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Abstract 

 

Natural and potentially hazardous events occur on the Earth’s surface every day. The most 

destructive of these processes must be monitored, because they may cause loss of lives, 

infrastructure, and natural resources, or have a negative effect on the environment. A variety of 

remote sensing technologies allow the recoding of data to detect these processes in the first place, 

partly based on the diagnostic landforms that they form. To perform this effectively, automatic 

methods are desirable. 

Universal detection of natural hazards is challenging due to their differences in spatial impacts, 

timing and longevity of consequences, and the spatial resolution of remote-sensing data. Previous 

studies have reported that topographic metrics such as roughness, which can be captured from 

digital elevation data, can reveal landforms diagnostic of natural hazards, such as gullies, dunes, 

lava fields, landslides and snow avalanches, as these landforms tend to be more heterogeneous 

than the surrounding landscape. A single roughness metric is often limited in such detections; 

however, a more complex approach that exploits the spatial relation and the location of objects, 

such as object-based image analysis (OBIA), is desirable. 

In this thesis, I propose a topographic roughness measure derived from an airborne laser scanning 

(ALS) digital terrain model (DTM) and discuss its performance in detecting landforms 

principally diagnostic of natural hazards. I further develop OBIA-based algorithms for the 

detection of snow avalanches using near-infrared (NIR) aerial images, and the size (changes) of 

mountain lakes using LANDSAT satellite images. I quantitatively test and document how the 

level of difficulty in detecting these very challenging landforms depends on the input data 

resolution, the derivatives that could be evaluated from images and DTMs, the size, shape and 

complexity of landforms, and the capabilities of obtaining the information in the data. I 

demonstrate that surface roughness is a promising metric for detecting different landforms in 

diverse environments, and that OBIA assists significantly in detecting parts of lakes and snow 

avalanches that may not be correctly assigned by applying only the thresholding of spectral 

properties of data and their derivatives. 

The curvature-based surface roughness parameter allows the detection of gullies, dunes, lava 

fields and landslides with a user’s accuracy of 0.63, 0.21, 0.53, and 0.45, respectively. The OBIA 

algorithms for detecting lakes and snow avalanches obtained user’s accuracy of 0.98, and 0.78, 

respectively. Most of the analysed landforms constituted only a small part of the entire dataset, 

and therefore the user’s accuracy is the most appropriate performance measure that should be 

given in a such classification, because it tells how many automatically-extracted pixels in fact 
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represent the object that one wants to classify, and its calculation does not take the second 

(background) class into account. One advantage of the proposed roughness parameter is that it 

allows the extraction of the heterogeneity of the surface without the need for data detrending. 

The OBIA approach is novel in that it allows the classification of lakes regardless of the physical 

state of their water, and also allows the separation of frozen lakes from glaciers that have very 

similar water indices used in purely optical remote sensing applications. The algorithm proposed 

for snow avalanches allows the detection of release zones, tracks, and deposition zones by 

verifying the snow heterogeneity based on a roughness metric evaluated from a water index, and 

by analysing the local relation of segments with their neighbouring objects. This algorithm 

contains few steps, which allows for the simultaneous classification of avalanches that occur on 

diverse mountain slopes and differ in size and shape. 

This thesis contributes to natural hazard research as it provides automatic solutions to tracking 

six different landforms that are diagnostic of natural hazards over large regions. This is a step 

toward delineating areas susceptible to the processes producing these landforms and the 

improvement of hazard maps. 



 

 

IX 

 

Zusammenfassung 

 

Naturgefahren und potenziell gefährliche Ereignisse der Erdoberfläche treten jeden Tag auf. 

Prozesse mit Zerstörungswirkungen sollten identifiziert werden, weil sie Gefahren für besiedelte 

Gebiete sowie menschliches Leben haben können. Naturgefahren haben erhebliche Einflüsse auf 

die Umwelt. Eine Vielzahl von Fernerkundungstechnologien, die heutzutage verfügbar sind, 

erlauben die Aufnahme und Speicherung von Datensätzen, die bei der Erkennung solcher 

Naturgefahren helfen können. Eine wichtige Grundlage dafür stellt die diagnostische Landform 

dar, welche die Naturgefahr ausbildet. Für eine effiziente Analyse sind automatische Methoden 

wünschenswert. 

Die Verwendung einer universellen Methode zur Erkennung von Naturgefahren ist deshalb eine 

Herausforderung, weil die räumlichen Ausdehnungen unterschiedlich sind. So können diese 

unterschiedlichen Alters sein und verschiedene räumliche Auflösungen in Fernerkundungsdaten 

besitzen. Dies beeinflusst den Detailierungsgrad bei der Abbildung der Erdoberfläche. Frühere 

Studien zeigen, dass Ableitungen wie beispielweise die Rauheit, die von Fernerkundungsdaten 

erfasst werden kann, es erlauben, Naturgefahrenphänomene wie z. B. Erosionsrinnen, Dünen, 

Lavafelder, Erdrutsche und Schneelawinen zu erkennen, weil sie heterogener sind als umgebende 

Objekte. Dennoch ist es nicht zulässig, allein mittels der eigenständigen Rauheit eine 

Unterscheidung zwischen den erfassten Landschaftsformen vorzunehmen. Hier ist ein komplexer 

Ansatz wie die Objektbasierte Bildanalyse (OBIA) wünschenswert, weil ein solcher sowohl die 

räumliche Relation als auch die Lage von Objekten verwendet. 

In dieser Dissertation schlage ich einen Oberflächenrauhigkeitsindex, abgeleitet aus einem durch 

Airborne Laserscanning (ALS) erfassten digitalen Geländemodells (DTM), vor und diskutiere 

die Faktoren, die die Darstellung von Naturgefahrenphänomenen mittels dieser Variable 

beeinflussen. Ich präsentiere auch OBIA-basierte, automatische Algorithmen für die Erkennung 

von Schneelawinen welche aus Nah-Infrarot (NIR) Luftbildern ausgewertet wurden sowie den 

Verlauf einer Seegrenze, die auf LANDSAT Satellitenbildern abgebildet wird. Ich zeige 

weiterhin, dass der Schwierigkeitsgrad für die Erfassung der analysierten Phänomene variabel 

und abhängig von den Dateneigenschaften, der Komplexität der getrackten Phänomene sowie 

von den qualitativen Ausprägungen des Informationsgehaltes ist. Ferner werde ich zeigen, dass 

die vorgeschlagene Oberflächenrauhigkeit die räumliche Ausdehnung der verschiedenen 

Phänomene zu bestimmen erlaubt, und dass der OBIA-Ansatz deutlich bei der Erkennung von 
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Objekten und derjenigen Teile hilft, die nicht korrekt nur durch Verwendung spektraler 

Eigenschaften von Daten und deren Derivaten zugewiesen werden konnten. 

Der krümmungsbasierte Oberflächenrauhigkeitindex ermöglicht die Erkennung von 

Erosionsrinnen, Dünen, Lavafeldern, und Erdrutschen mit einer Benutzergenauigkeit von: 0.63, 

0.21, 0.53 und 0.45. Vergleichend dazu erzielen die vorgestellten OBIA-Algorithmen für die 

Erfassung von Seen und Schneelawinen eine Benutzergenauigkeit von 0.98 und 0.78. Die in 

dieser Arbeit analysierten Landformen stellen einen Ausschnitt aus dem Gesamtspektrum 

vorkommender Strukturen dar. Die Benutzergenauigkeit stellt dabei den am besten geeigneten 

Leistungsindex dar, auf dem basierend eine Klassifikation durchgeführt werden kann. Die 

Benutzergenauigkeit gibt an, wie viele der automatisch extrahierten Pixel das zu klassifizierende 

Objekt tatsächlich repräsentieren. Eine Betrachtung einer zweiten (Hintergrund-) Klasse muss 

durch diesen Ansatz nicht erfolgen. Ein Vorteil des vorgeschlagenen Oberflächenrauhigkeitindex 

ist, dass er die Extraktion der Heterogenität der Oberfläche ohne die Notwendigkeit eines Daten-

detrendings ermöglicht. Der OBIA-Ansatz für die Erfassung von Seegrenzen erlaubt es 

einerseits, Seen ungeachtet der physikalischen Zustände des Wassers zu klassifizieren und 

anderseits gefrorene Seen von den Gletschern zu unterschieden, welche ähnliche Eigenschaften 

beim Wasserindex aufweisen. Der für Schneelawinen vorgeschlagene Algorithmus wiederum 

ermöglicht insgesamt die Erfassung von Anbruchgebieten, Sturzbahnen und Ablagerungszonen 

durch Verifikation der Schneeheterogenität sowie die lokalen Beziehungen zu benachbarten 

Objekten. Dieser Algorithmus enthält einige Schritte, die es erlauben, gleichzeitig Lawinen zu 

klassifizieren, die in verschiedenen Berghängen auftreten und unterschiedliche Größen und 

Formen haben. 

Diese Dissertation trägt zur Naturgefahrenforschung bei, da sie automatische Lösungen für das 

Monitoring von sechs verschiedenen Landformen bietet, die typisch für Naturgefahren sind. Es 

wird somit dazu beigetragen,  Gebiete abgrenzbar zu machen, welche für das Auftreten von 

Gefahrenphänomenen besonders anfällig sind. Zudem können damit auch Verbesserungen bei 

der Erstellung von Gefahrenkarten erreicht werden.
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Chapter 1 

Introduction 

 

1.1. Motivation 

Natural hazards are processes on the Earth that have a possible negative impact on people and 

the environment (Gill and Malamud, 2017). Most of the landforms formed by these processes 

can be detected, monitored and systematically analysed from remote sensing data. For larger 

regions and increasing amounts of sensors and data, however, automatic methods are becoming 

increasingly essential for allowing fast, objective and standardised processing. Satellite and aerial 

photos, together with elevation data, are the basis for a variety of derivatives that use the spectral 

properties of pixels and the topography that gives rise to natural hazards. Apart from traditional 

pixel-based approaches, object-based image analysis (OBIA) classification has emerged as a 

machine-learning method that groups pixels together with their spatial arrangement. This is an 

advantage in classifying natural hazard landforms on the Earth’s surface, because every object 

has its general spatial context (Blaschke, 2010). In this thesis, I selected different types of 

landforms diagnostic to natural hazards with different sizes and patterns to test how OBIA 

performs on such a variety of objects. My work will address five specific research questions 

regarding tested several derivatives that can be evaluated from remote sensing data and their use 

in an OBIA method for detecting different types of natural hazards. Fast and effective tracking 

of these phenomena is necessary to quantify the frequency and the size of events, to improve 

warning systems, and to estimate how hazards change with time (Liu and Hodgson, 2016). 

1.2. Landforms diagnostic of natural hazards 

From a variety of natural hazards occurring across the world, I selected six different types of 

diagnostic landforms: gullies, dunes, lava fields, and landslides located in the eastern part of the 

United States, North America; lakes spread throughout the Tibetan Plateau, Asia; and snow 

avalanches triggered in the Swiss Alps, Europe (Fig. 1.1). All of these landforms attest to past or 

potential impacts on human activity and safety. For example, gullies are landforms that result 

from soil erosion and degradation, and are often tied to agricultural use (Poesen, 2011). Dunes 

may also arise in this context, but more generally result from Aeolian erosion and deposition. 

Active dunes may destroy forests by backfilling trees, or may block roads and or other 
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communication tracks (Lam et al., 2011). Lava fields occur as a consequence of the outflow of 

lava from a crater (Deardorff and Cashman, 2012); this process is often very rapid and may be 

dangerous to human lives. Landslides arise from unstable hill slopes and may occur rapidly, via 

sudden movement of soil, debris, or rocks down a slope, or very slowly, by constant movement 

of hill slope-forming materials (Pike, 1988). Lakes may also be considered natural hazards, 

especially when changing in size (Song et al., 2014a). A decrease in lake size reduces water 

 

Figure 1.1 | Selected natural-hazard phenomena and their geographical location: a) dunes in Alaska, 

USA; b) landslides in Oregon, USA; c) lava fields at Collier Cone, Oregon, USA; d) gullies on Santa 

Cruz Island, California, USA; e) snow avalanches in the Swiss Alps, Switzerland; and f) lakes on the 

Tibetan Plateau, China. 
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availability and compromises freshwater resources, whereas an increase in lake size may flood 

areas intended for land use. Changes in lake size may also be indicators of climate changes, 

because the supply of water from a glacier may suggest that the average temperature in the region 

has risen. Snow avalanches cause many deadly accidents in the winter season in mountainous 

areas (Techel et al., 2016) and their rapid occurrence makes it difficult to have sufficient warning. 

Hence, analysing the weather and snow conditions, combined with the mapping of past events, 

may improve the safety of people by generating more accurate and detailed snow avalanche 

hazard maps.  

1.3. Remote sensing data and their application for natural hazards 

Remote sensing technologies provide us with optical, thermal, hyperspectral, radar, and 3D 

information about the Earth, which can be used to recognise a variety of landforms and to track 

their spatio-temporal changes (Singh, 1989; Melesse et al., 2007; Arp et al., 2012). To collect 

these data, we can use passive remote sensing, where the sensor detects electromagnetic waves 

reflected from the Earth’s surface, or active remote sensing, where the object reflects an 

electromagnetic wave signal from the instrument (Fig. 1.2). An advantage of active over passive 

methods is that they are capable of being used anytime, even during the night when there is no 

daylight to illuminate the Earth’s surface. Another factor influencing the resolution and the 

accuracy of the data collected is the satellite, aircraft, or terrestrial platform from which data is 

acquired, and the altitude at which the platform is located.  

Optical remote sensing data have applications in classifying many kinds of objects on the Earth’s 

surface (Cheng and Han, 2016), and most studies have focused on land cover classification (Chen 

et al., 2007; Friedl et al., 2010; Schneider, 2012) and tracking changes in land cover (Byrne et 

al., 1980; Collins and Woodcock, 1996; Lunetta et al., 2006). Nevertheless, some attempts to use 

remote sensing data in detecting processes and landforms diagnostic to natural hazards exist. For 

 

Figure 1.2 | Differences in data acquisition when using passive and active sensors. Passive sensors 

detect the sun’s energy reflected from the Earth’s surface, whereas active sensors send a signal and 

measure the information that is reflected by the object.  
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example, LANDSAT and MODIS satellite images were used to identify environmental hazards, 

such as the extent of glaciers in Svalbard (Pope and Rees, 2014), the beginning of forest fire 

season in Canada (Sekhon et al., 2010), and mapping tidal flats over a large area in China (Murray 

et al., 2012). In contrast, elevation data from the released Shuttle Radar Topography Mission 

(SRTM) were used to identify different types of topography nearly worldwide (Drǎguţ and 

Eisank, 2012). Higher resolution light detection and ranging (LiDAR) data found an application 

in mapping terrain landforms such as drumlins (Eisank et al., 2014), including those diagnostic 

of natural hazards such as landslides (Booth et al., 2009; Van Den Eeckhaut et al., 2012; Chen et 

al., 2014) and gullies (Perroy et al., 2010; Baruch and Filin, 2011; Höfle et al., 2013). In addition, 

remote sensing data have been used for other hazardous processes, such as detecting changes in 

Himalayan glaciers (Chand and Sharma, 2015), flood modelling in the United Kingdom (Mason 

et al., 2016), and the measurement of global volcanic degassing (Carn et al., 2016). 

In this thesis, I used both passive and active data, with different resolutions and acquired from 

diverse aircraft, to automatically identify and map gullies, dunes, lava fields, landslides, lakes, 

and snow avalanches. The active airborne laser scanning (ALS) LiDAR data allow for 

representation of the Earth’s surface in a three-dimensional point cloud, and their spatial 

resolution allows one to obtain higher level of details than that with SRTM data, what makes 

them sufficient to evaluate the local heterogeneity of selected natural-hazard landforms. The 

passive LANSDAT images that I used have a 30 × 30 m resolution and provide information on 

visible, near-infrared (NIR), and short-infrared (SWIR) light spectra, providing an opportunity 

to find the best band ratio separating lakes from other land cover classes. In addition, NIR aerial 

images with 0.25 m resolution obtained with sufficient coverage allow the generation of 3D 

information from image stereomatching. Using spectral information of images and elevation data 

in combination is an advantage when mapping snow avalanches and assigning their release and 

runout zones. 

1.4. Object-based image analysis and its application for natural hazards 

With the increase in the amount of available remote sensing data, automatic approaches for their 

classification are required to keep up. Numerous algorithms have been developed in this regard, 

and most operate on a pixel-by-pixel basis. In contrast, OBIA, or geographical object-based 

image analysis (GEOBIA), is a method which may be applied to extract different types of objects 

on the Earth’s surface, and a viable alternative to the pixel-based approach (Blaschke, 2010; 

Blaschke et al., 2014). Furthermore, OBIA includes two main steps – image segmentation and 

object classification (Cheng and Han, 2016). The segmentation step allows information to be 

gathered the statistics of every segment, such as the minimum, the maximum, the mean, the 

median, and the standard deviation (Blaschke, 2010). This offers a greater diversity from which 
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to select the most suitable variable to reduce random, unstructured noise (salt-and-pepper noise) 

in the classification, which usually occurs when operating on pixels only. In addition, OBIA 

allows verification of the shape, texture, and spatial relation between neighbouring segments by 

analysing their topology, distances, and spatial relation (Blaschke et al., 2014). This enables the 

analysis of the local neighbourhood of segments that represent the objects of interest, but do not 

fulfil the assumptions to be assigned to this class due to their spectral properties (Price, 1994). 

In the segmentation step of OBIA, pixels are partitioned into larger, more compact pieces called 

‘segments’ or ‘objects’ (Cheng and Han, 2016). Segmentation can to be conducted by many 

different algorithms (Dey et al., 2010). In eCognition version 9.1, which I used in this thesis, to 

perform the segmentation and OBIA workflow, several methods are available: chessboard 

segmentation, quadtree-based segmentation, contrast split segmentation, multiresolution 

segmentation, special difference segmentation, multi-threshold segmentation, contrast filter 

segmentation and watershed segmentation (Trimble, 2015). Among these methods, I will focus 

here only on the first four, as these allow for the first stage of segmentation. The chessboard 

segmentation (Fig. 1.3.a) splits an image into square segments with a specified object size; by 

selecting the object size equal to unity, each individual pixel is maintained as a separate segment. 

The quadtree-based segmentation (Fig. 1.3.b) splits an image by subdividing the image each time 

into four smaller squares successively; this process ends when the homogeneity inside the square 

does not exceed the specified maximal colour difference, which is set as a threshold. The contrast 

split segmentation (Fig. 1.3.c) initially uses chessboard segmentation to tile an image into smaller 

pieces, and then divides the image into bright and dark objects by maximising the contrast of 

pixels with respect to a user-defined threshold. Finally, the multiresolution segmentation (Fig. 

1.3.d) uses the average heterogeneity of image objects to compute homogeneous segments; the 

parameters that control the segmentation process here are scale, shape, and compactness. The 

choice of a segmentation method is essential, because the selected algorithm and its parameters 

control the subsequent workflow in the classification. For example, chessboard segmentation 

with an object size equal to unity (one pixel = one segment) should be chosen when one desires 

to operate on pixels and additionally apply assumptions regarding the neighbouring pixels and 

their special location. Using this approach with larger objects, such as those in Figure 1.3.a, would 

be pointless, however, because it would no longer reflect the real boundaries of objects on an 

image. Here, quadtree-based segmentation may offer a solution; however, for many areas it 

produces oversegmentation, meaning the generation of many small segments that are 

disproportionate in size with respect to objects in the image. With split segmentation, it is possible 

to delineate more realistic boundaries of objects, but their correctness depends on the selected 

tile size for chessboard segmentation and on the objects occurring in every tile. The algorithm 

that allows for a more realistic representation of objects’ boundaries is the multiresolution 
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segmentation (Baatz and Schäpe, 2000), because it does not use a square area as the basis to split 

an image into segments.  

After performing segmentation, the objects are classified; here several different steps in OBIA 

are available, allowing the segments to be assigned to relevant classes. The first group of features 

is related to the objects, where the attributes that may be used are the mean, the mode, the standard 

deviation, the quantile and the skewness of every segment, as well as the segment’s value with 

respect to the neighbouring segments. This especially helps to reduce the salt-and-pepper noise 

of classification that usually takes place in the pixel-based approach. Another attribute that may 

be useful is the geometry of the segment, its shape, the area and the relation of these properties 

with respect to other segments. These properties can be used in classifying landforms that have 

defined shape or those that occur only under specific topographic conditions, such as a specific 

 

Figure 1.3 | Selected segmentation methods available in eCognition Developer 9.1 software: a) 

chessboard segmentation; b) quadtree-based segmentation; c) contrast split segmentation; and d) 

multiresolution segmentation. Photo credits: © Henry Munack. 



Chapter 1 | Introduction  7 
   

 

slope of the terrain. Another important attribute is the texture of the object in the image. Texture 

attributes, such as homogeneity, contrast, dissimilarity and entropy can distinguish objects with 

differing textures. The second group of features is related to the classification. Here, it is possible 

to verify the classification of each segment with respect to its neighbour by analysing the number 

of neighbours or the relative border to the segments assigned into a specific class. Despite the 

large amount of available options in OBIA, not all the features mentioned above are required to 

classify a specific phenomenon. Only those that are significant in solving a specific problem 

should be used. For example, measuring a segments’ shape may help to distinguish linear rivers 

from more circular lakes. In contrast, checking the classification of neighbouring segments may 

help to classify a segment that represents the same object as its neighbours, but is out of the 

thresholding range due to its spectral values. 

The OBIA approach has been successfully used in delineating and classifying objects diagnostic 

of natural hazards, such as landslides (Lu et al., 2011; Martha et al., 2012; Van Den Eeckhaut et 

al., 2012; Hölbling et al., 2015), gullies (d’Oleire-Oltmanns et al., 2014; Shruthi et al., 2015), and 

glaciers (Aubrey et al., 2015). Most of these studies analysed the spectral properties of images to 

classify these objects. Additionally, OBIA has found an application in damage analysis and risk 

management. Myint et al. (2008) used it to identify tornado damaged areas in Oklahoma, USA, 

and Van der Sande et al. (2003) used it to assist in flood risk and damage assessment in the 

Netherlands. Other studies have reported the use of OBIA in detecting building damages caused 

by the Izmit, Turkey earthquake in 1999 (Turker and Sumer, 2008) and tracking snow avalanche-

deposition zones in Switzerland (Bühler et al., 2009) and Norway (Lato et al., 2012). In addition, 

OBIA has been successfully applied in classifying glaciovolcanic landforms in Iceland 

(Pedersen, 2016), delineating freshly-erupted deposits around active volcanoes in Indonesia 

(Thouret et al., 2015), and tracking ice cliffs and ponds in the Himalayas (Kraaijenbrink et al., 

2016). 

1.5. Morphometric variables for landform detection 

From digital topographic data, it is possible to extract several derivatives that often provide 

additional and physically meaningful insights. From a digital elevation model (DEM), for 

example, we are able to evaluate a slope map with information about the steepness of the terrain, 

or an aspect map of the direction of the slope (Grohmann, 2015). The relevance of these 

parameters is that they control the flux of water and sediment downhill, while also controlling 

slope stability. I used these two derivatives in my algorithms to detect lakes (Section 3), and snow 

avalanches (Section 4), to distinguish lakes from glaciers, and to verify the occurrence of 

avalanches with respect to the direction of the maximum slope. Furthermore, we are able to 

estimate the curvature of the terrain, which shows whether the surface is curved convex-upward 
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or concave-upward to a specified pixel (Zevenbergen and Thorne, 1987). This provides 

information concerning the diversity of the terrain, and can be used to estimate terrain surface 

roughness – a significant variable when dealing with landforms diagnostic of natural hazards. 

For example, gullies, dunes, lava fields and landslides are characterised by higher roughness than 

their surrounding areas. In Section 2, I explore and introduce a curvature-based terrain surface 

roughness index (µ) as a source in detecting the abovementioned landforms from ALS LiDAR 

data (Fig. 1.4.a).  

An important index that can be evaluated from the images, and which I used for detecting lakes 

and snow avalanches, is the water index (Fig. 1.4.b). This is the ratio between two spectral bands, 

which allows the separation of water/snow from other land cover. I used two previously published 

algorithms: the normalised difference water index (NDWI; McFeeters, 1996) to classify snow 

 

Figure 1.4 | Derivatives evaluated from remote sensing data that were used in this study: a) curvature-

based terrain surface roughness (µ) representing gullies; b) modified normalised difference water index 

(MNDWI) for lakes on the Tibetan Plateau; c) standard deviation of normalised difference water index 

(SDNDWI) showing snow avalanches; and d) normalised difference vegetation index (NDVI) for snow 

avalanches.  
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and the modified normalised difference water index (MNDWI; Xu, 2006) to classify lakes with 

different states of ice cover on the Tibetan Plateau. Previous studies have reported that the 

MNDWI has the most stable threshold for separating water on LANDSAT images (Ji et al., 

2009); however, it requires a short-infrared band (ρSWIR), so its application for NIR aerial images 

is not possible. In such cases, the NDWI can instead be applied, which requires only the green 

band (ρGreen) and NIR band (ρNIR).  

The water index may additionally be used to calculate the heterogeneity of water classes on the 

optical image by analysing the texture of the pixels. Here, I suggest a heterogeneity measure, 

which is computed from the optical NIR aerial data as the standard deviation of the water index 

SDNDWI, to separate smooth and rough snow representing snow cover and snow avalanches, 

respectively (Fig. 1.4.c). I assumed that the higher heterogeneity between neighbouring pixels in 

relation to the water index gives information about the diversity of the snow, allowing the 

detection of areas where avalanches occur. 

A supplementary band ratio derivative that may be useful in detecting snow avalanches is the 

normalised difference vegetation index (NDVI; Townshend and Justice, 1986), which was 

developed to automatically map the state of vegetation (Fig. 1.4.d). I tested the application of this 

index in Section 4 for distinguishing vegetation from other objects that are similarly dark when 

analysing image brightness, but do not represent any kind of vegetation. I verified whether this 

index helps in delineating areas where an avalanche can be blocked by dense vegetation, and in 

tracking parts of avalanches where the process revealed the vegetation occurring under the snow 

cover. 

1.6. Research questions 

In this thesis, I focused on the automatic detection of landforms diagnostic of natural hazards 

from remote sensing data with an OBIA approach. Many challenges are linked with this topic in 

reference to data properties, such as spatial resolution, pixel values, and brightness; data 

derivatives, such as slope, curvature, roughness, and water and vegetation indices; and the used 

methodology of segmentation and classification. Here, I address several research questions that 

should be answered when performing and adapting the developed algorithms for areas and data 

other than those used in this work. The first research question refers to the surface roughness 

metric, which I introduce in Section 2 of this thesis to detect landforms such as gullies, dunes, 

lava fields and landslides, which are diagnostic of natural hazards. The question relates to the 

advantages of my method and the parameters that control the evaluated roughness:  

RQ1. Does curvature-derived surface roughness appropriately extract the 

properties of landforms diagnostic of natural hazards? How do the kernel and 
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pixel sizes set for evaluated roughness affect the accuracy in detecting the 

analysed landforms diagnostic of natural hazards? 

The second question discusses the use of spectral properties of images compared to derivatives 

that can be computed from image bands, such as the water index. This question refers mostly to 

Section 3, which focuses on classifying lakes with different states of water based on the water 

index compared to the visual information of such lakes:  

RQ2. What are the advantages and disadvantages of detecting landforms 

diagnostic of natural hazards from remote sensing data with their derived 

indices vs. visual information? 

The spectral information and image derivatives can be used together for segmentation, which is 

the first step in the OBIA approach. The third research question of this thesis elaborates upon the 

significance of the chosen segmentation method and the influence of parameters that can be set 

in segmentation to control their size and shape, for further object classification:   

RQ3. Are the segmentation method and its parameters the most significant 

when using OBIA? How the selected segmentation method controls the 

subsequent stages of classification? 

After performing segmentation in OBIA, the objects are classified based on data properties 

(spectral information, derivatives), and available algorithms for segment size, shape, and spatial 

context should be chosen according to the classified objects. Here, I address two research 

questions that are related to detecting lakes with different states of water from LANDSAT images 

(RQ4), and snow avalanches from NIR aerial images (RQ5). The ice cover on lakes is an 

important issue, because it usually causes misclassification of parts of a lake when using the 

spectral properties of the images. In such cases, a water index is advantageous in reducing this 

misclassification because water, irrespective of whether or not it is frozen, has positive values on 

the water index. A water index may confuse water with glaciers; however, so for the area of the 

Tibetan Plateau, which I used as my research area in Section 3, it assigned many glaciers as lakes. 

A spatial context, which can be used in OBIA, may therefore be an asset for distinguishing frozen 

lakes from glaciers, which I addressed RQ4: 

RQ4. What are the advantages and disadvantages of OBIA in detecting lakes 

prone to seasonal ice cover in an area with glaciers? 

For detecting snow avalanches, in Section 4 I investigated several NIR aerial image derivatives 

to separate snow avalanches from other objects. I applied brightness and NDVI to find vegetation, 

NDWI to classify snow, and SDNDWI to assign rough snow. In this respect, I address the research 
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question concerning the importance of these variables in detecting avalanches using an OBIA 

approach: 

RQ5. Which variables are the most useful in detecting snow avalanches from 

NIR images with OBIA? 

The visual illustration of these five research questions in Figure 1.5 shows the connections and 

mutual dependencies among them. These questions are partly answered in Sections 2, 3, and 4, 

and broadly discussed and summarised in Section 5. 

1.7. Author contributions and structure of the thesis 

For this thesis, I performed all data analysis. Overall, I designed the research, processed the 

remote sensing data, developed the algorithms, performed the analysis, drew the conclusions, and 

wrote the manuscript text. Several co-authors contributed by commenting and discussing the 

applied methods and the results. The studies presented in Chapters 2–4 have been submitted as 

 

Figure 1.5 | Graphical abstract of research questions (RQ1 – 5). The abbreviations on the figure are 

modified normalised difference water index (MNDWI), normalised difference water index (NDWI), 

and standard deviation of normalised difference water index (SDNDWI).  
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manuscripts to three international peer-reviewed journals. Furthermore, Prof. Dr. Oliver Korup 

advised the research and contributed to writing the articles. 

Chapter 2 investigates the applicability of terrain surface roughness for detecting natural hazard-

related landforms, such as gullies, dunes, lava fields and landslides. In this chapter, I propose a 

new curvature-based surface roughness algorithm and discuss the parameters used in the 

algorithm and their influence on the computed roughness. 

Chapter 3 proposes an OBIA approach for delineating mountain lake boundaries, which are prone 

to seasonal ice cover, from LANDSAT images. I demonstrate the insensitivity of the algorithm 

to seasonal lake ice cover and discuss further applications, including transferring the algorithm 

to other areas with different environmental conditions. 

Chapter 4 introduces a new OBIA algorithm for detecting snow avalanches at the catchment 

scale, using high-resolution NIR aerial images. In this chapter, I propose a new methodology 

using image derivative maps, and discuss the resulting pattern of automatically-detected snow 

avalanches. I propose a simple automatic approach for the classification of avalanche parts, such 

as release zones, tracks, and runout zones. 

Chapter 5 synthesises and summarises the key findings of Chapters 2–4, revisits the research 

questions, and outlines the prospects for future research concerning the application of remote 

sensing data and OBIA in detecting natural hazards. 
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Chapter 2 

Gullies, dunes, lava fields, & landslides 

 

Submitted to Geomorphology as: Korzeniowska, K., Pfeifer, N., Landtwing, S., Korup, O. 

Mapping gullies, dunes, lava fields, and landslides via surface roughness. 

 

Abstract 

Gully erosion is a widespread and significant process involved in soil and land degradation. 

Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models 

offer promising data for automatically detecting and mapping gullies, although methods vary 

widely measures of local terrain roughness are the most varied and debated among these methods. 

Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their 

applicability to small training areas. To this end, we systematically explored how local terrain 

roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in 

the unsupervised detection of gullies. We also tested expanding this method for other landforms 

diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, 

as well as investigating the influence of different roughness thresholds, resolutions of kernels, 

and input data, and comparing our method with previously published roughness algorithms. Our 

results show that total curvature is a suitable metric for recognising gullies and lava fields from 

LiDAR data, with comparable success to that of more sophisticated roughness metrics. Dunes or 

landslides remain difficult to distinguish from the surrounding landscape, partly because they are 

not easily defined in terms of their topographic signature. 

2.1. Introduction 

Gullying is a natural consequence of overland flow, which erodes soils or unconsolidated 

cohesive materials; additionally, several land-use practices may enhance this erosion. Gullies are 

distinguished from other landforms because of their high levels of local roughness (Ionita et al., 

2015), and are diagnostic of degrading land (Poesen et al., 2003; Valentin et al., 2005; Shruthi et 

al., 2015) and altered runoff conditions (Avni, 2005; Vanmaercke et al., 2016). In a systematic 

review, Poesen et al. (2003) reported that soil loss caused by various gullying types produced 
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between 10% and 94% of total water-borne sediment from individual catchments verified across 

the world. Factors promoting gully growth include climate, land use, soil characteristics, 

topography, snow melt, and seismicity (Vanmaercke et al., 2016). Understanding these factors 

better and monitoring their dynamics are essential for mitigating gully erosion (Conoscenti et al., 

2014; Torri and Poesen, 2014).  

Geomorphologists routinely use high-resolution digital terrain models (DTMs) obtained from 

Light Detection And Ranging (LiDAR) scans to map, either manually or automatically, gullies 

and other landforms. This approach has been instrumental in informing natural hazard studies, as 

DTMs can reveal diagnostic landforms, or ‘silent witnesses’, of past processes, even those hidden 

below dense vegetation cover (Deardorff and Cashman, 2012; Jaboyedoff et al., 2012).  

In this study, we explored ways of automatically discerning gullies from LiDAR-derived DTMs 

using terrain roughness as a diagnostic. Terrain roughness has many synonyms, including 

‘microtopography’ (Dunne et al., 1995), ‘microrelief’ (Potter et al., 1990; Helming et al., 1993), 

‘ruggedness’ (Riley et al., 1999), and ‘rugosity’ (Brasington et al., 2012), hence it is likely the 

least standardised terrain mapping diagnostic (Shepard et al., 2001; Smith, 2014; Milenković et 

al., 2015). We chose to use roughness because it is a topographic attribute that expresses the 

heterogeneity of the terrain; however, how well surface roughness aids the automatic detection 

of gullies and other natural-hazard landforms remains only partly understood. We followed the 

footsteps of previous efforts to automatically detect specific landforms (Glenn et al., 2006; Sagy 

and Axen, 2007; Bishop et al., 2012), but expanded by testing how well our method, designed to 

detect gullies, works for other landforms, including lava fields, dunes, and landslides.  

Flowing water that erodes soil creates gullies and often compromises agricultural use. 

Determining future trends in gully erosion processes and the potential material losses remains 

challenging (Poesen, 2011). Dunes instead result from wind activity and may bury farmland, 

destroy forests by backfilling trees, block roads, or encroach on infrastructure (Lam, Remmel, 

and Drezner, 2011). Lava fields record some of the flow properties of molten rock, indicating the 

size of past effusive eruptions (Deardorff and Cashman, 2012). Landslides result from the 

unstable hillslope, and involve the downward movement of soil, debris or rock (Pike, 1988). 

Detecting areas caused by all these different processes is important for producing susceptibility 

or hazard maps. 

We hypothesise that all these landforms share significant roughness contrast with respect to the 

surrounding terrain, and that a single metric should be able to capture these. Hence our main 

objectives were to explore a new curvature-based roughness index, to quantify how sensitive this 

index is to input data resolution and kernel size, and to compare how the index performs in 

relation to previous roughness metrics for gullies and other landforms. 
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2.2. Previous work 

2.2.1. Detecting gullies from high-resolution digital topography 

Gullies may change rapidly over large areas, making systematic methods for detecting, mapping, 

and monitoring essential for estimating rates of changes and predicting environmental 

consequences (Perroy et al., 2010; Shruthi et al., 2011). The simplest, but most subjective, 

method is to map gullies manually using air photos or DTMs (e.g. Martinez-Casasnovas, 2003). 

Stereomatching of aerial photos allows the generation of high-resolution (down to cm-scale) 

DEMs for different time slices, and thus enables estimation of the area affected by gullying, 

including local sources and sinks, as well as changes in eroded soil volumes (Marzolff and 

Poesen, 2009). Unmanned aerial vehicles (UAV) are capable of producing high-resolution DTMs 

via stereomatching or structure-from-motion methods. For example, Peter et al. (2014) surveyed 

the Souss valley, Morocco, for land-use changes using such data, but resorted to manually 

digitising the edges of gullies instead of using automated methods, whereas Stöcker et al. (2015) 

generated digital topographic data from UAV images complemented by terrestrial field photos 

to obtain detailed 3D surfaces of gullies in steep areas (>50°). They found that this combination 

produced more comprehensive and spatially-accurate models of gullies. In contrast, d’Oleire-

Oltmanns et al. (2014) used object-based image analysis (OBIA) of UAV-derived images, mostly 

edge contrasts, segments size, and roundness, to automatically delineate active gully erosion with 

only moderate accuracy. Previously, d’Oleire-Oltmanns et al. (2013) used Quick Bird-2 images 

to map gullies, and OpenStreetMap data to mask greenhouses, residential areas, and plantations 

identified from the normalised difference vegetation index (NDVI), as these might have been 

misclassified as gullies. They also used OBIA to extract gullies based on spectral and boundary 

segment data, again with moderate accuracy. Shruthi et al. (2011) analysed 4-m resolution 

IKONOS images and a 1-m DEM generated from GEOEYE-1 stereo images for detecting gullies, 

based on slope, specific catchment area, flow direction, NDVI, image texture, contrast, and edge 

metrics. They concluded that this method was transferable, with limitations set by subjectively 

selecting thresholds. James et al. (2007) tested the suitability of LiDAR data for mapping gullies 

and channel networks in forested areas in South Carolina, USA, and stated that a 4-m DTM paired 

with GPS-supported field checks improved their ability to map drainage elements below the 

forest canopy, even though these elements were missing on 1:24,000 topographic maps. Evans 

and Lindsay (2010) followed a similar strategy, but focused on topographic lows with high 

positive planar curvature, whereas Baruch and Filin (2011) argued that the many sizes and forms 

of gullies made detection at a fixed scale intractable, and instead used multiple scales for 

extracting gullies of different ages. Höfle et al. (2013) mapped gully sidewalls with terrestrial 

LiDAR DTMs using edge and sink filling, and achieved approximately 93% consistency with 

field-based reference data, finding this method successful for smooth topography with distinct 
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gully sidewalls. Passalacqua et al. (2010) proposed a geometric framework for extracting the 

channel network from LiDAR data, using a GeoNet computational tool. The algorithm defines 

the channels as curves of minimal effort, where the effort is evaluated based on flow 

accumulation and the curvature. 

2.2.2. Concepts of terrain roughness 

Views of terrain roughness depend largely on the scale and purpose of the study (Milenković et 

al., 2015). Roughness is a morphometric variable expressing the local heterogeneity of the land 

surface. Roughness measurements must therefore be (a) able to discriminate between surfaces of 

different amplitudes, frequencies, and correlations; (b) an intrinsic property of the surface, 

invariant with respect to rotation or translation; (c) a local, not global, measure of the surface; (d) 

intuitive or physically meaningful (Hoffman and Krotkov, 1990; Hani et al., 2011); and (e) simple 

enough to be computationally efficient (Berti et al., 2013). Most ways of computing terrain 

roughness from gridded data use the variability of elevation or slope in a local neighbourhood 

(Riley et al., 1999). One prominent representative of this method is the Terrain Ruggedness 

Index, which measures the square root of the average squared elevation difference between the 

centre pixel and its eight neighbours within a moving window or kernel (Grohmann and 

Riccomini, 2009). Frankel and Dolan (2007) measured the standard deviation of local slope in 

the cardinal directions with the aim of detecting alluvial fans in Death Valley, United States, and 

found that this roughness metric varied consistently with rock type. Shepard et al. (2001) 

proposed several algorithms based on the root-mean-square (RMS) of elevation, relief, and slope, 

but de-trended their data first by subtracting the DTM from a best-fit plane. Kreslavsky and Head 

(1999) pointed out that RMS-based metrics are sensitive to outliers, and suggested using a median 

slope instead. Haneberg et al. (2005) used the difference between the topography and its locally 

smoothed derivative within a moving square five pixels in width (Cavalli and Marchi, 2008). 

Similarly, Cavalli et al. (2008) recommended using this residual topography for filtering out 

large-scale landforms while eliminating the artefacts in steep landscapes, especially when 

generating hazard maps, mapping alluvial fan surfaces, and recognising riffle and steep-pool 

reaches in rivers. Haneberg et al. (2005) also found that terrain roughness helps to distinguish 

debris landslides from rock slumps, and even identifies individual lobes on debris fans. 

LiDAR point clouds also contain roughness information. Glenn et al. (2006) binned point-cloud 

data into 5 m × 5 m grid squares, and computed surface roughness from the standard deviation 

of the heights of LiDAR points above a spline interpolated through local elevation minima. This 

method worked well for detecting patterns in landslide morphology and activity. In contrast, 

Pollyea and Fairley (2011) derived roughness from point clouds with orthogonal distance 

regression to identify fracture and rubble zones in basalt outcrops, using the standard deviation 
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of the point-to-plane distances. McKean and Roering (2004) explored direction cosines of normal 

vectors of LiDAR pixels, and evaluated the logarithm of the ratios of normalised eigenvalues S1 

and S2 in a three-by-three cell window. This method detected abrupt topographic changes, 

especially fresh landslide deposits. Trevisani et al. (2012) used roughness for identifying rockfall 

deposits, debris-flow channels, and rocky outcrops, and suggested varying kernel size to find the 

most appropriate for smoothing the DTM. A standard variogram with short lags captured fine-

scale roughness, whereas log-transformed roughness values helped in detecting rocky outcrops. 

Variograms account for anisotropic terrain data, and Trevisani and Rocca (2015) introduced a 

multi-scale, directional image texture analysis operator (MAD) to improve their variogram 

models, obtaining robust roughness estimates even from noisy data. Booth et al. (2009) chose a 

two-dimensional discrete Fourier and a continuous wavelet transform to characterise the 

topographic signatures of deep-seated landslides, although Berti at al. (2013) questioned if 

spectral parameters used in these methods had any intuitive meaning or counterparts in moving 

window-based methods. Hani et al. (2011) estimated terrain roughness using a multi-scale, 

wavelet lifting scheme, and found this method to be independent of rotation and translation, and 

overall intuitive, recommending its use for distinguishing valleys and ridges, and quantifying 

convex and concave regions. 

Overall, however, few studies have systematically compared different roughness metrics for 

detecting landforms. Grohmann et al. (2011) estimated the ratio between real surface area and 

planform area, and evaluated the mean, strength, and dispersion of each cell of normal vectors 

for regularly spaced elevation values. They stressed that data resolution and kernel size was 

important for computing roughness statistics, and concluded that metrics such as the standard 

deviation of slope, standard deviation of profile curvature, and vector dispersion detected most 

terrain features. Berti et al. (2013) reviewed ten different surface roughness algorithms for 

identifying active landslides, and found only minor differences in their discriminatory and 

predictive capability; many simple methods performed reasonably well or even better than more 

complex ones. The authors argued that larger kernels only marginally improved the predictive 

capability, and suggested using higher resolutions and moving windows to retain local details. 

2.3. Research area and data 

Our review of previous work shows that gullies and several other landforms have a distinctly 

different roughness compared to the surrounding landscape (McKean and Roering, 2004; 

Haneberg et al., 2005). Our study area was a grassland on Santa Cruz Island, the largest of 

California’s Channels Islands (Fig. 2.1). The island has been prone to land degradation due to 

increased animal populations in the 19th century, which have reduced the vegetation cover 
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(Perroy et al., 2010). Efforts to re-establish vegetation in this area have stabilised some hillslopes, 

but active gullies still occur (Perroy, 2009).  

To test whether roughness-based metrics are capable of detecting not only these gullies, but also 

other landforms indicative of sudden disturbance such as lava fields, dunes, and landslides, we 

selected three other study areas in the western United States (Fig. 2.1): 1) lava fields on the north 

flank of North Sister stratovolcano ~45 km northwest of Bend City, Oregon (Deardorff and 

Cashman, 2012); 2) dunes on Yukon Flats, a vegetated permafrost area ~70 km southwest of Fort 

Yukon, Alaska; and 3) >150-year old landslides in a forested region between Redland, Estacada, 

and Beavercreek, Oregon (SLIDO, 2015). Our rationale for selecting landforms was a mixed one: 

On the one hand, we aimed at testing our algorithm on as diverse landforms as possible, subject 

to vary differing environmental conditions. On the other hand, we focused on vegetated areas, 

because for such areas LiDAR data offers more opportunities for detecting hidden features than 

optical data. On bare-ground landforms can be detected easily from satellite or aerial images, 

which are also more widely available and cheaper than LiDAR. Finally, wishing for maximum 

reproducibility and comparability, we decided to test our algorithm on LiDAR data that are freely 

available for download. For all of these areas, we used vegetation-corrected LiDAR data of the 

bare-ground surface (Korzeniowska et al., 2014), obtained from Open Topography (Open 

Topography, 2015), and the Alaska Division of Geological & Geophysical Surveys (ADGGS, 

2015) online portals (Table 2.1). The differing objectives of the data collection campaigns 

resulted in point densities of 3–10 points m-2 (Table 2.1). The selected landforms varied with 

 

Figure 2.1 | Test sites selected for evaluating the detectability of landforms from surface roughness: 

dunes in Alaska; landslides in Oregon; gullies on Santa Cruz Island, California; and lava fields at 

Collier Cone, Oregon. The blue squares indicate 1km² training areas. The red squares indicate samples 

taken for Otsu thresholding. The coordinates indicate the central locations of the 1km² samples. For 

LiDAR parameters, see Table 2.1.  
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respect to their shape and size, which allowed us to test the applicability of our roughness 

algorithm on a wider spectrum. The size of our study areas ranged from 15 to 50 km² (Table 2.1). 

To generate DTMs from those data, we used the classification for terrain and off-terrain points 

specified by Open Topography and the Alaska Division of Geological & Geophysical Surveys. 

We processed the raw point cloud and generated the DTMs using the LiDAR Processing Toolbox 

for ArcGIS 10.1 (ESRI, 2016), using the LAS dataset to Raster function with default binning 

interpolation, average cell assignment, and linear void fill. We saved the data as 1-m GeoTIFF 

rasters, owing to the low density of points in some test areas. 

2.4. Methods 

We have introduced a new method for calculating terrain surface roughness, which does not 

require data detrending, an issue that is often crucial in hilled, and mountainous areas. We used 

roughness for unsupervised classification of four different landform types that we compared with 

manually digitised reference data. We assessed the accuracy of detecting these landforms with 

roughness evaluated with different data resolutions and kernels using confusion matrices, 

receiver operating characteristic (ROC), area under the curve (AUC), and logistic regression. In 

addition, we proposed an approach for finding the optimal decision boundary threshold, and 

compared our roughness algorithm with several previously-published methods. 

We first computed local total curvature, selecting the method by Zevenbergen and Thorne (1987) 

from several options (Evans, 1972; Shary, 1995; Schmidt et al., 2003). A positive (negative) 

curvature indicates that the surface is concave (convex) in the cell coordinate evaluated; a zero 

value indicates a planar surface (Kimerling et al., 1995). Total curvature in a 3 × 3 matrix for the 

central point Z5 (x = y = 0) can be approximated by fitting a surface Z to nine elevation points in 

a moving window three pixels wide (Fig. 2.2): 

𝑍 = 𝐴𝑥2𝑦2 + 𝐵𝑥2𝑦 + 𝐶𝑥𝑦2 + 𝐷𝑥2 + 𝐸𝑦2 + 𝐹𝑥𝑦 + 𝐺𝑥 + 𝐻𝑦 + 𝐼 (1) 

where coefficients A-I are: 

𝐴 = [(𝑍1 + 𝑍3 + 𝑍7 + 𝑍9) ÷ 4 − (𝑍2 + 𝑍4 + 𝑍6 + 𝑍8) ÷ 2 + 𝑍5] ÷ 𝐿4 (2) 

𝐵 = [(𝑍1 + 𝑍3 − 𝑍7 − 𝑍9) ÷ 4 − (𝑍2 − 𝑍8) ÷ 2] ÷ 𝐿3 (3) 

Table 2.1 | Parameters of LiDAR data used in the current study.  

Test area 
Date of data collection 

Point density 

[pts m-2] 

Area size 

[km2] 

Dunes 24 Oct 2009 4 15 

Landslides 15 Mar 2007 – 3 Sep 2010 10 15 

Gullies 11 Mar 2010 – 8 Apr 2010 8 50 

Lava fields 28 Sep 2008 3 50 
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𝐶 = [(−𝑍1 + 𝑍3 − 𝑍7 + 𝑍9) ÷ 4 + (𝑍4 − 𝑍6) ÷ 2] ÷ 𝐿3 (4) 

𝐷 = [(𝑍4 + 𝑍6) ÷ 2 − 𝑍5] ÷ 𝐿2 (5) 

𝐸 = [(𝑍2 + 𝑍8) ÷ 2 − 𝑍5] ÷ 𝐿2 (6) 

𝐹 = (−𝑍1 + 𝑍3 + 𝑍7 − 𝑍9) ÷ 4𝐿2 (7) 

𝐺 = (−𝑍4 + 𝑍6) ÷ 2𝐿 (8) 

𝐻 = (𝑍2 − 𝑍8) ÷ 2𝐿 (9) 

𝐼 = 𝑍5 (10) 

From the above equations, the total curvature is: 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = −2(𝐷 + 𝐸) ∗ 100 (11) 

We estimated terrain roughness from the standard deviation of Equation (11) within a 5 × 5-pixel 

neighbourhood (Fig. 2.3; Berti et al., 2013) and further tested other kernel sizes (Roering et al. 

2010). The distribution of surface roughness was positively skewed for each study area, with 

most values being near zero. We thus log-transformed the data (Trevisani et al., 2012), and 

defined a roughness index: 

𝜇 = log10 √
∑ (𝑥𝑖−𝑥𝑖̅)2𝑛

𝑖=1

𝑛
 (12) 

where 𝑥𝑖 is the curvature value of the centre cell, 𝑥𝑖̅ is the mean curvature in the moving window, 

and n = 25 (for a 5 × 5 kernel), which is the number of pixels in the local environment. We 

implemented this algorithm as a free toolbox for ESRI’s ArcGIS 10.3 (http://itn-alert.org).  

We manually digitised landform boundaries by visually interpreting shaded slope maps and high-

resolution satellite imagery to create a reference data set for testing our roughness metric. Convex 

upward dunes had the highest contrasts, although deeply incised gullies and large lava fields were 

also distinct; landslides were the most difficult to map, and in places we only found remnant 

landslide scarps (Fig. 2.4). Following previous work (Cohen, 1960; Congalton, 1991; Stehman, 

 

Figure 2.2 | A 3 × 3 matrix for evaluating coefficients A – I in Equations 2 – 10. Z1-Z9 are the elevation 

values of the terrain surface, Z5 is the central point in the matrix, and L is the distance between matrix 

points in the row and column directions, and defines the raster resolution. 
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1997; Sithole and Vosselman, 2004), we first computed confusion matrices (Fig. 2.5) using true 

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). We then 

computed several statistical performance measures for our roughness-based method of detecting 

the mapped landforms in 1-km2 sample areas (Fig. 2.1), including Type I errors (the fraction of 

FP over all positives), Type II errors (the fraction of FN over all negatives), total error (the 

fraction of misclassified pixels; Sithole and Vosselman, 2004), overall accuracy (the fraction of 

correct classifications), producer’s accuracy (the fraction of TP over all positives), user’s 

accuracy (the fraction of TP over TP and FN; Congalton, 1991), and Cohen’s kappa (a measure 

of how far the classification deviates from a chance classification; Cohen, 1960).  

We also computed ROC curves (Swets, 1988) that map the performance of our method with 

changing decision boundaries, where decision boundaries mark the predictor-based thresholds 

separating the data into two classes. An ROC curve shows the TP rate (TP/TP+FN) of the 

 

Figure 2.3 | Workflow for estimating and testing our terrain surface roughness (µ). 

 

Figure 2.4 | The µ index with histograms evaluated from 2m DTM with 5 × 5 kernel size of standard 

deviation of total curvature, hillshade maps with digitised reference data, and rose diagrams 

representing aspect. The black polygons on hillshade maps are the manually mapped boundaries of the 

landforms, and are used as reference data. 
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classification as a function of the FP rate (FP/FP+TN); a classification is considered perfect when 

the ROC curve passes through the upper left corner of the graph. The AUC, in contrast, 

encapsulates the model skill; values of 0.5–0.7 indicate poor accuracy, whereas values of 0.7–

0.9 indicate useful accuracies. AUC values >0.9 are considered highly accurate (Swets, 1988). 

We also used the mnrfit function in MATLAB R2014b (Matlab, 2016) to run a logistic regression 

to estimate the probability of a given roughness pixel belonging to a gully or not.  

To compare the performance of our proposed roughness metric, hereafter referred to as µ, in 

detecting natural-hazard landforms with respect to previously published methods, we computed 

four additional roughness indices: planar and profile curvature, which we evaluated using the 

same workflow as for µ through replacing total curvature by planar and profile curvature 

computed with the curvature tool in ArcGIS 10.3 software; the standard deviation of residual 

topography (Haneberg et al., 2005); and the standard deviation of slope (Frankel and Dolan, 

2007), where we applied 5 × 5 kernel size and used log-transformed data throughout. 

2.5. Results 

2.5.1. Influence of data resolution and kernel size 

Visual checks of the mapped μ values confirm that most of the target landforms possessed high 

roughness, irrespective of their aspect (rose diagrams in Figure 2.4). We checked how different 

resampled DTM resolutions and kernel sizes influenced values of μ, testing pixel sizes of 1, 2, 4, 

8, 16, 32, and 64 m, and resampling all μ values to the original 1-m resolution. The visual 

representation of surface roughness for the gully study area (Fig. 2.6) shows that larger kernels 

reduced the local roughness contrast of gullies and other linear landforms. Similarly, the 

    Performance statistics 

    Type I error = FP/TP+FP 

  Predicted  Type II error = FN/FN+TN 

R
ef

er
en

ce
 

 YES NO 
 

Total error = FP+FN/TP+FP+FN+TN 
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Overall accuracy = TP+TN/TP+FP+FN+TN 

NO FN TN  Producer’s accuracy = TP/TP+FP 

     User’s accuracy = TP/TP+FN 

     Cohen’s kappa = po-pe/1-pe 

 

Figure 2.5 | Confusion matrix and performance statistics for reference data and predicted automatic 

classification, where TP is true positive, TN is true negative, FP is false positive, FN is false negative, 

po is relative observed agreement among rates, and pe is hypothetical probability of chance agreement. 
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estimated ROC curves and Cohen’s kappa values reveal that larger kernels consistently reduced 

the ability to detect gullies (Fig. 2.6). With increasing kernel size, the ROC moves closer to 

random prediction, and the Cohen’s kappa decreases. Coarser DTMs emphasised the role of 

kernel size, so that larger kernels and coarser DTMs made gully boundaries nearly undetectable. 

 

Figure 2.6 | The µ index for a 1-km² sample for the gully study area; receiver operating characteristic 

(ROC) curves, Cohen’s kappa, and logistic regression for roughness evaluated from 1, 2, 4, 8, 16, 32, 

and 64 m DTM with different kernel sizes of the standard deviation of curvature: 5 × 5 pixels, 7 × 7 

pixels, …, and 25 × 25 pixels. The 1-km² sample is shown as a blue square on Figure 2.1. 
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Predictions were marginal for DTMs with a resolution lower than 8 m, regardless of kernel size. 

Lowering the local contrast produced less random, unstructured noise (salt-and-pepper noise) 

from isolated high-roughness pixels. The logistic regression curves (Fig. 2.6) showed that the 

highest probabilities (~1) of classifying gullies were tied to small kernels and high DTM 

 

Figure 2.7 | The µ index for a 1-km² sample for the dune study area; receiver operating characteristic 

(ROC) curves, Cohen’s kappa, and logistic regression for roughness evaluated from 1, 2, 4, 8, 16, 32, 

and 64 m DTM with different kernel sizes of the standard deviation of curvature: 5 x 5 pixels, 7 x 7 

pixels, …, and 25 x 25 pixels. The 1-km² sample is shown as a blue square on Fig. 2.1. 

 

Figure 2.7 | The µ index for a 1-km² sample for the dune study area; receiver operating characteristic 

(ROC) curves, Cohen’s kappa, and logistic regression for roughness evaluated from 1, 2, 4, 8, 16, 32, 

and 64 m DTM with different kernel sizes of the standard deviation of curvature: 5 × 5 pixels, 7 × 7 

pixels, …, and 25 × 25 pixels. The 1-km² sample is shown as a blue square on Figure 2.1. 
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resolution; for 16-m and 32-m elevation data, the highest probabilities of correctly classifying 

gullies dropped to <0.8 and <0.5, respectively.  

We obtained comparable results when detecting dunes (Fig. 2.7). The resolution of the DTM 

largely controlled our roughness estimates, such that coarser (lower than 4 m) DTMs allowed for 

 

Figure 2.8 | The µ index for a 1-km² sample for the lava field study area; receiver operating 

characteristic (ROC) curves, Cohen’s kappa, and logistic regression for roughness evaluated from 1, 

2, 4, 8, 16, 32, and 64 m DTM with different kernel sizes of the standard deviation of curvature: 5 × 5 

pixels, 7 × 7 pixels, …, and 25 × 25 pixels. The 1-km² sample is shown as a blue square on Figure 2.1. 
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the detection of fewer dunes. The logistic regression results for dunes depended more on kernel 

size and DTM resolution than did those for gullies. Our method worked best for detecting lava 

fields, judging from high values of AUC and Cohen’s kappa (Fig. 2.8). The logistic regression 

curve was also very steep, with a narrow range of roughness values separating lava fields from 

 

Figure 2.9 | The µ index for a 1-km² sample for the landslide study area; receiver operating 

characteristic (ROC) curves, Cohen’s kappa, and logistic regression for roughness evaluated from 1, 

2, 4, 8, 16, 32, and 64 m DTM with different kernel sizes of the standard deviation of curvature: 5 × 5 

pixels, 7 × 7 pixels, …, and 25 × 25 pixels. The 1-km² sample is shown as a blue square on Figure 2.1. 
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Figure 2.10 | Logistic regression probability of a pixel belonging to a specified landform type based 

on our µ index. The probability maps are for μ evaluated for: 2-m DTM with 5 × 5 kernel (gullies); 4-

m DTM with 5 × 5 kernel (dunes); 2-m DTM resolution with 25 × 25 kernel (lava fields); and 2m 

DTM with 5 × 5 kernel (landslides). 

 
Table 2.2 | Matrix for the area under the curve (AUC) probability of our calculated surface roughness 

for different DTM resolutions and kernel sizes. 

 
Resolution of DTM [m]  Resolution of DTM [m] 

1 2 4 8 16 32 64  1 2 4 8 16 32 64 

Gullies  Dunes 

K
er

n
el

 [
p

ix
el

s]
 

5×5 0.875 0.945 0.937 0.873 0.768 0.634 0.550  0.812 0.840 0.906 0.884 0.731 0.626 0.565 

7×7 0.894 0.945 0.921 0.846 0.747 0.607 0.544  0.836 0.870 0.903 0.819 0.660 0.595 0.565 

9×9 0.903 0.940 0.904 0.824 0.726 0.584 0.521  0.853 0.885 0.881 0.756 0.633 0.578 0.543 

11×11 0.907 0.932 0.888 0.806 0.705 0.584 0.504  0.865 0.890 0.852 0.707 0.620 0.581 0.536 

13×13 0.908 0.923 0.872 0.792 0.688 0.544 0.497  0.874 0.887 0.820 0.672 0.606 0.590 0.503 

15×15 0.907 0.914 0.859 0.781 0.674 0.527 0.488  0.880 0.880 0.787 0.651 0.592 0.585 0.492 

17×17 0.905 0.905 0.846 0.770 0.659 0.507 0.494  0.884 0.869 0.757 0.640 0.576 0.574 0.491 

19×19 0.902 0.896 0.835 0.760 0.644 0.491 0.504  0.887 0.855 0.729 0.633 0.568 0.558 0.487 

21×21 0.899 0.888 0.825 0.750 0.632 0.477 0.504  0.887 0.841 0.705 0.627 0.572 0.541 0.493 

23×23 0.895 0.879 0.815 0.741 0.618 0.470 0.513  0.886 0.826 0.685 0.621 0.579 0.523 0.499 

25×25 0.891 0.871 0.807 0.733 0.602 0.477 0.521  0.883 0.810 0.668 0.615 0.582 0.511 0.504 

  Lava fields  Landslides 

K
er

n
el

 [
p

ix
el

s]
 

5×5 0.951 0.976 0.974 0.919 0.789 0.648 0.658  0.619 0.609 0.612 0.624 0.612 0.608 0.655 

7×7 0.971 0.983 0.975 0.915 0.783 0.657 0.698  0.624 0.609 0.613 0.615 0.611 0.612 0.611 

9×9 0.978 0.984 0.976 0.917 0.783 0.681 0.758  0.627 0.609 0.612 0.610 0.613 0.614 0.533 

11×11 0.981 0.984 0.977 0.921 0.787 0.702 0.830  0.628 0.609 0.611 0.606 0.618 0.596 0.516 

13×13 0.981 0.985 0.977 0.926 0.797 0.729 0.867  0.630 0.609 0.609 0.605 0.621 0.582 0.511 

15×15 0.981 0.985 0.978 0.931 0.810 0.756 0.854  0.630 0.608 0.607 0.606 0.618 0.559 0.509 

17×17 0.980 0.986 0.979 0.935 0.823 0.782 0.834  0.631 0.607 0.605 0.607 0.610 0.529 0.494 

19×19 0.979 0.987 0.980 0.938 0.832 0.802 0.777  0.631 0.607 0.604 0.608 0.600 0.505 0.515 

21×21 0.978 0.987 0.980 0.939 0.837 0.823 0.719  0.632 0.606 0.602 0.608 0.589 0.484 0.512 

23×23 0.977 0.988 0.980 0.938 0.842 0.843 0.677  0.632 0.605 0.600 0.607 0.579 0.470 0.488 

25×25 0.975 0.988 0.980 0.937 0.846 0.864 0.635  0.632 0.604 0.599 0.607 0.571 0.472 0.478 

Increasing intensity of the blue colour in the table represents the increase of the AUC value  
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the surrounding terrain, although the margins of the lava field were prone to offsets if larger 

kernels were used. Landslides were the most difficult formations to detect using our method (Fig. 

2.9), largely regardless of kernel size or DTM resolution. Even logistic regression afforded little 

potential for distinguishing landslides from the surrounding landscape, with maximum 

probabilities of <0.6.  

The performance metrics, performed using different combinations of resolution and kernel size, 

showed that DTM resolution affects landform detection more than does kernel size. Mapping the 

membership probabilities derived from logistic regression revealed a high visual agreement 

between pixels classified as gullies, and lava fields, and the manually digitised reference data 

(Fig. 2.10). Judging from the performance statistics (Table 2.2), we decided to work with the best 

parameter combinations for each land formation type: gullies (2-m DTM, 5 × 5 kernel), dunes 

(4-m DTM, 5 × 5 kernel), lava fields (2-m DTM, 25 × 25 kernel), and landslides (2-m DTM, 5 × 

5 kernel).  

2.5.2. Finding the optimal decision boundary 

We tested various ways of finding an optimal decision boundary for distinguishing the landforms 

from the surrounding terrain. One of the simplest unsupervised means of discerning gullies (or 

other landforms) seeks a suitable threshold value in the distribution of μ sampled for a given area. 

From the many thresholding algorithms available (Saho et al., 1988; Sezgin and Sankur, 2004), 

we selected one of the simplest and most common non-parametric ones, by Otsu (1979). This 

method finds the optimal threshold by maximising the separability of the resultant classes, and 

minimising the weighted sum of variances within each class. Otsu’s algorithm works well for 

bimodal data. Our µ are more unimodal in character (Fig. 2.4), so we restricted our threshold 

search to the bimodal range of the data, using the multithresh function in MATLAB for ten 

sample subsets for each landform type (Table 2.3; Fig. 2.1). We used an effectiveness metric 

representing the variance between classes, with higher values indicating higher separability and 

Table 2.3 | Otsu thresholds and the effectiveness of thresholding.  

Test area Parameter Whole 

dataset 

Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Sample 

6 

Sample 

7 

Sample 

8 

Sample 

9 

Sample 

10 

Samples 

median 

Gullies 
Threshold1 1.0260 1.2971 1.2429 1.1503 1.2151 1.2309 1.1267 1.1414 1.3049 1.2254 1.2587 1.2282 

Effectiveness 0.6248 0.7110 0.7040 0.7326 0.6577 0.6902 0.7381 0.7455 0.7226 0.6884 0.7137  

Dunes 
Threshold2 0.2879 0.3975 0.4149 0.4384 0.3891 0.4127 0.4010 0.4454 0.3765 0.3857 0.3950 0.3993 

Effectiveness 0.5819 0.6327 0.6567 0.6566 0.7019 0.6828 0.7508 0.6957 0.7595 0.7198 0.6724  

Lava fields 
Threshold3 1.1056 1.1490 1.1199 1.1394 1.1821 1.1031 1.1380 1.2093 1.2083 1.2415 1.1348 1.1442 

Effectiveness 0.6731 0.8533 0.9072 0.8766 0.8803 0.8072 0.8419 0.8412 0.8224 0.8073 0.8275  

Landslides 
Threshold4 -0.3005 -0.1076 -0.0993 -0.1943 -0.3244 -0.1620 -0.3413 -0.4145 -0.1015 -0.1940 -0.1944 -0.1943 

Effectiveness 0.6456 0.6206 0.6798 0.6928 0.7349 0.7265 0.7428 0.6874 0.6850 0.6434 0.7580  

1 thresholds for µ evaluated from 2-m DTM with 5 × 5 kernel for standard deviation of the total curvature 
2 thresholds for µ evaluated from 4-m DTM with 5 × 5 kernel for standard deviation of the total curvature 
3 thresholds for µ evaluated from 2-m DTM with 25 × 25 kernel for standard deviation of the total curvature 
4 thresholds for µ evaluated from 2-m DTM with 5 × 5 kernel for standard deviation of the total curvature 
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higher bimodality in the histogram; effectiveness denotes the maximum thresholds in the range 

between zero and one. We also tested how the thresholds selected for the subsets differed from 

those for the full data. The effectiveness was lower when using all data than when only subsets 

were used (Table 2.3). 

2.5.3. Qualitative and quantitative assessment of classification and the role of threshold 

uncertainty 

We tested how varying Otsu thresholds affected the ability to correctly detect gullies and other 

landforms, selecting the optimal threshold where Type I and Type II errors, or producer’s and 

user’s accuracies, were equal (Strumpf and Kerle, 2011; Fig. 2.11). Other criteria, such as the 

lowest total error, the highest Cohen’s kappa, or the overall accuracy are also possible to select 

the optimal threshold (Table 2.3, Fig. 2.11). Because we used a kernel size for estimating 

roughness, our thresholds were shifted by the kernel width. To remove this effect, we applied an 

 

Figure 2.11 | Type I, Type II, and total errors, overall (O. Acc.), producer’s (P. Acc.), and user’s (U. 

Acc.) accuracies for thresholds used for natural hazard-related landforms classification. The figure 

represents the results for a 1-km² data subset. 

Table 2.4 | Quantitative evaluation of the classification for thresholds evaluated by Otsu algorithm. 

Statistic measure Type I Type II Total O. Acc. P. Acc. U. Acc. Kappa  Type I Type II Total O. Acc. P. Acc. U. Acc. Kappa 

  Gullies  Dunes 

1
k
m

² 
sa

m
p
le

 

Otsu 0.16 0.11 0.12 0.88 0.84 0.71 0.70  0.22 0.13 0.15 0.85 0.78 0.60 0.59 

Otsu & erosion 0.32 0.04 0.11 0.89 0.68 0.84 0.69  0.34 0.07 0.12 0.88 0.66 0.70 0.60 

P&U Acc.  0.23 0.07 0.11 0.89 0.77 0.78 0.71  0.32 0.08 0.13 0.87 0.68 0.68 0.60 

A
ll

 d
at

as
et

 

Otsu 0.14 0.13 0.13 0.87 0.86 0.52 0.57  0.22 0.18 0.18 0.82 0.78 0.17 0.22 

Otsu & erosion 0.31 0.06 0.10 0.90 0.69 0.63 0.60  0.33 0.13 0.14 0.86 0.67 0.21 0.27 

P&U Acc.  0.21 0.09 0.10 0.90 0.79 0.59 0.61  0.31 0.12 0.13 0.87 0.69 0.22 0.28 

  Lava fields  Landslides 

1
k
m

² 
sa

m
p
le

 

Otsu 0.00 0.15 0.05 0.95 1.00 0.92 0.88  0.27 0.56 0.46 0.54 0.73 0.39 0.14 

Otsu & erosion 0.01 0.03 0.02 0.98 0.99 0.98 0.96  0.40 0.47 0.44 0.56 0.60 0.39 0.12 

P&U Acc.  0.04 0.07 0.05 0.95 0.96 0.96 0.90  0.63 0.30 0.41 0.59 0.37 0.38 0.07 

A
ll

 d
at

as
et

 

Otsu 0.04 0.32 0.27 0.73 0.96 0.44 0.44  0.33 0.35 0.34 0.66 0.67 0.44 0.28 

Otsu & erosion 0.07 0.22 0.19 0.81 0.93 0.53 0.55  0.48 0.25 0.32 0.68 0.52 0.45 0.25 

P&U Acc.  0.13 0.19 0.18 0.82 0.87 0.54 0.56  0.73 0.14 0.31 0.69 0.27 0.43 0.14 

Type I error (Type I); Type II error (Type II); Total error (Total); Overall accuracy (O. Acc.); producer’s 

accuracy (P. Acc.); user’s accuracy (U. Acc.); Cohen’s kappa (Kappa); performance statistics evaluated for 

balanced producer’s and user’s accuracy (P&U Acc.). 
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erosion morphological filter (Haralick et al., 1987) and reclassified all pixels assigned to gullies 

along their boundaries in an n-pixel corridor, where n was determined by the kernel size. For a 5 

× 5-pixel kernel, for example, n = 2. This approach yields higher overall accuracy, user’s 

accuracy, and Cohen’s kappa, as well as lower total error for all landforms (Table 2.4), while 

making the results for the balanced producer’s and user’s accuracies nearly equal. 

Figure 2.12 shows the differences between the classification results for Otsu’s threshold with and 

without morphological erosion. For example, the boundaries of lava fields were detected more 

accurately when applying morphological erosion (25 × 25 kernel). For other landforms, however, 

this treatment did not work as well, because we used a 5 × 5 kernel. For landslides, neither 

 

Figure 2.12 | Histograms for reference data with Otsu threshold for µ. Below are the predicted 

landforms based on: histogram threshold of data subsets, and histogram threshold of data subsets and 

erosion, as well as errors of the classification. The red numbered squares on the figures indicate the 

subset areas used to generate the histograms and evaluate the median of the optimal threshold. 
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approach worked, because they are broad and generate a less dramatic contrast in terrain 

orientation. Although landslide scarps were reasonably well discerned by our roughness index, it 

failed to capture the outline of the deposits, regardless of the choice of threshold. Our approach 

did, however, allow for reasonably good detection of gullies and lava fields (Fig. 2.11). In terms 

of performance, a morphological erosion filter increased the user’s accuracy for the 1-km² sample 

areas (Table 2.4).  

Finally, we tested our method for detecting gullies and other landforms for the larger study areas, 

obtaining a lower user’s accuracy of 0.63 and a Cohens’ kappa of 0.60 (Table 2.4). For other 

analysed landforms, the overall and producer’s accuracies remained high, with the exception of, 

the user’s accuracy, which decreased more than for gullies. More pixels representing the target 

landforms were correctly classified; however, many pixels of the surrounding terrain were still 

misclassified, especially for landscapes with dunes and landslides. 

2.5.4. Comparison with other algorithms 

We compared the performance of our method with that of others that use the standard deviation 

of residual topography (Haneberg et al., 2005) or the standard deviation of slope (Frankel and 

Dolan, 2007), using log-transformed data throughout. The methods of Haneberg et al. (2005) and 

Frankel and Dolan (2007) were slightly more successful in detecting dunes than was our method, 

but less successful for lava fields. None of the methods detected landslides sufficiently well. We 

also tested our approach on profile and planar curvature alone, and found that total and planar 

curvatures worked best (Fig. 2.13), with the exception of detecting dunes, where profile curvature 

gave better results.  

2.6. Discussion 

Surface roughness is a terrain metric that is widely-used in detecting terrain landforms (Riley et 

al., 1999; McKean and Roering, 2004; Cavalli et al., 2008; Pollyea and Fairley, 2011). Many 

previously-published roughness algorithms, however, await sufficient testing of their 

 

Figure 2.13 | Comparison of our µ (Total Curvature) with different surface roughness indexes: 

roughness based on profile curvature (Profile Curvature), roughness based on planar curvature (Planar 

Curvature), roughness based on slope (Frankel & Dolan), and roughness based on detrended DTM 

(Haneberg et al.). All the methods were evaluated for the same DTM resolution and using the same 

moving window as our total curvature-based µ, along with application of log-transformation. 
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performance outside their training areas. Our results demonstrate that this lack of testing can 

cause misinterpretations if applied for detecting different landforms or study areas. In our study 

areas, we found that our roughness method outperformed previous ones (Haneberg et al., 2005; 

Frankel and Dolan, 2007) when detecting gullies and lava fields. We also found that using total 

curvature yielded overall better results than did the profile curvature, in contrast to the findings 

of previous work (Grohmann et al., 2011), offering an alternative for evaluating surface 

roughness without needing to de-trend a DTM. Moreover, we demonstrated that increasing kernel 

size may improve the detectability of landforms that are commensurately larger, although at the 

expense of smaller landforms. Larger kernels also compromised the accuracy of landform 

boundaries more than it did their correct classification. Indeed, coarser DTMs limited the overall 

detection potential, creating more generalised and less accurate landform outlines. Comparing 

the results from Figures 2.6–2.9, we see that coarser resolution with grid spacing >8 m appears 

to be insufficient for detecting any of the landforms, as larger pixels increase the area of averaging 

and compromise local roughness details. For example, logistic regression showed that using a 

16-m DTM came close to using a random classifier for nearly all landform types. These trends 

did not apply to landslides, most likely because the manual mapping of landslides was the most 

difficult, as the deposits were not fresh and their boundaries were partly diffuse. Some landslides 

were the forest, producing a coarser DTM than for unvegetated areas. This comparatively low 

quality of the training data may be responsible for producing less convincing ROC curves. Our 

µ did not detect landslides with sufficient accuracy, likely because their age and occurred 

exogenous processes had caused blurring of the landforms, making them difficult to distinguish 

from other landforms. 

We recommend larger kernel sizes only for detecting the largest landforms in a study area, such 

as lava fields, especially for first-order reconnaissance where precise landform outlines are not 

important. Kernels that are too large, coupled with resolution that is too low, will compromise 

unsupervised landform detection. Eventually, the length scale of the landform dictates the success 

of detection, whereas data resolution affects our roughness index more than does kernel size, as 

coarser topographic data smooth out topographic details (Li et al., 2011; Grohmann, 2015).  

Automatically selected Otsu’s thresholds, together with a morphological filter, yield acceptable 

results for nearly all landform types (Fig. 2.11, Table 2.4). The shape and aspect of landforms 

appeared to be largely irrelevant for unsupervised detection. For the same data resolution and 

kernel size, we achieved a similar user’s accuracy for linear gullies <10-m in width and irregular 

lava fields >300-m in width. Landform size and shape do play an important role in varying data 

resolution and kernel size, however, which in turn depend on the study objective. The 

performance of our method was also independent of the fraction of test area covered by the 
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candidate landforms: dunes covering <1% of the area were detected with higher accuracy than 

were landslides covering 28% of the area (Table 2.4). 

Otsu’s nonparametric method for selecting the best decision boundary is less time-consuming 

and produces more accurate and objective results than does a trial-and-error approach (d’Oleire-

Oltmanns et al., 2013; Table 2.4; Fig. 2.11). Subsetting data with two different landform types 

produced optimal results with Otsu’s algorithm, but these deteriorated for fuzzier landform 

outlines, such the landslides we studied (Table 2.2). Subsets of data containing landform 

boundaries allowed for more accurate thresholds because the separability in the histogram was 

better. We stress that the specific threshold values of our classification cannot be readily applied 

to other areas containing the same landforms. 

Image segmentation into small homogenous pieces (Baatz and Schäpe, 2000; Blaschke, 2010) is 

commonly used in OBIA to remove salt-and-pepper noise. In addition, OBIA allows using 

neighbourhood relations to assign classified objects. Future work could thus merge our roughness 

approach with OBIA to improve classification. Segmentation may be especially helpful for 

spuriously-detailed DTMs where the “topographic variations are unknown or are 

indistinguishable from instrument error” (Smith, 2014). Such errors on DTMs can distort 

roughness estimates, as curvature errors strongly increase with elevation errors (Schmidt et al., 

2003). Thus, we recommend that before using our method, one should verify the quality of the 

input DTM and remove these errors. The high sensitivity of curvature to errors and high contrasts 

was only slightly apparent in our study, however. Indeed, roughness metrics are designed to pick 

up local spikes in curvature and the more important issue is whether the DTM duly reflects real 

terrain roughness or contains artefacts from inadequate processing. Our method may also be 

useful for coarser Shuttle Radar Topography Mission data if the aim is to recognise large-scale 

landforms with approximately zero roughness at the regional scale, such as large lakes. 

2.7. Conclusions 

We systematically tested the usefulness of surface roughness—defined here as the local 

variability of total curvature—for detecting gullies, dunes, lava fields, and landslides from high-

resolution LiDAR DTMs in an unsupervised manner. The algorithm is freely available as a 

toolbox for ArcGIS software and allows the evaluation of surface roughness without data 

detrending, because it uses the total curvature as an input source. We found that data resolution 

has a greater effect on the performance of detecting these landforms with surface roughness than 

does kernel size. We also found that this simple method aided in the automated mapping of 

several landform types, provided that they have sufficient roughness contrasts compared to the 

surrounding terrain. Our method is limited, however, in that it is neither capable of, nor designed 

to, recognising the type of detected landforms. Expert knowledge is still necessary to correctly 
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identify the detected landforms. Future research may wish to focus on combining roughness-

based landform detection with characteristics of landform shape, position, and neighbourhood. 

With further development, our method may be suitable not only for detecting landforms, but also 

for tracking landform dynamics through time. 
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Abstract 

The Tibetan Plateau, the world’s largest orogenic plateau, hosts thousands of lakes that play 

prominent roles as water resources, environmental archives, and sources of natural hazards such 

as glacier lake outburst floods. Previous studies have reported that the size of lakes on the Tibetan 

Plateau has changed rapidly in recent years, possibly because of atmospheric warming. Tracking 

these changes systematically with remote sensing data is challenging given the different spectral 

signatures of water, the potential for confusing lakes with glaciers, and difficulties in classifying 

frozen or partly frozen lakes. Object-based image analysis (OBIA) offers new opportunities for 

automated classification in this context, and we have explored this method for mapping lakes 

from LANDSAT images and Shuttle Radar Topography Mission (SRTM) elevation data. We 

tested our algorithm for most of the Tibetan Plateau, where lakes in tectonic depressions or 

blocked by glaciers and sediments have different surface colours and seasonal ice cover in images 

obtained in 1995 and 2015. We combined a modified normalised difference water index 

(MNDWI) with OBIA and local topographic slope data in order to classify lakes with an area 

>10 km². Our method derived 323 water bodies, with a total area of 31,258 km², or 2.6% of the 

study area (in 2015). The same number of lakes had covered only 24,892 km² in 1995; lake area 

has increased by ~26% in the past two decades. The classification had estimated producer’s and 

user’s accuracies of 0.98, with a Cohen’s kappa and F-score of 0.98, and may thus be a useful 

approximation for quantifying regional hydrological budgets. We have shown that our method is 

flexible and transferable to detecting lakes in diverse physical settings on several continents with 

similar success rates. 
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3.1. Introduction 

The Tibetan Plateau is the world’s largest orogenic plateau, with a mean elevation of more than 

4000 m above sea level (a.s.l.), and is known as “the Roof of the World” or “the 3rd Pole of the 

Earth” (Qiu, 2008; Song et al., 2014a; Wang, 2016). The Plateau is surrounded by the Himalayas 

to the south, the Kunlun Shan to the north, the Pamir to the west, and the Qilian Shan to the 

northeast (Liu and Chen, 2000). Together with these ranges, the Tibetan Plateau serves as “the 

Water Tower of Asia” (Immerzeel et al., 2010; Song et al., 2013; Immerzeel et al., 2014), hosting 

glaciers and thousands of lakes that play prominent roles as water resources, environmental 

archives, and potential sources of natural hazards, such as glacier lake outburst floods (Yao et al., 

2012).  

The Tibetan Plateau is among the most sensitive places to atmospheric warming (Zhang et al., 

2011). Temperatures on the plateau have risen by 0.3°C per decade – three times the global 

average (Qiu, 2008; Yao et al, 2012). Symptoms attributed to atmospheric warming on the 

plateau include retreating glaciers (Liu and Chen, 2000; Yang et al., 2008), degrading permafrost 

(Qiu, 2008; Yang et al., 2010), and rapidly changing lake areas (Yang and Lu, 2014). The glaciers 

in the surrounding mountain ranges are prone to changing hydrological and meteorological 

conditions, potentially contributing to changes in the size of the Plateau’s lakes (Immerzeel et al., 

2014). Many studies have tried to detect and monitor these changes (Zhang et al., 2011; Shao et 

al., 2007; Zhu et al., 2010; Zhang et al., 2011; Phan et al., 2012). Some researchers (Song et al., 

2014a; Yang et al., 2008) have argued that the meltwater from glaciers largely drives the size 

distribution of these lakes. Ground surveys (Ouma and Tateishi, 2006) help to verify the changes 

in detail; however, such field measurements are difficult, expensive, and time consuming for 

large regions, especially if needed regularly. Here, satellite-based monitoring offers a solution in 

terms of repeated and standardised images of lakes, their surface colour, and seasonal ice cover. 

Yang and Lu (2014) used LANDSAT images covering several decades to capture how the size 

of lakes on the Tibetan Plateau has changed. Seasonal changes in size are evident for at least 105 

lakes (Song et al., 2014b), with those in the south, central, and northeastern parts of the plateau 

having higher water levels between March and October, but showing almost no changes between 

November and February. Many lakes in the north, however, have lower water levels in the warm 

season, mainly because of strong evaporation and low precipitation. Ma et al. (2010) reported 

that between 1960 and 2006, most existing lakes grew in size, while 60 new lakes >1 km² 

appeared on the Tibetan Plateau and surrounding areas. Fang et al. (2016) revealed different 

trends in how 35 lakes changed over the past 40 years. For example, Siling Co, the largest lake 

on the plateau, has increased by >600 km², whereas lakes in the Himalayas have shrunk; lakes in 

the north and northeastern Tibetan Plateau mainly grew. A local study of Nam Co reported that 
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this lake expanded by 51.8 km² between 1970 and 2010 (Liu et al., 2010), owing to increasing 

annual precipitation, air temperature, and runoff, and decreasing evaporation, similar to trends of 

other lakes such as Siling Co, Bam Co, Pung Co, Darab Co, and Zige Tangco (Lei et al., 2013). 

Few methods of detecting lakes and their changes on the Tibetan Plateau have been developed 

further. Li et al. (2011) proposed an algorithm applying a normalised difference water index, 

topographic slope, and hillshading to discern glacial lakes from shadows on LANDSAT ETM+ 

images. They found that pixels classified as water were bimodally distributed, as opposed to 

pixels representing other land cover, and thus distinct from melting glaciers and shadows. Song 

et al. (2013) estimated changes in lake-water storage on the Tibetan Plateau from the early 1970s 

to 2011. Using LANDSAT images and ICESat altimetry data, they reported an increase in lake 

areas and total water storage. They noted a more positive water balance in the northern and central 

plateau, but a decreasing water balance in the southeastern part, mostly related to glacier melt. 

Comparable results (Phan et al., 2012; Wang et al., 2013) from ICESat data apply to level changes 

for 154 lakes on the Tibetan Plateau between 2003 and 2009. 

Systematically tracking lake changes offers new challenges and opportunities for automatic 

classification methods, such as object-based image analysis (OBIA; Blaschke, 2010). Such 

automatic mapping of landforms reduces the operator bias produced by manual digitisation, and 

allows rapid investigation of large regions. The training of OBIA algorithms requires careful 

design, however, especially for areas like the Tibetan Plateau, where simple thresholding 

frequently confuses lakes with glaciers, ice and cloud cover, or highly reflecting sediments. We 

address this issue and present an OBIA approach to classifying large lakes on the Tibetan Plateau 

based on LANDSAT images and the Shuttle Radar Topography Mission (SRTM) digital 

elevation model (DEM). Our objective was to find a suitable workflow using an object-based 

approach for detecting large lakes based on a water index and digital topography, aiming for a 

metric insensitive to glaciers and ice cover, running water, or mountain shadows. We present 

here a method for rapidly delineating lake boundaries and for examining general trends in lakes 

size for a large area, such as the Tibetan Plateau. Specifically, we used a modified normalised 

difference water index (MNDWI; Xu, 2006) to detect water pixels, and OBIA to extract lake 

boundaries and distinguish them from rivers and glaciers. We then further tested whether our 

method is readily applicable to classifying lakes of different origins and in different 

environmental settings elsewhere. 

3.2. Previous work 

Remote sensing data are indispensable for delineating surface objects and tracking how they 

change (Singh, 1989; Melesse et al., 2007; Arp et al., 2012). The continuity of data collection 

with set parameters (Chander et al., 2009) enables consistent and accurate long-term analyses. 
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Satellite images have a long tradition in classifying water (Frazier and Page, 2000; McFeeters, 

2013; Mueller et al., 2016), streams (Yang and Smith, 2013), changes in lake volumes 

(Fitzpatrick et al., 2014), and lake monitoring (Zhu et al., 2014). 

3.2.1. Thresholding methods 

Methods for automatically detecting water bodies from remote sensing data use various spectral 

properties of water (Song et al., 2014a; Nath and Deb, 2010). The most common approach uses 

thresholds on a single band or a ratio of bands, and is easy, quick, and quite accurate in delineating 

boundaries of water bodies (Song et al., 2014a; Ryu et al., 2002). Frazier and Page (2000) were 

among the first to use density slicing on a single band (ρ) of LANDSAT 5 TM images, 

determining the optimal threshold on each band (i.e., ρBlue, ρGreen, ρRed, ρNIR (ρ near-infrared), 

ρSWIR1 (ρ short-wave infrared), and ρSWIR2 (ρ short-wave infrared)). They found that ρSWIR1 offered 

the most accurately classified water areas, only marginally inferior to those obtained via a more 

costly maximum likelihood-based approach to slicing six bands in total. McFeeters (1996) 

introduced a band-ratio method for separating water from other land cover classes. His 

normalised difference water index (NDWI; McFeeters, 1996) makes assumptions similar to those 

used for computing the normalised difference vegetation index (NDVI; Townshend and Justice, 

1986; Table 3.1), where vegetated surfaces have positive NDVI values, bare-ground areas have 

values close to zero, and water surfaces have negative values. McFeeters (1996) found that 

replacing ρRed with ρGreen emphasised water areas more than other land-surface objects (Table 

3.1), where water surfaces have positive NDWI values, and other objects have negative values. 

The NDWI remains widely used and has motivated the search for alternative band ratios to allow 

Table 3.1 | Band ratio indices proposed in previous studies to classify vegetation and water. 

Index Equation Author 

Normalised Difference 

Vegetation Index 
NDVI = (ρNIR − ρRed) / (ρNIR + ρRed) 

Townshend and 

Justice, 1986 

Normalised Difference 

Water Index 
NDWI = (ρGreen − ρNIR) / (ρGreen + ρNIR) McFeeters, 1996 

Normalised Difference 

Water Index 
NDWI = (ρRed − ρSWIR1) / (ρRed + ρSWIR1) 

Rogers and 

Kearny, 2004 

Modified Normalised 

Difference Water Index 
MNDWI = (ρGreen − ρSWIR1) / (ρGreen + ρSWIR1) Xu, 2006 

Automated Water 

Extraction Index (for non-

shadow areas) 

AWEInsh = 4 × (ρGreen − ρSWIR1) − (0.25 ×  ρNIR

+ 2.75 × ρSWIR2) 
Feyisa et al., 2014 

Automated Water 

Extraction Index (for 

shadow areas) 

AWEIsh = ρBlue + 2.5 × ρGreen − 1.5 × (ρNIR

+ ρSWIR1) − 0.25 × ρSWIR2 
Feyisa et al., 2014 

Water Index 
WI = 1.7204 + 171ρGreen + 3ρRed − 70ρNIR

− 45ρSWIR1 − 71ρSWIR2 
Fisher et al., 2016 
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better separation of water bodies from other land cover. For example, Rogers and Kearny (2004) 

suggested using the ratio of ρRed and ρSWIR1 to automatically delineate water boundaries, arguing 

that only water is more reflective in ρSWIR1 than ρRed. The NDWI often misclassifies noise in urban 

areas, because the reflectance pattern of built-up areas on ρGreen and ρNIR mimics that of water 

(Xu, 2006). Built-up areas also reflect much stronger in ρSWIR1 than in ρNIR, so that Xu (2006) 

proposed a modified normalised difference water index (MNDWI; Table 3.1), which maintains 

a robust threshold (Ji et al., 2009). Nonetheless, new and more complex indices are on the rise. 

Feyisa et al. (2014) suggested a non-normalised automated water extraction index (AWEI) from 

multi-band ratios of LANDSAT 5 TM data, as an alternative for areas that are easily misclassified 

as water, such as dark surfaces (AWEInsh) and mountainous areas with deep shadows: (AWEIsh; 

Table 3.1). The non-normalised water index (WI) proposed by Fisher et al. (2016) combines five 

LANDSAT ETM+ bands (Table 3.1), and is intended mainly for regional applications. Upon 

testing several band-ratio indices, Ouma and Tateishi (2006) reported that in general the NDWI 

overestimated water areas by including non-water pixels, whereas the MNDWI underestimated 

water areas by rejecting some water pixels. Amongst all these methods, simple thresholding can 

be very accurate only in relatively flat areas, whereas in mountainous terrain it frequently 

misclassifies shadows, snow, ice, and clouds with spectral properties similar to those of water. 

Thresholding is also unable to distinguish between rivers and lakes. Combining the water index 

with more advanced methods such as OBIA, segmentation, and spectral matching is preferable 

(Jawak et al., 2015). 

3.2.2. Classification methods 

Several methods have been designed for extracting lake outlines from remote sensing data. Habib 

et al. (2006) combined the spectral angle mapper classification method, the irregular pyramid, 

and the watershed-with-markers methods in order to identify lakes from SPOT images. They 

evaluated the angular spectral deviation between every pixel and a set of reference spectra, and 

assigned each pixel to the closest reference spectrum. Using graph theory and a bottom-up 

approach to merge neighbouring pixels into bigger segments (irregular pyramids), they also 

incorporated watershed segmentation. To avoid oversegmentation, they applied markers, which 

they used as the minima of the gradient image.  

Texture analysis is an approach aiding the regional mapping of larger lakes (>200 m²), involving 

thresholding and supervised classification of LANDSAT GeoCoverTM mosaics (GWEM; 

Verpoorter et al., 2012). The method uses a low-pass filter with 3 × 3 kernel size to remove small 

objects (<10 pixels). Thus, derived lake polygons are then combined with hillshade data to find 

shadows wrongly classified as lakes, as shadows and clouds are major sources of 

misclassification for this approach. Alternatives include an automated method for extracting 
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rivers and lakes from LANDSAT TM and ETM+ images (Jiang et al., 2014), which combines 

the NDWI, MNWDI, and AWEI for more reliable mapping, especially when considering 

neighbour effects of mixed pixels at lake shores (Jiang et al., 2014). All these methods, however, 

were tested in ice- and snow-free areas only. 

A global mapping study addressing the problem of ice in detecting water bodies from LANDSAT 

images (Yamazaki et al., 2015) relied on the MNDWI, and on a SRTM DEM to exclude ice, 

snow, and shadows. Sheng et al. (2016) proposed a similar method at continental and global 

scales using LANDSAT 8 and segmenting the NDWI with an arbitrary initial threshold to detect 

lakes. They analysed each lake separately to determine individual thresholds, while SRTM-

derived slope and hillshade data helped to remove shadows in mountainous terrain. Again, none 

of these approaches catered to the detection of lakes in a (partly) frozen state. 

3.2.3. Classification methods and monitoring 

The water indices and other more advanced classification methods find use in monitoring long-

term changes of water areas. An example of small-scale change detection is a study by Gao et al. 

(2012), who investigated a global database of large reservoirs with 250-m resolution Moderate 

Resolution Imaging Spectroradiometer (MODIS) data. They analysed changes in the areas of 34 

reservoirs between 1992 and 2010 by thresholding and clustering the NDVI for delineating water 

bodies. This approach worked well and consistently for classifying reservoirs, particularly those 

with small shoreline-to-area ratios. Similarly, Deus and Gloaguen (2013) used MODIS data, the 

MNDWI, and histogram thresholding to quantify changes in Lake Manyara in East Africa, 

detecting significant decreases in lake area that were strongly correlated with annual rainfall 

variability. Bai et al. (2011) used LANDSAT MSS, TM, and ETM+ images, as well as 

segmentation of the NDWI to study lake changes in arid central Asia, and found that lakes 

decreased in size by ~50% between 1975 and 2007, with shrinkage spreading from east to west 

along major precipitation gradients. Rokni et al. (2014) used LANDSAT TM, ETM+, and OLI 

images to automatically extract water areas and model the changes of Lake Urmia, Iran, from 

2000 – 2013, and found that the NDWI was the most suitable of the various indices for mapping 

a shrinking lake area. 

3.3. Study area and data 

Our study covered nearly 1,187,000 km², the greater part of the Tibetan Plateau (Fig. 3.1), where 

lakes mostly formed in tectonic depressions, or behind glaciers and sediments. The lakes have 

different colours due to sediment concentrations, mineral content (salinity), water depths, aquatic 

vegetation, and seasonal ice cover (Fig. 3.2). We excluded from our analysis the southeastern 

Tibetan Plateau because few cloud-free LANDSAT images were available for this area. We 

analysed 47 LANDSAT 5 images taken in 1995 and 47 LANDSAT 8 images taken in 
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Figure 3.1 | Study area of the Tibetan Plateau, showing glaciers and lakes with an area >10 km². Cloud 

cover and acquisition dates differ between images for the two time slices in 1995 and 2015. LANDSAT 

image credits: U.S. Geological Survey (http://espa.cr.usgs.gov/); SRTM data credits: CGIAR 

Consortium for Spatial Information (http://srtm.csi.cgiar.org/). 

 

 

Figure 3.2 | Examples of seasonal differences in lake-ice cover and corresponding RGB values in 

LANDSAT 5 (1995) and LANDSAT 8 (2015) images. For lake locations on the Tibetan Plateau see 

corresponding labels on Figure 3.1. LANDSAT image credits: U.S. Geological Survey 

(http://espa.cr.usgs.gov/). 

 

 

http://espa.cr.usgs.gov/
http://srtm.csi.cgiar.org/
http://espa.cr.usgs.gov/
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2015. The size of the study area and the different weather conditions captured on these images 

required that we analyse different days of the year (i.e. 25 April – 17 December 1995, and 8 June 

– 22 November 2015). High-quality images were few for 1995, so we included 22 images from 

1994 and four images from 1996. To avoid bias due to seasonal lake-level changes we selected, 

whenever possible, image pairs that were less than three months apart (Fig. 3.1); for most of the 

study area, we obtained 36 out of 47 pairs. We selected only images with negligible cloud cover 

(Fig. 3.1), and atmospheric and sun angle correction provided by the U.S. Geological Survey 

(http://espa.cr.usgs.gov/). We used top-of-atmosphere (TOA) reflectance bands instead of at-

sensor spectral radiance (SR) because the cosine effect of different solar zenith angles linked to 

different acquisition times was already removed (Chander et al., 2009). TOA reflectance 

compensates for different values of exoatmospheric solar irradiance arising from spectral band 

differences; TOA data also account for the varying distance between the Earth and the Sun 

(Chander et al., 2009). To distinguish frozen lakes from glaciers and mountain shadows, we used 

the SRTM DEM version 4 (Reuter et al., 2007; http://srtm.csi.cgiar.org/) as a supporting layer in 

the OBIA, generating a local slope map from the maximum elevation change between pixels in 

a 3 × 3 neighbourhood. 

3.4. Methods 

We developed an algorithm for mapping lakes with seasonal ice cover, combining a water index 

with digital elevation models using OBIA principles. Our algorithm is insensitive to the physical 

state of water and allows us to distinguish between frozen lakes and glaciers. We estimated the 

accuracy of our automatic classification for two time slice datasets for the Tibetan Plateau 

collected in 1995 and 2015 using a confusion matrix. Furthermore, we tested the transferability 

of our approach to areas with different environmental conditions. In addition, we verified changes 

in lake size and general trends over the last 20 years.  

An OBIA approach allows the classification of objects from images, by combining spectral 

properties of pixels and analysing the spatial relation between them. The principle in using this 

approach is to classify objects that are not uniform across a large area, and to reduce randomly 

distributed noise that occurs when using pixel-based classification algorithms. The first step in 

OBIA is segmentation, where pixels are merged into bigger homogenous objects. In the next step, 

it is possible to build assumptions based on segments’ spectral values. Here. algorithms defining 

their shape, geometry, spatial position, and connections to the neighbouring segments, are 

considered an advantage over other classifiers. In OBIA, it is also possible to combine layers of 

different types of data, such as satellite images and DEM, to extract objects of interest. We chose 

this approach because attempts to classifying water boundaries based on colour alone have had 

limited success. From the broad range of available normalised water indices, we selected the 

http://espa.cr.usgs.gov/
http://srtm.csi.cgiar.org/
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MNDWI (Xu, 2006), as it produces the smallest differences between water, snow, and ice, 

compared to other indices. This allowed us to more easily combine the ‘frozen’ and ‘non-frozen’ 

parts of a single lake together, while maintaining a stable threshold (Ji et al., 2009). We also 

tested the applicability and the performance of our OBIA workflow for three recently proposed 

non-normalised water indices: the automated water extraction indices AWEInsh and AWEIsh 

(Feyisa et al., 2014), and the water index WI (Fisher et al., 2016; Fig. 3.3). For each of these 

indices, water areas should have positive values, and all other surfaces should have negative 

values. Glaciers and mountain shadows also have positive values, however, making the 

classification of lakes in mountainous and glaciered areas like the Tibetan Plateau more difficult.  

 

Figure 3.3 | The modified normalised difference water index (MNDWI), water index (WI), automated 

water extraction index for areas without shadows (AWEInsh), and automated water extraction index for 

areas with shadows (AWEIsh) for selected lakes on the Tibetan Plateau, based on LANDSAT 5 (1995) 

and LANDSAT 8 (2015). For lake locations on the Plateau see Figure 3.1. 
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We generated mosaics from all images for 1995 and 2015 via the Mosaic to New Raster method 

available in ArcGIS 10.3 software. To speed up the OBIA process, we stretched the MNDWI, 

AWEI, and WI values into a 0 – 255 scale (Fig. 3.4.b), converting them to 8-bit unsigned integer 

rasters. We then used a multiresolution segmentation algorithm (Baatz and Schäpe, 2000; Fig. 

3.4.c) on the MNDWI, AWEI, and WI values. We segmented each index separately, but omitted 

information on local slope, as the underlying SRTM data were obtained in February 2000, and 

may thus have biased the segmentation. We also avoided automatic scale selection methods, such 

as scale-parameter estimation (Drǎguţ et al., 2010) or plateau objective functions (Martha et al., 

2011), as they turned out to be mostly redundant and time consuming. For example, applying the 

segmentation algorithm to a single LANDSAT image without automatic scale selection using an 

Intel Core i7-4600U processor with 16GB RAM memory took less than five minutes, whereas 

using scale-parameter estimation for the same task took more than one hour, partly because some 

of the segmentation process produced redundant data. The distribution of index values for water 

 

Figure 3.4 | Object-based workflow used for lake classification using eCognition software, and visual 

representation of individual steps in the classification; a) example of LANDSAT 8 input image; b) 

modified normalised difference water index (MNDWI); c) multiresolution segmentation of MNDWI; 

d) MNDWI thresholding; e) SRTM slope derived map; f) neighbourhood analysis of incorrectly 

classified segments; g) merging neighbouring segments assigned to the same class; h) final 

classification of lakes > 10 km². 
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bodies (Fig. 3.4.b) is more homogenous than those of other types of land cover (Li et al., 2011). 

The segments for water areas are therefore mostly larger and more compact than for the 

surrounding landscapes. The multiresolution segmentation algorithm uses three parameters – 

‘scale’, ‘shape’, and ‘compactness’ – which control segment size, roundness, and the degree of 

homogeneity of values inside the segments, respectively. The crucial point in our OBIA approach 

was to select an appropriate segment size so that it remained below the smallest lake to be 

analysed, while remaining large enough to warrant feasible computing times. We selected a scale 

of 100, shape of 0.1, and a compactness of 0.7 (Fig. 3.4.c, and 3.5), after running tests with 

different parameter combinations, and observing that high values of ‘shape’ and low values of 

‘compactness’ performed poorly in classifying water bodies. 

We then used the thresholding of the water indices to classify segments as either ‘water’ or ‘other’ 

(Fig. 3.4.d). Due to the different histogram ranges of MNDWI, AWEInsh, AWEIsh, and WI, we 

developed four individual workflows with different thresholds. First, we applied higher 

thresholds (MNDWI >180) to find areas clearly representing water, then incrementally lowered 

the thresholds (MNDWI >160) in an infinite loop, adding more neighbourhood assumptions 

regarding sharing the boundary with segments already classified as water (relative border to water 

>0.25) and with slopes ≤0.5°. The lowest threshold of MNDWI we applied was >150, with a 

stricter assumption regarding the segment borders; a threshold of >0.4 helped to assign additional 

water areas, especially those along lake shores or covered by cloud. To distinguish lakes from 

rivers, we further used the asymmetry of segments and their relation to neighbouring segments. 

We used the Asymmetry function in the eCognition 9.1 software, defined as the segment length 

relative to a regular polygon drawn around the segment; asymmetry can range from 0 to 1, with 

 

Figure 3.5 | Effects of model parameters ‘scale’, ‘shape’, and ‘compactness’ in the multiresolution 

segmentation algorithm applied to stretched (0 – 255) modified normalised difference water index 

(MNDWI) for 2015; all ‘scales’ are shown for fixed ‘shape’ = 0.1, and ‘compactness’ = 0.7. 
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higher values expressing more asymmetric segments. We found that rivers can be separated from 

lakes for an Asymmetry >0.85, a relative border to other water segments <0.15, and a boundary 

shared by a single water segment at the most. Many glaciers on the Tibetan Plateau have 

MNDWI, AWEI, and WI values similar to those of lakes, so that a pure OBIA-based 

classification based on a water index produced many misclassifications. We therefore used a local 

slope map generated from SRTM DEM as a supporting layer; as most glaciers occupy areas with 

slopes >2˚ (Fig. 3.4.e), we reclassified all segments accordingly. In a neighbourhood analysis, 

we corrected segments that were misclassified as glaciers (Fig. 3.4.f). We reclassified all 

segments from the glacier class with relative borders to water bodies and glaciers of >0.4 and 

≤0.1, respectively, as water. Accordingly, we reclassified water class segments with relative 

borders to glaciers and water bodies of ≥0.4 and <0.1, respectively, and with a mean slope >0.5°, 

as glaciers, merging neighbouring segments assigned to the same class (Fig. 3.4.g).  

To reduce errors arising from the resolution of satellite images and the DEM, we focused on lakes 

that were >10 km² in size in 2015 (see Section 3.5.1), and exported these as vector polygons for 

further quality assessment (Fig. 3.4.h). The whole procedure for automatic lake detection using 

an Intel Core i7-4600U processor with 16GB RAM memory took us ~15 min for each processed 

tile (we had 16 tiles in total), where each individual raster tile contained 12.156 columns and 

10.405 rows (~113,835 km²). We used the lake polygons to generate reference data, visually 

checking the accuracy of each single lake boundary based on natural colour mosaics, and 

manually improving the automatically-extracted lakes where necessary. Manual digitising of 

each lake was necessary because the lakes on the Tibetan Plateau change their size seasonally 

and in the long term, resulting in no available accurate reference data. We applied the same 

digitisation scheme and rules for all manually-generated lake polygons.  

We digitised the reference data by photographic interpretation of LANDSAT images in 2D in 

ArcMap 10.3 at scales between 1:5,000 and 1:20,000, depending on the complexity of the lake 

shores. We selected this scale range by taking into account the minimum mapping unit of our 

images, which was 30 × 30 meters. We also checked whether lakes were overlooked by the 

automatic classification or other objects were falsely assigned as lakes. Several lakes, had diffuse 

boundaries due to lake salinity, clouds, or mountain shadows, which hindered correct 

interpretation of images. In such cases, we used water index maps and images with higher 

resolution, available at ArcGIS online, as supporting layers to delineate the lake boundary. In 

total, we generated 323 reference lakes for each time slice. We used these reference data to 

estimate the accuracy of the classification (Table 3.2) in terms of type I error, type II error, total 

error (Sithole and Vosselman, 2004), overall accuracy, producer’s accuracy, user’s accuracy 

(Congalton, 1991), Cohen’s kappa (Cohen, 1960), and F-score measures. In addition, we 

estimated root mean square error, mean absolute error, and mean error (bias; Table 3.2). The 
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most significant measure is user’s accuracy, because it describes whether the automatically-

extracted lakes were captured in the reference data.  

3.5. Results 

Our classification of Tibetan lakes detected 323 lakes with areas of >10 km² in the study area in 

2015, with a total area of 31,258 km², or 2.6% of the study area. Twenty years earlier, the same 

lakes covered only 24,892 km², meaning that their total area grew by ~26% (see detailed data 

online at http://arcg.is/1r8Mj4a). 

3.5.1. Accuracy of extracted lakes 

We selected a minimum lake area of 10 km2, given the 30-m resolution of the satellite images 

and to minimise the influence of mixed pixels from low-resolution images. The proportion of 

mixed pixels to total lake pixels increases with decreasing lake area (Fig. 3.6). For lakes <10 km², 

this proportion is >0.2, whereas for lakes >50 km² it is <0.07. Estimating the accuracy of lakes 

with high percentages of mixed pixels may therefore misrepresent the accuracy of the method. 

We compared the classified lake boundaries with the manually-generated reference data and 

computed several performance metrics for the entire study area (Table 3.3). 

Our OBIA method for extracting lakes >10 km² had an overall accuracy of 0.99, and the 

producer’s and user’s accuracy, Cohen’s kappa, and the F-score for both time slices were >0.98 

Table 3.2 | Summary of performance metrics of the classification of lakes on the Tibetan Plateau. 

Performance metrics 

Type I error FP/(TP + FP) 

 

Type II error FN/(FN + TN) 

Total error (FP + FN)/(TP + FP + FN + TN) 

Overall accuracy (TP + TN)/(TP + FP + FN + TN) 

Producer’s accuracy TP/(TP + FP) 

User’s accuracy TP/(TP + FN) 

Cohen’s kappa (po−pe)/(1−pe) 

F-score 2TP/(2TP + FP + FN) 

Root mean square 

error 
√

1

N
∑ (xi − x̂i)

2
N

i=1
 

Mean absolute error 
1

N
∑ |xi − x̂i|

N

i=1
 

Bias (Mean error) 
1

N
∑ (xi − x̂i)

N

i=1
 

TP – true positive; FP – false positive; FN – false negative; TN – true negative; po – relative observed 

agreement among rates; pe – hypothetical probability of chance agreement; xi – predicted value; x̂i – observed 

value; N – number of observations. 

 

http://arcg.is/1r8Mj4a
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when using the MNDWI (Table 3.3). The performance with AWEInsh, AWEIsh and WI was 

slightly lower, albeit >0.94, with the exception of the user’s accuracy for WI ~0.92. The accuracy 

in classifying lakes with respect to their physical states of water (frozen, partly frozen, and 

unfrozen) was similar. All lakes, irrespective of ice cover, were detected with very high 

producer’s accuracy (Fig. 3.7). The MNWDI achieved the highest accuracy and the lowest root 

mean square error, mean absolute error, and mean error; we checked the performance of 

standalone water indices in extracting lakes >10 km² (Fig. 3.8), and found that the area under the 

curve (AUC) of MNWDI exceeded those of the AWEI and WI indices. 

 

Figure 3.6 | Proportion of mixed pixels versus lake size; MP is the ratio of mixed pixels; A is the lake 

area in km². 

 
Table 3.3 | Performance metrics for OBIA-based extraction of lakes on the Tibetan Plateau with 

MNDWI, WI, AWEInsh, and AWEIsh for 1995 and 2015. 

Perform

ance 

metric 

1995 2015 

MNDWI WI AWEInsh AWEIsh MNDWI WI AWEInsh AWEIsh 

Type I 0.0134 0.0089 0.0234 0.0140 0.0169 0.0081 0.0337 0.0143 

Type II 0.0003 0.0016 0.0005 0.0022 0.0005 0.0018 0.0007 0.0016 

Total 0.0006 0.0018 0.0010 0.0024 0.0010 0.0020 0.0016 0.0020 

O. Acc. 0.9994 0.9982 0.9990 0.9976 0.9990 0.9980 0.9984 0.9980 

P. Acc. 0.9866 0.9911 0.9766 0.9860 0.9831 0.9919 0.9663 0.9857 

U. Acc. 0.9850 0.9292 0.9778 0.9073 0.9808 0.9376 0.9732 0.9428 

Kappa 0.9855 0.9583 0.9767 0.9438 0.9815 0.9630 0.9690 0.9628 

F-score 0.9858 0.9592 0.9772 0.9450 0.9819 0.9640 0.9698 0.9638 

RMSE 0.0244 0.0420 0.0309 0.0490 0.0309 0.0442 0.0398 0.0442 

MAE 0.0005 0.0018 0.0010 0.0024 0.0010 0.0020 0.0016 0.0020 

ME −0.0003 −0.0014 0.0003 −0.0018 −0.0001 −0.0015 0.0002 −0.0012 

Type I error (Type I); Type II error (Type II); Total error (Total); Overall accuracy (O. Acc.); Producer’s 

accuracy (P. Acc.); User’s accuracy (U. Acc.); Cohen’s kappa (Kappa); Root mean square error (RMSE); 

Mean absolute error (MAE); Mean error (ME). 

 



Chapter 3 | Lakes  49 
   

 

Visual cross checks revealed that using the AWEIsh in our OBIA approach misclassified many 

land areas as lakes, especially by falsely assigning border segments adjacent to lakes (Fig. 3.9, 

Table 3.3). The AWEInsh appeared to be the least useful for selecting thresholds between water 

and non-water pixels (Fig. 3.9). Histograms showed that the zero threshold was more reliable to 

use on MNDWI than any other water index. Most misclassified areas were along the border of 

lakes, particularly irregular shorelines; river deltas were also often represented by single 

segments in our method. Clouds also caused some misclassification of lakes (Fig. 3.9), whereas 

glaciers were a lesser problem. In some cases, small islands in the lakes were also misclassified. 

We note that seasonal lake ice had little influence on our data; however, with our OBIA approach, 

lakes were mostly classified correctly regardless. We studied Siling Co, in detail, which is the 

largest lake in our study area (though not on the entire Tibetan Plateau). We selected additional 

images for the two time slices, covering more seasonal variations in lake ice and snow cover on 

shorelines. To this end, we used the OBIA classification with the MNDWI without changing any 

 

Figure 3.7 | Box-and-whisker plots of the estimated producer’s accuracy in classifying lakes on the 

Tibetan Plateau with respect to their ice cover, using one of four different water indices. 

 

 

Figure 3.8 | Receiver operating characteristics (ROC) with area under the curve (AUC) for estimating 

the performance in classifying lakes on the Tibetan Plateau using different water indices. 
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Figure 3.9 | Estimated accuracy of OBIA classification of lakes on the Tibetan Plateau using different 

water indices: MNDWI, WI, AWEInsh, and AWEIsh; TP is the true positive rate; FP is the false positive 

rate; FN is the false negative rate; and TN is the true negative rate. 

 

Figure 3.10 | Results from OBIA classification of Siling Co (see inset for location on the Tibetan 

Plateau) with different degrees of seasonal ice cover. 
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parameter in the workflow. We found our method to be robust throughout and capable of 

detecting lakes with high accuracy (Fig. 3.10). Misclassification occurred only in an image 

obtained on 2 December 1994, in which shores were covered by snow, violating the assumptions 

of our OBIA approach designed exclusively for snow-free images. 

3.5.2. Sources of error in the analyses 

Although our classification has very high accuracy, we have highlighted several sources of error 

unrelated to the algorithm, but nevertheless influencing our classification. The first source of 

error arose from splitting the data into smaller tiles. To make our analysis feasible, we had to 

separate the study area into 16 square tiles with two pixels of overlap between neighbouring tiles. 

This led to misclassifying small parts of lakes along the borders of the tiles.  

Another source of error concerned reference data that solely relied on LANDSAT images. The 

30-m resolution of images made it difficult to delineate some of the blurrier lake images. The 

roundness of the lakes also played a role, as rounded shapes with a lower perimeter-area ratio are 

easier to digitise. This ratio translated into the number of pixels along lake borders for which 

correct classification was difficult. Another important point is that manually-generated reference 

data are always prone to operator bias, as different people are likely to map the same lakes with 

minor differences. Such differences may produce fake changes in lake areas, and therefore we 

treated any lake-area changes of <1km² as potentially suspicious. 

3.5.3. Lake-area changes (1995 – 2015) 

Our analysis showed that the total area of lakes >10 km² on the Tibetan Plateau increased by 

6,366 km². Out of 323 lakes, 25 increased their area by >50 km², eleven lakes grew by >100 km², 

and one lake by >500 km². These changes were not evenly spread throughout the study area. The 

highest relative increase occurred in the northern part of the Tibetan Plateau, where most lakes 

are concentrated (Fig. 3.11); these grew mostly by between 100% and 200%, and up to 50 km² 

in absolute area (Fig. 3.11). The highest increase in total lake area (2,404 km²) occurred in 

internal basin ‘6’ on the northeastern part of the plateau, where 108 lakes were detected (Fig. 

3.11). In basin ‘5’, which has a similar number of lakes (112), the total lake area increased by 

1,037 km². Most lakes that underwent moderate changes (<10 km²) are in the southwestern 

Tibetan Plateau, mainly along the Himalayas and adjacent mountain belts (see detailed data 

online at https://uni-potsdam.maps.arcgis.com/apps/webappviewer/index.html?id=3595915b0af 

244c89750823133a9e165). Between 1995 and 2015, eighteen new lakes >1 km² formed mostly 

in the northeastern part of the plateau, at elevations between 4,700 and 5,000 m a.s.l., slightly 

below the most dominant elevation (Fig. 3.11). This narrow elevation band also featured the 

greatest increase in lake size, whereas most lakes with lesser changes lie at lower elevation. We 

https://uni-potsdam.maps.arcgis.com/apps/webappviewer/index.html?id=3595915b0af244c89750823133a9e165
https://uni-potsdam.maps.arcgis.com/apps/webappviewer/index.html?id=3595915b0af244c89750823133a9e165
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notice a weak correlation of lake growth with incoming solar radiation, especially for basins ‘7’ 

and ‘8’ (Fig. 3.11).  

 

Figure 3.11 | General trends in lake-area changes and the ratio of changes between 1995 and 2015 on 

the Tibetan Plateau; * lakes with ratio > 5 are set to 5.1 for better legibility. 
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3.5.4. Transferability of OBIA approach 

We tested the global transferability of our method for extracting lakes with the MNDWI, as this 

index achieved the highest accuracy. We selected six LANDSAT 8 images capturing areas with 

numerous lakes on five continents, representing environments greatly different to that of the 

Tibetan Plateau (Fig. 3.12, Table 3.4).  

We maintained our OBIA workflow for these selected areas without changing any parameters, 

and found that nearly all classified test areas yielded overall, producer’s, and user’s accuracies of 

>0.95, with a Cohen’s kappa and F-score of >0.96, with low root mean square errors, mean 

absolute errors, and mean errors (Table 3.5). For one test area, the lakes in Lago Cochrane 

National Reserve, Chile, the performance metrics were much lower, mainly because the 

 

Figure 3.12 | Transferability and accuracy assessment of OBIA method for extracting lakes in areas 

other than the Tibetan Plateau; TP is the true positive rate; FP is the false positive rate; FN is the false 

negative rate; and TN is the true negative rate. 
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algorithm misclassified a single large river delta (Fig. 3.12b). Visual checks indicated that flat 

and hilly regions allow for better delineation of lake boundaries than high mountains. Shadows 

were correctly distinguished from lakes; however, where shadows overlapped with lakes, 

misclassifications arose. Small and thin clouds were usually correctly distinguished from lakes 

(Fig. 3.12f); however, thicker clouds increased misclassification (Fig. 3.9). Overall, our method 

performed well for nearly all landscape types, including low-gradient environments without 

glaciers (Fig. 3.12a) and alpine environment with glaciers (Fig. 3.12d, Table 3.5). 

3.6. Discussion 

In the second part of the 20th century, 82% of the Tibetan Plateau glaciers retreated; if this trend 

continues, two-thirds of the current Tibetan Plateau glaciers could be gone in the coming 

centuries (Qiu, 2008). Changes in evaporation may significantly increase this trend, supplying 

water to lakes and enhancing their growth. Systematically monitoring lake areas therefore 

supports estimates of the rates of change. Our comparative analysis confirms previous findings 

Table 3.4 | Characteristics of test sites across the world used to verify the transferability of our OBIA 

method for lake classification (see Figure 3.12 for locations). 

TS 
Continent  

(Country) 
Landscape Type Extracted Lakes Date TA 

a 
North America  

(USA) 
Flat area 

Leech Lake, etc. in Cass 

County, Minnesota 
29.09.2015 2,156.28 

b 
South America  

(Chile/Argentina) 
Mountains 

Lakes in Lago Cochrane 

National Reserve 
01.04.2014 1,518.87 

c 

Africa  

(Democratic Republic 

of the Congo) 

Flat forested area Mai-Ndombe Lake, etc. 12.01.2016 2,812.52 

d 

Europe  

(Germany/Switzerlan

d/Austria) 

Mountains with 

glaciers 
Constance Lake, etc. 22.05.2016 802.76 

e 
Europe  

(Sweden) 

Lakeland—flat 

postglacial area 

Vänern and Vättern Lakes, 

etc. 
09.05.2016 5,848.82 

f 
Australia  

(New Zealand) 
Hilly region Lakes in Mackenzie Basin 17.03.2016 1,696.70 

TS (test site); Date (Image acquisition date [day.month.year]); TA (Total area [km²] of lakes >10 km² on image). 

 

Table 3.5 | Performance metrics for OBIA-based lake extraction using MNDWI for lakes in different 

test areas across the world (see Figure 3.12 for locations). 

Performance 

Metrics 

Test Area 

a b c d e f 

Type I error 0.0022 0.0216 0.0021 0.0050 0.0025 0.0471 

Type II error 0.0004 0.0120 0.0014 0.0001 0.0012 0.0005 

Total error 0.0005 0.0124 0.0014 0.0002 0.0014 0.0027 

Overall accuracy 0.9995 0.9876 0.9986 0.9998 0.9986 0.9973 

Producer’s accuracy 0.9978 0.9784 0.9979 0.9950 0.9975 0.9529 

User’s accuracy 0.9940 0.7825 0.9835 0.9948 0.9939 0.9899 

Cohen’s kappa 0.9956 0.8631 0.9898 0.9948 0.9949 0.9697 

F-score 0.9959 0.8695 0.9906 0.9949 0.9957 0.9711 

Root mean square error 0.0220 0.1113 0.0381 0.0149 0.0369 0.0515 

Mean absolute error 0.0005 0.0124 0.0014 0.0002 0.0014 0.0027 

Mean error −0.0002 −0.0106 −0.0011 −0.0001 −0.0006 0.0017 
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that have reported that expanding lakes are not spread uniformly across the Tibetan Plateau (Song 

et al., 2013; Song et al., 2014b; Fang et al., 2016), but are instead focused in the northeastern part 

of the Plateau. Compared to the distribution of glaciers (Fig. 3.1), we found that lakes grew by 

the smallest amount where glaciers in the Himalayan Mountains Range are most numerous. This 

may be due to the temperature increase, which may promote stronger evaporation (Wang et al., 

2013). 

Accurate automated mapping of lake boundaries may aid regional studies of the hydrological 

balance of tens to thousands of lakes. Our OBIA based approach provides a tool that allows, in a 

short time and an easy way, to delineate the shorelines of large lakes, thus assisting the monitoring 

of regional changes in lake size, both seasonal and in the long term. The performance of our 

automatic classification tested on the Tibetan Plateau is surprisingly high. Tests of our method 

on lakes in other environments, without changing any parameters, were similarly successful, and 

most lakes were correctly detected with only minor misclassification at the boundaries of lakes, 

especially where shorelines were complex. This high accuracy largely draws from using a water 

index in an OBIA context. The water index we used, the MNDWI, is generally highly accurate; 

however, misclassifying glaciers, shadows, and clouds, as well as its varying threshold for 

separating ‘water’ from other land-cover types—which should be around zero value—makes it 

difficult to transfer the method to areas outside of the training area. We implemented water index 

thresholding in the OBIA using few thresholds, which more correctly detected the lakes’ 

boundaries than did single thresholding. Applying neighbourhood assumptions for every segment 

allowed us to distinguish lakes from other objects falsely assigned by the water index. By using 

a multiresolution segmentation algorithm, we reduced unwanted salt-and-pepper noise that is a 

characteristic of simple water index thresholding. The OBIA rule set relied on relations between 

the segments and their spatial location, allowing us to more realistically separate lakes from other 

objects with similar water index values. The OBIA protocol found segments that were incorrectly 

classified by the MNDWI thresholding due to their low values caused by clouds above the lakes, 

MNDWI values that were too low, or shadows, and subsequently re-classified them as lakes. The 

topographic slope information excludes glaciers and other falsely included objects. Although our 

method is designed for lakes >10 km², it is capable of extracting numerous smaller lakes 

accurately; however, we omitted some small lakes (<1 km²) owing to the choice of ‘scale’ 

parameter. For detecting lakes <10 km² more correctly, we recommend decreasing the ‘size’ of 

segments. The smallest correctly-identified lake for the 1995 images had an area of 0.0135 km² 

(15 pixels). The correctness of its predicted boundaries is difficult to check, however, given the 

30-m data resolution. 

Mixed pixels along lake shores remain a major challenge for classification. We have shown that 

they can form a large proportion of the classified lake area, especially for small lakes and low-
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resolution images, thus increasing the cost of classifying them compared to large lakes. We 

suggest that this proportion should not exceed 10% of the area of the smallest object of interest. 

This is why we focused only on lakes >10 km², as for most of these lakes the mixed pixels ratio 

was <10% (Fig. 3.6). 

We found that MNDWI accurately indicated of water areas, detecting nearly all lakes in our study 

area. Compared to several other water indices, the MNDWI ROC curve indicated the best 

performance in detecting lakes >10 km²; additionally its derivation is physically more intuitive 

than those for the WI and AWEI. In computing the MNDWI, one may neglect erroneous pixels 

in the input bands, because for such errors the absolute value of MNDWI will be >1, thus enabling 

fast and easy quality checks. For computing the AWEI and WI, this issue remained pending; 

therefore, one must check all input bands carefully and exclude erroneous values from the bands 

separately. The MNWDI is a normalised metric, and therefore it is easier to manipulate, contrast, 

and stretch the data as desired, while the range of values remains the same with respect to SR or 

TOA data, making it possible to use the same threshold independently of the input data. 

Combining optical images with elevation models enabled us to build more sophisticated 

assumptions in OBIA and separate lakes from glaciers, which have similar spectral properties on 

LANDSAT images. A slope map derived from DEM gives adequate information on the 

differences between these two landforms. Lakes have a slope of approximately zero, whereas the 

slope for glaciers is mostly larger. Although the slope of some lake shores may be similar to that 

of glaciers, the use of common boundaries with other flatter lake segments promotes a correct 

assignment to the lake class. In very steep terrain, lake-shore pixels can have spuriously high 

slopes as an artefact of including nearby hillslopes. Using a more accurate DEM may allow us to 

achieve better results, especially if the DEM data were gathered shortly before or after the time 

slice of interest. We used a DEM from 2000 to analyse lakes in 1995 and 2015, so that five and 

15 years of geomorphic change could have affected our elevation data. LANDSAT images are 

available for the entire globe; however, SRTM data are only available between 56° S and 60° N. 

The lack of more digital topographic data for areas with higher altitude therefore curtails our 

method, particularly in Arctic regions featuring thousands of glacial and periglacial lakes. In such 

cases, however, a new global 0.4 arc second (~12m) DEM gathered by the TerraSAR-X-Add-on 

for Digital Elevation Measurements (TanDEM-X) mission (https://tandemx-science.dlr.de/) may 

open new doors. 

We also recall that, in snow-covered areas, the multiresolution segmentation algorithm is unable 

to properly delineate lake boundaries using a water index, so we recommend using our method 

only for images without snow cover. Using a metric of the spread of water-index values, such as 

their standard deviation, may help to distinguish water from snow. Similarly, clouds remain an 
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issue in detecting lake boundaries. The fraction of cloud cover provided with LANDSAT images 

may be insufficient because even an image with low cloud cover may introduce classification 

errors, where clouds obscuring parts of lakes can be crucial. Visual checks of images remain 

indispensable. We recommend tools such as the LAND Viewer (http://lv.eosda.com), which 

enables verification of the RGB and different band compositions of LANDSAT-8 and 

SENTINEL-2 images in relation to date, percentage of cloud, and sun angle in detail before 

downloading. 

Our method fills in a gap in classifying lakes prone to seasonal ice cover, as such lakes are 

notoriously difficult to detect automatically. Our automatic and fast classification allows the 

mapping of water bodies, irrespective of landscape type, with an accuracy similar to those of 

previous approaches (Verpoorter et al., 2012; Jiang et al., 2014; Jawak and Luis, 2014). The 

added value of our algorithm is that it detects lakes regardless of whether they are partly or 

completely frozen. We therefore believe that our OBIA algorithm has great potential for tracking 

in detail not only long-term changes, but also seasonal variations in lake areas, especially given 

the increasing access to free high-resolution satellite images, such as those from the SENTINEL 

sensor, which revisits a given area every five days. 

3.7. Conclusions 

We have proposed an approach for automatically detecting large lakes prone to seasonal ice 

cover. We developed our method for the Tibetan Plateau, where such ice cover and surrounding 

glaciers make the use of various remote-sensing-based water indices problematic. Our method is 

insensitive in this regard and distinguishes with high estimated accuracy between lakes, glaciers, 

and shadows, giving the opportunity to track annual and seasonal changes of mountain lakes, 

especially those surrounded by many glaciers. Our approach combines a satellite-image-derived 

water index, OBIA, and a DEM-derived slope map to automatically extract lakes. The method 

can be applied in areas where acquiring images in ice-free seasons is difficult. Testing of our 

method on LANDSAT images for two time slices (1995 and 2015) showed that lakes on the 

Tibetan Plateau grew ~26% in total, and that the changes were not evenly spread through the 

whole tested area. The largest increase occurred in the northeast, whereas the southwestern 

Tibetan Plateau saw the largest decrease. Further tests of our method in areas abundant in lakes 

throughout the world showed that our approach may be general and flexible enough for regional, 

if not global, monitoring of lake changes. 
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Abstract 

Snow avalanches are destructive natural hazards in mountain regions that continue to claim lives, 

and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote 

and poorly-accessible steep terrain, their detection and mapping is extensive and time consuming. 

Nonetheless, systematic avalanche detection over large areas could help to generate more 

complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting 

and hazard mapping. In this study, we have focused on automatically detecting avalanches and 

classifying them into release zones, tracks, and runout zones based on 0.25-m near-infrared (NIR) 

ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our 

algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), 

and the normalised difference water index (NDWI) and its standard deviation (SDNDWI) in order 

to distinguish avalanches from other land-surface elements. Using normalised parameters allows 

readily applying this method across large areas. We trained the method by analysing the 

properties of snow avalanches at three 4-km² areas near Davos, Switzerland. We compared the 

results with manually-mapped avalanche polygons, and obtained a user’s accuracy of >0.9 and a 

Cohen’s kappa of 0.79 – 0.85. Testing the method for a larger area of 226.3 km², we estimated 

producer’s and user’s accuracies of 0.61 and 0.78, respectively, with a Cohen’s kappa of 0.67. 

Detected avalanches that overlapped with reference data by >80% occurred randomly throughout 

the testing area, showing that our method avoids overfitting. Our method shows potential in large-

scale avalanche mapping, although further investigations into other regions are desirable to verify 

the stability of our selected thresholds and the transferability of the method. 
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4.1. Introduction 

Snow avalanches are frequent and destructive mountain hazards, particularly during the winter 

and spring months. They are fast mass movements controlled by weather conditions, snowpack, 

and the topography of the terrain (Schweizer et al., 2003; Castebrunet et al., 2012). Avalanches 

can cause loss of lives, disrupt infrastructure, and affect buildings (Bründl et al., 2004; McClung 

and Schaerer, 2006; Eckerstorfer and Malnes, 2015).  

Despite numerous efforts aimed at reducing the risk posed by avalanches, most fatalities in 

Europe occur during sporting activities, caused by avalanches triggered by the victims themselves 

(Techel et al., 2015). Past research indicates that poor decision-making and forecasting are the 

main causes of deadly avalanche accidents (Techel et al., 2015; McClung, 2016). Techel et al. 

(2015) stated that most destructive events occur on days when the snow avalanche risk is very 

critical and the snowpack layer is weak. In total, 4,750 people lost their lives in the European 

Alps between 1970 and 2015 (Techel et al., 2016); in the past two decades, avalanches in the 

Swiss Alps alone have killed 461 people (Fig. 4.1). Most fatal accidents have occurred in the 

cantons of Valais and Grison, which are the two largest in Switzerland and contain some of the 

highest areas in the Swiss Alps. Since 1946, avalanches in Switzerland have had the highest share 

of victims (37%) in comparison to other natural hazards, including lightning (16%), floods 

(12%), windstorms (10%), rockfalls (8%), and landslides (7%; Badoux et al., 2016).  

 

Figure 4.1 | Snow avalanche accidents with victims in Switzerland in the winters of 1996/97 to 

2015/16, and the Alps percentage per country. Data from: Swiss Federal Institute for Snow and 

Avalanche Research (WSL-SLF), Davos, Switzerland. 



Chapter 4 | Snow avalanches  61 
   

 

Avalanches killed a total of 36 people in Switzerland in the fatal winter of 1998/99 (Fig. 4.1). 

Between 27 January and 25 February, 17 people died in villages and on roads, and material losses 

surpassed 600 million Swiss Francs. This catastrophic winter spurred an initiative aimed at 

improving avalanche safety and reducing concomitant losses (Wilhelm et al., 1999; Bründl et al., 

2004). This initiative included establishing an information system for exchanging data between 

the WSL Institute for Snow and Avalanche Research SLF and local authorities; the development 

of hazard maps showing zones with high avalanche susceptibility (Bründl et al., 2004); and an 

increase in the artificial release of avalanches to decrease hazard levels. In this context, the need 

for documenting avalanches also increased, to allow for learning from past accidents. 

This initiative showed clearly that regional-scale mapping of avalanches and identifying potential 

release zones is not only desirable, but also essential for producing avalanche cadastre maps to 

be used for quality-checking hazard mapping and forecasting (Bühler et al., 2015). To date, 

experts (Bühler et al., 2009) map most avalanches manually, focussing mainly on geographic 

coordinates, but rarely on any detailed information about their extent or area. Moreover, 

avalanche inventories are biased toward damaging events or those reported from accessible 

terrain. Hence, avalanches remain notoriously underreported over larger regions. To more 

broadly collect information concerning avalanches, non-expert observers in Switzerland are now 

able to report sightings via an app (http://www.slf.ch/lawinenbulletin/rueckmeldung/index_EN), 

where they can enter the location and date of their observation. Optical remote sensing data, both 

airborne and satellite, offer coverage that is more systematic, and are therefore increasingly used 

to track avalanches. Satellite images allow the collection of a picture for the same area with a 

time interval equal to one satellite orbit around the Earth. Airborne images can be acquired even 

more often, although in the winter season it is not preferable to continue the campaign due to 

financial aspects, because such images, which represent mostly only snow, are not convenient 

for any purposes other than the assessment of the risk of snow avalanches. 

Automatic methods for detecting snow avalanches are still in the developing stage (Eckerstorfer 

et al., 2016), and different kinds of data, such as optical and radar images, and classification 

approaches are used to verify their suitability to track avalanche events. This motivated us to 

verify the usability of near infrared (NIR) aerial images and their calculated derivatives, in 

mapping avalanches over a large area in Switzerland, as well as verifying the topographic 

conditions of their occurrence. We have proposed an automatic OBIA-based method for detecting 

avalanche runout zones, as well as their tracks and release areas. We tested whether normalised 

indices of water and vegetation derived from aerial ADS80-SH92 images are suitable in this 

regard, and introduced a simple method for roughly distinguishing these zones, because 

knowledge concerning potential release zones critically aids in hazard assessments and runout 

models. Our motivation was to develop an algorithm widely applicable to mountain regions, as 

http://www.slf.ch/lawinenbulletin/rueckmeldung/index_EN
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relying on image spectral properties alone (Lato et al., 2012) may limit such portability, because 

objects may have a similar brightness to that of snow.  

Most avalanches start on slopes with a median inclination of 39° (Schweizer and Jamieson, 

2001), hence on slopes most difficult for skiing. We distinguish two types of avalanche: loose 

avalanches start from a point and gradually increase in size as they move downslope, whereas 

slab avalanches involve the detachment of large planar packs of snow (Fig. 4.2; Schweizer et al., 

2003; Bagli and Schweizer, 2009). Path length defines whether an avalanche is small (10 – 100 

m), medium (100 – 1,000 m), or large (>1,000 m; Eckerstorfer et al., 2016). Most large 

avalanches, such as that shown in Figure 4.2, are slab avalanches because to bring down a large 

amount of snow, planar snow detachment is necessary; however, new smaller loose snow 

avalanches may occur and overlap with the previous one, thus complicating their detection in the 

field. In terms of avalanche deposit area, we distinguish between large deposits (>2,000 m²), 

small deposits (100 – 2,000 m²), and very small deposits (<100 m²; Bühler et al., 2009). Every 

avalanche has a release zone – a part where the avalanche is triggered, a track, a part where the 

snow is transported down the slope – and a runout, or deposition, zone (Fig. 4.2). 

4.2. Previous work 

Most previous work devoted to mapping avalanches from optical remote sensing data has focused 

on delineating runout zones. The idea of using object-based image analysis (OBIA) for detecting 

avalanches has been used in conjunction with brightness information from aerial images and local 

slope data taken from digital elevation models (DEM), and with numerical modelling (Bühler et 

 

Figure 4.2 | a) Types of avalanche release: slab avalanches and loose avalanches, with marked 

avalanche body parts (crown, bed surface, stauchwall, deposition zone, and right and left flanks; 

Schweizer et al., 2003); b) Avalanche classification with respect to length: small, middle, and large 

[m], with the avalanche area [m²] and marked parts of avalanches: release zone, track, and runout zone. 

Data from: WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland. 



Chapter 4 | Snow avalanches  63 
   

 

al., 2009), whereas others have used only the spectral information of aerial and satellite images 

to detect snow avalanches (Lato et al., 2012). Bühler et al. (2009) proposed an approach for 

mapping snow-avalanche deposits from ADS40 20-cm aerial images, which they resampled to 1 

m and then combined with 25-m elevation data. They used the numerical simulation tool 

RAMMS (Rapid Mass Movement Simulation; Christen et al., 2010) to exclude slopes >35° from 

the runout calculation, as they assumed these slopes could not accumulate snow-avalanche 

debris. They also used spectral thresholds to exclude snow-free areas. To separate rough 

avalanche debris from surrounding smooth and undisturbed snow, they used the normalised 

difference angle index (NDAI), evaluated from nadir and backwards NIR bands. They computed 

the NDAI difference between neighbouring pixels with a grey-level co-occurrence matrix 

(GLCM), which represents the distribution of pixel values at a given offset, and found that the 

thresholding of an entropy measure evaluated via the GLCM achieved the best separability of 

rough and smooth snow. Ski lifts and other objects characterised by a similar entropy were 

removed using OBIA. The estimated accuracy of this method in terms of the fraction of correctly-

detected avalanche deposits was 94%, and the producer’s accuracy was 87%. Lato et al. (2012) 

applied OBIA for detecting avalanche deposits from panchromatic images only. They tested their 

algorithm with Quick Bird images in Norway, and aerial ADS40 images in Switzerland, relying 

on six variables (i.e. GLCM entropy, GLCM dissimilarity, brightness, contrast, similarity, and 

neighbour distance) in their procedure, in which segments failing to meet the OBIA assumptions 

were sequentially discarded. They started by eliminating dark regions from brightness data before 

detecting rough snow with edge contrast. The similarity filter and density helped to remove 

isolated pixels and small objects, respectively. Finally, the neighbour distance helped to fill gaps 

inside the extracted snow-avalanche deposits. The user’s and producer’s accuracies of this 

classification were both >90%. Both these studies (Bühler et al., 2009; Lato et al., 2012) regarded 

OBIA as suitable for detecting snow-avalanche deposits, because it considers the spatial relation 

of the analysed segments in addition to their spectral properties. 

Larsen et al. (2013) suggested an approach for optical Quick Bird imagery using directional filters 

evaluated based on image texture classification (Varma and Zisserman, 2004) to distinguish 

avalanches from another objects. They assumed that avalanches have a texture pattern with a 

linear structure on the snow that coincides with the local hillslope aspect. Similar to other 

strategies, their classification took into account neighbouring pixels, while parameters such as 

area, area perimeter ratio, aspect direction difference, co-occurrence mean, correlation, and 

entropy were used to assist in excluding misclassified instances. Based on a visual comparison, 

the authors concluded that their classification was acceptable, allowing the detection of many 

fresh avalanches with a low number of false alarms (Larsen et al., 2013). They pointed out, 
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however, that some of the detected avalanches were split into parts; they therefore recommended 

additional processing to re-connect those fragments. 

Eckerstorfer and Malnes (2015) manually detected avalanche debris based on its higher 

backscatter contrast, compared to the surrounding undisturbed snow cover, in Radarsat-2 

Ultrafine SAR imagery. They assumed that avalanches are tongue-shaped features with high 

surface roughness and higher snow density than surrounding terrain. Surface roughness and snow 

density were determined from backscatter, which increased in cases of higher surface roughness, 

and absorption, which increased for denser snow, respectively. They found that release zones and 

tracks were mostly difficult to detect. In a similar context, the automatic method of Vickers et al. 

(2016) evaluates backscatter in 50 × 50 pixel regions of Sentinel-1A images, subsequently 

masking out areas with a predicted probability of snow-avalanche occurrence of zero; pixels with 

a DEM-derived local slope of >35° were removed from the occurrence of avalanches. From the 

test pixels, they selected those with a backscatter difference above a specified threshold. 

Randomly-selected pairs of pixels gave a total dissimilarity of pixels and class representatives 

for a K-mean clustering with two classes, ‘avalanche’ or ‘not avalanche’. The detection rate 

(producer’s accuracy) of this algorithm was 60%, and the authors highlighted its potential for 

avalanche monitoring despite masking out large amounts of data. Finally, Bühler et al. (2016) 

tested an unmanned aerial vehicle (UAV) that allows for fast, repeatable, flexible, and cost-

efficient measurements of snow depths in alpine terrain, possibly generating digital surface 

models of homogenous snow surfaces (Bühler et al., 2017). Legal regulations in Switzerland and 

elsewhere currently limit broad coverage of UAV imagery, however. 

4.3. Study area and data 

Our study area is centred around Davos, in the Swiss canton of Grisons; the area has alpine relief, 

with the highest local peak at Schwarzhorn (3,146 m a.s.l.; Fig. 4.3). Many slopes in this area 

exceed 28° and have dominant northeastern and southwestern aspects (Fig. 4.3). We used 0.25-

m resolution NIR aerial images in conjunction with abundant avalanche information acquired via 

a ADS80-SH92 large-format Digital Pushbroom Sensor (Leica Geosystems AG, Heerbrugg, 

Switzerland; Bühler et al., 2009) at the end of the 2012/13 winter season. The sensor recorded 

information with five spectral bands: panchromatic, blue, green, red, and NIR (Bühler et al., 

2009). We have data for the area for more than five time slices starting from the winter of 2007/08 

and continuing from 2011/12 to 2015/16. The images we used were taken at the end of the winter 

of 2012/13, where the highest expected snow depths were between 2,000 and 3,000 m a.s.l., and 

covered ~226 km². 
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4.4. Methods 

We have introduced an automatic method for mapping release zones, tracks, and runout zones of 

avalanches using NIR 0.25-m aerial images. We compared the automatic classification with 

manually-digitised reference data and assessed the accuracy of detecting snow avalanches using 

confusion matrices. Furthermore, we verified the topographical conditions on which most 

mapped avalanches occurred and verified two approaches for visualising the avalanche density. 

In addition, we proposed a probability approach to representing release and runout zones of 

avalanches and the automatic classification of snow avalanche parts. 

4.4.1. Automatic OBIA snow avalanche classification 

We implemented a multi-step OBIA approach for detecting avalanches in eCognition Developer 

9.1.1 software (Fig. 4.4). As input for the classification, we used the green, red, and NIR bands, 

and computed from these the normalised difference vegetation index (NDVI = ρNIR – ρRed / ρNIR 

+ ρRed; Townshend and Justice, 1986), and the normalised difference water index (NDWI = ρGreen 

– ρNIR / ρGreen + ρNIR; McFeeters, 1996) and its standard deviation in a 5 × 5 kernel (SDNDWI). We 

derived brightness as the mean of the green, red, and NIR bands to classify ‘dark objects’, such 

as rivers, rocks, and buildings. The NDVI helped to classify trees, bushes, and other types of 

 

Figure 4.3 | Topographic setting of research area and ADS 80 NIR aerial images with test sites (1 – 3) 

and digitally mapped snow avalanches. Inset histograms show a) the main slope aspect and b) 

distribution of local slope. 
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vegetation, whereas the NDWI (SDNDWI) detected snow (rough snow; Fig. 4.4). We stretched 

computed NDVI and NDWI data into an interval of [0, 255].  

4.4.1.1. Classifying vegetation, dark objects, and snow 

In our first step, we segmented the data using a chessboard segmentation algorithm in eCognition 

9.1.1 software, assigning a standalone segment to each single pixel (Fig. 4.4). We used the pixel 

values of snow-free areas obtained from NDVI and brightness to classify ‘vegetation’ and ‘dark 

objects’. We classified vegetation as having positive NDVI values (corresponding to >127 in the 

stretched range), and dark objects as those with a brightness of <4,000 (Fig. 4.4). Because pixels 

on the border of vegetation and dark objects have mixed values, we assigned them to a separate 

‘buffer’ class by reclassifying every pixel that shared a border with either ‘vegetation’ or ‘dark 

objects’ (existence of ‘vegetation’ or existence of ‘dark objects’; Fig. 4.4), and then excluded this 

‘buffer’ class from further analysis. We merged all segments classified as ‘vegetation’ and ‘dark 

objects’ and assigned all segment areas <6.25 m² (<100 pixels; Fig. 4.4) as being too small to 

buffer or divert an avalanche, and included these segments as potential areas where a snow 

avalanche could occur. All the size thresholds used in our OBIA workflow were set to the 

resolution of the data that were used and the size of the analysed avalanches. Similarly, we 

 

Figure 4.4 | Workflow for classifying snow avalanches with object-based image analysis (OBIA). The 

white boxes indicate the classification; dashed outlines feature the number of reiterations (red), and 

the local decision boundaries show change (blue). The colours of squares are coded to the input and 

output class in each step. Figs. a), b), c), and d) represent visual results of the sub-step classification. 
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classified pixels with a positive NDWI (>127 for stretched data) as snow and pixels with an 

additional roughness contrast (SDNDWI >1) as ‘rough snow’, representing avalanches. 

4.4.1.2. Removing small objects that do not represent avalanches 

We then merged all snow pixels and reclassified ‘rough snow’ segments <12.5 m² (<200 pixels, 

Fig. 4.4). We thus included many pixels as parts of avalanche deposits that had escaped being 

classified as ‘rough snow’ in the previous step because of SDNDWI values that were too low. We 

applied an assumption concerning the maximum area of segment that can be reclassified into the 

‘rough snow’ class to avoid the inclusion of large, but smooth, areas inside avalanches. After 

comparing the segment values with their visual representation in an image, we observed that 

larger smooth areas that are inside the avalanche represent small ascents that were omitted by the 

avalanche, and should therefore not be assigned as a part of an avalanche. We similarly assumed 

that the boundary of ‘rough snow’ should be equal to 1 for both ‘snow’ and ‘buffer’ classes, 

which means that the segment lies completely within these two classes; however, this time we 

combined it with a SDNDWI of ≥0.75 to include the segment as ‘rough snow’. The thresholding 

value of the SDNDWI was taken from the data histogram by analysing the rapid change in the 

counts of values on the histogram. We then merged the segments into the ‘rough snow’ class, 

with the exception of areas <62.5 m² (area <1,000 pixels; Fig. 4.4), assuming that they were too 

small to represent an avalanche. 

4.4.1.3. Buffering 

In further steps, we split all segments from the ‘rough snow’ class into smaller pieces, to reduce 

their artificially-complex shapes with bigger and more compact parts connected to neighbours by 

only a few pixels. In most cases, only some of these complex shapes represented an avalanche, 

whereas the remainder was ‘rougher snow’ due to vegetation effects. To simplify these shapes 

into separate parts, we used buffering to reclassify pixels from the ‘rough snow’ class as snow 

that had less than four neighbours classified as ‘rough snow’ (Fig. 4.4), repeating this step for 

both the ‘snow’ and ‘rough snow' classes. To avoid undue growth of spurious pixels, we narrowed 

down the process to only pixels adjacent to at least one pixel classified as ‘rough snow’ (Fig. 

4.4). 

4.4.1.4. Neighbourhood analysis 

At this stage, our classification still contained many misclassified parts of avalanches containing 

effects of vegetation, soil, or rocks. To assign these parts to the ‘rough snow’ class, we first 

reclassified all pixels from ‘unclassified’, ‘buffer’, ‘vegetation’, and ‘dark objects’ with 

brightness >3,000 and NDVI <140 into a new ‘temp’ class (Fig. 4.4). After merging the segments 

into the ‘temp’ class, we reclassified all segments bordering ‘rough snow’ <0.01 into 
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‘unclassified’ and discarded these from the analysis. For the remaining segments, after returning 

to chessboard segmentation to allow us to once again operate on single pixels, we reclassified all 

pixels from the ‘temp’ class sharing a border with ‘rough snow’ with at least two pixels (Fig. 4.4) 

iteratively. Because every pixel had only four neighbours, the assumption concerning two pixel 

neighbours stopped the infinite loop after only a few repetitions. To allow the inclusion of 

additional pixels, we therefore decreased the threshold on the relative border to ≥0.25 and 

performed the process twice more to allow more segments that were sharing the boundary with 

at least one ‘rough snow’ segment to be included in the ‘rough snow’ class. We did not run this 

process iteratively, because it would have reclassified all pixels assigned as ‘temp’, and our aim 

was to increase only compact ‘rough snow’ areas. Next, we once more applied an infinite loop 

regarding the relative border to ‘rough snow’of ≥0.5, to increase previously-detected snow 

avalanches. These steps were crucial in closing areas inside the snow avalanches that due to the 

values of brightness and NDVI, were not assigned in the previous steps to the ‘rough snow’ class. 

4.4.1.5. Adding small gaps inside avalanches 

Finally, we focused on filling gaps inside the detected snow avalanches. We reclassified and 

merged gaps into avalanches by verifying their geometrical relation to ‘rough snow’. After 

checking the layer statistics for every segment, we built an assumption that if a segment was 

completely within the ‘rough snow’ and its area was <1,000 pixels (62.5 m²), it was to be 

automatically reclassified into ‘rough snow’ (relative border to ‘rough snow’ = 1 and area <1,000 

pixels; Fig. 4.4). Segments with >1,000 pixels reclassified into ‘rough snow’ were expected to 

fulfil additional rules concerning their roughness, brightness, occurrence of snow, and vegetation, 

because they may have represented a convex-upward form that could stay intact during the 

avalanche occurrence. Only segments with a high snow roughness that did not represented 

vegetation and were not too dark were added to the ‘rough snow’ class (relative border to ‘rough 

snow’ = 1, SDNDWI >0.7, NDWI >127, NDVI <140, and brightness >2,500; Fig. 4.4). We exported 

all extracted snow avalanches into polygon shapefiles and compared these visually and 

quantitatively with manually-mapped reference data. The visual interpretation was important for 

verifying the distribution of errors and the completeness of classified avalanches. 

4.4.2. Generating reference data 

We created reference data by manually digitising avalanches from the images in ArcMap 10.3 

software at scales between 1:800 and 1:1,500, depending on the complexity of the mapped 

avalanche. Manually digitising each area affected by the avalanche was necessary because 

avalanches occur only during the winter season when snow cover occurs, making them temporal 

events; the marks of their existence disappear when the snow cover melts, and therefore no 

complete reference data are available. Avalanches that were overlapping or bordering others were 
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counted as one. This means that polygons representing an avalanche in fact covered several 

smaller avalanches that had occurred in succession; in most cases, it was impossible to assess 

their relative sequence (Fig. 4.3). We mapped a total of 2,200 avalanche polygons for the data 

acquired in the winter of 2012/13, obtaining 13.6 km² of avalanche terrain or 6% of the study 

area. The reference data, as well as automatically-extracted avalanche polygons, are available 

online (https://uni-potsdam.maps.arcgis.com/apps/Cascade/index.html?appid=3b5ac4491b5948 

0c8c6016139f285e88). We used the reference data to estimate several classification accuracy 

metrics, including Type I, Type II, and total errors (Sithole and Vosselman, 2004), overall, user’s, 

and producer’s accuracies (Congalton, 1991), Cohen’s kappa (Cohen, 1960), and F-Score. 

Finally, we arbitrarily selected three 4-km² training sites (Fig. 4.3) for our OBIA algorithm, and 

reported these eight performance metrics for a larger 226.3 km² test area. 

4.5. Results  

4.5.1. Estimated accuracy 

Our algorithm classified 10.7 km² as avalanche debris, which is 78.7% of the total area of the 

reference data mapped for the winter of 2012/13. Overall, 1,648 out of 2,200 avalanches were 

correctly identified; 1,126 were detected in terms of more than half their area, and for 615 

avalanches this detection rate was >80%. These classified avalanches were spread out evenly 

throughout the study area (Fig. 4.5). Visual checks of the classification indicated that the runout 

zones were detected most reliably, whereas the release zones were the most problematic. Tracks 

 

Figure 4.5 | Accuracy assessment of OBIA classification for training (test sites 1 – 3) and testing data 

together; avalanche debris are shaded with orange colour, where they were detected with an accuracy 

≥80%. TP = true positive; FP = false positive; FN = false negative. 

https://uni-potsdam.maps.arcgis.com/apps/Cascade/index.html?appid=3b5ac4491b59480c8c6016139f285e88
https://uni-potsdam.maps.arcgis.com/apps/Cascade/index.html?appid=3b5ac4491b59480c8c6016139f285e88


70  Chapter 4 | Snow avalanches 
   

 

were detected mostly correctly where small patches of vegetation or soil were near or in the 

avalanche tracks. The highest estimated precision in detecting avalanche boundaries was in 

runout zones adjacent to smooth snow or unvegetated slopes. In some locations, a clear 

distinction between avalanche debris and smooth snow was not possible, especially for older 

deposits or snow drifts. Fresh avalanches were also detected with higher accuracy than were older 

and blurred ones. 

The performance metrics estimated for our training sites were overall and user’s accuracies of 

>0.9, and a Cohen’s kappa of >0.8 (Table 4.1). The accuracy for the testing area yielded lower 

performance metrics, with a user’s accuracy of 0.78. The producer’s accuracy showed that 61% 

of the total avalanche area in the tested data was correctly identified. The overall Type II error 

was very low, indicating that few objects were falsely classified as avalanches, whereas the high 

Type I error showed that many, mostly old, snow avalanches remained undetected. 

4.5.2. Influence of variables used for classification accuracy 

We checked how brightness, NDVI, NDWI, and SDNDWI derivatives evaluated for each classified 

avalanche affected the producer’s accuracy. For each avalanche, we computed the mean for each 

derivative map using the values of all the pixels inside the avalanche. We found that avalanches 

that were extracted with the highest accuracy were generally also brighter (Fig. 4.6); an increase 

in producer’s accuracy occurred with an increase in the mean brightness of avalanche. A similar, 

but, weaker correlation held for SDNDWI. Neither NDVI nor NDWI had much of an influence on 

the classification accuracy. In addition, we verified if an avalanche’s shape (roundness) and size 

(area) affected the detection rate. Similarly to NDVI and NDWI, however, we did not find any 

dependence (Fig. 4.6).  

4.5.3. Topographic factors favourable for snow avalanches 

We further analysed the topographic settings of the mapped avalanches. Most avalanches (1,422 

out of 2,200) occurred between 1,900 and 2,600 m a.s.l., with a mode of approximately 2,400 m 

a.s.l., on slopes that were 20 – 40° (Fig. 4.7). One hundred thirty nine out of 193 of the highest-

lying avalanches (>2,800 m a.s.l.) were small or very small events, according to the nomenclature 

of Bühler et al. (2009) and occurred in the southern part of our research area. Although the largest 

Table 4.1 | Performance metrics estimated for 4-km² training sites 1 – 3 (see Figures 4.3 and 4.5) and 

for the entire study area covering 226.3 km². 

 
Type I 

error 

Type II 

error 

Total 

error 

Overall 

accuracy 

Producer’s 

accuracy 

User’s 

accuracy 

Cohen’s 

kappa 
F-score 

Site 1 0.23 0.01 0.05 0.95 0.77 0.91 0.81 0.83 

Site 2 0.23 0.02 0.08 0.92 0.77 0.92 0.79 0.84 

Site 3 0.16 0.02 0.05 0.95 0.84 0.93 0.85 0.88 

Total 0.39 0.01 0.03 0.97 0.61 0.78 0.67 0.69 
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Figure 4.6 | The role of avalanche area, roundness, brightness, normalised difference vegetation index 

(NDVI), normalised difference water index (NDWI), and standard deviation of normalised difference 

water index (SDNDWI) in the estimated accuracy, when detecting snow avalanches with our OBIA 

approach. 

 

Figure 4.7 | Elevation, slope, and aspect of mapped reference avalanches with marked northeast and 

southwest directions in the winter of 2012/13. The values presented for every single avalanche 

represent the mean value of each pixel contained inside the reference avalanche polygon. Bubble size 

on the scatter plot is scaled to avalanche area. 
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avalanches occurred below 2,400 m a.s.l., most affected northeastern and the southwestern 

slopes, thus mimicking the major aspects of the mountain ranges (Fig. 4.3). 

4.5.4. Density of avalanches 

Using the reference data for the winter of 2012/13, we further analysed where most of the 

avalanches occurred. We computed centroid locations for each avalanche polygon, and estimated 

their spatial density using the Kernel density function in ArcGIS 10.3, with both point- and area-

weighted inputs in a 2-km radius. We produced two maps because, due to the occurrence of 

multiple avalanches, our input centroids did not represent the total number of events. 

Consequently, a point-weighted map could have underestimated the real avalanche density, 

whereas an area-weighted map avoids this issue. The selected 2-km size of the bandwidth was 

large enough to avoid reproducing the pattern of input avalanche centroids, and small enough to 

reduce the smoothing of the point information. We found that avalanches clustered largely in the 

south-eastern part of the study area (125 smaller avalanches in inset 1, Fig. 4.8, of which 104 

were <2,000 m²). The area-weighted spatial density of avalanches was highest on the slopes of 

Fluela Schwarzhorn, Sentischhorn, and Wuosthorn. The biggest avalanche in inset 2 on Figure 

4.8 had an area of ~390,000 m². 

4.5.5. Automatic classification of snow-avalanche zones 

Automatic delineation of release and runout zones from remote sensing data can be conducted 

by verifying the elevation values in each polygon that represents an avalanche. The simplest 

approach uses a flow length, which represents the distance along the flow path inside the 

avalanche, as an indicator in evaluating the probability of the release and the runout zones. 

 

Figure 4.8 | Density maps showing the clustering of avalanches in the winter of 2012/13, with respect 

to their a) quantity, and b) size. The insets (zoom 1 and zoom 2) show the density maps with respect 

to manually-classified reference snow avalanche polygons shown in white. Outlined test sites 1 – 3 are 

the test sites that were used for developing our OBIA algorithm. 
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Herein, we suggest using the elevation values in an approach that allows exposure of local terrain 

height differences in the probability map. For example, applying the elevation for a release zone 

that occurs on very steep slopes determines that the highest probability will be represented only 

for a very small area, whereas on gentle slopes, the same probability will occur over a larger area, 

because the elevation differences are smaller than those of steep slopes. 

We used a 2-m resolution digital surface model (DSM) derived from stereomatching of aerial 

ADS images to automatically detect release zones, tracks, and runout zones. Because we 

generated our reference data in the same resolution as the aerial images, we first resampled the 

DSM to 0.25-m resolution (Fig. 4.9). We then used the reference data to clip the DSM to each 

avalanche polygon using a key ID. DSMs acquired in this way were used to compute the 

probability of representing individual parts of an avalanche. We assumed that the maximum 

(minimum) elevation on which the snow avalanche occurs has the highest probability of being a 

release (runout) zone. We estimated the probability by normalising elevation data (Fig. 4.9) by 

subtracting the minimum value of DSM inside this avalanche from DSM pixel value, and 

dividing by the difference between the maximum and the minimum values inside each avalanche. 

Such stretching returns a 0 – 1 probability map for release areas. The thresholds in classifying 

the track are relative; we applied 0.3 – 0.8 as the thresholds, because most of our 2,200 manually-

digitised polygons represented loose snow avalanches where the release zone constituted a small 

part, and the runout zone compared to the track constituted an even smaller part. When dealing 

 

Figure 4.9 | Estimating the probability of an avalanche release area. A probability close to one 

indicates a pixel representing a release zone, whereas a probability close to zero indicates a runout 

zone in automatically classified data. 
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only with loose avalanches, the upper threshold for release areas may be set to a probability equal 

to 0.9. The selected thresholds worked well for single avalanches, where both the release zone 

and the runout zone were assigned correctly (Fig. 4.9). For avalanches with more complex shape 

and multiple avalanche arms (e.g. avalanche 1,207 on test site 2; Fig. 4.9), however, the release 

zones remain undetected, with the exception of only the highest-lying release areas. 

4.6. Discussion 

Automatic mapping of avalanches is crucial in mountainous regions to delineate susceptible areas 

and to produce cadastres for validating avalanche forecasting and hazard maps. Previous studies 

have demonstrated that a combination of aerial images and digital elevation models (Bühler et 

al., 2009), or aerial (Lato et al., 2012) and satellite (Larsen et al., 2013), or SAR images (Vickers 

et al., 2016) allow the detection of snow avalanche deposits; however, identifying release zones 

and tracks remains challenging. We have proposed an OBIA algorithm that tracks release zones, 

tracks, and runout zones in NIR images. We recommend using normalised derivatives NDWI 

and NDVI, instead of brightness, for classifying water (snow) and vegetation, respectively, 

because the thresholds allowing for classification of water and vegetation in these indices are 

stable (around zero) and widely applicable. Our approach upon expands previous work, as we 

have considered potential snow avalanches in snow-covered areas only (NDWI >127), whereas 

others have used brightness thresholds (Lato et al., 2012), with the danger of including other 

objects with similar values to those of snow. Rivers and lakes have similar values of NDWI, but 

are less bright than snow, we therefore combined NDWI and brightness in our model. We suggest 

using SDNDWI to trace rough snow or avalanche debris. Estimated accuracy was high for detecting 

avalanches using the test data, and the random spread of avalanches detected with high accuracy 

through the whole research area suggests that the assumptions in our approach are broad enough 

to be applied for a large area. 

To increase the accuracy of true positives in detecting release zones in our classification, a 

customised threshold for every data tile can be applied. In any case, we focused on developing a 

method that is transferable and works well for a greater area. We also wanted to test the usability 

of the image derivatives and verify how much information we could obtain from them when 

detecting snow avalanches. We therefore did not change any parameter or its threshold when 

applying the algorithm for other data tiles (Lato et al., 2012). We implemented several steps that 

allowed the classification of different avalanche scenarios that occur in diverse topographic 

conditions, such as single vs. multiple avalanche; small vs. large avalanche; avalanche revealing 

the ground or vegetation vs. avalanche that does not reveal the ground or vegetation; avalanche 

that is blocked by vegetation or other objects having high roughness vs. avalanche that is not 

adjacent to any rough object. These topographic conditions influence the appearance of 
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avalanches on images; therefore, the number of steps in our OBIA workflow is large. We found 

that OBIA is useful for complex shapes, because it allows the implementation of assumptions 

regarding each different situation. Additionally, this OBIA algorithm may be used and modified 

according to the need of the user and the data. For example, some steps in our OBIA workflow 

may be omitted, such as those used for filling the gaps inside the avalanche. If the data do not 

contain avalanches that reveal bare ground or vegetation, these steps may not improve the 

classification, because there will not be any gaps to reclassify. Additionally the number of loops 

in the shrinkage and growth steps depend on pixel size. With our 0.25-m resolution NIR images, 

we shrank and increased the segments of 1.25-m, which was sufficient to split segments into 

small parts; with higher (lower) resolution, the number of loops should be increased (decreased) 

accordingly. Previous studies have reported very high accuracy in separating vegetation and 

water using vegetation and water indices (Townshend and Justice, 1986; Ji et al., 2009); therefore, 

we assume that the NDVI, and NDWI thresholds are stable and may be easily transferable to 

other areas and data. Despite this, the thresholds for SDNDWI should always be verified by 

analysing the mode of data distribution on a histogram of the SDNDWI, testing the thresholding of 

data samples, and checking the thresholding results visually. We are aware that such visual 

checking may introduce some bias, although so far it is the most common way in OBIA to find 

the most suitable threshold. 

The size and the shape of avalanches did not influence the classification accuracy if they were 

bigger than 2,000 pixels, which is what we regard as the minimum detectable size in our OBIA 

algorithm. We selected the minimum number of pixels necessary by analysing the reference data, 

where avalanches smaller than 2,000 pixels constituted only 7.5% of the total number of 

avalanches, and by taking into account the classification of avalanches with respect to their size. 

According to Bühler et al. (2009), very small avalanches are <100 m², which coincides with 2,000 

pixels (125 m²). The parameters playing the biggest roles were brightness and the SDNDWI (Fig. 

4.6). Visual inspection showed that the easiest avalanche part to detect was the runout zone and 

the most difficult was the release zone, because release zones were not usually rough enough or 

did contain outcrops of the vegetation or bare ground. The correct detection of the track depended 

mostly on snow roughness and depth. In a case of low roughness values or a very thin snow cover 

revealing the ground and the vegetation, the track was not detected correctly or not detected at 

all.  

The most difficult to classify were old avalanches where the bare ground cropped out or where 

vegetation occurred in the path of the avalanche. These avalanches did not meet the assumptions 

in our OBIA protocol and could not be classified correctly because they were not rough enough, 

or were too vegetated or dark due to thin snow cover. We tested different thresholds for the input 

layers and different neighbourhood assumptions in order to include these avalanches; however, 



76  Chapter 4 | Snow avalanches 
   

 

this resulted in more false positives, so the cost of correct classification of these avalanches was 

higher than the benefit. We therefore decided to stay with the same workflow and thresholding 

shown in Figure 4.4 for the whole study area. 

Errors in automatic classification also occurred due to data tiling. Using an Intel Xeon E5-2667U 

processor with 256GB RAM memory, we were able to run our OBIA algorithm only for tiles of 

6.25 km² (10,000 columns × 10,000 rows), requiring a computing time of ~30 minutes for each 

tile; our test in executing bigger tiles ended in crashing the computation in the eCognition 

software. In many cases the avalanches were therefore split into two or more neighbouring tiles, 

which influenced the correct detection of avalanche parts, especially those where the avalanches 

were spread across tiles or had small gaps. 

Avalanches often have a tongue shape that may also be used as a property for classifying. In our 

test area, however, using such information may be insufficient, because we are dealing with 

avalanches repeated in the same location and merged avalanches, which have more complex 

shapes. In such cases, a new avalanche may partly cover previous avalanche, making it difficult 

to distinguish them. In addition, a few avalanches may simply have a more complex and difficult-

to-interpret shape. 

Our estimated avalanche density map and information concerning the most common prevalence 

of avalanches may be used to help generate a hazard map in mountainous areas. The most crucial 

issue, however, is whether the size or the number of avalanches is more important in such 

mapping. As mentioned by Eckerstorfer et al. (2016), only very small avalanches cause less 

damage; therefore, we suggest weighting the density map according to avalanche size to give 

more information regarding the degree of danger in a specific area. 

Continuation of our research should contain verification of the transferability of our OBIA 

algorithm to data from different winter years for the area of Davos, Switzerland, which we have 

in our repository. In addition, future tests involving diverse areas across the World and different 

types of data (e.g. UAV) are desirable. An approach for distinguishing single and repeat 

avalanches at the same area should be developed, because it would give more detail about the 

quantity and the frequency of avalanches in a given area. 

4.7. Conclusions 

We have presented an automatic object-based image analysis (OBIA) approach to detecting snow 

avalanches and their release, track, and deposition zones for a large region from ADS80 NIR 

aerial images. We used image-derived parameters, including the normalised difference 

vegetation index (NDVI), and the normalised difference water index (NDWI) and its standard 

deviation (SDNDWI), to separate vegetation, snow, and rough snow representing avalanche debris, 
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respectively. We applied buffering assumptions relying on the local neighbourhood of segments 

to remove salt-and-pepper noise and objects that were falsely assigned as avalanches, using the 

thresholding of derivatives obtained from NIR images. For an area of 226.3 km², our algorithm 

achieved producer’s and user’s accuracies of 0.61 and 0.78, respectively, and a Cohen’s kappa 

of 0.67. Our algorithm uses only information taken from these images, from which the evaluated 

NDVI and NDWI indices are normalised, helping to transfer their thresholds to other areas. Our 

approach contains only three fixed parameters (NDVI, NDWI, and SDNDWI) and two changeable 

parameters (brightness and segment area). The first depend on the spectral characteristics of 

images and the latter one depend on the resolution of images. Our OBIA workflow is not 

sequential when compared to that of Lato et al. (2012); the segments that do not fulfil assumptions 

in one step can still be considered as potential snow avalanches in the next steps. To assign 

potential snow avalanches, our method takes into account only the rough snow, which allows 

more reliable detection of avalanches. Our probability approach determines, in an automatic way, 

the highest and the lowest parts of the avalanche, and thus its release zone, track, and runout 

zone, which allows easy analysis of the topographic condition of areas where the avalanche starts 

and where the snow is deposited. For multiple avalanches with a complex shape, our probability 

map may not be sufficient to correctly identify all release and runout zones, but for single 

avalanches, it gives valuable results. For some avalanches, we were not able to judge visually if 

they were single or multiple; a discussion of this topic should therefore be undertaken. The 

probability approach may be used for any other mass movement landforms, such as landslides, 

to delineate their release and deposition zones. In the future, we plan to validate our snow 

avalanche algorithm for ADS data, which we have for other winters, and to verify its 

transferability to other NIR images, because successful results in this matter may offer a chance 

to improve hazard maps and avalanche forecasting in Switzerland. 
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Chapter 5 

Conclusions 

 

Automatic mapping of landforms diagnostic of natural hazards from remote sensing data is a 

challenging task, because each individual landform has its own properties that make it unique. It 

is therefore unlikely that the same workflow can be applied to track all these landforms together 

with the same level of the accuracy. Nonetheless, morphometric variables such as roughness 

contain information that characterises and distinguishes certain landforms from others. Previous 

studies have suggested many methods by which to derive topographic roughness (Smith, 2014). 

The curvature-based µ algorithm proposed in Chapter 2 allows the acquisition of terrain 

heterogeneity without any data detrending, and hence offers a novel advantage over previous 

DEM-derived methods (Haneberg et al., 2005; Cavalli et al., 2008). In this context, I will now 

revisit one central research question: 

RQ1. Does curvature-derived surface roughness appropriately extract the 

properties of landforms diagnostic of natural hazards? How do the kernel and 

pixel sizes set for evaluated roughness affect the accuracy in detecting the 

analysed landforms diagnostic of natural hazards? 

The results of Chapter 2 demonstrate that the µ metric is insensitive to the slope of the terrain, 

and produces comparable or higher accuracy in detecting landforms, such as gullies, dunes, lava 

fields and landslides, than previously-proposed methods. This is demonstrated in Figure 2.13, 

where I compared our µ with several other algorithms for the same area and using the same 

reference data. Furthermore, the algorithm’s simplicity, intuitive meaning and comprehensive 

documentation allow for its reproducibility by other users. The µ algorithm allows the delineation 

of the boundaries of landforms with high accuracy when selecting a proper kernel size, which, 

based on the results acquired herein, should be small. In our tested areas, a 5 × 5 kernel performed 

best for nearly all analysed landforms, because it was large enough to minimise the noise in the 

input data while being small enough to capture detailed local diversity of the terrain on our ALS 

data. This coincides with the results of Berti et al. (2013), who compared different surface 

roughness algorithms in detecting landslides. A bigger kernel gave higher accuracy only for large 

objects, such as lava fields (Table 2.2); however, it was at the cost of landform extent precision. 

I therefore recommend a 5 × 5 kernel as the default for tracking landforms with similar size and 
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similar data resolution to those I used in this study. Chapter 2 furthermore indicates that kernel 

size has a lower influence on the probability of detecting landforms than does data resolution, as 

correct detection can be disabled when the pixel size exceeds the size of the landform. Therefore, 

the resolution of the data in each case should be selected carefully by considering the size of the 

objects to be detected. This contradicts with the results of Grohmann et al. (2011), who stated 

that the kernel size and data resolution plays similarly important role. The limitation of my µ 

algorithm is that it is not capable of recognising the type of detected landforms, and is scale-

dependent, and the user must manually select the kernel size and the resolution of data. An 

improvement of my method may focus on developing a method for automatic selection of the 

best kernel size and DTM resolution with respect to the analysed landform. 

I argue that a simple assumption concerning roughness thresholding may be sufficient when 

dealing with easily-detectable landforms in a small area with a homogenous, in terms of 

roughness, environment. It may not be enough to detect landforms that are more complex, such 

as the landslides analysed herein, as the main scarp and the zone of material accumulation have 

different roughness’s, with age influencing their roughness. LaHusen et al. (2016) stated that the 

roughness of landslides is influenced by the time when these objects were formed, and by the 

amount and strength of the exogenous processes that affected them. The authors found that in 

general, older landslides have lower roughness; therefore, even an application of several 

thresholds would not allow straightforward generalisations. This applies similarly to other 

indices, such as the water index, that might be derived from remote sensing data and are the 

subject of my next research question: 

RQ2. What are the advantages and disadvantages of detecting landforms 

diagnostic of natural hazards from remote sensing data with their derived 

indices vs. visual information? 

Applying data-derived maps, such as water or vegetation indices, is also an advantage with 

respect to visual information read from the images. An example of a case when this is especially 

useful is when dealing with lakes that have different physical states of water, salinity, wave 

direction, and optical depth, because for such lakes, the brightness values will differ significantly 

(see Figure 3.2), making it difficult to classify them together as a single object. In addition, I 

demonstrated that a water (snow) index can be successfully used to delineate areas prone to 

avalanche occurrence. Compared to another study that considered avalanches as only pixels with 

high brightness (Lato et al., 2012), the approach presented herein offers a more convenient 

solution, because it considers only the areas covered by snow detected by the water index. Using 

only brightness encourages the misclassification of areas with high reflectance that have no snow 

cover. My algorithm excludes such areas and considers these as irrelevant for snow avalanches. 
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In addition, using a roughness metric (SDNDWI) evaluated from water index allows distinguishing 

smooth and rough snow what helps to track avalanches. 

Segmentation is the first step in the OBIA approach (Cheng and Han, 2016), so the chosen 

method controls the subsequent classification process. As presented in Figure 1.3, there are 

several segmentation methods available in the eCognition software. The most common algorithm 

used in OBIA is multiresolution segmentation (Baatz and Schäpe, 2000), which requires 

specification of the scale, shape and compactness of the segments. In this thesis, I used 

chessboard segmentation to classify snow avalanches and multiresolution segmentation to 

classify lakes with a set of their parameters, revisiting the third research question: 

RQ3. Are the segmentation method and its parameters the most significant 

when using OBIA? How the selected segmentation method controls the 

subsequent stages of classification? 

Previous studies (Drǎguţ et al., 2010; Martha et al., 2011) have reported a requirement to use an 

automatic optimisation tool to minimise under- and over-segmentation when using 

multiresolution segmentation algorithm, yet the results of Chapter 3 indicate that to segment lakes 

from a standalone water index, such a tool might be redundant. Furthermore, it does not solve 

the issue of classifying objects that have a broad size range, such as lakes on the Tibetan Plateau, 

which range in area from <1 km² to 2,403 km². The lake detection algorithm proposed herein is 

designed for lakes with an area >10 km², but also allows the tracking of smaller lakes. Due to the 

selected scale in the segmentation process, however, the shape of these lakes is not as accurate 

as for larger lakes. The multiresolution segmentation algorithm additionally tends to simplify 

very complex lake shorelines (see Figure 3.9). Future solutions may thus desire to investigate, if 

not implement, chessboard segmentation instead. I surmise that applying additional steps that 

split these segments into smaller parts, where each segment represents an individual pixel, might 

decrease the number of misclassified areas, especially around the lake shorelines. This outcome 

I draw from my algorithm for detecting snow avalanches, where I used chessboard segmentation 

with an object size equal to unity as a primary scope for further OBIA workflow. Applying this 

algorithm allowed me to work on the pixel level, and was beneficial in developing neighbourhood 

assumptions. This is because it is easier to control how the classification is made for squared 

segments due to the known number of neighbours, their size and shape. For non-squared 

segments, these parameters for each segment may be different. I conclude that wrongly selected 

segmentation method and its parameters may significantly decrease the level of detecting objects, 

and further assumptions on segment size, geometry, and spatial relation will not be able to 

classify the segments with high accuracy. 
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One water index that I used in my study concerning delineating the boundaries of lakes in Section 

3 was highly accurate in grouping frozen and non-frozen water altogether; nonetheless, it was 

not capable of automatically separating frozen lakes from glaciers over large areas. At this point, 

an OBIA approach is advantageous, as the method allows the combination of the spectral 

properties of data, different data types (i.e., images and elevation data) and their derivatives, 

analyses of the segment shape, size, and texture, and a spatial distribution of segments with 

respect to classification and other neighbouring segments. This revisits research question 4 of my 

thesis: 

RQ4. What are the advantages and disadvantages of OBIA in detecting lakes 

prone to seasonal ice cover in an area with glaciers? 

I found the OBIA approach suitable for classifying lakes, because it uses a straightforward 

manner to separate lakes from rivers. The Asymmetry parameter, as a leading assumption in this 

matter, is the measure that helped to separate rivers from lakes on the Tibetan Plateau. The 

examination of local relationships between the segments allows identification of the parts of lakes 

where the values of the water index do not exceed a predefined assumption of the thresholding 

value. Additionally, data concerning the local slope, derived from elevation data, assist to 

distinguish between lakes and glaciers. An advantage of my OBIA method, comparing to 

previous lakes extraction algorithms (Yamazaki et al., 2015; Sheng et al., 2016), is that it offers 

delineating lakes boundaries irrespectively of physical state of water what fills a gap in 

classifying lakes prone to seasonal ice cover like those on the Tibetan Plateau. My OBIA 

algorithm achieved an accuracy similar to those of Verpoorter et al. (2012), Jiang et al., (2014), 

and Jawak and Luis (2014). All these methods were tested on different areas of research and 

reference data, however. It is therefore necessary to point out that a fair comparison with other 

algorithms would be possible only if a reference benchmarks for lake areas existed in different 

environments. With the lack of such data, it is difficult to judge which method is or could be the 

best one, because every method is designed to solve different problem in different environments. 

For some instances, SRTM data may be used alone to detect water areas by applying the slope 

thresholding and verifying the roughness, which for water should be close to zero. These data 

were unable to be a main source in delineating the lake boundaries in 1995 and 2015 that I 

analysed in this thesis, because they represented the extent of the lakes for the time slice when 

the SRTM data were gathered. This also limits the use of SRTM data as a standalone data input 

in verifying the changes of lakes. Only the availability of elevation models with comparable 

resolution and accuracy for more time slices would allow such analysis.  

Despite its numerous advantages, the OBIA approach also has its disadvantages, particularly in 

relation to the size and shape of the segments what was stressed by Cheng and Han (2016). The 
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selected segmentation algorithm will significantly influence subsequent steps. For example 

selecting chessboard segmentation with an object size equal to unity allows to work on pixel level 

with known number of neighbouring segments (four neighbouring segments), but limits 

gathering the statistics of every segment. Whereas multiresolution segmentation allows gathering 

the statistics, nonetheless the number of neighbouring segments varies for each segment. An 

incorrect parameter set in segmentation could decrease the possibility of correctly detecting 

objects because the segments may be too big/small, compact/loose, or 

homogeneous/heterogeneous – what is presented in Figure 3.5. Another point is operator bias in 

selecting the thresholds, algorithms and assumptions used in the OBIA approach. This can be an 

advantage, because the user can control the whole classification process; conversely, it can be a 

disadvantage, because such classification is always subjective. Further research should therefore 

focus on automation in selecting the thresholds, to reduce the bias produced by the operator. One 

way to reduce the subjectivity of the thresholding is to use normalised indices, which revisits the 

fifth research question of my thesis: 

RQ5. Which variables are the most significant in detecting snow avalanches 

from NIR images with OBIA? 

For detecting snow avalanches, the multiresolution segmentation algorithm did not distinguish 

object edges particularly well; therefore, similarly to Lato et al. (2012) I used the chessboard 

segmentation as a basis for further OBIA steps. The most useful indices for detecting avalanches 

were the water index and roughness, which allowed automatic mapping of areas covered by snow 

and areas with rough texture, respectively. The roughness metric (SDNDWI) introduced herein is a 

new concept comparing to Bühler et al. (2009) and Lato et al. (2012) who as a measure of 

roughness used normalised difference angle index (NDAI), and dissimilarity evaluated from 

grey-level co-occurrence matrix (GLSM), respectively. Analysing the spectral values and 

classification of neighbouring segments was another important subject in assigning pixels that 

did represent snow avalanches but may not have been classified correctly due to their values of 

roughness, brightness, NDWI, or NDVI indices. Splitting an image into individual pixels limited 

the investigation of the mean, median, and standard deviation of each segment, which was 

possible with multiresolution segmentation, as it reduced the salt-and-pepper noise of the 

classification. Nevertheless, the neighbourhood analyses assisted in solving the issue of single 

pixels that have values that are too low or high to be sufficiently accepted into a given class. I 

found, however, that when phenomena were difficult to distinguish from other objects on remote 

sensing data, their detection rate might be low. Overall, my OBIA algorithm detected the 

avalanches with user’s accuracy of 0.78 (Table 4.1.) for an area of 226.3 km², what is similar to 

the results of Bühler et al. (2009), yet lower than the algorithm of Lato et al. (2012). His method 

was applied over a smaller research area, however; and with changes in the classification 
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parameters in each test site. In addition, Larsen et al. (2013) pointed out that generation of snow 

avalanche outlines, which are used as reference data, is challenging. It is therefore difficult to 

compare these algorithms directly. Nevertheless, in my estimation, the accuracy achieved by my 

algorithm is sufficient for hazard mapping. A sufficient detection rate also depends on the 

purpose of the study, because detecting 0.78 of the total area of an avalanche that will be used to 

produce a hazard map may be sufficient, whereas detecting lakes with the same level of the 

accuracy (0.78), when the purpose is to verify their change in time, will not be sufficient because 

it will influence the change analysis, and correcting such data will take more time than digitising 

the lakes manually. The classification of objects that occurred at different times is a great 

challenge. Older landforms, such as snow avalanche debris lobes, may have a different texture 

than fresh ones. Thus, using the same threshold for old objects as for fresh objects will not allow 

them to be classified together with the same accuracy. One solution in this matter may be to run 

separate classifications, although that would require some detailed time-stamp information about 

each landform.  

Cheng and Han (2016) stressed that the principal strength of an OBIA approach is the use of 

objects’ shape, texture, and geometry, and the possibility of combining this information with GIS 

functionality and expert knowledge. They pointed out, however, that the biggest limitations are 

the full automation and the subjectivity of the rule sets. This is the main reason why, in my 

algorithms, I focused on normalised parameters, which reduce the level of subjectivity and allow 

for easy transferring of the approach to other areas with the same data. Normalised data are scaled 

the same, and thus a threshold selected for one data sample should be transferable to other 

samples of this data. In addition, if the selected threshold is not applicable to different data, it is 

easy to measure the range difference and find an explanation for it. This is the greatest strength 

of the OBIA algorithm presented herein. None of the previous methods designed for detecting 

snow avalanches from images suggest using a water (snow) index, even though it prevents 

erroneous classification of areas that are not covered by snow. In contrast, the greatest weakness 

of the OBIA algorithms presented herein is their dependency on pixel resolution. To use the 

workflows, one must bear in mind the data resolution that is used and how the data are stretched, 

because it will influence the results of the classification. Different stretching of data can result in 

incorrect thresholds (if one wants to use our algorithm with no changes), which will decrease the 

classification accuracy, whereas different data resolutions will affect the thresholds regarding 

size and the size of segments evaluated with multiresolution segmentation in my OBIA algorithm 

for detecting snow avalanches. For example, when using my lake boundary OBIA algorithm, the 

parameters in the multiresolution segmentation are keyed to LANDSAT images; therefore, when 

using them for other data types, such as those from the SENTINEL platform, they must be 

adapted accordingly. Similarly, the assumptions regarding object size in the OBIA algorithm for 
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snow avalanches are set to 0.25-cm ADS images, and will require adjustment when dealing with 

a different data resolution.  

The performance metrics computed in this thesis measure the accuracy of classification, with 

each designed to verify a particular issue of the classification, and therefore they should be used 

in accordance with the purpose of the study. The overall accuracy (Congalton, 1991) is the 

simplest metric, which demonstrates the total number of correctly-classified pixels with respect 

to the total number of pixels in the matrix. This measure should be applied only when the number 

of pixels in each class has a comparable percentage of the total area of the analysis. When 

verifying only one class in the confusion matrix, this measure may not indicate that this class is 

accurately extracted. This is especially true if this class constitutes a small percentage of data 

with respect to other objects, such as the lakes in Chapter 3, because the percentage of another 

class in the matrix will be high; thus, in the case of a poor extraction of the first class, the total 

accuracy of the classification will be overestimated. In this matter, producer’s and user’s 

accuracies (Congalton, 1991) are more informative, because they capture how many pixels of the 

total number of pixels within the class have been correctly classified, and how many pixels from 

another class have been assigned to this class. This is relevant information, because my algorithm 

is capable of correctly detecting 69% of the total area of dunes (as in Chapter 2), but only 22% 

of all automatically-classified pixels were in fact dunes. Similar findings can be drawn from the 

type I and type II errors (Sithole and Vosselman, 2004; Table 2.4), which represent the number 

of pixels that were falsely rejected from or accepted to a class, respectively. Whereas the total 

error gives an overall view of the classification accuracy, the Cohen’s kappa (Cohen, 1960) offers 

a superior overview of accuracy in relation to the abovementioned metrics, because it takes into 

consideration not only the agreement of the classification, but also the chance that the automatic 

algorithm can outperform a random classifier. The F-score measure is useful in verifying only 

one landform class in the classification accuracy without considering the landform background 

class. This measure should particularly be used for objects that make up a small percentage of 

the complete dataset, such as lakes in Section 3, because the measure requires only information 

about the pixels that belong to the class of interest, and whether these were correctly or falsely 

assigned to this class. The ROC (Swets, 1988) shown in Figures 2.6–2.9 and Figure 3.8 expresses 

the performance in separating the analysed object from the background of the data, and the AUC 

gives information about the probability of ranking randomly-chosen pixels that represent the 

analysed objects more highly than those representing the background. In a binary classification, 

the most significant metrics are the ROC, which verifies the performance of distinguishing the 

object from the background; the user’s accuracy, which gives information about the number of 

classified objects that are in fact the objects of interest; and Cohen’s kappa, which verifies 

whether the algorithm outperforms a random selection.  
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The main findings of this thesis demonstrate a high potential for detecting landforms diagnostic 

of natural hazards with OBIA, and the capabilities of the proposed algorithms should be further 

investigated. After the experience with this classification approach, I assume that more potential 

could be tied to a combination of segmentation methods. For example, the initial stage could 

perhaps use a pixel-level chessboard segmentation, whereas a second step might use 

multiresolution segmentation to produce homogenous and compact objects. In further exploration 

of OBIA capabilities, I would focus on analysing the relation of segments that do not share 

boundaries, but may represent the same object. An example of this is snow avalanches, which 

are numerous and with my algorithm are split into several parts where steep and bare slopes in 

the runout tracks escaped correct classification (Chapter 4). 

A striking point that should be mentioned is the accuracy level with which the analysed 

phenomena were detected. A nearly flawless classification of lakes compared to flawed snow 

avalanche detection, with several undetected objects, raises the question of why one landforms 

can be tracked nearly perfectly and the other cannot. The level of accuracy depends on the 

information, which can be read from data by the algorithm, and on the similarity of objects. 

Deriving lakes from the water index evaluated from LANDSAT satellite images is easier than 

deriving avalanches based on roughness evaluated from NIR aerial images, because lakes usually 

have positive values on the water index, which allow for their successful detection, whereas the 

roughness of avalanches may differ from object to object, because it depends on the time slice 

between its occurrence and data collection, and on the environmental conditions of its occurrence. 

For example, an avalanche that reveals the ground or vegetation, or has partially melted due to 

the weather conditions, will have different roughness than another avalanche. In addition, 

reference data that are generated by manual digitisation are significant. The existence of a lake 

in the data is relatively easy to detect, whereas detection of a snow avalanche is not as trivial, 

because release zones may not be as clearly visible and distinguishable as runout zones. Similarly, 

avalanches that are old and blurred by the wind may be problematic, and could be classified as 

objects with uncertain membership in the avalanche class. In my estimation, achieving a similar 

level of accuracy for all phenomena analysed herein is therefore not feasible, at least not with the 

currently-available data and methods. 

This thesis emphasised the methodological aspects involved in detecting natural hazard-related 

landforms. In addition, it investigated changes in lake size on the Tibetan Plateau and addressed 

part of the environmental context of these changes. The results demonstrate dynamic changes in 

water resources on the Tibetan Plateau, which are spread heterogeneously; this is consistent with 

the results of other studies (Ma et al., 2010; Lei et al., 2013; Fang et al., 2016). I observed the 

largest increase in the northeastern part of the Plateau, and the largest decrease in size in the 

southwestern part. The lakes did not change uniformly, so more detailed analysis of individual 
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changes, like this done for Nam Co by Liu et al. (2010), should be performed to find a direct 

cause and associate this change with other more regional and global changes. The same applies 

for snow avalanches, and the automatic detection of their deposits is a step forward in improving 

avalanche hazard maps. As I had only one time slice for the whole winter season my results may 

not show the complete distribution of avalanches during the whole winter. In addition, testing of 

my method using data acquired for different winter seasons by the WSL Institute for Snow and 

Avalanche Research SLF is desirable. Thus, acquiring data more frequently and combining the 

results achieved by automatic detection with hazard mapping are desirable to obtain a wider 

knowledge of the extent and frequency of avalanche occurrences. 

I assume that the methods presented in this thesis may be portable in other areas dealing with the 

same landforms. The roughness algorithm may be used with any other digital elevation data, 

although the achieved results will depend on data resolution, as I tested my µ on SRTM data with 

90 × 90 m resolution and found that the method works for detecting boundaries between larger 

landforms only. I demonstrated in Table 3.5 that the proposed algorithm for lake detection is 

transferable to areas with different environmental conditions with LANDSAT images, without 

changing any parameters in the OBIA workflow and yielded user’s accuracy of >0.95 for five 

from six tested areas. I did not test if it is applicable for other released data, such as those from 

the SENTINEL platform, and therefore more testing is required. In addition, I have suggested a 

probability-based approach for delineating parts of avalanches (Fig. 4.9) and this may be used 

for other landforms, such as landslides and gullies. 

Future research should place greater focus on testing the applicability of data derivatives, such 

as roughness, water and vegetation indices, in detecting landforms diagnostic of natural hazards 

from remote sensing technologies. In particular, verification of the portability of SDNDWI as a 

measure of snow roughness is needed. As presented in this thesis, the attributes derived from 

digital elevation data and the land cover indices derived from images assist significantly in 

improving classification, especially in cases where simple analysis of the elevation and image 

pixel values within automatic classification methods is not sufficient to extract the objects with 

high accuracy. Future research should also test the applicability of µ for other data, such as those 

from terrestrial laser scanning, which have greater spatial resolution and therefore may be used 

to verify the roughness of the surface as the point cloud density if higher than those for ALS data. 

Similarly, I would recommend that the applicability of µ should be tested for elevation models 

generated using different data and techniques, such as stereomatching of aerial and UAV images, 

because the texture representing the surface on such data is different than that of LiDAR data. 

This may have an influence on different representations of roughness, which I did not analyse 

here. 
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In summary, the overall contribution of this thesis is that of providing methods that are 

sufficiently general so as to be transferable to other areas. All the proposed algorithms have been 

released as codes for ArcGIS and eCognition software tools, and their detailed documentation 

allows for further use and adaptation according to the requirements of the user. I hope that this 

work contributes to a greater focus on tracking natural hazards to maintain human lives and 

safety, and to improve hazard maps. 
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Appendix A 

 

Code for evaluating curvature based terrain surface roughness 

 

Copy the code and save as *.py file to use it in ArcMap 10.3. Input data to use the code should 

represent elevation raster data. 

 

"""----------------------------------------------------------------------------- 

  Script Name: Estimate surface roughness 

  Description: Script generates a Roughness Index based on input digital terrain model (DTM). 

  The approach for roughness estimation works on standard deviation differences  

  in local terrain curvature derived from DTM. The values of the output roughness  

  index raster layer means: low values > the lowest roughness,  

  and high values > the highest roughness. 

  Created By:  Karolina Korzeniowska. 

  Date:        August 2015. 

 -----------------------------------------------------------------------------""" 
# -*- coding: utf-8 -*- 

# 

# Import arcpy module 

import os 

import arcpy 

from arcpy import env 

from arcpy.sa import * 

# 

# Check out the ArcGIS Spatial Analyst extension license 

arcpy.CheckOutExtension("Spatial") 

# Enable overwriting files 
arcpy.env.overwriteOutput=True 

# 

# Set the input data 

inRaster = arcpy.GetParameterAsText(0) 

# Set the output data 

outRaster = arcpy.GetParameterAsText(1) 

 

# Set local variables 

zFactor = 1.000 

# Execute Curvature 

outCurve = Curvature(inRaster, 1.000) 
 

# Set local variables 

neighborhood = NbrRectangle(5, 5, "CELL") 

# Execute FocalStatistics (StDev) 

outFocalStatistics2 = FocalStatistics(outCurve, neighborhood, "STD","") 

 

# Execute Log10 

outLog10 = Log10(outFocalStatistics2) 

# Save the output Surface Roughness file 

outLog10.save(outRaster) 
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Appendix B 

 

Code for delineating lake boundaries 

 

Copy the code and save as *.dcp file to use it in eCognition Developer 9.1. Input data to use the 

code are: Layer 1 – water index, Layer 2 – DEM derived slope map. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<eCog.Proc UserName="Karolina" Company="" Copyright="" version="20140418" use-reproducable-poly="1" project-unit="5" engine-version="9.1.1" engine-build="2799" update-topology="0" 

distance_calculation="CG" resampling_compatibility="0"> 

<ruleset-info> 

<name></name> 

<author>Karolina</author> 

<tags></tags> 

<version></version> 

<description></description> 

<input></input> 
<output></output> 

</ruleset-info> 

<ParamValueSetCntnr></ParamValueSetCntnr> 

<ObjectDependencies> 

<ImgLayers> 

<ChnlProxyCntnr> 

<Layers> 

<ChnlProxy strName="Layer 1" flags="4"> 

<Assignment Chnl="0" MapName="main"></Assignment> 

<LastAssignment Chnl="0" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 
</ChnlProxy> 

<ChnlProxy strName="Layer 2" flags="4"> 

<Assignment Chnl="1" MapName="main"></Assignment> 

<LastAssignment Chnl="1" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</ChnlProxy> 

</Layers> 

<Variables></Variables> 

</ChnlProxyCntnr> 

</ImgLayers> 

<ThmLayers> 
<ChnlProxyCntnr> 

<Layers></Layers> 

<Variables></Variables> 

</ChnlProxyCntnr> 

</ThmLayers> 

<MapLvlProxyCntnr> 

<MapLvlProxies> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</MapLvlProxies> 

<MapLvlVrblValues></MapLvlVrblValues> 
</MapLvlProxyCntnr> 

<ProcVrblCntnr></ProcVrblCntnr> 

<ClssHrchy EvalInvalid="1" MinProb="0.10000000000000001" NNSlope="0.20000000000000001" RdiResamplOptns="3"> 

<MapUnit> 

<Map MapName="main" Unit="5"></Map> 

</MapUnit> 

<AllClss> 

<Clss id="1" name="water" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1457512452" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="0" G="0" B="255"></Color> 
<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="2" name="rivers" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1457512957" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="0" G="255" B="0"></Color> 

<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="3" name="glaciers" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1457513758" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="255" G="128" B="0"></Color> 
<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

</AllClss> 

<PropTree version="20100426"> 

<AllProps> 

<PropDscr Flag="0" strUserName="Karolina" tChngTime="1457511670" group_id="shape.geom.object.prop"> 

<PropDscrId GUID="D9CC01FF-7C3D-4861-9608-38D8EB2D3CCC" InstID="Asymmetry"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params></Params> 

</PropDscr> 
<PropDscr Flag="65538" strUserName="Karolina" tChngTime="1457511670" group_id="ext.geom.object.prop"> 
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<PropDscrId GUID="AF0D7167-ADE8-4240-AAA4-AC2C188E9AF5" InstID="Number of pixels"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params></Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1457518552" group_id="relbrdr.nghb.class.prop"> 
<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to glaciers"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="3" type="clssId" name="valClss"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1457512742" group_id="relbrdr.nghb.class.prop"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 
<DValue value="1" type="clssId" name="valClss"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1458209191" group_id="num.nghb.class.prop"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of water (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="1" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 
</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1457511772" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 1"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 1" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1457511772" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 2"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 2" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

</AllProps> 

<UserGroups></UserGroups> 

</PropTree> 

<Brightness> 

<Map MapName="main"> 

<ChnlWghtBrght> 
<BrghtWght val="1." chnl="0"></BrghtWght> 

<BrghtWght val="1." chnl="1"></BrghtWght> 

</ChnlWghtBrght> 

</Map> 

</Brightness> 

<AllVrblClss></AllVrblClss> 

<AllSubClss> 

<Clss Id="1" PrfdGrp="1"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 
<Clss Id="2" PrfdGrp="2"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 

<Clss Id="3" PrfdGrp="3"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 

</AllSubClss> 

<AllTerm> 

<Term TermEvalType="0"> 

<TermBase ClssId="1" flags="0" sComment=""> 
<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="2" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 
</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="3" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

</AllTerm> 

</ClssHrchy> 

<MapVrblCntnr></MapVrblCntnr> 

<FtrListVrblCntnr></FtrListVrblCntnr> 
<CoordVrblCntnr></CoordVrblCntnr> 

<ROIVrblCntnr></ROIVrblCntnr> 

<ImgObjListVrblCntnr></ImgObjListVrblCntnr> 

<ArrayCntnr> 

<Arrays></Arrays> 

<ArrayVrbls></ArrayVrbls> 

</ArrayCntnr> 

<Smpls> 

<AllClss> 

<SmplList ClssId="1"></SmplList> 

<SmplList ClssId="2"></SmplList> 
<SmplList ClssId="3"></SmplList> 

</AllClss> 

<AllProp></AllProp> 

</Smpls> 

<plugin-list> 

<plugin name="eCognition Internal Process Algorithms" version="0.1"></plugin> 

<plugin name="eCognition Internal Export Process Algorithms" version="0.1"></plugin> 

<plugin name="eCognition Basic Process Algorithms" version="0.1"></plugin> 

</plugin-list> 

</ObjectDependencies> 

<CustProcAlgrList></CustProcAlgrList> 

<ProcessList> 
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<ProcBase Name="multiresolution segmentation" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="100 [shape:0.1 compct.:0.7] creating 'New Level'" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="6534F2E1-485B-406f-B990-350824399FA8"> 

<Params> 

<DValue value="1" type="bool" name="bDoOverwrite"></DValue> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 
<DValue value="4" type="int" name="eLvlUsage"></DValue> 

<DValue value="5" type="int" name="iCompMode"></DValue> 

<DValue type="vector" name="vImgLayerWghtVarOrValue"> 

<Values> 

<DValue type="vector" indx="0"> 

<Values> 

<DValue type="img_chnl" value="Layer 1" scope="" indx="0"></DValue> 

<DValue value="1." type="double" indx="1"></DValue> 

</Values> 

</DValue> 

</Values> 

</DValue> 
<DValue type="vector" name="vImgLayerWght"> 

<Values> 

<DValue type="vector" indx="0"> 

<Values> 

<DValue type="img_chnl" value="Layer 1" scope="" indx="0"></DValue> 

<DValue value="1." type="double" indx="1"></DValue> 

</Values> 

</DValue> 

</Values> 

</DValue> 

<DValue type="vector" name="vThmLayerFlags"> 
<Values></Values> 

</DValue> 

<DValue value="100." type="double" name="vrblValScale"></DValue> 

<DValue value="0.10000000000000001" type="double" name="vrblHCShape"></DValue> 

<DValue value="0.69999999999999996" type="double" name="vrblHCArea"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="682A3AA1-9F4F-4dae-9E44-5015DF867712"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 
<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="MNDWI" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 
</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="with Mean Layer 1 > 180  at  New Level: water" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Disabled" type="string" indx="0"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 
<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 1"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="180." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 
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</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 
<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="do" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 
<ProcBase Name="loop: unclassified with Mean Layer 1 > 160  and Rel. border to water > 0.25  and Mean Layer 2 &lt;= 0.5  at  New Level: water" bLoopChg="1" bExpand="1" bActive="1" bAutoName="1" 

bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1" type="int"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 1"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="160." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.25" type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

<TermCondition eCmpr="1" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 2"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.5" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 
</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 
</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="do" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 
<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="loop: unclassified with Mean Layer 1 > 150  and Rel. border to water > 0.4  at  New Level: water" bLoopChg="1" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 
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</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 
<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 1"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="150." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.40000000000000002" type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify rivers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="water with Asymmetry > 0.85  and Rel. border to water &lt; 0.15  and Number of water (0) &lt; 2  at  New Level: rivers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" 

sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="2" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 
<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="D9CC01FF-7C3D-4861-9608-38D8EB2D3CCC" InstID="Asymmetry"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.84999999999999998" type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.14999999999999999" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="2"> 
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<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of water (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="2." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify glaciers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="water with Mean Layer 2 > 2  at  New Level: glaciers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="3" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 2"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="2." type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify water" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 
</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="glaciers with Rel. border to water > 0.4  and Rel. border to glaciers &lt;= 0.1  at  New Level: water" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 
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<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="3" type="clssId" indx="0"></DValue> 
<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 
<ProcVrblVal2> 

<DValue value="0.40000000000000002" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="1" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to glaciers"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="0.10000000000000001" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify glaciers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 
<ProcBase Name="water with Rel. border to glaciers >= 0.4  and Rel. border to water &lt; 0.1  and Mean Layer 2 > 0.5  at  New Level: glaciers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" 

bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="3" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to glaciers"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.40000000000000002" type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to water"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.10000000000000001" type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 2"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.5" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 
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</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 
<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="do" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 
</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 
<SubProc> 

<ProcBase Name="rivers with Mean Layer 2 > 1  at  New Level: glaciers" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="3" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="2" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 2"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="merge" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="water at  New Level: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 
</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 
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</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 
<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="do" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 
<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 
</Domain> 

<SubProc> 

<ProcBase Name="water at  New Level: export object shapes to ObjectShapes" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="E8AAA2C4-4DCA-4684-A918-87E7C53CDC8D"> 

<Params> 

<DValue value="0" type="int" name="eExportMode"></DValue> 

<DValue value="ObjectShapes" type="string" name="strExportItem"></DValue> 

<DValue value="-1" type="procVarId" name="vrblExportItem"></DValue> 
<DValue value="E:\Landsat\2005\lakes\water_x.shp" type="string" name="strExportPath"></DValue> 

<DValue value="0" type="bool" name="bExportSeries"></DValue> 

<DValue value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?>&#xA;&lt;ExportInfo SingleFilePerWksp=&quot;0&quot; SingleFilePerItem=&quot;1&quot; 

ExportItem=&quot;ObjectShapes&quot; ExportType=&quot;Vector&quot; DriverID=&quot;SHP&quot; ExportPath=&quot;E:\Landsat\2005\lakes\water_x.shp&quot;>&lt;/ExportInfo>" type="string" 

name="strExportItemInfo"></DValue> 

<DValue value="temporary" type="string" name="valExportTempLayer"></DValue> 

<DValue type="vector" name="vColInfo"> 

<Values></Values> 

</DValue> 

<DValue value="0" type="bool" name="bUseFtrList"></DValue> 

<DValue value="Click to edit attribute table" type="string" name="EditAttrTbl"></DValue> 
<DValue value="-1" type="procVarId" name="FeatureListAttrTbl"></DValue> 

<DValue value="3" type="int" name="eGeomType"></DValue> 

<DValue value="5" type="int" name="eExprtType"></DValue> 

<DValue value="0" type="bool" name="bUse3DCoords"></DValue> 

<DValue value="1" type="bool" name="bShpUseGeocoding"></DValue> 

<DValue value="0" type="int" name="eCoordOrient"></DValue> 

<DValue value="SHP" type="string" name="eExprtFormat"></DValue> 

<DValue value="" type="string" name="featClassName"></DValue> 

<DValue type="img_chnl" value="" name="pRefChnl"></DValue> 

<DValue value="{:ArcSDE.Connect.Dir}\default.das" type="string" name="exprtStorageLocFile"></DValue> 

<DValue value="0,2000000" type="string" name="spatDomainOffset"></DValue> 
<DValue value="1000" type="string" name="spatDomainPrec"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 
<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 
</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 
</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</ProcessList> 

<ExportedItems> 

<item name="ObjectShapes" type="Vector" driver="SHP" ext="shp" path="E:\Landsat\2005\lakes\water_x.shp"></item> 

</ExportedItems> 

<LcnsIds></LcnsIds> 

</eCog.Proc> 

 



100  Appendix B 
   

 

 

 

 

 

 



Appendix C  101 
   

 

 

Appendix C 

 

Code for delineating snow avalanche boundaries 

 

Copy the code and save as *.dcp file to use it in eCognition Developer 9.1. Input data to use the 

code are: Layers 1, 2, and 3 – NIR image bands, Layer 4 – water index, Layer 5 – SD of water 

index, Layer 6 – vegetation index. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<eCog.Proc UserName="korzeniowska" Company="" Copyright="" version="20140418" use-reproducable-poly="1" project-unit="5" engine-version="9.1.1" engine-build="2799" update-topology="0" 

distance_calculation="CG" resampling_compatibility="0" ver="1"> 

<ruleset-info> 

<name></name> 

<author>Karolina</author> 

<tags></tags> 

<version></version> 

<description></description> 

<input></input> 

<output></output> 
</ruleset-info> 

<ParamValueSetCntnr></ParamValueSetCntnr> 

<ObjectDependencies> 

<ImgLayers> 

<ChnlProxyCntnr> 

<Layers> 

<ChnlProxy strName="Layer 1" flags="4"> 

<Assignment Chnl="0" MapName="main"></Assignment> 

<LastAssignment Chnl="0" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</ChnlProxy> 
<ChnlProxy strName="Layer 4" flags="4"> 

<Assignment Chnl="3" MapName="main"></Assignment> 

<LastAssignment Chnl="3" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</ChnlProxy> 

<ChnlProxy strName="Layer 5" flags="4"> 

<Assignment Chnl="4" MapName="main"></Assignment> 

<LastAssignment Chnl="4" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</ChnlProxy> 

<ChnlProxy strName="Layer 6" flags="4"> 

<Assignment Chnl="5" MapName="main"></Assignment> 
<LastAssignment Chnl="5" MapName="main"></LastAssignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</ChnlProxy> 

</Layers> 

<Variables></Variables> 

</ChnlProxyCntnr> 

</ImgLayers> 

<ThmLayers> 

<ChnlProxyCntnr> 

<Layers></Layers> 

<Variables></Variables> 
</ChnlProxyCntnr> 

</ThmLayers> 

<MapLvlProxyCntnr> 

<MapLvlProxies> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Assignment MapLvl="2" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
</MapLvlProxies> 

<MapLvlVrblValues></MapLvlVrblValues> 

</MapLvlProxyCntnr> 

<ProcVrblCntnr></ProcVrblCntnr> 

<ClssHrchy EvalInvalid="1" MinProb="0.10000000000000001" NNSlope="0.20000000000000001" RdiResamplOptns="3"> 

<MapUnit> 

<Map MapName="main" Unit="5"></Map> 

</MapUnit> 

<AllClss> 

<Clss id="1" name="rough_snow" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1476970041" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="0" G="255" B="255"></Color> 

<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="2" name="vegetation" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1476943566" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="0" G="128" B="0"></Color> 
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<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="3" name="veg_buffor" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1476882917" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="255" G="0" B="255"></Color> 
<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="4" name="dark_objects" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1476968918" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="0" G="0" B="128"></Color> 

<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="5" name="snow" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1477290012" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="255" G="192" B="87"></Color> 
<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

<Clss id="6" name="test" flag="0" iMaskID="-1" bUsePrntClr="0" dPrntClssBrghtns="0." termType="0" strUserName="Karolina" tChngTime="1477580709" bShow="0" Trans="0." sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Color R="255" G="0" B="0"></Color> 

<SharedInfo bShared="0" strInstGUID=""></SharedInfo> 

</Clss> 

</AllClss> 

<PropTree version="20100426"> 

<AllProps> 
<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476866023" group_id="cntrnghb.pixel.chnl.object.prop"> 

<PropDscrId GUID="F166AA8A-C445-4c0d-8598-84720BE03D97" InstID="Contrast to neighbor pixels Layer 4 (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 4" scope="" name="valChnl"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476866042" group_id="cntrnghb.pixel.chnl.object.prop"> 

<PropDscrId GUID="F166AA8A-C445-4c0d-8598-84720BE03D97" InstID="Contrast to neighbor pixels Layer 4 (1)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 4" scope="" name="valChnl"></DValue> 

<DValue value="1" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476865937" group_id="brdrcntrst.pixel.chnl.object.prop"> 

<PropDscrId GUID="EA1C8F1D-A983-4860-A019-04927B30BFFF" InstID="Border Contrast Layer 4"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 
<DValue type="img_chnl" value="Layer 4" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476873693" group_id="dirmean.shape.texture.object.prop"> 

<PropDscrId GUID="E2921CE0-1920-4cde-8A23-E00C3C4FBCB9" InstID="Direction of sub-objects: mean (1)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="1" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 
<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476866129" group_id="edge.pixel.chnl.object.prop"> 

<PropDscrId GUID="BDA5AE6B-A63C-467d-A1AA-2B9D8347286C" InstID="Edge Contrast of neighbor pixels (Prototype) Layer 4 (3)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 4" scope="" name="valChnl"></DValue> 

<DValue value="3" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="65538" strUserName="Karolina" tChngTime="1476426603" group_id="ext.geom.object.prop"> 

<PropDscrId GUID="AF0D7167-ADE8-4240-AAA4-AC2C188E9AF5" InstID="Number of pixels"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params></Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1477028025" group_id="relbrdr.nghb.class.prop"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="1" type="clssId" name="valClss"></DValue> 

</Params> 

</PropDscr> 
<PropDscr Flag="2" strUserName="Karolina" tChngTime="1477384127" group_id="relbrdr.nghb.class.prop"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to test"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="6" type="clssId" name="valClss"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1477384783" group_id="relbrdr.nghb.class.prop"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to snow"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 
<Params> 

<DValue value="5" type="clssId" name="valClss"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="korzeniowska" tChngTime="1480338375" group_id="num.nghb.class.prop"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of snow (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="5" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 
</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476867099" group_id="num.nghb.class.prop"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of water (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="1" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476884311" group_id="num.nghb.class.prop"> 
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<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of veg_buffor (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="3" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 
</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476867490" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 6"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 6" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476867271" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 5"></PropDscrId> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 5" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476426936" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 4"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 
<DValue type="img_chnl" value="Layer 4" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476964170" group_id="mean.chnl.object.prop"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 1"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue type="img_chnl" value="Layer 1" scope="" name="valChnl"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="korzeniowska" tChngTime="1480401313" group_id="exist.nghb.class.prop"> 
<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of rough_snow (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="1" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476944091" group_id="exist.nghb.class.prop"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of dark_objects (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="4" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476875391" group_id="exist.nghb.class.prop"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of water (2)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 
<DValue value="1" type="clssId" name="valClss"></DValue> 

<DValue value="2" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476879031" group_id="exist.nghb.class.prop"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of vegetation (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="2" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 
</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476969143" group_id="exist.nghb.class.prop"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of veg_buffor (0)"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params> 

<DValue value="3" type="clssId" name="valClss"></DValue> 

<DValue value="0" type="int" name="iDist"></DValue> 

</Params> 

</PropDscr> 

<PropDscr Flag="2" strUserName="Karolina" tChngTime="1476426603" group_id="mean.chnl.object.prop"> 
<PropDscrId GUID="16B7A5B4-D807-4ab1-B769-D536B3C26B20" InstID="Brightness"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<Params></Params> 

</PropDscr> 

<PropDscr Flag="65536" strUserName="Karolina" tChngTime="1476426603" group_id="ext.geom.object.prop"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

<DUnitInfo Conversion="0" UnitType="1" Dim="2"></DUnitInfo> 

<Params></Params> 

</PropDscr> 
</AllProps> 

<UserGroups></UserGroups> 

</PropTree> 

<Brightness> 

<Map MapName="main"> 

<ChnlWghtBrght> 

<BrghtWght val="1." chnl="0"></BrghtWght> 

<BrghtWght val="1." chnl="1"></BrghtWght> 

<BrghtWght val="1." chnl="2"></BrghtWght> 

<BrghtWght val="0." chnl="3"></BrghtWght> 

<BrghtWght val="0." chnl="4"></BrghtWght> 
<BrghtWght val="0." chnl="5"></BrghtWght> 

</ChnlWghtBrght> 

</Map> 

</Brightness> 

<AllVrblClss></AllVrblClss> 

<AllSubClss> 

<Clss Id="1" PrfdGrp="1"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 

<Clss Id="2" PrfdGrp="2"> 

<SubClss></SubClss> 
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<SubGrp></SubGrp> 

</Clss> 

<Clss Id="3" PrfdGrp="3"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 
<Clss Id="4" PrfdGrp="4"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 

<Clss Id="5" PrfdGrp="5"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 

<Clss Id="6" PrfdGrp="6"> 

<SubClss></SubClss> 

<SubGrp></SubGrp> 

</Clss> 
</AllSubClss> 

<AllTerm> 

<Term TermEvalType="0"> 

<TermBase ClssId="1" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="2" flags="0" sComment=""> 
<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="3" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 
<Term TermEvalType="0"> 

<TermBase ClssId="4" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="5" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 
</Weight> 

</TermBase> 

</Term> 

<Term TermEvalType="0"> 

<TermBase ClssId="6" flags="0" sComment=""> 

<Weight> 

<DValue value="1" type="int"></DValue> 

</Weight> 

</TermBase> 

</Term> 

</AllTerm> 
</ClssHrchy> 

<MapVrblCntnr></MapVrblCntnr> 

<FtrListVrblCntnr></FtrListVrblCntnr> 

<CoordVrblCntnr></CoordVrblCntnr> 

<ROIVrblCntnr></ROIVrblCntnr> 

<ImgObjListVrblCntnr></ImgObjListVrblCntnr> 

<ArrayCntnr> 

<Arrays></Arrays> 

<ArrayVrbls></ArrayVrbls> 

</ArrayCntnr> 

<Smpls> 

<AllClss> 
<SmplList ClssId="1"></SmplList> 

<SmplList ClssId="2"></SmplList> 

<SmplList ClssId="3"></SmplList> 

<SmplList ClssId="4"></SmplList> 

<SmplList ClssId="5"></SmplList> 

<SmplList ClssId="6"></SmplList> 

</AllClss> 

<AllProp></AllProp> 

</Smpls> 

<plugin-list> 

<plugin name="eCognition Internal Process Algorithms" version="0.1"></plugin> 
<plugin name="eCognition Internal Export Process Algorithms" version="0.1"></plugin> 

<plugin name="eCognition Basic Process Algorithms" version="0.1"></plugin> 

</plugin-list> 

</ObjectDependencies> 

<CustProcAlgrList></CustProcAlgrList> 

<ProcessList> 

<ProcBase Name="Chessboard segmentation" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="chess board: 1 creating 'New Level'" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="0F96C846-956C-405f-AC42-81EBA4D1A755"> 

<Params> 

<DValue value="1" type="int" name="vrblObjSize"></DValue> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Assignment MapLvl="2" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
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</DValue> 

<DValue value="1" type="bool" name="bDoOverwrite"></DValue> 

<DValue type="vector" name="vGisChnlProxy"> 

<Values></Values> 

</DValue> 

</Params> 
</Algorithm> 

<Domain guid="682A3AA1-9F4F-4dae-9E44-5015DF867712"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="at  New Level: copy creating 'Segmentation 1' above" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="422F931B-FB82-4853-A773-2A821FE23893"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 
<DValue value="1" type="bool" name="bUp"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Assignment MapLvl="2" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
<Values> 

<DValue value="Disabled" type="string" indx="0"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="find dark objects and vegetation" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="unclassified with Mean Layer 6 > 127  at  Segmentation 1: vegetation" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="2" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 6"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="127." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
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<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="unclassified with Brightness &lt; 4000  at  Segmentation 1: dark_objects" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="4" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 
<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="16B7A5B4-D807-4ab1-B769-D536B3C26B20" InstID="Brightness"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="4000." type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="create a buffor around dark objects and vegetation" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="unclassified with Existence of vegetation (0) > 0  or Existence of dark_objects (0) > 0  at  Segmentation 1: veg_buffor" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" 

sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="3" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="1"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of vegetation (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="3A00174B-817F-4dc5-9E59-0A32562CBDDA" InstID="Existence of dark_objects (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 
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</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 
<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="dark_objects at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 
<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="4" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 
</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="vegetation at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 
<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="2" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 
<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="dark_objects, vegetation with Area &lt; 100 Pxl at  Segmentation 1: veg_buffor" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 
<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="3" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 
<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="4" type="clssId" indx="0"></DValue> 

<DValue value="2" type="clssId" indx="1"></DValue> 

<DValue value="User defined" type="string" indx="2"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 
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<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="2" eBaseUnit="1" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 
</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="100." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 
<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="veg_buffor at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="3" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 
</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 
</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 
<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="unclassified with Mean Layer 4 > 127  at  Segmentation 1: snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 
<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="5" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 
<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 
<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 4"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="127." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 
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</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 
<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="classify rough snow using contrast on NDWI" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 
</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 
<SubProc> 

<ProcBase Name="snow with Mean Layer 5 > 1  at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="5" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 
</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 5"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 
<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 
<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="reclassify small objects" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 
</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 
<ProcBase Name="snow at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 
</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 
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<DValue value="5" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 
<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="snow with Rel. border to rough_snow = 1  and Area &lt;= 200 Pxl at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="5" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="5" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="1" eBaseUnit="1" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="200." type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 
</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="snow with Rel. border to rough_snow = 1  and Mean Layer 5 >= 0.75  at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 
<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
<Values> 

<DValue value="5" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="5" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 
<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 5"></PropDscrId> 

</DValue> 
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</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.75" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 
</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 
<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="veg_buffor with Rel. border to rough_snow = 1  and Mean Layer 5 >= 0.75  at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" 

sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 
</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 
<DValue value="3" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="5" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 
</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 5"></PropDscrId> 

</DValue> 
</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.75" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 
<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="rough_snow at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 
<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 
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<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="rough_snow with Area &lt; 1000 Pxl at  Segmentation 1: snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 
</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="5" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 
</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 
<TermCondition eCmpr="2" eBaseUnit="1" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1000." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 
</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 
<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="at  Segmentation 1: convert to sub-objects" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="51AF1228-39D3-4ffc-8530-71FACCA812B7"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Disabled" type="string" indx="0"></DValue> 

</Values> 

</DValue> 
<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 
<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="remove salt pepper noise" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 
<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="5x: rough_snow with Number of rough_snow (0) &lt;= 3  at  Segmentation 1: snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="5." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="5" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
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</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="1" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of water (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="3." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="rough_snow at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 
<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 
<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 
<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
<ProcBase Name="rough_snow with Area &lt; 2000 Pxl at  Segmentation 1: snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="5" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="2" eBaseUnit="1" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="2000." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
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<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
<ProcBase Name="at  Segmentation 1: convert to sub-objects" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="51AF1228-39D3-4ffc-8530-71FACCA812B7"> 

<Params></Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 
<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Disabled" type="string" indx="0"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 
<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="5x: snow with Number of snow (0) &lt;= 3  and Number of rough_snow (0) >= 1  at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" 
sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="5." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="5" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 
</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="1" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of snow (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="3." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="7D1F1A4B-9BFD-4b29-BA08-AA370D63669B" InstID="Number of water (0)"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="reclassify vegetation, dark objects, and buffer" bLoopChg="0" bExpand="1" bActive="1" bAutoName="0" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="A8BA5775-CC39-4194-9A6A-A64872EE1F81"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc> 

<ProcBase Name="dark_objects, veg_buffor, vegetation, unclassified with Brightness > 3000  and Mean Layer 6 &lt; 140  at  Segmentation 1: test" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" 

bSubrtn="0" sComment=""> 
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<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 
<DValue value="6" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
<Values> 

<DValue value="4" type="clssId" indx="0"></DValue> 

<DValue value="3" type="clssId" indx="1"></DValue> 

<DValue value="2" type="clssId" indx="2"></DValue> 

<DValue value="Unclsfy" type="string" indx="3"></DValue> 

<DValue value="User defined" type="string" indx="4"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 
<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="16B7A5B4-D807-4ab1-B769-D536B3C26B20" InstID="Brightness"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="3000." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 
<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 6"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="140." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 
<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 
</ProcBase> 

<ProcBase Name="test at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 
</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
<Values> 

<DValue value="6" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="test with Rel. border to rough_snow &lt; 0.01  at  Segmentation 1: unclassified" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="-1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
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</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="6" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1.e-002" type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="at  Segmentation 1: convert to sub-objects" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="51AF1228-39D3-4ffc-8530-71FACCA812B7"> 
<Params></Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
<Values> 

<DValue value="Disabled" type="string" indx="0"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="loop: test with Rel. border to rough_snow >= 0.5  at  Segmentation 1: rough_snow" bLoopChg="1" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="5." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 
<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="6" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 
<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.5" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 
<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
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<ProcBase Name="2x: test with Rel. border to rough_snow >= 0.25  at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="2." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 
<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 
<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="6" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 
<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.25" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 
<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
<ProcBase Name="loop: test with Rel. border to rough_snow >= 0.5  at  Segmentation 1: rough_snow" bLoopChg="1" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="5." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="6" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 
</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="4" eBaseUnit="0" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="0.5" type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="dark_objects, snow, test, veg_buffor, vegetation at  Segmentation 1: unclassified" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="-1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 
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</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="4" type="clssId" indx="0"></DValue> 

<DValue value="5" type="clssId" indx="1"></DValue> 

<DValue value="6" type="clssId" indx="2"></DValue> 
<DValue value="3" type="clssId" indx="3"></DValue> 

<DValue value="2" type="clssId" indx="4"></DValue> 

<DValue value="User defined" type="string" indx="5"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="unclassified at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 
<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 
<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 
<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 
</ProcBase> 

<ProcBase Name="unclassified with Rel. border to rough_snow = 1  and Area &lt; 1000 Pxl at  Segmentation 1: rough_snow" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" 

sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 
<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 
<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="5" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 
<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="1" eJoint="2"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="03E04ED0-94DD-45ee-801E-14D70E6E2417" InstID="Area"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="1000." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 

</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 
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<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
<ProcBase Name="unclassified with Brightness > 2500  and Mean Layer 4 > 120  and Mean Layer 5 > 0.7  and Mean Layer 6 &lt; 140  and Rel. border to rough_snow = 1  at  Segmentation 1: rough_snow" 

bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="3AC44F21-C6B2-4804-9929-BB18BE6F2051"> 

<Params> 

<DValue value="1" type="clssId" name="valClass"></DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 
<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 

<DValue value="Unclsfy" type="string" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 
</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"> 

<TermThrsh> 

<TermGroup eJoint="2"> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="16B7A5B4-D807-4ab1-B769-D536B3C26B20" InstID="Brightness"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 
<DValue value="2500." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 4"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="120." type="double"></DValue> 
</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="3" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 5"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="0.69999999999999996" type="double"></DValue> 

</ProcVrblVal2> 
</TermCondition> 

<TermCondition eCmpr="2" eBaseUnit="0" eJoint="0"> 

<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="44411C83-609B-4758-93D3-FF62DF246855" InstID="Mean Layer 6"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="140." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

<TermCondition eCmpr="5" eBaseUnit="0" eJoint="2"> 
<ProcVrblVal1> 

<DValue type="propDscrId"> 

<PropDscrId GUID="AA7CAC99-696D-4983-8F48-D07C4F816F2C" InstID="Rel. border to rough_snow"></PropDscrId> 

</DValue> 

</ProcVrblVal1> 

<ProcVrblVal2> 

<DValue value="1." type="double"></DValue> 

</ProcVrblVal2> 

</TermCondition> 

</TermGroup> 

</TermThrsh> 
</DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 
</ProcBase> 

<ProcBase Name="rough_snow at  Segmentation 1: merge region" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="2328636B-BAD3-4f5d-B5AA-FC209A0BFB65"> 

<Params> 

<DValue value="0" type="bool" name="bFsnUp"></DValue> 

<DValue type="vector" name="vThmLayerFlags"> 

<Values></Values> 
</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 
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<Values> 

<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 
<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 
<ProcBase Name="rough_snow at  Segmentation 1: export object shapes to ObjectShapes" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="E8AAA2C4-4DCA-4684-A918-87E7C53CDC8D"> 

<Params> 

<DValue value="0" type="int" name="eExportMode"></DValue> 

<DValue value="ObjectShapes" type="string" name="strExportItem"></DValue> 

<DValue value="-1" type="procVarId" name="vrblExportItem"></DValue> 

<DValue value="D:\Korzeniowska\2013\automatic\snow_avalanches_automatic_X.shp" type="string" name="strExportPath"></DValue> 
<DValue value="0" type="bool" name="bExportSeries"></DValue> 

<DValue value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?>&#xA;&lt;ExportInfo SingleFilePerWksp=&quot;0&quot; SingleFilePerItem=&quot;1&quot; 

ExportItem=&quot;ObjectShapes&quot; ExportType=&quot;Vector&quot; DriverID=&quot;SHP&quot; 

ExportPath=&quot;D:\Korzeniowska\2013\automatic\snow_avalanches_automatic_X.shp&quot;>&lt;/ExportInfo>" type="string" name="strExportItemInfo"></DValue> 

<DValue value="temporary" type="string" name="valExportTempLayer"></DValue> 

<DValue type="vector" name="vColInfo"> 

<Values></Values> 

</DValue> 

<DValue value="0" type="bool" name="bUseFtrList"></DValue> 

<DValue value="Click to edit attribute table" type="string" name="EditAttrTbl"></DValue> 

<DValue value="-1" type="procVarId" name="FeatureListAttrTbl"></DValue> 

<DValue value="3" type="int" name="eGeomType"></DValue> 
<DValue value="5" type="int" name="eExprtType"></DValue> 

<DValue value="0" type="bool" name="bUse3DCoords"></DValue> 

<DValue value="1" type="bool" name="bShpUseGeocoding"></DValue> 

<DValue value="0" type="int" name="eCoordOrient"></DValue> 

<DValue value="SHP" type="string" name="eExprtFormat"></DValue> 

<DValue value="" type="string" name="featClassName"></DValue> 

<DValue type="img_chnl" value="" name="pRefChnl"></DValue> 

<DValue value="{:ArcSDE.Connect.Dir}\default.das" type="string" name="exprtStorageLocFile"></DValue> 

<DValue value="700000,100000" type="string" name="spatDomainOffset"></DValue> 

<DValue value="1000" type="string" name="spatDomainPrec"></DValue> 

</Params> 
</Algorithm> 

<Domain guid="CED621BD-F4D1-4ffa-A2F6-DB2BB1913E8C"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

<DValue type="vector" name="mClssFltr"> 

<Values> 
<DValue value="1" type="clssId" indx="0"></DValue> 

<DValue value="User defined" type="string" indx="1"></DValue> 

</Values> 

</DValue> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

<DValue value="From Parent" type="string" name="valROI"></DValue> 

<DValue value="0" type="int" name="iNumMaxObj"></DValue> 

<DValue value="4" type="int" name="iVersion"></DValue> 

<DValue value="-1" type="int" name="iOldLvl"></DValue> 

<DValue value="0" type="int" name="iOldDsplLvl"></DValue> 
<DValue value="0" type="int" name="iOldDsplNumLvl"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 
</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

</SubProc> 

</ProcBase> 

<ProcBase Name="delete 'New Level'" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 

<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 
<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="4D72CCF3-EB44-4dcb-B5E1-70CA007D50CE"> 

<Params> 

<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="New Level" bVrbl="0"> 

<Assignment MapLvl="2" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 
</Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 

<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

<ProcBase Name="delete 'Segmentation 1'" bLoopChg="0" bExpand="1" bActive="1" bAutoName="1" bSubrtn="0" sComment=""> 
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<LcnsInfo sLcnsId="" sPwd=""></LcnsInfo> 

<vrblValMaxCycle> 

<DValue value="1." type="double"></DValue> 

</vrblValMaxCycle> 

<Algorithm guid="4D72CCF3-EB44-4dcb-B5E1-70CA007D50CE"> 

<Params> 
<DValue type="lvlName" name="valMapLvl"> 

<MapLvlProxy strName="Segmentation 1" bVrbl="0"> 

<Assignment MapLvl="1" MapName="main"></Assignment> 

<Scope GUID="00000000-0000-0000-0000-000000000000"></Scope> 

</MapLvlProxy> 

</DValue> 

</Params> 

</Algorithm> 

<Domain guid="CC9F2C30-4DB0-4ef2-B864-63560D1D6BF3"> 

<Params> 

<DValue type="threshold" name="valThrsh"></DValue> 

<DValue type="threshold" name="valThrsh2"></DValue> 
<DValue value="From Parent" type="string" name="valMap"></DValue> 

</Params> 

</Domain> 

<SubProc></SubProc> 

</ProcBase> 

</ProcessList> 

<ExportedItems> 

<item name="ObjectShapes" type="Vector" driver="SHP" ext="shp" path="D:\Korzeniowska\2013\automatic\snow_avalanches_automatic_X.shp"></item> 

</ExportedItems> 

<LcnsIds></LcnsIds> 

</eCog.Proc> 
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