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Abstract

This paper studies the persistence of daily returns of 21 German
stocks from 1960 to 2008. We apply a widely used test based upon
the modified R/S-Method by Lo [1991]. As an extension to Lux [1996]
and Carbone et al. [2004] and in analogy to moving average or moving
volatility, the statistics is calculated for moving windows of length 4,
8, and 16 years for every time series. Periods of persistence or long
memory in returns can be found in some but not all time series. Ro-
bustness of results is verified by investigating stationarity and short
memory effects.

1 Introduction

It is widely accepted that stock market returns do not exhibit persistence,
see e.g. Lo [1991], Lux [1996] for the case of Germany, and recently Assaf
[2008]. This assertion is based upon tests for persistence which apply to the
complete time series. A major drawback of this approach is arbitrariness
as to start and end date. Furthermore, when testing a time series for long
memory the stability of the parameter should be studied carefully. If results
characterize the whole time series, they should not vary very much if applied
to windows of the same size but at different points in time, see e.g. Alexander
[2001] or Zivot and Wang [2006]. However, in a recent study Hassler and
Nautz [2008] analyse the EONIA spread and show that there is a change in
persistence over time. Carbone et al. [2004], Cajueiro and Tabak [2004], and
Silva et al. [2007] have applied rolling analysis techniques to financial time
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series. It was found that the persistence parameter changes significantly
over time. The concept of changing Hurst exponent can also be found in
the analysis of heartbeat dynamics, see e.g. Martinis et al. [2004].

It is conceivable that persistence is a property not so much of the stock
but rather the beholder, i.e. the bid and ask side to the stock. A company
owned by one type of investor, say an insurance company, can be sold to
a very different type, e.g. a hedge funds that is very sensitive to slight
losses of the company’s market value. In the first case, changes in the
stock price may not exert much pressure on the owner. This inertia damps
reactions to market movements. However, in the second case a stop loss
algorithm may be in place selling the stock right after a minor dip in value.
Thus, investor behavior pertaining to the particular stock changes with time.
Rolling analysis is able to detect this effect.

Long memory or synonymously persistence has severe consequences for
practically very important fields such as risk measurement and derivatives
pricing. Usually, a value at risk calculation scheme does not include auto-
correlations of time series, see e.g. Jorion [2007]. Therefore, a simple scaling
rule is used for applying results for one time scale to another one. This is not
admissible for persistent time series. Moreover, long memory processes are
no semi-martingales. Therefore common strategies for calculating prices of
financial contracts fail, see e.g. Rogers [1997], Cheridito [2003] and Bender
et al. [2007].

In this paper, we apply rolling analysis of persistence to 21 time series
that have at least once belonged to the DAX and cover a time span of about
48 years. First, we count all periods for which a test for persistence rejects
the null hypothesis (no persistence) at the 5%-level. Second, we count the
maximum number of connected periods that show persistence. This number
gives an indication as to the likeliness of an error of the first kind in the
estimation. In addition, we address the question whether stock markets get
more efficient over time. If this is the case, persistence should decrease over
time and no new persistent periods should appear. The results obtained
so far are then checked for robustness against short range autocorrelation,
trends and heavy tails.

The rest of the paper ist organized as follows. In the next two sections
long memory and some models are introduced. Section 4 discusses tests
for long memory. In section 5, results for rolling analyis of persistence are
presented. In section 6 we conclude.

2 Long Memory

A widely accepted definition of long memory is expressed in terms of the
autocorrelation function ρk. A stationary process has long memory if there
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Figure 1: Autocorrelation function for Gaussian Series (H = 0.5), moder-
ately persistent fractional Gaussian series (H = 0.6) and strongly persistent
fractional Gaussian series (H = 0.7). Dashed lines: theoretical ACF. Length
of series: 10.000 points.

exist H ∈ [1/2, 1] and cρ > 0 such that

lim
k→∞

ρk
cρk2(H−1)

= 1. (1)

For H > 1/2 the autocorrelation function ρk decays so slowly that the sum

lim
n→∞

n∑
k=−n

|ρk|. (2)

diverges. Recall that for short memory time series as for example ARMA
processes the sum of autocorrelations is finite. In the long memory case, even
small individual autocorrelations do collectively spoil statistical inference. In
Fig. 1 we show the autocorrelation functions for an ordinary, an intermedi-
ately and a strongly persistent Gaussian process. The depicted sample paths
corroborate the following two remarks. First, for processes with intermedi-
ate long memory, autocorrelations are very difficult to detect. The individ-
ual autocorrelations barely pass the threshold of significance (dashed line).
Second, if long memory is present, estimated autocorrelations are mostly
positive (theoretical autocorrelations must be positive). Shocks exerced on
the time series at a certain moment in time persist in principle arbitrarily
long, thus giving rise to the term persistence which is used synonymously
with long memory.

Beran [1994] collects some qualitative features of long memory processes.
The sample paths show the following properties.

• Long periods of observations at high levels are followed by long periods
of observations at low levels and vice versa.

• At short time periods aperiodic cycles or trends are apparent.

• On the whole, the time series looks stationary.
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An introduction to the topic of aperiodic cycles can be found in Mandelbrot
[1972]. Peters [1994] has devoted a large part of his more phenomenological
monography to this phenomenon.

3 Models

There are two well studied theoretical models with long memory: fractional
Brownian Motion and fractional ARIMA processes. The first one can be
viewed as a generalization of Brownian motion. The second class can be
looked upon as integrated ARMA processes. As for Brownian motion and
the ARIMA processes the first one is continuous and the second are discrete.
For a detailed survey of time series with long-memory confer e.g. Beran
[1994] or Baillie [1996] and references given there.

Continuous time: fractional Brownian motion Fractional Brownian
motion can be defined in two ways: Either by fixing its properties, in par-
ticular its autocorrelation structure, or by an integral formulation based on
ordinary Brownian motion. In the following, both ways are sketched briefly
starting with the latter.

In order to motivate the integral formulation of fractional Brownian mo-
tion, we take a detour to fractional calculus of real variables, starting with
the familiar Cauchy formula of repeated integration. Consider the operator
J on a well behaved function f , defined as

(Jf)(x) =
∫ x

0
f(t)dt.

(3)

The Cauchy formula of repeated application of J reads

(Jnf)(x) =
1

Γ(n)

∫ x

0
(x− t)n−1f(t)dt. (4)

where Γ(n) = (n − 1)! and n ∈ N. Define a function F such that f = dF
dx .

Furthermore, set n = H + 1/2 with H ∈ [12 , 1[. This leads to the equation

(JH+1/2dF

dx
)(x) =

1
Γ(H + 1/2)

∫ x

0
(x− t)H−1/2dF. (5)

As can be shown only if H = 1/2 the usual derivative of equation (5) with
respect to x leads to a local property, i.e. evaluation of the function f at x.
In all other cases the derivative contains mixing of influences of the complete
function f on the interval [0, t].
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Now, reinterpret the integral in equation (5) as stochastic integral1 and
replace F by Brownian motion B. Then – for H = 1/2 – the familiar
stochastic integral formulation for Brownian motion is found.

B(t) =
∫ t

0
dB(s). (6)

Setting BH := (JH+1/2 dB
dt ) leads to the defining equation of fractional Brow-

nian motion2

BH(t) = C

∫ t

0
(t− s)H−1/2dB(s) (7)

It was derived by Mandelbrot and van Ness [1968]. The constant C is given
by3 C = 1/Γ(H + 1/2). Choosing C in this way provides the formal link
to the Cauchy integral formula. There are different conventions, as e.g.
Shiryaev [1999]

C =

√
2HΓ(3

2 −H)
Γ(1

2 +H)Γ(2− 2H)
, (8)

in order to ensure EB2
H(1) = 1.

Although the construction by analogy to fractional calculus is quite in-
triguing, Marinucci and Robinson [1999] have shown that the increments of
the resulting time series are non-stationary due to the finite lower bound in
the integral in eq. (7). In addition, Davidson and Hashimzade [2009] point
out that due to the mixing of influences from the whole stochastic process
on the interval [0, t] the starting point of the time series must be at −∞
in order to ensure elimination of the influence of the starting shock on the
time series. Setting the lower bound of the integral at −∞, i.e. adding the
complete ’history’ from −∞ to the origin, and subtracting a constant as to
fix the resulting path at the origin leads to fractional Brownian Motion of
type I. It is stationary and overcomes the starting point problem. It can be
written as

BH(t) = C

{ ∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dB(s)

+
∫ t

0
(t− s)H−1/2dB(s)

}
. (9)

where C = 1/Γ(H+1/2). Different choices for C are possible, as seen before.
Davidson and Hashimzade [2009] have studied the properties of fBM of types
I and II.

1In an appropriate sense, see e.g. Beran [1994]; Shiryaev [1999]
2of type II, see below
3Γ(x) =

∫∞
0

tx−1e−tdt.
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The essential characteristics of fractional Brownian motion as defined
in eq. (9) can be summarized in the property-based definition. Following
Beran [1994], Fractional Brownian motion (fBm) is defined as follows.

Definition 1 (fractional Brownian Motion) Let BH(t) with fixed H ∈
(0, 1) be a stochastic process with continuous path and the following proper-
ties

1. For every t BH(t) is a Gaussian random variable.

2. BH(0) = 0

3. Cov[BH(t), BH(s)] = σ2

2

[
|s|2H + |t|2H − |t− s|2H

]
4. E[BH(t)−BH(s)] = 0

Then BH(t) is a fractional Brownian motion.

The variance of an arbitrary increment is Var[BH(t)−BH(s)] = σ2|t−s|2H .
For H = 1/2 this expression coincides with the variance of an increment
of ordinary Brownian motion. Note, that for any value of H there exists
exactly one process satisfying definition 1. This process is explicitly given
by equation (9). In turn, definition 1 summarizes the key properties of the
processes defined in eq. (9).

Calculating increments of fBm leads to fractional Brownian noise (fBn),
the fractional version of Gaussian noise

βH(t) = BH(t)−BH(t− 1), t ≥ 1. (10)

As for fBm 1
2 < H < 1. Fractional Brownian noise is stationary. The

autocorrelations for this process are given by

ρ(k) =
1
2
[
|k + 1|2H + |k − 1|2H − 2|k|2H

]
. (11)

For large k expansion of equation (11) in leading order in 1/k → 0 results
in:

ρ(k) ∼ 1
2
[
H(2H − 1)|k|2H−2

]
, k →∞ (12)

If H ∈]1/2, 1[ this expression converges to zero too slowly as k → ∞, such
that

∞∑
0

ρ(k) =∞.

According to definition (1) fBn is a long memory process. Mandelbrot
and van Ness [1968] show that processes with autocorrelation function eq.
(11) are self similar.
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Discrete time: Fractional ARIMA Processes The above definition
of fractional Brownian noise is a continuous time representation. The coun-
terpart in discrete time modelling is fractionally differenced white noise4. It
was first introduced by Granger and Joyeux [1980] and Hosking [1981].

Definition 2 (fractionally differenced white noise) Let εt be a process
with E(εt) = 0, E(ε2t ) = σ2and E(εtεt′) = 0 for t 6= t′ then the process Xt,
defined by

(1−B)dXt = εt. (13)

with d non-integer is called fractionally differenced white noise.

The process is invertible for d > −1
2 . For d < 1

2 it is weakly stationary.
Given this definition any ARMA process can be constructed with fractionally
differenced increments, according to

φ(B)(1−B)dYt = θ(B)εt (14)

where φ and θ are the usual AR- and MA-polynomials. The fractional
difference can be expressed as

(1−B)d =
∞∑
k=0

Γ(d+ 1)
Γ(k + 1)Γ(d− k + 1)

(−1)kBk (15)

for any d > −1. The autocorrelation function of Xt is

ρ(k) =
Γ(k + d)Γ(1− d)
Γ(k − d+ 1)Γ(d)

. (16)

For d > 0, the autocorrelation is positive at all lags. As k →∞ the follwoing
relation holds:

ρ(k) ∼ Γ(1− d)
Γ(d)

k2d−1, k →∞ (17)

For d > 0 ρ(k) decays so slowly with increasing lag that equation (16) it is
not summable. Closing the section we note that comparing equations (17)
and (12) suggests

H = d+
1
2

(18)

which can also be rigorously shown, see e.g. Geweke and Porter-Hudak
[1983].

4Heuristically, fGn results from integrating fractionally and then differencing of order
1. This leads to a ’net’ differenced process.
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4 Tests

Testing for long memory has proven to be an intricate task. Many efforts
have been undertaken with respect to discerning long memory from either
short memory, see e.g. Lo [1991], Davidson and Sibbertsen [2009], or struc-
tural breaks, see e.g. Krämer et al. [2002], Krämer and Sibbertsen [2002],
Hassler and Olivarez-Horn [2008], or trends, see e.g. Beran [1994], Hu et al.
[2001]. However, although understanding of tests and deducible implications
has improved considerably in the last years no technique free of arbitrariness
has been proposed yet.

Hurst [1951] has proposed a non-parametric estimator for the long mem-
ory exponent H, which has been used by Mandelbrot and van Ness [1968],
Mandelbrot and Wallis [1968, 1969] and refined mainly to improve robust-
ness against short memory by Lo [1991]. This method will be described
in detail below. Another non-parametric method, Detrended Fluctuation
Analysis (DFA) studies the scaling behavior of the variance, Peng et al.
[1994]; Cannon et al. [1997].

A semi-parametric estimation technique has been proposed by Geweke
and Porter-Hudak [1983]. Variations have been proposed by Robinson [1995]
Moulines and Soulier [1999] among others in order to discern between short
and long memory. A remarkable work has been presented in Davidson and
Sibbertsen [2009]. Its authors point towards a rigorous test to differentiate
between long and short memory but also stress fundamental limitations of
such tests. There exist several parametric methods based on maximum
likelihood estimation. These are described in detail e.g. in Beran [1994] and
Baillie [1996].

For the present study Lo’s extension of Hurst’s rescaled range method has
been chosen by the authors for several reasons. Firstly, it is a non-parametric
method that consumes relatively few computing power. Secondly, although
there are many drawbacks with respect to robustness in the presence of short
memory and trends, these properties are well studied and can be accounted
for to a certain extent, see Lo [1991], Kunze [2009]. Thirdly, a simple test
statistics is available and asymptotic quantiles are reasonable for time se-
ries of finite length. For a detailed analysis of size, power and robustness,
especially in the context of finite time series see Kunze [2009].

In the following the method will be presented in some detail. A very
thorough and accurate description is given by Lo [1991]. Let {xi, i ∈
[1, 2 . . . , N ]} be a discrete stationary time series with partial sums

Xt,k =
t+k∑
i=t

xi. (19)

The argument t marks the starting point, k the end point of the summation.
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Figure 2: Definition of the range. Depicted is R(t = 0, k = 1) in the
continuous case. Maximum and minimum are measured from the trend-line
(dotted line). The trend is therefore implicitly removed.

Given these preliminaries the range is defined as

R(t, k) = max
0≤i≤k

[
Xt,i −

i

k
Xt,k

]
− min

0≤i≤k

[
Xt,i −

i

k
Xt,k

]
(20)

The term 1
kXt,k is the empirical mean of the partial series {xi, i ∈ [t, . . . , t+

k]}. The difference Xt,i− i
kXt,k is the deviation of the partial sum from the

trend with index i ≤ k. For i = k the difference vanishes. Therefore the
first term (maximum) is non-negative and the second term (minimum) is
non-positive. It follows that, that R(t, k) is non-negative. The concept is
illustrated in Figure 2.

The expression R(t, k) is normalized by the (ML-) estimator of the stan-
dard deviation for the partial series between xt and xt+k:

S(t, k) =

[
1
k

t+k∑
i=t+1

(
xi −

1
k
Xt,k

)2
]1/2

. (21)

The quotient of R(t, k) and S(t, k)

Q(t, k) = R/S =
R(t, k)
S(t, k)

(22)

is known as classical R/S statistics. It is invariant under transformations
xk → c(xk + m), k ≤ 1. Therefore the statistics is independent of the first
two moments of the distribution of xk.
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Table 1: Quantiles of the distribution of Q(t, k) under H0, (Gaussian noise)
(H = 0.5, 10000 simulations)

Nr. H Länge 0.005 0.025 0.050 0.950 0.975 0.995
1 0.50 250 0.6699 0.7516 0.8003 1.6712 1.7931 2.0143
2 0.50 1000 0.6897 0.7797 0.8276 1.7037 1.8130 2.0758
3 0.50 10000 0.6985 0.7973 0.8483 1.7364 1.8591 2.1002
4 0.50 ∞ 0.7212 0.8094 0.8613 1.7473 1.8624 2.0977

The probability distribution of Q(t, k) under the null hypothesis ’Gaus-
sian noise’ was found by Kennedy [1976] and Siddiqui [1976] based on work
by Feller [1951]. With the notation FQ(x) = P (Q < x) it reads

FQ(x) = 1 + 2
∞∑
k=1

(1− 4k2x2) exp
(
−2 (kx)2

)
, (23)

The null hypothesis should be rejected at the respective confidence level if
the absolute value of Q(t, k) is larger (smaller) than the appropriate quantile.
Quantiles are given in Table 1

As has been shown by Lo [1991] short memory can lead to a considerable
increase in empirical size of the test. This finding has led him to replace the
denominator in Q(t, k) by a heteroskedasticity and autocovariance consistent
(HAC) estimator

σ2
q (t, k) =

1
k

t+k∑
j=t

(
xj −

1
k
Xj,k

)2

+
2
k

q∑
j=1

ωj(q)


t+k∑
i=j+t

(
xi −

1
k
Xi,k

)(
xi−j −

1
k
Xi−j,k

)
ωj(q) ≡ 1− j

q + 1
q < n. (24)

In choosing ωj(q) he follows Newey and West [1987]. Different choices and a
more general formulation of the summation weights can be found in Andrews
[1991]. The modified statistics, also known as Lo’s statistics is given by

Qq(t, k) = R/Sq =
R(t, k)
σq(t, k)

. (25)

As has been shown by Lo, the quantiles in Table 1 are still valid. However,
the choice of q, the truncation parameter determining the included lags in
equation 24, is non-trivial. It is now understood that Lo [1991] has chosen
q in a way that renders the test very conservative, see e.g. Teverovsky et al.
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[1999]. Willinger et al. [1999] pointed out that the Hurst exponent of stock
market returns is expected to be lower than 0.6. Finding the right trade-
off between detection of long memory and excluding short-memory bias is
therefore very delicate.

In order to account for short memory effects, the modified Lo statistic
with lag 0, 5 and 21 days is used and presented. As has been pointed
out by Kunze [2009], for time series with a length of 10.000 data points
any autocorrelation (short or long memory) leads to a decreasing value for
the Lo-statistics as the lag increases from zero. For a lag larger than 10
days a synthetic time series with H = 0.6 is not correctly identified as
long memory. Interestingly, for increasing lag after passing a minimum Lo’s
statistics increases again. This effect can be seen in Lo [1991] and Lux
[1996] but has not been recognized properly. Simulation studies have shown
that lags in the vicinity of the length of the time series distort the statistics
upwards and lead to an error of first kind, see Kunze [2009].

5 Empirical Results

We have investigated 21 time series of the German stock market who at least
once belonged to the DAX (Deutscher Aktien-Index). Mostly, the time series
start on January 5th 1960 and end on January 31st 2008. They have been
transformed into daily percentage total return time series and are provided
by the Karlsruher Kapitalmarktdatenbank5 (KKMDB).

Throughout the study a time series is called persistent if the test statis-
tics, equation (25), exceeds the 5% quantile of the Feller distribution, equa-
tion (23), i.e.

Qq(t, k) = R/Sq > 1.7473. (26)

Persistence is measured for time windows of length fixed at 1000, 2000, and
4000 data points, corresponding to 4, 8, and 16 years. The pertaining value
of the statistics is then attached to the last day in the time series. These
windows are moved across the time series thus generating an analogue to
a moving average or moving volatility. If not stated otherwise a lag of five
days is chosen.

In Fig. 3 we show the modified R/S-statistics for Siemens. For a Gaus-
sian series the expectation value for the R/S-statistics is

√
π/2 ≈ 1.25. As

can be seen, the values for R/S vary strongly. Volatility of the underlying
time series does not seem to influence the R/S statistics. For a window size
of four years the null hypothesis ’no persistence’ must be rejected in sev-
eral periods. An oscillating pattern – reminiscent of regime switching – is
apparent. Persistent periods are distributed roughly equally over the time

5Homepage: http://fmi.fbv.uni-karlsruhe.de
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Figure 3: R/S-Analysis of Siemens. Lo’s estimator with Lag 5 days. Top
left: Total Returns. Top right: Four year window. Bottom left: Eight year
window. Bottom right: Sixteen year window. Above the dashed line the
null hypothesis must be rejected at the 5% level.
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Figure 4: Number of persistent periods for windows of size 4, 8, and 16
years.

axis. With a window size of eight years, most periods ending between 1980
and 1990 are persistent. For the period ending on July 15th 1985 the R/S-
statistics reaches the maximum value of 2.2335. When the window size is
set to 16 years only few periods of persistence are found. Judging from the
graphical impression, for increasing window size the number of persistent
periods decreases.

In order to study the properties of the 21 time series systematically, we
count the number of persistent periods (5% level) for window sizes of 4,8, and
16 years and compare them in Fig. 4. If all periods were independent, at the
5% level there should be about 550, 500, and 400 detections of ’persistent’
periods due to an error of the first kind for the 4, 8, and 16 year windows
respectively. As can be seen, these numbers are exceeded in many cases.
However, there are companies, for which the number of persistent periods
is far below the threshold. These companies are Metro, Hoechst, Degussa,
and BASF. Note, that two of the four companies belong to the chemical
sector. Metro belongs to the retail sector and Degussa to industrial. On the
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Figure 5: Maximum number of connected persistent periods.

other hand, there are companies for which the number of persistent periods
are well above the respective thresholds for two or more window sizes. It
is noteworthy that the automotive and large parts of the financial sector
belong to this group.

In addition to counting the number of persistent periods, it is instructive
to determine the largest number of connected periods of persistence. If this
number ist large as compared to the total number of persistent periods, this
is an encouraging fact concerning the reliability of results. For better com-
parability, the numbers are graphically presented in Fig. 5. One Company,
Bayer-Schering, reaches more than 1200 connected persistent eight year win-
dows. This corresponds to about five years in which all eight-year-windows
are persistent. Apart from this outstanding case there are several compa-
nies for which more than 250 four or eight year windows are connected. All
financial titles belong to this group.

Collecting results obtained so far, the assertion that stock market returns
do not exhibit persistence needs reconsideration. There are periods where
the null hypothesis “no persistence” must be rejected. However, as is well
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Figure 6: Persistent periods subdivided in stationary and non-stationary
ones. Stationarity is defined according to the KPSS-test. Window size is 8
years, lag in modified R/S Test is 5 days.

known in the literature, non stationarity or short range autocorrelation may
bias tests for long memory, see e.g. Lo [1991]; Hu et al. [2001]; Chen et
al. [2002]; Craigmile et al. [2004]; Chen et al. [2005]; Winker and Jeleskovic
[2007]; Davidson and Sibbertsen [2009]. Therefore, the remainder of the
article is mostly devoted to robustness of results. We start with stationarity
and test for robustness with two methods. First, we apply the KPSS test
to the series under study, see Kwiatkowski et al. [1992]. Second, prior to
testing for long memory, we apply a detrending filter to the time series.

Stationarity In the following, the KPSS-test is sketched briefly. Let xt be
a time series with t = 1, 2, . . . , T . It is assumed that the time series can be
decomposed into a deterministic trend, a Brownian motion and a stationary
error term:

xt = θt+ rt + εt (27)
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Figure 7: Number of periods classified as persistent and stationary (KPSS)
compared to the according number of periods after detrending. Window size
is 8 years, lag in modified R/S Test is 5 days.

The term rt represents Brownian motion:

rt = rt−1 + ut with ut ∼ F(0, σ2
u). (28)

In this equation F is a distribution with vanishing mean and variance σ2
u.

The initial value r0 is the intercept in equation (27). Under these assump-
tions the hypothesis “time series is stationary” corresponds to

σ2
u = 0 (29)

In our analysis we restrict ourselves to the case of level stationarity
around r0, which implies setting θ = 0 in equation (27) a priori. For further
details as to the test-statistics and correction for heteroskedasticity refer to
Kwiatkowski et al. [1992].

In Fig. 6 Persistent periods are subdivided in stationary and non-
stationary ones. A period is called stationary if the KPSS-test does not

16
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Figure 8: Modified R/S-Estimator eq. (25) with lag 5 for Commerzbank
(left) and Allianz (right). The window size is 8 years. Left scale: modified
R/S-statistics. Right scale: p-value of KPSS test for level stationarity. The
upper dashed line denotes the threshold above which the null hypothesis
must be rejected at the 5% level. The lower dashed line denotes the p-value
below which the null hypothesis ’level stationarity’ must be rejected.

reject the null hypothesis “level stationarity” at the 5% level. A substantial
part of persistent periods is classified as stationary. However, in some cases,
e.g. Daimler, more than half of the persistent periods is non stationary.
On the other hand, for some companies such as TUI almost all persistent
periods are classified stationary by the KPSS test.

After detrending the number of persistent periods is reduced consider-
ably. The detrending filter consists of calculating residues of a regression
against a linear trend. In Fig. 7 residuals are tested for persistence. Many
persistent periods classified stationary by KPSS-Test (5% level) lack persis-
tence after detrending. However, there are still time series where the number
of peristent periods substantially exceeds the number of expected periods
erroneously classified persistent at the 5% level, even after detrending.

In order to study these effects more in depth we have analysed Com-
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Figure 9: Short Range Autocorrelation. Explanatory power of number of
persistent periods in second time series (y-axis) through number of persistent
periods in first time series (x-axis). Window size is 4 years. Time series
denoted by AR are AR(1) residuals. Numbers (0 or 5) give lag in days of
modified R/S-statistics.
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merzbank and Allianz for recent years. In Fig. 8 the R/S - statistics for
both companies is plotted versus the p-value of the KPSS-test both for the
original and the detrended time series. First, it should be noted that there
exist persistent and stationary periods even in recent years (upper row). Sec-
ond, detrending reduces the modified R/S-statistics but does not eliminate
persistence completely, especially in the case of Commerzbank. It can be
observed that detrending has substantial effects where the KPSS test rejects
the null hypothesis of stationarity. However, for periods where the KPSS
test does not reject, even at the 10 % level, filtering does reduce the R/S
statistics slightly. This slight reduction does not change the overall picture
of the time series of the R/S statistics but as can be seen for both companies
is enough that the null hypothesis “no persistence” cannot be rejected at
the 5% level. Therefore, detrending the time series does make the test more
conservative. However, at a small time scale persistent time series can be
perceived as series with trends. When removing these “trends” with a de-
trending filter, persistence might also be removed thus reducing power. To
that extent the detrending filter leads to inconclusive results. Nevertheless,
rejection of null “stationarity” and effect of the filter correlate strongly.

A word should be said with respect to the increasing literature on the
question whether financial markets get more and more efficient, see e.g. Ca-
jueiro and Tabak [2004]; Silva et al. [2007]. It is remarkable that for two
companies of the financial sector, almost all eight year windows ending after
2003 are classified persistent and stationary. This contradicts at least the
simple random walk formulation of the efficient market hypothesis. In sum-
mary, results obtained in our study discourage the assumption of a “trend
to efficiency”.

Autocorrelation In order to analyze the possible effect of short range
autocorrelations on the test for persistence we have compared the number
of persistent periods determined for the original time series with different
lags with and without AR(1) filter. We perform a regression of the num-
ber of persistent time windows obtained with one technique on the number
obtained with another one and interpret the results as follows. The closer
the slope of the regression line to one and the closer R2 to one the more
similar the results of the compared techniques. In Fig. 9 the combinations
under study are presented. The original time series is denoted by “Original”
and the AR(1)-filtered time series is denoted by “AR”. Lags are zero or five
days.

First, consider the upper row. Classical R/S-statistics (original 0) gives
more than twice the number of persistent periods found after correcting for
short range autocorrelation either by filtering and/or by choosing a five day
lag in the modified R/S statistics. This result is in line with results by
Lo [1991]. There is strong support for the assumption that there is short
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stucture of distribution of persistent periods. Consequently, increased R/S-
statistics is due to correlation structure of time series rather than heavy
tails. Window size is four years, lag five days.
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range autocorrelation which biases the plain R/S test. Now consider the
lower row. The values obtained for the modified R/S-statistics with a lag
of five days are almost invariant with respect to AR(1)-filtering, as can be
seen in the left and middle diagrams. Finally, consider the lower right. A
higher lag still reduces the number of persistent periods after filtering but
much less than in the upper left diagram (without filter). We conclude
that testing the original time series using the modified R/S test with lag 5
days is an appropriate approach precluding bias effects due to short range
autocorrelations sufficiently.

Heavy Tails We close the section with a consideration of leptokurtotic
distributions of returns. Bouchaud and Potters [2000] among others mention
these as possible origins for the R/S test to reject the null hypothesis. If the
reason for rejection of the null lies in the individual distribution of returns
then the result should not be influenced by randomizing the order of points in
the time series (scrambling). However, Fig. 10 shows clearly that scrambling
of the time series changes the pattern of the R/S estimation for the different
accounts. The histogram for scrambled series classifies roughly 5% of the
periods tested in one series reveal persistence. This is in line with the size
of the test and should be considered insignificant6. The variance of the
results is very small compared to the value without scrambling. We therefore
conclude that the periods for which the null is rejected are persistent as
opposed to leptokurtotic.

6 Conclusions

We have studied daily returns of 21 German companies (1960 to 2008) that
belonged at least once to the stock price index DAX. Our main focus was
rolling analysis of persistence in time windows of 4, 8, and 16 years. Using
modified R/S analysis in conjunction with a 5% confidence level we found
that some but not all time series exhibit persistent time windows, mostly
for the 4 and the 8 year windows. In some cases, connected periods of
persistence can last for several years. The fact that periods in recent years
are persistent contradicts the assumption that markets get more efficient
with time.

Robustness of results has been verified in three directions. First, ro-
bustness against non-stationarity has been studied. Second, effects of short
range autocorrelations were considered. Finally, leptokurtosis as a source of
rejection of the null has been ruled out.

In summary, previous work e.g. by Lux [1996], Lo [1991], and Carbone
et al. [2004] was extended. We were able to show that returns of time series

6Independence of samples is approximated by scrambling.
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can exhibit persistence and not only volatilities or proxies thereof, such as
squared returns.
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M. Martinis, A. Knežević, G. Krstačić, and E. Vargović. Changes in the
hurst exponent of hearbeat intervals during physical activity. Physical
Review E, 70:012903–012906, 2004.

Eric Moulines and Pilippe Soulier. Broadband log-periodogram regression
of time series with long-range dependence. The Annals of Statistics,
27(4):1415–1439, 1999.

W. K. Newey and K. D. West. A simple, positive-definite heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica, 55:703–
708, 1987.

C. K. Peng, S.V. Buldyrev, M. Simons, H. E. Stanley, and A. L Goldberger.
Mosaic organization of dna nucleotides. Phys. Rev. E, 49:1685–1698, 1994.

Edgar E. Peters. Fractal Market Analysis. John Wiley & Sons, New York,
1994.

P. M. Robinson. Log-periodogram regression of time series with long range
dependence. The Annals of Statistics, 23(3):1048–1072, 1995.

24



L. C. G. Rogers. Arbitrage with fractional browninan motion. Mathematical
Finance, 7:95–105, 1997.

Albert N. Shiryaev. Essentials of Stochastic Finance. World Scientific, 1999.

M. Siddiqui. The asymptotic distribution of the range and other func-
tions of partial sums of stationary processes. Water Relocations Research,
12:1271–1276, 1976.

Sergio Da Silva, Iram Gleria, Raul Matsushita, and Annibal Figueiredo.
Hurst exponents, power laws, and efficiency in the brazilian foreign ex-
change market. Economics Bulletin, 7:1–11, 2007.

V. Teverovsky, M. S. Taqqu, and W. Willinger. A critical look to lo’s mod-
ified r/s statistics. J. of Statistical Planning and Inference, 80:211–227,
1999.

Walter Willinger, Murad S. Taqqu, and Vadim Teverovsky. Stock market
prices and long range dependence. Finance and Stochastics, 3:1–13, 1999.

Peter Winker and Vahidin Jeleskovic. Dependence of - and long memory in
- exchange rate returns: Statistics, robustness, time aggregation. CCFEA
Working Paper Series, WP011-07, University of Essex, Colchester, 2007.

Eric Zivot and Jiahui Wang. Modeling Financial Time Series with S+.
Springer, New York, 2006.

7 Appendix – Tables

In the following detailed tables of results are presented.
Tables 2, 3, 5, 6: The information left of the hyphen pertains to the window
size, right of the hyphen to the lag.
Table 4: The information left of the hyphen pertains to the window size,
right of the hyphen w – windows, cw – connected windows. Date is the end
date of the longest connected period.
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Table 5: Persistence and stationarity at 5% level

Title 8y-L5 stationary non stationary
Deutsche Bank 512 242 270
BASF 2 2 0
BMW 973 777 196
DEGUSSA 182 182 0
Continental 468 196 272
Bayer 444 292 152
Hoechst 156 136 20
MAN 108 88 20
Karstadt-Quelle 73 73 0
Linde 733 594 139
GEA Group 522 394 128
RWE 87 87 0
Daimler 1345 500 845
Bayer-Schering 1368 1089 279
Siemens 1570 1036 534
Metro 24 11 13
Thyssen Krupp 470 302 168
HVB 745 670 75
Commerzbank 1743 1529 214
Allianz 1461 995 466
TUI 1655 1594 61
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Table 6: Persistence and stationarity at 5% level – detrending

Titel 8J-L5 stationary non stationary
Deutsche Bank 215 215 0
BASF 0 0 0
BMW 641 641 0
DEGUSSA 131 131 0
Continental 51 51 0
Bayer 5 5 0
Hoechst 0 0 0
MAN 42 42 0
Karstadt-Quelle 111 111 0
Linde 299 299 0
GEA Group 145 145 0
RWE 1 1 0
Daimler 612 612 0
Bayer-Schering 910 910 0
Siemens 533 533 0
Metro 36 36 0
Thyssen Krupp 300 300 0
HVB 56 56 0
Commerzbank 491 491 0
Allianz 194 194 0
TUI 827 827 0
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