.8). Then, using the

definition of m, the Kullback divergence satisfies

K(ρi, ρj) =
1

2σ2

∥∥√B̄(fi − fj)
∥∥2

H1
≤ (2σ)−2µ1−2s

m+1ε
2

≤ 2ν∗(1−2s) (2σ2)−1R2
( ε
R

) 1+2r
r+s

,

which completes the proof of the first part. Finally, again by Lemma 2.6.2 and the definition of m

log(Nm − 1) ≥ m

36
=

1

36
F
(

2ν∗
(
εR−1

) 1
r+s

)
and the proof is complete.

Proof of Theorem 3.2.2: Our aim is to apply Proposition A.5.1 and we will check that all required condi-

tions are satisfied. From Proposition 3.4.7 we deduce that for any ε sufficiently small, there exists Nε and

functions f1, . . . , fNε ∈ Ων(r,R) fulfilling points 1 and 2 . The first part of point 1 gives requirement
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(i) of Proposition A.5.1. Requirement (ii) follows directly from (3.4.10) and from point 2 in Proposition

3.4.7:

1

Nε − 1

Nε−1∑
j=1

K(ρ⊗nj , ρ⊗nNε ) ≤ n36C ′ν∗,s R
2σ−2 G

(
2ν∗
(
εR−1

) 1
r+s

)
log(Nε − 1)

=: ω log(Nε − 1) ,

with C ′ν∗,s = 2−2ν∗(r+s)−1 < 1. Define ε := 2−ν∗ R
288G

−1( σ2

R2n )r+s , then by Lemma 3.4.1, the requirements

of Proposition A.5.1 will hold (in particular, ω < 1/8) for any n sufficiently large and

inf
f̂•

max
1≤j≤Nε

ρ⊗nj

( ∥∥B̄sν(f̂• − fj)
∥∥
H1
≥ ε

2

)
≥

√
Nε − 1

1 +
√
Nε − 1

(
1− 2ω −

√
2ω

log (Nε − 1)

)
> 0 .

Taking the liminf finishes the proof.
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Chapter 4

Distributed Learning

In this chapter we treat distributed learning algorithms in the regular case (i.e. polynomial decay of

eigenvalues of the covariance operator, Hölder-type source condition) which represent one strategy to deal

with large data sets. A central problem is in analyzing how far the original sample may be divided into

subsamples without destroying the minimax optimality for the rates of convergence and the appropriate

choice of regularization parameter. The maximal number of subsamples as a fraction of the total sample

size consistent with this requirement is not yet known. Therefore we complement our analytical result

(giving a sufficient condition) by numerical experiments with the aim of finding evidence for necessity.

After explaining the basic algorithm in Section 4.1, we present our main results in Section 4.2 and our

numerical analysis in Section 4.3. Following a brief discussion in Section 4.4 we provide proofs of our

main results in Section 4.5.

4.1 Distributed Learning Algorithm

We let D = {(xj , yj)}nj=1 ⊂ (X×Y)n be the dataset, which we partition into m disjoint subsets D1, ..., Dm,

each having size n
m . In the following, we assume that the total sample size n is divisible by m. Denote

the jth data vector, 1 ≤ j ≤ m, by (xj ,yj) ∈ (X × R)
n
m . On each subset we compute a local estimator

for a suitable a priori parameter choice λ = λn according to

fλnDj := gλn(B̄xj )S̄
?
xjyj . (4.1.1)

By fλD we will denote the estimator using the whole sample m = 1. The final estimator is given by simply

averaging the local ones:

f̄λD :=
1

m

m∑
j=1

fλDj . (4.1.2)
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4.2 Main Results

This section presents our main results. Theorem 4.2.1 and Theorem 4.2.2 contain separate estimates on

the approximation error and the sample error and lead to Corollary 4.2.3 which gives an upper bound

for the error
∥∥B̄s(fρ − f̄λD)

∥∥
H1

and presents an upper rate of convergence for the sequence of distributed

learning algorithms.

The minimax optimal rate for the single machine problem as presented in Theorem 2.3.4 yields an estimate

on the difference between the single machine and the distributed learning algorithm in Corollary 4.2.4.

As in the previous Chapter 2 , we want to track the precise behavior of these rates not only for what

concerns the exponent in the number of examples n, but also in terms of their scaling (multiplicative

constant) as a function of the noise variance σ2 and the complexity radius R in the source condition. For

this reason, we again introduce a notion of a family of rates over a family of models. More precisely, we

consider an indexed family (Mθ)θ∈Θ , where for all θ ∈ Θ , Mθ is a class of Borel probability distributions

on X× R satisfying the basic general assumptions (2.2.4) and (2.2.5). We consider rates of convergence

in the sense of the p-th moments of the estimation error, where 1 ≤ p <∞ is a fixed real number.

Our proofs are based on a classical bias-variance decomposition as follows: Introducing

f̃λD =
1

m

m∑
j=1

gλ(B̄xj )B̄xjfρ , (4.2.1)

we write

B̄s(fρ − f̄λD) = B̄s( fρ − f̃λD ) + B̄s( f̃λD − f̄λD )

=
1

m

m∑
j=1

B̄srλ(B̄xj )fρ +
1

m

m∑
j=1

B̄sgλ(B̄xj )(B̄xjfρ − S∗xjyj) . (4.2.2)

In all the forthcoming results in this section, we let s ∈ [0, 1
2 ], p ≥ 1 and consider the model Mσ,M,R :=

M(r,R,P<(b, β)) where r > 0, b > 1 and β > 0 are fixed, and θ = (R,M, σ) varies in Θ = R3
+. Given

a sample D ⊂ (X × R)n of size n, define f̄λnD , fλnD as in Section 4.1 and f̃λnD as in (4.2.1), using a

regularization function gλ of qualification q ≥ r + s, with parameter sequence

λn := λn,(σ,R) := min

((
σ2

R2n

) b
2br+b+1

, 1

)
, (4.2.3)

independent of M . Furthermore, define the sequence

an := an,(σ,R) := R

(
σ2

R2n

) b(r+s)
2br+b+1

. (4.2.4)

We recall from the introduction that we shall always assume that n is a multiple of m. With these

preparations, our main results are:
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Theorem 4.2.1 (Approximation Error). If the number m of subsample sets satisfies

m ≤ nα , α <
2bmin{r, 1}
2br + b+ 1

, (4.2.5)

then

sup
(σ,M,R)∈R3

+

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(fρ − f̃λnD )

∥∥p
H1

] 1
p

an
<∞ .

Theorem 4.2.2 (Sample Error). If the number m of subsample sets satisfies

m ≤ nα , α <
2br

2br + b+ 1
, (4.2.6)

then

sup
(σ,M,R)∈R3

+

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(f̃λnD − f̄λnD )

∥∥p
H1

] 1
p

an
<∞ .

And, as a consequence (by (4.2.2) and by applying the triangle inequality):

Corollary 4.2.3. If the number m of subsample sets satisfies

m ≤ nα , α <
2bmin{r, 1}
2br + b+ 1

, (4.2.7)

then the sequence (4.2.4) is an upper rate of convergence in Lp, for the interpolation norm of parameter

s, for the sequence of estimated solutions (f̄
λn,(σ,R)

D ) over the family of models (Mσ,M,R)(σ,M,R)∈R3
+

, i.e.

sup
(σ,M,R)∈R3

+

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(fρ − f̄λnD )

∥∥p
H1

] 1
p

an
<∞ .

Combining Corollary 4.2.3 with Theorem 2.3.4 immediately yields:

Corollary 4.2.4. If the number m of subsample sets satisfies

m ≤ nα , α <
2bmin{r, 1}
2br + b+ 1

, (4.2.8)

then

sup
(σ,M,R)∈R3

+

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(fλnD − f̄λnD )

∥∥p
H1

] 1
p

an
<∞ .

4.3 Numerical Studies

In this section we numerically study the reconstruction error (corresponding to s = 0) in Corollary 4.2.3

(in expectation with p = 2) both in the single machine and distributed learning setting. Our main interest

is in finding numerical evidence for the ”optimality” of our theoretical exponent α parametrizing the size

of subsamples in terms of the total sample size, m = nα. In addition we shall demonstrate in which way

parallelization serves as an additional regularization.
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More specifically, we shall analyze our Example 2.2.6 (Differentiating a real function) which we recall

here. We set H1 = {f ∈ L2[0, 1] : E[f ] = 0} and let A : H1 −→ Im(A) = H1
0 [0, 1] be given by

[Af ](x) =

∫ x

0

f(t) dt = 〈f, Fx〉L2 , (4.3.1)

where Fx(t) = 1[0,x](t)− x. The kernel is given by K(x, t) = 〈Fx, Ft〉L2 = x ∧ t− xt.
For all experiments in this section, we simulate data from the inverse regression model

Yi = Afρ(Xi) + εi , i = 1, ..., n ,

where the input variables Xi ∼ Unif [0, 1] are uniformly distributed and the noise variables εi ∼ N(0, σ2)

are normally distributed with standard deviation σ = 0.005. We choose the target function fρ according

to two different cases, namely r < 1 (low smoothness) and r = ∞ (high smoothness). To accurately

determine the degree of smoothness r > 0, we apply Proposition 4.3.1 below by explicitly calculating the

Fourier coefficients (〈fρ, ej〉H1
)j∈N, where ej(x) =

√
2 cos(πjx), for j ∈ N∗, forms an ONB of H1. Recall

that the rate of eigenvalue decay is explicitly given by b = 2, meaning that we have full control over all

parameters in (4.2.8). From [34] we need

Proposition 4.3.1. Let H1,H2 be separable Hilbert spaces and S : H1 −→ H2 be a compact linear

operator with singular system {σj , ϕj , ψj}1. Denoting by S† the generalized inverse 2 of S, one has for

any r > 0 and g ∈ H2:

g is in the domain of S† and S†g ∈ Im((S∗S)r) if and only if

∞∑
j=0

| 〈g, ψj〉H2
|2

σ2+4r
j

< ∞ .

In our case, H1 is as above, H2 is L2([0, 1]) with Lebesgue measure and S = A (as a map from H1 to

H2). Thus Im(S) = H1
0 [0, 1] is dense in H2 making (Im(S))⊥ trivial and giving SS† = 1 on Im(S).

Furthermore, ϕj = ej is a normalized eigenbasis of B = S∗S with eigenvalues σ2
j = (πj)−2. Since

||Aej ||2L2 = σ2
j we obtain for g = Af ∈ Im(A)

〈g, ψj〉L2 = 〈Af, Aej
||Aej ||

〉L2 = σj〈f, ej〉L2 .

Thus, applying Proposition 4.3.1 to g = Af we obtain

Corollary 4.3.2. For S = A and B = S∗S as above we have for any r > 0:

f ∈ Im(Br) if and only if
∞∑
j=1

j4r|〈f, ej〉L2 |2 <∞ .

Thus, as expected, abstract smoothness measured by the parameter r in the source condition corresponds

in this special case to decay of the classical Fourier coefficients which - by the classical theory of Fourier

1i.e., the ϕj are the normalized eigenfunctions of S∗S with eigenvalues σ2
j and ψj = Sϕj/||Sϕj ||; thus S =

∑
σj〈ϕj , ·〉ψj

2the unique unbounded linear operator with domain Im(S) ⊕ (Im(S))⊥ in H2 vanishing on (Im(S))⊥ and satisfying
SS† = 1 on Im(S), with range orthogonal to the null space N(S)
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series - measures smoothness of the periodic continuation of f ∈ L2([0, 1]) to the real line.

Low smoothness

We choose fρ(x) = x − 1
2 which clearly belongs to H1. A straightforward calculation gives the Fourier

coefficient 〈fρ, ej〉 = −2(πj)−2 for j odd (vanishing for j even). Thus, by the above criterion, fρ satisfies

the source condition fρ ∈ Ran(Br) precisely for 0 < r < 0.75 . According to Theorem 2.3.4, the worst

case rate in the single machine problem is given by n−γ , with γ = 0.25 . Regularization is done using the

ν− method (see Example 2.2.21), with qualification q = ν = 1. Recall that the stopping index T serves

as the regularization parameter λ, where T ∼ λ−2. We consider sample sizes from the set

N := {500, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000} .

In the model selection step, we estimate the performance of different models and choose the oracle

stopping time T̂oracle by minimizing (an approximation of) the reconstruction error:

T̂oracle = arg min
T

 1

M

M∑
j=1

∥∥∥fρ − f̂Tj ∥∥∥2

H1

 1
2

over M = 30 runs (for any n ∈ N).

In the model assessment step, we partition the dataset intom ∼ nα subsamples, for any α ∈ {0, 0.05, 0.1, ..., 0.85}.
On each subsample we regularize using the oracle stopping time T̂oracle (determined by using the whole

sample). Corresponding to Corollary 4.2.3, the accuracy should be comparable to the one using the whole

sample as long as α < 0.5 . In Figure 4.1 (left panel) we plot the reconstruction error ||f̄ T̂ −fρ||H1
versus

the ratio α = log(m)/ log(n) for different sample sizes n ∈ N . We execute each simulation M = 30 times.

The plot supports our theoretical finding. The right panel shows the reconstruction error versus the total

number of samples n ∈ N using different partitions of the data. The black curve (α = 0) corresponds

to the baseline error (m = 0, no partition of data). Error curves below a threshold α < 0.6 are roughly

comparable, whereas curves above this threshold show a gap in performances. However, while this figure

correctly shows an error increasing with α, our data seem to be not sufficiently pushed into the asymptotic

domain to correctly predict the rate (given by the slope of the various approximate lines): Calculating

the slope from our data by the R-tool for linear regression gives Table 4.1.
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Figure 4.1: The reconstruction error ||f̄ToracleD −fρ||H1 in the low smoothness case. Left plot: Reconstruction error

curves for various (but fixed) sample sizes as a function of the number of partitions. Right plot: Reconstruction

error curves for various (but fixed) numbers of partitions as a function of the sample size (on log-scale).

Table 4.1: Estimated rates in low smoothness regime for different numbers of partitions. Theoretical
value is γ = 0.25 up to threshold α = 0.5 .

α γ̂ (γ = 0.25) 97.5% confidence interval

0 0.284 [0.265 , 0.303]

0.05 0.275 [0.257 , 0.293]

0.1 0.272 [0.247 , 0.298]

0.15 0.265 [0.250 , 0.279]

0.2 0.273 [0.261 , 0.285]

0.25 0.273 [0.258 , 0.290]

0.3 0.274 [0.262 , 0.286]

0.35 0.272 [0.248 , 0.296]

0.4 0.283 [0.264 , 0.302]

0.45 0.280 [0.261 , 0.299]

0.5 0.266 [0.252 , 0.280]

0.55 0.281 [0.262 , 0.300]

0.6 0.303 [0.281 , 0.326]

0.65 0.328 [0.314 , 0.342]

0.7 0.326 [0.308 , 0.344]

0.75 0.324 [0.300 , 0.348]

0.8 0.320 [0.299 , 0.341]

Clearly, the increasing values of γ̂ for 0.5 ≤ α ≤ 0.8 seem to be spurious, since our data have not yet

sufficiently reached the asymptotic domain. Thus the rate of convergence is not reliably predicted by our

data.
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In another experiment we study the performances in case of (very) different regularization: only parti-

tioning the data (no regularization), underregularization (higher stopping index) and overregularization

(lower stopping index). The outcome of this experiment amplifies the regularization effect of parallelizing.

Figure 4.2 shows the main point: Overregularization is always hopeless, underregularization is better. In

the extreme case of none or almost none regularization there is a sharp minimum in the reconstruction

error which is only slightly larger than the minimax optimal value for the oracle regularization parameter

and which is achieved at an attractively large degree of parallelization. Qualitatively, this agrees very well

with the intuitive notion that parallelizing serves as additional regularization. It is unclear if and how this

effect could be systematically used as a computational tool (possibly trading time saving parallelization

and avoiding the estimation of the correct regularization parameter against a loss in convergence).
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Figure 4.2: The reconstruction error ||f̄λD − fρ||H1 in the low smoothness case. Left plot: Error curves for

different stopping times for n = 500 samples, as a function of the number of partitions. Right plot: Error curves

for different stopping times for n = 5000 samples, as a function of the number of partitions.

We emphasize that numerical results seem to indicate that parallelization is possible to a slightly larger

degree than indicated by our theoretical estimate. A similar result was reported in the paper [95], which

also treats the low smoothness case. This point is not yet completely understood.

High smoothness

We choose fρ(x) = cos(2πx), which corresponds to just one non-vanishing Fourier coefficient and by our

criterion Corollary 4.3.2 has r = ∞ . In view of our main Corollary 4.2.3 this requires a regularization

method with higher qualification; we take the Gradient Descent method (see Example 2.2.20).

The appearance of the term 2bmin{1, r} in our theoretical result 4.2.3 gives a predicted value α = 0 and

implies that parallelization is strictly forbidden for infinite smoothness. This is clearly verified by our

computations which strongly support that the appearance of the above 2bmin{1, r} in the formula for

the maximal α is not just an artefact of technically suboptimal estimates.
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More specifically, the left panel in Figure 4.3 shows the absence of any plateau for the reconstruction error

as a function of α. This corresponds to the right panel showing that no group of values of α performs

roughly equivalently.
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Figure 4.3: The reconstruction error ||f̄λoracleD −fρ||H1 in the high smoothness case. Left plot: Reconstruction er-

ror curves for various (but fixed) sample sizes as a function of the number of partitions. Right plot: Reconstruction

error curves for various (but fixed) numbers of partitions as a function of the sample size (on log-scale).

Plotting different values of regularization in Figure 4.4 we again identify overregularization as hopeless,

while severe underregularization exhibits a sharp minimum in the reconstruction error. But its value at

roughly 0.25 is much less attractive compared to the case of low smoothness where the error is an order

of magnitude less.
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Figure 4.4: The reconstruction error ||f̄λD− fρ|| in the high smoothness case. Left plot: Error curves for different

stopping times for n = 500 samples, as a function of the number of partitions. Right plot: Error curves for

different stopping times for n = 5000 samples, as a function of the number of partitions.

Finally, Table 4.2 shows that, as expected, rates of convergence are really bad for α 6= 0 (especially so,

considering the confidence intervall).

Table 4.2: Estimated rates in high smoothness regime for different numbers of partitions. The theoretical
value is γ = 0.5 up to threshold α = 0 .

α γ̂ (γ = 0.5) 97.5% confidence interval

0 0.544 [0.428 , 0.660]

0.05 0.545 [0.463 , 0.628]

0.1 0.307 [0.227 , 0.387]

0.15 0.422 [0.281 , 0.563]

0.2 0.448 [0.346 , 0.550]

0.25 0.364 [0.302 , 0.426]

0.3 0.380 [0.295 , 0.465]

0.35 0.246 [0.136 , 0.356]

0.4 0.319 [0.225 , 0.413]

0.45 0.350 [0.272 , 0.428]

0.5 0.374 [0.250 , 0.497]

0.55 0.179 [0.013 , 0.346]

0.6 0.186 [0.026 , 0.347]

0.65 0.327 [0.121 , 0.533]

0.7 0.179 [0.026 , 0.331]

0.75 0.111 [-0.053 , 0.275]

0.8 0.145 [-0.109 , 0.399]
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4.4 Discussion

Minimax Optimality: We have shown that for a large class of spectral regularization methods the error

of the distributed algorithm ||B̄s(f̄λnD −fρ)||H1
satisfies the same upper bound as the error

∥∥∥B̄s(fλnD − fρ)∥∥∥
H1

for the single machine problem, if the regularization parameter λn is chosen according to (4.2.3), provided

the number of subsamples grows sufficiently slowly with the sample size n . Since, by [17], the rates for

the latter are minimax optimal, our rates in Corollary 4.2.3 are minimax optimal also.

Comparison with previous results [58] and [95]: In [95] the authors derive Minimax-optimal rates

in 3 cases: finite rank kernels, sub- Gaussian decay of eigenvalues of the kernel and polynomial decay,

provided m satisfies a certain upper bound, depending on the rate of decay of the eigenvalues under two

crucial assumptions on the eigenfunctions of the integral operator associated to the kernel: For any j ∈ N

E[φj(X)2k] ≤ ρ2k
k , (4.4.1)

for some k ≥ 2 and ρk <∞ or even stronger, it is assumed that the eigenfunctions are uniformly bounded,

i.e.

sup
x∈X
|φj(x)| ≤ ρ , (4.4.2)

or any j ∈ N and some ρ < ∞. We shall describe in more detail the case of polynomially decaying

eigenvalues, which corresponds to our setting. Assuming eigenvalue decay µj . j−b with b > 1, the

authors choose a regularization parameter λn = n−
b
b+1 and

m .

(
n
b(k−4)−k

b+1

ρ4k logk(n)

) 1
k−2

.

leading to an error in L2- norm

E[||f̄λnD − fρ||
2
L2 ] . n−

b
b+1 ,

being minimax optimal.

For k < 4, this is not a useful bound, since m → 1 as n → ∞ in this case (for any sort of eigenvalue

decay). On the other hand, if k and b might be taken arbitrarily large - corresponding to almost bounded

eigenfunctions and arbitrarily large polynomial decay of eigenvalues - m might be chosen proportional to

n1−ε, for any ε > 0. As might be expected, replacing the L2k bound on the eigenfunctions by a bound in

L∞, gives an upper bound on m which simply is the limit for k →∞ in the bound given above, namely

m .
n
b−1
b+1

ρ4 log n
,

which for large b behaves as above. Granted bounds on the eigenfunctions in L2k for (very) large k, this

is a strong result. While the decay rate of the eigenvalues can be determined by the smoothness of K

(see, e.g., [36] and references therein), it is a widely open question which general properties of the kernel

imply estimates as in (4.4.1) and (4.4.2) on the eigenfunctions.

The author in [96] even gives a counterexample and presents a C∞ Mercer kernel on [0, 1] where the

eigenfunctions of the corresponding integral operator are not uniformly bounded. Thus, smoothness of
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the kernel is not a sufficient condition for (4.4.2) to hold.

Moreover, we point out that the upper bound (4.4.1) on the eigenfunctions (and thus the upper bound

for m in [95]) depends on the (unknown) marginal distribution ν (only the strongest assumption, a bound

in sup-norm (4.4.2), does not depend on ν). Concerning this point, our approach is ”agnostic”.

As already mentioned in the Introduction, these bounds on the eigenfunctions have been eliminated in [58],

for KRR, imposing polynomial decay of eigenvalues as above. This is very similar to our approach. As a

general rule, our bounds on m and the bounds in [58] are worse than the bounds in [95] for eigenfunctions

in (or close to ) L∞, but in the complementary case where nothing is known on the eigenfunctions m still

can be chosen as an increasing function of n, namely m = nα. More precisely, choosing λn as in (4.2.3),

the authors in [58] derive as an upper bound

m . nα , α =
2br

2br + b+ 1
,

with r being the smoothness parameter arising in the source condition. We recall here that due to our

assumption q ≥ r + s, the smoothness parameter r is restricted to the interval (0, 1
2 ] for KRR (q = 1)

and L2 risk (s = 1
2 ).

Our results (which hold for a general class of spectral regularization methods) are in some ways comparable

to [58]. Specialized to KRR, our estimates for the exponent α in m = O(nα) coincide with the result

given in [58] . Furthermore we emphasize that [95] and [58] estimate the DL-error only for s = 1/2

in our notation (corresponding to L2(ν)− norm), while our result holds for all values of s ∈ [0, 1/2]

which smoothly interpolates between L2(ν)− norm and RKHS− norm and, in addition, for all values of

p ∈ [1,∞). Additionally, we precisely analyze the dependence of the noise variance σ2 and the complexity

radius R in the source condition.3

Concerning general strategy, while [58] uses a novel second order decomposition in an essential way, our

approach is more classical. We clearly distinguish between estimating the approximation error and the

sample error. We write the variance as a sum of i.i.d random variables, which allows to use Rosenthal’s

inequality. Compared to our previous result for the single machine problem in Chapter 2 , this is an

essentially new ingredient in our proof.

Number of Subsamples: We follow the line of reasoning in earlier work on distributed learning insofar

as we only prove sufficient conditions on the cardinality m = nα of subsamples compatible with minimax

optimal rates of convergence. On the complementary problem of proving necessity, analytical results

are unknown to the best of our knowledge. However, our numerical results seem to indicate that the

exponent α might actually be taken larger than we have proved so far in the low smoothness regime.

Adaptivity: It is clear from the theoretical results that both the regularization parameter λ and the

allowed cardinality of subsamples m depend on the parameters r and b, which in general are unknown.

Thus, an adaptive approach to both parameters b and r for choosing λ and m is of interest. In [95] the

authors sketch a heuristic argument to estimate λ from the data of the subsamples via cross-validation,

provided the number of subsamples has been fixed by an a priori choice. This leaves completely open the

important issue how an optimal m could adaptively be inferred from the given data. To the best of our

3While this thesis was written, the authors in [42] concurrently worked at distributed learning algorithms for the same
class of spectral regularization schemes. They establish the same upper bound for the number of allowed subsamples in
L2(ν)− norm, but with unpublished proof at the time of submission of this thesis.
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knowledge, there are yet no rigorous results on adaptivity in this more general sense. Progress in this

field may well be crucial in finally assessing the relative merits of the distributed learning approach as

compared with alternative strategies to effectively deal with large data sets.

We sketch an alternative naive approach to adaptivity, based on hold-out in the direct case, where we

consider each f ∈ HK also as a function in L2(X, ν). We split the data z ∈ (X× Y)n into a training and

validation part z = (zt, zv) of cardinality mt,mv. We further subdivide zt into mk subsamples, roughly

of size mt/mk, where mk ≤ mt, k = 1, 2, . . . is some strictly decreasing sequence. For each k and each

subsample zj , 1 ≤ j ≤ mk, we define the estimators f̂λzj as in (4.1.1) and their average

f̄λk,zt :=
1

mk

mk∑
j=1

f̂λzj . (4.4.3)

Here, λ varies in some sufficiently fine lattice Λ. Then evaluation on zv gives the associated empirical

L2− error

Errλk(zv) :=
1

mv

mv∑
i=1

|yvi − f̄λk,zt(xvi )|2 , zv = (yv,xv) , yv = (yv1 , . . . , y
v
mv ) , (4.4.4)

leading us to define

λ̂k := Argminλ∈ΛErrλk(zv) , Err(k) := Errλ̂kk (zv). (4.4.5)

Then, an appropriate stopping criterion for k might be to stop at

k∗ := min{k ≥ 3 : ∆(k) ≤ δ inf
2≤j<k

∆(j)} , ∆(j) := |Err(j)− Err(j − 1)| , (4.4.6)

for some δ < 1 (which might require tuning). The corresponding regularization parameter is λ̂ = λ̂k∗ ,

given by (4.4.5). At least intuitively, it is then reasonable to define a purely data driven estimator as

f̂n := f̄ λ̂k∗,zt . (4.4.7)

Note that the training data zt enter the definition of f̂n via the explicit formula (4.4.3) encoding our

kernel based approach, while zv serves to determine (k∗, λ̂∗) via minimization of the empirical L2− error

and some form of the discrepancy principle, which tells one to stop where Err(j) does not appreciably

improve anymore. It is open if such a procedure achieves optimal rates, and we have to leave this for

future research.

4.5 Proofs

For ease of reading we make use of the following conventions:

• we are interested in a precise dependence of multiplicative constants on the parameters σ,M,R, η,

m,n and p

• the dependence of multiplicative constants on various other parameters, including the kernel pa-

rameter κ, the norm parameter s ∈ [0, 1
2 ], the parameters arising from the regularization method,
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b > 1, β > 0, r > 0 etc. will (generally) be omitted and simply be indicated by the symbol N

• the value of CN might change from line to line

• the expression “for n sufficiently large” means that the statement holds for n ≥ n0 , with n0

potentially depending on all model parameters (including σ,M and R), but not on η .

We intend to estimate each term in the decomposition (4.2.2) separately. This is the content of the fol-

lowing Propositions. Recall that ν denotes the input sampling distribution and P the set of all probability

distributions on the input space X.

At first, a preliminary Lemma:

Lemma 4.5.1. Recall the definition of B n
m

(λ) in (A.2.1), where λ ∈ (0, 1]:

B n
m

(λ) :=

1 +

(
2m

nλ
+

√
mN(λ)

nλ

)2
 . (4.5.1)

If λn is defined by (4.2.3) and if

mn ≤ nα , α <
2br

2br + b+ 1
,

one has

B n
mn

(λn) ≤ 2 ,

provided n is sufficiently large.

Proof of Lemma 4.5.1. Recall that N(λn) ≤ Cbλ
− 1
b

n and σ

√
λ
− 1
b

n

nλn
= Rλrn. Using the definition of λn in

(4.2.3) yields
2mn

nλ
= o

(√
mnλ

r
n

)
,

provided

mn ≤ nα , α <
2(br + 1)

2br + b+ 1
.

Finally,
√
mnλ

r
n = o(1) if

mn ≤ nα , α <
2br

2br + b+ 1
.

Approximation Error

Lemma 4.5.2. Let ν ∈ P, v ∈ R and let x ∈ X
n
m be an iid sample, drawn according to ν. Assume the

regularization (gλ)λ has qualification q ≥ v + 1 + s. Then with probability at least 1− η

∥∥B̄srλ(B̄x)B̄vx(B̄ − B̄x)
∥∥
H1
≤ CN log4(4η−1)λs+v+1Bs+1

n
m

(λ)

(
2m

nλ
+

√
mN(λ)

nλ

)

for some CN <∞.
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Proof of Lemma 4.5.2. From (A.2.3) and from Proposition A.1.3, since q ≥ s+ v + 1, one has

∥∥B̄srλ(B̄x)B̄vx(B̄ − B̄x)
∥∥
H1
≤ CN log2(s+1)(4η−1)Bs+1

n
m

(λ)∥∥(B̄x + λ)srλ(B̄x)B̄vx(B̄x + λ)
∥∥∥∥(B̄ + λ)−1(B̄ − B̄x)

∥∥
≤ CN log4(4η−1)λs+v+1Bs+1

n
m

(λ)

(
2m

nλ
+

√
mN(λ)

nλ

)
,

for any λ ∈ (0, 1], η ∈ (0, 1], with probability at least 1− η. We also used that s ≤ 1
2 .

Lemma 4.5.3. Let ν ∈ P, v ∈ R and let x ∈ X
n
m be an iid sample, drawn according to ν. Assume the

regularization (gλ)λ has qualification q ≥ v + s. Then for any λ ∈ (0, 1], η ∈ (0, 1], with probability at

least 1− η ∥∥B̄srλ(B̄x)B̄vx
∥∥ ≤ CN log2s(2η−1)Bsn

m
(λ)λs+v ,

for some CN <∞.

Proof of Lemma 4.5.3. Using (A.2.3), since q ≥ v + s

∥∥B̄srλ(B̄x)B̄vx
∥∥ ≤ CN log2s(2η−1)Bsn

m
(λ)
∥∥(B̄x + λ)srλ(B̄x)B̄vx

∥∥
≤ CN log2s(2η−1)Bsn

m
(λ)λs+v ,

with probability at least 1− η.

Proposition 4.5.4 (Expectation of Approximation Error). Let fρ ∈ Ων(r,R), λ ∈ (0, 1] and let B n
m

(λ)

be defined in (4.5.1). Assume the regularization has qualification q ≥ r + s. For any p ≥ 1 one has:

1. If r ≤ 1, then

Eρ⊗n
[∥∥B̄s(fρ − f̃λD)

∥∥p
H1

] 1
p ≤ CpR λs+r Bs+rn

m
(λ) .

2. If r > 1, then

Eρ⊗n
[∥∥B̄s(fρ − f̃λD)

∥∥p
H1

] 1
p ≤ CpRλsBs+1

n
m

(λ)

(
λr + λ

(
2m

nλ
+

√
mN(λ)

nλ

))
.

In 1. and 2. the constant Cp does not depend on (σ,M,R) ∈ R3
+.

Proof of Proposition 4.5.4. Since fρ ∈ Ων(r,R)

Eρ⊗n
[∥∥B̄s(fρ − f̃λD)

∥∥p
H1

] 1
p

= Eρ⊗n
[∥∥ 1

m

m∑
j=1

B̄srλ(B̄xj )fρ
∥∥p
H1

] 1
p

≤ 1

m

m∑
j=1

Eρ⊗n
[∥∥B̄srλ(B̄xj )fρ

∥∥p
H1

] 1
p

≤ R

m

m∑
j=1

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

r
∥∥p
H1

] 1
p

. (4.5.2)

70



The first inequality is just the triangle inequality for the p- norm ||f ||p = E[||f ||pH1
]
1
p . We bound the

expectation for each separate subsample of size n
m by first deriving a probabilistic estimate and then we

integrate.

Consider first the case where r ≤ 1. Using (A.2.3) and Cordes Inequality Proposition A.4.2 , one has for

any j = 1, ...,m

∥∥B̄srλ(B̄xj )B̄
r
∥∥ ≤ CN log2(s+r)(4η−1)Bs+rn

m
(λ)
∥∥(B̄xj + λ)srλ(B̄xj )(B̄xj + λ)r

∥∥
≤ CN log3(4η−1)λs+rBs+rn

m
(λ) ,

with probability at least 1− η and where Bs+rn
m

(λ) is defined in (4.5.1). Recall that the regularization has

qualification q ≥ r + s. From Lemma A.3.3, by integration one has

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

r
∥∥p] 1

p ≤ CN,p λ
s+r Bs+rn

m
(λ) ,

for some CN,p <∞, not depending on σ,M,R. Finally, from (4.5.2)

Eρ⊗n
[∥∥B̄s(fρ − f̃λD)

∥∥p
H1

] 1
p ≤ CN,pR λs+r Bs+rn

m
(λ) .

In the case where r ≥ 1, we write r = k + u, with k = brc and u = r − k < 1. We shall use the

decomposition

B̄k =

k−1∑
l=0

B̄lx(B̄ − B̄x)B̄k−(l+1) + B̄kx . (4.5.3)

We proceed by bounding (4.5.2) according to decomposition (4.5.3) . For any j = 1, ...m, one has

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

k+u
∥∥p] 1

p ≤
k−1∑
l=0

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

l
xj (B̄ − B̄xj )B̄

k−(l+1)+u
∥∥p] 1

p

+ Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

k
xj B̄

u
∥∥p] 1

p

≤
k−1∑
l=0

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

l
xj (B̄ − B̄xj )

∥∥p] 1
p

+ Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

k
xj B̄

u
∥∥p] 1

p

. (4.5.4)

Here we use that B̄k−(l+1)+u is bounded by 1. By Lemma 4.5.3 and by (A.2.3), with probability at least

1− η ∥∥∥B̄srλ(B̄xj )B̄
k
xj B̄

u
∥∥∥ ≤ CN log2(s+u)(2η−1)Bs+un

m
(λ)λs+r

and thus integration using Lemma A.3.3 yields

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

r
xj

∥∥p] 1
p ≤ CN,pB

s+u
n
m

(λ)λs+r . (4.5.5)

For estimating the first term in (4.5.4) we may use Lemma 4.5.2. For any l = 0, ..., k − 1, j = 1, ...,m
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with probability at least 1− η

∥∥∥B̄srλ(B̄xj )B̄
l
xj (B̄ − B̄xj )

∥∥∥ ≤ CN log4(8η−1)λs+l+1
B
s+1
n
m

(λ)

(
2m

nλ
+

√
mN(λ)

nλ

)
.

Again by integration, since λl ≤ 1 for any l = 0, ..., k − 1, one has

k−1∑
l=0

Eρ⊗n
[∥∥B̄srλ(B̄xj )B̄

l
xj (B̄ − B̄xj )

∥∥p] 1
p ≤ CN,pbrcλs+1

B
s+1
n
m

(λ)

(
2m

nλ
+

√
mN(λ)

nλ

)
. (4.5.6)

Finally, combining (4.5.5) and (4.5.6) with (4.5.2) gives in the case where r > 1

Eρ⊗n
[∥∥B̄s(fρ − f̃λD)

∥∥p
H1

] 1
p ≤ CNλ

sBs+1
n
m

(λ)

(
λr + λ

(
2m

nλ
+

√
mN(λ)

nλ

))
.

The rest of the proof follows from (4.5.4).

Proof of Theorem 4.2.1. Let λn defined by (4.2.3). According to Lemma 4.5.1, we have B n
mn

(λn) ≤ 2

provided α < 2br
2br+b+1 . We immediately obtain from the first part of Proposition 4.5.4 in the case where

r ≤ 1

Eρ⊗n
[∥∥B̄s(fρ − f̃λnD )

∥∥p
H1

] 1
p ≤ CN,pR λs+rn = CN,p an .

We turn to the case where r > 1. We apply the second part of Proposition 4.5.4. By Lemma 4.5.1 we

have

Eρ⊗n
[∥∥B̄s(fρ − f̃λnD )

∥∥p
H1

] 1
p ≤ CN,p Rλ

s+1
n

2mn

nλn
+

√
mnN(λn)

nλn


≤ CN,p Rλ

s+1
n

(
2mn

nλn
+
R

σ

√
mnλ

r
n

)
,

where we used that N(λn) ≤ Cbλ−1/b
n . Observe that

2mn

nλn
= o

(√
mnλ

r
n

)
,

provided

mn ≤ nα , α <
2(br + 1)

2br + b+ 1
.

Furthermore, for n sufficiently large, Rσ
√
mnλn ≤ 1, provided that

α <
2b

2br + b+ 1
.

As a result, for any 1 ≤ p

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(fρ − f̃λnD )

∥∥p
H1

] 1
p

an
≤ CN,p ,
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for some CN,p <∞, not depending on σ,M,R.

Sample Error

The main idea for deriving an upper bound for the sample error is to identify it as a sum of unbiased

Hilbert space- valued i.i.d. variables and then to apply a suitable version of Rosenthal’s inequality.

Given λ ∈ (0, 1], we define the random variable ξλ : (X× R)
n
m −→ H1 by

ξλ(x,y) := B̄sgλ(B̄x)(B̄xfρ − S̄∗xy) .

Recall that according to Assumption 2.2.10, the conditional expectation w.r.t. ρ of Y given X satisfies

Eρ[Y |X = x] = S̄xfρ ,

implying that ξλ is unbiased (since B̄x = S̄∗xS̄x). Thus,

B̄s(f̃λD − f̄λD) =
1

m

m∑
j=1

ξλ(xj ,yj) (4.5.7)

is a sum of centered i.i.d. random variables.

Furthermore, we need the following result from [70], Theorem 5.2 , which generalizes Rosenthal’s in-

equalities from [76] (originally only formulated for real valued random variables) to random variables

with values in a Banach space. For Hilbert spaces this looks particularly nice.

Proposition 4.5.5. Let H be a Hilbert space and ξ1, ..., ξm be a finite sequence of independent, mean

zero H- valued random variables. If 2 ≤ p <∞, then there exists a constant Cp > 0, only depending on

p, such that

E

∥∥∥∥∥∥ 1

m

m∑
j=1

ξj

∥∥∥∥∥∥
p

H


1
p

≤ Cp
m

max


 m∑
j=1

E||ξj ||pH

 1
p

,

 m∑
j=1

E||ξj ||2H

 1
2

 . (4.5.8)

We remark in passing that [32] , Corollary 1.22 , contains the interesting result that in addition to the

upper bound in (4.5.8) there is also a corresponding lower bound where the constant Cp is replaced by

another constant C ′p > 0, only depending on p.

Proposition 4.5.6 (Expectation of Sample Error). Let ρ be a source distribution belonging to Mσ,M,R,

s ∈ [0, 1
2 ] and let λ ∈ (0, 1]. Define B n

m
(λ) as in (4.5.1). Assume the regularization has qualification

q ≥ r + s. For any p ≥ 1 one has:

Eρ⊗n
[∥∥B̄s(f̃λD − f̄λD)

∥∥p
H1

] 1
p ≤ Cp m−

1
2B n

m
(λ)

1
2 +sλs

(
mM

nλ
+ σ

√
mN(λ)

nλ

)
,

where Cp does not depend on (σ,M,R) ∈ R3
+.
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Proof of Proposition 4.5.6. Let λ ∈ (0, 1] and p ≥ 2. From Proposition 4.5.5

Eρ⊗n
[∥∥∥B̄s (f̃λD − f̄λD)∥∥∥p

H1

] 1
p

= Eρ⊗n

∥∥∥∥∥∥ 1

m

m∑
j=1

ξλ(xj ,yj)

∥∥∥∥∥∥
p

H1


1
p

(4.5.9)

≤ Cp
m

max


 m∑
j=1

Eρ⊗n
[
||ξλ(xj ,yj)||pH1

] 1
p

,

 m∑
j=1

Eρ⊗n
[
||ξλ(xj ,yj)||2H1

] 1
2

 .

Again, the estimates in expectation will follow from integration a bound holding with high probability.

By (A.2.3), one has for any j = 1, ...,m

||ξλ(xj ,yj)||H1
= ||B̄sgλ(B̄xj )(B̄xjfρ − S̄∗xjyj)||H1

≤ 8 log2s(4η−1)B n
m

(λ)s

||(B̄xj + λ)sgλ(B̄xj )(B̄xjfρ − S̄∗xjyj)||H1 , (4.5.10)

holding with probability at least 1− η
2 , where B n

m
(λ) is defined in (4.5.1). We proceed by further splitting

as in (2.5.15) (with n replaced by n
m )

(B̄xj + λ)sgλ(B̄xj )(B̄xjfρ − S̄∗xjyj) = H(1)
xj ·H

(2)
xj · h

λ
zj ,

with

H(1)
xj := (B̄xj + λ)sgλ(B̄xj )(B̄xj + λ)

1
2 ,

H(2)
xj := (B̄xj + λ)−

1
2 (B̄ + λ)

1
2 ,

hλzj := (B̄ + λ)−
1
2 (B̄xjfρ − S̄∗xjyj) .

The first term is estimated as in (2.5.16) and gives

H(1)
xj ≤ CNλ

s− 1
2 . (4.5.11)

The second term is now bounded using (A.2.3) once more. One has with probability at least 1− η
4

H(2)
xj ≤ 8 log(8η−1)B n

m
(λ)

1
2 . (4.5.12)

Finally, hλzj is estimated using Proposition A.1.2:

hλzj ≤ 2 log(8η−1)

(
mM

n
√
λ

+ σ

√
mN(λ)

n

)
, (4.5.13)

holding with probability at least 1 − η
4 . Thus, combining (4.5.11), (4.5.12) and (4.5.13) with (4.5.10)

gives for any j = 1, ...,m

||ξλ(xj ,yj)||H1 ≤ CN log2(s+1)(8η−1)B n
m

(λ)
1
2
+sλs

(
mM

nλ
+ σ

√
mN(λ)

nλ

)
,
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with probability at least 1− η. Integration using Lemma A.3.3 gives for any p ≥ 2

p∑
j=1

Eρ⊗n
[∥∥ξλ(xj ,yj)

∥∥p
H1

]
≤ CN,pm Ap ,

with

A := A n
m

(λ) := B n
m

(λ)
1
2 +sλs

(
mM

nλ
+ σ

√
mN(λ)

nλ

)
.

Combining this with (4.5.9) implies, since p ≥ 2

Eρ⊗n
[∥∥B̄s(f̃λD − f̄λD)

∥∥p
H1

] 1
p ≤ Cp

m
max

(
(mAp)

1
p ,
(
mA2

) 1
2

)
=
Cp
m

Amax
(
m

1
p ,m

1
2

)
=

Cp√
m

A ,

where Cp does not depend on (σ,M,R) ∈ R3
+. The result for the case 1 ≤ p ≤ 2 immediately follows

from Hölder’s inequality.

Proof of Theorem 4.2.2. Let λn defined by (4.2.3). According to Lemma 4.5.1 we have B n
m

(λn) ≤ 2

provided α < 2br
2br+b+1 . We immediately obtain from Proposition 4.5.6

Eρ⊗n
[∥∥B̄s(f̃λnD − f̄λnD )

∥∥p
H1

] 1
p ≤ Cp√

m
λsn

mM
nλn

+ σ

√
mN(λn)

nλn


≤ Cpλsn

√mM
nλn

+ σ

√
N(λn)

nλn

 .

Again, we use that N(λn) ≤ Cbλ−1/b
n and

√
mnM

nλn
= o

σ
√
λ
−1/b
n

nλn

 ,

provided

mn ≤ nα , α <
2(br + 1)

2br + b+ 1
.

Recalling that σ

√
λ
−1/b
n

nλn
= Rλrn = λ−sn an, we arrive at

Eρ⊗n
[∥∥B̄s(f̃λnD − f̄λnD )

∥∥p
H1

] 1
p ≤ Cp an .

As a result, for any 1 ≤ p

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n
[∥∥B̄s(f̃λnD − f̄λnD )

∥∥p
H1

] 1
p

an
≤ Cp ,

for some Cp <∞, not depending on the model parameter (σ,M,R) ∈ R3
+.
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Chapter 5

Adaptivity

5.1 Introduction

We recall that while tuning the regularization parameter is essential for spectral regularization to work

well, an a priori choice of the regularization parameter is in general not feasible in statistical problems

since the choice necessarily depends on unknown structural properties (e.g. smoothness of the target

function or behavior of the statistical dimension). This imposes the need for data-driven a-posteriori

choices of the regularization parameter, which hopefully are optimal in some well defined sense. An

attractive approach is (some version of) the balancing principle going back to Lepskii’s seminal paper

[55] in the context of Gaussian white noise, having been elaborated by Lepskii himself in a series of papers

and by other authors, see e.g. [56], [57], [41], [8], [63] and references therein.

We shall briefly describe the basic idea. Originally this method was developed in the framework of the

Gaussian white noise model

Yε(dt) = f(t)dt+ εW (dt) , ε > 0 , 0 ≤ t ≤ 1 ,

where f ∈ L2([0, 1]) is an unknown function and W is a standard Brownian motion. It is supposed

that f belongs to some nested class of functions {Fθ}θ (a common class for all values of ε) and θ varies

over some parameter space Θ, which is a bounded subset of R+. For recovering f , one has available a

family of estimators {f̂ε,θ}θ, based on the observations Yε and depending on the parameter θ. For a given

estimator f̂ε,θ, consider the risk

Rε(f̂ε,θ, θ) = sup
f∈Fθ

Ef [ ||f − f̂ε,θ|| ] .

Given θ ∈ Θ, a function ϕθ(ε) is said to be a minimax rate of convergence on the set Fθ if

lim inf
ε→0

inf
f̂
ϕ−1
θ (ε) Rε(f̂ , θ) > 0 , (5.1.1)

where the infimum is taken over all possible estimators f̂ , and if, in addition, there exists an estimator
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f̂ε,θ such that

lim sup
ε→0

ϕ−1
θ (ε) Rε(f̂ε,θ, θ) < ∞ . (5.1.2)

An estimator satisfying both (5.1.1) and (5.1.2) is called (asymptotically) minimax.

Assume that for any θ ∈ Θ, there exists a minimax rate of convergence on the set Fθ for the signal f . In

his papers [55], [56], [57], Lepskii provides answers to the following questions:

1. Given a family {f̂ε,θ}θ∈Θ of asymptotically minimax estimators (with corresponding minimax rates

{ϕθ}θ), does there exists an estimator f̃ε for which (5.1.2) holds uniformly for any θ ∈ Θ, i.e.

sup
θ∈Θ

lim sup
ε→0

ϕ−1
θ (ε) Rε(f̃ε, θ) < ∞ ? (5.1.3)

2. How can one get adaptation over the family {Fθ}θ∈Θ, i.e. how does one construct a new estimator

f̃ε which is uniformly asymptotically minimax and therefore satisfies (5.1.3)?

Such an estimator f̃ε, if it exists, is then said to be optimal adaptive with respect to the given family

{Fθ}θ∈Θ.

The adaptive estimation procedure is achieved by applying the following approach: For any ε > 0, choose

a suitable finite discretization θ1 < ... < θmε of Θ. Given some sufficiently large positive constant C, let

j0 = inf{ j ≤ mε : ||f̂ε,θj − f̂ε,θk || ≤ C Rε(f̂ε,θk , θk) ,∀k ∈ (j,mε] } .

The final optimal adaptive estimator is defined by setting f̃ε = f̂ε,θj0 .

In the context of Learning Theory, there is yet no strict analog of the above procedure, the main problem

being in precisely mimicking the crucial condition (5.1.3) on the existence of a supremum over the

”maximal” parameter space Θ. But the important algorithmic idea of balancing and discretizing the

parameter space has been successfully generalized. We remark that in the context of Learning we shall

consider higher dimensional parameter spaces Θ, but in addition we have the real-valued regularization

parameter as a family over Θ. Thus the grid on Θ in the original Lepskii approach shall be replaced by

a grid for λ which allows to use the ordering on the real line.

The first such version of the balancing principle (using the RKHS structure in an essential way) is in

[25] which itself was inspired by [41]. The above strict notion of an asymptotically minimax estimator

is in some sense replaced by a slightly more vague notion of finding a fully data-dependent estimator

by an analogous Lepskii- procedure, which in some sense minimizes error bounds given by probabilistic

estimates of the form

P
(
||f̂z − fρ|| ≤ ε(n, η)

)
≤ η.

Here one minimizes ε(n, η) by solving a trade-off between the unknown approximation error and the

sample error, which can be expressed empirically. Intuitively, this gives a good choice (hopefully: the

optimal choice) and one approximates this by balancing over a grid in the regularization parameter. For

KRR the authors in [25] replace the above norm by the expected risk, but the paper also discusses general

spectral regularization, KRR with convex loss and elastic net. We follow the above approach by studying

the error for our norm || · || = ||Bs · ||H1 . We emphasize that contrary to the other parts of this thesis,
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we shall follow the original approach in [25] by staying in the framework of estimates in large probability

which we shall not push to estimates in expectation. But concerning the optimality of the estimator

obtained by balancing, a few more remarks are appropriate, especially in view of the fact that some

part of the machine learning literature seems to use the term adaptivity in some very vague sense as a

semantical equivalent of (fully) data-dependent, without attaching to it any precise notion of optimality.

We strongly disagree and therefore we amplify.

The original paper [25] somewhat prophetically refers to the value λopt(n) defined by the intersection of

the graphs of sample error and approximation error as the best choice but very justly adds the cautionary

remark: However, the rate will be optimal in a minimal sense if the bound we started from is tight. We

do not discuss this problem and we refer to [24, 28, 43, 87] for further discussion. Clearly, the quoted

references do not contain a proof of optimality for the balancing principle in the context of the above

paper, but they do reference the proof of minimax optimal rates for KRR in the context of fast rates in

[24], which does not perfectly fit with the slow upper rates of [25]. Furthermore, the article [28] and the

book [43] both discuss lower rates of convergence for some explicit classical function spaces of Sobolev,

Besov or Hölder type by use of entropy methods. This does not cover in full generality the distribution

free approach corresponding to treating largely arbitrary covariance operators B.1 There is no reference

to minimax optimal rates for the other examples. As we are deeply convinced that clarifying somewhat

subtle points by formal definitions is an essential part of the culture of mathematics, we could not resist

giving a formal definition of a minimax optimal adaptive estimator over a parameter space Θ in Definition

5.3.1 below. We have tried to make this definition as general as possible (but staying inside the class of

spectral regularization, as we have defined minimax optimality only within that framework in this thesis).

Coming back to [25], it is assumed in Assumption 1 of that paper that the estimates of [25] are uniform

with respect to the discretizing grid in the regularization parameter λ. In fact, with some additional

work it is even more or less obvious that this uniformity actually holds true in the context of slow rates.

This seems to be connected to the use of an additive error decomposition and, unfortunately, is lost in

our approach which is adapted to fast rates (and which, when applied to slow rates, does not give this

uniformity). This uniformity implies that the balancing estimator of [25] actually is minimax optimal

adaptive in the sense of our Definition 5.3.1, in the context of slow rates, granted a full proof of lower

bounds in the case of slow rates for source conditions induced by general covariance operators, which

everyone seems to expect to hold true. This justifies the wording best choice in [25], with hindsight.

The class of data generating distributions (the class M in our Definition 5.3.1), which depends on the

context and is different for slow versus fast rates or elastic net etc. is, however, not given explicitly in

[25]. One could say that the precise relation between adaptivity and optimality remains vague in [25] for

the uninitiated reader, at least in a technical sense. One cannot quite avoid the feeling that the authors

of [25] do not fully convey to the reader all technical details they are aware of.

A proper assessment seems to be less clear concerning the recent paper [62]. A possibly minor point is

that minimax optimal rates in the context of the very general source conditions of that paper are not

precisely referenced (one could e.g. refer to the paper [73] which adapts our proofs in [17] to more general

source conditions). But, furthermore, the probabilistic estimates in the context of fast rates (or in the

even more general context of [62], where everything is parametrized by the effective dimension as the only

1One certainly hopes that there is a deep relation between the operator theoretic approach using spectral theory for
a general covariance operator B and the entropy approach to approximation theory for the spaces or source conditions
induced by B. This seems to work e.g. for classical Sobolev spaces, but we are not aware of any hard mathematical result
establishing this relation in full generality.
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free parameter describing the model) are not uniform with respect to the regularization parameter λ. This

makes necessary a final union bound which is missing (at least in the first version of that paper). Taking

into account that the proof of lower bounds on the convergence rates is only sketched and certainly does

not cover the full generality of the considered upper bounds (it needs some explicit spectral conditions

which are absent in the upper estimates depending only on the effective dimension) it is somewhat unclear

what the final class M of data generating distributions over which adaptivity is proved will turn out to

be.

Our analysis in this section faces similar problems. We do not think that it is in final form. 2 To

clarify the situation we insist on a formal definition (see Definition 5.3.1). We try to thoroughly track

the dependence on a grid in the regularization parameter covering λopt(n) (which is the optimal λopt(n)

of [25]) and we do perform the final union bound, which in our case adds (for the estimator obtained

by balancing) an additional log log(n) to the minimax optimal rate. Thus we could shortly describe our

final result as: The estimator obtained by balancing is minimax optimal adaptive up to log log(n) over

our model classes from Chapter 2 (the regular case) and from Chapter 3 (beyond the regular case) or

just adaptive in the sense of our Discussion, point 3. below.

5.2 Empirical Effective Dimension

The main point of this subsection is a two-sided estimate on the effective dimension by its empirical

approximation which is crucial for our entire approach. We recall the definition of the effective dimension

and introduce its empirical approximation, the empirical effective dimension: For λ ∈ (0, 1] we set

N(λ) = Tr
[

(B̄ + λ)−1B̄
]
, Nx(λ) = Tr

[
(B̄x + λ)−1B̄x

]
, (5.2.1)

where we introduce the shorthand notation B̄x := κ−2Bx and similarly B̄ := κ−2B . Here N(λ) depends

on the marginal ν (through B), but is considered as deterministic, while Nx(λ) is considered as a random

variable (with Bx and Bx, for x ∈ X introduced in Chapter 1).

By S1 we denote the Banach space of trace class operators with norm ||A||1 = Tr [|A|]. Furthermore,

S2 denotes the Hilbert space of Hilbert-Schmidt operators with norm ||A||2 = Tr [A∗A]
1/2

. By ||A|| we

denote the operator norm.

Proposition 5.2.1. For any η ∈ (0, 1), with probability at least 1− η

| N(λ)−Nx(λ) | ≤ 2 log(4η−1)
(
1 +

√
Nx(λ)

)( 2

λn
+

√
N(λ)

nλ

)
, (5.2.2)

for all n ∈ N∗ and λ ∈ (0, 1].

Corollary 5.2.2. For any η ∈ (0, 1), with probability at least 1− η, one has√
max(N(λ), 1) ≤ (1 + 4δ)

√
max(Nx(λ), 1) ,

as well as √
max(Nx(λ), 1) ≤ (1 + 4(

√
δ ∨ δ2))

√
max(N(λ), 1) ,

2Finalizing it is a current joint research effort, see [15].
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where δ := 2 log(4η−1)/
√
nλ . In particular, if δ ≤ 1, with probability at least 1− η one has

1

5

√
max(N(λ), 1) ≤

√
max(Nx(λ), 1) ≤ 5

√
max(N(λ), 1) .

Proof of Proposition 5.2.1. We formulate in detail all preliminary results, although they are in principle

well known. There are always some subtleties related to inequalities in trace norm. For a proof of the

following results we e.g. refer to [74], [31]:

1. If A ∈ S1 is non-negative, then ||A||1 = Tr [A].

2. |Tr [A] | ≤ ||A||1 .

3. If A is bounded and if B ∈ S1 is self-adjoint and positive, then |Tr [AB] | ≤ ||A|| |Tr [B] | .

4. If A,B ∈ S2, then ||AB||1 ≤ ||A||2 ||B||2 .

5. If A ∈ S1, then ||A||22 = |Tr [A∗A] | = ||A∗A||1 ≤ ||A|| ||A||1 .

Consider the algebraic equality

(B̄ + λ)−1B̄ − (B̄x + λ)−1B̄x = (B̄ + λ)−1(B̄ − B̄x) + (B̄ + λ)−1(B̄ − B̄x)(B̄x + λ)−1B̄x

=: N1(λ,x) +N2(λ,x) . (5.2.3)

Hence,

| N(λ)−Nx(λ) | ≤ |Tr [N1(λ,x)] |+ |Tr [N2(λ,x)] | . (5.2.4)

We want to estimate the first term in (5.2.4) by applying the (classical) Bernstein inequality, Proposition

A.1.1 in Chapter A. Setting ξ(x) = Tr
[
(B̄ + λ)−1B̄x

]
, x ∈ X, gives

1

n

n∑
j=1

ξ(xj) = Tr
[
(B̄ + λ)−1B̄x

]
, E[ξ] = Tr

[
(B̄ + λ)−1B̄

]
,

and thus ∣∣∣∣∣∣ 1n
n∑
j=1

ξ(xj)− E[ξ]

∣∣∣∣∣∣ = |Tr [N1(λ,x)] | .

Recall that B̄x is positive and Tr
[
B̄x
]

= κ−2||Sx||2HS ≤ 1. Using 3. leads to

|ξ(x)| ≤
∥∥(B̄ + λ)−1

∥∥Tr
[
B̄x
]
≤ 1

λ
a.s. .

Note that

|ξ(x)| = |Tr
[
(B̄ + λ)−1B̄x

]
| = |Tr

[
S̄x(B̄ + λ)−1S̄∗x

]
| = Tr [AA∗]

with A = S̄x(B̄ + λ)−1/2 and by 1. , since AA∗ is non-negative. Furthermore, using E[B̄x] = B̄,

E[|ξ|2] ≤ 1

λ
E[|ξ|] ≤ 1

λ
E
[
Tr
[
S̄x(B̄ + λ)−1S̄∗x

]]
=

1

λ
Tr
[
E[(B̄ + λ)−1B̄x]

]
=

1

λ
N(λ) .
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As a result, with probability at least 1− η
2

|Tr [N1(λ,x)] | ≤ 2 log(4η−1)

(
2

λn
+

√
N(λ)

nλ

)
. (5.2.5)

Writing H = (B̄x + λ)−1B̄x, we estimate the second term in (5.2.4) using 2. and 4. and obtain

|Tr [N2(λ,x)] | ≤ ||N2(λ,x)||1 ≤ ||N1(λ,x)||2 ||H||2 .

From Proposition A.1.3, we have with probability at least 1− η
2 ,

‖N1‖2 = ||(B̄ + λ)−1(B̄ − B̄x)||2 ≤ 2 log(4η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Finally, recalling that ||H|| ≤ 1 we get from 5.

||H||2 ≤ ||H||1/2 ||H||1/21 ≤
√
Nx(λ) a.s. ,

where we used that Tr [H] = Tr [AA∗], with A = Sx(B̄x + λ)−1/2 and point 1. . Collecting all pieces

gives the result.

Proof of Corollary 5.2.2. Since log(4η−1) ≥ 1, the inequality of Proposition 5.2.1 implies that with prob-

ability at least 1− η:

| N(λ)−Nx(λ) | ≤ 2 log(4η−1)√
λn

(
1 +

√
Nx(λ)

)(2 log(4η−1)√
λn

+
√
N(λ)

)
.

Put A :=
√

N(λ) , B :=
√
Nx(λ) , and δ := 2 log(4η−1)√

λn
, then one can rewrite the above as

∣∣A2 −B2
∣∣ ≤

δ(1 +B)(δ +A) .

Consider the case A ≥ B. Then the above inequality is A2−Aδ(1 +B)− (B2 + δ2(1 +B)) ≤ 0. Observe

that the larger root x+ of the quadratic equation x2 + bx+ c (for b, c ≤ 0) is bounded as

x+ =
−b+

√
b2 − 4c

2
≤ |b|+

√
|c| ,

while the smaller root x− is negative. Hence, for x ≥ 0

(x− x+)(x− x−) ≤ 0 =⇒ x ≤ x+ ≤ |b|+
√
|c| .

Applying this to the above quadratic inequality (solved in A ≥ 0), we obtain

A ≤ δ(1 +B) +
√
B2 + δ2(1 +B) ≤ (1 + δ)B + δ + δ + δ

√
B ≤ (1 + 2δ)(B ∨ 1) + 2δ.

Similarly, if B ≥ A, the initial inequality becomes B2 −Bδ(δ +A)− (A2 + δ(δ +A)) ≤ 0 solving this in

B and bounding as above we get

B ≤ δ(δ +A) +
√
A2 + δ(δ +A) ≤ (1 + δ)A+ δ2 + δ +

√
δA ≤ (1 + 2(δ ∨

√
δ))(A ∨ 1) + 2(δ2 ∨ δ) .
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The rest of the proof follows by observing that 1 ≤ B ∨ 1, 1 ≤ A ∨ 1 and

2(δ ∨
√
δ) + 2(δ2 ∨ δ) ≤ 4(

√
δ ∨ δ2) .

5.3 Balancing Principle

In this section, we present the main ideas related to the Balancing Principle . Before we present our

somewhat abstract approach, we shall explain the general idea in a specific example. Recall the setting of

Chapter 2.5 . Combining methods from this chapter with A.2.4 we can establish the error decomposition

∥∥(B̄x + λ)s(fρ − fλz )
∥∥
H1
≤ Cs(η)λs

(
Rλr +

σ√
n
λ−

b+1
2b + d(n, λ)

)
, (5.3.1)

with probability at least 1 − η, for any η ∈ (0, 1), provided n is big enough and λ0 ≤ λ ≤ 1, for some

λ0 ∈ (0, 1). Here, the function λ 7→ Rλr is the leading order of an upper bound for the approximation

error and λ 7→ σ√
n
λ−

b+1
2b is the leading order of an upper bound for the sample error, while d(n, λ) will be

shown to be subleading (at least for a good choice of the regularization parameter λ). We recall that the

optimal regularization parameter (as well as the rate of convergence) is determined by the source condition

assumption fρ ∈ Ων(r,R), by an assumed power decay of the effective dimension N(λ) ≤ Cbλ
−1/b with

intrinsic dimensionality b > 1 and by the noise variance σ2 > 0. We combine these parameters in a vector

(γ, θ) with γ = (σ,R) ∈ Γ = R+ × R+ and θ = (r, b) ∈ Θ = R+ × (1,∞). We had chosen the optimal

regularization parameter λn,(γ,θ) by balancing the two leading error terms, more precisely by choosing

λn,(γ,θ) as the unique solution of

Rλr = σλ−
b+1
2b . (5.3.2)

The resulting error estimate is∥∥∥B̄s (fρ − fλn,(γ,θ)z

)∥∥∥
H1

≤ 2Cs(η)λs+rn,(γ,θ) ,

with probability at least 1 − η and n sufficiently large (see (2.5.4)). The associated sequence of esti-

mated solutions (f
λn,(γ,θ)
z )n∈N, depending on the regularization parameters (λn,(γ,θ))(n,γ)∈N×Γ was called

weak/ strong minimax optimal over the model family (M(γ,θ))(γ,θ)∈Γ×Θ with rate of convergence given

by (an,(γ,θ))(n,γ)∈N×Γ, pointwisely for any fixed θ ∈ Θ.

We can formulate (5.3.1) more generally, namely with probability at least 1− η

∥∥(B̄x + λ)s(fρ − fλz )
∥∥
H1
≤ Cs(η)λs

(
Ã(λ) + S̃(n, λ)

)
,

where A(·) is a function upper bounding the approximation error and S(n, ·) is an upper bound for

the sample error. However, if the functions A(·) and S(n, ·) are unknown (e.g., if the value of r in the

Hölder-type source condition or the intrinsic dimensionalty b > 1 is unknown), an a priori choice of

the theoretically best value λn,(γ,θ) as in (5.3.2) is impossible. Therefore, it is necessary to use some a

posteriori choice of λ, independent of the parameter θ = (r, b) ∈ Θ. Our aim is to construct an estimator

f
λ̂n,γ(z)
z , i.e. to find a sequence of regularization parameters (λ̂n,γ(z))n, without knowledge of θ ∈ Θ,
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but depending on the data z, the confidence level η ∈ (0, 1) and possibly on γ ∈ Γ, such that f
λ̂n(z,η,γ)
z

is (minimax) optimal adaptive in the following sense:

Definition 5.3.1. Let Γ,Θ be sets and let, for (γ, θ) ∈ Γ × Θ, M(γ,θ) be a class of data generating

distributions on X × Y. For each λ ∈ (0, 1] let (X × Y)n 3 z 7−→ fλz ∈ H1 be an algorithm. If there is

a sequence (an,(γ,θ))n∈N (γ, θ) ∈ Γ × Θ and a parameter choice (λ̂n,γ,τ (z))(n,γ)∈N×Γ (not depending on

θ ∈ Θ) such that

lim
τ→∞

lim sup
n→∞

sup
ρ∈M(γ,θ)

ρ⊗n
(∥∥∥B̄s(f λ̂n,γ,τ (z)z − fρ)

∥∥∥
H1

≥ τan,(γ,θ)
)

= 0 (5.3.3)

and

lim
τ→0

lim inf
n→∞

inf
f̂

sup
ρ∈M(γ,θ)

ρ⊗n
(∥∥∥B̄s(f̂ − fρ)∥∥∥

H1

≥ τan,(γ,θ)
)
> 0, (5.3.4)

where the infimum is taken over all estimators f̂ , then the sequence of estimators (f
λ̂n,γ,η(z)
z )n∈N is called

minimax optimal adaptive over Θ and the model family (M(γ,θ))(γ,θ)∈Γ×Θ, with respect to the family of

rates (an,(γ,θ))(n,γ)∈N×Γ, for the interpolation norm of parameter s ∈ [0, 1
2 ].

We remind the reader that analogously to our discussion in Chapter 2 and Chapter 3, upper estimates

typically hold on a class M<
(γ,θ) and lower estimates hold on a possibly different class M>

(γ,θ), the model

class M(γ,θ) in the above definition being the intersection of both.

This definition is different from our discussion in Chapters 2 and 3. Estimates in expectation would make

the definition somewhat smoother. If one has equation (5.3.3) only with an multiplied by an exploding

logarithmic factor O(logk n) for some fixed k, we shall simply say that the sequence of estimators is

adaptive. We emphasize that these definitions are not standard. The existing literature in learning

theory rather prefers to be somewhat vague concerning the question with respect to which models the

new estimator is optimal adaptive. But we think that our definition above adequately formalizes what

has actually been done and seems to be accepted. 3

One could generalize Definition 5.3.1 by allowing ”minimax optimal” estimators which are not necessarily

constructed via spectral regularizaton. Since throughout this thesis we have defined minimax optimality

only within the framework of spectral regularization in Definition 2.3.3, we have refrained from doing so,

but we are aware of the fact that in other contexts this might be natural.

To find such an adaptive estimator, we apply a method which is known in the statistical literature as

Balancing Principle. Throughout this section we need

Assumption 5.3.2. Let M be a class of models. We consider a discrete set of possible values for the

regularization parameter

Λm = { λj : 0 < λ0 < λ1 < ... < λm } .

for some m ∈ N. Let s ∈ [0, 1
2 ] and η ∈ (0, 1]. We assume to have the following error decomposition

3Definitions mark a subtle and important point of contact between written texts and the culture of mathematics. Perhaps
no one has ever expressed this more passionately than Stendhal: Je n’ai jamais trouvé qu’une idée dans ce diable de livre,
et encore elle n’était pas de Cailhava, mais bien de Bacon. Mais n’est-ce rien qu’une idée, dans un livre? Il s’agit de la
définition du rire. Ma cohabitation passionnée avec les mathématiques m’a laissé un amour fou pour les bonnes définitions,
sans lesquelles il n’y a que des à peu près, [Stendhal, Vie de Henry Brulard , p. 95]. It would be next to impossible to find
similar words on the emotional need for clarity and precision in any classical German text, even up to modern times, and I
am deeply thankful for this very French contribution to our universal culture.
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uniformly over the grid Λm:

∥∥(B̄x + λ)s(fρ − fλz )
∥∥
H1
≤ Cs(m, η) λs

(
Ã(λ) + S̃(n, λ)

)
, (5.3.5)

where

Cs(m, η) = Cs log2(8|Λm|η−1) , Cs > 0 , (5.3.6)

with probability at least 1− η, for all data generating distributions from M. The bounds Ã(λ) and S̃(n, λ)

are given by

S̃(n, λ) = S(n, λ) + d1(n, λ) , S(n, λ) = σ

√
Ñ(λ)

nλ
, d1(n, λ) =

M

nλ
,

with Ñ(λ) = max(N(λ), 1) and

Ã(λ) = A(λ) + d2(n) , d2(n) =
C√
n
,

where A(λ) is increasing, satisfying limλ→0 A(λ) = 0 and for some constant C < ∞. We further define

d(n, λ) := d1(n, λ) + d2(n).

We remark that it is actually sufficient to assume (5.3.5) for s = 0 and s = 1
2 . Interpolation via inequality

||Bsf ||H1 ≤ ||
√
Bf ||2sH1

||f ||1−2s
H1

implies validity of (5.3.5) for any s ∈ [0, 1
2 ].

Note that for any s ∈ [0, 1
2 ], the map λ 7→ λsS(n, λ) as well as λ 7→ λsd1(n, λ) are strictly decreasing in

λ. Also, if n is sufficiently large and if λ is sufficiently small, Ã(λ) ≤ S̃(n, λ).

We let

λopt(n) := sup{λ : Ã(λ) ≤ S̃(n, λ)} .

In this definition we have replaced A(λ), S(n, λ) by Ã(λ) and S̃(n, λ), thus including the remainder terms

d1(n, λ) and d2(n) into our definition of λopt(n). It will emerge a-posteriori, that the definition of λopt(n)

is not affected, since the remainder terms are subleading. But a priori, this is not known. A correct

proof of the crucial oracle inequality in Lemma 5.3.8 below is much easier with this definition of λopt(n).

It will then finally turn out that the remainder terms are really subleading.

The grid Λm has to be designed such that the optimal value λopt(n) is contained in [λ0, λm] Note that

this definition requires neither strict monotonicity of A nor continuity.

The best estimator for λopt(n) within Λm belongs to the set

J(Λm) =
{
λj ∈ Λm : Ã(λj) ≤ S̃(n, λj)

}
and is given by

λ∗ := max J(Λm) . (5.3.7)

In particular, since we assume that J(Λm) 6= ∅ and Λm \ J(Λm) 6= ∅, there is some l ∈ N such that

λl = λ∗ ≤ λopt(n) ≤ λl+1. Note also that the choice of the grid Λm has to depend on n.

Before we define the balancing principle estimate of λopt(n), we give some intuition of its possible choice:
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For any λ ≤ λopt(n), we have Ã(λ) ≤ S̃(n, λ). Moreover, Lemma A.1.6 yields for given λ1 ≤ λ2∥∥(B̄x + λ1)sf
∥∥
H1
≤
∥∥(B̄x + λ2)sf

∥∥
H1

.

Finally, since λ 7→ λsS̃(n, λ) is decreasing, Assumption 5.3.2 gives for any two λ, λ′ ∈ J(Λm) satisfying

λ′ ≤ λ, with probability at least 1− η∥∥∥(B̄x + λ′)s(fλ
′

z − fλz )
∥∥∥
H1

≤
∥∥∥(B̄x + λ′)s(fρ − fλ

′

z )
∥∥∥
H1

+
∥∥(B̄x + λ′)s(fρ − fλz )

∥∥
H1

≤
∥∥∥(B̄x + λ′)s(fρ − fλ

′

z )
∥∥∥
H1

+
∥∥(B̄x + λ)s(fρ − fλz )

∥∥
H1

≤ Cs(m, η) λ′s
(
Ã(λ′) + S̃(n, λ′)

)
+

+ Cs(m, η) λs
(
Ã(λ) + S̃(n, λ)

)
≤ 4Cs(m, η) λ′sS̃(n, λ′) . (5.3.8)

An essential step is to find an empirical approximation of the sample error. In view of Corollary 5.2.2 we

define

S̃x(n, λ) = Sx(n, λ) + d1(n, λ) , Sx(n, λ) = σ

√
Ñx(λ)

nλ
,

with Ñx(λ) = max(Nx(λ), 1) and Nx(λ) the empirical effective dimension given in (5.2.1). Corollary 5.2.2

implies uniformly in λ ∈ Λm
1

5
S̃x(n, λ) ≤ S̃(n, λ) ≤ 5S̃x(n, λ) , (5.3.9)

with probability at least 1− η, provided

nλ0 ≥ 2 , 2 log(4|Λm|η−1) ≤
√
nλ0 . (5.3.10)

Substituting (5.3.9) into the rhs of the estimate (5.3.8) motivates our definition of the balancing principle

estimate of λopt(n) as follows:

Definition 5.3.3. Given s ∈ [0, 1
2 ], η ∈ (0, 1] and z ∈ Zn, we set

J
+
z (Λm) = { λ ∈ Λm : ||(B̄x + λ′)s(fλz − fλ

′
z )||H1 ≤ 20Cs(m, η/2) λ′s S̃x(n, λ′) ,

∀λ′ ∈ Λm, λ
′ ≤ λ }

and define

λ̂s(z) := max J+
z (Λm) . (5.3.11)

Notice that J+
z (Λm) as well as λ̂s(z) depend on the confidence level η ∈ (0, 1].

For the analysis it will be important that the grid Λm has a certain regularity. We summarize all

requirements needed in

Assumption 5.3.4. (on the grid)

1. Assume that J(Λm) 6= ∅ and Λm \ J(Λm) 6= ∅.

2. (Regularity of the grid) There is some q > 1 such that the elements in the grid obey 1 < λj+1/λj ≤ q,
j = 0, ...,m.
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3. Choose λ0 = λ0(n) as the unique solution of nλ = N(λ). We require that n is sufficiently large,

such that N(λ0(n)) ≥ 1 (so that the maximum in the definition of Ñ(λ) can be dropped). We further

assume that nλ0 ≥ 2.

Note that λ0(n) → 0 as n → ∞. Then, since N(λ) → ∞ as λ → 0, we get that this λ0 = λ0(n) satisfies

λ0n = N(λ0)→∞. Furthermore, a short argument shows that the optimal value λopt(n) indeed satisfies

λ0 ≤ λopt(n), if n is big enough. Since A(λ) → 0 as λ → 0, we get Ã(λ0(n)) → 0 as n → ∞. Since

S̃(n, λ0(n)) = 1 + M
nλ0(n) by definition, it follows Ã(λ0(n)) ≤ S̃(n, λ0(n)) for n big enough. From the

definition of λopt(n) as a supremum, we actually have λ0(n) ≤ λopt(n), for n sufficiently large.

Under the regularity assumption, we find that

S̃(n, λj) < qS̃(n, λj+1) , j = 0, ...,m . (5.3.12)

Indeed, while the effective dimension λ → N(λ) is decreasing, the related function λ → λN(λ) is non-

decreasing. Hence we find that

q−1N(λ) = (qλ)−1λN(λ) < (qλ)−1(qλ)N(qλ) = N(qλ)

and since q > 1

q−1Ñ(λ) = max
(
q−1N(λ), q−1

)
< max(N(qλ), 1) = Ñ(qλ) .

Therefore

q−1S(n, λj) = σ

√
q−1Ñ(λj)

nqλj
< σ

√
Ñ(λj+1)

nλj+1
= S(n, λj+1) .

One also easily verifies that

d1(n, λj) =
M

nλj
≤ qM

nλj+1
= qd1(n, λj+1) ,

implying (5.3.12).

Remark 5.3.5. The typical case for Assumption 5.3.4 to hold is given when the parameters λj follow

a geometric progression, i.e., for some q > 1 we let λj := λ0q
j, j = 1, ...,m and with λm = 1. In this

case we are able to upper bounding the total number of grid points |Λm| in terms of log(n). In fact, since

λm = 1 = λ0q
m, simple calculations lead to

|Λm| = m+ 1 = 1− log(λ0)

log(q)
.

Recall that the starting point λ0 is required to obey N(λ0) = nλ0 ≥ 2 if n is sufficiently large, implying

− log(λ0) ≤ − log
(

2
n

)
≤ log(n). Finally, we obtain for n sufficiently large

|Λm| ≤ Cq log(n) , (5.3.13)

with Cq = log(q)−1 + 1.

We shall need an additional assumption on the effective dimension:

87



Assumption 5.3.6. 1. For some γ1 ∈ (0, 1] and for any λ sufficiently small

N(λ) ≥ C1λ
−γ1 ,

for some C1 > 0.

2. For some γ2 ∈ (0, 1] and for any λ sufficiently small

N(λ) ≤ C2λ
−γ2 ,

for some C2 > 0.

Note that such an additional assumption restricts the class of admissible marginals and shrinks the class

M in Assumption 5.3.2 to a subclass M′. Such a lower and upper bound will hold in all examples which

we encounter in Section 5.4.

We further remark that Assumption 5.3.6 ensures a precise asymptotic behaviour for λ0 = n−1N(λ0) of

the form

Cγ1

(
1

n

) 1
1+γ1

≤ λ0(n) ≤ Cγ2

(
1

n

) 1
1+γ2

, (5.3.14)

for some Cγ1 > 0, Cγ2 > 0.

Main Results

The first result is of preparatory character.

Proposition 5.3.7. Let Assumption 5.3.2 be satisfied. Define λ∗ as in (5.3.7). Assume nλ0 ≥ 2. Then

for any

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
,

uniformly over M, with probability at least 1− η∥∥∥(B̄x + λ∗)
s(f λ̂s(z)

z − fρ)
∥∥∥
H1

≤ 102Cs(m, η/2)λs∗ S̃(n, λ∗) .

We shall need

Lemma 5.3.8. If Assumption 5.3.4 holds, then

λs∗ S̃(n, λ∗) ≤ q1−s min
λ∈[λ0,λm]

{ λs (Ã(λ) + S̃(n, λ)) } . (5.3.15)

We immediately arrive at our first main result of this section:

Theorem 5.3.9. Let Assumption 5.3.2 be satisfied and suppose the grid obeys Assumption 5.3.4. Then

for any

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
,
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uniformly over M, with probability at least 1− η∥∥∥B̄s (f λ̂s(z)
z − fρ

)∥∥∥
H1

≤ q1−s Ds(m, η) min
λ∈[λ0,λm]

{ λs(Ã(λ) + S̃(n, λ)) } ,

with

Ds(m, η) = C ′s log2(s+1)(16|Λm|η−1) ,

for some C ′s > 0.

In particular, choosing a geometric grid and assuming a lower and upper bound on the effective dimension,

we obtain:

Corollary 5.3.10. Let Assumption 5.3.2, Assumption 5.3.4 and Assumption 5.3.6 be satisfied. Suppose

the grid is given by a geometric sequence λj = λ0q
j, with q > 1, j = 1, ...,m and with λm = 1. Then for

any

η ≥ ηn := 4Cq log(n) exp
(
−Cγ1,γ2n

γ1
2(1+γ2)

)
,

uniformly over M′, with probability at least 1− η∥∥∥B̄s (f λ̂s(z)
z − fρ

)∥∥∥
H1

≤ D̃s,q(n, η) min
λ∈[λ0,1]

{ λs(Ã(λ) + S̃(n, λ)) } ,

with

D̃s,q(n, η) = Cs,q log2(s+1)(log(n)) log2(s+1)(16η−1) ,

for some Cγ1,γ2 > 0 and some Cs,q > 0, provided n is sufficiently large.

Note that ηn → 0 as n→∞.

One for All: L2-Balancing is sufficient !

This section is due to an idea suggested by P. Mathé (which itself was inspired by the work [11]) which we

have worked out in detail. We define the L2(ν)− balancing estimate λ̂1/2(z) according to Definition 5.3.3

by explicitely choosing s = 1
2 (in contrast to Theorem 5.3.9, where we choose λ̂s(z) depending on the

norm parameter s). Our main result states that balancing in the L2(ν)− norm suffices to automatically

give balancing in all other (stronger !) intermediate norms || · ||s, for any s ∈ [0, 1
2 ].

Theorem 5.3.11. Let Assumption 5.3.2 and Assumption 5.3.4 be satisfied and suppose the grid obeys

Assumption 5.3.4. Then for any

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
,

uniformly over M, with probability at least 1− η∥∥∥∥B̄s(f λ̂1/2(z)
z − fρ)

∥∥∥∥
H1

≤ q1−sD̂s(m, η) min
λ∈[λ0,λm]

{ λs(Ã(λ) + S̃(n, λ)) } ,
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with

D̂s(m, η) = C ′s log2(s+1)(16|Λm|η−1) ,

for some C ′s > 0.

In particular, choosing a geometric grid and assuming a lower and upper bound on the effective dimension,

we obtain:

Corollary 5.3.12. Let Assumption 5.3.2, Assumption 5.3.4 and Assumption 5.3.6 be satisfied. Suppose

the grid is given by a geometric sequence λj = λ0q
j, with q > 1, j = 1, ...,m and with λm = 1. Then, for

n sufficiently large and for any

η ≥ ηn := 4Cq log(n) exp
(
−Cγ1,γ2n

γ1
2(1+γ2)

)
,

uniformly over M′, with probability at least 1− η∥∥∥∥B̄s(f λ̂1/2(z)
z − fρ)

∥∥∥∥
H1

≤ q1−sD̂s,q(n, η) min
λ∈[λ0,1]

{ λs(Ã(λ) + S̃(n, λ)) } ,

with

D̂s,q(n, η) = Cs,q log2(s+1)(log(n)) log2(s+1)(16η−1) ,

for some Cγ1,γ2 > 0 and some Cs,q > 0.

Note that ηn → 0 as n→∞.

Remark 5.3.13. Still, our choice for λ0 is only a theoretical value which remains unknown as it depends

on the unknown marginal ν through the effective dimension N(λ). Implementation requires a data driven

choice. Heuristically, it seems resonable to proceed as follows. Let q > 1 and λ̃j = q−j, j = 0, 1, ... (we

are starting from the right and reverse the order). Define the stopping index

ĵ0 := min{ j ∈ N : Sx(n, λ̃j) ≥ 5 }

and let Λ = {λ̃ĵ0 < ... < λ̃0 = 1}. Here, Sx(n, λ̃j) depends on the empirical effective dimension Nx(λ),

see (5.2.1), which by Corollary 5.2.2 is close to the unknown effective dimension N(λ). Thus we think

that the above choice of λ0 is reasonable for implementing the dependence of λ0 on the unknown marginal.

A complete mathematical analysis is in development.

5.4 Applications

We proceed by illustrating some applications of our method as described in the previous section. In view

of our Theorem 5.3.11 and Corollary 5.3.12 it suffices to only consider balancing in L2(ν). We always

choose a geometric grid as in Remark 5.3.5, satisfying λm = 1. We shall treat fast rates for the regular

case for Hölder type source conditions and general source conditions, and our class beyond the regular
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case for Hölder type source conditions. This is achieved by choosing appropriate parameter spaces in our

general theory above and using the estimates from Chapters 2 and 3.

Example 1: The regular case

We consider the setting of Chapter 2, where the eigenvalues of B̄ decay polynomially (with parameter

b > 1), the target function fρ satisfies a Hölder-type source condition

fρ ∈ Ων(r,R) := { f ∈ H1 : f = B̄rνh , ||h||H1
≤ R }

and the noise satisfies a Bernstein-Assumption

E[
∣∣Y − S̄Xfρ∣∣m | X ] ≤ 1

2
m! σ2Mm−2 ν − a.s. , (5.4.1)

for any integer m ≥ 2 and for some σ > 0 and M > 0. We combine all structural parameters in a vector

(γ, θ), with γ = (M,σ,R) ∈ Γ = R3
+ and θ = (r, b) ∈ Θ = (0,∞)×(1,∞). We are interested in adaptivity

over Θ. We warn the reader that (for purely historic reasons in writing this thesis) the new definition of γ

is the old definition of θ in Chapter 2-4, while the dependence on the new parameter θ was suppressed in

the notation of the previous chapters (where this parameter was kept fixed and varying it was no issue).

We hope that this will not terribly confuse the reader.

Under the assumptions of Corollary 2.3.6 , the sequence of estimators (f
λn,γ,θ
z )n as defined in (2.2.15) is

minimax optimal for any θ ∈ Θ over the class M(γ,θ) := M(r,R,P′) defined precisely in (2.2.9), with

P′ = P<(b, β) ∩ P>(b, α), where β ≥ α > 0 and

P<(b, β) := {ν ∈ P : µj ≤ β/jb ∀j ≥ 1} , (5.4.2)

P>(b, α) := {ν ∈ P : µj ≥ α/jb ∀j ≥ 1} , (5.4.3)

defined in (2.2.6) and (2.2.7). The corresponding minimax optimal rate is given by

an = an,γ,θ = Rλr+sn,γ,θ = R

(
σ2

R2n

) b(r+s)
2br+b+1

.

We shall now check validity of our Assumption 5.3.2. In the following, we assume that the data generating

distribution belongs to the class M = M(γ,θ). Recall that we let λ0(n) be determined as the unique solution

of N(λ) = nλ. Then, combining the estimates (2.5.6) and (2.5.14) with the new inequality (A.2.4), we

have uniformly for all data generating distributions from the class M, with probability at least 1− η, for

any λ ∈ Λm,

||(B̄x + λ)s(fλz − fρ)||H1
≤ Cs log2(8|Λm|η−1) λs

(
Ã(λ) + S̃(n, λ)

)
,

for n sufficiently large, with

Ã(λ) = Rλr +
Rr√
n

1(1,∞)(r) , S̃(n, λ) = σ

√
N(λ)

nλ
+
M

nλ
,

where Cs does not depend on the parameters (γ, θ) ∈ Γ×Θ. Remember that the optimal choice for the
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regularization parameter λn is obtained by solving

A(λ) = σ

√
λ−1/b

nλ

and belongs to the interval [λ0(n), 1]. This can be seen by the following argument: If n is sufficiently

large

1 =

√
N(λ0(n))

nλ0(n)
≥
√
Cβ,bRλ

r
n = σ

√
Cβ,bλ

− 1
b

n

nλn
≥

√
N(λn)

nλn
,

which is equivalent to S(n, λ0(n)) ≥ S(n, λn). Since λ 7→ S(n, λ) is strictly decreasing we conclude

λn ≥ λ0(n). Here we use the bound N(λ) ≤ Cβ,bλ−
1
b .

Recall that we also have corresponding lower bound N(λ) ≥ Cα,bλ
− 1
b , since ν ∈ P>(b, α), granting

Assumption 5.3.6. This follows by combining Remark 3.1.1 with Lemma 3.4.3 and Lemma 3.4.4.

We adaptively choose the regularization parameter λ̂1/2(z) according to Definition 5.3.3 by L2(ν)− bal-

ancing (i.e. by choosing s = 1
2 ) and independently from the parameters b > 1, r > 0. Corollary 5.3.12

gives for any s ∈ [0, 1
2 ], if n is sufficiently large, with probability at least 1− η (uniformly over M)∥∥∥∥B̄s(f λ̂1/2(z)

z − fρ)
∥∥∥∥
H1

≤ C ′s,qCs(η) ( an + λsnd(n, λn) ) , (5.4.4)

where

Cs(η) = log2(s+1)(log(n)) log2(s+1)(16η−1),

provided that η ≥ ηn = 4Cq log(n) exp
(
−Cn

1
2(b+1)

)
, for some C > 0, depending on α, β and b. Recall

that ηn → 0 as n→∞.

In (5.4.4) we have used that

min
λ∈[λ0(n),1]

{ λs(Ã(λ) + S̃(n, λ)) } ≤ λsn(Ã(λn) + S̃(n, λn))

= λsn(A(λn) + S(n, λn) + d(n, λn)) .

Then λsnA(λn) ≤ an and λsnS(n, λn) ≤ Cban give equation (5.4.4).

It remains to show that for n sufficiently large, the remainder λsnd(n, λn) is of lower order than the rate

an. This follows exactly by argumenting as in Section 2.5. One finds that

M

nλn
= o

(
Cb

√
1

n
λ
− b+1

b
n

)
,

r√
n

= o(λrn) .

Summarizing the above findings gives

Corollary 5.4.1 (from Corollary 5.3.12). Let s ∈ [0, 1
2 ]. Choose the regularization parameter λ̂1/2(z) =

λ̂n,γ,η(z) according to Definition 5.3.3 by choosing s = 1
2 . Then, if n is sufficiently large, for any

η ≥ ηn = 4Cq log(n) exp
(
−Cn

1
2(b+1)

)
,
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(r, b) ∈ R+ × (1,∞), (M,σ,R) ∈ R3
+

sup
ρ∈M

ρ⊗n
(∥∥∥∥B̄s(f λ̂1/2(z)

z − fρ)
∥∥∥∥
H1

≤ C′s,q log2(s+1)(16η−1) bn

)
≥ 1− η ,

with bn = log2(s+1)(log(n)) an.

Now defining τ = C ′s,q log2(s+1)(16η−1) gives

η = 16 exp

(
−
(

τ

C ′s,q

)1/2(s+1)
)
,

implying (5.3.3).

Observing that the proof of Theorem 2.3.5 and Corollary 2.3.6 implies validity of the lower bound (5.3.4),

this means:

Corollary 5.4.2. In the sense of Definition 5.3.1 the sequence of estimators (f
λ̂1/2(z)
z )n∈N = (f

λ̂n,γ,η(z)
z )n∈N

is adaptive over Θ (up to log-term) and the model family (M(γ,θ))(γ,θ)∈Γ×Θ with respect to the family of

rates (an,(γ,θ))(n,γ)∈N×Γ, for all interpolation norms of parameter s ∈ [0, 1
2 ].

Example 2: General Source Condition, polynomial decay of eigenvalues

Our approach also applies to the case where the smoothness is measured in terms of a general source

condition, generated by some index function, that is,

fρ ∈ Ων(A) := { f ∈ H1 : f = A(B̄ν)h, ||h||H1
≤ 1 } ,

where A : (0, 1] −→ R+ is a continuous non-decreasing function, satisfying limt→0 A(t) = 0. We keep the

noise condition (5.4.1) and we choose the parameter γ = (M,σ) ∈ Γ = R2
+, θ = (A, b) ∈ Θ = F × (1,∞),

where F denotes either the class of operator monotone functions or the class of functions decomposing

into an operator monotone part and an operator Lipschitz part. For more details, we refer the interested

reader to [4], [62].

We introduce the class of data-generating distributions

M<
(γ,θ) = {ρ(dx, dy) = ρ(dy|x)ν(dx); ρ(·|·) ∈ K(Ων(A)), ν ∈ P<(b, β)} ,

M>
(γ,θ) = {ρ(dx, dy) = ρ(dy|x)ν(dx); ρ(·|·) ∈ K(Ων(A)), ν ∈ P>(b, α)} ,

where P<(b, β) and P>(b, α) are defined in (2.2.6) and (2.2.7), respectively. Then M = M(γ,θ) is defined

as the intersection.

From [73] and [62] (in particular Proposition 4.3), combined with our Proposition A.1.5 one then gets

that Assumption 5.3.2 is satisfied: Uniformly for all data generating distributions from the class M, with

probability at least 1− η,

||(B̄x + λ)s(fλz − fρ)||H1
≤ Cs log2(8|Λm|η−1) λs

(
Ã(λ) + S̃(n, λ)

)
,
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for n sufficiently large, with

Ã(λ) = A(λ) +
C√
n
, S̃(n, λ) = σ

√
N(λ)

nλ
+
M

nλ

and

d(n, λn) =
C√
n

+
M

nλ
.

Assuming N(λ) ≤ Cβ,bλ−1/b , which as above is implied by polynomial asymptotics of the eigenvalues of

the covariance operator B̄ specified by the exponent b, the sequence of estimators (f
λn,A,b
z )n (defined via

some spectral regularization having prescribed qualification) using the parameter choice

λn := λn,A,b := ψ−1
A,b

(
1√
n

)
, ψA,b(t) := A(t)t

1
2 ( 1

b+1) , (5.4.5)

is then minimax optimal, in both H1−norm (s = 0) and L2(ν)−norm (s = 1/2) (see [73], [62]), with rate

an := an,A,b := λsn,A,b A (λn,A,b) . (5.4.6)

This holds pointwisely for any (A, b) ∈ Θ = F × (1,∞). The crucial observation is that equation (5.4.6)

is precisely the result obtained by balancing the leading order terms for sample and approximation error.

Arguments similar to those in the previous example show that λn ∈ [λ0(n), 1]. Recall that N(λ) ≤
Cβ,bλ

− 1
b and that A(λ)→ 0 as λ→ 0. Thus, if n is big enough

1 =

√
N(λ0(n))

nλ0(n)
≥
√
Cβ,b A(λn) =

√
Cβ,bψ(λn)λ

− 1
2 ( 1
b+1)

n ≥

√
N(λn)

nλn
,

which is equivalent to S(n, λ0(n)) ≥ S(n, λn). Since λ 7→ S(n, λ) is strictly decreasing, we conclude that

λn ≥ λ0(n).

Recall that we also have corresponding lower bound N(λ) ≥ Cα,bλ
− 1
b , since ν ∈ P>(b, α), granting

Assumption 5.3.6. This follows by combining Remark 3.1.1 with Lemma 3.4.3 and Lemma 3.4.4.

We again adaptively choose the regularization parameter λ̂1/2(z) according to Definition 5.3.3 by L2(ν)−
balancing (i.e. by choosing s = 1

2 ) and independently from the parameters b > 1, r > 0. Corollary 5.3.12

gives for any s ∈ [0, 1
2 ], if n is sufficiently large, with probability at least 1− η (uniformly over M)∥∥∥∥B̄s(f λ̂1/2(z)

z − fρ)
∥∥∥∥
H1

≤ C ′s,qCs(η) ( an + λsnd(n, λn) ) , (5.4.7)

where

Cs(η) = log2(s+1)(log(n)) log2(s+1)(16η−1) ,

provided that

η ≥ ηn = 4Cq log(n) exp
(
−Cn

1
2(b+1)

)
,

for some C > 0, depending on α, β and b.
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One readily verifies also in this case that the remainder term d(n, λn) is indeed subleading:

n−1/2 = ψA,b(λn) = λ
1
2 (1+ 1

b )
n A(λn) = o (A(λn)) ,

and moreover
M

nλn
= o

(
Cb

√
1

n
λ
− b+1

b
n

)
.

From Theorem 3.12 in [73] one then obtains the lower bound (5.3.4).

Thus, we have proved:

Corollary 5.4.3 (from Corollary 5.3.12). Let s ∈ [0, 1
2 ]. Choose the regularization parameter λ̂1/2(z) =

λn,γ,η(z) according to Definition 5.3.3 by L2(ν)− balancing. Then, if n is sufficiently large, for any

η ≥ ηn = 4Cq log(n) exp
(
−Cn

1
2(b+1)

)
,

A ∈ F, b > 1 and (M,σ,R) ∈ R3
+ one has

sup
ρ∈M(γ,θ)

ρ⊗n
(∥∥∥∥B̄s(f λ̂1/2(z)

z − fρ)
∥∥∥∥
H1

≤ C′s,q log2(s+1)(16η−1) bn

)
≥ 1− η ,

with

bn = log2(s+1)(log(n)) an .

This means that in the sense of Definition 5.3.1 the sequence of estimators (f
λ̂1/2(z)
z )n∈N = (f

λ̂n,γ,η(z)
z )n∈N

is adaptive over Θ (up to log-term) and the model family (M(γ,θ))(γ,θ)∈Γ×Θ with respect to the family of

rates (an,γ,θ)(n,γ)∈N×Γ from (5.4.6), for all interpolation norms of parameter s ∈ [0, 1
2 ].

Example 3: Beyond the regular case

Recall the class of models considered in Chapter 3 : Let γ = (M,σ,R) ∈ Γ = R3
+, Θ = {(r, ν∗, ν∗) ∈

R+ × (1,∞)2; ν∗ ≤ ν∗} and set

M<
(γ,θ) := { ρ(dx, dy) = ρ(dy|x)ν(dx) : ρ(·|·) ∈ K(Ων(r,R)), ν ∈ P<(ν∗) } , (5.4.8)

M>
(γ,θ) := { ρ(dx, dy) = ρ(dy|x)ν(dx) : ρ(·|·) ∈ K(Ων(r,R)), ν ∈ P>(ν∗) } , (5.4.9)

and denote by M = M(γ,θ) the intersection.

We shall verify validity of our Assumption 5.3.2. In the following, we assume that the data generating

distribution belongs to the class M. Then, combining the bound (3.4.4) with the new inequality (A.2.4),

we have uniformly for all data generating distributions from the class M, with probability at least 1− η,

for any λ ∈ Λm,

||(B̄x + λ)s(fλz − fρ)||H1
≤ Cs,ν∗ log2(8|Λm|η−1) λs

(
Ã(λ) + S̃(n, λ)

)
,
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with

Ã(λ) = Rλr +
Rr√
n

1(1,∞)(r) , S̃(n, λ) = σ

√
λ2r
n

nG(λ)
+
M

nλ
.

As usual, we shall investigate adaptivity on the parameter space Θ.

We upper bound the effective dimension by applying Lemma 3.4.2, using the counting function F(λ)

defined in equation (3.1.1). We obtain

N(λ) ≤ Cν∗F(λ) ,

for any λ sufficiently small. We now follow the discussion in Example 1 above, with A(λ), S(n, λ), d1(n),

d2(n, λ) remaining unchanged. We shall only use the new upper bound on S(n, λ) defined by

S+(n, λ) = σ

√
F(λ)

nλ
= σ

√
λ2r

nG(λ)
.

This gives, equating Rλr = S+(n, λ), for n sufficiently large (see equation (3.2.3))

λn = λn,θ = G−1

(
σ2

R2n

)
.

Also in this case, λn can shown to fall in the interval [λ0(n), 1]. Indeed, if n is sufficiently large

1 =

√
N(λ0(n))

nλ0(n)
≥
√
Cν∗Rλ

r
n =

√
Cν∗σ

√
F(λn)

nλn
≥ σ

√
N(λn)

nλn
,

which is equivalent to S(n, λ0(n)) ≥ S(n, λn). Since λ 7→ S(n, λ) is strictly decreasing, we have λ0(n) ≤ λn,

provided n is big enough.

More refined bounds for the effective dimension follow from Lemma 3.4.4 and Lemma 3.4.5. We have

Cν∗λ
− 1
ν∗ ≤ N(λ) ≤ Cν∗λ−

1
ν∗

and Assumption 5.3.6 is satisfied.

We adaptively choose the regularization parameter λ̂1/2(z) according to Definition 5.3.3 by L2(ν)− bal-

ancing, i.e. by choosing s = 1
2 . Corollary 5.3.12 gives for any s ∈ [0, 1

2 ], if n is sufficiently large, with

probability at least 1− η (uniformly over M)∥∥∥∥B̄s(f λ̂1/2(z)
z − fρ)

∥∥∥∥
H1

≤ C ′s,qCs(η) ( an + λsnd(n, λn) ) , (5.4.10)

where

Cs(η) = log2(s+1)(log(n)) log2(s+1)(16η−1),

provided that

η ≥ ηn = 4Cq log(n) exp
(
−Cν∗,ν∗n

ν∗
2ν∗(1+ν∗)

)
.
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In (5.4.10) we have used that an = λr+sn and

min
λ∈[λ0(n),1]

{ λs(Ã(λ) + S̃(n, λ)) } ≤ λsn(Ã(λn) + S̃(n, λn))

= λsn(A(λn) + S(n, λn) + d(n, λn)) .

As above, one readily checks that that the subleading term d(n, λn) is really subleading:

n−
1
2 = o(λrn) ,

M

nλn
= o

(√
λ2r
n

nG(λn)

)
.

Summarizing, we have proved

Corollary 5.4.4 (from Corollary 5.3.12). Let s ∈ [0, 1
2 ]. Choose the regularization parameter λ̂1/2(z) =

λn,γ,η(z) according to Definition 5.3.3 by choosing s = 1
2 . Then, if n is sufficiently large, for any

η ≥ ηn = 4Cq log(n) exp
(
−Cν∗,ν∗n

ν∗
2ν∗(1+ν∗)

)
.

for any r > 0, 1 < ν∗ ≤ ν∗, (M,σ,R) ∈ R3
+, one has

sup
ρ∈M(γ,θ)

ρ⊗n
(∥∥∥∥B̄s(f λ̂1/2(z)

z − fρ)
∥∥∥∥
H1

≤ C′s,q log2(s+1)(16η−1) bn

)
≥ 1− η ,

with

bn = log2(s+1)(log(n)) an .

Observing that the proof of Theorem 3.2.2 and Corollary 3.2.3 implies validity of the lower bound (5.3.4),

this means that in the sense of Definition 5.3.1 the sequence of estimators (f
λ̂1/2(z)
z )n∈N = (f

λ̂n,γ,η(z)
z )n∈N

is adaptive over Θ (up to log-term) and the model family (M(γ,θ))(γ,θ)∈Γ×Θ with respect to the family of

rates (an,γ,θ)(n,γ)∈N×Γ, for all interpolation norms of parameter s ∈ [0, 1
2 ].

5.5 Discussion

1. We have shown that it suffices to prove adaptivity only in L2(ν)−norm, which is the weakest of all

our interpolating norms indexed by s ∈ [0, 1/2]. Similar results of this type (an estimate in a weak

norm suffices to establish the estimate in a stronger norm) have been obtained e.g. in [11] and also

in the recent paper of Lepskii, see [54], in a much more general context.

2. We shall briefly discuss where and how the presentation of the balancing principle in our work

improves the results in the existing literature on the subject. We recall from the introduction to

this chapter that the first paper on the balancing principle for kernel methods, [25], did not yet

introduce fast rates, i.e. rates depending on the intrinsic dimensionality b. Within this framework

the results give - in the wording of the authors - an optimal adaptive choice of the regularization

parameter for the class of spectral regularization methods as defined in Chapter 2. In the sense of our

Definition 5.3.1 the obtained estimators are optimal adaptive - with hindsight, as amplified in our

introduction - on the parameter space Θ = R+ with respect to minimax optimal rates, which depend

on r but not on b (or more general, not on the effective dimension N(λ)). Technically, the authors
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of [25] define their optimal adaptive estimator as the minimum of 2 estimators, corresponding to 2

different norms, namely, setting

J
+
z (Λm) =

{
λi ∈ Λm :

∥∥∥B̄sx(fλiz − f
λj
z )
∥∥∥
H1

≤ 4Cs(η) λsj S(n, λj) , j = 0, ..., i− 1

}

and defining λ̃s(z) := max J+
z (Λm), their final estimator is given by

λ̂s(z) := min{λ̃s(z), λ̃0(z)} . (5.5.1)

We encourage the reader to directly compare this definition with our definition in (5.3.11). Using

the minimum of two estimators in this way can be traced back to the use of an additive error

estimate of the form ∣∣∣∥∥B̄sf∥∥
H1
−
∥∥B̄sxf∥∥H1

∣∣∣ ≤ √6 log(4/η) n−
s
2 ‖f‖H1

, (5.5.2)

holding for any f ∈ H1, s ∈ [0, 1/2] and η ∈ (0, 1), with probability at least 1 − η. Here we have

slightly generalized the original estimate in [25] to all values of s ∈ [0, 1/2].

In the setting of [25], where only slow rates are considered, the variance S(n, λ) is fully known.

However, when considering fast rates (polynomial decay of eigenvalues), S(n, λ) additionally de-

pends on the unknown parameter b > 1 and we have to replace the variance by its empirical

approximation Sx(n, λ). This can effectively achieved by our Corollary 5.2.2, where we provide a

two sided bound
1

5
Sx(n, λ) ≤ S(n, λ) ≤ 5 Sx(n, λ) .

Our bound (in a slightly weaker form) is also used in [62] for bounding the variance by its empirical

approximation.

In the preprint [62] the authors independently present the balancing principle for fast rates. More

precisely, in the case of Hölder-type source conditions, it covers the range Θhs of parameters (r, b)

of high smoothness where b > 1 and r ≥ 1/2(1 − 1/b), which excludes the region of low smooth-

ness. In addition, their results include more general types of source conditions. This work started

independently from our work on the balancing principle. A crucial technical difference is that

[62] is still based on using (5.5.2) in an essential way. This paper contains the new multiplicative

error estimate of [42] (see Appendix A.2), which leads to Proposition A.2.1 and Corollary A.2.2.

Both are crucial to extend the definition of the adaptive estimator to all values of the confidence

level η ∈ (0, 1). However, the discussion proceeds essentially along the traditional lines of [25],

using the above mentioned additive error estimates. This makes the region of low smoothness, i.e.

r < 1/2(1 − 1/b), much less accessible and leads to an estimator obtained by balancing only on

the restricted parameter space Θhs (with respect to minimax optimal rates of convergence, which,

however, are known on the larger parameter space Θ = R+× (0,∞)). As before, the final estimator

is taken to be a minimum of 2 estimators corresponding to different norms.

Our approach also exploits the technical improvement contained in the new multiplicative error

estimate which simplifies the derivation of probabilistic error estimates on the full range η ∈ (0, 1)

of the confidence level. Furthermore, our modified definition of the estimator defined by balancing,

avoiding the additive error estimate in equation (5.5.2), allows in the case of Hölder type source

conditions to obtain an optimal adaptive estimator (up to log log(n) term) on the parameter space
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Θ = R+ × (1,∞). The final estimator is constructed somewhat more directly. It is not taken as a

minimum of 2 separately constructed estimators and in our view the presentation is streamlined.

Furthermore, our discussion in Example 5.4 shows how the more general results of [62] on source

conditions different from Hölder -type can naturally be recovered in our approach.

3. Finally we want to emphasize that this notion of optimal adaptivity is not quite the original ap-

proach of Lepskii. The paper [8] contains an approach to the optimal adaptivity problem in the

white noise framework which is closer to the original Lepskii approach and thus somewhat stronger

than the weak approach described above, where the optimal adaptive estimator depends on the

confidence level. It seems to be a wide open question how to adapt this original approach to the

framework of kernel methods, i.e. constructing an estimator which is optimal adaptive in Lepskii-

sense (independent of the confidence level η) and satisfies

sup
θ∈Θ

sup
γ∈Γ

lim sup
n→∞

a−1
n,(γ,θ) Rn(f̃λn,γ(z), γ) < ∞ , (5.5.3)

with Rn being the risk

Rn(f̃λn,(γ,θ)(z), γ) = sup
ρ∈M(γ,θ)

Eρ⊗n
[
‖B̄s(fρ − f̃λn,γ(z))‖pH1

] 1
p , p > 0 , s ∈ [0, 1/2] ,

and an,(γ,θ) being a minimax optimal rate.

Here we always want to take Θ as the maximal parameter space on which one has minimax optimal

rates. For slow rates, i.e. Θ = {r > 0}, the supremum over Θ in equation (5.5.3) exists. For fast

rates, the boundary of the open set {b > 1} poses problems at b = 1, since one looses the trace class

condition on the covariance operator B̄ (in which case minimax optimality as in this thesis is not

even proved). We remark that, trying to only use the effective dimension and parametrizing it by

N(λ) = O(λ−
1
b ),

(thus redefining somewhat the meaning of b) possibly changes the nature of the boundary at b = 1

and might give existence of the sup. We leave this question for future research. Furthermore we

remark that a rigorous proof of non-existence of the sup for our (spectral) meaning of b requires a

suitable lower bound exploding as b ↓ 1, similar to the example in [55].

A similar type of difficulty (related to the non-existence of the sup) has already been systematically

investigated in [55] and [57]. In such a case Lepskii has introduced the weaker notion of the

adaptive minimax order of exactness and he also discusses additional log terms. Such estimators

(which are not optimally adaptive) are called simply adaptive. This is related to the situation which

we encounter in this section. It is known that e.g. for point estimators, additional log terms are

indispensable. Our situation, however, is different and one could expect to prove optimal adaptivity

in future research.

5.6 Proofs

Lemma 5.6.1. For any s ∈ [0, 1
2 ] and η ∈ (0, 1], with probability at least 1 − η we have λ∗ ≤ λ̂s(z),

provided 2 log(4|Λm|η−1) ≤
√
nλ0 and nλ0 ≥ 2.
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Proof of Lemma 5.6.1. Let λ ∈ Λm satisfy λ ≤ λ∗. We consider the decomposition

∥∥(B̄x + λ)s(fλz − fλ∗z )
∥∥
H1
≤
∥∥(B̄x + λ)s(fλz − fρ)

∥∥
H1

+
∥∥(B̄x + λ)s(fλ∗z − fρ)

∥∥
H1

.

From Assumption 5.3.2 and since λ ≤ λ∗ we have

∥∥(B̄x + λ)s(fλz − fρ)
∥∥
H1

≤ Cs(m, η) λs (Ã(λ) + S̃(n, λ))

≤ 2Cs(m, η)λs S̃(n, λ) ,

with probability at least 1− η.

Since λ ≤ λ∗, applying Lemma A.1.6 and Assumption 5.3.2 give, recalling the definition of λ∗ and that

λ 7→ λsS̃(n, λ) is decreasing

∥∥(B̄x + λ)s(fλ∗z − fρ)
∥∥
H1

≤
∥∥(B̄x + λ∗)

s(fλ∗z − fρ)
∥∥
H1

≤ Cs(m, η) λs∗ (Ã(λ∗) + S̃(n, λ∗))

≤ 2Cs(m, η)λs∗ S̃(n, λ∗)

≤ 2Cs(m, η)λs S̃(n, λ) ,

with probability at least 1 − η. As a result, using 5.3.9, if 2 log(4|Λm|η−1) ≤
√
nλ0 and nλ0 ≥ 2, with

probability at least 1− η

∥∥(B̄x + λ)s(fλz − fλ∗z )
∥∥
H1
≤ 20Cs(m, η/2) λs S̃x(n, λ) ,

with Cs(m, η/2) = Cs log2(16|Λm|η−1). Finally, from the definition (5.3.11) of λ̂s(z) as a maximum, one

has λ∗ ≤ λ̂s(z) with probability at least 1− η.

Proof of Proposition 5.3.7. Let Assumption 5.3.2 be satisfied. Define λ∗ as in (5.3.7). is implied by the

sufficient condition We write∥∥∥(B̄x + λ∗)
s(f λ̂s(z)

z − fρ)
∥∥∥
H1

≤
∥∥∥(B̄x + λ∗)

s(f λ̂s(z)
z − fλ∗z )

∥∥∥
H1

+
∥∥(B̄x + λ∗)

s(fλ∗z − fρ)
∥∥
H1

and bound each term separately. By definition (5.3.11) of λ̂s(z) , by Lemma 5.6.1 and by (5.3.9), with

probability at least 1− η
2

∥∥∥(B̄x + λ∗)
s(f λ̂s(z)

z − fλ∗z )
∥∥∥
H1

≤ 20Cs(m, η/2)λs∗S̃x(n, λ∗)

≤ 100Cs(m, η/2)λs∗S̃(n, λ∗) .

By Assumption 5.3.2 and recalling the definition of λ∗ in (5.3.7) gives for the second term with probability

at least 1− η
2 ∥∥(B̄x + λ∗)

s(fλ∗z − fρ)
∥∥
H1

≤ Cs(m, η/2) λs∗ ( Ã(λ∗) + S̃(n, λ∗) )

≤ 2Cs(m, η/2) λs∗ S̃(n, λ∗) .
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The result follows from collecting the previous estimates.

Proof of Lemma 5.3.8. Let Assumption 5.3.4, point 1. and 2. be satisfied. We distinguish between the

following cases:

Case 1: λ ≥ qλ∗
Since λ→ Ã(λ) is increasing and by (5.3.12)

λs (Ã(λ) + S̃(n, λ)) ≥ λs Ã(λ) ≥ (qλ∗)
s Ã(qλ∗)

≥ (qλ∗)
s S̃(n, qλ∗) ≥ qs−1λs∗ S̃(n, λ∗) .

Case 2: λ ≤ qλ∗
Again, since λ→ λsS̃(n, λ) is decreasing and by (5.3.12) we have

λs (Ã(λ) + S̃(n, λ)) ≥ λs S̃(n, λ) ≥ (qλ∗)
s S̃(n, qλ∗) ≥ qs−1λs∗ S̃(n, λ∗) .

The result follows.

Proof of Theorem 5.3.9. Since λ0(n) ≤ λ∗, we may apply estimate (A.2.4) . From Proposition 5.3.7 we

have ∥∥∥B̄s(fρ − f λ̂s(z)
z )

∥∥∥
H1

≤ 15 log2s(4|Λm|η−1)
∥∥∥(B̄x + λ∗)

s(fρ − f λ̂s(z)
z )

∥∥∥
H1

≤ Ds(m, η) λs∗ S̃(n, λ∗) ,

with probability at least 1− η, provided

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))

and where Ds(m, η) = C ′s log2(s+1)(16|Λm|η−1). The result follows by applying Lemma 5.3.8 .

Proof of Corollary 5.3.10. The proof follows from Theorem 5.3.9, by applying (5.3.13) and by using the

lower bound from Assumption 5.3.6. More precisely, the condition

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
is implied by the sufficient condition

η ≥ ηn := min

(
1, 4Cq log(n) exp

(
−
√
C1

2
λ0(n)−

γ1
2

))
,
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which itself is implied by

η ≥ ηn := Cq log(n) exp
(
−Cγ1,γ2n

γ1
2(1+γ2)

)
,

by using (5.3.14), provided n is sufficiently large and with Cγ1,γ2 =
√
C1

2 C
− γ12
γ2 .

Moreover, using 1 ≤ log(16η−1) for any η ∈ (0, 1], we obtain

q1−s Ds(m, η) = q1−s C ′s log2(s+1)(16|Λm|η−1)

≤ q1−s C ′s
(
log(Cq log(n)) + log(16η−1)

)2(s+1)

≤ q1−s C ′s (log(Cq log(n)) + 1)
2(s+1)

log2(s+1)(16η−1) .

Moreover, if n is sufficiently large, we have

log(Cq log(n)) ≤ log(Cq) + log(n) ≤ (1 + log(Cq)) log(n)

and thus

q1−s Ds(m, η) ≤ Cs,q log2(s+1)(log(n)) log2(s+1)(16η−1) =: D̃s,q(n, η) ,

with Cs,q = q1−s C ′s(1 + log(Cq))
2(s+1).

Lemma 5.6.2. Assume nλ0 ≥ 2. With probability at least 1− η

||f λ̂0(z)
z − f λ̂1/2(z)

z ||H1
≤ D(m, η) S̃(n, λ∗) ,

provided

η ≥ ηn := min

(
1 , 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
and with D(m, η) = 200 max(C1/2, C0) log2(16|Λm|η−1).

Proof of Lemma 5.6.2. Recall the definition of λ∗ in (5.3.7) and write

||f λ̂0(z)
z − f λ̂1/2(z)

z ||H1
≤ ||f λ̂0(z)

z − fλ∗z ||H1
+ ||fλ∗z − f

λ̂1/2(z)
z ||H1

. (5.6.1)

By definition of λ̂0(z), Lemma 5.6.1 and applying (5.3.9) gives with probability at least 1− η
2

||f λ̂0(z)
z − fλ∗z ||H1 ≤ 20C0(m, η/2)S̃x(n, λ∗)

≤ 100C0(m, η/2)S̃(n, λ∗) . (5.6.2)

Using ||f ||H1 ≤ λ
− 1

2
∗ ||(B̄x +λ∗)

1
2 f ||H1 , Lemma 5.6.1 and the definition of λ̂1/2(z) yields with probability
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at least 1− η
2

||fλ∗z − f
λ̂1/2(z)
z ||H1

≤ λ−
1
2
∗ ||(B̄x + λ∗)

1
2 (fλ∗z − f

λ̂1/2(z)
z )||H1

≤ 20C1/2(m, η/2)S̃x(n, λ∗)

≤ 100C1/2(m, η/2)S̃(n, λ∗) . (5.6.3)

In the last step we applied (5.3.9) once more. Combining (5.6.2) and (5.6.3) with (5.6.1) gives the result.

Proof of Theorem 5.3.11. Assume n is sufficiently large and

η ≥ ηn = min

(
1, 4|Λm| exp

(
−1

2

√
N(λ0(n))

))
.

Recall that Cs(m, η) = Cs log2(8|Λm|η−1). We firstly show the result for the case where s = 0 and get

the final one from interpolation. We write

||f λ̂1/2(z)
z − fρ||H1 ≤ ||f

λ̂1/2(z)
z − f λ̂0(z)

z ||H1 + ||f λ̂0(z)
z − fρ||H1

and bound each term separately. From Proposition 5.3.7, with probability at least 1− η
2

||f λ̂0(z)
z − fρ||H1

≤ 102C0 log2(16|Λm|η−1)S̃(n, λ∗) .

Applying Lemma 5.6.2 yields with probability at least 1− η
2

||f λ̂0(z)
z − f λ̂1/2(z)

z ||H1 ≤ D(m, η)S̃(n, λ∗) ,

with D(m, η) = 200 max(C0, C1/2) log2(16|Λm|η−1). Collecting both pieces leads to

||f λ̂1/2(z)
z − fρ||H1 ≤ D′(m, η)S̃(n, λ∗) , (5.6.4)

with probability at least 1− η, where D′(m, η) = C log2(16|Λm|η−1), C = 302 max(C0, C1/2).

Using ||B̄sf ||H1 ≤ ||
√
B̄f ||2sH1

||f ||1−2s
H1

for any s ∈ [0, 1
2 ], applying (A.2.4), Proposition 5.3.7 and (5.6.4)

gives with probability at least 1− η∥∥∥∥B̄s(f λ̂1/2(z)
z − fρ)

∥∥∥∥
H1

≤ C̃2s
(

log3(16|Λm|η−1)
√
λ∗ S̃(n, λ∗)

)2s

C1−2s
(

log2(16|Λm|η−1) S̃(n, λ∗)
)1−2s

≤ C ′s log2(s+1)(16|Λm|η−1)λs∗ S̃(n, λ∗) ,

for some C ′s > 0. Finally, the result follows by applying Lemma 5.3.8.

Proof of Corollary 5.3.12. The proof follows by combining Theorem 5.3.11 and the argumentation in the

proof of Corollary 5.3.10.
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Chapter 6

Future Research

6.1 Asymptotics of Effective Dimension

The effective dimension N(λ) = Tr
[
B(B + λ)−1

]
has emerged as a crucial quantity parame-trizing the

impact of the covariance operator B on the learning problem. We have treated 2 cases of eigenvalue

distribution in detail (the regular case and the case beyond the regular case), where we have derived

the asymptotic behavior of the effective dimension as λ → 0. But, in some sense, our approach has

been naive: Surely, the trace contains averaged information, and we have derived the asymptotics of this

average by imposing much more detailed conditions on the asymptotics of individual eigenvalues (in the

regular case), which we then have relaxed (in the case beyond the regular case), but still staying in a

framework of imposing conditions on eigenvalues individually.

It is not clear how one could do better in a completely distribution free context, where the input space

X and the associated reproducing kernel is arbitrary. But since a more thorough understanding of the

effective dimension undoubtedly is of importance, we think that it is of interest to use tools of microlocal

analysis to analyze the effective dimension more closely in some classical cases (related but not identical

to classical Sobolev type conditions). As a first step, one could consider the simplest case X = Rd (which

allows to use Fourier transform) and take B as a pseudodifferential operator of trace class. 1

We recall a few basic facts (see e.g. [49], [31]). By the Schwarz kernel theorem, any linear continuous

operator B from the Schwarz space S(Rd) to its dual S′(Rd) is represented by a distributional kernel KB

in S′(Rd × Rd), which by Fourier transform induces a symbol bt in S′(Rd × Rd), formally given by

bt(x, ξ) =

∫
e−iy·ξKB(x+ (1− t)y, x− ty)dy, 0 ≤ t ≤ 1. (6.1.1)

We emphasize that the above ”integral” is not in the Lebesgues sense; it is merely a convenient notation

for the Fourier transform of distributions (well defined by duality), and neither KB(x, y) nor bt(x, ξ) have

pointwise sense on this level of generality. The symbol b induces a (so called pseudodifferential) operator

1The use of pseudodifferential operators is closely related to my diploma thesis in Analysis/Mathematical Physics. In
addition I acknowledge helpful discussions with Markus Klein on the Weyl estimate and the theory of Gevrey spaces.
Without those this section could not have been written as it stands.
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Opt(b), for any t ∈ [0, 1], formally given by the quantization rule

Opt(b)u(x) = (2π)−d
∫
ei(x−y)·ηb(tx+ (1− t)y, η)u(y)dydη. (6.1.2)

We have defined the so called t quantisation. Loosely speaking, for t = 1 all derivatives have been put

to the right of the multiplication operators, while for t = 0 derivatives are on the left. For the Weyl

quantisation t = 1/2, a symmetric compromise, real symbols induce symmetric operators (and this seems

to be most appropriate in our context, reducing bother with subleading terms). For details we refer to

the literature. It then follows that B = Opt(bt), which establishes a general correspondence between

kernel induced linear operators and (very general) pseudodifferential operators.

Most applications of pseudodifferential operators require that the symbol belongs to a much more specific

symbol class, which typically is a Fréchet space of C∞ functions with Fréchet seminorms specifying

bounds on the derivatives (of all orders). A classical example would be the space Sm1,m2

δ1,δ2
(R2d) consisting

of functions b ∈ C∞(Rd) satisfying

|∂αx ∂
β
ξ b(x, ξ)| ≤ Cα,β〈x〉

m1−δ1|α|〈ξ〉m2−δ2|β|, 〈x〉 := (1 + |x|2)1/2. (6.1.3)

There is a huge amount of different symbol classes in the literature (the most general are the Hörmander

classes S(m, g), see [49], for a slowly varying Riemannian metric g on T ∗Rd and a corresponding g−
continuous order function m(x, ξ)), but (6.1.3) should suffice for a start. We remark that the limiting

case δ1 = δ2 = 0 corresponds to a calculus without gain (at least if one does not consider a semiclassical

situation as in [31]), while at least one δj > 0 corresponds to a calculus with gain. Only in the latter case

we expect good control of the effective dimension.

We recall that for symbols a in such a class there are reasonable sufficient conditions for A = Opt(a) to

be of trace class, namely ∑
|α|≤2d+1

||∂αx,ξa||L1 <∞, (6.1.4)

which might be slightly weakened. As usual, a sharp characterization of A being trace class, corresponding

to a necessary condition, is unknown. But under condition (6.1.4), one simply has

Tr [Op(a)] = (2π)−n
∫
a(x, ξ)dxdξ, (6.1.5)

both for the t = 1 and the Weyl quantization.

To compute the effective dimension efficiently via this formula, 2 problems have to be adressed: Firstly,

obtain a representation of the resolvent (λ + B)−1 as a pseudodifferential operator and an expansion of

its symbol, and, secondly, to have a sharp parameter dependent control of the error term in the symbolic

calculus. The first problem can in principle be solved via Beals characterisation of pseudodifferential

operators (based on this idea, an asymptotic expansion of the resolvent has in the semiclassical case been

worked out in [31] which hopefully can be adapted to the present slightly different setting). The starting

point is to use the symbol (λ+ b(x, ξ))−1 to define an appropriate parametrix, and then continue via the

symbolic calculus (which is central for the second problem also). The construction crucially depends on

some sort of ellipticity of the covariance operator B and its symbol. As a first step, possibly well adapted
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to the symbol space Sm1,m2

δ1,δ2
(R2d), the (strong) assumption

b(x, ξ) ≥ C〈x〉−M1〈ξ〉−M2 , (6.1.6)

for some M1,M2 > 0, might be appropriate. The second problem depends on the evaluation of the

composition formula in the so called symbolic calculus.

We recall that, if the symbols a, b belong to the Hörmander class S(m1, g), S(m2, g) respectively, then

Opt(a)Opt(b) = Opt(c), where c ∈ S(m1m2, g) is given by

c(x, ξ) = eiqt(Dx,Dξ;Dy,Dη)a(x, ξ)b(y, η)|y=x,η=ξ, Dx =
1

i
∂x, . . . , (6.1.7)

where qt(Dx, Dξ;Dy, Dη) is a certain quadratic form (for t = 1 it is simply Dξ · Dη, for the Weyl

quantisation it is 1
2σ(Dx, Dξ;Dy, Dη), with σ being the standard symplectic form in the cotangent bundle

T ∗Rd, isomorphic to R2d). At least formally, this gives an asymptotic expansion

c(x, ξ) ∼
∞∑
0

1

k!
qt(Dx, Dξ;Dy, Dη)ka(x, ξ)b(y, η)|y=x,η=ξ. (6.1.8)

As usual, the main problem are good remainder estimates, including control on additional parameters.

Carefully checking all remainder terms and controlling the spectral parameter hopefully gives a result of

the type

N(λ) = (2π)−d
∫

b(x, ξ)

λ+ b(x, ξ)
dxdξ(1 + o(1)), as λ ↓ 0, (6.1.9)

if appropriate lower bounds on the symbol b(x, ξ) as e.g. in (6.1.6) are imposed. Clearly, in a lot of cases

this integral can be evaluated to extract the asymptotic behavior as λ ↓ 0. However, we already mention

here that not all naive choices of the symbol b(x, ξ) are legal in our context. In particular, the symbol is

not allowed to be of compact support: By the easy part of the Paley Wiener theorem, compact support

in ξ implies analyticity of the Fourier transform, thus by (6.1.1) analyticity of the kernel KB(x, y) in the

second variable. Since B is assumed to be self-adjoint, the kernel is symmetric. Thus compact support

in the first variable also implies vanishing of the kernel, by analyticity. More general, one should keep in

mind that a simple formula as (6.1.9) requires at least some form of ellipticity.

Of course, formulated in this way, these are problems in analysis. Since they are very close in spirit to

my diploma thesis, see [67], on functional calculus for pseudodifferential operators (which is a starting

point for the classical Weyl estimates), it seems natural to me to apply these techniques also to obtain

additional insight into the statistically significant object of the effective dimension.

In addition, using functional calculus, I would like to investigate in which cases an estimate analogous to

Chapter 3 will hold, i.e.

1

C
Tr
[
1[λ,∞)(B)

]
≤ N(λ) ≤ CTr

[
1[λ,∞)(B)

]
, (6.1.10)

for some constant C > 0. If B is the inverse of a positive elliptic pseudodifferential operator P , this
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compares the effective dimension to the number of eigenvalues of P below λ−1. By the Weyl estimate

this is asymptotic to the volume of p−1([0, λ−1]) in T ∗Rd, if p denotes the symbol of P .

Furthermore, I would like to have precise estimates relating the asymptotics of the effective dimension

to a wide range of smoothness classes of the associated kernel (starting with X = Rd). Since via Fourier

transform smoothness of the kernel transforms into decay in the covariable ξ, the symbol classes defined

in (6.1.3) are appropriate for Sobolev-type smoothness corresponding to existence of finitely many deriva-

tives. But if the kernel is much more regular, e.g. analytic (as an entire function, or in a strip |=y| < β),

the corresponding symbol decays exponentially, by the Paley-Wiener theorem. Clearly, this leads to a

much smaller effective dimension, which should be evaluated asymptotically. Here it is essential to relax

the ellipticity condition (6.1.6) while still keeping control on the trace. Similar relations should hold for

regularity of the kernel in a Gevrey - s class (for s > 1), which by Fourier transform leads to decay of the

symbol as a stretched exponential, i.e.

b(x, ξ) ≤ C exp(−c|ξ|1/s). (6.1.11)

For the sake of the reader, we recall that Gevrey spaces were introduced in [39]. A standard textbook

is [75]. A finer notion of Gevrey spaces (appropriate for slightly more refined estimates on the Fourier

transform) was used in [52]: For s ≥ 1, b > 0, the Gevrey space Γs,b is the space of all f ∈ C∞(Rd) such

that

||∂αf ||∞ ≤ c0(f)(|α|+ 1)c0(f)b|α||α|!s. (6.1.12)

The global Gevrey space Γs and the small Gevrey space γs (see [48]) then correspond to union and

intersection with respect to the parameter b. We recall that Gevrey-s regularity is intermediate between

analyticity and smoothness in the C∞− sense. For s = 1 it reduces to analyticity, but for s > 1 it is not a

quasi-analytic class in the sense of the Denjoy-Carlemann theorem, i.e. it contains non-trivial functions

of compact support. A version of the Paley Wiener theorem then states that for f ∈ Γs,b∩L1(Rd) - recall

that, since B is trace class, it is reasonable to consider kernels K(x, ·) in L1(Rd) - the Fourier transforms

f̂(ξ) satisfies the estimate (6.1.11), for all constants c < sb−
1
s . To the best of our knowledge, this estimate

in the case of an L1 condition - which is natural in our context - is not to be found in the literature,

since the classical Paley Wiener theorem is concerned with the Fourier transform of functions of compact

support only (for Gevrey spaces it is due to Komatsu, see [53], in its work on ultradistributions, which

form the dual space; for analytic functions see [47]). But the proof in [52] via almost analytic extensions

applies (and gives a characterization of f ∈ Γs,b in terms of the estimate (6.1.11), with the relation

between s, b, c as given above).

It is not clear if even in these cases the asymptotics of the effective dimension are described by the naive

leading term (6.1.9), since ellipticity is pretty much lost at infinity. It has to be checked if there is still

a useful expansion of the resolvent and a useful symbolic calculus, possibly utilizing the full range of the

H”ormander spaces S(m, g).

In any case, if the symbol b(x, ξ) can be bounded by a product of weightfunctions in x and ξ and there

is some sort of ellipticity, we expect an upper bound of the form

N(λ) ≤ F1(λ)F2(λ), (6.1.13)
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where Fj(λ) ↑ ∞ as λ ↓ 0, Fj(λ) (and F1(λ)F2(λ)) are bounded by λ−1 and

Fj(λ) ≤ C(log λ−1)sd

corresponds to decay of b(x, ξ) as in (6.1.11), where decay in x gives an estimate on F1(λ), and decay in

ξ on F2(λ). Clearly, since the effective dimension depends symmetrically on x and ξ, decay in only one of

the variables may be completely masked by the reverse asymptotics in the other variable. In particular,

it is not true that smooth kernels automatically give small (or even logarithmically bounded) effective

dimension.

Furthermore we remark that, although general marginals ν which do not have a smooth density with

respect to Lebesgues measure, are not easily accessible to a pseudodifferential approach, measures con-

centrated on a submanifold of lower dimension are accessible via covariance operators which are pseu-

dodifferential on an appropriate submanifold of Rn. Such examples are classical in the context of Weyl

estimates. We recall that in all these cases the sharpest results have been obtained by an additional

use of evolution equations, using Fourier integral operators. A stationary approach, even using the best

pseudodifferential calculus available (see e.g. [46], has not yet reproduced the known sharp estimates on

the error term. It is wide open if a precise analysis of the effective dimension will show similar phenomena.

Finally we remark that, at least in the semiclassical context, Weyl type estimates have been extended

to cases where a complete asymptotic expansion of the resolvent is not available, e.g. pseudodifferential

operator boundary values. This goes back to work of Ivrii, see [50], using hyperbolic energy estimates,

and has been transformed to a more stationary approach by Dimassi and Sjöstrand in [30], by systematic

use of almost analytic extensions. A complete version is contained in the book [31]. In the distribution

free philosophy, it is certainly interesting to check if these ideas can be applied or adapted to a more

general study of the trace in the definition of the effective dimension.

6.2 Non-Linear Inverse Problems

We present some thoughts on how to use the methods of this thesis for the problem of solving a fully non-

linear inverse regression problem. These thoughts are preliminary and might possibly change substantially

upon working them out in detail. We remark that there is already a vast literature on the deterministic

non-linear inverse problem, see e.g. [35], [68], [85], [51], but there are much less results in the stochastic

setting, see [69], [59], [9]. In particular, to the best of our knowledge, there is no implementation of kernel

based methods for a large class of general spectral regularization schemes.

We want to formulate the regression problem and our kernel based approach in a way similar to the

approach of this thesis for the linear problem. Thus we consider the non-linear inverse regression problem

Yi = g(Xi) + εi, g = A(f), i = 1 . . . n, (6.2.1)

where A : D(A)→ H2 is a known non-linear operator on a domain D(A) ⊂ H1 in some Hilbert space H1.

We take D(A) convex and weakly sequentially closed and we let H2 be a space of real valued functions

on some input space X, taken to be standard Borel. Thus, for simplicity, the output space Y, containing

the oucomes Yi, is the real line, but as for the rest of this thesis we expect that this could be generalized
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to any separable Hilbert space with very little additional effort.

As in the linear case, we assume that the observed data (Xi, Yi)1≤i≤n ⊂ (X × Y)n are iid random

variables, drawn according to a data generating distribution ρ on X× Y, with E[Yi|Xi] = g(Xi), so that

the distribution of εi may depend on Xi but satisfies E[εi|Xi] = 0. As above, we furthermore assume that

the map (f, x) 7→ (A(f))(x) is measurable in x and continuous in f (which requires to endow H2 with

some a priori topological structure, e.g. by assuming H2 to be a Hilbert space). Furthermore, we shall

take A to be at least C1 in Fréchet- sense on the open interior of D(A) (with a continuous extension of

DA to the boundary of D(A)), with DA : D(A)→ L(H1,H2) being (at least) locally Lipschitz. Possibly,

it is useful to require A ∈ Ck(D(A),H2) for some k > 1 ( in the sense that the derivatives DjA, for

0 ≤ j ≤ k, have continuous extensions from the interior to the boundary of D(A)).

Then the goal is to approximate the target function f ∈ D(A) by an estimator f̂n, depending on the data

(Xi, Yi) in (X× Y)n in some optimal way. As in any non-linear problem, any iterative algorithm to solve

the non-linear inverse regression problem (6.2.1) requires the choice of some good starting point f0 ∈ H1,

sufficiently close to the solution f . How to get this f0 (e.g. by some probabilistic search algorithm) is a

separate problem which we shall not discuss here. We assume f0 sufficiently close to f , as being given.

Setting A0 := DA|f0 and replacing A(f) by its linearization A(f0) +A0h0, h0 := f − f0, at f0, we obtain

the first linearized inverse regression model (indexed by zero)

Y 0
i = g0(Xi) + εi, Y 0

i := Yi −A(f0)(Xi), g0 = A0h0. (6.2.2)

We shall assume that for x ∈ X, f ∈ D(A) all evaluation functionals

Sx,f : H1 → R, Sx,fh := (DA|f − f0h)(x)

are uniformly bounded in x:

|Sx,fh| ≤ κ||h||H1 (x ∈ X),

possibly taking κ to be uniform also w.r.t. f ∈ D(A). Then, by Riesz, there is Fx,f ∈ H1 with

(DA|fh)(x) = 〈h, Fx,f 〉H2
, h ∈ H1,

defining a base point dependent feature map

X 3 x 7→ Fx,f ∈ H1

and a p.s.d. base point dependent kernel

Kf : X× X→ R, Kf (x1, x2) := 〈Fx1,f , Fx2,f 〉H1
.

This defines for each base point f ∈ D(A) an RKHS structure on Im(DA|f ) =: HKf ⊂ H2, a space of

bounded real-valued functions. Assuming, as above, measurability of all functions in HKf , when f varies

through D(A), defines a continuous embedding HKf → L2(X, dν), where ν is the marginal distribution

of ρ describing the law of Xi. Furthermore, we obtain the covariance operator (at the base point f)

Bν,f :=

∫
X

Fx,f ⊗ F ∗x,f ν(dx).
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Having all this at our disposal, we may apply the kernel methods developed in this thesis to approximately

solve the linear regression problem (6.2.2):

For any sample z = (x,y) ∈ (X × Y)n we define the empirical sampling operator (for fixed base point

f ∈ D(A))

Sx,f : H1 → Rn, (Sx,fh)j := 〈h, Fxj ,f 〉H1 .

Then the empirical inner product on Rn defines the adjoint

S∗x,f : Rn → H1, S∗x,fy =
1

n

n∑
j=1

yjFxj ,f

and the empirical covariance operator

Bx,f = S∗x,fSx,f =
1

n

n∑
j=1

Fxj ,f ⊗ Fxj ,f .

Introducing, as in Chapter 2, the normalized operators B̄x,f and S̄x,f and choosing a regularizing function

gλ, the regularized approximate solution of (6.2.2) is defined by

hλz,0 := gλ(B̄x,f0)S∗x,f0y. (6.2.3)

Note that, for any linearized problem with fixed base point, we may consider source conditions and classes

of marginals as explained in Chapter 2 and 3. However, to cover the non-linear case, some globalization

procedure is needed, e.g. by taking an intersection over all base points varying in some appropriate

subset of D(A). Furthermore, the most naive approach is in using all data Z ∈ (X× Y)n, in every single

linearization step. But, certainly, any efficient algorithm will ultimately depend on using in each step

just an appropriate fraction of data. This requires to define an appropriate map

N 3 j 7→ mj ≤ n

which associates to each iteration step j a reasonable cardinality Mj ≤ n of an appropriate subset of data

to be used in iteration step j. We expect this to be crucial for defining a reasonable iterative solution

algorithm for the non-linear regression problem (6.2.1).

Coming back to the approximate regularized solution hλz,0 of (6.2.2), we obtain an approximate solution

f1 ∈ D(A) of (6.2.1), provided f0 was chosen luckily, by

f1 := f0 + h
λm0
z,0 ,

where m0 is the cardinality of data z used in the first iteration step. Assuming f1 ∈ D(A), which is a first

basic requirement of any good starting point f0, and similarly for all iterates fj , one may set inductively

fj+1 = fj + h
λmj
z,j , (j ≤ J(n)), (6.2.4)

where J(n) is the number of iterations used for data of cardinality n (which has to be determined by an

appropriate stopping rule) and

h
λmj
z,j = gλmj (B̄x,fj )S̄

∗
x,fjy
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is the approximate regularized solution of the j-th linearized regression problem

Y ji = gj(Xi) + εi, i = 1, . . .mj , (6.2.5)

where

gj := Ajhj , Aj := DA|fj , hj := f − fj , Y ji := Yi −A(fj)(Xi).

Here the data z = (x,y) ∈ (X× Y)mj depend on the iteration step j (and have to be extracted from the

data in (X × Y)n by some well defined procedure), but for simplicity of notation we have suppressed an

additional index in our notation.

Clearly, for data of size n and an appropriate stopping rule, bounding the number of iterations by

j ≤ J(n), we obtain a last approximation

f̂n := fnJ(n)+1 = f0 +

J(n)∑
j=0

h
λmj
z,j (6.2.6)

for which one would like to investigate rates of convergence and their optimality. Clearly, the ultimate

goal is to define in a purely data driven way a stopping criterion defining the appropriate number of

iterations J(n) and a sequence of cardinalities of data mj , 1 ≤ j ≤ J(n), where mj is somewhat minimal

but still sufficient to give optimal rate of convergence for the etimator f̂n.

As a preliminary step, one might in analogy to Chapter 2 and 3 analyze rates of convergence for a known

a-priori smoothness of f and fixed assumptions on the spectral properties of all covariance operators Bν,f

for ν in a fixed class of marginals and f ∈ D(A), but finally one aims at a truly adaptive estimator. It is

clear that proceeding in this manner requires a chain of clarifying definitions adapted to the non-linear

case, which in particular will specify optimality and adaptivity. It is also clear that any convergence

analysis has to compare (and finally balance) the errors in the non-linear iteration scheme (which one

might call a stochastic Newton method by the obvious analogy with the deterministic Newton method)

with the errors arising in the approximate solution of the linearized regression problems, which have

been analyzed in this thesis. This will be at the heart of the non-linear regression problem and requires,

beyond the results of this thesis, reasonable error estimates for the stochastic Newton method, e.g. by

some form of the discrepancy principle, popular in the deterministic case.

We also expect that the number of iterations in the Newton method serves as additional regularization for

the linearized regression problems (somewhat similar to out findings for DL in Chapter 4), which might

make underregularization attractive. Furthermore, any numerically efficient implementation should use

appropriate combinations of speeding up the solution of the linearized problems.

Clearly, in all these problems there is a lot of overlap with the methods and results of this thesis. This

puts a fairly complete analysis of the stochastic Newton method high up on my priority list for natural

future research topics.
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6.3 LocalNysation: Combining Localized Kernel Regression and

Nyström Subsampling

It is clear from our discussion in Chapter 4 that at least some of the different approaches to speed up

computation for large data sets should be combined to produce a twofold beneficial effect on computation

time. Instead of describing this metatheoretically, we did - after the rest of this thesis had been finished

- proceed by way of example, combining the partitioning approach and plain Nyström Subsampling.

The corresponding paper has been submitted to a peer-reviewd conference and we reproduce it here as

Appendix B.
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Appendix A

Tools

A.1 Concentration Inequalities

Proposition A.1.1. Let (Z,B,P) be a probability space and ξ a random variable on Z with values in a

real separable Hilbert space H. Assume that there are two positive constants L and σ such that for any

m ≥ 2

E
[
‖ξ − E[ξ]‖mH1

]
≤ 1

2
m!σ2Lm−2. (A.1.1)

If the sample z1, ..., zn is drawn i.i.d. from Z according to P, then, for any 0 < η < 1, with probability

greater than 1− η ∥∥∥ 1

n

n∑
j=1

ξ(zj)− E[ξ]
∥∥∥
H
≤ 2 log(2η−1)

(
L

n
+

σ√
n

)
. (A.1.2)

In particular, (A.1.1) holds if

‖ξ(z)‖H1
≤ L

2
a.s. ,

E
[
‖ξ‖2H1

]
≤ σ2.

Proof. See [20, 21], from the original result of [71] (Corollary 1) .

The following propositions summarize important concentration properties of the empirical quantities

involved.

Proposition A.1.2. For n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1], it holds with probability at least 1− η :

∥∥(B̄ + λ)−
1
2

(
B̄xfρ − S̄?xy

) ∥∥
H1
≤ 2 log(2η−1)

(
M

n
√
λ

+

√
σ2N(λ)

n

)
.

Also, it holds with probability at least 1− η:

∥∥B̄xfρ − S̄?xy
∥∥
H1
≤ 2 log(2η−1)

(
M

n
+

√
σ2

n

)
.
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Proof of Proposition A.1.2. Define ξ1 : X× R −→ H1 by

ξ1(x, y) := (B̄ + λ)−1/2(y − S̄xfρ)F̄x
= (B̄ + λ)−1/2S̄?x(y − S̄xfρ) .

Abusing notation we also denote ξ1 the random variable ξ1(X,Y ) where (X,Y ) ∼ ρ . The model assump-

tion (2.2.4) implies

E[ξ1] = (B̄ + λ)−1/2

∫
X

F̄x

∫
R

(y − S̄xfρ) ρ(dy|x)ν(dx)

= (B̄ + λ)−1/2

∫
X

F̄x(S̄xfρ − S̄xfρ) ν(dx)

= 0 ,

and therefore

1

n

n∑
j=1

ξ1(xj , yj)− E[ξ1] =
1

n

n∑
j=1

(B̄ + λ)−1/2(yj − S̄xjfρ)F̄xj

= (B̄ + λ)−1/2S̄?x
(
y − S̄xfρ

)
.

= (B̄ + λ)−1/2
(
S̄?xy − B̄xfρ

)
.

Moreover, by assumption (2.2.5) , for m ≥ 2:

E[ ‖ξ1‖mH1
] =

∫
X×R

∥∥∥(B̄ + λ)−1/2S̄?x(y − S̄xfρ)
∥∥∥m
H1

ρ(dx, dy)

=

∫
X×R
|〈S̄x(B̄ + λ)−1S̄?x(y − S̄xfρ), (y − S̄xfρ)〉R|

m
2 ρ(dx, dy)

≤
∫
X

∥∥S̄x(B̄ + λ)−1S̄?x
∥∥m2 ∫

R

∣∣y − S̄xfρ
∣∣m ρ(dy|x)ν(dx)

≤ 1

2
m!σ2Mm−2

∫
X

∥∥S̄x(B̄ + λ)−1S̄?x
∥∥m2 ν(dx) .

Setting A := S̄x(B̄ + λ)−1/2, we have using ‖·‖ ≤ Tr [·] for positive operators

∥∥S̄x(B̄ + λ)−1S̄?x
∥∥m2 = ‖AA?‖

m
2 ≤ ‖AA?‖

m
2 −1

Tr [AA?]

= ‖AA?‖
m
2 −1

Tr [A?A] .

Firstly, observe that

‖AA?‖
m
2 −1 ≤

(
1

λ

)m
2 −1

,

since our main assumption 2.2.1 implies
∥∥S̄x∥∥ ≤ 1. Secondly, by linearity of Tr [·]∫

X

Tr [A?A] ν(dx) =

∫
X

Tr
[
(B̄ + λ)−1/2B̄x(B̄ + λ)−1/2

]
ν(dx) = N(λ) .

Thus,

E[ ‖ξ1‖mH1
] =

1

2
m!(σ

√
N(λ))2

(
M√
λ

)m−2

.
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As a result, Proposition A.1.1 implies with probability at least 1− η∥∥∥(B̄ + λ)−1/2(B̄xfρ − S̄?xy)
∥∥∥
H1

≤ δ1 (n, η) ,

where

δ1(n, η) = 2 log(2η−1)

(
M

n
√
λ

+
σ√
n

√
N(λ)

)
.

For the second part of the proposition, we introduce similarly

ξ′1(x, y) := (y − S̄xfρ)F̄x = S̄?x(y − S̄xfρ) ,

which satisfies

E[ξ′1] = 0 ;
1

n

n∑
j=1

ξ′1(xj , yj)− E[ξ′1] = S̄?xy − B̄xfρ ,

and

E
[
‖ξ′1‖

m
H1

]
≤ E

[ ∣∣y − S̄xfρ∣∣m ] ≤ 1

2
m!σ2Mm−2 .

Applying Proposition A.1.1 yields the result.

Proposition A.1.3. For any n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1), it holds with probability at least 1− η :

∥∥(B̄ + λ)−1(B̄ − B̄x)
∥∥

HS
≤ 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Proof of Proposition A.1.3. We proceed as above by defining ξ2 : X −→ HS(H1) (the latter denoting the

space of Hilbert-Schmidt operators on H1) by

ξ2(x) := (B̄ + λ)−1B̄x ,

where B̄x := F̄x ⊗ F̄ ?x . We also use the same notation ξ2 for the random variable ξ2(X) with X ∼ ν .

Then,

E[ξ2] = (B̄ + λ)−1

∫
X

B̄x ν(dx) = (B̄ + λ)−1B̄ ,

and therefore
1

n

n∑
j=1

ξ2(xj)− E[ξ2] = (B̄ + λ)−1(B̄ − B̄x) .

Furthermore, since B̄x is of trace class and (B̄ + λ)−1 is bounded, we have using Assumption 2.2.1

‖ξ2(x)‖HS ≤
∥∥(B̄ + λ)−1

∥∥∥∥B̄x∥∥HS
≤ λ−1 =: L2/2 ,
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uniformly for any x ∈ X. Moreover,

E
[
‖ξ2‖2HS

]
=

∫
X

Tr
[
B̄x(B̄ + λ)−2B̄x

]
ν(dx)

≤
∥∥(B̄ + λ)−1

∥∥∫
X

∥∥B̄x∥∥ Tr
[

(B̄ + λ)−1B̄x
]
ν(dx)

≤ N(λ)

λ
=: σ2

2 .

Thus, Proposition A.1.1 applies and gives with probability at least 1− η

∥∥(B̄ + λ)−1(B̄ − B̄x)
∥∥

HS
≤ δ2(n, η)

with

δ2(n, η) = 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Proposition A.1.4. Let η ∈ (0, 1). Assume that λ ∈ (0, 1] satisfies

√
nλ ≥ 8 log(2η−1)

√
max(N(λ), 1) . (A.1.3)

Then, with probability at least 1− η :

∥∥(B̄x + λ)−1(B̄ + λ)
∥∥ ≤ 2 . (A.1.4)

Proof of Proposition A.1.4. We write the Neumann series identity

(B̄x + λ)−1(B̄ + λ) = (I −Hx(λ))−1 =

∞∑
j=0

Hx(λ)j(λ) ,

with

Hx(λ) = (B̄ + λ)−1(B̄ − B̄x) .

It is well known that the series converges in norm provided that ‖Hx(λ)‖ < 1. In fact, applying Propo-

sition A.1.3 gives with probability at least 1− η :

‖Hx(λ)‖ ≤ 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Put Cη := 2 log(2η−1) > 1 for any η ∈ (0, 1) . Assumption (A.1.3) reads
√
nλ ≥ 4Cη

√
max(N(λ), 1) ,

implying
√
nλ ≥ 4Cη ≥ 4 and therefore 2

nλ ≤
1

2
√
nλ
≤ 1

8Cη
, hence

Cη

(
2

nλ
+

√
N(λ)

nλ

)
≤ Cη

(
1

8Cη
+

1

4Cη

)
<

1

2
.

Thus, with probability at least 1− η:

∥∥(B̄x + λ)−1(B̄ + λ)
∥∥ ≤ 2 .
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Proposition A.1.5. For any n ∈ N and 0 < η < 1 one has with probability at least 1− η :

∥∥B̄ − B̄x

∥∥
HS
≤ 6 log(2η−1)

1√
n
.

Proof of Proposition A.1.5. Defining ξ3 : X −→ HS(H1) by

ξ3(x) := F̄x ⊗ F̄ ?x = B̄x

and denoting also, as before, ξ3 for the random variable ξ3(X) (with X ∼ ν) , we have E[ξ3] = B̄ and

therefore
1

n

n∑
j=1

ξ3(xj)− E[ξ3] = (B̄x − B̄) .

Furthermore, by Assumption 2.2.1

‖ξ3(x)‖HS =
∥∥F̄x∥∥2 ≤ 1 =:

L3

2
a.s. ,

also leading to E[‖ξ2‖2HS] ≤ 1 =: σ2
3 . Thus, Proposition A.1.1 applies and gives with probability at least

1− η ∥∥B̄ − B̄x

∥∥
HS
≤ 6 log(2η−1)

1√
n
.

Lemma A.1.6. Let s ∈ [0, 1
2 ] and f ∈ H1. If 0 < λ1 ≤ λ2, then

∥∥(B̄x + λ1)sf
∥∥
H1
≤
∥∥(B̄x + λ2)sf

∥∥
H1

Proof of Lemma A.1.6. Applying Proposition A.4.2 in [17] gives

∥∥(B̄x + λ1)sf
∥∥
H1

=
∥∥(B̄x + λ1)s(B̄x + λ2)−s(B̄x + λ2)sf

∥∥
H1

≤ ||(B̄x + λ1)(B̄x + λ2)−1||s
∥∥(B̄x + λ2)sf

∥∥
H1

.

From the spectral Theorem we get, since 0 < λ1 ≤ λ2

||(B̄x + λ1)(B̄x + λ2)−1|| ≤ sup
0<t≤1

|(t+ λ1)(t+ λ2)−1| ≤ 1 ,

which immediately implies the result.

A.2 A New Useful Inequality

After we had finished writing Chapters 2 and 3 of this thesis, a new bound for the operator product

(B̄x +λ)−1(B̄+λ) was presented in [42], (with a proof not yet published at the time of submission of this

thesis). We will use this result in Chapter 5 when presententing an adaptive estimator for the unkown

target function, and we shall take the precise form of this estimate from the recent paper [62].

121



Proposition A.2.1 ([62]). Let x1, ..., xn be an iid sample, drawn according to ν on X. Define

Bn(λ) :=

1 +

(
2

nλ
+

√
N(λ)

nλ

)2
 (A.2.1)

For any λ > 0, η ∈ (0, 1], with probability at least 1− η one has

∥∥(B̄x + λ)−1(B̄ + λ)
∥∥ ≤ 8 log2(2η−1)Bn(λ) . (A.2.2)

Corollary A.2.2. Let η ∈ (0, 1). For n ∈ N let λ̃n be implicitly defined as the unique solution of

N(λ̃n) = nλ̃n. Then for any λ̃n ≤ λ ≤ 1 one has

Bn(λ) ≤ 26 .

In particular, ∥∥(B̄x + λ)−1(B̄ + λ)
∥∥ ≤ 208 log2(2η−1) ,

with probability at least 1− η.

Proof of Corollary A.2.2. Let λ̃n be defined via N(λ̃n) = nλ̃n. Since N(λ)/λ is decreasing, we have for

any λ ≥ λ̃n √
N(λ)

nλ
≤

√
N(λ̃n)

nλ̃n
= 1 .

Furthermore, by Lemma 2.2.13, the effective dimesion is lower bounded by 1
2 , so by the inequality above

1 ≥
√

N(λ)

nλ
≥ 1

2nλ
=⇒ 1

nλ
≤ 2

for any λ ≥ λ̃n. Inserting these bounds into A.2.2 and noticing that 1 ≤ 2 log(2η−1) for any η ∈ (0, 1)

leads to the conclusion.

We shortly illustrate how Corollary A.2.2 and Proposition A.4.2 will be used to simplify previous bounds.

Let u ∈ [0, 1], λ̃n ≤ λ as above and f ∈ H1. We have

∥∥B̄uf∥∥
H1

=
∥∥B̄u(B̄ + λ)−u(B̄ + λ)u(B̄x + λ)−u(Bx + λ)uf

∥∥
H1

≤
∥∥B̄u(B̄ + λ)−u

∥∥∥∥(B̄ + λ)u(B̄x + λ)−u
∥∥∥∥(B̄x + λ)uf

∥∥
H1

≤ 8 log2u(2η−1)Bn(λ)u
∥∥(B̄x + λ)uf

∥∥
H1

, (A.2.3)

with probability at least 1− η, for any η ∈ (0, 1). In particular, for any λ̃n ≤ λ (with λ̃n as in Corollary

A.2.2) ∥∥B̄uf∥∥
H1
≤ 208u log2u(2η−1)

∥∥(B̄x + λ)uf
∥∥
H1

, (A.2.4)

with probability at least 1− η.

We remark that Corollary A.2.2 could be used to streamline our discussion in Chapters 2 and 3, since it

improves our Proposition A.1.4. Instead of completely rewriting the presentation of our previous results

we shall systematically demonstrate the power of this new approach only in Chapter 5.
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A.3 Auxiliary Technical Lemmata

Lemma A.3.1. Let X be a nonnegative real random variable such that the following holds:

P[X > F (t)] ≤ t , for all t ∈ (0, 1] , (A.3.1)

where F is a monotone non-increasing function (0, 1]→ R+ . Then

E[X] ≤
∫ 1

0

F (u)du .

Proof. An intuitive, non-rigorous proof is as follows. Let G be the tail distribution function of X , then

it is well known that E[X] =
∫
R+
G . Now it seems clear that

∫
R+
G =

∫ 1

0
G−1 , where G−1 is the upper

quantile function for X . Finally, F is an upper bound on G−1 .

Now for a rigorous proof, we can assume without loss of generality that F is left continuous: Replacing

F by its left limit in all points of (0, 1] can only make it larger since it is non-increasing, hence (A.3.1)

is still satisfied. Moreover, since a monotone function has an at most countable number of discontinuity

points, this operation does not change the value of the integral
∫ 1

0
F . Define the following pseudo-inverse

for x ∈ R+ :

F †(x) := inf {t ∈ (0, 1] : F (t) < x} ,

with the convention inf ∅ = 1 . Denote Ũ := F †(X) . From the definition of F † and the monotonicity of

F it holds that F †(x) < t⇒ x > F (t) for all (x, t) ∈ R+ × (0, 1] . Hence, for any t ∈ (0, 1]

P[Ũ < t] ≤ P[X > F (t)] ≤ t ,

implying that for all t ∈ [0, 1] , P[Ũ ≤ t] ≤ t , i.e., Ũ is stochastically larger than a uniform variable on

[0, 1]. Furthermore, by left continuity of F , one can readily check that F (F †(x)) ≥ x if x ≤ F (0) . Since

P[X > F (0)] = 0 , we can replace X by X̃ := min(X,F (0)) without changing its distribution (nor that

of Ũ). With this modification, it then holds that F (Ũ) = F (F †(X̃)) ≥ X̃ . Hence,

E[X] = E[X̃] ≤ E[F (Ũ)] ≤ E[F (U)] =

∫ 1

0

F (u)du ,

where U is a uniform variable on [0, 1], and the second equality holds since F is non-increasing.

Corollary A.3.2. Let X be a nonnegative random variable and t0 ∈ (0, 1) such that the following holds:

P[X > a+ b log t−1] ≤ t , for all t ∈ (t0, 1] , and (A.3.2)

P[X > a′ + b′ log t−1] ≤ t , for all t ∈ (0, 1] , (A.3.3)

where a, b, a′, b′ are nonnegative numbers. Then for any 1 ≤ p ≤ 1
2 log t−1

0 :

E[Xp] ≤ Cp
(
ap + bpΓ(p+ 1) + t0

(
(a′)p + 2(b′ log t−1

0 )p
))
,

with Cp := max(2p−1, 1) .
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Proof. Let F (t) := 1{t ∈ (t0, 1]}(a + b log t−1) + 1{t ∈ (0, t0]}(a′ + b′ log t−1) . Then F is nonnegative,

non-increasing on (0, 1] and

P[Xp > F p(t)] ≤ t

for all t ∈ (0, 1] . Applying Lemma A.3.1 , we find

E[Xp] ≤
∫ t0

0

(a′ + b′ log t−1)pdt+

∫ 1

t0

(a+ b log t−1)pdt . (A.3.4)

Using (x+y)p ≤ Cp(xp+yp) for x, y ≥ 0 , where Cp = max(2p−1, 1) , we upper bound the second integral

in (A.3.4) via∫ 1

t0

(a+ b log t−1)pdt ≤ Cp
(
ap + bp

∫ 1

0

(log t−1)pdt

)
= Cp (ap + bpΓ(p+ 1)) .

Concerning the first integral in (A.3.4), we write similarly

∫ t0

0

(a′ + b′ log t−1)pdt ≤ Cp
(
t0(a′)p + (b′)p

∫ t0

0

(log t−1)pdt

)
= Cp

(
t0(a′)p + (b′)pΓ(p+ 1, log t−1

0 )
)
,

by the change of variable u = log t−1 , where Γ is the incomplete gamma function. We use the following

coarse bound: It can be checked that t 7→ tpe−
t
2 is decreasing for t ≥ 2p. Hence, putting x := log t−1

0 ,

Γ(p+ 1, x) =

∫ ∞
x

tpe−tdt ≤ xpe− x2
∫ ∞
x

e−
t
2 dt = 2xpe−x = 2t0(log t−1

0 )p ,

provided x = log t−1
0 ≥ 2p . Collecting all the above pieces we get the conclusion.

Lemma A.3.3. Let X be a nonnegative random variable with P[X > C logu(kη−1)] < η for any η ∈ (0, 1].

Then E[X] ≤ C
k uΓ(u).

Proof. Apply E[X] =
∫∞

0
P[X > t]dt.

A.4 Some Operator Perturbation Inequalities

The estimate of the following proposition is crucial for proving the upper bound in case the source

condition is of Hölder type r with r > 1. We remark that for r > 1 the function t 7→ tr is not operator

monotone. One might naively expect estimate (A.4.1) to hold for a constant C given by the Lipschitz

constant of the scalar function tr. As shown in [6], this is false even for finite-dimensional positive

matrices. The point of Proposition A.4.1 is that (A.4.1) still holds for some larger constant depending

on r and the upper bound of the spectrum. We do not expect this result to be particularly novel,

but tracking down a proof in the literature proved elusive, not to mention that occasionally erroneous

statements about related issues can be found. For this reason we here provide a self-contained proof for

completeness sake.

Proposition A.4.1. Let B1, B2 be two nonnegative self-adjoint operators on some Hilbert space with

||Bj || ≤ a, j = 1, 2, for some a > 0. Assume B1 and B2 belong to the Schatten class Sp for 1 ≤ p ≤ ∞.
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If 1 < r, then

||Br1 −Br2 ||p ≤ rCar−1 ||B1 −B2||p , (A.4.1)

where C is given in (A.4.2). This inequality also holds in operator norm for non-compact bounded

(nonnegative and self-adjoint) Bj.

Proof. We extend the proof of [37], given there in the case r = 3/2 in operator norm. We also restrict

ourselves to the case a = 1. On D := {z : |z| ≤ 1}, we consider the functions f(z) = (1 − z)r and

g(z) = (1− z)r−1. The proof is based on the power series expansions

f(z) =

∞∑
n≥0

bnz
n and g(z) =

∞∑
n≥0

cnz
n ,

which converge absolutely on D. To ensure absolute convergence on the boundary |z| = 1, notice that

cn =
1

n!
g(n)(0) =

(−1)n

n!

n∏
j=1

(r − j) ,

so that all coefficients cn for n ≥ r have the same sign s := (−1)brc (if r is an integer these coefficients

vanish without altering the argument below) implying for any N > r :

N∑
n=0

|cn| =
brc∑
n=0

|cn|+ s

N∑
n=brc+1

cn =

brc∑
n=0

|cn|+ s lim
z↗1

N∑
n=brc+1

cnz
n

≤
brc∑
n=0

|cn|+ s lim
z↗1

(
g(z)−

brc∑
n=0

cn

)

=2

br/2c∑
i=0

|cbrc−2i| .

A bound for
∑
n |bn| can be derived analogously. Since f(1−Bj) = Brj , we obtain

‖Br1 −Br2‖p ≤
∞∑
n=0

|bn| ‖(I −B1)n − (I −B2)n‖p .

Using the algebraic identity Tn+1−Sn+1 = T (Tn−Sn) + (T −S)Sn , the triangle inequality and making

use of ‖TS‖p ≤ ‖T‖ ‖S‖p for S ∈ Sp, T bounded, the reader can easily convince himself by induction

that

• for j = 1, 2, Bj ∈ Sp imply (I −B1)n − (I −B2)n ∈ Sp and

• ‖(I −B1)n − (I −B2)n‖p ≤ n‖B1 −B2‖p.

From f ′(z) = −rg(z) we have the relation |bn| = r
n |cn−1|, n ≥ 1. Collecting all pieces leads to

‖Br1 −Br2‖p ≤ ‖B1 −B2‖p
∞∑
n=0

n|bn| = rC‖B1 −B2‖p ,
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with

C =

∞∑
n=0

|cn| (A.4.2)

Proposition A.4.2 (Cordes Inequality,[5], Theorem IX.2.1-2). Let A,B be to self-adjoint, positive op-

erators on a Hilbert space. Then for any s ∈ [0, 1]:

‖AsBs‖ ≤ ‖AB‖s . (A.4.3)

Note: this result is stated for positive matrices in [5], but it is easy to check that the proof applies as

well to positive operators on a Hilbert space.

A.5 General Reduction Scheme

Consider a model P = {Pθ : θ ∈ Θ} of probability measures on a measurable space (Z,A) , indexed by

Θ. Additionally, let d : Θ×Θ −→ [0,∞) be a (semi-) distance.

For two probability measures P1, P2 on some common measurable space (Z,A), we recall the definition

of the Kullback-Leibler divergence between P1 and P2

K(P1, P2) :=

∫
X

log

(
dP1

dP2

)
dP1 ,

if P1 is absolutely continuous with respect to P2. If P1 is not absolutely continuous with respect to P2,

then K(P1, P2) :=∞. One easily observes that

K(P⊗n1 , P⊗n2 ) = n K(P1, P2) .

In order to obtain minimax lower bounds we briefly recall the general reduction scheme, presented in

Chapter 2 of [87]. The main idea is to find Nε parameters θ1, ..., θNε ∈ Θ, depending on ε < ε0 for some

ε0 > 0 , with Nε →∞ as ε→ 0, such that any two of these parameters are ε-separated with respect to the

distance d, but that the associated distributions Pθj =: Pj ∈ P have small Kullback-Leibler divergence

to each other and are therefore statistically close. It is then clear that

inf
θ̂

sup
θ∈P

Eθ[dp(θ̂, θ)]
1
p ≥ ε inf

θ̂
sup
θ∈P

Pθ[d(θ̂, θ) ≥ ε] ≥ ε inf
θ̂

max
1≤j≤Nε

Pj [d(θ̂, θj) ≥ ε] , (A.5.1)

where the infimum is taken over all estimators θ̂ of θ. The above RHS is then lower bounded through

the following proposition which is a consequence of Fano’s lemma, see [87], Theorem 2.5:

Proposition A.5.1. Assume that N ≥ 2 and suppose that Θ contains N+1 elements θ0, ..., θN such that:

(i) For some ε > 0 , and for any 0 ≤ i < j ≤ N , d(θi, θj) ≥ 2ε ;
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(ii) For any j = 1, ..., N , Pj is absolutely continuous with respect to P0, and

1

N

N∑
j=1

K(Pj , P0) ≤ ω log(N) , (A.5.2)

for some 0 < ω < 1/8.

Then

inf
θ̂

max
1≤j≤N

Pj( d(θ̂, θj) ≥ ε ) ≥
√
N

1 +
√
N

(
1− 2ω −

√
2ω

log(N)

)
> 0 ,

where the infimum is taken over all estimators θ̂ of θ.
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LocalNysation: Combining Localized Kernel
Regression and Nyström Subsampling

Abstract

We consider a localized approach in the well-established setting of reproducing kernel

learning under random design. The input space X is partitioned into local disjoint

subsets Xj (j = 1, ...,m) equipped with a local reproducing kernel Kj . It is then

straightforward to define local KRR estimates. Our first main contribution is in

showing that minimax optimal rates of convergence are preserved if the number m

of partitions grows sufficiently slowly with the sample size, under locally different

degrees on smoothness assumptions on the regression function. As a byproduct, we

show that low smoothness on exceptional sets of small probability does not contribute,

leading to a faster rate of convergence. Our second contribution lies in showing that

the partitioning approach for KRR can be efficiently combined with local Nyström

subsampling, improving computational cost twofold. If the number of locally sub-

sampled inputs grows sufficiently fast with the sample size, minimax optimal rates of

convergence are maintained.

B.1 Introduction and Motivation

B.1.1 Kernel Regression

We are concerned with the classical regression learning problem, where we observe training data D :=

(Xi, Yi)i=1,...,n , assumed to be an i.i.d. sample from a distribution ρ over X × R ( ν will denote the

marginal distribution of ρ), and the goal is to estimate the regression function f∗(x) := E[Y |X = x] .

We consider the well-established setting of (reproducing) kernel learning: we assume a positive semi-

definite kernel K(., .) has been defined on X , with associated canonical feature mapping Φ : X → H

into a corresponding reproducing kernel Hilbert space H . A classical approach is kernel ridge regression,

depending on a regularization parameter λ > 0 , giving rise to the estimate f̂λ . In this paper, we shall

focus only on KRR, although our results could be extended to a much larger class of general spectral

regularization methods.

A common goal of learning theory is to give upper bounds for the convergence of f̂λn to f∗ (where the

regularization parameter is tuned according to sample size), and derive rates of convergence as n → ∞
under appropriate assumptions on the “regularity” of f∗ . In this paper, the notion of convergence we

will consider is the usual squared L2(ν) distance with respect to the sampling distribution, which is equal

to the excess risk with respect to Bayes when using the squared loss, i.e.

‖f̂λ − f∗‖22,ν = E
[(
Y − f̂λ(X)

)2]− min
f :X→R

E
[(
Y − f(X)

)2]
.
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More precisely, we are interested in bounding the averaged above error over the draw of the training data

(this is also called Mean Integrated Squared Error or MISE in the statistics literature).

B.1.2 Upper bounds on rates of convergence and optimality

We shall derive upper rates of convergence for algorithms speeding up the more usual single machine

version of KRR. We recall that defining such a rate requires to fix a set M of data generating distributions.

We shall not work in a traditional framework where regularity of the target function is assumed to be of

Sobolev type, X is a compact subset of Rd and the marginal ν is assumed to have a bounded density with

respect to Lebesgue measure. As is well known, this is too strong a restriction in a general statistical

learning context. In a distribution free spirit, all these highly specific features are replaced by properties

of the (uncentered) covariance operator Tν = Eν [Φ(X) ⊗ Φ(X)∗] of the kernel feature mapping Φ(X).

Letting (µν,i, ψν,i)i≥1 be an eigendecomposition of Tν , one introduces, for r,R > 0 , the class

Ων(r,R) :=
{
f ∈ H :

∑
i≥1

µrν,if
2
i ≤ R2

}
= T rνBH(R) , (B.1.1)

where BH(R) denotes the ball of radius R in H and fi := 〈f, ψν,i〉 are the coefficients of f in the

eigenbasis. In the classical Sobolev type setting, T = Tν basically is the inverse of the Laplacian (obeying,

e.g., Dirichlet boundary conditions on ∂X) and the condition in (2.5.8) becomes a condition on the decay

of classical Fourier coefficients of f , which measures smoothness in a classical sense.

In the above more general form, (B.1.1) encodes the properties of the distribution of the feature map

Φ(X) . If the target function f∗ is well approximated in the eigenbasis in the sense that its coefficients

decay fast enough in comparison to the eigenvalues, it is considered as regular in this geometry (higher

regularity corresponds to higher values of r and/or lower values of R). This type of regularity class,

also called source condition, has been considered in a statistical learning context by [23], and [24] have

established upper bounds for the performance of kernel ridge regression f̂λ over such classes; this has

been extended to other types of kernel regularization methods by [17, 20, 29]. These bounds rely on tools

introduced in the seminal work of [94], and depend in particular on the notion of effective dimension of

the data with respect to the regularization parameter λ , defined as

Nν(T, λ) := N(Tν , λ) := Tr
[
(Tν + λ)−1Tν

]
. (B.1.2)

In this paper we shall consider a model class M := M(θ, r, b) (see Section 2, Assumption B.2.1, B.2.2

and also B.2.4 for its precise definition) depending on a fixed degree r of regularity in the above general

sense and the asymptotic behavior of the effective dimension, parametrized by a number b ≥ 1 via

N(Tν , λ) � λ−1/b , where � stands for upper and lower bounded up to a constant.

We recall that a sequence an (tending to zero as n → ∞) is called an upper rate of convergence for the

sequence of estimated solutions (f̂λnD )n over the family of data generating distributions M , iff

lim sup
n→∞

sup
ρ∈M

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2

L2(ν)

] 1
2

an
< C . (B.1.3)
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If there is also a corresponding lower bound, the sequence an is said to be minimax optimal. We recall

that, for the single machine problem, minimax optimal rates have been obtained for similar looking

model classes M. The first comprehensive result in this direction was established by [24] ; [17] gives a

sharp estimate of the convergence rate in this case including the dependence on the parameters R and

noise variance σ , namely O
(
R2
(
σ2

R2n

) 2r+1

2r+1+1
b

)
. There is, however, a small caveat. While upper rates of

convergence are known to only depend on the asymptotics of the effective dimension, lower bounds, to

the best of our knowledge, have up to now only been established under an additional assumption on

the eigenvalues of the covariance operator, namely µν,i � i−b, for some b > 1. While this implies the

estimate on the effective dimension assumed in this paper, the converse implication is obviously wrong.

Therefore, strictly speaking, minimax optimal rates are not known in the case considered in this paper.

Furthermore, the partitioning approach considered in the present paper imposes additional constraints

on the data generating distribution via Assumption B.2.4, as we shall amplify. For this reason we shall

focus on upper rates of convergence only and leave the important and interesting question of minimax

optimality for a longer version of this paper.

B.1.3 Large Scale Problems: Localization and Subsampling

Kernel-based methods for solving non-parametric regression problems are attractive because they attain

asymptotically minimax optimal rates of convergence. But it is well known that these methods scale

poorly when massive datasets are involved. Large training sets give rise to large computational and

storage costs. For example, computing a kernel ridge regression estimate needs inversion of a n × n-

matrix, with n the sample size. This requires O(n3) time and O(n2) memory, which becomes prohibitive

for large sample sizes. For this reason, various methods have been developed for saving computation time

and memory requirements. Among them are e.g. distributed learning [16], [95], [58] and early-stopping

[93],[72], [12], [13]. During the last years, a huge amount of research effort was devoted to finding low-rank

approximations of the kernel matrix, both from an algorithmic and an inferential perspective (providing

statistical guarantees). A popular instance is Nyström sampling see e.g. [90], [2], [77] , which we shall

shortly review in Section 3.

The common feature of all these methods is to replace the theoretically optimal approximation obtained

by a spectral decomposition (which requires time at least O(n2)) by a less ambitious suitable low rank

approximation of the kernel matrix via column sampling, reducing run time to O(np2) where p denotes

the rank of the approximation. Clearly the rules of the game are to choose p as small as possible while

maintaining minimax optimality of convergence rates and to explicitely determine this p as a function of

the sample size n, keeping track of the source condition and the rate of eigenvalue decay, entering the

estimate via the effective dimension.

Another line of research with computational benefits is devoted to so called partition-based or localized

approaches [65, 84]: Based on a (disjoint) partition of the input space X =
⋃m
j=1 Xj , the sample D is split

according to this partition into m subsamples D1, · · ·Dm. On each local set Xj , a separate reproducing

kernel Kj is defined, giving rise to a local RKHS Hj . It is then straightforward to define local KRR

estimates f̂λj (based on only using a fraction nj of samples), resulting in a global estimate f̂λD = ⊕mj=1f̂
λ
j ,

belonging to the RKHS with kernel K, which is constructed from the Kj and is adapted to the direct

sum decomposition H = ⊕mj=1Hj . It is well established that, using this approach, prediction for a new

input x ∈ X is much faster, because one only has to identify the local space Xj to which x belongs and
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to use the local estimator f̂λj .

A more subtle point concerns the regularity assumption for the unknown f∗ = ⊕mj=1f
∗
j which we require

to belong to H. Assuming local regularities f∗j ∈ T
rj
j BHj (R) , r1 ≤ ... ≤ rm, where Tj denotes the

local covariance operator associated with Kj , the global smoothness (and thus the rate of convergence)

is determined by only the lowest one:

f∗ = ⊕mj=1T
rj
j gj = ⊕mj=1T

r1
j g̃j = T r1 g̃ , g̃ = ⊕g̃j , g̃j = T

rj−r1
j gj , (B.1.4)

meaning that f∗ ∈ T r1BH(R), since T = ⊕mj=1Tj .

Basic problems are the the choice of the regularization parameter λ on the subsamples (depending on

the global sample size n) and, most importantly, the proper choice of m since choosing m too large gives

a suboptimal rate of convergence in the limit n→∞.

First results establishing learning rates using a KRR partition-based approach for smoothness parameter

r = 0 and polynomially decaying eigenvalues are given in [84]. The authors claim to prove optimal

rates requiring the existence of sufficiently high moments (in L2(ν)) of the eigenfunctions of their local

covariance operators, uniformly over all subsets, in the limit n → ∞. This is a strong assumption.

Moreover, while the decay rate of the eigenvalues can be determined by the smoothness of K (see e.g.

[36] and references therein) it is a widely open question which (general) properties of the kernel imply

such assumptions on the eigenfunctions.

The paper [65] considers localized SVMs, localized tuned Gaussian kernels and a corresponding direct

sum decomposition, where a global smoothness assumption is introduced in terms of a scale of Besov

spaces. Instead of using the effective dimension N(Tν , λ) - recall that in [65] the regularization parameter

is not a spectral parameter in the resolvent (T + λ)−1 but rather a coupling constant for the penalty

term - the authors of [65] use entropy numbers, obtaining minimax optimal rates up to a small error

(concerning the prefactor).

B.1.4 Contribution

Our main contribution is in showing that the partitioning approach for KRR can be efficiently combined

with Nyström subsampling, improving computational cost twofold. On the way we improve results from

[84], [65] and [77]. We somewhat amplify the result in [77] by adding an explicit asymptotic result on

the number ln of subsampled points and providing an estimate in expectation. Compared with [84], we

remove the assumptions on the eigenfunctions of the covariance operators which are difficult to prove,

and we allow locally different degrees of smoothness. Our results on upper rates of convergence only

depend on the effective dimension. Compared with [65], our more general smoothness assumptions are

distribution free in spirit, and we go beyond Gaussian kernels (and allow more general input spaces than

open subsets of Rn). If the number of subsets is not too large (m = nα with an explicit bound on α < 1
2 ),

we obtain an asymptotic result on upper rates of convergence which we expect to be minimax optimal

over appropriate model classes of marginals.

An important aspect of our approach is the observation that under appropriate conditions on the proba-
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bility of subsamples - which come quite naturally in the partitioning approach - one can actually do better

than the naively expected minimax optimal rate allows: If low smoothness rl only occurs on subsets of

low probability (while most subsets have larger smoothness rh), then an upper rate of convergence only

depends on rh and not on rl. At first sight this seems to contradict equation (B.1.4) which sets the degree

of global smoothness equal to rl (it does not, see our Discussion). To the best of our knowledge this effect

of having local smoothness available has never been analysed before.

B.2 The Partitioning Approach

We say that a family {X1, ...,Xm} of nonempty disjoint subsets of X is a partition of X, if X =
⋃m
j=1 Xj .

Given a probability measure ν on X, let pj = ν(Xj). We endow each Xj with a probability measure by

restricting the conditional probability νj(A) := ν(A|Xj) = p−1
j ν(A ∩ Xj) to the Borel sigma algebra on

Xj .

We further assume that Hj is a (separable) RKHS, equipped with a measurable positive semi-definite

real-valued kernel Kj on each Xj , bounded by κj . We extend a function f ∈ Hj to a function f̂ : X −→ R
by setting f̂(x) = f(x) for any x ∈ Xj and f̂(x) = 0 else. In particular, K̂j denotes the kernel extended

to X, explicitely given by K̂j(x, x
′) = Kj(x, x

′) for any x, x′ ∈ Xj and zero else. Then the space

Ĥj := {f̂ : f ∈ Hj} equipped with the norm ||f̂ ||
Ĥj

= ||f ||Hj
is an RKHS of functions on X with kernel

K̂j . Finally, for p1, ..., pm ∈ R+, the direct sum

H :=

m⊕
j=1

Ĥj = { f̂ =

m∑
j=1

f̂j : f̂j ∈ Ĥj }

with norm ||f̂ ||2H =
∑m
j=1 pj ||f̂j ||2Ĥj

is again an RKHS for which

K(x, x′) =

m∑
j=1

p−1
j K̂j(x, x

′) , x, x′ ∈ X ,

is the reproducing kernel, see [65].

Given training data D = {xi, yi}i∈[n], we let Ij = {i ∈ [n] : xi ∈ Xj}, with |Ij | = nj . We split D according

to the above partition, i.e. we let Dj = {xi, yi}i∈Ij . We further let xj = (xi)i∈Ij , yj = (yi)i∈Ij .

Fixing a regularization parameter λ > 0, we compute for each Dj a local estimator

f̂λDj
:=

1

nj

∑
i∈Ij

α
(i)
j (λ)K̂j(xi, ·) ∈ Ĥj ,

where αj = (α
(1)
j , ..., α

(nj)
j ) ∈ Rnj is given by αj = ( 1

nj
Kj + λ)−1yj and with Kj the kernel matrix

associated to Dj . Finally, the overall estimator is defined by

f̂λD :=

m∑
j=1

f̂λDj
, (B.2.1)

which by construction belongs H and decomposes according to the direct sum Ĥ1 ⊕ ...⊕ Ĥm.
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Assumption B.2.1. We assume:

1. The regression function f∗ belongs to H and thus has a unique representation f∗ = ⊕mj=1f
∗
j , with

f∗j ∈ Ĥj .

2. The sampling is random i.i.d., where each observation point (Xi, Yi) follows the model Y = f(X)+ε ,

and the noise satisfies the following Bernstein-type assumption: For any integer k ≥ 2 and some

σ > 0 and M > 0:

E[ εk | X ] ≤ 1

2
k! σ2Mk−2 ν − a.s. . ( Bernstein(M,σ))

3. The local effective dimensions obey

m

m∑
j=1

pjNνj (T̄j , λ) = O(Nν(T̄ , λ)) .

4. The global effective dimension satisfies Nν(T̄ , λ) . λ−1/b for some b ≥ 1.

Assumption B.2.2. We assume

1. The global regularity of the regression function is measured in terms of a source condition:

f∗ ∈ Ων(r,R) , 0 < r ≤ 1

2
, R <∞ , ( SC(r,R))

where Ων(r,R) is defined in (2.5.8).

2. Given θ = (M,σ,R) ∈ R3
+, the class M := M(θ, r, b) consists of all distributions ρ with X-marginal

ν and conditional distribution of Y given X satisfying Bernstein(M,σ) for the deviations and

( SC(r,R)) for the mean, with ν satisfying Assumption B.2.1, 3. and 4. .

B.2.1 Error Bounds

Granted Assumptions B.2.1 and B.2.2, we establish that the estimator f̂λD given in (B.2.1) satisfies an

upper rate of convergence which we expect to be minimax optimal, provided that the cardinality m = mn

of partitions grows sufficiently slowly with n.

Theorem B.2.3. Assume the number m = mn of partitions satisfies

mn ≤ nα , α <
2br

2br + b+ 1
(B.2.2)

and nj = b n
mn
c. If r ∈ (0, 1

2 ], then there exists a choice (λn)n such that the sequence

an := R

(
σ2

R2n

) b(r+1
2
)

2br+b+1

. (B.2.3)
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is an upper rate of convergence for the sequence of estimated solutions (f̂λnD )n over the family of models

M - defined by requiring Assumption B.2.2 for all m = mn for each n sufficiently large -, i.e.

lim sup
n→∞

sup
ρ∈M

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2

L2(ν)

] 1
2

an
< C , (B.2.4)

where C does not depend on the model parameters σ,M,R.

We recall that it was established in [17] that the rate in (2.3.2) is minimax optimal for the class of data-

generating distributions M̃ obtained by replacing the conditions ν satisfies Assumption B.2.1, 3. and 4.

by the slightly different assumption Tν has polynomial eigenvalue decay µν,i � i−b . Parametrizing M

only by the asymptotics of the effective dimension, specified by b, tends to make M larger, while imposing

in addition Assumption B.2.1 3. tends to make M smaller. Proving minimax optimality for our class M

requires proving new lower bounds.

B.2.2 Improved Error Bound

Sometimes we can do even better: Assume that there is an exceptional set Em of indices such that the

smoothness of f∗ is low on each set Xj , j ∈ Em and higher on each Xj , j ∈ Ecm. For ease of reading we

shall only analyze the most simple case given by:

Assumption B.2.4. There are rl, rh ∈ (0, 1
2 ], with rl < rh (corresponding to low smoothness and high

smoothness) and there are Rl > 0, Rh > 0 such that

||T−rlj f∗j ||Hj ≤ Rl , ∀j ∈ Em , ||T−rhj f∗j ||Hj ≤ Rh , ∀j ∈ Ecm

and  ∑
j∈Em

pj

 ≤ R2
h

R2
l

(
1

m

)1− rl
rh

.

Thus, by equation (B.1.4), global smoothness is given by the small number rl, while local smoothness

on the complement of the exceptional set is higher. We emphasize that this is an additional assumption

on the sampling distribution which restricts the class of models M to a subclass M′. Assumption B.2.4

then ensures that the probability of the exceptional set is so small that the error bound will actually be

governed by the higher smoothness rh, leading to a faster rate of convergence over the subclass M′. More

precisely,

Theorem B.2.5. If the cardinality m = mn of partitions satisfies

mn =

(
R2
hn

σ2

)α
, α <

2brh
2brh + b+ 1

(B.2.5)

and if nj ∼ n
m , then there exists a choice (λn)n such that the sequence

an := Rh

(
σ2

R2
hn

) b(rh+1
2
)

2brh+b+1

. (B.2.6)
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is an upper rate of convergence for the sequence of estimated solutions (f̂λnD )n over the subclass of models

M′ - defined by requiring Assumption B.2.4 for all m = mn for each n sufficiently large -, i.e.

lim sup
n→∞

sup
ρ∈M′

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2

L2(ν)

] 1
2

an
< C , (B.2.7)

where C does not depend on the model parameters σ,M,Rh.

Note that a matching lower bound is proved in [17] only for the class M̃.

B.3 KRR Nyström Subsampling

In this section, we recall the popularKRR Nyström subsampling method. For simplicity, we restrict

ourselves to so called Plain Nyström, which works as follows: Given a training set x1, ..., xn of random

inputs, we sample uniformly at random without replacement l ≤ n points x̃1, ..., x̃l. Now the crucial idea

is to seek for an estimator for the unknown f∗ in a reduced space

Hl = { f : f =

l∑
j=1

αjK(x̃j , ·) , α ∈ Rl } .

In [77] it is shown that the solution of the minimization problem

min
f∈Hl

1

n

n∑
j=1

(f(xj)− yj)2 + λ||f ||2Hl

is given by

f̂λn,l =
1

n

l∑
j=1

αjK(x̃j , ·) , α = (
1

n
K∗nlKnl + λKll)† K∗nly , (B.3.1)

where (Knl)ij = K(xi, x̃j), (Kll)kj = K(x̃k, x̃j), i = 1, ..., n , k, j = 1, ..., l and A† denotes the generalized

inverse of a matrix A.

Clearly, one aims at minimizing the number l of subsamples needed for preserving (the expected) minimax

optimality. We amplify the results in [77] by explicitly computing how l needs to grow when the total

number of samples n tends to infinity.

We consider the setting of Section B.2 with m = 1. Granted Assumption B.2.1 and AssumptionB.2.2,

one has:

Theorem B.3.1. If the number l = ln of subsampled points satisfies

ln ≥ nβ , β >
b+ 1

2br + b+ 1
, (B.3.2)

and if r ∈ [0, 1
2 ] then there exists a choice (λn)n such that the sequence (an)n given in (2.3.2) is an upper

rate of convergence for the sequence of estimated solutions (f̂λnn,ln)n over the family of models M - defined
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by dropping the condition Assumption B.2.1,3. on the data generating distribution - i.e.

lim sup
n→∞

sup
ρ∈M

Eρ⊗n
[∥∥f∗ − f̂λnn,ln∥∥2

L2(ν)

] 1
2

an
< C ,

for some C <∞, not depending on the model parameters σ,M,R.

We remark that, as above, it was established in [17] that the rate in (2.3.2) is minimax optimal for the

class of data-generating distributions M̃.

B.4 LocalNysation

In this section we establish, that upper rates of convergence are preserved if the number of partitions is

not too large and if locally the number of subsampled points is large enough. For simplicity we assume

that the local sample size is roughly the same on each partition, i.e satisfies nj = b n
mn
c and that the

number l = ln of subsample points also is equal on each subsample.

For j = 1, ...,m, and 1 ≤ l ≤ n
m let Ĩj,l := {ij,1, ..., ij,l} ⊆ Ij , with Ij as above (Ĩj,l denotes the set

of indices of subsampled inputs on each Xj). For each subsample Dj , with a regularization parameter

λ > 0, we compute a local estimator

f̂λDj
:=

m

n

∑
i∈Ĩj,l

α
(i)
j (λ)K̂j(xi, ·) ∈ Ĥj,l ,

where αj ∈ R n
m is given in (B.3.1), with n replaced by n

m . The overall estimator is constructed as above

and defined by

f̂λD :=

m∑
j=1

f̂λDj
, (B.4.1)

which by construction decomposes according to the direct sum H = Ĥ1 ⊕ ...⊕ Ĥm.

Theorem B.4.1. Let r ∈ (0, 1
2 ]. If the number m = mn of partitions satisfies

mn ≤ nα , α <
2br

2br + b+ 1
, (B.4.2)

and if the number l = ln of subsampled points on each local set satisfies

nβ

mn
≤ ln ≤

n

mn
, β > α+

b+ 1

2br + b+ 1
, (B.4.3)

then there exists a choice (λn)n such that the sequence (an)n given in (2.3.2) is an upper rate of conver-

gence for the sequence of estimated solutions (f̂λnD )n over the family of models M - defined by requiring

the conditions in Assumption B.2.2 for each m = mn for n sufficiently large - , i.e.

lim sup
n→∞

sup
ρ∈M

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2

H

] 1
2

an
< C , (B.4.4)
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Table B.1: Computational Cost

whole KRR localized KRR Nyström localnysed

O(n3) O
(
( nm )3

)
O(nl2 + l3) O( nm l

2 + l3)

1 ≤ m ≤ nα nβ ≤ l ≤ n nβ

m ≤ l ≤
n
m

where C does not depend on the model parameters σ,M,R.

Clearly, as in Theorem B.2.5, a version of the above result still holds if global smoothness is violated

on an exceptional set Em of small probability as amplified in Assumption B.2.4, thus passing from the

model class M to a smaller model class M′. We leave a precise formulation (and its proof) to the reader.

B.5 Conclusion

We have shown that the twofold effect of partitioning and subsampling may substantially reduce com-

putational cost (see Table B.1), if the number of local sets grows sufficiently slowly and if the number of

subsampled inputs grows sufficiently large with the sample size. In both cases we were able to improve

or amplify the existing results. Furthermore, we derived a rigorous version of the principle In partition-

ing, low smoothness on exceptional sets of small probability does not affect convergence. This is not in

contradiction to the known results on minimax optimality, since this phenomenon only occurs for data

generating distributions varying over a restricted set M′. We remark that, based on the simulations in

the thesis [33], it already was observed there that simulations tend to be better than global smooth-

ness predicts. The thesis [33] suggested that this effect could be due to violation of global smoothness

on subsets of measure zero. While this certainly is possible, it seems much more probable that global

smoothness could be violated on larger subsets of small probability (but possibly different from zero).

Thus our theorems might be an additional explication of the properties of numerical simulations observed

in [33].
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Supplementary Material
LocalNysation: Combining Localized Kernel

Regression and Nyström Subsampling

For ease of reading we make use of the following conventions:

• we are interested in a precise dependence of multiplicative constants on the parameters σ,M,R,

m,n and p

• the dependence of multiplicative constants on various other parameters, including the kernel pa-

rameter κ, the parameters arising from the regularization method, b > 1, r > 0, etc. will (generally)

be omitted

• the value of C might change from line to line

• the expression “for n sufficiently large” means that the statement holds for n ≥ n0 , with n0

potentially depending on all model parameters (including σ,M and R) .

B.6 Operators and norms

We introduce all operators in more detail.

We let Z = X× R denote the sample space, where the input space X is a standard Borel space endowed

with a fixed unknown probability measure ν. The kernel space H is assumed to be separable, equipped

with a measurable positive semi-definite kernel K, bounded by κ, implying continuity of the inclusion

map Iν : H −→ L2(ν). Moreover, we consider the covariance operator Tν = I∗ν Iν = E[KX ⊗ K∗X ],

which can be shown to be positive self-adjoint trace class (and hence is compact). Given a sample

x = (x1, . . . , xn) ∈ Xn, we define the sampling operator Sx : H −→ Rn by (Sxf)i = 〈f,Kxi〉H. The

empirical covariance operator is given by Tx = S∗xSx : H −→ H. We furthermore introduce T̄ = κ−2T

and similarly T̄x = κ−2Tx, S̄x = κ−1Sx.

For a partition {X1, ...,Xm} of X, we denote by Ĥj the local RKHS with (extended) kernel K̂j , supported

on Xj , with associated covariance operator T̄j = κ−2
j Tj = κ−2

j Eνj [K̂j(X, ·)⊗ K̂j(X, ·)∗]. Given a sample

xj = (xj,1, . . . , xj,nj ) ∈ X
nj
j , we define the sampling operator Sxj : Hj −→ Rnj similarly by (Sxjf)i =

〈f, K̂j(xi, ·)〉Hj .

Lemma B.6.1. Given j ∈ [m] let pj = ν(Xj) and νj(A) = ν(A|Xj), for a measurable A ⊂ X. One has

L2(X, ν) =

m⊕
j=1

pjL
2(Xj , νj)
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with

||f ||2L2(ν) =

m∑
j=1

pj ||fj ||2L2(νj)
,

where f = ⊕mj=1fj .

The next Lemma states that the global effective dimension can be expressed as the sum of the local ones.

Lemma B.6.2 (Effective Dimension). For any λ ∈ [0, 1]

m∑
j=1

Nνj (T̄j , λ) = Nν(T̄ , λ) .

B.7 Proofs of Section B.2

We let f∗ ∈ H, i.e. f∗ = ⊕mj=1f̂
∗
j , with f̂∗j ∈ Ĥj . Note that f̂j is defined on all of X. We shall use the

following error decomposition:

f∗ − f̂λD =

m∑
j=1

f̂∗j − f̂λDj
=

m∑
j=1

rλ(T̄xj )f̂
∗
j +

m∑
j=1

gλ(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj) ,

where f̂λD is given in (B.2.1), with rλ(t) = 1− gλ(t)t and with gλ(t) = (t+ λ)−1.

Proposition B.7.1 (Approximation Error L2(ν)− norm). Let ρ be a source distribution belonging to M,

defined in Assumption B.2.2. For any λ ∈ (0, 1], one has

Eρ⊗n
[∥∥ m∑

j=1

rλ(T̄xj )f̂
∗
j

∥∥2

L2(ν)

]
≤ CR2

m∑
j=1

pjB
2
nj (T̄j , λ)λ2(r+ 1

2 ) ,

where B2
nj (T̄j , λ) is defined in Proposition B.10.3 .

Proof of Proposition B.7.1. According to Lemma B.6.1, by assumption SC(r,R) we have

Eρ⊗n
[∥∥ m∑

j=1

rλ(T̄xj )f̂
∗
j

∥∥2

L2(ν)

]
=

m∑
j=1

pjEρ⊗n
[∥∥rλ(T̄xj )f̂

∗
j

∥∥2

L2(νj)

]
=

m∑
j=1

pjEρ⊗n
[∥∥√T̄jrλ(T̄xj )f̂

∗
j

∥∥2

Ĥj

]
≤ CR2

m∑
j=1

pjEρ⊗n
[∥∥√T̄jrλ(T̄xj )T̄

r
j

∥∥2
]
. (B.7.1)

We bound for any j ∈ [m] the expectation by first deriving a probabilistic estimate. For any η ∈ (0, 1],

with probability at least 1− η

||
√
T̄jrλ(T̄xj )T̄

r
j || ≤ C log2(2η−1)Bnj (T̄j , λ) ||T̄

1
2
j (T̄j + λ)

1
2 || ||(T̄xj + λ)

1
2 rλ(T̄xj )(T̄xj + λ)r|| ||(T̄j + λ)rT̄ rj ||

≤ C log2(2η−1)Bnj (T̄j , λ)λr+
1
2 .
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Here we have used that

||(T̄xj + λ)
1
2 rλ(T̄xj )(T̄xj + λ)r|| ≤ Cλr+ 1

2

and that for s ∈ [0, 1
2 ]

||(T̄j + λ)sT̄ sj || ≤ ||(T̄j + λ)T̄j ||s ≤ 1

by Proposition B.11.1 and the spectral theorem. Also, from Proposition B.11.1 and Proposition B.10.3

||(T̄xj + λ)−
1
2 (T̄j + λ)

1
2 || ≤ ||(T̄xj + λ)−1(T̄j + λ)|| 12 ≤

√
8 log(2η−1)B

1
2
nj (T̄j , λ) .

From Lemma B.11.2, by integration

Eρ⊗n
[∥∥√T̄jrλ(T̄xj )T̄

r
j

∥∥2
]
≤ CB2

nj (T̄j , λ)λ2(r+ 1
2 ) .

Combining this with (B.7.1) gives

Eρ⊗n
[∥∥ m∑

j=1

rλ(T̄xj )f̂
∗
j

∥∥2

L2(ν)

]
≤ CR2

m∑
j=1

pjB
2
nj (T̄j , λ)λ2(r+ 1

2 ) .

Proposition B.7.2 (Sample Error L2(ν)− norm). Let ρ be a source distribution belonging to M, defined

in Assumption B.2.2. For any λ ∈ (0, 1], one has

Eρ⊗n
[∥∥ m∑

j=1

gλ(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2

L2(ν)

]
≤ C

m∑
j=1

pj B
2
nj (T̄j , λ)λ

 M

njλ
+ σ

√
Nνj (T̄j , λ)

njλ

2

,

where C does not depend on (σ,M,R) ∈ R3
+.

Proof of Proposition B.7.2. Recall that ||
√
T̄j f̂ ||Ĥj

= ||f̂ ||L2(νj). According to Lemma B.6.1 we have

Eρ⊗n
[∥∥ m∑

j=1

gλ(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2

L2(ν)

]
=

m∑
j=1

pjEρ⊗n
[∥∥gλ(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)

∥∥2

L2(νj)

]
=

m∑
j=1

pjEρ⊗n
[∥∥√T̄jgλ(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)

∥∥2

Ĥj

]
. (B.7.2)

We bound the expectation for each separate subsample of size nj by first deriving a probabilistic estimate

and then by integration. For this reason, we use (B.10.2) and Proposition B.11.1 and write for any

f̂j ∈ Ĥj , j ∈ [m]

||
√
T̄j f̂j ||Ĥj

≤ ||
√
T̄j(Tj + λ)−1/2|| ||(Tj + λ)1/2(Txj + λ)−1/2|| ||(T̄xj + λ)1/2f̂j ||Ĥj

≤ ||T̄j(Tj + λ)−1||1/2 ||(Tj + λ)(Txj + λ)−1||1/2 ||(T̄xj + λ)1/2f̂j ||Ĥj

≤ C log(4η−1)B1/2
nj (T̄j , λ) ||(T̄xj + λ)1/2f̂j ||Ĥj

, (B.7.3)

holding with probability at least 1− η
2 . We proceed by splitting

(T̄xj + λ)sgλ(T̄xj )(T̄xjfρ − S̄?xjyj) = H(1)
xj ·H

(2)
xj · h

λ
zj , (B.7.4)
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with

H(1)
xj := (T̄xj + λ)

1
2 gλ(T̄xj )(T̄xj + λ)

1
2 ,

H(2)
xj := (T̄xj + λ)−

1
2 (T̄ + λ)

1
2 ,

hλzj := (T̄ + λ)−
1
2 (T̄xjfρ − S̄?xjyj) .

The first term is clearly bounded. The second term is now estimated using (B.10.2) once more. One has

with probability at least 1− η
4

H(2)
xj ≤

√
8 log(8η−1)B n

m
(T̄j , λ)

1
2 .

Finally, hλzj is estimated using Proposition B.10.2:

hλzj ≤ 2 log(8η−1)

 M

nj
√
λ

+ σ

√
Nνj (T̄j , λ)

nj

 ,

holding with probability at least 1 − η
4 . Thus, combining the estimates following (B.7.4) with (B.7.3)

gives for any j = 1, ...,m

||
√
T̄jgλ(T̄xj )(T̄xjfρ − S̄∗xjyj)||Ĥj

≤ CN log3(8η−1)Bnj (T̄j , λ)
√
λ

 M

njλ
+ σ

√
Nνj (T̄j , λ)

njλ

 ,

with probability at least 1− η. By integration using Lemma B.11.2 one obtains

Eρ⊗n
[∥∥√T̄jgλ(B̄xj )(T̄xjfρ − S̄∗xjyj)

∥∥2

Ĥj

] 1
2 ≤ CBnj (T̄j , λ)

√
λ

 M

njλ
+ σ

√
Nνj (T̄j , λ)

njλ

 .

Combining this with (B.7.2) implies

Eρ⊗n
[∥∥ m∑

j=1

gλ(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2

L2(ν)

]
≤ C

m∑
j=1

pj B
2
nj (T̄j , λ)λ

 M

njλ
+ σ

√
Nνj (T̄j , λ)

njλ

2

,

where C does not depend on (σ,M,R) ∈ R3
+.

We are now ready to prove Theorem B.2.3.

Proof of Theorem B.2.3. Let the regularization parameter λn be chosen as

λn = R

(
σ2

R2n

) b
2br+b+1

(B.7.5)

and assume that nj = b n
mn
c. Lemma B.10.5 yields B n

mn
(T̄j , λn) ≤ 2 provided n is sufficiently large and

mn ≤ nα , α <
2br

2br + b+ 1
.

From Proposition B.7.1 and Proposition B.7.2 we immediately obtain (recalling the definition of an in
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B.2.3)

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2
L2(ν)

]
≤ C

mn∑
j=1

pja
2
n + pjλn

Mmn

nλn
+ σ

√
mnNνj (T̄j , λn)

nλn

2

≤ C

(
a2n + λn

(
Mmn

nλn

)2

+ σ2mn

n

mn∑
j=1

pjNνj (T̄j , λn)

)
.

Under Assumption B.2.2 we obtain

σ2mn

n

mn∑
j=1

pjNνj (T̄j , λn) ≤ Cσ
2

n
Nν(T̄ , λn) ≤ Cσ

2

n
λ
− 1
b

n = CR2λ
2(r+ 1

2 )
n = Ca2

n .

Moreover,

λn

(
Mmn

nλn

)2

≤ λ2r+1
n ,

provided that

mn ≤ nα , α <
b(r + 1)

2br + b+ 1
.

As a result,

Eρ⊗n
[∥∥f∗ − f̂λnD

∥∥2

L2(ν)

]
≤ Ca2

n ,

where C does not depend on the model parameter (σ,M,R) ∈ R+.

Proof of Theorem B.2.5. Assume that nj = b n
mn
c. Let the regularization parameter λn be given by

λn = Rh

(
σ2

R2
hn

) b
2brh+b+1

(B.7.6)

and let

mn =

(
R2
hn

σ2

)α
, α <

2brh
2brh + b+ 1

. (B.7.7)

As above, Lemma B.10.5 yields B n
mn

(T̄j , λn) ≤ 2 provided n is sufficiently large.

From Proposition B.7.1 we immediately obtain for the approximation error, recalling the definition of an
in B.2.6

Eρ⊗n
[∥∥ mn∑

j=1

rλn(T̄xj )f̂
∗
j

∥∥2
L2(ν)

]
≤ C

R2
l

 ∑
j∈Emn

pj

λ
2(rl+

1
2
)

n +R2
h

 ∑
j∈Ecmn

pj

λ
2(rh+

1
2
)

n


≤ C

(
R2
l
R2
h

R2
l

(
1

mn

)1− rl
rh

λ
2(rl+

1
2
)

n +R2
hλ

2(rh+
1
2
)

n

)

≤ CR2
h

((
1

mn

)1− rl
rh

λ
2(rl+

1
2
)

n + λ
2(rh+

1
2
)

n

)
.

Here we have used that by Assumption B.2.4 ∑
j∈Emn

pj

 ≤ R2
h

R2
l

(
1

mn

)1− rl
rh

and

 ∑
j∈Ecmn

pj

 ≤ 1 .
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Finally, the choice (B.7.7) ensures that

(
1

mn

)1− rl
rh

λ
2(rl+

1
2
)

n =

(
σ2

R2
hn

)α(1− rl
rh

)

λ
2(rl+

1
2
)

n ≤
(
σ2

R2
hn

) 2brh
2brh+b+1

(1− rl
rh

)

λ
2(rl+

1
2
)

n = λ
2(rh+

1
2
)

n .

As a result, the approximation error satisfies

Eρ⊗n
[∥∥ mn∑

j=1

rλn(T̄xj )f̂
∗
j

∥∥2

L2(ν)

]
≤ CR2

hλ
2(rh+ 1

2 )
n = Ca2

n .

The bound for the sample error follows exactly as in the proof of Theorem B.2.3.

B.8 Proofs of Section B.3

For proving Theorem B.3.1 we use the non-asymptotic error decomposition given in Theorem 2 of [77],

somewhat reformulated and streamlined using our estimate B.10.2. We adopt the notation and idea of

[77] and write f̂λn,l = gλ,l(T̄x)S∗xy, with gλ,l(T̄x) = V (V ∗T̄xV + λ)−1V ∗ and V V ∗ = Pl, the projection

operator onto Hl, l ≤ n. Consider

||
√
T̄ (f̂λn,l − fρ)||H ≤ T1 + T2

with

T1 = ||gλ,l(Tx)(S∗xy − Txfρ)||L2(ν) = ||
√
T̄ gλ,l(Tx)(S∗xy − Txfρ)||H

and

T2 = ||
√
T̄ gλ,l(Tx)(Txfρ − fρ)||H .

Proposition B.8.1 (Expectation Sample Error KRR-Nyström).

Eρ⊗n
[∥∥gλ,l(Tx)(S∗xy − Txfρ)

∥∥2

L2(ν)

] 1
2 ≤ C

√
λBn(T̄ , λ)

(
M

nλ
+ σ

√
Nν(T̄ , λ)

nλ

)

where C does not depend on (σ,M,R) ∈ R3
+.

Proof of Proposition B.8.1. For estimating T1 we use Proposition B.10.3 and obtain for any λ ∈ (0, 1]

with probability at least 1− η

T1 ≤ C log(2η−1)Bn(T̄ , λ) ||(T̄x + λ)1/2gλ,l(Tx)(S∗xy − Txfρ)||H
≤ C log2(4η−1)B2

n(T̄ , λ) ||(T̄x + λ)1/2gλ,l(Tx)(T̄x + λ)1/2||

||(T̄ + λ)−1/2(S∗xy − Txfρ)||H .

From Proposition 6 in [77] and from the spectral Theorem we obtain

||(T̄x + λ)1/2gλ,l(Tx)(T̄x + λ)1/2|| ≤ 1 .
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Thus, applying Proposition B.10.1 one has with probability at least 1− η

T1 ≤ C log3(8η−1)
√
λB2

n(T̄ , λ)

(
M

nλ
+ σ

√
Nν(T̄ , λ)

nλ

)
,

where C does not depend on (σ,M,R) ∈ R3
+. Integration using Lemma B.11.2 gives the result.

Before we proceed we introduce the computational error: For u ∈ [0, 1
2 ], λ ∈ (0, 1] define

Cu(l, λ) := ||(Id− V V ∗)(T̄ + λ)u|| .

The proof of the following Lemma can be found in [77], proof of Theorem 2.

Lemma B.8.2. For any u ∈ [0, 1
2 ]

Cu(l, λ) ≤ C 1
2
(l, λ)2u .

Lemma B.8.3. If λn is defined by (B.7.5) and if

ln ≥ nβ β >
b+ 1

2br + b+ 1

one has with probability at least 1− η

C 1
2
(ln, λn) ≤ C log(2η−1)

√
λn ,

provided n is sufficiently large.

Proof of Lemma B.8.3. Using Proposition 3 in [77] one has with probability at least 1− η

C 1
2
(l, λn) ≤

√
λn ||(Txl + λn)−1(T + λn)|| 12

≤ C log(2η−1)
√
λnB

1
2

l (T̄ , λn) .

Recall that Nν(T̄ , λ) ≤ Cbλ−
1
b , implying

Bl(T̄ , λn) ≤ C

1 +

 2

lλn
+

√
λ
− 1
b

n

lλn

2
 .

Straightforward calculation shows that

2

lnλn
= o(1) , if ln ≥ nβ , β >

b

2br + b+ 1

and √
λ
− 1
b

n

lnλn
= o(1) , if ln ≥ nβ , β >

b+ 1

2br + b+ 1
.

Thus, C 1
2
(ln, λn) ≤ C log(2η−1)

√
λn, with probability at least 1− η.
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Proposition B.8.4 (Expectation Approximation- and Computational Error KRR-Nyström). Assume

that

ln ≥ nβ , β >
b+ 1

2br + b+ 1

and (λn)n is chosen according to (B.7.5). If n is sufficiently large

Eρ⊗n
[∥∥√T̄ gλn,ln(Tx)(Txfρ − fρ)

∥∥2

L2(ν)

] 1
2 ≤ C an ,

where C does not depend on (σ,M,R) ∈ R3
+.

Proof of Proposition B.8.4. Using that fρ ∈ Ων(r,R) one has for any λ ∈ (0, 1]

T2 ≤ CR ( (a) + (b) + (c) ) , (B.8.1)

with

(a) = ||
√
T̄ (Id− V V ∗)T̄ r|| , (b) = λ||

√
T̄ gλ,l(Tx)T̄ r||

and

(c) = ||
√
T̄ gλ,l(Tx)(T̄x + λ)(Id− V V ∗)T̄ r|| .

Since (Id− V V ∗)2 = (Id− V V ∗) we obtain by Lemma B.8.2

(a) ≤ C 1
2
(l, λ) Cr(l, λ) ≤ C 1

2
(l, λ)2r+1 .

Furthermore, using (B.10.2) , with probability at least 1− η
2

(b) ≤ C log2(8η−1)λB
1
2 +r
n (T̄ , λ) ||(T̄x + λ)1/2gλ,l(Tx)(T̄x + λ)r||

≤ C log2(8η−1)λ
1
2 +rB

1
2 +r
n (T̄ , λ) ,

by again using Proposition 6 in [77].

The last term gives with probability at least 1− η
2

(c) ≤ C log(8η−1)||(T̄x + λ)1/2gλ,l(Tx)(T̄x + λ)|| Cr(l, λ)

≤ C log(8η−1)
√
λ C 1

2
(l, λ)2r .

Combining the estimates for (a), (b) and (c) gives

T2 ≤ CR log2(8η−1)
(
C 1

2
(l, λ)2r+1 + λ

1
2 +rB

1
2 +r
n (T̄ , λ) +

√
λ C 1

2
(l, λ)2r

)
.

We now choose λn according to (B.7.5) . Notice that by Lemma B.10.4 one has Bn(T̄ , λn) ≤ C for any

n sufficiently large. Applying Lemma B.8.3 we obtain, with probability at least 1− η

T2 ≤ C log2(8η−1)Rλ
r+ 1

2
n ,

provided n is sufficiently large and

ln ≥ nβ , β >
b+ 1

2br + b+ 1
.
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The result follows from integration by applying Lemma A.3.3 and recalling that an = Rλ
r+ 1

2
n .

Proof of Theorem B.3.1. The proof easily follows by combining Proposition B.8.1 and Proposition B.8.4 .

In particular, the estimate for the sample error by choosing λ = λn follows by recalling that Nν(T̄ , λn) ≤
Cbλ

− 1
b

n , by definition of (an)n in (B.2.3) by Lemma B.10.4 and by

M

nλn
= o

σ
√
λ
− 1
b

n

nλn

 .

B.9 Proofs of Section B.4

In this section we give a sketch of proof of the main result.

Proposition B.9.1 (Sample Error KRR Localnysed). Let mn ≤ nα with α < 2br
2br+b+1 and let λn be

defined as in (B.7.5). If n is sufficiently large, one has

Eρ⊗n
[∥∥ m∑

j=1

gλn,l(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2

L2(ν)

] 1
2 ≤ Can ,

where C does not depend on the model parameter σ,M,R.

Proof of Proposition B.9.1. Applying Proposition B.8.1 we obtain

Eρ⊗n
[∥∥ m∑

j=1

gλ,l(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2
L2(ν)

]
=

m∑
j=1

pjEρ⊗n
[∥∥gλ,l(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)

∥∥2
L2(νj)

]

≤ C
m∑
j=1

pj B
2
n
m

(T̄j , λ)λ

Mm

nλ
+ σ

√
mNνj (T̄j , λ)

nλ

2

.

Arguing as in the proof of Theorem B.2.3, using Lemma B.10.5, implies the result.

Proposition B.9.2 (Approximation and Computational Error KRR Localnysed). Let λn be defined by

(B.7.5). Assume ln ≥ nβ, mn ≤ nα with

α <
2br

2br + b+ 1
, β >

b+ 1

2br + b+ 1
.

Then, if n is sufficiently large

Eρ⊗n
[∥∥ mn∑

j=1

gλ,ln(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2

L2(ν)

] 1
2 ≤ Can ,

where C does not depend on the model parameter σ,M,R.

Proof of Proposition B.9.2. Let λ ∈ (0, 1]. For proving this Proposition we combine techniques from both

the partitioning and subsampling approach. More precisely:
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Eρ⊗n
[∥∥ m∑

j=1

gλ,l(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2
L2(ν)

]
=

m∑
j=1

pjEρ⊗n
[∥∥gλ,l(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)

∥∥2
L2(νj)

]
=

m∑
j=1

pjEρ⊗n
[∥∥√T̄jgλ,l(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)

∥∥2
Ĥj

]
.

We shall decompose as in B.8.1, with T̄ replaced by T̄j and T̄x replaced by T̄xj ,

||
√
T̄jgλ,l(T̄xj )(T̄xj f̂

∗
j − S̄∗xjyj)||Ĥj

≤ CR ( (a) + (b) + (c) ) = (∗) .

Following the lines of the proof of Proposition B.8.4 leads to an upper bound (with probability at least

1− η) for the rhs of the last inequality, which is

(∗) ≤ CR log2(8η−1)
(
C 1

2
(l, λ)2r+1 + λ

1
2 +rB

1
2 +r
n (T̄ , λ) +

√
λ C 1

2
(l, λ)2r

)
≤ CR log2(8η−1)λr+

1
2

(
B2r+1
l (T̄j , λ) + B

r+ 1
2

n
m

(T̄j , λ) + B2r
l (T̄j , λ)

)
.

We proceed by estimating each term separately by choosing λ = λn, l = ln and m = mn. By Lemma

B.6.2, each local effective dimension is bounded by the global one. Thus (recall the Definition of Bl(T̄j , λ)

in Proposition B.10.3)

Bln(T̄j , λn) ≤ 1 +

 2

lnλn
+ σ

√
λ
− 1
b

n

lnλn

2

.

Straightforward calculation shows that

2

lnλn
= o(1) , if ln ≥ nβ

′
, β′ >

b

2br + b+ 1
(B.9.1)

and √
λ
− 1
b

n

lnλn
= o(1) , if ln ≥ nβ

′
, β′ >

b+ 1

2br + b+ 1
. (B.9.2)

Furthermore

B
r+ 1

2
n
mn

(T̄j , λn) =

1 +

2mn

nλn
+

√
mnNνj (T̄j , λn)

nλ

2

r+ 1

2

≤

1 +

2mn

nλn
+

√
mnNνj (T̄j , λn)

nλ

2


≤ 2

[
1 +

(
2mn

nλn

)2

+

(
mnNνj (T̄j , λn)

nλ

)]
.

since r+ 1
2 ≤ 1 and (1+A)r+

1
2 ≤ 1+A for any A ≥ 0. Combining the last steps results in (by integration
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using Lemma B.11.2) and Assumption B.2.1, 3.

Eρ⊗n
[∥∥ mn∑

j=1

gλn,ln(T̄xj )(T̄xj f̂
∗
j − S̄∗xjyj)

∥∥2
L2(ν)

]
≤ CR2λ

2(r+ 1
2
)

n

mn∑
j=1

pj

(
1 +

(
2mn

nλn

)2

+

(
mnNνj (T̄j , λn)

nλ

))

≤ CR2λ
2(r+ 1

2
)

n

mn∑
j=1

pj

(
1 +

(
2mn

nλn

)2

+

(
mnNν(T̄ , λn)

nλ

))

≤ CR2λ
2(r+ 1

2
)

n

mn∑
j=1

pj

(
1 +

(
2mn

nλn

)2

+

(
mnλ

− 1
b

n

nλ

))

≤ CR2λ
2(r+ 1

2
)

n

mn∑
j=1

pj

(
1 +

(
2mn

nλn

)2

+mnλ
2r
n

)
.

Furthermore,
2mn

nλn
= o

(√
mnλ

r
n

)
,

provided

mn ≤ nα , α <
2(br + 1)

2br + b+ 1
.

Finally,
√
mnλ

r
n = o(1) if

mn ≤ nα , α <
2br

2br + b+ 1
.

Finally, conditions (B.9.1) and (B.9.2) are satisfied by choosingmn ≤ nα and ln ≥ nβ

mn
with β′ = β+α.

B.10 Probabilistic Inequalities

Proposition B.10.1 ([17]). For n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1], one has with probability at least 1− η :

∥∥(T̄ + λ)−
1
2

(
T̄xfρ − S̄?xy

) ∥∥
H1
≤ 2 log(2η−1)

(
M

n
√
λ

+

√
σ2Nν(T̄ , λ)

n

)
.

Proposition B.10.2 ([17], Proposition 5.3). Let x1, ..., xn be an iid sample, drawn according to ν on X.

For any λ ∈ (0, 1] and η ∈ (0, 1) one has with probability at least 1− η :

∥∥(T̄ + λ)−1(T̄ − T̄x)
∥∥

HS
≤ 2 log(2η−1)

(
2

nλ
+

√
Nν(T̄ , λ)

nλ

)
.

Proposition B.10.3 ([62]). Let x1, ..., xn be an iid sample, drawn according to ν on X. Define

Bn(T̄ , λ) :=

1 +

(
2

nλ
+

√
Nν(T̄ , λ)

nλ

)2
 (B.10.1)

For any λ > 0, η ∈ (0, 1], with probability at least 1− η one has

∥∥(T̄x + λ)−1(T̄ + λ)
∥∥ ≤ 8 log2(2η−1)Bn(T̄ , λ) . (B.10.2)
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Lemma B.10.4. If λn is defined by (B.7.5)

Bn(T̄ , λn) ≤ 2 ,

provided n is sufficiently large.

Proof of Lemma B.10.4. The proof is a straightforward calculation using Definition (B.7.5) and recalling

that Nν(T̄ , λ) ≤ Cbλ−
1
b .

Lemma B.10.5. If λn is defined by (B.7.5) and if

mn ≤ nα , α <
2br

2br + b+ 1
,

one has for any j ∈ [m]

B n
m

(T̄j , λn) ≤ B n
m

(T̄ , λn) ≤ 2 ,

provided n is sufficiently large.

Proof of Lemma B.10.5. The first inequality follows from Lemma B.6.2 , since Nνj (T̄j , λ) ≤ Nν(T̄ , λ),

j ∈ [m]. For proving the second inequality, recall that Nν(T̄ , λn) ≤ Cbλ
− 1
b

n and σ

√
λ
− 1
b

n

nλn
= Rλrn. Using

the definition of λn in (B.7.5) yields
2m

nλn
= o

(√
mλrn

)
,

provided

m ≤ nα , α <
2(br + 1)

2br + b+ 1
.

Finally,
√
mλrn = o(1) if

m ≤ nα , α <
2br

2br + b+ 1
.

B.11 Miscellanea

Proposition B.11.1 (Cordes Inequality,[5], Theorem IX.2.1-2). Let A,B be to self-adjoint, positive

operators on a Hilbert space. Then for any s ∈ [0, 1]:

‖AsBs‖ ≤ ‖AB‖s . (B.11.1)

Lemma B.11.2. Let X be a non-negative random variable with P[X > C logu(kη−1)] < η for any

η ∈ (0, 1]. Then E[X] ≤ C
k uΓ(u).

Proof. Apply E[X] =
∫∞

0
P[X > t]dt.
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[30] M. Dimassi and J. Sjöstrand. Trace asymptotics via almost analytic extensions. Partial Differential

equations and Mathematical physics.Prog. Nonl. Diff. Equ. Appl., 21:126 –142, 1996.
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[67] N. Mücke. Functional calculus for elliptic selfadjoint semiclassical pseudodifferential operators.

Diploma Thesis, Universität Potsdam, 2010.

[68] A. Neubauer. Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates

and finite-dimensional approximation. Inverse Problems, 5(4):541, 1989.

[69] F. O’Sullivan. Convergence characteristics of methods of regularization estimators for nonlinear

operator equations. SIAM J. Numer. Anal., 27(6):1635–1649, 1990.

[70] I. Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The Annals of

Probability, 22(4):1679–1706, 1994.

[71] I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for probabilities of large deviations.

Theory Probab. Appl., 30(1):143–148, 1985.

[72] G. Raskutti, M. J. Wainwright, and B. Yu. Early stopping and non-parametric regression. JMLR,

15:335–366, 2014.

156



[73] A. Rastogi and S. Sampath. Optimal rates for the regularized learning algorithms under general

source condition. Frontiers in Applied Mathematics and Statistics, 3:3, 2017.

[74] M. Reed and B. Simon. Functional Analysis I. Academic Press, 1980.

[75] L. Rodino. Linear Partial Differential Operators in Gevrey Spaces. World Scientific, 1993.

[76] H. P. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random

variables. Israel J. Math., 8:273–303, 1970.

[77] A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regularization.

Advances in Neural Information Processing Systems 28, 2015.

[78] S. Smale and D. Zhou. Shannon sampling II: Connections to learning theory. Appl. Comput. Harmon.

Analysis, 19(3):285–302, 2005.

[79] S. Smale and D. Zhou. Learning theory estimates via integral operators and their approximation.

Constructive Approximation, 26(2):153–172, 2007.

[80] A. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In 17th

International Conference on Machine Learning, Stanford, pages 911–918, 2000.

[81] I. Steinwart and A. Christman. Support Vector Machines. Springer, 2008.

[82] I. Steinwart, D. Hush, and C. Scovel. Optimal rates for regularized least squares regression. Pro-

ceedings of the 22nd Annual Conference on Learning Theory, pages 79–93, 2009.

[83] C. Stone. Optimal global rates of convergence for nonparametric regression. The Annals of Statistics,

10(4):1040–1053, 1982.

[84] R. Tandon, S. Si, and P. Ravikumar. Kernel ridge regression via partitioning. arXiv Preprint

(1608.01976), 2016.

[85] U. Tautenhahn. Error estimates for regularized solutions of non-linear ill-posed problems. Inverse

Problems, 10(2):485, 1994.

[86] V. Temlyakov. Approximation in learning theory. Constructive Approximation, 27(1):33–74, 2008.

[87] A. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.

[88] G. Wahba. Spline Models for Observational Data, volume 59. SIAM CBMS-NSF Series in Applied

Mathematics, 1990.

[89] C. Wang and D.-X. Zhou. Optimal learning rates for least squares regularized regression with

unbounded sampling. Journal of Complexity, 27(1):55–67, 2011.

[90] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. Advances

in Neural Information Processing Systems 13, 2000.

[91] C. Xu, Y. Zhang, and R. Li. On the feasibility of distributed kernel regression for big data. arXiv

Preprint (1505.00869), 2015.

[92] Y. Yang, M. Pilanci, and M. J. Wainwright. Randomized sketches for kernels: Fast and optimal

non-parametric regression. arxiv preprint (1501.06195), 2017.

157



[93] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive

Approximation, 26(2):289–315, 2007.

[94] T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Comput.,

17(9):2077–2098, 2005.

[95] Y. Zhang, J. Duchi, and M. Wainwright. Divide and conquer kernel ridge regression. JMLR:

Workshop and Conference Proceedings, 30, 2013.

[96] D.-X. Zhou. The covering number in learning theory. Journal of Complexity, 18 (3):739–767, 2002.

[97] D.-X. Zhou. Distributed learning algorithms. Technical report, Mathematisches Forschungsinstitut

Oberwolfach Report No. 33, 2016.

158
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