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 Summary 

Summary 

Understanding the distribution of species is fundamental for biodiversity conservation, ecosystem 

management, and increasingly also for climate impact assessment. The presence of a species in a 

given site depends on physiological limitations (abiotic factors), interactions with other species 

(biotic factors), migratory or dispersal processes (site accessibility) as well as the continuing 

effects of past events, e.g. disturbances (site legacy). Existing approaches to predict species 

distributions either (i) correlate observed species occurrences with environmental variables 

describing abiotic limitations, thus ignoring biotic interactions, dispersal and legacy effects 

(statistical species distribution model, SDM); or (ii) mechanistically model the variety of processes 

determining species distributions (process-based model, PBM). SDMs are widely used due to their 

easy applicability and ability to handle varied data qualities. But they fail to reproduce the 

dynamic response of species distributions to changing conditions. PBMs are expected to be 

superior in this respect, but they need very specific data unavailable for many species, and are 

often more complex and require more computational effort. More recently, hybrid models link 

the two approaches to combine their respective strengths. 

In this thesis, I apply and compare statistical and process-based approaches to predict species 

distributions, and I discuss their respective limitations, specifically for applications in changing 

environments. Detailed analyses of SDMs for boreal tree species in Finland reveal that non-

climatic predictors - edaphic properties and biotic interactions - are important limitations at the 

treeline, contesting the assumption of unrestricted, climatically induced range expansion. While 

the estimated SDMs are successful within their training data range, spatial and temporal model 

transfer fails. Mapping and comparing sampled predictor space among data subsets identifies 

spurious extrapolation as the plausible explanation for limited model transferability. Using these 

findings, I analyze the limited success of an established PBM (LPJ-GUESS) applied to the same 

problem. Examination of process representation and parameterization in the PBM identifies 

implemented processes to adjust (competition between species, disturbance) and missing pro-

cesses that are crucial in boreal forests (nutrient limitation, forest management). Based on 

climatic correlations shifting over time, I stress the restricted temporal transferability of bioclimat-

ic limits used in LPJ-GUESS and similar PBMs. By critically assessing the performance of SDM and 

PBM in this application, I demonstrate the importance of understanding the limitations of the 

applied methods. 

As a potential solution, I add a novel approach to the repertoire of existing hybrid models. By 

simulation experiments with an individual-based PBM which reproduces community dynamics 

resulting from biotic factors, dispersal and legacy effects, I assess the resilience of coastal 

vegetation to abrupt hydrological changes. According to the results of the resilience analysis, I 

then modify temporal SDM predictions, thereby transferring relevant process detail from PBM to 

SDM. The direction of knowledge transfer from PBM to SDM avoids disadvantages of current 

hybrid models and increases the applicability of the resulting model in long-term, large-scale 

applications. A further advantage of the proposed framework is its flexibility, as it is readily 

extended to other model types, disturbance definitions and response characteristics. 

Concluding, I argue that we already have a diverse range of promising modelling tools at hand, 

which can be refined further. But most importantly, they need to be applied more thoughtfully. 

Bearing their limitations in mind, combining their strengths and openly reporting underlying 

assumptions and uncertainties is the way forward.  
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 Zusammenfassung 

Zusammenfassung 

Wissen über die Verbreitung von Arten ist fundamental für die Erhaltung von Biodiversität, das 

Management von Ökosystemen und zunehmend auch für die Abschätzung der Folgen des Klima-

wandels. Das Vorkommen einer Art an einem Standort hängt ab von: physiologischen Grenzwer-

ten (abiotischen Faktoren), Interaktionen mit anderen Arten (biotischen Faktoren), Ausbreitungs-

prozessen (Erreichbarkeit des Standorts) sowie Nachwirkungen vergangener Ereignisse, z.B. Stö-

rungen (Standortgeschichte). Modellansätze zur Vorhersage von Artverbreitungen (i) korrelieren 

entweder beobachtete Artvorkommen mit abiotischen Umweltvariablen und ignorieren damit 

biotische Interaktionen, Ausbreitung und Nachwirkungen (statistische Artverbreitungsmodelle, 

SDM); oder (ii) sie modellieren mechanistisch, wie sich die verschiedenen Prozesse auf Arten aus-

wirken (prozessbasierte Modelle, PBM). SDMs sind weitverbreitet, da sie einfach anzuwenden 

sind und verschiedenste Datenqualitäten akzeptieren. Aber sie beschreiben nicht korrekt, wie 

Arten dynamisch auf Umweltänderungen reagieren. PBMs sind ihnen in dieser Hinsicht überlegen. 

Allerdings benötigen diese sehr spezifische Daten, welche für viele Arten nicht verfügbar sind. Zu-

dem sind sie oft komplexer und benötigen mehr Rechenkapazität. Relativ neu ist der Ansatz des 

Hybridmodells, welches statistische und prozessbasierte Modelle verknüpft und so ihre jeweiligen 

Stärken vereint. 

In dieser Arbeit, nutze ich sowohl statistische als auch prozessbasierte Modelle, um die Ver-

breitung von Arten vorherzusagen, und ich diskutiere ihre jeweiligen Schwächen, besonders für 

die Anwendung im Klimawandelkontext. Eine detaillierte Analyse der SDMs für boreale Baumar-

ten in Finnland zeigt, dass nicht-klimatische Variablen - Bodeneigenschaften und biotische Inter-

aktionen - wichtige Faktoren an der Baumgrenze sind und daher die Reaktion von Arten auf Klima-

änderungen beeinflussen. Während die SDMs innerhalb der Wertebereiche ihrer Trainingsdaten-

sätze erfolgreich sind, scheitern Versuche, die Modelle auf andere Regionen oder in die Zukunft 

zu übertragen. Die Visualisierung und der Vergleich des abgedeckten Umweltraums zwischen den 

Teildatensätzen liefert eine plausible Erklärung: Extrapolation. Basierend auf diesen Ergebnissen, 

analysiere ich den bedingten Erfolg eines etablierten PBMs (LPJ-GUESS), das ich auf dieselbe 

Fragestellung anwende. Die Untersuchung der Prozessbeschreibungen im Modell sowie der Para-

metrisierung zeigen, dass bereits implementierte Prozesse angepasst werden müssen (Konkur-

renz, Störungen) und dass für boreale Wälder entscheidende Prozesse fehlen (Nährstoffe, Bewirt-

schaftung). Mithilfe von klimatischen Schwellenwerten, die sich über die Zeit verschieben, betone 

ich die eingeschränkte Übertragbarkeit von bioklimatischen Grenzwerten in LPJ-GUESS und ähn-

lichen PBMs. Indem ich die Performance beider Methoden in dieser Anwendung kritisch beleuch-

te, zeige ich, wie wichtig es ist, sich der Grenzen jedes Modellansatzes bewusst zu sein. 

Als Lösungsmöglichkeit füge ich dem bestehenden Repertoire der Hybridmodelle einen neuen 

Ansatz hinzu. Mithilfe von Simulationsexperimenten mit einem individuenbasierten PBM, das er-

folgreich die Dynamik von Artgemeinschaften beschreibt (resultierend aus biotischen Faktoren, 

Ausbreitung und Nachwirkungen), untersuche ich die Resilienz von Küstenvegetation auf abrupte 

Änderungen der Hydrologie. Entsprechend der Ergebnisse dieser Resilienzanalyse passe ich die 

zeitlichen Vorhersagen eines SDMs an und übertrage so das nötige Prozesswissen von PBM zu 

SDM. Die Übertragungsrichtung von PBM zu SDM umgeht die Nachteile bestehender Hybridmo-

delle und verbessert die Anwendbarkeit für langfristige, großflächige Berechnungen. Ein weiterer 

Vorteil des vorgestellten Konzepts ist seine Flexibilität, denn es lässt sich einfach auf andere 



  

ix 

 Zusammenfassung 

Modellarten, andere Definitionen von Umweltstörungen sowie andere Vorhersagegrößen 

anwenden. 

Zusammenfassend argumentiere ich, dass uns bereits vielfältige, erfolgversprechende Modell-

ansätze zur Verfügung stehen, die noch weiterentwickelt werden können. Vor allem aber müssen 

sie mit mehr Bedacht angewendet werden. Voran kommen wir, indem wir die Schwächen der An-

sätze berücksichtigen, ihre Stärken in Hybridmodellen kombinieren und die zugrunde liegenden 

Annahmen und damit verbundene Unsicherheiten deutlich machen. 
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1.1. Species distributions in a changing world 

Understanding the distribution of species is fundamental for biodiversity conservation (Pěknicová 

and Berchová-Bímová 2016, Guisan et al. 2013, Rodríguez et al. 2007), ecosystem management 

(Folke et al. 2004), and increasingly also for climate impact assessment (Rowland et al. 2011, 

Thuiller et al. 2004). Whether a species occurs in a site depends on three main factors (cf. BAM-

diagram, Peterson et al. 2015). Firstly, physiological limitations (e.g. temperature, water avail-

ability, light and nutrients for plant species) describe the abiotic (A) boundaries of the fundamen-

tal ecological niche of an organism (Grinnellian niche, Soberón 2007). Secondly, biotic (B) inter-

actions (e.g. competition, facilitation, predation, and parasitism) reduce the fundamental niche, 

as species are out-competed on otherwise favourable sites within their fundamental niche by 

stronger competitors (Grime 1973, Zaret and Rand 1971). And thirdly, migratory (M) processes 

further limit species on abiotically and biotically favourable sites, if species are unable to reach 

suitable sites due to dispersal barriers, or if they fail to successfully establish, survive and repro-

duce on sites outside their current range (Svenning and Skov 2007, Ozinga et al. 2005, Ehrlén and 

Eriksson 2000). In addition to these three factors (BAM) influencing species distribution, I explic-

itly add temporal (T) aspects to underline their importance (‘the legacy of history’, Zimmermann 

et al. 2010). For example, species are absent from a currently favourable site because they have 

become locally extinct during a disturbance event in the past and need to re-establish from neigh-

bouring populations (source-sink dynamics of metapopulations, Boughton 1999, Eriksson 1996, 

Harrison 1991). Alternatively, long-living species are present in currently unfavourable sites 

because they have established successfully during a favourable period in the past and persist 

under now unfavourable conditions (extinction debt, Hylander and Ehrlén 2013, Hanski 2000). In 

conclusion, species are constrained by factors B, M and T, and thus occupy only part of their 

fundamental niche, the realized niche (Hutchinsonian niche, Holt 2009). 
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Observing, describing and documenting where species occur started with naturalists like Charles 

Darwin, Alfred Russel Wallace and Alexander von Humboldt who returned from their adventurous 

journeys with countless specimens and notes which are preserved and exhibited in Natural Histo-

ry Museums around the world. This wealth of data can now be analyzed by recently developed 

methods (Maldonado et al. 2015, Elith et al. 2006), and even today hitherto undescribed species 

are discovered in old museum collections (Yong 2016). Understanding the underlying processes of 

observed patterns is the aim of field and laboratory experiments (Pearcy et al. 1989) which sys-

tematically manipulate abiotic and biotic growing conditions (e.g. Lau et al. 2008, Greulich et al. 

2000). Eventually, collected observations and ecological knowledge are jointly applied to map 

species distributions across space which is one focus of species distribution modelling (Elith and 

Leathwick 2009). Species distribution models have been applied with considerable success to 

predict current species distributions (e.g. Elith et al. 2006). 

In recent decades, however, anthropogenic climate change has triggered phenological, range 

and community shifts (Parmesan 2006, Walther et al. 2002). Climate change affects all of the fac-

tors determining species distributions (BAMT): Due to climate warming (A), plants flower earlier 

in spring (Menzel et al. 2006), possibly resulting in (B) phenological asynchrony of plant-pollinator 

relationships (Memmott et al. 2007). Treelines have shifted towards higher latitudes and altitudes 

(Harsch et al. 2009) where they are (A) mainly climatically-driven (Holtmeier and Broll 2007) and 

(M) no dispersal barrier constrains range expansion (Rupp et al. 2001). Altered disturbance 

regimes (T) likely increase the pressure on e.g. tree species by pests and pathogens (Dale et al. 

2009, Ayres and Lombardero 2000). Modelling the impact of climate change on species distribu-

tion is, thus, a new challenge which requires the inclusion of not only (A) climatic (Pearson and 

Dawson 2003) and other abiotic factors such as edaphic characteristics (Dubuis et al. 2013), but 

also (B) biotic interactions (Anderson 2017, Wisz et al. 2013), (M) dispersal  and (T) metapopu-

lation dynamics (Fordham et al. 2013, Araújo and Luoto 2007, Guisan and Thuiller 2005, Davis et 

al. 1998). 

1.2. Species distribution modelling 

1.2.1. Statistical vs. process-based approaches 

In ecological modelling, two fundamentally different approaches may be applied to model species 

distributions: statistical (empirical, correlative, phenomenological) models and process-based 

(mechanistic) models. Dormann et al. (2012) compared the two approaches in a comprehensive 

review (see also Peterson et al. (2015) and Kearney and Porter (2009), Table 1) which I will not 

attempt to recreate here. Instead, I will only briefly introduce the most important characteristics 

of the two approaches and refer to relevant reviews (Table 1.1). 

Statistical species distribution models (SDMs) relate observed species occurrence (presence-

absence) or abundance (= response variable) to environmental factors that are assumed to be 

determinants, often proxies for physiological limitations (= predictor variables). The form of the 

described relationship differs greatly between statistical approaches (Segurado and Araújo 2004), 

ranging from relatively simple bioclimatic envelopes (e.g. BIOCLIM, Busby 1991), based on species 

presences and climate proxies alone, to more sophisticated regression models including non-

climatic predictors as well as interactions between predictors, to even more complex machine 

learning methods (see examples in Table 1.1). Applying SDMs to maps of predictors yields habitat 
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suitability maps which is one main focus of species distribution modelling (alongside ecological 

explanation, Mac Nally 2000). SDMs have been successfully and widely applied to model species 

distributions (e.g. Elith et al. 2006, Thuiller 2003) due to their easy application using open-source 

statistical software (e.g. R Core Team 2016) as well as their flexibility concerning input data. For 

example, SDMs allow distal predictors (Austin 2002), climate proxies (Heikkinen et al. 2006) and 

presence-only data (Pearce and Boyce 2006). This enables the utilization of readily available 

species data from e.g. natural history collections (Graham et al. 2004) as well as publicly available 

current climate (e.g. WorldClim, Hijmans et al. 2005), climate scenario (e.g. ALARM, Fronzek et al. 

2012) and land cover datasets (e.g. CORINE, http://land.copernicus.eu/pan-european/corine-

land-cover).  

Table 1.1. Comparison of statistical and process-based modelling approaches (see also Peterson et al. 

(2015), Dormann et al. (2012) and Kearney and Porter (2009), Table 1). 

 statistical model (SDM) process-based model (PBM) 

synonyms ecological niche model,    
habitat suitability model 

mechanistic model 

nature correlative; static causal; dynamic 

process 
representation 

implicitly by selection of predictors and 
form of relationship 

explicitly by e.g. mathematical 
equations 

model parameters have no ecological meaning have ecological meaning; measurable 

species distribution modelled directly as response variable emerges as a by-product  

specificity – 
generality trade-off 

high specificity (good prediction 
results), 
low generality (limited transferability) 

low(er) specificity, 
greater generality and transferability 

computational 
effort / complexity 

low  /  
low (higher for machine learning) 

often high (depends on resolution) / 
simple to very complex 

data requirements accepts various data qualities (e.g. 
presence-only, proxies, distal 
predictors) 

requires very specific data on the 
species’ ecology 

reviews Guisan and Zimmermann (2000), 
Austin (2002), Araújo and Guisan 
(2006), Elith and Leathwick (2009), 
Franklin (2010b), Sillero (2011),  
Araújo and Peterson (2012) 

individual-based models, IBM (Grimm 
and Railsback 2005); matrix 
population models (Caswell 2006); 
metapopulation models (Hanski 
1994); mechanistic niche models, e.g. 
NicheMapper (Kearney and Porter 
2009), PHENOFIT (Chuine 2000); 
dynamic global vegetation models, 
DGVM, e.g. LPJ (Smith et al. 2001), 
IBIS (Foley et al. 1996), ORCHIDEE 
(Krinner et al. 2005); gap models 
(Bugmann 2001) 

examples regression: LM, GLM, GAM, MARS; 
machine learning: CART, boosting (BRT, 
RF), ANN, MaxEnt; ►BIOMOD;  
bioclimatic envelopes: BIOCLIM (Busby 
1991), HABITAT (Walker and Cocks 
1991), DOMAIN (Carpenter et al. 1993) 

LM = linear model; GLM = generalized linear model; GAM = generalized additive model; MARS = multi-

variate adaptive regression splines; CART = classification and regression trees; BRT = boosted regression 

trees; RF = random forests; ANN = artificial neural networks; MaxEnt (Elith et al. 2011, Phillips et al. 2006) 

originates from statistical mechanics (Dewar and Porte 2008); BIOMOD (Thuiller et al. 2009) uses a 

weighted ensemble of nine regression and machine learning methods (see Heikkinen et al. (2006) for an 

overview of the different methods) 
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Methodological issues to be considered when estimating SDMs (see also Zuur et al. 2010) include 

model and predictor selection (Symonds and Moussalli 2011, Austin and Niel 2011, Segurado and 

Araújo 2004), spatial autocorrelation (Warren et al. 2014, Dormann et al. 2007, Segurado et al. 

2006) and non-stationarity (Hothorn et al. 2011, Austin 2007, Brunsdon et al. 1998) as well as 

collinearity (Dormann et al. 2013) and overfitting (Merow et al. 2014). Major uncertainty sources 

in SDMs are data deficiencies (e.g. missing predictors and small sample size) and model specifi-

cation (Buisson et al. 2010, Dormann et al. 2008, Barry and Elith 2006, Heikkinen et al. 2006). 

More importantly, several underlying assumptions on which SDMs are based limit their 

applicability in studies of environmental change as discussed in depth by Guisan and Thuiller 

(2005) and Heikkinen et al. (2006). First, SDMs assume that the data collected and used to 

estimate the model represent equilibrium conditions (Guisan and Theurillat 2000). This 

assumption is violated by definition when studying responses to climate change or the spread of 

invasive species (Elith et al. 2010, Kleinbauer et al. 2010). Second, they assume the stationarity of 

estimated statistical relationships across space and time (Pearman et al. 2008, Austin 2007, 

Osborne et al. 2007). Third, SDMs are not intended for extrapolation to novel environments, i.e. 

beyond the training data range (Zurell et al. 2012a, Elith and Leathwick 2009). Violation of the 

stationarity assumption and extrapolation to novel environments reduce the transferability of 

SDMs across space (i.e. to other regions, Randin et al. 2006) and time (e.g. to future conditions, 

Dobrowski et al. 2011) which we will demonstrate in chapter 2. Unfortunately, despite awareness 

of these critical issues of SDM application especially in the context of environmental change, the 

easy applicability has led to numerous studies of e.g. the very popular MaxEnt approach (Table 

1.1), often without the required methodological understanding to create meaningful results 

(Anderson 2015, Guillera-Arroita et al. 2015, Yackulic et al. 2013). 

As biotic interactions, spatial dispersal processes and transient dynamics are usually not repre-

sented in SDMs, they fail to distinguish between observed absences due to (A) physiological limi-

tation (fundamental niche) and those due to (B) biotic pressure from other species, (M) dispersal 

limitation or (T) ongoing effects of past disturbances and population dynamics (realized niche). 

Process-based models (PBMs), on the other hand, do allow the explicit representation of any of 

these processes causally influencing species distribution, e.g. via differential equations, physio-

logical thresholds or rule-based simulations. For example, transient dynamics, such as succession 

or recovery from a disturbance, emerge from simulations over time in models with a memory, i.e. 

in which previous time steps impact on the present and future time step. Dynamics of populations 

can be captured by simple differential equations (e.g. Lotka-Volterra model), by more complex 

stage- or age-structured matrix population models (Caswell 2006) or as emergent outcome of 

individual-based models (Grimm and Railsback 2005) and gap models (Bugmann 2001). Metapop-

ulation models (Hanski 1994) explicitly consider colonization of new habitat patches by dispersal 

and extinction of local populations, e.g. due to disturbances. On a global scale, dynamic global 

vegetation models (DGVM, Peng 2000) predict the distribution of plant functional types or 

species, often linked to a global circulation model (GCM). 

Despite their structural diversity, PBMs generally share certain limitations which set them 

apart from statistical models. First, PBMs generally require more detailed ecological information 

about the modelled species and processes which usually limits their application to well-studied 

species. Second, they are often more complex and, thus, require more computational effort than 

SDMs, as they e.g. track the fate of individuals in a population, require spin-up periods in time-

series simulation or replicate model runs due to stochasticity in the model. On the other hand, if 
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the relevant processes are implemented with sufficient detail and accuracy, PBMs are expected to 

be superior to purely statistical models when applied to new environments (Gustafson 2013, 

Dormann et al. 2012, Bossel 1992). 

In this regard, Dormann et al. (2012) make the important distinction between ‘forward’ and 

‘fitted’ process-based models (cf. Bossel’s (1992) distinction between real-structure and elemen-

tary-structure models) which they defended (Schymanski et al. 2013) against criticism by Kriticos 

et al. (2013). In ‘forward’ PBMs, model parameters are process parameters such as threshold tem-

peratures or growth rates which can be measured. In contrast, parameters in ‘fitted’ PBMs are 

aggregations without real-world counterpart and have to be fitted statistically. ‘Fitted’ PBMs are, 

thus, closer to statistical models and share their assumptions and limitations concerning e.g. 

model transferability. This distinction will be revisited in chapter 3 of this thesis, in which we 

analyze the limited success of a ‘fitted’ process-based model, LPJ-GUESS (Smith et al. 2001). 

In summary, statistical and process-based model approaches differ in many respects, each 

having their own strengths and limitations, and neither being inherently superior over the other. 

Limitations of process-based approaches seem to be not as abundantly or as critically published 

as the various methodological issues with SDM (but see Bachelet et al. 2015 for more critical 

views on e.g. DGVMs, Fisher et al. 2010, Quillet et al. 2010). Limitations of SDMs, on the other 

hand, have been discussed in depth (Jarnevich et al. 2015, Araújo and Peterson 2012, Franklin 

2010a, Heikkinen et al. 2006, Guisan and Thuiller 2005) and many have cautioned their use in 

conservation planning and climate impact studies (Gustafson 2013, McPherson et al. 2004), 

although differences are made between various statistical approaches (Hijmans and Graham 

2006). To improve purely statistical species distribution models, there has been a call to link them 

with process-based models (Swab et al. 2012, Mokany and Ferrier 2011, Franklin 2010a, Gallien et 

al. 2010, Huntley et al. 2010, Thuiller et al. 2008, Guisan and Thuiller 2005). 

1.2.2. Linking statistical and process-based approaches 

A first step to combining the strengths of both modelling approaches is to compare the predict-

tions of statistical and process-based approaches (Gritti et al. 2013), which many studies attempt-

ed with varied results (Table 1.2). Most comparative studies found good agreement of SDMs and 

PBMs under current conditions, while yielding diverging, even contrasting predictions under pro-

jected conditions (either future climate or new regions). Differences between approaches could 

be explained, in part, by missing processes, thus, confirming the need for more process detail in 

SDMs. For example, the effect of CO2 fertilization led to increased productivity in PBMs, while it 

was missing in SDMs, where instead the effect of warming (not offset by CO2 fertilization) resulted 

in decreased habitat suitability (Estes et al. 2013, Cheaib et al. 2012, Keenan et al. 2011). In chap-

ter 3, we do not directly compare predictions of SDMs and PBMs, but we allow results from statis-

tical modelling in chapter 2 to stimulate our analysis of PBM results in chapter 3. 

A further tentative step towards including more process detail into statistical SDMs, and there-

by improving their transferability, is including more proximal (i.e. closer to the described process, 

Austin 2002), more meaningful predictor variables (Petitpierre et al. 2017, Mod et al. 2016). 

Examples of this approach, which some already call ‘hybrid model approach’ (Buckley et al. 2011), 

include: ecophysiological temperature thresholds as thermal constraints (Buckley et al. 2011), 

number of tourists and trade volumes as proxies for dispersal opportunities (Thuiller et al. 2005), 

or co-occurrence of species as proxy for biotic interaction (e.g. Giannini et al. (2013), Araújo et al. 
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(2014) and Schibalski et al. (2014) or chapter 2 of this thesis). However, the co-occurrence of 

other species may equally be a proxy for a bundle of abiotic conditions, not biotic interactions 

(Austin 2002). Thus, more sophisticated ways to integrate statistical and process-based models 

are required. 

Table 1.2. Studies comparing predictions by statistical and process-based modelling approaches. 

Species, location Statistical  
(SDM) 

Process-based 
(PBM) 

Notes Study by 

agreement of both model approaches for observed and projected conditions  

invasive moth, 
global 

MaxEnt CLIMEX 1 accurate Lozier and Mills 
(2011) 

possum, Australia MaxEnt, 
BIOCLIM 

NicheMapper 1 accurate Kearney et al. (2010) 

100 plant species, 
Americas 

MaxEnt, 
BIOCLIM GAM, 
DOMAIN 

EcoCrop 1 only GAM 
accurate 

Hijmans and 
Graham (2006) 

agreement of both model approaches for observed conditions, disagreement for projected conditions  

koala, Australia MaxEnt NicheMapper 1 agree on refugia Briscoe et al. (2016) 

maize and wheat, 
South Africa 

GAM CERES 2 
CO2 increase: 
contrasting SDM/ 
PBM predictions  

Estes et al. (2013) 

three tree 
species, Spain 

BIOMOD GOTILWA+ 2 
Keenan et al. (2011) 

butterfly and 
lizard, United 
States 

MaxEnt, GLM e.g. biophysical 
threshold 1 

greater range 
shifts (PBMs) 

Buckley et al. (2010) 

invasive toad, 
Australia 

MaxEnt, GLM, 
GAM, BRT 

biophysical 
model 1 

 Elith et al. (2010) 

15 tree species, 
North America 

BIOCLIM PHENOFIT 1 higher extinction/ 
colonization 
(SDM) 

Morin and Thuiller 
(2009) 

disagreement of both model approaches for observed and projected conditions 

five tree species, 
France 

N-NBM, 
BIOMOD 

STASH 1*, 
PHENOFIT 1, 
Castanea 2,  
LPJ 2, IBIS 2, 
ORCHIDEE 2 

very species- and 
model-specific;  
CO2 effect 

Cheaib et al. (2012) 

two invasive 
Acacia ssp., South 
Africa 

MaxEnt, BRT CLIMEX 1 SDMs over-
estimate ranges Webber et al. (2011) 

N-NBM = logistic regression model (Badeau et al. 2010); 1 ecophysiological, mechanistic niche models;          
2 growth simulators, e.g. DGVMs; * Gritti et al. (2013) classified STASH as correlative model 

Dormann et al. (2012) distinguish between ‘hybrid’ models (Gallien et al. 2010), in which statis-

tical and process-based models are run sequentially, and ‘integrated’ models, when statistical and 

process-based approaches are dynamically linked and run simultaneously (see also Ehrlén and 

Morris 2015). An example for an ‘integrated’ approach is the statistical fitting of parameters in 

process-based models (Merow et al. 2011) by pattern-oriented or inverse modelling (Grimm et al. 

2005). Recent approaches include the Bayesian framework (e.g. Hartig et al. 2012, Arhonditsis et 



  

7 

1 Species distribution modelling 

al. 2007, van Oijen et al. 2005) and model-data fusion (Peng et al. 2011). Using a hierarchical 

Bayesian framework, Pagel and Schurr (2012) statistically estimated process-based dynamic range 

models (DRMs), specifically including population dynamics (Schurr et al. 2012). DRMs outper-

formed SDMs and ‘hybrid’ models in a comparison using virtual species (Zurell et al. 2016). The 

‘virtual ecologist approach’ (Zurell et al. 2010, Zurell et al. 2009) itself may be seen as another 

approach to link statistical and process-based modelling, as it allows the critical assessment of 

statistical methods (e.g. data sampling or model comparison, Thibaud et al. 2014) by creating and 

sampling virtual data with process-based models. 

Table 1.3. Summary of hybrid model approaches (see also Table 1 in Lurgi et al. 2015). 

Type of model linkage Examples 

dispersal 

dispersal kernel is additional term in GLM model 
equation 

Meentemeyer et al. (2008) 

SDM-derived habitat suitability is multiplied with 
probability of dispersal from dispersal kernel 

Williams et al. (2008) 

SDM-derived habitat suitability of grid cells of a 
cellular automaton which spatially explicitly 
simulates dispersal determines colonization 
probability 

DISPERSE (Carey 1996), SHIFT (Iverson et al. 
2004), MigClim (Engler and Guisan 2009), Morin 
and Thuiller (2009) 

dispersal direction in simulations by a cellular 
automaton depends on SDM-derived habitat 
suitability 

Söndgerath and Schröder (2002) 

SDM-derived habitat suitability defines focal nodes 
in a connectivity analysis 

Cianfrani et al. (2013) 

population dynamics (and dispersal) 

Leslie matrix parameters depend on SDM-derived 
habitat suitability 

Söndgerath and Schröder (2002) 

spatial structure of habitat patches (size, quality, 
location) in a metapopulation model determined 
by SDM-derived habitat suitability map 

Akçakaya (1995), Akçakaya (2000), Lindenmayer 
and Possingham (1996) 

demographic rates depend on habitat suitability PATCH model (Carroll 2007), 
Dullinger et al. (2012) 

carrying capacity depends on SDM-derived habitat 
suitability 

Zurell, Grimm et al. (2012b), Anderson et al. 
(2009), Keith et al. (2008), Fordham et al. (2013), 
Swab et al. (2012), Cheung et al. (2009) 

biotic interactions (and dispersal, population dynamics etc.) 

competitive ability of different trait-based plant 
functional types depends on SDM-derived habitat 
suitability  

BioMove (Midgley et al. 2010) 

simple overlay of SDM and DGVM output maps Case and Lawler (2016) 

SDM-derived habitat suitability defines habitat 
patches for dynamic vegetation model (‘hybrid-
DVMs’) 

Albert et al. (2008) 
Boulangeat et al. (2012) 

More relevant to this thesis are ‘hybrid’ models which feed the output of one model approach in-

to the other. One way is to use abiotic or biotic variables predicted by process-based models as 

predictors in statistical models (Pellissier et al. (2013), Rickebusch et al. (2008), Schröder et al. 
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(2008) and chapter 4 of this thesis). The other way is to use the output of SDMs, static habitat 

suitability (maps), as input for process-based models (Table 1.3, see also Lurgi et al. (2015) for an 

extensive review of hybrid modelling platforms). In the various efforts to link SDMs with dispersal 

models, SDM-derived habitat suitability maps are often used to define the establishment proba-

bility of grid cells of cellular automata which spatially explicitly simulate the dispersal of individ-

uals. Similarly, SDM-derived habitat suitability may be used to define the spatial structure and 

carrying capacity of patches in metapopulation models (e.g. RAMAS-GIS, Akçakaya 2001) or to 

determine demographic rates in matrix population models in order to link SDMs with a process-

based approach to population dynamics. More recently, however, the simple relationship be-

tween habitat suitability and demographic parameters has been questioned (Thuiller et al. 2014). 

Finally, Midgley et al. (2010) used SDM-derived habitat suitability to scale the competitive ability 

of different plant functional types in BioMove, thus affecting community dynamics under climate 

change. Although many studies incorporate dispersal and (meta)population dynamics into SDMs 

(Table 1.3), biotic interactions require more attention (Thuiller et al. 2013, Wisz et al. 2013, 

Kissling et al. 2012). In chapter 4 of this thesis, we will add a novel hybrid approach to Table 1.3 in 

order to link SDM predictions with community dynamics including biotic interactions, dispersal 

and the response to disturbances. Whereas almost all hybrid models listed in Table 1.3 use SDM-

derived habitat suitability as input for various process-based approaches, we use the aggregated 

results of simulation experiments with a PBM to modify temporal SDM predictions. 

 

1.3. Thesis outline 

As a cumulative dissertation, the body of this thesis consists of three manuscripts either published 

(chapter 2) or under review for publication (chapter 3 and 4) in scientific, peer-reviewed journals. 

They are preceded by an introductory chapter (this chapter 1) and followed by a synthesis (chap-

ter 5), completing the thesis. Although I am the first author of all chapters, I duly acknowledge 

contributions by co-authors to chapters 2 to 4 (see separate declaration of contribution). I added 

selected appendix material for core chapters 2 to 4 at the end of the respective chapters. Further 

supplementary material as well as a digital version of this thesis can be found on CD (back cover). 

In chapter 2, we used sophisticated statistical species distribution models to both understand 

and predict the treeline of three major boreal tree species in Northern Finland. By investigating 

the response curves of the resulting models and the relative importance of climatic as well as 

non-climatic predictors (proxies for edaphic characteristics and biotic interactions), we assessed 

the sensitivity of this important biome boundary to climate change. Furthermore, we examined 

the spatial and temporal transferability of the estimated SDMs to assess their suitability in climate 

change studies. 

In chapter 3, we used the findings from chapter 2 to analyze the limited success of a ‘fitted’ 

process-based model applied to the same problem as in chapter 2. Now knowing the importance 

of non-climatic predictors pointing to dispersal limitation and interspecific competition as impor-

tant processes of tree distribution in Finnish Lapland, we systematically examined the respective 

process representation and parameterization in the process-based model. Based on changing 

climatic correlations over time (chapter 2), we stressed the important drawback of bioclimatic 

limits in ‘fitted’ process-based models. 
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Having applied statistical (chapter 2) and ‘fitted’ process-based approaches (chapter 3) to model 

species ranges in changing environments with limited success, we proposed a novel framework to 

link both approaches in a ‘hybrid’ model in chapter 4. In a different environment now, we as-

sessed the resilience of coastal vegetation to abrupt hydrological changes by simulation experi-

ments with an individual-based model. We then modified temporal SDM predictions according to 

the results of the resilience analysis, thereby transferring the relevant process detail from PBM to 

SDM. Whereas previous ‘hybrid’ models focused on spatial SDM predictions (habitat suitability 

maps), we modified SDM-predicted time series using PBM-simulated temporal patterns of species 

response to disturbances. 

By critically assessing the performance of a statistical (chapter 2) and a process-based model 

(chapter 3) predicting species distributions in changing environments, we stress the importance 

of understanding the limits of the applied methods. We offer a novel framework to combine the 

strengths of both approaches for climate change applications in chapter 4. Finally, I evaluate the 

different approaches and discuss ways forward in species distribution modelling (chapter 5). 
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2 Abstract 

Climate change shifts environmental space and limits transferability of 

treeline models 
2. Climate change shifts environmental space and 

limits transferability of treeline models 1 

 

 

 

 

 

Abstract 

Our study aims at gaining insights into the processes determining the current treeline dynamics in 

Finnish Lapland. Using forest surveys conducted in 1978 and 2003 we modelled the occurrence 

and abundance of three dominant tree species in Finnish Lapland, i.e. Pinus sylvestris, Picea abies 

and Betula pubescens, with boosted regression trees. We assessed the importance of climatic, 

biotic and topographic variables in predicting tree occurrence and abundance based on their 

relative importance and response curves. We compared temporal and spatial transferability by 

using an extended transferability index.  

Site fertility, the abundance of co-occurring species and growing degree days were generally 

the most important predictors for both occurrence and abundance across all species and data-

sets. Climatic predictors were more important for modelling occurrences than for modelling 

abundances. Occurrence models were able to reproduce the observed treeline pattern within one 

time period or region. Abundance models underestimated basal area but captured the general 

pattern of low and high values. Model performance as well as transferability differed considerably 

between species and datasets. P. sylvestris was modelled more successfully than P. abies and B. 

pubescens. Generally, spatial transferability was greater than temporal transferability. Comparing 

the environmental space between datasets revealed that transferring models means extrapola-

ting to novel environments, providing a plausible explanation for limited transferability.  

Our study illustrates how climate change can shift the environmental space and lead to limited 

model transferability. We identified non-climatic factors to be important in predicting the distri-

bution of dominant tree species, contesting the widespread assumption of climatically induced 

range expansion. 

                                                           
1 An article with equivalent content has been published as:  

Schibalski, A, Lehtonen, A, Schröder, B. 2014. Climate change shifts environmental space and limits transfer-

ability of treeline models. Ecography 37: 321–335. DOI: 10.1111/j.1600-0587.2013.00368.x. 
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2.1. Introduction 

A treeline is the transition zone between dense forest and tundra (arctic treeline) which can span 

over many kilometres and is not literally a line but rather a gradient of local presences and ab-

sences of trees (Sveinbjörnsson 2000). In Finnish Lapland this zone is relatively broad (400 km, 

Juntunen et al. 2002) and modified by the glacial topography. Thus, on separate fells in southern 

Lapland the treeline is an elevational rather than latitudinal transition zone (Veijola 1998).  

Numerous studies have applied dendrochronology, fossils and pollen analysis to reconstruct 

the treeline dynamics during the Holocene climate changes in Northern Finland (Kultti et al. 2006, 

Helama et al. 2004). They show that the shifting of the species in the past reflects the sequence of 

their current treeline positions (Appendix A1, Fig. A1.1): Betula pubescens Ehrh. arrived at 9000 

BP, Pinus sylvestris L. at 6000 BP and Picea abies (L.) Karst. as late as 3000 BP (Eronen et al. 1999). 

In contrast, P. abies forms the northernmost treeline in eastern Fennoscandia and northern Russia 

(Oksanen 1995). The restriction of P. abies to the south in Finnish Lapland might thus not 

constitute an equilibrium state. The treeline for this species may not be dictated by climatic 

factors alone, but rather by edaphic factors such as soil type. Sutinen et al. (2005) suggest that the 

Lapland Granulite Belt in north-eastern Lapland, forming dry, nutrient-poor tills dominated by P. 

sylvestris and B. pubescens, is a barrier for P. abies treeline advance. Planting experiments and 

isolated occurrences show that P. abies is indeed able to survive on sites far north of its current 

treeline (Oksanen 1995). 

The arctic treeline ecotone is one of the biome boundaries expected to react very sensitively 

to the ongoing climatic change and thus serves as an indicator for current climate warming 

(Holtmeier and Broll 2005). A northwards treeline shift has several effects: First, it reduces the 

treeless arctic biome and thus endangers the species diversity around the pole (Holtmeier and 

Broll 2007). Second, in a positive feedback, it changes climatic characteristics such as albedo and 

evaporation and thus alters the climate itself leading to a further warm-up as dark forest surfaces 

reflect less radiation than snow-covered ground (Grace et al. 2002). Third, it remains unclear 

whether carbon sequestration by tree growth on yet unforested sites will offset carbon losses due 

to higher decomposition rates in the warming soil (Hyvönen et al. 2007, Wilmking et al. 2006). 

Juntunen et al. (2002) report a potential for treeline advance of P. sylvestris and P. abies in 

Northern Finland due to an increase in basal area and tree density between 1983 and 1999 as well 

as an increase in regeneration peaks for Northern Fennoscandia. Intensive regeneration since the 

1970s has already been reported for Pallastunturi in Finnish Lapland (Tasanen et al. 1998). 

However, advance is not the globally uniform response of treelines to climate warming indicating 

that other restraining factors exist (Harsch et al. 2009). 

The anomalous case of P. abies in Finnish Lapland as well as past and ongoing treeline dynam-

ics motivate the following questions: (i) What are the processes determining the current treeline 

position in Finnish Lapland and, thus, (ii) how sensitive is it to future climatic change? (iii) Can we 

successfully model the abundance of the three dominant species? (iv) Are our models transfer-

able between different time periods or regions; can we successfully predict future treeline pat-

terns using models trained on data from the past (forecasting), and can we reproduce historic 

patterns (hindcasting) as a prerequisite for model application to climate change scenarios?  
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2.2. Methods 

2.2.1. Data 

2.2.1.1. National Forest Inventory datasets 

Our datasets are part of the 7th (NFI 7, Kuusela and Salminen 1991) and 9th National Forest Inven-

tory (NFI 9, Tomppo et al. 2011) completed by the Finnish Forest Research Institute (METLA) in 

1984 and 2003 respectively. We used only inventory plots in the two Forestry Centre 13 areas 

"North Lapland" (assessed in both 1978 and 2003) and "Lapland" (assessed only in 2002/03) with 

differing sampling designs (Fig. 2.1). From these initial datasets all plots with a heterogeneous 

structure (e.g. non-forest vegetation or different stand age) were excluded, and we used only 

plots on which either no cutting occurred or cutting took place more than 30 years ago. As the NFI 

9 samples cover a wider extent than the NFI 7 data, we split the NFI 9 dataset into a northern (NFI 

9N; congruent with NFI 7) and a southern (NFI 9S) part (Appendix A1, Table A1.1). The altitudes, 

which range from 0 to more than 500 meters a.s.l., are highest in the north-western part which 

extends into the Swedish Scandes.  

Figure 2.1. Spatial dataset characteristics: differ-

ent contours distinguish the two areas (with 

differing sampling design); ‘North Lapland’ was 

sampled in both 1978 (black, NFI 7) and 2003 

(grey, NFI 9N) whereas data for ‘Lapland’ was 

only available for 2002/2003 (NFI 9S). 

 

 

 

 

 

 

2.2.1.2. Climate data 

Climate data made available by the Finnish Meteorological Institute contained daily mean, mini-

mum and maximum temperature and precipitation values in an interpolated 10 × 10 km2 grid 

from 1961 to 2007 (Venäläinen et al. 2005). From the daily temperature values we calculated two 

frost indices according to Jönsson et al. (2004). We chose the accumulated degree days between 

the onset of dehardening, defined here as a period of four consecutive days with a mean 

temperature above 5°C, and a minimum temperature below -2°C (spring backlash index, SBI) as 

well as the number of days with a temperature below the hardiness level during autumn (autumn 
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frost index, AFI). Both indices were calculated over a period of 15 years preceding the inventory 

year. 

     Comparing climatic predictors between the two time periods (Fig. 2.2) shows that, while the 

aggregated temperature information contained in growing degree days (GDD, 5°C threshold) 

seems stable (only slight increase), the short-term temperature development over the year cap-

tured by the frost indices differs considerably. Late frosts in spring (SBI) as well as early frosts in 

autumn (AFI) occurred more often during the years preceding 1978 than 2003 (winter warming). 

Precipitation in May and August both increased by 10-20 mm over the 25 years. 

Figure 2.2. Comparison of climatic predictors be-

tween 1978 (NFI 7) and 2003 (NFI 9N). Plus sign 

indicates mean (intersection) and standard de-

viation (length of the arms); extreme cases for 

spring backlash index were omitted for clarity. 

 

 

 

 

 

2.2.2. Models 

2.2.2.1. Response and predictor variables  

We weighted the general stand basal area assessed in the field (angle count sampling, METLA 

2002) with the proportion of each species on a plot to obtain species-specific stand basal areas 

(response variable). The datasets cover the northern range boundary of the three species, leading 

to a skewed distribution (Appendix A1, Fig. A1.2) with zero-inflation (Martin et al. 2005) for all 

three species. The inflated zero values can be classified as true zeros according to Martin et al. 

(2005) as some plots lie beyond the species’ treeline and no observer failure is to be expected 

with trees. Fig. A1.2 also shows an increase in basal area from 1978 (NFI 7) to 2003 (NFI 9N). 

Table 2.1 summarizes all response and predictor variables. Stand basal area (or presence/ ab-

sence) of one species is the response variable, while the stand basal area of the other two species 

respectively are used as predictors (basal area of co-occurring species). Many predictors are in-

dices integrating a set of environmental conditions or several processes. The frost indices contain 

information of daily mean and minimum temperatures over the course of the year while growing 

degree days are cumulative; thus both contain temporal characteristics on differing scales. The 

topographic indices also contain information about the spatial context: The position index (TPI) is 

based on the elevation of adjacent sites (Guisan et al. 1999), and the wetness index (TWI) inte-

grates the slope of a site with the upslope contributing area (Quinn et al. 1995), while the radia-

tion index (TRASP) is merely a transformation of aspect (Roberts and Cooper 1989). Site fertility 
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had been assessed in the field during inventory. It distinguishes (in order of decreasing site quail-

ty) fresh, sub-dry and poor mineral soils as well as peatland based on a historic tax classification in 

Finland. 

2.2.2.2. Boosted regression trees 

In order to assess the question of model transferability, we fitted boosted regression trees (BRT) 

for each species following the design of model estimation and application summarized in Fig. 2.3. 

Boosted regression trees combine the statistical method of classification and regression trees 

with boosting, i.e. the aggregation of many simple models to one ensemble of models (see Elith et 

al. (2008) for an excellent introduction to BRT and Leathwick et al. (2006) for an illustrative exam-

ple). We chose BRT for their ability to model nonlinear relationships, automatically fit interactions 

as well as their predictive performance. BRT outperformed generalized additive models (GAM) 

and variants of classification and regression trees (CART) in a study modelling tree occurrence and 

basal area in Utah (Moisen et al. 2006), and have been shown to perform very well at species 

distribution modelling compared to other techniques in numerous studies (e.g. Valle et al. 2013, 

Revermann et al. 2012, Zurell et al. 2009, Guisan et al. 2007a, Araújo and New 2007, Elith et al. 

2006). All BRT models were fitted in R version 2.13-0, using gbm package version 1.6-3.1 

(Ridgeway 2010) and dismo package version 0.7-17 (Hijmans et al. 2012). Tuning parameters (e.g. 

learning rate and tree complexity) are given in Table A2.1 (Appendix A2), and R-code is provided 

in Appendix A8 (CD). All model residuals were checked for spatial autocorrelation by computing 

spline correlograms (Dormann et al. 2007, Bjørnstad and Falck 2001). 

 

 

 

Figure 2.3. Study design. Internal evaluation 

(IE): models trained on and applied to the 

same dataset. External evaluation (EE): 1) 

temporal transfer, i.e. forecasting (NFI 7 → 

NFI 9N) and hindcasting (NFI 9N → NFI 7); 2) 

spatial transfer between regions (NFI 9N ↔ 

NFI 9S). 

Due to the zero-inflation described above, we applied the conditional model concept described by 

Welsh et al. (1996). Here, the occurrence model first estimates whether a species is present or 

not, and then the abundance model estimates the basal area of that species based on presence-

only data (Fletcher et al. 2005) (see Appendix A7 (CD) for a comparison of the abundance models 

trained with or without absences). The final expected value for basal area is obtained by multiply-

ing occurrence probability and predicted basal area. This technique has been found to perform 

very well compared to other methods dealing with zero-inflation (Potts and Elith 2006). In 

summary, we estimated one conditional model − resulting in occurrence, abundance as well as 

final predictions for which results are reported − with eleven predictors (Table 2.1) per dataset 

(NFI 7, NFI 9N and NFI 9S) for each of the three species. However, the prevalence of P. abies − 

being restricted to the south of Lapland − in the NFI 7 dataset was too low for abundance model 

building. Thus, neither abundance nor final model results are shown for this species. 
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Table 2.1. Response (R) and predictor (P) variables with their ranges or classes in the NFI 7, NFI 9N and NFI 

9S datasets. 

variable unit  NFI 7 NFI 9N NFI 9S R / P 

P. sylvestris stand basal area  [m² ha-1] min 0.0 0.0 0.0 

R / P median 4.0 6.0 4.0 

max 20.0 32.0 35.7 

P. abies stand basal area [m² ha-1] min 0.0 0.0 0.0 

R / P median 0.0 0.0 1.1 

max 10.5 18.0 29.8 

B. pubescens stand basal area  [m² ha-1] min 0.0 0.0 0.0 

R / P median 1.0 0.0 0.0 

max 11.6 16.1 28.2 

growing degree days GDD 1 [−] min 416.0 421.7 631.0 

P median 629.6 660.3 800.6 

max 723.1 736.2 1062.4 

spring backlash index SBI 2 [GDD] min 1.2 0.0 0.0 

P median 12.6 4.5    8.7 

max 79.8 12.3 30.1 

autumn frost index AFI 3 [d] min 83 28 12 

P median 154 111 140 

max 223 213 235 

May precipitation sum 1 [mm] min 11.6 8.7 16.4 

P median 15.1 24.4 29.4 

max 21.5 34.7 46.6 

August precipitation sum 1 [mm] min 41.9 47.1 36.6 

P median 47.3 58.9 50.2 

max 53.4 67.1 70.3 

topographic radiation index 

TRASP 

[−] min 0 0 0 

P median 0.6 0.5 0.6 

max 1 1 1 

topographic position index  

TPI 

[−] min -24 -24 -19 

P median 0 0 0 

max 42 25 38 

topographic wetness index  

TWI  

[−] min 10.6 10. 6 10.8 

P median 13.2 13.4 14.1 

max 25.4 27.6 29.1 

site fertility 

[relative frequency] 

1 mineral soil, fresh   .14 .04 .16 

P 
2 mineral soil, sub-dry .41 .29 .37 

3 mineral soil, poor .39 .45 .33 

4 peatland .06 .22 .14 

1 mean calculated from 10 years preceding the inventory year (1968-1977, 1993-2002) 
2 accumulated GDD between four consecutive days with Tmean> 5°C and a day with Tmin< -2°C 
3 number of days with a temperature below the hardiness level during autumn 
2 mean/ 3 sum calculated from 15 years preceding the inventory year (1963-1977, 1988-2002) 



  

17 

2 Methods 

2.2.2.3. Model performance 

To assess the performance of each model before (internal evaluation) and after (external evalua-

tion) transferring it to either another time or another region, we calculated the percentage of 

deviance explained (% dev expl) from a tenfold cross-validation (CV). This value ranges from 0 % 

(null model) to 100 % (perfect model), while less than 0 % marks a model weaker than the null 

model. For deviance calculation we used the binomial loss function for the occurrence model and 

the absolute loss function for the abundance model. As the final predictions are a combination of 

occurrence and abundance model results, we combined the two loss functions to calculate the 

deviance of the final model. Thus, for each observation (obs) – prediction (pred) pair the individ-

ual deviance (to be summed) is 
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However, we only report a single value of explained deviance for the final model based on all ob-

servations. To account for the optimism of that single value, we subtracted the difference be-

tween the CV-derived value and the more optimistic performance on the full dataset. For the 

occurrence models, we additionally computed the area-under-the-curve (AUC) statistic ranging 

between 0.5 for the null model and 1.0 for a perfect model (Swets 1988). Apart from model per-

formance statistics that summarize the goodness-of-fit in one figure, we visually compared maps 

of observed and predicted basal area values. 

2.2.2.4. Model transferability 

In order to evaluate model transferability between the two time periods (NFI 7 ↔ NFI 9N) and 

two spatial extents (NFI 9N ↔ NFI 9S), we adopted the transferability index developed by Randin 

et al. (2006) for spatial and extended by Dobrowski et al. (2011) for temporal transferability (see 

Fig. A3.1, Appendix A3). The index ranges from 0 (no transferability) to 1 (full transferability). As 

this one value summarizes both transfer directions in one figure, we also examined the actual 

goodness-of-fit values reported for the model performance. 

Additionally, we compared the relative importance as well as the response curves of each pre-

dictor between the three model sets (NFI 7, NFI 9N, and NFI 9S). Statistical modelling assumes 

stationarity of the relationship between response and predictors over time as well as in space 

(Hothorn et al. 2011, Schröder and Richter 1999). If this does not hold and nonstationarity is not 

accounted for, the models can hardly be expected to result in successful predictions for new 

datasets (with differing relative importance or response curves).  

Finally, we used tools and code described by Zurell et al. (2012a) to visualize in which cases 

transferring models between time periods and regions represents extrapolating to novel environ-

ments. Environmental overlap masks (function eo.mask) highlight cases where predictions are 

made to novel as opposed to sampled environmental space. When applying these tools to our 

datasets, first the difficulty of many predictors arises. Only two predictors were used to describe 

the method (Zurell et al. 2012a) but with 11 predictors almost all cases are novel (because to be 

classified as analogue the sample needs to fit into one of five bins of all 11 predictors simultane-

ously). Thus, we only picked subsets of predictors to explore the issue and only report two 

example cases. 
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2.2.3. Identifying important processes 

In order to analyze the processes determining the current treeline position we compared the 

relative importance and response curve of each predictor between occurrence and abundance 

models and between species. The relative importance of a predictor is based on the reduction of 

model performance when this variable is randomly permuted (cf. Ridgeway 2010). Partial depen-

dence plots visualize the response curve for a single predictor while all other predictors are kept 

at their mean value. Whereas the relative importance indicates how much, partial dependence 

plots show how model predictions respond to a specific predictor. They display whether the 

species’ ecological demands are correctly modelled and thus can function as a plausibility test. In 

addition, we analyzed the automatically fitted interactions between predictors as described in 

Elith et al. (2008) and implemented in the dismo package. We ranked the interactions according 

to their magnitude and plotted the four most important interactions in each model as joint partial 

dependence plots. 

2.3. Results 

2.3.1. Model performance and transferability 

AUC values were (very) high for the internal evaluation and still predominantly high for the exter-

nal validation (Table 2.2). Explained deviances, too, were high for the internal evaluation, but ex-

ternal validation only partly succeeded (positive explained deviances, Table 2.3). Generally, model 

performance was highest for P. sylvestris and lowest for B. pubescens, and higher for occurrence 

than abundance models. We found no residual spatial autocorrelation in any of our models. 

Transferability index (TI) values were again highest for P. sylvestris, and generally higher for 

spatial than temporal transferability. Cases where model transfer failed according to the criterion 

used by Randin et al. (2006) were correctly mirrored in low TI values (Table 2.2).  

Table 2.2. AUC for the internal (IE) and external (EE) evaluation of the occurrence model and transferability 

index based on AUC (TI AUC) for temporal and spatial transferability. Grey figures mark cases where model 

transfer fails according to Randin et al. (2006), i.e. AUCIE > 0.7 but AUCEE < 0.7. 

 

 trained on applied to P. sylvestris P. abies B. pubescens 

IE (10-fold CV) 

 

 

NFI 7 NFI 7 0.91 0.88 0.71 

NFI 9N NFI 9N 0.98 0.97 0.88 

NFI 9S NFI 9S 0.92 0.87 0.83 

EE (temporal) 

 

NFI 7 NFI 9N 0.83 0.80 0.68 

NFI 9N NFI 7 0.84 0.82 0.69 

EE (spatial) 

 

NFI 9N NFI 9S 0.87 0.69 0.74 

NFI 9S NFI 9N 0.96 0.83 0.86 

TI AUC 

 

temporal: NFI 7   ↔ NFI 9N 0.70 0.68 0.59 

spatial:     NFI 9N ↔ NFI 9S 0.75 0.46 0.68 
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2 Results 

Table 2.3. Explained deviance values for the internal and external evaluation of the occurrence (occ), abun-

dance (abu) as well as final (fin) models, and transferability index based on explained deviance for temporal 

and spatial transferability. Grey figures mark cases where the model is weaker than the null model (nega-

tive devexpl). Mark that high TI values for P. abies and B. pubescens in comparison to P. sylvestris merely 

reflect the differences between IE and EE model application not the actual model performance which is 

generally highest for P. sylvestris. 

Scatterplots of observed and predicted basal areas (Appendix A4, Fig. A4.1) showed a systematic 

miscalibration (see also Appendix A4, Table A4.1 for calibration measures): high basal area values 

were under- and low values were overestimated. However, the observed spatial pattern of lower 

and higher basal areas was certainly captured in all three species’ cases (Fig. 2.4). This is not only 

true for the internal evaluation but, to a lesser extent, also for the external evaluation. The ob-

served treeline pattern for P. sylvestris and P. abies in the north was reproduced by the occur-

rence model as well as the abundance model (see Appendix A4, Fig. A4.2 for an extension of Fig. 

2.4). The results were very similar for the temporal model transfer (Appendix A4, Fig. A4.3). 

In our predictor set we found examples for congruent as well as merely overlapping environ-

mental space for both temporal and spatial model transfer. In Fig. 2.5, the left hand side plots are 

examples of nearly congruent environmental space, i.e. combinations of TPI and TWI ranged with-

in the same limits in both time periods and both regions (analogue). The plots on the right hand 

side of Fig. 2.5 illustrate cases of overlapping environmental space, i.e. some combinations of May 

and August precipitation are sampled in both datasets (intersecting set) but most are only part of 

one of the two datasets (symmetric difference; novel). The combination of high precipitation 

values in both months was only sampled in 2003 (precipitation increase, Fig. 2.2). Thus, fore-

casting constitutes predicting to novel environments where these high precipitation values occur. 

The same applies to combinations of low precipitation values measured only in 1978. Whereas 

the few novel combinations of TPI and TWI are scattered (Fig. 2.6, l.h.s.), the novel combinations 

of precipitation show a distinct spatial pattern for both datasets (Fig. 2.6, r.h.s.). The northern-

most tip of Lapland exhibits the combination of low May and high August precipitation that is only 

 P. sylvestris P. abies B. pubescens 

train test occ abu fin occ abu fin occ abu fin 

internal evaluation (10-fold CV) 

NFI 7 NFI 7 42.1 36.0 33.7 30.6 − − 8.4 10.0 6.5 

NFI 9N NFI 9N 69.6 38.1 44.1 62.5 12.7 43.6 37.9 16.8 25.3 

NFI 9S NFI 9S 45.7 33.2 32.8 35.0 27.5 22.9 27.1 22.0 24.0 

external evaluation: temporal transfer 

NFI 7  NFI 9N 23.3 -2.8 3.6 -8.1 − − -10.8 -24.7 -16.8 

NFI 9N NFI 7 -5.5 34.7 24.0 12.9 -34.1 2.1 -8.8 -14.0 -11.6 

external evaluation: spatial transfer 

NFI 9N NFI 9S 25.6 18.7 20.7 -83.9 -7.0 -38.9 10.6 9.5 10.1 

NFI 9S NFI 9N 58.3 4.9 18.4 -71.6 19.8 -41.4 32.1 6.3 20.4 

transferability index based on % devexpl 

NFI 7 ↔ NFI 9N 0.57 0.67 0.77 0.72 − − 0.71 0.73 0.72 

NFI 9N ↔ NFI 9S 0.72 0.77 0.82 0.26 0.82 0.43 0.81 0.86 0.86 
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sampled in NFI 9N, while the east of Southern Lapland features combinations of high May and low 

August precipitation that do not occur in the north. 

Figure 2.4. Maps of final model 

predictions for the spatial model 

transfer. Left: observations (obs). 

Centre: results of the internal 

evaluation (IE), i.e. northern pre-

dictions by NFI 9N, southern pre-

dictions by NFI 9S model. Right: 

results of the external evaluation 

(EE), i.e. northern part predicted 

by NFI 9S model and southern part 

predicted by NFI 9N model. 

 

 

 

 

 

 

 

 

Figure 2.5. Environmental space for two variable 

combinations showing analogue (‘a’) and novel 

(‘n’) predictor combinations in (a) NFI 7 and NFI 

9N (temporal transfer) and (b) NFI 9N and NFI 9S 

data (spatial transfer). Grid lines depict the bins 

each gradient is divided into (eo.mask, here: 5); 

cases are marked as novel where one grid ex-

ceeds the other. Left: the environmental space 

covered by both datasets is nearly congruent. 

Right: there is an overlap between the two data-

sets but most of NFI 9N (top) and NFI 9S (bottom) 

constitutes novel environment. Note: grey NFI 9N 

dots are identical in the upper and the lower 

panel. 

 

 
 
 
 
 
 
Figure 2.6. Map showing analogue (‘a’) and novel 
(‘n’) predictor combinations (left: topographic po-
sition (TPI) and wetness index (TWI), right: May 
and August precipitation) for NFI 9N and NFI 9S, as 
in Fig. 2.5b. 
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2 Results 

2.3.2. Important processes 

The most important predictors for occurrence and abundance across all species and datasets 

were site fertility, the abundance of co-occurring species and growing degree days (Table 2.4). 

These were also the predictors for which interactions generally ranked among the ten most im-

portant (see Appendix A5, Table A5.1 (and CD) for details on the fitted interactions). Site fertility- 

as single predictor as well as in interaction with other predictors- was more important in the 

abundance than in the occurrence models, especially for P. sylvestris and P. abies. The relative 

importance of growing degree days (GDD) in the P. sylvestris occurrence model was five times 

higher in 1978 than in 2003, and less important in the south than in the north. For P. abies 

occurrence, the autumn frost index was more important in the north (NFI 7 and NFI 9N) than in 

the south (NFI 9S), and the topographic wetness index contributed considerably more to the 

model in 1978 than in 2003 (Table 2.4). Climatic predictors were generally more important for the  

Table 2.4. Relative importance [%] of the predictors in the a) occurrence and b) abundance model trained 

on NFI 7, NFI 9N and NFI 9S datasets. Bold figures mark the most important. 

 P. sylvestris  P. abies  B. pubescens 

 NFI 7 NFI 9N NFI 9S  NFI 7 NFI 9N NFI 9S 
 NFI 7 NFI 9N NFI 9S 

(a) occurrence model 

GDD   50 9 6  4 4 5  9 3 3 

SBI  1 0 2  2 5 5  4 1 5 

AFI  3 1 1  37 18 3  6 4 2 

May prec 4 1 2  1 11 3  10 1 2 

Aug prec 2 1 2  2 1 4  3 2 2 

TRASP 4 1 1  11 3 5  14 3 3 

TPI 2 2 1  2 2 3  2 1 2 

TWI 6 1 2  12 2 4  5 2 5 

species1 1 1 17 41  15 36 48  27 62 46 

species2 2 5 46 28  2 6 6  0 6 9 

fertility 22 21 14  12 12 14  20 15 21 

(b) abundance model 

GDD   5 4 3  − 3 4  6 3 5 

SBI  3 3 2  − 12 2  5 4 5 

AFI  3 7 2  − 4 2  7 3 2 

May prec 5 5 1  − 1 2  8 3 5 

Aug prec 3 4 2  − 2 2  14 6 4 

TRASP 3 7 4  − 7 3  6 5 4 

TPI 2 3 1  − 1 1  10 2 1 

TWI 2 4 4  − 5 4  16 4 8 

species1 1 0 5 18  − 23 39  26 53 26 

species2 2 17 18 14  − 27 11  0 4 12 

fertility 57 40 49  − 15 30  2 13 28 

1 i.e. P. abies in P. sylvestris’ case and P. sylvestris for P. abies and B. pubescens models 
2 i.e. P. abies in B. pubescens’ case and B. pubescens for P. sylvestris and P. abies models 
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occurrence models than the abundance models for which in turn topographic/edaphic predictors 

were (almost) always more important. Up to 90 % of the model explanation was due to non-

climatic predictors making our models relatively insensitive to climate. The relative importance of 

predictors as well as interaction rankings in the NFI 9N models often resembled those in the NFI 9S 

models more than in the NFI 7 models when averaged across species. 

The response curves of the four most important predictors differed between occurrence and 

abundance models as well as between species (Fig. 2.7). Roughly, site fertility and both occur-

rence and particularly abundance of any species was positively correlated. The correlation of P. 

sylvestris occurrence and site fertility classes, however, varied notably among datasets, especially 

for less fertile sites. There were clear GDD thresholds for P. sylvestris (600) and P. abies occur-

rence (700), while GDD had a steadily positive effect on abundance (best seen for the wider range 

of GDD in NFI 9S). In addition, Fig. A5.2–A5.4 in Appendix A5 (CD) show that this effect is strongest 

where the abundance of co-occurring species is low. While P. sylvestris occurrence correlated 

negatively with both P. abies and B. pubescens abundance, the latter two were positively correlat- 

 

Figure 2.7. Partial dependence plots for the four most important predictors in the occurrence (a) and the 

abundance models (b) of each species (three columns) for NFI 7 (▲, broken line), NFI 9N (●, solid black line) 

and NFI 9S (●, solid grey line). Partial dependence plots visualize the response curve for a single predictor 

while all other predictors are kept at their mean value. Site fertility decreases from class 1 to 4. 
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2 Discussion 

 

Figure 2.7. Continued. 

ed for low abundances. For the abundance however, the curves decreased monotonically for all 

species combinations. Indeed joint partial dependence plots (Fig. A5.1, CD) show that abundance 

of one species is highest where the abundance of the other two species is lowest. Overall, partial 

dependence was similar for all three datasets although response curves for NFI 9N and NFI 9S were 

often closer than for NFI 7 and NFI 9N. 

2.4. Discussion 

2.4.1. Model performance 

Our models performed well at reproducing the treeline in northern Lapland. The overestimation 

of low and underestimation of high values in our study was also reported by Aertsen et al. (2010) 

who found that BRT predictions had a narrower range than the observations compared to other 

statistical modelling techniques. 

The difference of model performance between species can have various reasons: On the one 

hand, the prevalence differs for each species and dataset and thus determines the sample size of 

the abundance model (Appendix A2, Table A2.1). Additionally the current predictor set apparent-
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ly includes the important processes to model P. sylvestris satisfactorily, whereas predictors are 

obviously missing for P. abies and B. pubescens. Finally, B. pubescens does not form as distinct a 

treeline as P. sylvestris and P. abies in the study area and does not follow a strong north-south 

gradient which reduces the correlation with predictors with a clear spatial trend. Others, too, 

found that tolerant generalist species (Brotons et al. 2004) and fast-growing pioneer species 

(Guisan et al. 2007b) like B. pubescens were the hardest to predict. 

The occurrence models were generally more successful than the abundance models which is in 

contrast to Meier et al. (2010) who reported the reverse. Moisen et al. (2006) however also re-

ported only mediocre predictions of basal area compared to occurrence probability. Their average 

correlation between observed and predicted values for three Pinus species in North America was 

0.45, while our P. sylvestris models reach 0.72 averaging all independent model applications 

(Table A4.2 in Appendix A4). Similarly, our P. abies (0.43 in contrast to their 0.35 for Picea engel-

mannii) and B. pubescens (0.51) models do well in comparison. The occurrence of a species is 

easier to predict as it distinguishes only two states as opposed to a range of possible abundance 

values. This is especially true if the dataset exceeds the range of a species. 

2.4.2. Model transferability 

Transferability followed the pattern of model performance and was highest for P. sylvestris and 

lowest for B. pubescens. Highly species-specific differences in transferability were also reported by 

Randin et al. (2006). Transferability was higher between regions than between times when re-

garding transferability index values. This was also evident in the response curves, relative impor-

tance and interaction magnitude of predictors of NFI 9N often resembling those of NFI 9S more 

than those of NFI 7. There are different possible explanations for the limited transferability in our 

application: As discussed above, the changes of a predictor’s importance over time might be due 

to the weakening restriction by other factors, like the temperature limitation lessened by climate 

change. Furthermore, the complex interactions and relationships of different processes summa-

rized within proxies might change over time and in space (Dormann et al. 2013) as indicated by 

the differing structure of collinearity (Appendix A6, Fig. A6.1). Thus, distal predictors lead to 

models with limited transferability, while proximal predictors yield more robust and wider 

applicable models (Austin 2002). Additionally, overfitting which is a known issue of BRT (Elith et 

al. 2008) reduces the generality of our models.  

The most convincing explanation for limited transferability, however, is extrapolation to novel 

environments. As an example illustrating how changes in the environmental space lead to extra-

polation and non-transferability, we investigate the temporal transfer of the P. sylvestris occur-

rence model which succeeds for forecasting but fails for hindcasting (Table 2.3 and Appendix A4, 

Fig. A4.3a). GDD is the most important predictor for the occurrence of P. sylvestris in 1978 (50 %, 

Table 2.4), the response curves for this predictor in 1978 and 2003 are very similar (Fig. 2.7a) and 

there is only a slight increase of GDD values over the 25 years (Fig. 2.2) and thus no extrapola-

tion− model transfer succeeds. On the other hand the most important predictor in 2003 is B. 

pubescens basal area (46 %) which increased over the 25 years (Appendix A1, Fig. A1.2) and 

whose negative relationship with P. sylvestris occurrence is less pronounced in the NFI 7 data. 

Indeed, all false presences of P. sylvestris (i.e. overestimated occurrence probabilities for 1978 by 

the NFI 9N model) concur with (very) low basal areas of B. pubescens (not shown).  
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2 Discussion 

The case of the two precipitation variables in Fig. 2.5a shows how climate change (increase of 

both May and August precipitation from 1978 to 2003) has shifted the sampled environmental 

space to higher values, leading to a small overlap of analogue samples and two distinct areas of 

novel environmental space (Fig. 2.5a, r.h.s.). Comparing the environmental space of NFI 7, NFI 9N 

and NFI 9S for May and August precipitation shows however, that much of the NFI 7 data might 

not be sampled in the NFI 9N dataset but fits well into the NFI 9S dataset. Here is an example 

where a transfer between two regions and two times might work better than a temporal transfer 

within one region because climate change has shifted the environmental space. 

2.4.3. Processes controlling distribution patterns 

2.4.3.1. Site fertility 

We found site fertility- as single predictor as well as in interaction with other predictors- to be 

more important in explaining the abundance of P. sylvestris than its occurrence on a site implying 

resource-limited growth which was indeed found by Susiluoto et al. (2010) for Eastern Lapland. 

Although P. sylvestris thrives best on more fertile soils (positive correlation between abundance 

and site fertility, Fig. 2.7b), its occurrence probability on poor mineral soils or peatland is higher 

than for P. abies and B. pubescens. Indeed Sutinen et al. (2002) found on the basis of soil electrical 

characteristics that P. sylvestris is dominant on acidic, nutrient-poor soils while P. abies dominates 

nutrient-rich tills. This indicates competitive exclusion of P. sylvestris by P. abies and B. pubescens 

on fertile sites and a shift of P. sylvestris to a realised niche with less competition, i.e. less fertile 

sites. 

2.4.3.2. Growing degree days 

Growing degree days (GDD) contribute more to the occurrence model of P. sylvestris than of the 

other two species, indicating a temperature limitation of P. sylvestris in Lapland. Low tempera-

tures have indeed been found to limit P. sylvestris’ growth in Northern Lapland (Mathisen and 

Hofgaard 2011, Salminen and Jalkanen 2007). Thus, the slight increase of GDD from 1978 to 2003 

might suffice to make temperature less critical in 2003 and so explain the minor importance of 

GDD in the NFI 9N model. Similarly, temperature is less limiting in the south which explains the 

lower relative importance of GDD in the NFI 9S than the NFI 9N models. P. abies occurrence on the 

other hand is not only less dependent on GDD, but there are no differences in relative importance 

between datasets, supporting the hypothesis that P. abies is not climatically but edaphically 

limited in Lapland. For P. abies lower GDD requirements for flowering (140 vs. 230) and seed 

maturation (875 vs. 975 GDD for 95 % mature seeds) have been reported than for P. sylvestris 

(Almqvist et al. 1998, Zasada et al. 1992). Yet, the clear threshold in the response curves for GDD 

is surprisingly higher for P. abies (700) than for P. sylvestris (600). For P. sylvestris, we suggest this 

threshold to be an actual physiological minimum, since there were no occurrences below these 

values. For P. abies, however, it might be a mere correlation with the current position of the 

species’ treeline, if the dispersal limitation hypothesis holds true. 

2.4.3.3. Autumn frost index 

The relative importance of the autumn frost index (AFI) for explaining P. abies occurrence is 

higher in the north than in the south. When temperatures in autumn fall below the hardiness 
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level of P. abies, frost damages like bark necrosis and resin flow occur, which in turn can result in 

pathogen infections (Jönsson et al. 2004). If autumn frost damage was indeed limiting P. abies in 

the north, the relationship between occurrence probability and AFI should be negative. However, 

the response curves surprisingly reveal a positive relationship in the north, while in the south oc-

currence probability slightly declines with increasing AFI (Appendix A6, Fig. A6.2 l.h.s.). Due to 

cold air drainage (Yoshino 1984), AFI correlates negatively with altitude in Northern Lapland (Fig. 

A6.2 r.h.s.). Thus, the relationship between P. abies occurrence and AFI is apparently a spurious 

correlation, while altitude (or rather other site conditions on valley bottoms) is the actual causal 

variable. When removing AFI from the P. abies occurrence model, model performance only 

decreases for NFI 7 (probably due to the low prevalence of 7 %). The relative importance of AFI is 

compensated mainly by SBI, P. sylvestris abundance as well as August (NFI 7) and May 

precipitation (NFI 9N) for which correlation values with AFI are highest (Appendix A6, Table A6.1). 

Relative importance decreased for TWI (NFI 7) and SBI (NFI 9N) because the loss of the important 

interaction with AFI reduced the explanatory power of the single predictors (Table A6.1). 

2.4.3.4. Topographic wetness index 

For P. abies occurrence, the importance of TWI decreased from 1978 to 2003, while the response 

curves remained very similar (not shown). P. abies is known to occur on wetter sites (Sutinen et 

al. 2002). Thus, the precipitation increase from 1978 to 2003 might have increased soil moisture 

and rendered TWI less critical in 2003 leading to the lower relative importance in the model. TWI, 

however, depends only on topographical features which did not change over the 25 years and 

thus do not reflect climate change. Furthermore the response curves in the north depict a nega-

tive rather than positive relationship (not shown) with highest occurrence probabilities for low 

TWI (dry sites); the opposite is the case in the south. However, TWI values are higher for peatland 

(NFI 7 in Appendix A6, Fig. A6.3) for which P. abies occurrence probability is lower (Fig. 2.7a). 

Thus, the actual relationship here is probably that between P. abies and site fertility rather than 

TWI. 

2.4.3.5. Abundances of co-occurring species 

We found a negative correlation of P. sylvestris and B. pubescens abundance suggesting competi-

tion, e.g. for light as both species are shade intolerant (in contrast to the shade tolerant P. abies). 

This is in agreement with constrained diameter growth in P. sylvestris stands with high propor-

tions of B. pendula reported by Hynynen et al. (2011) for Southern Finland. The positive correla-

tion between P. abies and B. pubescens, while both species are negatively correlated with P. syl-

vestris, is compliant with the findings of Sutinen et al. (2002) confirming P. abies and B. pubescens 

to occur on sites of the same soil characteristics. Doležal et al. (2006) and Brandtberg et al. (2000) 

found evidence for B. pubescens improving P. abies growing conditions and especially regenera-

tion by soil aeration, efficient nutrient cycling and facilitation of water and nutrient uptake from 

deep soil, in line with the positive correlation of P. abies and B. pubescens for low abundances in 

our models. The positive correlation is absent in the abundance models, however, rather suggest-

ing similar habitat requirements (than facilitation) leading to competition between B. pubescens 

and P. abies for high abundances (where the correlation is negative in both models). Size-depen-

dent interspecific interference were identified as cause for B. pubescens population decline in a 

mixed stand with P. abies in Lapland (Doležal et al. 2006), and competition-induced loss of P. 
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abies yield due to a shelter of B. pubescens was reported for southern and central Sweden (Mård 

1996). A further explanation for the decreasing occurrence probability of B. pubescens with in-

creasing P. abies abundance is forest management, i.e. birch is thinned when mixed stands get 

too dense to increase P. abies yield.     

The only climatic predictor we identified as generally most important is GDD. Yet our entire 

predictors act as proxies for the actual processes we try to cover (distal rather than proximal, 

Austin 2002). The abundance of co-occurring species, apart from directly influencing the target 

species as discussed above, can act as a proxy for the environmental conditions tolerated by this 

species. Thus the two abundance predictors could contain redundant information better repre-

sented by more proximal climatic or soil variables. We tested how model performances changed 

when omitting the two abundances. In contrast to omitting AFI (see above), model performance 

decreased substantially when removing the abundances, losses ranging from 7.6 to 95.5 % of the 

original explained deviance. Reduction in explained deviance was slightly lower for P. sylvestris 

than for P. abies and highest for B. pubescens (being the same ranking as in model performance 

and transferability). Not surprisingly, model performance loss was highly correlated with the 

relative importance of the omitted predictors for P. sylvestris (Spearman correlation coefficient: 

0.83), less so for P. abies (0.60), but unexpectedly not at all for B. pubescens (-0.03). We conclude 

that the abundance variables do contain non-redundant information which is in line with what 

Meier et al. (2010) found for trees in Switzerland. 

We found topographic/edaphic predictors to be more important in the abundance models 

than in the occurrence models. Thus the locally very variable growing conditions (no spatial trends 

in topographic indices and site fertility) do not help explaining the larger regional trend of 

decreasing occurrence probabilities towards the north, but they do contribute much to the 

explanation of the performance on site. On the other hand, the climatic and biotic predictors with 

a regional trend are more related to the occurrence patterns and are thus more important in 

these models. The abundance models are trained on presence-only data. Thus, the predictors’ 

ranges are by definition within the ecological niche of the species and do not contain information 

about range limits - unless decreasing abundance is seen as an indicator. This is the case in the P. 

sylvestris abundance model (Appendix A4, Figs A4.2b and A4.3b) depicting the treeline by pre-

dicting very low abundances where the species is indeed absent. This indicates that P. sylvestris is 

restricted by adverse growing conditions in the north. The situation is different for P. abies. The 

spatial model transfer shows that the NFI 9S model, lacking the information regarding absences in 

the north, greatly overestimates P. abies occurrence (Fig. A4.2a). At the same time, the abun-

dance models (both IE and EE) predict relatively high abundances also for the north where P. 

abies is absent (Fig. A4.2b). This suggests that not the growing conditions (at least not those cap-

tured by our set of predictors) but another factor still missing from our current models explains P. 

abies’ absence in the north, further hinting at a dispersal barrier. 

2.4.3.6. Missing processes 

Additional processes unaccounted for in the current predictor set due to data unavailability – such 

as dispersal limitation of P. abies - might improve the models. For example, snowfall strongly 

affects tree survival: heavy snow loads (Finnish: tykky) can cause branch or even stem breakage 

limiting P. sylvestris on hilltops where the more flexible and snow shedding structure of hanging 

branches favours B. pubescens and P. abies (Jalkanen and Konôpka 1998). Too low snow cover 

causes bark abrasion by wind-blown ice crystals, whereas too long snow coverage in spring leads 
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to snow fungi infections (Burdon et al. 1992). Late melting snow accumulations in depressions 

effectively shorten the growing season (Autio and Colpaert 2005).  

P. sylvestris is limited by complex reproduction processes (Juntunen and Neuvonen 2006, 

Stöcklin 1999): warm, dry summers are required for reproductive bud production (year 1), 

flowering and pollination (year 2) is impaired by wet weather conditions or late frosts in spring, 

890 GDD is the minimum requirement for mature seeds (year 3) and should be followed by suit-

able air temperature and moisture (affecting cone opening) and wind conditions for primary seed 

dispersal in the subsequent dormant season; finally, germination (year 4) requires warm and 

moist soil surface conditions (Hallikainen et al. 2007, Zasada et al. 1992). An index for suitable 

weather conditions over four years could be useful to mark potential reproduction peaks. 

Mass outbreaks of the autumnal moth Epirrita autumnata in 1965 and herbivory by reindeer 

has caused the B. pubescens treeline to retreat in Lapland (Lehtonen and Heikkinen 1995). Cli-

mate warming is aggravating the influence of Operophtera brumata and Epirrita autumnata out-

breaks on subarctic birch forests (Jepsen et al. 2008). Indirect effects of reindeer overpopulation 

are the mechanic damage to P. sylvestris or P. abies seedlings by reindeers digging for lichens 

below the snow or by reindeers rubbing against the stems when losing the velvet from their 

antlers (Helle and Moilanen 1993). Lastly, anthropogenic impacts like fires or loggings (Mattsson 

1995) have a long lasting impact and often modify the natural combination of factors in a 

dominating way (Wallenius et al. 2002). In conclusion, a complex variety of different factors is 

affecting the current treeline position which, due to the longevity of trees, is a result of historical 

conditions rather than current effects, and important predictors might be missing from our 

models for especially P. abies and B. pubescens. 

2.5. Conclusion 

(i) We identified the abundance of co-occurring species, site fertility and growing degree days as 

important predictors, suggesting (ii) that the reaction of the treeline to climate change will be 

constrained by other, non-climatic factors. However, we found growing degree days to decrease 

in importance from 1978 to 2003 in the occurrence model for P. sylvestris, indicating a possible 

easing of the climatic constraints. Nonetheless, the abundance model predicted decreasing basal 

areas towards the north signifying true limitation of P. sylvestris by adverse growing conditions. 

This did not hold for P. abies, supporting the dispersal limitation hypothesis. B. pubescens was the 

hardest to predict and certainly calls for other processes to be included as predictors. (iii) Our 

models successfully reproduce observed patterns of presences and absences as well as general 

abundance patterns. (iv) The models performed considerably worse when applied to other re-

gions and especially time periods, and we identified extrapolation to novel environmental space 

as plausible cause. Already within the relatively small time span of 25 years, we found not only 

the shifting of single predictors’ ranges but more importantly a change in the combinations of 

predictor values, leading to a shift of the sampled environmental space. By examining BRT proper-

ties such as the relative importance of its predictors as well as response curves, some known 

features of the species’ ecology were indeed reproduced by our models, and surprising results 

could often be explained when further investigating interactions with additional variables.  
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Appendix A1 

Study area characteristics and stand basal area distribution 

Table A1.1. Study area characteristics for the NFI 7, NFI 9N and NFI 9S datasets. 

 NFI 7 NFI 9N NFI 9S 

inventory year 1978 2003 2002/ 2003 

sample size  217 773 3206 

latitude 68.2° – 70.0° N 68.2° – 70.0° N 65.7° – 68.2° N 

longitude 23.1° – 29.2° E 22.4° – 29.2° E 22.4° – 29.3° E 

altitude [m a.s.l.] 70.0 – 560.0 73.9 – 565.8 0.0 – 490.1 

stand basal area [m² ha-1] 0.5 – 20.0 0.0 – 32.0 0.0 – 37.0 

 

 

Figure A1.1. Current treeline positions of 

Pinus sylvestris, Picea abies and Betula 

pubescens in Finnish Lapland   (based on 

nature survey data by Metsähallitus, 

1996–1999). 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.2. Distribution of stand basal 

area [m² ha-1] above zero according to 

species and dataset. 
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Appendix A2 

Methodological details on boosted regression trees 

Table A2.1. Characteristics of the single boosted regression tree (BRT) models for occurrence and 

abundance. 

 occurrence model abundance model 

distribution (family) Bernoulli Laplace 

response variable 0 / 1 truncated 1 basal areas 

fitted values p ( y > 0 ) basal area [m² ha-1] 

range [0 , 1] [MIN , MAX] 

number of observations NFI 7 NFI 9N NFI 9S NFI 7 NFI 9N NFI 9S 

P. sylvestris 217 773 3206 162 567 2391 

P. abies 217 773 3206 15 2 92 1709 

B. pubescens 217 773 3206 148 377 1458 

learning rate 3   0.001 0.005 0.005 0.001 0.001 0.005 

tree complexity 4 5 5 

bag fraction 0.5 0.5 

number of trees 5 NFI 7 NFI 9N NFI 9S NFI 7 NFI 9N NFI 9S 

P. sylvestris 2600 1550 2850 5150 4200 2950 

P. abies 2950 1950 8250 − 2 3700 2550 

B. pubescens 2000 1150 3350 2200 6550 3250 

1 response vector shortened by the amount of original zeros (i.e. sites without this species) 
2 sample size too small for model building 
3 the learning rate (shrinkage) determines the contribution of each tree to the final ensemble model and, 

thus, the speed of gradient descent 
4 the tree complexity (i.e. maximum number of splits in a tree) relates to the interaction depth that can be 

potentially modelled 
5 the number of trees is influenced by the two measures above and was determined by cross-validation 

(Elith et al. 2008) 
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Appendix A3 

Methodological details on the transferability index 

Transferability index (TI) as developed by Randin et al. (2006) and extended by Dobrowski et al. 

(2011), where GOF can be any goodness-of-fit measure (originally: AUC) and ∆MAX is the maximum 

difference between internal (IE) and external (EE) evaluation (originally: 0.5 for AUC). The index 

ranges from 0 (maximum difference between IE and EE, no transferability) to 1 (no difference, full 

transferability). 
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Figure A3.1. Transferability index (TI) values based on AUC or percentage of deviance explained (% devexpl) 

as a function of the sum of absolute differences (|AA−AB|+|BB−BA|) between internal (AA, BB) and exter-

nal evaluation (AB, BA). The range of possible values (top right corner) corresponds to ∆MAX in the equation 

above (e.g. 0.5 for AUC). TI = 0 where |AA−AB|+|BB−BA| = 2 ∆MAX (e.g. 1.0 for AUC). For equal sums of 

absolute differences, TI is higher if the two differences (= directions of model transfer) are similar (symmet-

ric, broken line) as opposed to very different (asymmetric, solid line). Although the range of possible TI 

values (depending on the symmetry) for a given sum of absolute differences stays the same in all three 

applications (vertical arrows for ∆MAX), the range of sum of absolute differences leading to the same TI value 

(horizontal arrows for TI = 0.5) increases (lowest for AUC, highest for a range of -100−100 % devexpl). That 

makes TI values based on % devexpl harder to interpret and compare with one another than TI values based 

on AUC.  
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Appendix A4 

Visualization of model performance, maps of model predictions, and validation results 

Table A4.1. Intercept (ideally: 0) and slope (ideally: 1) of the calibration curve (Swets 1988) for   the internal 

(IE) and external (EE) evaluation of the occurrence model. 

   P. sylvestris P. abies B. pubescens 

 trained on applied to mean sd 1 mean sd mean sd 

intercept 

IE (10-fold CV) NFI 7 NFI 7 -5.563   (5.319) 30.018  (19.087) -0.394  (0.362) 

NFI 9N NFI 9N 0.078     (0.171) 0.906    (0.527) 0.027  (0.040) 

NFI 9S NFI 9S -0.047 (0.053) 0.009  (0.035) 0.016  (0.032) 

EE (temporal) NFI 7 NFI 9N -1.446                   2.392  -1.818  

NFI 9N NFI 7 0.380  -0.818  0.528  

EE (spatial) NFI 9N NFI 9S 0.394    0.943  0.241  

NFI 9S NFI 9N -0.342  -2.345  0.373  

slope 

IE (10-fold CV) NFI 7 NFI 7 7.599 (6.380) 19.408 (11.520) 1.333 (0.352) 

NFI 9N NFI 9N 1.523 (0.320) 1.358 (0.190) 1.098 (0.052) 

NFI 9S NFI 9S 1.028 (0.036) 0.964 (0.036) 1.031 (0.049) 

EE (temporal) NFI 7 NFI 9N 1.289  1.180  1.661  

NFI 9N NFI 7 0.385  0.636  0.377  

EE (spatial) NFI 9N NFI 9S 0.635  0.326  0.754  

NFI 9S NFI 9N 1.549  0.807  1.294  

1 mean and standard deviation of 10-fold cross-validation  

Table A4.2. Pearson and Spearman correlation between observations and predictions 

  P. sylvestris P. abies B. pubescens 

trained on applied to Pearson Spearman Pearson Spearman Pearson Spearman 

internal evaluation (10-fold CV) 

NFI 7 NFI 7 0.88 0.89 − 1 − 0.63 0.64 

NFI 9N NFI 9N 0.92 0.94 0.93 0.56 0.82 0.81 

NFI 9S NFI 9S 0.79 0.83 0.82 0.82 0.76 0.72 

external evaluation: temporal transfer 

NFI 7 NFI 9N 0.65 0.70 − − 0.49 0.54 

NFI 9N NFI 7 0.75 0.74 0.35 0.28 0.41 0.41 

external evaluation: spatial transfer 

NFI 9N NFI 9S 0.68 0.70 0.50 0.42 0.48 0.47 

NFI 9S NFI 9N 0.79 0.83 0.64 0.40 0.66 0.66 

1 prevalence of P. abies in the NFI 7 dataset too small for model building 
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Figure A4.1. Scatterplots of observations and predictions for each model–data combination for P. sylvestris 

(a), P. abies (b) and B. pubescens (c); e.g. top right figure in each panel shows NFI 9S model predictions for 

NFI 7 data. Main diagonal: internal evaluation cases. Note: Prevalence of P. abies in the NFI 7 dataset was 

too small for model building (left column in (b)). 
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Figure A4.2. Maps of occurrence (a), abundance (b) and final model (c) predictions for the spatial model 

transfer: observations (obs); results of the internal evaluation (IE), i.e. northern predictions by NFI 9N, 

southern predictions by NFI 9S model; results of the external evaluation (EE), i.e. northern predictions by 

NFI 9S model and southern predictions by NFI 9N model. Note: basal area is already underestimated by the 

abundance model; it is not an effect of multiplying the two model results to obtain the final model 

predictions. 
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Figure A4.3. Maps of occurrence (a), abundance (b) and final model (c) predictions for the temporal model 

transfer: observations (obs); results of the internal evaluation (IE), i.e. 1978 predictions by NFI 7, 2003 

predictions by NFI 9N model; results of the external evaluation (EE), i.e. 1978 predicted by NFI 9N model 

(hindcasting) and 2003 predicted by NFI 7 model (forecasting). 
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Appendix A5 

Analysis of the automatically fitted interactions between predictors (see also CD) 

Table A5.1. Ten most important interactions for each model. The four most important predictors (identified 

on the basis of relative importance) are marked in bold 1. 

NFI7 NFI9N NFI9S 

occurrence abundance occurrence abundance occurrence abundance 

P. sylvestris 

GDD – TPI B.pub – fert P.abi – B.pub P.abi – fert P.abi – B.pub P.abi – B.pub 

fert – GDD fert – P_Aug B.pub – GDD B.pub – fert P.abi – GDD P.abi – fert 

B.pub – P_May fert – GDD P.abi – GDD fert – GDD GDD – P_Aug B.pub – fert 

GDD – TRASP fert – P_May B.pub – fert fert – P_May B.pub – fert fert   – SBI 

B.pub – TWI B.pub – P_May B.pub – AFI P.abi – B.pub B.pub – GDD fert – TRASP 

GDD – TWI fert  – TPI P.abi – fert fert – AFI P.abi – P_May P.abi – TRASP 

fert – TWI fert  – SBI GDD – TPI GDD – TWI GDD – SBI fert – AFI 

GDD – P_May  fert – AFI B.pub – TPI B.pub – AFI P.abi – fert P_Aug – TWI 

B.pub – GDD B.pub – GDD P.abi – P_May GDD – SBI P_May – SBI B.pub – TWI 

SBI – AFI fert – TRASP P.abi – AFI AFI – TPI P_Aug – SBI TRASP – TWI 

P. abies 

AFI – TWI  –  P.syl – P_May B.pub – fert P.syl – SBI P.syl – B.pub 

P.syl – fert  –  AFI – SBI P.syl – B.pub B.pub – TPI P.syl – fert 

P.syl – GDD  –  fert – P_May P.syl – fert B.pub – AFI P.syl – GDD 

AFI – TPI  –  fert – AFI B.pub – TRASP P.syl – GDD GDD – AFI 

AFI – P_May  –  P.syl – B.pub fert – SBI SBI – TWI B.pub – fert 

P.syl – AFI  –  B.pub – AFI B.pub – AFI P_May – TRASP B.pub – GDD 

SBI – TRASP  –  P.syl – fert B.pub – TWI fert – TPI fert – P_Aug 

AFI – SBI  –  TPI – TRASP fert – AFI P.syl – B.pub fert – GDD 

P.syl – SBI  –  AFI – P_May fert – TWI GDD – TPI GDD – SBI 

fert – TRASP  –  AFI – TPI B.pub – TPI B.pub – TWI B.pub – SBI 

B. pubescens 

fert – AFI TPI – TWI P.syl – P.abi P.syl – P.abi P.abi – GDD P.syl – P.abi 

P.syl – fert GDD – TWI P.syl – fert P.syl – fert P.syl – P.abi P.syl – fert 

P.syl – P_May P.syl – P_Aug P.syl – AFI P.syl – AFI SBI – TWI P.syl – P_May 

fert – GDD P.syl – TWI P.syl – GDD P.syl – TRASP P.abi – TWI P_Aug – TWI 

P_May – TRASP AFI – TWI P.syl – P_Aug P.syl – P_Aug P.syl – fert P.abi – fert 

P.syl – TRASP P.syl – P_May fert – P_Aug P.syl – SBI SBI – AFI fert – AFI 

TWI – TRASP P_May – TRASP P.abi – fert P.syl – P_May fert – TWI fert – TWI 

TWI – P_May P.syl – AFI GDD – AFI P_Aug – TRASP P_May – SBI P.syl – TWI 

TWI – SBI TPI – TRASP P.syl – TRASP P.syl – TPI P.abi – AFI fert – TPI 

fert – TWI P.syl – SBI fert – SBI AFI – TWI SBI – TPI P.syl – SBI 

1 GDD – growing degree days; fert – site fertility; P.syl – P. sylvestris basal area [m² ha-1]; P.abi – P. abies; 

basal area [m² ha-1]; B.pub – B. pubescens basal area [m² ha-1] 
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Appendix A6 

Detailed insights into specific predictors, their relationships and relative importance 

Table A6.1. Spearman correlation of autumn frost index (AFI) and each predictor (corr), changes in relative 

importance [%] when AFI is omitted (without – with AFI, ∆ contr) as well as interaction size 1 (inter) of AFI and 

each predictor for the P. abies occurrence model.  

 NFI 7 NFI 9N NFI 9S 

 corr ∆ contr inter corr ∆ contr inter corr ∆ contr inter 

growing degree days 0.16 2 0.02 0.16 6 5.18 0.03 0 0.89 

spring backlash index 0.40 7 1.52 -0.48 -3 83.52 -0.03 0 11.04 

May precipitation 0.09 1 4.16 -0.30 9 10.25 -0.58 0 1.41 

August precipitation -0.49 9 0.03 0.02 0 1.26 -0.30 0 4.06 

topogr. radiation index -0.05 4 0.36 0.01 2 2.64 0.03 0 3.11 

topogr. position index -0.04 4 5.13 0.09 -1 10.06 0.01 0 9.95 

topogr. wetness index 0.23 -4 199.53 0.30 -1 1.12 0.23 1 4.23 

P. sylvestris 2 0.24 9 3.73 -0.10 6 5.79 -0.05 -1 2.03 

B. pubescens 2 -0.04 1 0.01 0.09 -2 12.91 0.08 0 22.78 

site fertility  – 4 0.71    – 1 15.66 – 0 1.09 

1 interaction size assessed with function gbm.interactions from dismo package version 0.7-17 

(Hijmans et al. 2012) 
2 basal area [m² ha-1] of co-occurring species 

Bold marks higher correlation and thus higher changes in relative importance when AFI is omitted; under-

lined marks strong interactions leading to a loss of relative importance (negative ∆ contr) when AFI is omitted. 

 

Figure A6.1. See next page. 

 

 

Figure A6.2. Response curves for the autumn frost index (AFI) in the P. abies occurrence model (left) and 

scatterplot of AFI and altitude with loess curves for the NFI 7, NFI 9N and NFI 9S datasets (right). 
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Figure A6.1. Spearman correlation between predictors of the NFI 7, NFI 9N and NFI 9S datasets. Form of the 

ellipse and shade of colour (red: negative, blue: positive) increase with increasing correlation index values. 

White circle denotes no correlation (Spearman index = 0). TWI = topographic wetness index. 

 

 

Figure A6.3. Distribution of the topographic wetness index (TWI) in each site fertility class in the NFI 7, NFI 

9N and NFI 9S dataset. Numbers above the boxplots give the percentage of P. abies presences in that class. 
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3  

Model comparison in a boreal forest identifies important areas for model 

development 

3. Comparing correlative and process-based 

modelling approaches in a boreal forest identifies 

important areas for model development 2 

 

 

 

 

 

Abstract 

Models attempting to predict treeline shifts in changing climates must include the relevant eco-

logical processes and be temporally transferable. A previous correlative model study has pointed 

to nutrients, competition, and temperature as the most important factors for Pinus sylvestris L., 

Picea abies (L.) Karst. and Betula pubescens Ehrh. treelines in Finnish Lapland. In addition, the 

observed relationship between conifer occurrence and temperature changed between 1978 and 

2003 because of delayed species response to climate warming. Here, we applied a widely used 

process-based dynamic vegetation model (LPJ-GUESS) to test its capability to simulate observed 

spatial and temporal patterns of the main tree species in Finnish Lapland and to explore the 

model representation of important processes to guide further model development. A European 

parameterization of LPJ-GUESS overestimated especially P. abies biomass and the species’ north-

ern range limit. But the model successfully captured the temporal pattern of shifting relationships 

between biomass and temperature. We further demonstrated the restricted temporal transfer-

ability of bioclimatic limits used in LPJ-GUESS and similar process-based models. We identified 

implemented processes to adjust (competition between species, disturbance) and missing pro-

cesses that are crucial in boreal forests (nutrient limitation, forest management). Key mechanisms 

of competition are shade and drought tolerance, nutrient limitation, fire resistance, and suscep-

tibility to disturbances (storm, herbivory) which we discussed with respect to boreal ecology. 

Finally, we reviewed promising model developments regarding missing processes. Insights from a 

correlative model study guided our analysis of this process-based model application which 

revealed important areas for further development. 

                                                           
2 An article with equivalent content has been submitted as:  

Schibalski, A, Lehtonen, A, Hickler, T, Schröder, B. Comparing correlative and process-based modelling 
approaches in a boreal forest identifies important areas for model development. Silva Fennica (in review). 
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important areas for model development 

3.1. Introduction 

Arctic treelines are the (more or less) well-defined biome boundaries between dense forest and 

tundra which have shifted in the past and will continue to shift in the future. Today’s spatial 

pattern of treelines is the combined result of historic developments and current processes: in 

northern Europe, tree species retreated south during the past glaciations and then advanced 

northwards again when the climate became more favourable (Payette et al. 2002, Seppä et al. 

2002). Recent climate change has led to a rise in annual mean temperatures in Finland by 0.7 °C 

between 1901 and 2000. Mean winter temperatures in the 1990s were 1.7 °C higher than the 

preceding 30-year average (Jylhä et al. 2004). The effect of these climatic changes on tree growth 

is not straightforward. Rising temperature sums, for example, can improve growing conditions of 

established trees during the growing season if accompanied by sufficient soil moisture (Moen et 

al. 2008, Holtmeier et al. 2003, Sveinbjörnsson et al. 2002). Warmer winters, on the one hand, 

reduce seedling mortality in particular due to consistently milder temperatures (Kullman 1997). 

On the other hand, loss of snow insulation during single or multiple events of winter warming has 

led to reduced reproduction and higher mortality in sub-Arctic shrubs (Bokhorst et al. 2011). 

In addition to the uncertain response of the treeline to ongoing climatic changes, other factors 

can limit a possible treeline advance, e.g. competition by shrubs. The crowberry shrub Empetrum 

hermaphroditum allelopathically reduces germination of Pinus sylvestris L. seeds (Zackrisson and 

Nilsson 1992) as well as nitrogen uptake of both P. sylvestris (Nilsson et al. 1993) and Betula 

pubescens Ehrh. (Weih and Karlsson 1999), leading to nitrogen limitation in B. pubescens in 

northern Sweden (Sveinbjörnsson et al. 1992). In the south of Finnish Lapland, the Tanaelv and 

Lapland Greenstone Belt form moist nutrient-rich soils dominated by Picea abies (L.) Karst. stands 

(Sutinen et al. 2005). They are bordered to the north (> 68 °N) by the Lapland Granulite Belt 

(Cagnard et al. 2011) which is at most 80 km wide. Its dry nutrient-poor soils dominated by P. 

sylvestris stands act as a dispersal barrier for P. abies (Sutinen et al. 2005). This could explain why 

P. abies is restricted to the south of Lapland while surviving in isolated outposts (natural and 

planted) far north of its current treeline (Oksanen 1995). Aakala et al. (2014) provide another 

example of tree limitation by non-climatic factors. They found an observed event of increased P. 

sylvestris establishment in the late 1970s and early 1980s on a fell in Eastern Fennoscandia to be 

unrelated to any temperature variable they included in their study. Instead, the recruitment event 

coincided with a decrease in reindeer density and thus herbivore pressure. Thus, more than 

climatic limitation is needed to explain the current treeline location in Finnish Lapland. 

Models trying to reproduce spatial patterns like the current position of a treeline, and predict 

temporal developments like range shifts under climate change, need to include the relevant eco-

logical processes. Models, in general, can be classified according to their method of process repre-

sentation. On the one hand, correlative (or empirical, phenomenological) models statistically 

relate species occurrence (presence/absence) or abundance (e.g. basal area or biomass sum of 

tree stands) to various environmental predictors (Elith and Leathwick 2009). They include pro-

cesses and ecological knowledge implicitly through the choice of their predictor variables. 

Process-based models, on the other hand, explicitly simulate processes and causal relationships 

via mathematical equations (Dormann et al. 2012). One of the differences between correlative 

and process-based models relevant to climate change studies is their transferability (Gustafson 

2013). Correlative models often incorrectly assume stationary relationships between response 

and predictors when applied to different regions or time periods (but see Hothorn et al. (2011) 
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who propose a framework that explicitly addresses nonstationary effects). This leads to low 

generality, which was specifically explored by Schibalski et al. (2014) in their study of P. sylvestris, 

P. abies and B. pubescens treelines in Finnish Lapland. The climate had changed over the relatively 

short time period of 25 years (1978-2003), consequently shifting the predictor space covered by 

the data sets used to estimate correlative models, thus limiting their temporal transferability. 

Limited transferability is an issue concerning hindcasting (where it can be assessed if validation 

data is available), and even more so for forecasting, which is repeatedly carried out with climate 

scenario data (e.g. Bálint et al. 2011, Kearney et al. 2010, Yates et al. 2010). Process-based 

models, on the other hand, do not rely as heavily on empirical calibration, which should increase 

their applicability across space and time (Cuddington et al. 2013). However, Dormann et al. (2012) 

have deliberately distinguished between ‘forward’ and ‘fitted’ process-based models. ‘Forward’ 

models require no calibration at all and are thus independent of data (which is used for external 

validation). In the more common ‘fitted’ models, at least some parameters are calibrated on 

datasets and thus share, to a lesser extent, the transferability issues of correlative models. 

Here, we followed up on results from a correlative model study that investigated processes 

determining the current treeline position of P. sylvestris, P. abies and B. pubescens in Finnish Lap-

land (Schibalski et al. 2014). Schibalski et al. (2014) analyzed the relative importance and response 

shape of climatic, edaphic and biotic predictors in their occurrence (presence-absence) and abun-

dance (basal area) models for 1978 and 2003. They identified site fertility, abundance of co-occur-

ring species and growing degree days (GDD) as the most important predictors explaining the three 

tree species’ occurrence and abundance in Finnish Lapland. 

Despite the warming over the study period of 25 years, the underlying forest inventory data of 

1978 and 2003 showed no clear latitudinal treeline advance (however, see Aakala et al. (2014) for 

an example of altitudinal P. sylvestris treeline advance in Eastern Fennoscandia). This is in line 

with a decrease of P. sylvestris treeline advance from 97 m year-1 (1914-1980) to 13.8 m year-1 

(1980-2009) in northernmost Norway (Hofgaard et al. 2013). The time lag between warming 

climate and species response was visible in the model response curves, i.e. the statistical relation-

ship between the occurrence of P. sylvestris or P. abies and GDD. In this curve, the threshold 

between low (absence) and high (presence) probabilities of occurrence corresponded to a lower 

GDD in 1978 than 2003. 

The interesting questions of climatic vs. edaphic limitation, the role of competition, and the 

observed delay in the species response to recent climate change make Finnish Lapland a suitable 

case study for a second modeling approach. Thus, we applied an established and widely used 

‘fitted’ process-based dynamic vegetation model (LPJ-GUESS, http://iis4.nateko.lu.se/lpj-guess/, 

Smith et al. 2001) to predict the ranges and biomass of P. sylvestris, P. abies and B. pubescens in 

the same region and over the same time period as the correlative model study. 

Our aims were to test the general capability of the model (i) to simulate the spatial biomass 

pattern and ranges (treelines) of the three main tree species in Finnish Lapland, and (ii) to simu-

late the time lag between climate change and species response as revealed by the correlative 

model study (Schibalski et al. 2014); as well as (iii) to explore the representation of competition, 

climate and edaphic factors in LPJ-GUESS, revealing potential shortcomings and thus guiding 

further model development. 

To assess model performance, we (i) compared the spatial biomass pattern and range limit 

simulated by LPJ-GUESS with observed biomass (forest inventory data, 2011), and (ii) compared 

the response curves relating simulated biomass to GDD between 1978 and 2003. To explore 
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process representation in LPJ-GUESS (iii), we analyzed the parameterization of currently imple-

mented processes with respect to the ecology of boreal forests, especially in Fennoscandia, and 

reviewed additional process implementation in other existing LPJ-GUESS versions. 

3.2. Material and methods 

3.2.1. LPJ-GUESS 

3.2.1.1. General model description 

LPJ-GUESS is a flexible biome-scale model for simulating vegetation biogeography and dynamics, 

as well as biogeochemical cycles at regional to global scales. It shares many ecophysiological 

process-representations with the widely used Lund-Potsdam-Jena Dynamic Global Vegetation 

Model (LPJ-DGVM, Sitch et al. 2003, Smith et al. 2001). But vegetation dynamics and vegetation 

structure are simulated at a higher level of detail, allowing the parameterization of individual 

species as opposed to broader plant functional types. Vegetation dynamics are simulated as the 

emergent outcome of growth and competition for light, space and soil resources among woody 

plant individuals and a herbaceous understorey based on their functional traits. Plant-physiolog-

ical processes like photosynthesis and respiration, as well as the exchange of carbon and water 

between vegetation, soil, and atmosphere, are simulated on a daily basis. Vegetation growth, 

biomass allocation, establishment, and mortality are simulated once at the end of a simulation 

year. Tree mortality occurs as a function of growth efficiency, as trees reach their maximum age 

and as a result of fire and a stochastic patch-destroying disturbance which recurs within an 

expected mean interval of, here, 200 years. This patch-destroying disturbance kills all trees in a 

patch and represents rare events such as pest calamities or windstorms (see Hickler et al. (2012) 

for more details). Wildfires are modelled based on temperature, fuel (litter) load and moisture 

(Thonicke et al. 2001) and affect trees according to their species-specific fire resistance. 

Vegetation dynamics are simulated in each of a number (50 in this study) of replicate patches 

(0.1 ha) representing ‘random samples’ of each simulated locality or grid cell. Each model grid cell 

is homogeneous in terms of soil texture, atmospheric CO2 concentration and a set of climatic 

variables (daily temperature, precipitation, and radiation). Its size is determined by the spatial 

resolution of this input data (10 × 10 km2 in this study). Multiple patches are simulated to account 

for the distribution within a landscape representative of the grid cell, as vegetation stands differ 

in their histories of disturbance and stand development (succession). The output from individual 

patches is averaged to characterize the average vegetation per grid cell. 

In this study, we used the version parameterized for major European tree species and plant 

functional types by Hickler et al. (2012), with an additional species-specific water supply function 

(Schurgers et al. 2011). Bioclimatic limits determine which species can establish and survive in a 

model grid cell, and were fitted by visually comparing the continental-scale distribution of species 

with the geographic variation in the bioclimatic limits (Hickler et al. 2012). This makes LPJ-GUESS a 

‘fitted’ process-based model according to Dormann et al. (2012). 

3.2.1.2. Species characterization in LPJ-GUESS 

In LPJ-GUESS, the simulated (tree) species are discriminated by leaf or needle functional traits, 

leaf area to sapwood cross-sectional area ratio, phenology, fire resistance, root distribution, bio-
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climatic limits for establishment (minimum GDD (5°C); maximum monthly winter temperature, 

representing the chilling requirement of northern species; minimum plant-available water con-

tent of the upper soil layer during the growing season, also influencing the species-specific water 

supply function, with more water available for a given soil water content for species with a lower 

limit, Schurgers et al. 2011) and survival (minimum monthly winter temperature), as well as life 

history strategy (related to shade tolerance, see below). All parameters are listed in Appendix B1, 

Table B1 (see also Hickler et al. 2012). The simulations of this study were carried out in ‘cohort 

mode’ in which cohorts of individuals recruited in the same patch in a given year are represented 

by a single average individual and are thus assumed to retain the same size and form as they 

grow. 

In LPJ-GUESS, shade tolerance defines an important trade-off during succession: Shade-in-

tolerant species like B. pubescens require more light for establishment (parmin, Table B1) than 

shade-tolerant species. Shade-intolerant species also have higher maximum establishment rates 

(estmax, Table B1) under high-light conditions, but establishment rates rapidly decline as the 

canopy closes and less radiation reaches the forest (α, Table B1). They also suffer more from 

growth-efficiency mortality (greff, Table B1) as the canopy closes and growth is diminished due to 

increasing competition for light. However, as a result of higher sapwood to heartwood conversion 

(turnsapwood, Table B1), shade-intolerant species grow faster under high-light conditions. For a full 

description of the associated equations see Hickler et al. (2012) and Smith et al. (2001). The 

associated parameters were fitted to yield realistic succession patterns in selected European 

forests, but not including sites from northern Scandinavia (Hickler et al. 2012). 

3.2.1.3. Environmental input data and setup of model runs 

As environmental input data, LPJ-GUESS requires daily mean air temperature, precipitation sum, 

radiation, atmospheric CO2 and soil texture. We used soil data from two National Forest Inven-

tories (described in section 3.2.3) to assign each plot one of the nine soil classes in LPJ-GUESS 

which differ in terms of water holding capacity and thermal diffusivity (Sitch et al. 2003, Table 4). 

In our study region, medium textures dominate (70 %), but there are organic soils in the southern 

part of Finnish Lapland (21 %, Appendix B, Fig. B1). 

For regional climate input, we used monthly mean and minimum temperature, precipitation 

and radiation in an interpolated 10 × 10 km2 grid from 1961 to 2003 (Venäläinen et al. 2005), and 

linear interpolation between monthly values to construct the daily inputs. In contrast, atmo-

spheric CO2 was given as annual averages, not further regionalized (Appendix B, Fig. B2). From 

1978 to 2003, mean monthly temperatures have increased significantly (p < 0.001, Wilcoxon rank 

sum test) in all months except June and December (Fig. 3.1 and Appendix B, Fig. B3). Similarly, 

growing degree days have increased, but we found spatial differences across Finnish Lapland with 

decreases in some areas (Appendix B, Fig. B4). Monthly precipitation sums have increased for all 

months but September over the 25 years (Fig. 3.1 and Appendix B, Fig. B3). 

LPJ-GUESS grows vegetation from bare soil. To reach approximate equilibrium conditions, we 

let the model run for 1000 years before the actual simulation period (1961-2003). As input data 

for this spin-up, we recycled the oldest 30 years of historical climate data (with detrended tem-

peratures). 

To assess the model’s capability to simulate the spatial biomass pattern and ranges (treelines) 

of the three main tree species in Finnish Lapland (aim (i)), we ran the model with all three species 

together (called ‘multi-species’ hereafter), thus including biotic interaction. We compared above- 
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and belowground biomass [kg m-²] per species and grid cell with observed biomass data (de-

scribed in section 3.2.2). In addition, we ran the model separately for each species alone, i.e. with-

out the competition of the other two species (called ‘single-species’). We were thus able to assess 

the influence of interspecific competition in LPJ-GUESS (aim (iii)) and gain insight into the species’ 

performance independent of competing species. 

 

Figure 3.1. Comparison of climate variables between 1978 and 2003. Monthly mean temperatures and pre-

cipitation sums, as well as GDD, were averaged over 10 years preceding the simulation year (1968-1977, 

1993-2002); the mean temperature of the coldest month was averaged over 17 years preceding the simu-

lation year (1961-1977, 1986-2002). Plus signs indicate median (intersection) and standard deviation (length 

of the arms). Black (or white in the last panel) signs mean that values were significantly higher in 2003 than 

1978, grey means the opposite (p < 0.001, Wilcoxon rank sum test). For GDD and coldest month mean tem-

peratures, individual grid cell values are shown in addition to their median and standard deviation. See 

Appendix B, Fig. B3 for more detailed information on monthly mean temperature and precipitation sums. 

 

3.2.2. Multi-Source National Forest Inventory data 

We compared LPJ-GUESS biomass estimates from the multi-species run with biomass estimates 

from the Multi-Source National Forest Inventory (MS-NFI, Tomppo et al. 2008) for Finnish Lap-

land. These biomass estimates are a combination of field observations and satellite imagery from 

2011, publicly available online (http://kartta.metla.fi/index-en.html). MS-NFI biomass estimates 

are provided as single biomass components [10 kg ha-1]: living and dead branches, roots, stump, 

stem with bark and stem residual, as well as foliage or needles. To directly compare LPJ-GUESS 

results with the MS-NFI data, we added up the single biomass components for P. sylvestris, P. 

abies and broad-leaved trees (including B. pubescens). 

3.2.3. National Forest Inventory data  

We used National Forest Inventory (NFI) data on the basal area of P. sylvestris, P. abies and B. 

pubescens in 1978 (NFI 7, Kuusela and Salminen 1991) and 2003 (NFI 9, Tomppo et al. 2011), also 

used in Schibalski et al. (2014), to investigate the temporal pattern of delayed species response to 



  

47 

3 Results 

climate warming over the 25 years (aim (ii)). To this end, we compared response curves between 

1978 and 2003 for both correlative and ‘fitted’ process-based model results. Response curves 

graphically describe the relationship between e.g. a species’ occurrence (presence-absence) and a 

predictor variable like GDD (Schibalski et al. 2014, cf. Fig. 7a). Using boosted regression trees (Elith 

et al. 2008) as in the correlative model study (Schibalski et al. 2014), we estimated the same 

relationship between biomass simulated by LPJ-GUESS and GDD. We compared the shape of the 

curves, the location of thresholds on the GDD gradient and the shifting of that threshold between 

1978 and 2003 for both observed (NFI, correlative model) and simulated data (LPJ-GUESS, ‘fitted’ 

process-based model). 

3.3. Results 

3.3.1. Spatial patterns 

The total biomass, i.e. the biomass sum of all three species, was overestimated by LPJ-GUESS (Fig. 

3.2a, observed and simulated biomass) in Finnish Lapland. However, the spatial trend of 

northwards decreasing biomass observed in the MS-NFI data was reproduced by LPJ-GUESS. 

For P. sylvestris, the biomass range matched between the LPJ-GUESS output (multi-species 

run) and MS-NFI data (Fig. 3.2a), except for the far north (> 69 °N) where the LPJ-GUESS biomass 

predictions were too high. The spatial pattern of high and low biomass was not reproduced cor-

rectly as the simulated biomass increased towards the north, while the observed biomass actually 

decreases towards the treeline (Fig. 3.3; see Appendix B, Fig. B5 for a colour version). Without the 

competition of the other two species (single-species run), the simulated biomass was much high-

er, obviously exceeding the observed values, but the spatial pattern of northwards decreasing bio-

masses was correctly captured (Fig. 3.2b). 

For B. pubescens, we found a similar pattern: the range of biomass was similar between the 

LPJ-GUESS output (multi-species) and MS-NFI data (Fig. 3.2a), especially when taking into account 

that MS-NFI data comprised all deciduous species. In the far north, where no other deciduous 

species prevail, the MS-NFI estimate equalled B. pubescens biomass, and the match between LPJ-

GUESS simulations and MS-NFI observations was good. In the south, LPJ-GUESS underestimated 

the MS-NFI data which includes other deciduous species coexisting with B. pubescens. Again, the 

correct spatial trend of northwards decreasing biomass in the single-species model run was effec-

tively reversed when including competition (Fig. 3.3). In Finnish Lapland, B. pubescens’ range limit 

is much less distinct than the two conifers’ clear treelines, which was reflected by both observed 

and simulated biomass (Fig. 3.3). 

Finally, P. abies was greatly overestimated in both biomass range (Fig. 3.2a) and species range 

(LPJ-GUESS did not capture the distinct treeline at ~ 68.5 °N). Although LPJ-GUESS simulated a 

decrease in biomass towards the north, the range limit of P. abies in the model was not reached 

and is obviously far north of the observed treeline (Fig. 3.3). In contrast to the other two species, 

the multi-species and single-species model runs yielded virtually the same results for P. abies.  
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Figure 3.2. Comparison of a) observed (MS-NFI data) and simulated biomass [kg m-²] (LPJ-GUESS, multi-

species run), and, b) multi-species (i.e. with competition) and single-species (without competition) LPJ-

GUESS runs, by latitude bands (lines are means within 0.5 ° latitude bands). Symbols are transparent to 

visualize the distribution of values. Note the different range of biomass values for B. pubescens. 

 



  

49 

3 Results 

 

Figure 3.3. Map comparison of total and species-specific biomass [kg m-²]: observed data (MS-NFI, 2011) 

and results from multi-species and single-species LPJ-GUESS simulations (averaged over 1994-2003). To 

maximize visibility of spatial differences but retain comparability between observations and simulations, we 

used quantiles to define classes for each species and the total. This results in the irregular class spacing and 

reflects the different biomass distributions (cf. Fig. 3.2). See Appendix B for a colour version of this figure 

(Fig. B5). 
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3.3.2. Temporal patterns 

Simulated biomass increases from 1978 to 2003 were distributed throughout Lapland for P. abies 

and B. pubescens (Fig. 3.4); they were not associated with a treeline advance. In contrast, simu-

lated biomass increases of P. sylvestris were concentrated in the far north of our study region (Fig. 

3.4) with the greatest biomass increase (2.06 kg m-2) at 69.9°N. 

 

Figure 3.4. Maps of standardized simulated biomass increases [kg m-2] from 1978 to 2003 (LPJ-GUESS, 

multi-species) for P. sylvestris, P. abies and B. pubescens. Black means highest biomass increase. 

In the correlative study (Schibalski et al. 2014), the time lag between climate warming (e.g. GDD 

increase, Fig. 3.1) and the response of slow-growing tree species manifested itself in model re-

sponse curves, i.e. the relationship between species occurrence probability and growing degree 

days (Fig. 3.5, observed). In 1978, the GDD value for which the probability of P. sylvestris occur-

rence started to increase from zero (absence) was approx. 570 as opposed to 600 in 2003 (Fig. 

3.5, observed). Similarly, the GDD threshold for P. abies presence was 600 (1978) as opposed to 

630 (2003). 

For P. abies, the comparison of response curves derived from biomass simulated by LPJ-GUESS 

(instead of observed presence-absence data) between 1978 and 2003 showed a similar shape. Al-

though the GDD thresholds were lower than observed (approx. 540 in 1978 and 570 in 2003), they 

were at a similar distance, i.e. approx. 30 GDD (Fig. 3.5, simulated, multi-species). As in all figures 

previously, the results from multi- and single-species model runs were virtually identical for P. 

abies and nearly reversed for P. sylvestris (Fig. 3.5). Thus, for P. sylvestris there was a mismatch in 

both curve shape and time lag (Fig. 3.5, multi-species). Without competition (Fig. 3.5, single-

species), however, the shape of P. sylvestris response curves matched well between correlative 

(observed) and process-based model (simulated), and the time lag was approx. 30 GDD, although 

GDD thresholds were lower than observed (530 in 1978 and 570 in 2003). 
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Figure 3.5. Species-specific statistical response curves of observed occurrence (NFI, see Schibalski et al. 

2014) and simulated biomass (LPJ-GUESS) to growing degree days (averaged over the ten years preceding 

the inventory year, i.e. 1968-1977 and 1993-2002; given as rug plot in the upper panels: top 1978, bottom 

2003). Vertical lines mark the bioclimatic limit used in LPJ-GUESS for the respective species (GDD5,min, Table 

B1). Responses were standardized to enhance comparability. Transparent bootstrapped confidence bands 

(0.95) were calculated following the procedure detailed in Coutts (2011) and Coutts and Yokomizo (2014), 

using the boot.ci function in R (Canty and Ripley 2013). Note: The prevalence of P. abies was very low in the 

1978 NFI dataset (7 %) leading to the excessive bootstrapped confidence band (top right).  

3.4. Discussion 

3.4.1. Total biomass overestimation 

Total biomass was overestimated, which is in accordance with other studies applying LPJ-GUESS 

to Scandinavia. Smith et al. (2008) found LPJ-GUESS to overestimate conifer forest biomass, leaf 

area index and tree density in northern Fennoscandia unless the model was constrained by 

satellite data. As in similar dynamic vegetation models (e.g. Zaehle et al. 2010, Sokolov et al. 2008, 

Thornton et al. 2007), however, primary production, a key driver of the simulated biomass, in LPJ-

GUESS is substantially lower in northern forests when accounting for nitrogen limitation 

compared to the unlimited model version (Smith et al. 2014). Including nitrogen cycling in LPJ-

GUESS reduced the overestimation of gross primary production from 56 % to 18 % in boreal 

forests (Fleischer et al. 2015). This confirms the general assumption that forest growth in the 

region is heavily limited by soil nutrients, in particular, nitrogen (Lupi et al. 2013, Vitousek and 

Howarth 1991). Although nitrogen limitation has been implemented within the global LPJ-GUESS 

version based on broader plant functional types (Smith et al. 2014), these developments have not 

yet been combined with regional tree species parameterization (see also discussion of species-

specific nutrient limitation in section 3.4.3.4). 
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Another process that could potentially reduce total biomass to the observed level is disturbance. 

In LPJ-GUESS, patch-destroying disturbances are a stochastic process, determined by the distur-

bance interval (parameter), which destroys all biomass in a patch. Our return interval for patch-

destroying disturbance of 200 years, which was adopted as an average across Europe (Hickler et 

al. 2012), is probably too long. Increasing the disturbance frequency would effectively restrict 

biomass accumulation, especially that of the slower growing conifers. However, the susceptibility 

to disturbances in Finnish Lapland differs between species (see section 3.4.3.6 below). This should 

be accounted for to correct not only total biomass levels in the single-species model runs but also 

spatial patterns influenced by inter-specific competition in the multi-species model run. 

The omission of forest management in our version of LPJ-GUESS (but see Jönsson et al. (2015) 

for a new model version including forest management) surely contributes to the overestimation 

of the conifer biomass. Forest management in Finnish Lapland is limited mainly to the southern 

part (south of about 68 °N) and the Lake Inari region. It consists of fellings, including thinning and 

clearcutting, as well as e.g. preparation of regeneration areas (clearing, prescribed burning and 

soil preparation, Ylitalo 2013). Rotation times in Lapland range between 60 and 150 years com-

pared to 40 to 100 years in the south (Äijälä et al. 2014). Thus, the inclusion of region-specific 

management measures in the model could alleviate the biomass overestimation, especially where 

forests are used more intensively. 

3.4.2. Treeline dynamics and GDD 

In accordance with the findings of Schibalski et al. (2014), the spatial pattern of simulated biomass 

increases between 1978 and 2003 did not indicate a treeline advance of P. abies (B. pubescens 

lacks a clearly defined treeline in Finnish Lapland). For P. sylvestris, however, simulated biomass 

increases did indeed concentrate in the far north of our study region. This suggests that P. sylves-

tris is more susceptible to climate warming than P. abies because it is climatically limited in Fin-

nish Lapland. Schibalski et al. (2014) draw similar conclusions from the fact that in their P. sylves-

tris occurrence model, the importance of GDD was lower in 1978 than in 2003, and lower in 

southern Lapland than northern Lapland. GDD were higher in 2003 and southern Lapland, respec-

tively, and thus less limiting than in 1978 and northern Lapland. 

LPJ-GUESS captured the observed time lag of the response to climate change between 1978 

and 2003 (Fig. 3.5). The deviating pattern of P. sylvestris in the multi-species model run is caused 

by P. abies distorting the spatial distribution of P. sylvestris biomass. Different ecological process-

es could explain this observed pattern. First, recruitment limitation includes seed production limi-

tation (enough seeds need to be produced in established stands), seed dispersal limitation (seeds 

need to arrive at newly favourable locations from established stands) and establishment limita-

tion (arrived seeds have species-specific requirements concerning temperature, soil moisture and 

light for germination; seed predation and herbivory of seedlings, as well as competition among 

seedlings, can lead to establishment failure). Second, even species successfully established on 

newly favourable sites need time to outcompete already present species established in the past 

(successional lag). 

Recruitment limitation is partly captured in LPJ-GUESS, as the number of established saplings 

of a species also depends on the net primary production of the species in the simulated grid cell. 

In the general parameterization (Smith et al. 2001), however, the occurrence-independent back-

ground establishment normally dominates. Thus, the process representation of establishment in 
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LPJ-GUESS is not detailed enough to cover the various aspects of recruitment limitation, and the 

species-specific parameterization would require detailed ecological knowledge. However, that our 

model version (i.e. without recruitment limitation) correctly captures the time lag of climate 

change and vegetation response, allows the hypothesis that successional lags rather than recruit-

ment limitation are indeed the reason. Definitively confirming this hypothesis, however, requires 

a model version that includes dispersal and possibly a more detailed representation of establish-

ment, parameterized for European boreal forests. Snell et al. (2014) implemented dispersal for 

three temperate tree species in north-eastern North America whose historic migration rates they 

could reproduce in simulation experiments in an imaginary landscape. It would be crucial to 

combine this promising model development with the European species parameterization to 

assess the effect of dispersal limitation on range shifts. 

Apart from the temporal pattern of GDD thresholds for P. sylvestris and P. abies, GDD are an 

essential bioclimatic limit in LPJ-GUESS: we can directly compare the species-specific parameter 

‘minimum growing degree days for establishment’ (GDD5,min in Table B1) to the response curves in 

Fig. 3.5. For P. abies, the parameter value is 600 GDD, which fits the observed data very well - at 

least for 1978. Nonetheless, LPJ-GUESS overestimated P. abies beyond its current treeline, indi-

cating that it is not climatically limited in Finnish Lapland. This concurs with the finding of Schibal-

ski et al. (2014) that the relative importance of GDD in the P. abies models was lower than for P. 

sylvestris - evidence that temperature limitation is not what keeps P. abies from occupying the far 

north of Finnish Lapland. 

For P. sylvestris, the parameter value of GDD5,min is 500 GDD (Table B1), which is much lower 

than any threshold (1978 or 2003) in the observations. Increasing the parameter for P. sylvestris 

from 500 to 625 GDD (suggested by the response curves in Fig. 3.5) should efficiently restrict P. 

sylvestris in the north (Fig. 3.6). Statistical fine-tuning such as this can improve LPJ-GUESS param-

eterization for a particular time (or place, e.g. Pappas et al. 2015). However, as we can already see 

from the climate change over the 25 years, this correlation changes over time and parameters 

would need to be adjusted again to effectively restrain the species in the model. Here, ‘fitted’ 

process-based models like LPJ-GUESS underlie the same equilibrium assumptions as do correlative 

models. They are also subject to the same problems when these assumptions are violated by 

applying the models to ongoing climate change. Snell et al. (2014), who advocate using dynamic 

global vegetation models (DGVM) such as LPJ-GUESS to simulate range shifts, are aware of this 

issue. They propose Bayesian methods for parameterization (Hartig et al. 2012, van Oijen et al. 

2005) and point to ‘next-generation DGVMs’ (Scheiter et al. 2013) which simulate plant individ-

uals with potentially unique trait combinations. 

Figure 3.6. Maps of growing 

degree days for 1978 (1968-1977) 

and 2003 (1993-2002) with tree-

lines of P. sylvestris (white) and P. 

abies (black). Treelines had not 

changed between 1978 and 2003 

and are defined as the marginal 

sites occupied by the respective 

species.  
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3.4.3. Competition between tree species  

3.4.3.1. Species imbalance 

There was virtually no effect of the presence of the other two species on P. abies in the multi-

species LPJ-GUESS run. The biomass values and spatial patterns of P. sylvestris and B. pubescens, 

however, were largely affected by P. abies presence. Especially P. sylvestris biomass distribution 

along the latitudinal gradient was distorted in the multi-species run (Fig. 3.2). In the single-species 

run, P. sylvestris biomass decreased gradually towards the north, correctly indicating that the 

species slowly approached its range limit due to unfavourable growing conditions in the model, 

albeit further north compared to the observations. In the multi-species run, however, highest P. 

sylvestris biomass was found in the north coinciding with the lowest P. abies (and B. pubescens) 

biomass. This suggests that P. abies was by far too competitive in the model. It also demonstrates 

that competition plays a pivotal role in LPJ-GUESS which is in agreement with its importance as a 

predictor in the correlative models of Schibalski et al. (2014). 

The model’s inability to correctly reproduce the occurrence pattern of especially P. abies in 

Northern Lapland is in accordance with recent studies applying LPJ-GUESS: in a Holocene vegeta-

tion reconstruction study, Miller et al. (2008) were not able to correctly model P. abies’ occur-

rence in Finland and Sweden over time. In their simulations of the current treeline in Arctic 

Europe, Fang et al. (2013) found that LPJ-GUESS did capture the coniferous treeline, but failed to 

correctly predict species-specific treelines. P. abies occurred north of its observed treeline where 

it suppressed P. sylvestris as additional simulation experiments showed. This is in line with our 

findings, and Fang et al. (2013) attributed the competitive strength of P. abies to its shade 

tolerance.  

3.4.3.2. Shade tolerance 

Competition for light is crucial in closed-canopy forests as predicted in our simulations (incorrectly 

in the far north). Shade tolerance-related parameters in LPJ-GUESS include minimum light 

requirement for establishment, maximum establishment rate and growth-efficiency-related 

mortality (Table B1). Wramneby et al. (2008) demonstrated that LPJ-GUESS is highly sensitive to 

shade tolerance-related parameters and that unfortunately, the uncertainty of these parameters 

is very large. P. abies is ranked shade-tolerant in LPJ-GUESS giving it considerable advantage 

under light limitation (which is more probable in our case as total biomass was overestimated and 

thus shading must be greater than observed). On the other hand, B. pubescens is ranked shade-

intolerant giving it the advantage of higher establishment rates and growth efficiency under 

optimum light conditions. Finally, P. sylvestris is ranked intermediate shade-tolerant with param-

eters between those of P. abies and B. pubescens. It is thus trumped by both competitor species, 

i.e. P. abies which tolerates shaded conditions as well as B. pubescens which benefits most effi-

ciently from light abundance after disturbances. P. abies effectively distorted P. sylvestris and B. 

pubescens biomass distribution in the multi-species run, resulting in LPJ-GUESS’s failure to cor-

rectly simulate the species balance observed in Finnish Lapland. We thus concur with Wramneby 

et al. (2008) in that shade tolerance is a very important trait in LPJ-GUESS which can dominate 

over other physiological differences between species (Table B1). 

In the following, we discuss competitive advantages that P. sylvestris and B. pubescens might 

have over P. abies and why the two species apparently fail to play off their strengths in our simu-
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lations. These potential advantages include drought tolerance, lower nutrient demand, fire resis-

tance, and susceptibility to other disturbances. Some processes are already implemented in the 

LPJ-GUESS version used for this study but might need to be re-parameterized for our application, 

while others require further model development. 

3.4.3.3. Drought tolerance 

P. sylvestris outcompetes P. abies on dry, acidic, nutrient-poor sites as known from field observa-

tions (Sutinen et al. 2005) and experiments (Ingestad 1979). Accordingly, dry conditions should 

favour P. sylvestris over P. abies and B. pubescens in LPJ-GUESS as it has 40 % of its roots distribut-

ed in lower soil layers compared to 20 % for the other two species, is thus able to take up more 

water at low soil moisture contents (see water uptake function, Appendix B, Fig. B6) and requires 

less soil moisture for establishment (awcmin, Table B1). Soil texture in LPJ-GUESS influences the 

water holding capacity and thermal diffusivity of a soil, but Wolf et al. (2008a) showed that the 

vegetation outcome is rather insensitive to different soil moisture and soil temperature represen-

tations. LPJ-GUESS is, however, very sensitive to changes in soil depth. As no soil depth data was 

available for the study region, a uniform soil depth of 1.5 m was assumed. However, shallower 

soils do exist, at least locally. This simplification thus weakens P. sylvestris’ advantage due to 

drought tolerance. Recently, topographic effects on soil hydrology have been included in LPJ-

GUESS (LPJ-DH; Tang et al. 2014), which might lead to more realistic simulations of competitive 

balances along topographic gradients. 

3.4.3.4. Nutrient limitation 

Apart from drought tolerance, lower nutrient demand is a species trait favouring P. sylvestris over 

P. abies. A general proxy for soil fertility was also one of the most important predictors in Schibal-

ski et al. (2014). Above, we discussed that the general implementation of nitrogen limitation in 

LPJ-GUESS (Smith et al. 2014) could reduce the biomass overestimation we found in our applica-

tion. In order for nutrient limitation to affect the competitive strength of individual species in LPJ-

GUESS, however, it would need to be implemented species-specifically, e.g. comparable to the 

species-specific water uptake function (Appendix B, Fig. B6) by Schurgers et al. (2011). It is ques-

tionable, however, whether we have enough process understanding to include species-specific 

responses to soil nutrients in a process-based framework. Mixed in with issues of soil fertility are 

also management decisions: on dry and nutrient poor sites, forest managers will favour the 

superior species P. sylvestris by actively thinning P. abies and B. pubescens, which are less suc-

cessful on these sites anyway (Äijälä et al. 2014). This positive feedback could potentially increase 

the competitive advantage of P. sylvestris over P. abies and B. pubescens. Empirical response 

functions could be included in LPJ-GUESS to account for the effects of nutrient limitation (inclu-

ding the additional effect of active thinning on managed poor sites), but this would be subject to 

the same criticism we raise concerning bioclimatic limits reducing the generality of ‘fitted’ 

process-based models. 

3.4.3.5. Fire 

Susceptibility to disturbance is another characteristic that differentiates between species and thus 

influences the competitive strength of a species if disturbances play an important role. Under 

climate change, disturbance regimes are expected to change regarding timing, frequency, inten-
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sity and extent, thus potentially increasing the importance of disturbances for forests in future 

(Dale et al. 2001). In LPJ-GUESS, two types of disturbances are already implemented: fire and a 

generic biomass-destroying disturbance that kills all individuals in a patch. 

P. sylvestris is well adapted to survive moderate fires by its thick bark (heat insulation), high 

crown base (preventing crown scorching) and deep root system (Fernandes et al. 2008). This is 

collectively reflected in LPJ-GUESS by a four times greater probability to survive fires of P. sylves-

tris compared to P. abies and B. pubescens (rfire, Table B1). Thus, frequent fires could favour P. 

sylvestris over P. abies in our simulations. However, since the beginning of the 20th century, 

anthropogenic fire suppression in Fennoscandia has greatly extended the interval of forest fires 

(Zackrisson 1977). Additionally, the mean fire interval increases from 20 years in the south (58 °N, 

1401-1998) to more than 500 years in the north (69 °N, 1400-2001, Larjavaara et al. 2005). Thus, 

forest fires in Finland today are infrequent, small (the mean burnt area for the whole of Finland 

was 537 ha in 1994-2003, Ylitalo 2013), and no longer play an important role in forest ecology. In 

line with this, fires did not play an important role in our simulations, as LPJ-GUESS underestimates 

natural fire cycles in northern Scandinavia. 

3.4.3.6. Other disturbances (wind damage, pest calamities, herbivory) 

Other disturbances, however, do play an important role in our study region. In Lapland, a higher 

proportion of forest land is classified as damaged to some degree (58.5 %) compared to the rest 

of the country (45.6 %), mainly due to the direct and indirect effect of the harsher climate (Ylitalo 

2013). Disturbances in Lapland are mainly due to abiotic factors (wind, snow, frost, drought, nutri-

ent imbalance and fire), fungi and moose or reindeer damage (Ylitalo 2013). Importantly, how-

ever, the effect on species differs: P. sylvestris is less affected by abiotic disturbances, but more 

prone to insect damage than P. abies and B. pubescens (Nevalainen et al. 2010). Consequently, it 

is difficult to define an average return time for patch-destroying disturbances as currently imple-

mented in LPJ-GUESS because not all species (i.e. the whole patch) are affected equally. Here, the 

generalized process representation that encompasses a wide variety of potential disturbances 

fitting for different ecosystems in global applications is not detailed enough for our regional 

application.  

There are, however, attempts to implement more detailed process representations of specific 

disturbances. In their version of LPJ-GUESS, Lagergren et al. (2012) implemented species-specific 

storm sensitivity. Wind damage is indeed one of the most common causes of tree mortality in Fin-

land (besides snow and fungi, Nevalainen et al. 2010) and causes huge economic losses 

(Hanewinkel and Peyron 2013). Lagergren et al. (2012) effectively weakened P. abies (storm 

sensitivity = 1.0) compared to P. sylvestris (0.5) and deciduous species (0.1) which is in line with 

the ranking of these three species in terms of resistance to breakage from experiments (Peltola et 

al. 2000). It also confirms the role species-specific susceptibility to disturbances could play in pro-

moting species balance in process-based models. 

Wind damage increases the probability of pest calamities by providing brood trees for e.g. Ips 

typographus L., the spruce bark beetle (Komonen et al. 2011). Jönsson et al. (2012) coupled LPJ-

GUESS with an I. typographus population model and thus successfully simulated observed out-

breaks patterns across Sweden. In their model version of LPJ-GUESS, an additional type of tree 

mortality, only affecting P. abies, was damage by I. typographus. A similar approach is needed for 

B. pubescens and Epirrita autumnata L., the autumnal moth. Mass outbreaks of E. autumnata in 

Lapland have caused the B. pubescens treeline to retreat (Lehtonen and Heikkinen 1995). 
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Observations of recent outbreaks of two species of moths (E. autumnata and Operophtera bru-

mata Bkh.) in northern Fennoscandia suggest that climate warming will aggravate the damaging 

impact of calamities on B. pubescens forests (Jepsen et al. 2008).  

In Lapland, the effect of herbivores differs greatly between tree species, seasons and region-

ally. Apart from insect calamities discussed above, Kozlov (2008) found foliar damage of B. pubes-

cens by background insect herbivory to increase from the north (1 - 2 % at 70°N) to the south (5 - 

7 % at 60°) of Fennoscandia. During summer, B. pubescens forests are intensely browsed by rein-

deer (Stark et al. 2007), while reindeer dig for lichens in winter, mechanically damaging P. sylves-

tris and P. abies seedlings (Helle and Moilanen 1993). High reindeer densities might even limit P. 

sylvestris recruitment to the extent of preventing treeline advance (Aakala et al. 2014). On the 

other hand, reindeer grazing reduces competition for P. sylvestris (which is not normally grazed 

itself), esp. Cladina lichens which negatively affect P. sylvestris mycorrhiza development (Brown 

and Mikola 1974). Thus, direct and indirect effects of herbivores differ among tree species, and 

net effects are far from unanimously discussed (Weisberg and Bugmann 2003) which complicates 

the inclusion of herbivory in LPJ-GUESS. Nonetheless, Zöckler et al. (2008) did include the effect of 

reindeer grazing in LPJ-GUESS simulations via rule-based updates of the resulting vegetation maps 

(grid cells in which reindeer population was estimated to be high by a separate model were forced 

from ‘boreal forest’ to ‘open tundra’ during post-processing). This very simplified way of coupling 

LPJ-GUESS with reindeer predictions was sufficient to analyze the development of open habitat 

for tundra birds in Zöckler et al. (2008). But for an application in our case, process representation 

would need to be refined to offset direct and indirect, positive and negative effects on individual 

tree species. 

3.4.4. Scale issues with process-based vegetation models  

As similar ‘fitted’ process-based dynamic vegetation models, LPJ-GUESS has been parameterized 

at certain scales (globally by e.g. Smith et al. (2014), for Europe by Hickler et al. (2012)). Generally, 

an application on a smaller scale requires accounting for study region-specific processes and the 

ecology of the main tree species (e.g. Hickler et al. (2004) and Tang et al. (2012) for northeastern 

U.S.; Hickler et al. (2012) for Europe; Seiler et al. (2014) for Bolivia). Zhang et al. (2013) applied 

LPJ-GUESS to the whole Arctic at an accordingly coarse resolution and reported a good match 

between observed and predicted treelines, albeit of plant functional types rather than species. 

Furthermore, they assessed potential natural vegetation - a common LPJ-GUESS application (e.g. 

Zhang et al. 2014, Zhang et al. 2013, Hickler et al. 2012, Wolf et al. 2008b) but difficult to validate 

with observations and recently critically discussed (Loidi and Fernández-González 2012, Chiarucci 

et al. 2010). In our study region, even the arctic version of LPJ-GUESS (Zhang et al. 2013) in-

correctly predicted the whole of Finnish Lapland to be a boreal evergreen forest (while the north-

ernmost part is only occupied by B. pubescens, Fig. 3.3). The flexible model design of LPJ-GUESS 

makes regional adjustments possible, but the parameterization is in many cases challenging. One 

European parameterization, which reproduces European-wide potential natural vegetation types 

(Hickler et al. 2012), is clearly not applicable to the study area here, and we expect that the same 

is true for other smaller-scale regional applications. 
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3.5. Conclusions 

We used insights from a correlative model study to guide our analysis of the results of a ‘fitted’ 

process-based dynamic vegetation model which helped reveal crucial shortcomings in its general 

parameterization for our regional application. Our simulations showed that LPJ-GUESS, with its 

generalized European parameterization (sufficient for the continental scale), overestimated P. 

abies and consequently total forest biomass and simulated the range limit of especially P. abies 

too far north when applied to northern Finland (aim (i)). We discussed possible reasons: the 

parameterization of processes already implemented in the model, in particular competition be-

tween species and disturbance, as well as the lack of processes in the model which apparently are 

very important in boreal forests (nutrient limitation, forest management). Concerning competi-

tion between species, we specifically discussed shade and drought tolerance, nutrient limitation, 

fire resistance, and susceptibility to other disturbances like storm and herbivory with respect to 

the ecology of boreal forests and Fennoscandia in particular (aim (iii)). This discussion can equally 

inform other modelling studies of P. sylvestris, P. abies and B. pubescens in Scandinavia, and of 

boreal forests in general. We reviewed recent model developments in the LPJ-GUESS community 

relevant to boreal forests, each of them promising in their particular application but regrettably 

separate from each other. A new model version for boreal forests that consistently integrates the 

considerable progress made by the different working groups would immensely improve the 

applicability of LPJ-GUESS on the regional scale. 

On a different note, we used findings from a correlative model study about the limited trans-

ferability of statistical relationships to stress the similar limitations of ‘fitted’ process-based 

models like LPJ-GUESS which use bioclimatic limits to restrain species in their simulations. Our 

study, covering merely 25 years, already revealed a shift in statistical thresholds calling for re-

parameterization (aim (ii)). We thus advise the same caution appropriate to correlative models 

when applying ‘fitted’ process-based models, especially in climate change studies.  
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Appendix B 

Additional information on LPJ-GUESS parameterization, input data and results 

Species characterization in LPJ-GUESS (see also Hickler et al. 2012) 

Trees establish under suitable temperature (Tc,min, Tc,max and GDD5,min), soil moisture (awcmin) and 

light conditions (parmin) which differ for each species (Table B1). The number of actual saplings is 

drawn from a Poisson distribution with a species-specific expectation (a function of maximum 

establishment rate estmax and constant α, Table B1). Each sapling is then allocated an initial bio-

mass and size for the first year.  

Trees grow in biomass, height, and diameter as the net primary production accrued by an aver-

age individual per simulation year is allocated to leaves, fine roots, and sapwood, following a set 

of prescribed allometric relationships (Sitch et al. 2003). Species-specific parameters affecting 

growth (Table B1) describe the growth form (kla:sa, kallom1), foliage (SLA, aleaf), phenology (kchillb), 

tissue turnover (turnleaf, turnsapwood) as well as soil water uptake and thus drought resistance (z1, 

kuptake) of each species. 

Tree mortality in LPJ-GUESS is caused by i) background mortality related to species longevity 

(aind), ii) low growth efficiency (greff), which is strongly influenced by competition, particularly for 

light, iii) winter temperatures falling below a species-specific limit (Tc,min), and iv) fire (rfire, Table 

B1). 

The following parameters are determined by higher-level classification and thus do not differ 

between the three tree species investigated in this study. All three species are trees and thus 

share the C3 photosynthetic pathway where photorespiration reduces the efficiency of photo-

synthesis. Thus, these species are more sensitive to CO2 increase, which could enhance their 

productivity as opposed to e.g. tropical grasses with the C4 pathway. They are also all boreal 

species sharing higher respiration rates and lower optimum temperatures for photosynthesis 

compared to temperate species. 

Table B1. Selected species-specific parameters in LPJ-GUESS for P. sylvestris, P. abies and B. pubescens, 

affecting the competition between these three species. 

parameter meaning P. sylvestris P. abies B. pubescens 

shade_ 

tolerance 

shade tolerance class; determines parmin, estmax, 

α, turnsapwood, greff 
intermediate tolerant intolerant 

establishment 

Tc,min min. coldest month mean temperature [°C] 1  -29 -29 - 

Tc,max max. coldest month mean temperature [°C] 1 -1.0 -1.5 - 

GDD5,min min. growing degree days (5°C) 500 600 350 

awcmin min. fraction of plant-available water content 2 0.25 0.43 0.5 

parmin min. forest floor PAR 3 [MJ m-2 day-1] 2.0 1.25 2.5 

estmax max. establishment rate [saplings m-2 year-1] 0.1 0.05 0.2 

α 
recruitment shape parameter; negatively affects 

establishment rate as canopy closes 
6 2 10 
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Table B1. Continued.    

growth 

kla:sa leaf area to cross-sectional area ratio  2000 4000 5000 

kallom1 allometric constant; affects crown area 150 150 250 

SLA specific leaf area [m2 kgC-1] 9.3 9.3 24.3 

aleaf leaf longevity [years] 2 4 0.5 

kchillb chilling requirement for budburst (constant) 100 100 400 

turnleaf leaf turnover ratio 0.5 0.25 1.0 

turnsapwood sapwood to heartwood turnover ratio 0.065 0.05 0.08 

z1 fraction of roots in upper soil layer 0.6 0.8 0.8 

kuptake shape parameter of water uptake function 0.5 0.86 1.0 

mortality 

aind max. non-stressed longevity [years] 500 500 200 

greff 

growth efficiency parameter [g C m-2 leaf-1 year-1]; 

defines inflection point of sigmoid mortality 

function 

80 40 100 

Tc,min min. coldest month mean temperature [°C] 1  -30 -30 - 

rfire probability of surviving fires 0.4 0.1 0.1 

1 over the last 20 yrs; 2 growing-season average in the upper soil layer; 3 photosynthetically active radiation 

 

 

Figure B1. Map of the soil characteristics classified into the nine-class soil code of LPJ-GUESS (Sitch et al. 

2003, Table 4). 
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Figure B2. Atmospheric CO2 content [ppmv] used as LPJ-GUESS input (annual values). Our simulation period 

is highlighted as grey box. For reference, predicted future CO2 concentrations are shown for emission 

scenarios A1FI, A2 and B1. 

 

  

Figure B3. Comparison of a) monthly mean temperatures and b) monthly precipitation sums between 1978 

(1968-1977) and 2003 (1993-2002). Plus signs indicate median (intersection) and standard deviation (length 

of the arms). The difference between 1978 and 2003 is significant in all cases (p < 0.001, Wilcoxon rank sum 

test). 
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Figure B4. Maps of growing degree days (5°C), annual mean temperature [°C] and annual precipitation sum 

[mm] in 1978 (upper row) and changes from 1978 to 2003 (lower row). 

Figure B5. See next page. 

 

Figure B6. Water uptake as a 

function of relative soil moisture 

content (Schurgers et al. 2011), 

parameterized for P. sylvestris 

(kuptake = 0.5), P. abies (kuptake = 

0.86), and B. pubescens (kuptake = 

1.0, Table B1). 
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Figure B5. Map comparison of total and species-specific biomass [kg m-²]: MS-NFI data (2011) and results 

from multi-species and single-species LPJ-GUESS runs (averaged over 1994-2003). ‘Natural’ colours (white 

to black) cover the range of the observed values (i.e. the upper limit of the black class is always the maxi-

mum of the respective MS-NFI data); ‘artificial’ colours (shades of magenta) cover the predictions that 

exceed the observed value range (model overestimation).  
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Resilience analysis by coupling a statistical and a process -based model 

4. Resilience of coastal vegetation under 

environmental change analyzed by coupling a 

statistical and a process-based model 3 

 

 

 

 

Abstract 

Resilience analysis of ecological systems is a major research focus covering a wide range of re-

search questions from biodiversity conservation to ecosystem (service) management. Model 

simulations can assess resilience, measured as the return time to conditions prior to a distur-

bance. This requires process-based models (PBM) that implement relevant processes like regener-

ation and reproduction and thus successfully reproduce transient dynamics. Such models are 

often complex and thus limited to either short-term or small-scale applications, whereas many 

research questions require species predictions across larger spatial and temporal scales. We sug-

gest a framework to couple a PBM and a statistical species distribution model (SDM) which trans-

fers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model 

combines the advantages of both approaches: the convenient applicability of SDMs and the rele-

vant process detail of PBMs in abrupt environmental change situations. First, we simulate distur-

bance events of a certain magnitude and compare treatment and control communities (resilience 

analysis by PBM). We then condense simulated species responses into two measures: adjustment 

times and control-treatment differences which we then use to correct SDM predictions. 

To demonstrate our framework, we investigate the effect of abrupt groundwater level and 

salinity changes of one-year duration on coastal vegetation at the German Baltic Sea. We found 

two example species to be largely resilient. Only salinity increases exceeding 2 g l-1 did result in 

longer adjustment times. Consequently, modifications of SDM predictions consisted mostly of 

smoothing out peaks in the occurrence probability that were not confirmed by the PBM. We thus 

found the SDM to underestimate the resilience of vegetation to the disturbances investigated, 

which we could correct with the proposed model coupling. Although demonstrated with two 

example models, our flexible framework can easily be applied to other PBM and SDM types. 

                                                           
3 An article with equivalent content has been submitted as: 

Schibalski, A, Körner, K, Maier, M, Jeltsch, F, Schröder, B. Resilience of coastal vegetation under environ-
mental change analyzed by coupling a statistical and a process-based model. Ecological Applications (in 
review). 
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4.1. Introduction 

Resilience (Carpenter et al. 2001, Holling 1973) is a major research focus covering a wide range of 

research questions from biodiversity conservation (Bengtsson et al. 2003, Walker 1995) to ecosys-

tem (service) management (Kohler et al. 2017, Winfree and Kremen 2009, Folke et al. 2004). 

While ecological resilience is defined as the magnitude of disturbance that can be absorbed 

before the system changes its structure, engineering resilience is defined by the resistance to 

disturbance and the speed of return to the equilibrium after a disturbance (Holling 1996). At a 

lower level, the resilience of vegetation, i.e. plant communities, populations or individual species, 

is an important aspect of ecosystem resilience. Resilience and resistance of vegetation to various 

disturbances have been studied by field experiments, remote sensing monitoring and modeling. 

Field experiments compare vegetation treated with a simulated disturbance of a given magnitude 

with control samples after certain time periods. By this method, MacGillivray et al. (1995) 

assessed the resilience of five herbaceous communities to fire, frost and drought, Cole (1995) 

analyzed the resistance, tolerance and resilience of 18 vegetation types to trampling, and Speed 

et al. (2010) studied the response to herbivory by geese on the level of community, plant func-

tional type, and species. Another way to observe resilience is comparing remote sensing data 

(usually, the normalized difference vegetation index, NDVI) before and after naturally occurring 

disturbances as done by Díaz-Delgado et al. (2002) and Bisson et al. (2008) for wildfires in the 

Mediterranean as well as De Keersmaecker et al. (2015) for short-term climate anomalies on the 

global scale. A third way to study resilience is modeling: either by examining the mathematical 

properties of differential equations (see Meyer (2016) for a mathematical review of resilience in 

ecology, and Yizhaq et al. (2005) and Ridolfi et al. (2006) for examples of vegetation-hydrology 

feedbacks) or by dynamic simulations. The latter uses models to ‘observe’ the response to distur-

bance - comparable to field experiments and remote sensing monitoring - by simulating and 

comparing time series of e.g. vegetation development with and without disturbances. Models 

from both vegetation and animal ecology applied in this context include non-spatial coupled 

differential equations (van de Koppel and Rietkerk 2004, Ortiz and Wolff 2002) and transition 

matrix models (Done 1987), as well as spatially explicit individual-based (Cordonnier et al. 2008, 

Foppen et al. 1999) and other simulation models (Mumby et al. 2006). Despite their differences in 

complexity, temporal (and spatial) resolution and process detail, all these models can be classified 

as process-based models (PBM). What makes PBMs inherently fit for resilience studies and sets 

them apart from statistical models, is their potential for continuous simulation over time, i.e. one 

time step depends on the conditions of the previous time steps. PBMs thus explicitly account for 

the history of sites, and they can capture temporal patterns like succession and other transient 

dynamics, which is a prerequisite of resilience analysis. The required detail of process, however, 

leads to complex models that require very specific data to parameterize and a lot of 

computational time and effort to run large-scale, long-term simulations. The trade-off between 

spatial and temporal resolution restricts long-term simulations (often needed to fully assess the 

response to disturbance) to small spatial extents. While these process-based simulation models 

allow the analysis of resilience, they are not suitable for large-scale, long-term predictions at the 

same time. 

Statistical species distribution models (SDM) which mathematically describe observed relation-

ships between the environment and the distribution of a species (Schröder 2008) have proven to 

be a convenient tool for large-scale, long-term application and are extensively used (Elith and 
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Leathwick 2009). Their advantages over PBMs are (i) less computational effort and (ii) more flexi-

bility concerning required input data. However, SDMs are based on assumptions inconsistent with 

resilience analysis: they assume the ecosystem to be in equilibrium (Guisan and Theurillat 2000), 

they do not allow extrapolation beyond the training data range (Zurell et al. 2012a), and they as-

sume stationarity of the estimated relationships across space and time (Schibalski et al. 2014). All 

of these assumptions are frequently violated when studying abrupt environmental changes 

(disturbances) by means of resilience analyses. In contrast to PBMs, SDMs for a given species 

compute the habitat suitability of a certain site for discrete points in time assuming stable condi-

tions, thus ignoring relevant processes like dispersal (or its limitation) in space, succession over 

time and other transient dynamics. Therefore, SDMs predict instant responses to disturbances 

that do not affect the predictions for subsequent points in time, thus often overestimating the 

ability of species to recover from disturbances. At the same time, they underestimate the ability 

of species to persist for some time under unsuitable habitat conditions to either eventually go 

extinct if conditions remain unsuitable (extinction debt, Hylander and Ehrlén 2013) or to have 

survived an intervening period of low suitability (resistance; see distinction between resilience 

and resistance in Lepš et al. 1982). 

Therefore, the aim of this study is to couple both model approaches combining their strengths, 

i.e. the speed and convenience of statistical modeling and the relevant detail of process-based 

modeling. We propose a flexible framework for coupling an SDM and a PBM that can be easily ex-

tended to other model types than used in our illustrative example. In most existing model coup-

ling approaches (‘hybrid models’, Dormann et al. 2012), statistically derived habitat suitability 

maps provide input data for spatially explicit PBMs (e.g. Zurell et al. 2012b, Söndgerath and 

Schröder 2002). In contrast, our approach first assesses the resilience of individual plant species 

by simulating their response to abrupt, temporary environmental changes (i.e. disturbances) with 

the PBM. In a second step, we use the results of the resilience analysis to modify predictions of 

time series by the SDM. The resilience analysis also already indicates the potential error of 

“unassisted” SDMs, i.e. if resilience is high and thus recovery or adaptation times are short, the 

deviation of the PBM predictions from the SDM predictions will be small or short-term. 

To demonstrate the framework, we use environmental and vegetation data from the collabo-

rative research project COMTESS (Sustainable coastal land management: Trade-offs in ecosystem 

services). COMTESS investigated the impact of climate change, sea level rise and different land 

management options on the hydrological conditions, consequently the distribution of coastal 

vegetation and ultimately ecosystem service provision of coastal areas at the Baltic and North Sea 

coast. Here, we used plot-level data on species distributions and environmental conditions to 

estimate SDMs for 61 species. Additionally, we used collected data on plant traits to adapt and 

parameterize an existing individual-based model (IBC-grass, Weiss et al. 2014). This PBM explicitly 

models the response of plant individuals to salt and water stress (resistance) as well as regener-

ative and reproductive processes (resilience) with high temporal and spatial resolution. Modeled 

time series of hydrological conditions (2010-2100) served as example case of environmental 

variables undergoing abrupt, temporary changes (disturbance). 

In this study, we i) analyze the resilience of coastal plant species to abrupt, temporary changes 

of groundwater level and salinity by simulating species responses to disturbances of different 

magnitudes with a PBM. Additionally, we ii) propose a novel, flexible framework to couple a 

statistical and a process-based model that enables large-scale, long-term predictions of species 
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distributions accounting for the effects of transient dynamics in the face of abrupt environmental 

changes. 

4.2. Materials and methods 

4.2.1. Illustrative example: coastal vegetation facing climate change and 

sea level rise 

The following data, collected on 318 sites along the German, Danish and Dutch Baltic and North 

Sea coast (3.7-13.4°E, 51.3-56.3°N, Appendix C1, Fig. C1.1), was used to estimate SDMs (see sec-

tion 4.2.2): presence/absence of coastal plant species (from a total pool of 230 species, 61 species 

were abundant enough to fit statistical models), groundwater level [cm above soil surface] (bi-

weekly time series, August 2011 – December 2012), groundwater electrical conductivity [mS cm-1] 

(same temporal resolution; transformed into groundwater salinity [g l-1] following Fofonoff and 

Millard Jr. 1983) and biomass removal [%] (difference in biomass amount inside/outside grazing 

exclosures over whole growing period). In addition, the following data on plant traits was used to 

parameterize an existing PBM (see section 4.2.3): seed mass, single dry weights of plant compo-

nents (leaves, stems, flowers and seeds), maximum individual plant mass, specific leaf area, 

spacer length and biomass, releasing height and canopy height. See Cebrián-Piqueras et al. (2017) 

for a detailed description of data collection in the COMTESS project.  

Mean annual groundwater levels ranged from -100 cm (maximum depth of measurement 

pipe) to 51 cm (mean ± standard deviation: -35 ± 27 cm), and mean annual groundwater salinity 

from .03 to 26.9 g l-1 (mean ± standard deviation: 8.2 ± 8.3 g l-1) across all 318 sites. Biomass 

removal ranged from 0 to 96 % (mean ± standard deviation of sites with agricultural use: 52 ± 28 

%), and half of the sites (160) were fallows (i.e. not grazed or mown). Covering a wide range of 

groundwater level and salinity values in space ensured that possible future conditions occurring in 

long-term simulations (2010-2100) were included in the training data (space-for-time substitution, 

Blois et al. 2013, Pickett 1989). 

Using WETTREG climate data (Enke et al. 2005; realization 5a) and assuming a linear sea level 

rise until 2100 of 1.05 m, Kliesch et al. (2016) applied FEFLOW (Diersch 2014) to simulate annual 

time series (2010-2100) of groundwater level [cm] and salinity [g l-1] for hydrotopes (polygons 

with homogeneous hydrological and soil characteristics) in space. Land use intensity (biomass 

removal by grazing or mowing) was derived based on today’s land use and assumed constant over 

time. We applied the SDMs to this spatio-temporally explicit data to create our illustrative 

example. 

For our example case, we selected one of 20 scenario combinations regarding climate change 

(IPCC emission scenario A2, IPCC 2007), sea level rise (1.05 m, high-end estimate by the BALTEX 

Assessment of Climate Change for the Baltic Sea Basin, Grinsted 2015) and land management 

(business-as-usual) investigated by COMTESS. We chose one of the four COMTESS study sites: 

Michaelsdorf (907 ha; 61 hydrotopes; 12.56°E, 54.36°N) a peninsula in Northeastern Germany 

reaching into the Saaler Bodden, sheltered from the open Baltic Sea by offshore island Darss (Fig. 

4.1). The study region is low-lying (50 % of the area < 0.5 m.a.s.l.), heavily drained by ditches and 

two pumping stations and protected from waves by a low sea wall (Fig. 4.1). We excluded two 

settlements (2 hydrotopes) as well as forested areas (17) and two small fields (2) at higher eleva-

tions from vegetation modeling (61 – 21 = 40 hydrotopes for vegetation modeling). The main part 
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of the peninsula is intensively (33 %) and extensively grazed grassland (25 %) with a coastal reed 

belt without agricultural use (8 %). As hydrological simulations show, elevated areas (> 4 m.a.s.l.) 

of the study region exhibit low but very variable groundwater levels and no salinization (Fig. 4.1). 

In contrast, low-lying areas exhibit high groundwater levels which are kept relatively constant 

over time by pumping and drainage (see pumping rates in Fig. C1.2, Appendix C). However, water 

management cannot prevent the salinization of low-lying areas: mean groundwater salinity rises 

by 75 % from 1.6 g l-1 in 2010 to 2.7 g l-1 in 2100 (Fig. 4.1). In contrast to thick clay layers insulating 

the hinterland of the North Sea coast from salinization (de Louw et al. 2010), sandy, permeable 

soils dominate the German Baltic Sea coast (Forster et al. 2003). Thus, sea level rise directly 

translates into increases of groundwater level (mitigated by increased pumping) and salinity in the 

low-lying hydrotopes along the coastline (Fig. 4.1). We selected three example hydrotopes: (A) a 

low-lying (0.37 m.a.s.l.), extensively used (35 % biomass removal) coastal reed which is as saline 

as the adjacent Bodden water (rising from 4.4 g l-1 in 2010 to 5.3 g l-1 in 2100) and projected to be 

permanently inundated from 2062 (Fig. 4.1); (B) an equally low-lying (0.34 m.a.s.l.) intensively 

used (80 % biomass removal) grassland with lower groundwater levels (even decreasing towards 

2100 as lower precipitation (Fig. C1.2, Appendix C1) is not offset by sea level rise) and lower 

salinity (Fig. 4.1); and (C) a high-lying (2.22 m.a.s.l.), thus dry (groundwater level < -2 m) and non-

saline (rising from 0 g l-1 in 2010 to 0.07 g l-1 in 2100), intensively used (81 % biomass removal) 

grassland close to the settlement, field and forests in the south-west of the study region. 

 

Figure 4.1. Map of study area Michaelsdorf with elevation classes and land use types (left) and time series 

of groundwater level and salinity (right). Single polygon time series (n=61) in grey with elevation class 

signified by line type; area-weighted mean of all polygons belonging to one elevation class in bold. Polygons 

A, B, C are examples revisited in Fig. 4.11 and described in section 4.2.1. See Fig. C1.1 in Appendix C1 for 

regional context. 
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4.2.2. Statistical species distribution models 

We used the data described in section 4.2.1 to fit boosted regression trees (BRT) as an example for 

statistical species distribution models in our framework. Predictors were mean annual ground-

water level [cm], mean annual groundwater salinity [g l-1] (both aggregated from biweekly mea-

surements, see section 4.2.1) and annual biomass removal [%], and the response was species 

presence/ absence. Boosted regression trees are a combination of classic statistical models (clas-

sification and regression trees) and advanced machine learning methods (boosting, Elith et al. 

2008). They have been routinely and successfully applied to similar ecological data and studies as 

ours (Valle et al. 2013, Revermann et al. 2012, Zurell et al. 2009, Guisan et al. 2007a, Leathwick et 

al. 2006, Elith et al. 2006). We fitted all BRT models in R (version 3.3.1, R Core Team 2016) with 

packages gbm (version 2.1-1, Ridgeway 2015) and dismo (version 1.1-1, Hijmans et al. 2016) and 

adopted the default settings for BRT tuning parameters learning rate (0.01), tree complexity (1, 

i.e. stumps) and bag fraction (0.75) in the dismo package. The number of trees in the final model, 

depending on learning rate and tree complexity, was determined by 10-fold cross-validation (Elith 

et al. 2008) and varied between species (Table 4.1). Spline correlograms (Dormann et al. 2007) 

revealed no spatial autocorrelation in the model residuals. 

 

Table 4.1. Characteristics of boosted regression tree models for L. perenne and S. maritimus (sample size = 

318, learning rate1 = 0.01, bag fraction2 = 0.75, tree complexity3 = 1). 

 Lolium perenne Scirpus maritimus 

model characteristics 

prevalence (presences:absences) 0.21 (55 : 263) 0.11 (32 : 286) 

number of trees 900 1450 

explained deviance [%] (mean ± SE) 56.2 ± 6.7 % 30.8 ± 6.5 % 

AUC (mean ± SE) 0.95 ± 0.013 0.88 ± 0.022 

relative predictor importance4 

groundwater level [cm] 21 % 32 % 

salinity g l-1 25 % 64 % 

biomass removal [%] 53 % 4 % 

1 the learning rate (shrinkage) determines the contribution of each tree to the final ensemble model and, 

thus, the speed of gradient descent 
2 the bag fraction is the proportion of training data used for tree fitting in each iteration 
3 the tree complexity (maximum number of splits in a tree) relates to the interaction depth potentially 

modeled; stumps (tree complexity=1) mean there are no interactions included 
4 the relative importance was determined by random permutation (cf. Ridgeway 2015) 

To demonstrate our framework, we selected two examples from the pool of 61 model species 

which, on the one hand, are both common, dominant and important ecosystem service providing 

species in the region, and on the other, occur in very different habitats: Lolium perenne (L.), the 

most important pasture grass, and Scirpus maritimus (L.), forming reed stands in brackish con-

ditions. Model performance, as described by explained deviance [0…100 %] and area-under-the-

ROC-curve AUC [0.5…1.0] (Swets 1988) from 10-fold cross-validation, was good for both species 

and better for L. perenne than S. maritimus which could be explained by the higher prevalence in 
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the data set (Table 4.1). Response curves graphically represent the model relationship between 

response (occurrence probability) and one predictor variable at a time while holding the other 

predictors constant at their respective mean. In our models, they plausibly describe the known 

ecology of the two example species. L. perenne occurs on dry (groundwater level < -50 cm), non-

saline (presence < 6 g l-1) sites, and its occurrence probability increases along the land use inten-

sity gradient (Fig. 4.2, grey). In stark contrast, S. maritimus occurs on wet (groundwater > -50 cm), 

fallow sites of intermediate salinity (5-15 g l-1; Fig. 4.2, black). The amplitude of the curves in Fig. 

4.2 relate to the relative importance of the predictors in the model (Table 4.1) which differs 

between species. For L. perenne, biomass removal [%] is the most important predictor (53 %), 

while salinity explains most of S. maritimus occurrence (64 %). The importance of predictors in a 

model affects how sensitive the modeled species is to changes in these variables. As we do not 

analyze the species response to changes in land use intensity in this study, the low impact of this 

variable in the S. maritimus model (4 %) is of no consequence here. 

Figure 4.2. Response curves of the statistical occur-

rence models for L. perenne (grey) and S. maritimus 

(black). The range covered by the response curves 

equals the range of observed data the models are 

based on. Rug plots indicate values of sites on which 

L. perenne (grey, top) and S. maritimus (black, 

bottom) were present. Arrows show increases of 

groundwater level (40 cm) and salinity (2 g l-1) during 

example change event in Fig. 4.7; biomass removal 

was held constant at 80 % (L. perenne) and 40 % (S. 

maritimus) in that example (Fig. 4.7). 
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4.2.3. Process-based model 

As an example for a process-based model we used a well-established individual- and trait-based 

model (IBC-grass; Weiss et al. 2014, May et al. 2009) which was further developed to include the 

limiting effects of high groundwater levels and salinity at the coast (IBC-grass_coast, see complete 

model description following the ODD protocol (Overview, Design concepts, Detail; Grimm et al. 

2006) in Appendix C2, CD). IBC-grass_coast is an individual-based, spatially explicit model adopt-

ing a zone-of-influence approach (Weiner et al. 2001) which was originally designed to reproduce 

effects of disturbances like grazing on small-scale community patterns in grasslands (May et al. 

2009). The spatial resolution of the model is 130×130 cm² with weekly time steps (30 weeks 

making up one vegetation period). Competition for space, light and soil resources among individ-

uals, plant and spacer growth as well as grazing and trampling mortality are calculated every time 

step (i.e. weekly). Seed production and dispersal, establishment, winter mortality and cutting are 

limited to certain weeks in the vegetation period. Processes in IBC-grass being modelled at the 

level of individuals belonging to plant functional types (PFT) or even species (applied here) allows 

the analysis of model results on the level of individuals (mean individual yield, Pfestorf et al. 

2016), populations (population size, Reeg et al. 2017), species (abundance, Pfestorf et al. 2016) as 

well as the community (PFT diversity or community biomass, Weiss and Jeltsch 2015). Here, we 

aggregated model results into a measure of species-specific occurrence comparable to SDM-

predicted occurrence probability: proportion of replicate model runs (n=50) in which the given 

species was present, ranging from 0 to 1. 

In IBC-grass, 14 trait-related parameters determine species responses to environmental condi-

tions and thus their competitive strength. Two parameters were added in IBC-grass_coast to ac-

count for resistance to inundation (at higher respiratory costs) and tolerance to salinity in our 

application. Apart from plant trait data collected within the COMTESS project (see section 4.2.1), 

additional species-specific trait values for model parameterization were taken from trait data 

bases BiolFlor (Kühn et al. 2004), CloPla (Klimešová and de Bello 2009) and LEDA (Kleyer et al. 

2008), see also Table C3.2 in Appendix C3 (CD). As we had no measurements for the new trait 

parameters (respiratory cost under inundated conditions and salinity tolerance) we calibrated the 

model in two steps (full description in Appendix C3, CD), i.e. single-species and multi-species 

model runs in five distinct habitat types typical for the study area (intensive and extensive grass-

land, wet meadow, salt marsh and reed). Environmental conditions between the habitat types 

varied concerning groundwater level and salinity, nutrient supply as well as land use intensity 

described by grazing intensity and cutting frequency (Fig. C3.6, Appendix C3). Comparison with 

sampled COMTESS plots (each assigned one of the five habitat types by expert knowledge) yield-

ed different numbers of successful parameter combinations per habitat type, ranging from 197 

(intensive grassland) to only 11 (wet meadow; see number of settings in Fig. C3.6, Appendix C3). 

Out of these, parameterizations were drawn randomly (with replacement) for 50 replicate model 

runs per simulation experiment (see section 4.2.4.1) which were aggregated into the occurrence 

measure defined above. Each habitat type occupied a certain range on the groundwater level and 

salinity gradient, e.g. intensive/ extensive grassland showed groundwater levels ≤ -50 cm and 

salinities ≤ 1 g l-1 as opposed to salt marshes with groundwater levels around -20 cm and ≥ 4 g l-1 

(Fig. C3.6, Appendix C3). Because the initial conditions differed between habitat types, the same 

disturbance event simulated per habitat type (see section 4.2.4.1), e.g. groundwater level increase 
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of 20 cm combined with a salinity increase of 2 g l-1, resulted in different final conditions (i.e. 

during the change event, Fig. C1.3, Appendix C1). 

IBC-grass successfully reproduces community dynamics like competitive exclusion or co-exis-

tence (Pfestorf et al. 2016, Körner et al. 2014), succession (Weiss and Jeltsch 2015) and species-

specific responses to resource and seed limitation (Weiss et al. 2014). Weiss and Jeltsch (2015) 

specifically used simulation experiments with a similar version of IBC-grass to investigate the 

resistance of grassland communities to succession after the abandonment of grazing. We thus 

assume that the PBM is superior to the SDM in the event of abrupt environmental changes, as it 

dynamically models the development of species communities over time. For the purpose of 

demonstrating our model coupling framework, we therefore assume the PBM predictions to be 

‘true’, and we correct deviating SDM predictions accordingly. Our example PBM can be replaced 

by any other process-based model which includes the relevant process detail (e.g. species-specific 

competition) and can perform the simulation experiments described in section 4.2.4.1. 

4.2.4. Coupling two model approaches – the framework 

The framework we are suggesting focuses on the applicability of the resulting coupled model, as 

large quantities of data needed to be processed in our example study. Therefore, we propose a 

two-step procedure. The first part involves conducting simulation experiments with the PBM 

(resilience analysis), while in the second part the SDM application is modified according to the 

results of step 1 (Fig. 4.3). 

 

Figure 4.3. Concept of two-step procedure: simulation experiments with the process-based model 

(resilience analysis) in step 1 result in species-specific lookup tables which are used in step 2 to correct 

statistical model predictions. 
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4.2.4.1. Step 1) Preparation: resilience analysis 

Disturbances are characterized by their duration, frequency, area and magnitude (intensity and 

severity, White and Pickett 1985). For the resilience analysis in step 1, we considered abrupt 

changes of groundwater level and/or salinity which occurred once in the simulated time series 

(frequency), which lasted for one year (duration) and affected the entire model patch (130 × 130 

cm², size). An abrupt change (disturbance) was detected (i) if either groundwater level or salinity 

(or both) exceeded their respective threshold from one year to the next (i.e. | variable year1 – 

variable year2 | > threshold), and (ii) if groundwater level or salinity (or both) in the following year 

was again within the value ± threshold of the year prior to the change event (i.e. | variable year1 – 

variable year3 | ≤ threshold). The thresholds were variable-specific and ranged between -60 to 60 

cm (at least |20 cm|) for groundwater level (thus, encompassing both drier and wetter 

conditions) and between 0.25 and 3 g l-1 for groundwater salinity (thus, only considering salinity 

increases). 

Figure 4.4. Concept of the simulation 

experiments performed by the pro-

cess-based model for temporary one-

year change. After a spin-up phase of 

50 years, environmental conditions  

are changed by a certain magnitude 

for one year and then returned to    

the previous level (upper panel). The 

species reaction is compared between 

treatment (with change event) and 

control (without change event). The 

adjustment time is the number of 

years with significant differences be-

tween control and treatment. For   

each year within the recovery time, 

the difference between control and 

treatment is recorded for later correc-

tion of the statistical model (see also 

Fig. 4.5). 

We recorded two aspects of a species’ response to the change event of a certain magnitude. First, 

we determined the adjustment time as a direct measure of resilience by comparing two settings 

(Fig. 4.4): In the treatment setting, we let the model spin up for 50 years with constant environ-

mental conditions, then changed the conditions for one year, after which they returned to the 

previous level for 100 simulation years. In the control setting, the change event was missing. Thus, 

starting in the first year after the change event, the control setting is what the SDM (unaware of 

the previous year’s conditions) predicts. Both, control and treatment settings were repeated 50 

times, each time drawing randomly from the pool of successful parameterizations per habitat 

type (see section 4.2.3). The adjustment time was then determined as the number of years for 

which control and treatment settings differed significantly after the change event (see Appendix 

C3, CD). We recorded the adjustment time between control and treatment for each magnitude of 

change in lookup tables for each species and each of the five habitat types (see section 4.2.3). 
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Second, for cases with adjustment times > 0 years, we recorded the relative annual difference 

between control and treatment settings (Fig. 4.5). The maximum difference between control and 

treatment was set to +1 (if the species responded positively to the change, i.e. treatment > con-

trol) and -1 (if the species responded negatively to the change, i.e. treatment < control), respect-

tively. There were cases for which the response peaked immediately, i.e. in the year of the change 

itself (Fig. 4.5a), whereas in other cases the response was delayed (time lag after the change 

event, Fig. 4.5b). 

 

Figure 4.5. Examples of the simulation experiment with 40 cm groundwater level and 2 g l-1 salinity increase 

for a) L. perenne and b) S. maritimus. Grey shading marks the adjustment time, i.e. significant difference 

between control (broken line) and treatment (solid line). Table figures give significant absolute (abs.) and 

relative (rel.) differences between control and treatment per year which are used for correction. 

4.2.4.2. Step 2) Application: correction of predictions 

First, we created the original SDM predictions by applying our species-specific SDMs (see section 

4.2.2) to the predicted groundwater level, salinity and biomass removal time series (COMTESS 

data, see section 4.2.1), resulting in time series of occurrence probability for each species. Next, 

we used the same definition of abrupt temporary changes as in the simulation experiments in 
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step 1 for the application of the framework in step 2, and thus identified abrupt one-year change 

events in groundwater level and salinity time series.  

We then had to determine in which of the five lookup tables (= habitat types) for each species 

to find the adjustment time (and relative control-treatment differences) corresponding to a spe-

cific combination of groundwater level and salinity change. We used the predictions of 33 species 

to automatically classify the habitat type as described in Appendix C4. Based on the presence of 

typical species for each habitat type (e.g. Phragmites australis and S. maritimus for reed), we as-

signed each hydrotope one of the five habitat types per simulation year. We could then retrieve 

PBM simulation results for a specific change event (combination of groundwater level and salinity 

change) in a specific habitat type and compare them to the predicted SDM response. 

 

Figure 4.6. Summary of possible combinations of responses predicted by process-based vs. statistical 

models and their handling in our proposed framework. Arrows indicate that cases of agreement between 

SDM and PBM (a, i) are used to create missing SDM peaks (d, f) and replace wrong peaks (g, c).  

Figure 4.6 shows a summary of potential combinations of modeled species response to change by 

process-based vs. statistical model and how we propose to handle them. On the main diagonal 

both models agree concerning type (peak vs. no response) and direction (positive vs. negative), 

whereas in the remainder of the table their predictions differ. If both models, PBM and SDM, pre-

dict no species response to a change (Fig. 4.6e), there is no correction required.  

If both models agree on the direction of peaks (negative, Fig. 4.6a, or positive, Fig. 4.6i), we 

use the recorded adjustment time and annual relative difference between control and treatment 

from step 1 to modify the SDM prediction as follows: First, the SDM-predicted peak is assigned 

100 %. Second, for the adjustment time (i.e. the years following the change event, including the 
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year the change event takes place, with a significant difference between control and treatment in 

the simulation experiment), we replace the original SDM predictions with the percentage of the 

SDM-predicted peak (= 1) as simulated by the PBM in step 1 (Fig. 4.5). By modifying the SDM 

predictions in a relative way, we accounted for the absolute difference between what the PBM 

predicted in the control setting and the SDM prediction (as the 50 PBM runs cover a range of 

different initial conditions from the pool of successful parameterizations (Fig. C3.6, Appendix C3), 

they cannot be directly compared to the SDM prediction of one specific case). 

     

Figure 4.7. Example of an abrupt one-year change of groundwater level (+ 40 cm) and salinity (+ 2 g l-1) to 

which two species respond differently (habitat type = intensive grassland): while a) L. perenne responds 

negatively, b) S. maritimus responds positively to wetter and more saline conditions (note different initial 

groundwater level and salinity conditions). Solid, grey lines are original predictions of the statistical models; 

broken, black lines are corrected via relative control-treatment differences. 

 

To demonstrate this procedure, we constructed an example with a groundwater level increase of 

40 cm and a salinity increase of 2 g l-1 (Fig. 4.7). From the simulation experiment for this combi-

nation of groundwater level and salinity change (Fig. 4.5), we know that L. perenne needs 16 years 

to recover from the temporally unsuitable conditions (negative response; see also decrease in 

occurrence probability in response curves, Fig. 4.2), while S. maritimus benefits for four years 

from the temporally beneficial conditions (positive response, Fig. 4.2). In contrast, the SDM only 

predicted a positive response for L. perenne and a negative response for S. maritimus in the year 

of change and a return to the initial occurrence probability in the following year (Fig. 4.7, original 

prediction). The corrected prediction then mirrored the development of the treatment setting in 

relation to the control setting from step 1 (compare Fig. 4.5 and Fig. 4.7, corrected prediction). 

Consequently, for S. maritimus, the SDM-predicted peak was moved to the year after the change 

event as simulated by the PBM. Should the effect of one change event still continue when the 

next change event occurs, we suggest using the absolute maximum of all corrections (Fig. C1.4, 

Appendix C1).  

If the SDM predicts a response unconfirmed by the PBM (negative, Fig. 4.6b, or positive, Fig. 

4.6h), we smooth out the incorrect peak by interpolating between the years before and after the 
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change event. In cases where the opposite is true (Fig. 4.6d or f) or where SDM and PBM predict 

peaks in opposite directions (Fig. 4.6c or g), we create missing peaks and replace wrong-direction 

peaks by drawing from the pool of correct SDM peaks (Fig. 4.6a or i). We choose the SDM peak 

from previous SDM applications (in other years or hydrotopes) that falls into the same class of 

groundwater level and salinity change (e.g. +40 cm and +2 g l-1) and is closest to the current case 

in terms of groundwater level, salinity and biomass removal (10 year-average prior to change 

event, Fig. C1.5, Appendix C1). These three environmental variables are the main predictors of the 

statistical models (see section 4.2.2). The newly assigned peak is then modified following the pro-

cedure described above for cases in which PBM and SDM agree on the direction of response (Fig. 

4.6a or i). 

4.3. Results 

4.3.1. Occurring cases of abrupt environmental change 

 

Figure 4.8. a) Number of example cases per groundwater level-and-salinity change combination (summed 

over all 40 polygons’ time series of 89 years (2011-2099); total number of cases =  3560). Lookup tables of 

adjustment times [years] with b) our expectations (the darker, the longer adjustment time), and c) results of 

the resilience analysis in step 1 for L. perenne and d) S. maritimus (intensive grassland; see Fig. C1.6 for 

tables of all five habitats). The bold frames in c) and d) mark cases which occur in our example data, cf. a). 

White arrows in c) and d) mark the example case used in Fig. 4.5 and 4.7. 
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In our example, we found 363 cases of abrupt one-year changes (10 % of all 3560 potential cases, 

i.e. 40 polygons × 89 years; for the first and the last year of the time series our conditional defini-

tion could not be checked) ranging from a 60 cm groundwater level decrease to 40 cm increase, 

and up to 0.5 g l-1 salinity increase (Fig. 4.8a). Interestingly, mapping how often in 89 years (2011-

2099) abrupt groundwater level changes occurred in each hydrotope (Fig. 4.9a) revealed a posi-

tive relationship between the number of changes and elevation. The highest numbers of changes 

were found in elevated hydrotopes, while the low-lying hydrotopes along the coastline exhibited 

the lowest number of changes (Fig. 4.9a). This spatial pattern is virtually inverted when mapping 

the goodness-of-fit of linear models fitted to the groundwater level time series of each hydro-

topes (the ‘smoother’ the time series, the better the fit of a linear model; Fig. 4.9b). Here, low-

lying polygons along the coast exhibited the most linear time series (R² close to 1). Thus, the lack 

of abrupt changes along the coast is not the absence of change in general, but indicates a more 

gradual increase of both groundwater level and salinity (however, abrupt salinity changes are 

confined to the low-lying coastline). 

(a)  (b)  

Figure 4.9. Maps of (a) number of abrupt changes in groundwater level over the entire time series (2011-

2099) and (b) goodness-of-fit of a linear model (R2) fitted to the groundwater level time series (indicating 

how gradual the changes are over time). 

4.3.2. Resilience 

Although we expected adjustment times after change events to differ between species and initial 

conditions (i.e. habitat types), we generally expected them to increase with the magnitude of 

change, i.e. with increasing (absolute) groundwater level changes and salinity increases, as shown 

by the shading in Fig. 4.8b. Despite variation, we found the expected pattern of generally increas-

ing adjustment times with greater salinity increases (i.e. from left to right in Fig. 4.8c and d) and 

less so for groundwater levels (but see longer adjustment times with groundwater level increases 

≥ 40 cm for S. maritimus, Fig. 4.8d). Thus, both species were more sensitive to salinity increases 

than to groundwater level changes (see Appendix C1, Fig. C1.6 for lookup tables of adjustment 

times in all habitat types). 

L. perenne was very resilient to changes as only salinity increases exceeding 2 g l-1 resulted in 

any adjustment time (Fig. 4.8c). S. maritimus exhibited a similar pattern with only very high salin-

ity increases resulting in adjustment times which in turn were generally lower than for L. perenne 

in the same habitat type and combination of groundwater level and salinity change (but see dif-
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ference between initial conditions in Fig. C1.7, Appendix C1). The longest adjustment time in our 

example cases (see bold frames in Fig. C1.6) were 6 years for L. perenne (wet meadow) and 11 

years for S. maritimus (salt marsh). 

4.3.3. Correction of statistical model predictions 

Of the 363 occurring cases of environmental change, by far the most led to no response in either 

PBM or SDM (68 % L. perenne, 67 % S. maritimus, Fig. 4.10). In 22 % of the cases, the SDM under-

estimated the resilience of both species by predicting positive or negative peaks unconfirmed by 

the PBM (Fig. 4.10). The respective SDM peaks in the time series of predicted occurrence proba-

bility were smoothed out. In contrast, the SDM overestimated the resilience of the species in only 

5 % and 4 % for L. perenne and S. maritimus, respectively (Fig. 4.10). In these cases, new positive 

or negative peaks were inserted into the original time series of occurrence probabilities, depen-

ding on the response predicted by the PBM. In only 4 % (L. perenne) and 1 % (S. maritimus) of all 

cases, both approaches predicted a positive response, and the original SDM predictions were 

adjusted via relative control-treatment differences. In the remaining 1 % (L. perenne) and 6 % (S. 

maritimus) of all cases, contrasting response predictions (SDM: negative, PBM: positive) had to be 

resolved by replacing the originally negative SDM peak with a positive peak drawn from the pool 

of correct positive peaks.  

 

Figure 4.10. Fraction of example cases of abrupt environmental change (see Fig. 4.8a) per combination of 

predicted species response by process-based vs. statistical model (cf. Fig. 4.6) for both example species. 

Shades of grey underline the share of the total number of cases. 

Thus, the corrections of the statistical predictions consisted mostly of smoothed out peaks (Fig. 

4.11). Example hydrotope A was a case of gradual groundwater level (two abrupt changes over 89 

years) and salinity (three abrupt increases) increase (Fig. 4.11, A). By 2050, the habitat type shift-

ed from salt marsh to reed as salt marsh species Festuca rubra subsp. littoralis was replaced by S. 

maritimus (Fig. C4.2). These conditions excluded L. perenne from the beginning (occurrence prob-

ability = 0) and the five change events resulted in no correction, as both approaches predicted no 

response. However, the same changes led to improved habitat suitability for S. maritimus whose 
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Figure 4.11. Groundwater level and salinity time series as well as classified habitat type (IG= intensive grass-

land, EG= extensive grassland, WM= wet meadow, SM= salt marsh, R= reed) and predicted occurrence 

probabilities for L. perenne and S. maritimus (dark grey= original SDM, broken line= corrected) for all hydro-

topes (grey lines) with example polygons A, B, C highlighted (see map in Fig. 4.1). Cases of abrupt environ-

mental changes according to our definition are highlighted by arrows. 
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occurrence probability increased from 0 to 0.62. The only corrections consisted of smoothing out 

unconfirmed responses, e.g. the omission of a negative peak predicted by the SDM in year 2057. 

A contrasting example was hydrotope C with ten abrupt groundwater level changes but no salinity 

(changes) which was continuously classified as intensive grassland due to the presence of L. 

perenne, Trifolium repens and Taraxacum Sec. Ruderalia (Fig. C4.2). In this hydrotope, L. perenne 

was present (constant occurrence probability = 0.96), while S. maritimus was absent throughout 

the entire time series (Fig. 4.11, C). The change events triggered no species responses in either 

SDM or PBM, and thus the original did not need any correction. 

Hydrotope B was an intermediate case with also ten abrupt groundwater level changes, but 

two additional abrupt increases of salinity, which increased from a level of 2 g l-1 (Fig. 4.11, B). 

Consequently, the habitat type started changing from intensive grassland to wet meadow in 2063 

when L. perenne started to vanish due to deteriorating habitat conditions (Fig. C4.2). L. perenne 

was present at the beginning of the time series (occurrence probability > 0.9), but its occurrence 

probability decreased to approx. 0.4 by the end of the century. High biomass removal (80 %), 

rather than unsuitable moisture and salinity conditions excluded S. maritimus on this site from 

the beginning. The corrections consisted again of smoothed out positive (8) and negative (4) SDM 

peaks (e.g. in year 2083). 

In summary, corrections of SDM predictions by the PBM were rare and mostly consisted of 

smoothing out unconfirmed SDM peaks in individual years. Thus, the potential errors of unassist-

ed SDMs in our case study were short-term, and the coupled model did not yield fundamentally 

different predictions considering the entire time series. 

4.4. Discussion 

4.4.1. Resilience of coastal vegetation 

4.4.1.1. Illustrative example: L. perenne and S. maritimus 

In our illustrative example, we found cases of abrupt and gradual environmental change. We did 

not investigate gradual changes as we assumed them to be less problematic when using statistical 

models. The vegetation can keep pace with its slowly changing surroundings, and thus no adjust-

ment times need to be taken into account. Instead, habitat suitability slowly increases or decreas-

es, and species response appears instantaneous at least in annual time steps. Abrupt environmen-

tal changes, on the other hand, can lead to suddenly adverse or suitable habitat conditions which 

species often do not respond to instantaneously or triggering long-term changes in the species 

community, neither of which can be handled by statistical models. Concerning abrupt environ-

mental changes of one-year duration, our example study revealed high resilience of both L. peren-

ne and S. maritimus occurrence which can be explained by the ecology of the two species: 

L. perenne is a fast-growing, strong competitor, sensitive to droughts (low resistance in a 

glasshouse experiment by Davis et al. 1994) but highly resilient with respect to e.g. trampling, as it 

persists even under intensive grazing with high stocking rates (Cosgrove 2011). According to the 

plant strategy theory (Grime 1977), L. perenne is classified as ruderal/ competitive strategist 

(Pierce et al. 2013, Campbell and Grime 1992). The ruderal strategy focuses on reproductive pro-

cesses, e.g. seed production and the establishment of a viable seed bank (Grime 1977). It thus in-

creases resilience by enabling plants to establish quickly after disturbance events (Lepš et al. 

1982). 
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S. maritimus is an emergent macrophyte and facultative halophyte (Hroudová et al. 2007) which 

tolerates water levels up to 90 cm above soil surface (Dykyjová 1986) and survived four months of 

18 ‰ S (= 18 g l-1) in a chronic salt stress experiment (60 % mortality, Hootsmans and Wiegman 

1998). The species responds to saline conditions by accumulating chloride and sodium which 

comes at the cost of reduced growth and leaf necrosis (Krüger and Kirst 1991). In anaerobic 

conditions, S. maritimus grows long shoots and spacers (to emerge from water-logged conditions) 

as well as tubers (storage for overwintering, Clevering and Hundscheid 1998). Thus, the strategy 

of S. maritimus according to Grime (1977) is stress tolerance which is an important resistance 

mechanism (Lepš et al. 1982). 

We found high resilience (or resistance, see section 4.4.1.2) of the occurrence of L. perenne 

and S. maritimus. Experimental studies investigating the effect of salinity on S. maritimus survival 

confirm its high resistance to salinity and deep water. Only salinities exceeding 15 ‰ S (= 15 g l-1) 

severely affected S. maritimus survival in an experiment by Lillebø et al. (2003). Salinities as high 

as this did not occur in our example data (max. 5.8 g l-1 in 2099, Fig. 4.1), and in our simulation 

experiments we investigated only changes of salinity resulting in not more than 7.6 g l-1 (Fig. 

C1.3). Coops et al. (1996) planted S. maritimus at different water depths and found it to survive 

even in 80 cm deep water after two growing seasons. In our example data, the highest mean 

annual groundwater level was 37.2 cm in 2100 (Fig. 4.1, polygon A). But in our simulation experi-

ments we did explore abrupt groundwater level increases resulting in final groundwater levels of 

up to 40 cm (wet meadow and salt marsh) and even 74 cm (reed) (Fig. C1.3; in intensive/extensive 

grasslands, initial groundwater levels were much lower, thus final groundwater levels did not 

exceed 20 cm). And indeed, the adjustment times of S. maritimus in reed, salt marsh or wet 

meadow for 60 cm groundwater level increase were longer than in intensive/extensive grass-

lands, especially in combination with salinity increases (Fig. C1.6 and Fig. C1.7 in Appendix C1). 

Thus, the survival and our related occurrence measure of S. maritimus were only affected by the 

extreme cases of groundwater level and salinity changes investigated here, which is supported by 

experimental studies. 

4.4.1.2. Resilience vs. resistance 

Temporal resolution matters when distinguishing between resilience and resistance. For example, 

in their salt stress experiments, Hootsmans and Wiegman (1998) found aboveground biomass of 

S. maritimus seedlings to grow back quickly to the control level after temporary salt stress (three 

weeks, 18 g l-1). They hypothesized that S. maritimus had recycled carbohydrates accumulated in 

response to previous salt stress to create high osmotic pressure. Thus, considering weekly time 

steps this could be considered resilience, while on the annual scale this would be considered 

resistance (no difference from control in this year). 

In our example of annual time steps, we cannot distinguish between short-term resilience and 

resistance. L. perenne may be highly resilient, thus returning to the pre-disturbance level of occur-

rence within one year, while S. maritimus might be highly resistant, not even responding to the 

disturbance in the first place. Both, resistance and resilience, result in the same PBM prediction: 

adjustment time = 0 year. For the purpose of correcting annual SDM predictions, it is irrelevant 

whether the missing PBM response is due to resistance or resilience. Here, we abandon process 

detail provided by the PBM (in the modeled weekly resolution) when upscaling to match the 

SDM’s temporal resolution (i.e. annual). 
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4.4.2. Model coupling framework 

4.4.2.1. Novelty and flexibility of the proposed model coupling approach 

Including biotic interactions into SDMs is pivotal to improve predictions of future species distribu-

tion (Anderson 2017, Wisz et al. 2013). Currently, several model coupling approaches (‘hybrid 

models’, Dormann et al. 2012) link SDM-derived habitat suitability maps with e.g. cellular automa-

ta simulating dispersal (Engler and Guisan 2009, Iverson et al. 2004, Carey 1996) or (meta)-

population models (Zurell et al. 2012b, Söndgerath and Schröder 2002, Akçakaya 2000). However, 

hybrid model approaches linking SDMs with community-level models considering biotic 

interactions such as inter-specific competition are much rarer (but see BioMove, Midgley et al. 

2010). Here, we present a novel approach to include biotic interactions in SDMs which goes be-

yond the simple inclusion of species co-occurrences as additional predictors (Giannini et al. 2013). 

In BioMove, Midgley et al. (2010) scaled the competitive ability of different plant functional 

types in a process-based community-level succession model using SDM-derived habitat suitability. 

Thus, the temporal and spatial resolution of model application and consequently computation 

time for model runs were determined by the PBM. In our study, on the other hand, we focused on 

minimizing computational effort by adopting a two-step procedure. We simplified the results of 

the first step, i.e. the resilience analysis by PBM simulation experiments, into two measures: 

adjustment times and relative annual differences between control and treatment after simulated 

disturbance events. These two measures were static output of step 1 used in step 2, similar to the 

static habitat suitability maps derived from SDMs which then provide input for PBMs in a next 

step in current hybrid model approaches. Once step 1 with its considerable effort related to PBM 

parameterization and run time of various simulation experiments including replicates was com-

pleted, the PBM application was finished. Thus, the resolution of application was determined by 

the SDM, i.e. annual (instead of weekly) time steps and areas of entire hydrotopes (instead of 130 

× 130 cm²). The considerable advantage of simplifying PBM outputs and classifying change events 

was that looking up the same species reactions for similar change events recurring in the time 

series of different hydrotopes saved computational time in a large-scale, long-term application, 

while at the same time conserving the important process details of community reactions to distur-

bance. 

While most hybrid model approaches focus on spatial patterns via using habitat suitability 

maps (e.g. Fordham et al. 2013, Anderson et al. 2009, Akçakaya 2001), we here use temporal 

patterns, i.e. development of control- treatment differences over time, to link process-based and 

statistical models. As a comparison of different model approaches revealed, hybrid models such 

as ours are not only superior to classic SDMs in environmental change applications, but they are 

still among the best available methods for predicting species responses to climate change (Zurell 

et al. 2016). 

4.4.2.2. Statistical vs. process-based model predictions 

In our example change event (40 cm groundwater level and 2 g l-1 salinity increase) used in Fig. 4.5 

and 4.7, SDM and PBM both agreed on the direction of response (negative for L. perenne, positive 

for S. maritimus), but differed in temporal development. SDM response curves (Fig. 4.2) con-

firmed the responses modeled by the PBM. However, in most cases of abrupt changes that 

triggered any species response, SDM and PBM disagreed (Fig. 4.10). 
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The most common modification of SDM predictions in our illustrative example was smoothing out 

unconfirmed peaks in individual years. Thus, the corrected SDM predictions were less variable 

than the original SDM predictions which implausibly suggested that species vanish completely 

from a site in one year only to suddenly reappear in the next. Instead the species would either 

resist or be decimated in abundance, but not removed completely (Lavorel 1999) in most cases. 

Similarly, it is implausible that one year of suitable conditions on an otherwise unfavourable site 

leads to the sudden establishment of a species as it has to compete with already present competi-

tors in the existing community. Thus, the correction of the SDM resulted in ecologically more 

plausible predictions. 

Discrepancies between SDM and PBM (Fig. 4.6 and 4.10) do not indicate that one of the two 

models does not work. Instead, they demonstrate the different nature of the two model 

approaches: SDMs predict the habitat suitability based on environmental predictors, assuming 

that the predictor values represent a long-term equilibrium of the environmental conditions of a 

site. A one-year increase of groundwater level and salinity (e.g. Fig. 4.7a) is thus ‘perceived’ by the 

SDM as an alternative site with long-term average of higher groundwater level (-50 cm, Fig. 4.7a) 

and higher salinity (6.5 g l-1) which would indeed be unsuitable for L. perenne as the respective 

response curves show (Fig. 4.2), hence, the greatly reduced occurrence probability in this example 

(Fig. 4.7a). In the following year, the conditions suggest again a completely different site with 

drier (-90 cm), less saline (4.5 g l-1) equilibrium conditions more suitable for L. perenne, hence the 

immediate return to high occurrence probability after disturbance (Fig. 4.7a). The PBM on the 

other hand, simulates the detailed response of L. perenne and all other species in the model to 

wetter, more saline conditions: in some of the replicate model runs L. perenne disappears from 

the model patch (hence the decrease in the PBM response variable). In the following years, L. 

perenne has to establish anew in these model patches and compete with species that were better 

adapted and thus less affected by the disturbance until finally, after 15 years, being back to its 

previous level of occurrence in all 50 replicates. The discrepancy between PBM and SDM is thus 

due to the specific modeling by the PBM of processes like competition between plant individuals 

of different species, mortality, dispersal and establishment that create transient dynamics (Reeg 

et al. 2017). This also explains why adverse conditions per se, which prompt a negative response 

in the SDM, can lead to an ultimately positive response in the PBM: while conditions may be 

unsuitable for e.g. L. perenne, they may be even less suitable for its competitors, reducing their 

abundance and thus the competitive pressure on L. perenne, ultimately improving its growing 

conditions and resulting in a positive PBM response. In their theoretical experiments, Allesina and 

Levine (2011) found that compositional shifts among competitors following an initial reduction of 

a focal species (e.g. due to a disturbance) favours the recovery of the focal species (intransitive 

competition, Gallien 2017). 

4.4.2.3. Further research and potential applications 

We used abrupt one-year changes as an illustrative example to demonstrate this novel model 

coupling approach, focusing on the methodological aspects. Further simulation experiments are 

currently under progress but would go beyond the scope of this paper. For example, in our time 

series we find cases of abrupt changes that have not returned to the previous conditions after just 

one but after several years (e.g. groundwater level of hydrotope C in 2063, Fig. 4.11). Simulations 

for these cases will likely reveal that adjustment times after more severe disturbances (longer 

duration) will be longer than after one-year events. 
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For multiple events in close succession which did occur in our time series (e.g. groundwater level 

of hydrotope B in years 2071/72, Fig. 4.11), we assumed that the reaction of the vegetation would 

be the same to each single event (Fig. C1.4, Appendix C1), whereas in fact a community already 

recovering from a prior disturbance is likely to be less resistant to a new change event and thus 

already respond to disturbances of smaller magnitude, or to be less resilient and need longer to 

recover. For example, Zedler et al. (1983) found that the burning of Californian chaparral in two 

consecutive years much reduced the otherwise characteristic resilience of the vegetation to fire in 

the second year. 

So far, we have discussed only temporary changes of different magnitude or duration which 

can be described as disturbances, e.g. rainwater flooding affecting the mean annual groundwater 

level of one particular year or a storm surge that increases the salinity for a certain time. A differ-

ent type of environmental change is abrupt and permanent, i.e. an abrupt change of conditions 

which do not return back to the previous level. A hypothetical example from the COMTESS project 

is the creation of polders in an alternative land management option at the North Sea. Here, drain-

age pumps are turned off from one year to the next in the hydrological model, and consequently 

groundwater levels increase abruptly and permanently. The proposed framework can be used in 

the same manner as described in this paper for temporary change to investigate species respons-

es to permanent changes and adjustment times to new conditions. 

Similarly, response variables other than occurrence of individual species can be investigated 

with our framework. For example, experimental studies investigating species performance (rather 

than mere survival) under different disturbance or stress treatments suggest that plant growth 

and fitness may already be affected by lower levels of disturbance. Common proxies for plant 

performance are morphological traits such as shoot length, number of leaves and tubers as well 

as aboveground and belowground biomass (Hroudová et al. 2014, Hootsmans and Wiegman 

1998, Clevering and Hundscheid 1998). Hootsmans and Wiegman (1998) found S. maritimus seed-

lings to be very resistant to most treatments in terms of survival, while their total biomass was 

negatively affected by long-term salt stress (4 months, 18 g l-1). Similarly, Clevering and Hund-

scheid (1998) observed that clonal growth was severely reduced in water depth of 20 and 30 cm 

after 11 weeks. These characteristics may well differ in resilience, and depending on the study 

question, they may be more relevant than individual species occurrence. 

4.5. Conclusion 

We demonstrated a novel framework to couple a statistical and a process-based model that trans-

fers the condensed results of a resilience analysis by the PBM to SDM predictions. The resulting 

model combines the advantages of both model approaches: the convenient applicability of the 

statistical model and the process detail of the process-based model where it is relevant, i.e. in 

situations of abrupt environmental change. The two focal species proved to be very resilient to 

the disturbances investigated. Modifications by our framework consisted mostly of smoothing out 

SDM peaks unconfirmed by the PBM, thus correcting the SDM’s underestimation of resilience. 

The flexible framework can be applied to any SDM predicting time series of occurrence probabili-

ties and any PBM capable of dynamically simulating species responses to disturbances. Different 

definitions of disturbances and even permanent environmental shifts can be readily implemented 

and tested with this framework. 
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Appendix C1 

Additional details on data and results  

 

Figure C1.1. Location of data collection sites within the COMTESS project along the German, Danish and 

Dutch coastline of the Baltic and North Sea coast. Inset map shows the location of study region Michaels-

dorf for which spatio-temporally explicit simulations of hydrological conditions and vegetation response 

were conducted. 

 

Figure C1.2: Time series of precipitation (WETTREG, realization 5a; Enke et al. 2005) and pumping rates 

(Kliesch et al. 2016) for Michaelsdorf. 
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Figure C1.3. Comparison of groundwater level and salinity conditions before (black) and after (grey) 

simulated change events per habitat type.  

 

  

Figure C1.4. Examples of a series of abrupt one-year changes of groundwater level (+ 40 cm) and salinity    

(+ 2 g l-1) for a) Lolium perenne and b) Scirpus maritimus. The final correction is the absolute maximum of  

all corrections. 
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Figure C1.5. Example of finding the closest 

match concerning groundwater level, salinity 

and biomass for a positive L. perenne peak 

(grey). The small black dot is the closest case to 

the example case (big dot) for which the SDM 

predicted no response, and for which a peak 

had to be drawn from the pool of 13 cases for 

which the SDM ‘correctly’ predicted positive 

peaks. 

 

 

 

Figure C1.6. See next page. 

 

 

Figure C1.7. For each habitat type, the final groundwater levels (i.e. after the change) and resulting adjust-

ment times for S. maritimus are given for groundwater level change + 60 cm. The variation in the upper 

panel stems from the conditions of different successful parameterizations from which cases are drawn for 

the simulation experiments (cf. Fig. C1.3); the number of values making up the boxplots differs between 

habitat types. The variation in the lower panel stems from eight different salinity changes investigated in 

combination with + 60 cm groundwater level increase (cf. last row in each lookup table, Fig. C1.6). 
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Figure C1.6. Species-specif-

ic lookup tables of adjust-

ment times per habitat 

type. Bold frames mark 

occurring cases in our 

example data set. NAs 

mean that this species  

was never present in any 

model simulation of that 

habitat (here: L. perenne 

never occurred in most  

salt marsh simulations). 
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Appendix C2  

Description of individual-based model IBC-grass_coast (ODD protocol) ► see CD 

 

Appendix C3  

Validation of individual-based model IBC-grass_coast  

► see CD for full description and Figures C3.1 – C3.5 

 

Figure C3.6. Overview of environmental conditions for each of the five habitat types in the simulation ex-

periments by the individual-based model. Boxplots show the variation of environmental variables among 

different settings per habitat type (see number of settings per habitat type in the last panel). 
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Habitat type classification 

The simulations of the individual-based model were run for each of five habitat types which were 

the basis for parameterization (see Appendix C3, CD). Thus, for the application of lookup tables in 

the model coupling, we needed to assign each hydrotope in each simulation year one of the five 

habitat types (Table C4.1). To this end we analyzed the SDM-predicted species community for the 

presence of species characterizing each habitat type (Table C4.2 and Fig. C4.1). 

Table C4.1. Assignment of species groups (see Table C4.2) to each habitat type based on ecological 

knowledge. Last column gives the number of plots for each habitat type in our data. 

Figure C4.1. Distribution of species groups among habitat 

types from the observations. Numbers are share of the 

plots of a given habitat type on which any species of a 

given species group was present (IG = intensive grassland, 

EG = extensive grassland, WM = wet meadow, SM = salt 

marsh, R = reed). E.g. on all extensive grasslands species of 

the respective groups were present (100 %), but only 91 % 

of the plots classified as intensive grassland also contained 

species of the intensive grassland species group. 

 

 

 

Predicted occurrence probabilities were classified as present if they exceeded the species-specific 

classification threshold κMAX (Table C4.2). The resulting sets of present species were then sorted 

into the respective species groups (Table C4.2). Rule-based queries applied to the number of 

species in each group then determined the habitat type in two steps (first, Table C4.3a, then 

Table C4.3b). For example, intensive grasslands (IG) were classified if the number of species in the 

IG group was greater than in any other group (Table C4.3a, row 1) and if the sum of all IG species 

habitat type description present allowed absent n 

intensive  

grassland (IG) 

grazing (cattle and horses),       

up to 5 cuts, high nutrient input 

IG  EG, WM,  

SM, R 
33 

extensive  

grassland (EG) 

lower grazing intensity, up to 2 

cuts, lower nutrient input 

EG IG WM, SM,  

R 
42 

wet meadow 

(WM) 

no nutrient input, 1 cut WM IG,  EG,  

R 

SM 
34 

salt marsh 

(SM) 

coastal marshlands SM 

 

 IG, EG,  

WM, R 
124 

reed 

(R) 

reed species dominant, no 

grazing, no cutting 

R WM, SM IG, EG 
83 
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was greater than the sum of all other groups (Table C4.3b, row 2). Reeds (R) were classified if at 

least one of the two R species (Phragmites australis and Scirpus maritimus) was present, but no IG 

species were (Table C4.3a, row 6), and other classifications were overridden if both R species 

were present (Table C4.3b, row 1). If none of the characteristic species were present (but instead 

other species of the 61 modeled), we assumed the most common habitat type in our landscape, 

extensive grassland. 

Table C4.2. Sorting of 33 COMTESS species into species groups used to define habitat types (see Table 

C4.1), the performance of each species’ occurrence model (mean ± SE of AUC and explained deviance [%] 

from 10-fold cross-validation) and the classification threshold κMAX (Allouche et al. 2006) above which 

occurrence probabilities were classified as present. 

habitat type # species 
model performance classification 

threshold κMAX expl. dev. AUC 

intensive 

grassland 

(IG) 

 

1 Alopecurus pratensis 39.7 ± 7.4 0.92 ± 0.02 0.53 

2 Bellis perennis 24.3 ± 11.1 0.89 ± 0.04 0.20 

3 Lolium perenne  56.2 ± 6.7 0.95 ± 0.01 0.40 

4 Phleum pratense 18.5 ± 7.6 0.79 ± 0.05 0.32 

5 Taraxacum Sec. Ruderalia 36.8 ± 4.6 0.89 ± 0.02 0.56 

6 Trifolium repens 30.0 ± 4.7 0.84 ± 0.03 0.28 

extensive 

grassland 

(EG) 

 

7 Agrostis capillaris 19.6 ± 10.6 0.83 ± 0.06 0.41 

8 Anthoxanthum odoratum 11.9 ± 13.6 0.85 ± 0.05 0.35 

9 Cerastium fontanum s. vulgare 25.2 ± 4.3 0.83 ± 0.04  0.30 

10 Cynosurus cristatus 9.7 ± 6.9 0.71 ± 0.09 0.20 

11 Elymus repens 22.6 ± 5.5 0.82 ± 0.05 0.40 

12 Festuca rubra subsp. rubra 30.9 ± 5.8 0.88 ± 0.02 0.26 

13 Holcus lanatus 35.4 ± 6.2 0.86 ± 0.03 0.36 

wet meadow 

(WM) 

 

14 Alopecurus geniculatus 38.8 ± 7.8 0.94 ± 0.02 0.35 

15 Deschampsia cespitosa 34.3 ± 9.5 0.87 ± 0.06 0.35 

16 Galium palustre 18.4 ± 9.6 0.82 ± 0.06 0.53 

17 Juncus conglomeratus 20.2 ± 11.8 0.78 ± 0.10 0.31 

salt marsh 

(SM) 

18 Juncus gerardi 20.7 ± 8.1 0.83 ± 0.06 0.42 

19 Artemisia maritima 22.0 ± 9.3 0.88 ± 0.05 0.25 

20 Aster tripolium 38.8 ± 5.7 0.90 ± 0.02 0.49 

21 Atriplex littoralis 23.3 ± 5.0 0.92 ± 0.02 0.43 

22 Elymus pycnanthus 59.4 ± 3.6 0.97 ± 0.01 0.29 

23 Halimione portulacoides 44.9 ± 5.9 0.92 ± 0.02 0.39 

24 Limonium vulgare 18.7 ± 8.7 0.93 ± 0.03 0.41 

25 Puccinellia maritima 47.1 ± 6.3 0.94 ± 0.02 0.42 

26 Salicornia europaea 24.4 ± 6.8 0.87 ± 0.03 0.26 

27 Spartina anglica 22.2 ± 7.7 0.89 ± 0.03 0.27 

28 Spergularia media 31.7 ± 6.1 0.93 ± 0.03 0.49 

29 Suaeda maritima 32.4 ± 5.3 0.92 ± 0.02 0.22 

30 Triglochin maritima 17.7 ± 5.9 0.86 ± 0.03 0.23 

31 Festuca rubra subsp. littoralis 18.4 ± 3.7 0.80 ± 0.02 0.17 

reed 

(R) 

32 Phragmites australis 46.2 ± 3.8 0.92 ± 0.02 0.46 

33 Scirpus maritimus 30.8 ± 6.5 0.88 ± 0.02 0.34 
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We applied this rule-based procedure to observed species presences and compared the result 

with observed habitat types (as classified manually based on ecological knowledge of the data 

collectors in the field; plot data, n= 318). On average, 83 % of the habitat types were correctly 

classified using our method (Table C4.4a) compared to 76 % when predicted species presences 

were used (Table C4.4b, added error of species predictions). However, the classification success 

varied greatly among habitat types: Salt marshes (n=124) were easiest to classify (98 % classifica-

tion success) as salt marsh species were rare in other habitat types (Fig. C4.1). Wet meadows on 

the other hand, were often mistaken for extensive grasslands (Table C4.4) as all other species 

groups (but salt marsh) were common on wet meadow plots (Fig. C4.1). 

We considered the procedure detailed above fit for classifying predicted species occurrences 

into habitat classes. Fig. C4.2 shows the predicted species time series for the three example poly-

gons and the resulting habitat type. In polygon A, Festuca rubra subsp. littoralis is replaced by S. 

maritimus in 2050, tipping the species balance from salt marsh to reed. In polygon B, the loss of 

Lolium perenne starting in 2063 turns intensive grassland into wet meadow. In polygon C, three 

intensive grassland species constantly dominate. 

Table C4.3a. Rule-based definition of habitat types based on the number of species present in a given 

hydrotope that belong to each species group (Table C4.2). 

Table C4.3b. Rules queried after rules in Table C4.3a to resolve ambiguity, missing rules and NAs resulting 

from first set of rules (= habitat type before). The new habitat types (= habitat type after) were the final 

result of the rule-based classification. 

habitat type 

before 
conditions 

habitat type 

after 

any R == 2   R 

IG   sum(EG, WM, SM, R) > IG most common group (≠ IG) 

ambiguous EG > 0 R > 0  WM 

ambiguous SM > 2 R ≤ 1 sum(IG, EG, WM) == 0 SM 

ambiguous R == 1 WM == 1 sum(IG, EG, SM) == 0 R 

ambiguous EG == WM SM == 0  WM 

ambiguous EG == 2 R==1  EG 

missing rule IG == R  sum(EG, WM, SM) == 0 WM 

NA without character species, assume most common type: EG 

 

condition 1 condition 2 condition 3 condition 4 result 

IG > EG IG > WM IG > SM IG > R intensive grassland (IG) 

EG ≥ IG EG > WM EG > SM EG > R extensive grassland (EG) 

WM ≥ IG WM ≥ EG WM ≥ R SM == 0 wet meadow (WM) 

SM > IG SM > EG SM > WM SM > R salt marsh (SM) 

SM > 1 R == 1  

R > 0 IG == 0  reed (R) 

sum(IG, EG, WM, SM, R) == 0 NA 

> 1 of the above rules == TRUE ambiguous 

all other cases missing rule 
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Table C4.4. Plot-based habitat type classification success of rule-based query for observed (a) and predicted 

(b) species presences. (IG = intensive grassland, EG = extensive grassland, WM = wet meadow, SM = salt 

marsh, R = reed, ambig = ambiguous, miss = missing rule). 

a) observed species predicted habitat type (% of plots with observed type) 

observed type IG EG WM SM R ambig miss 

intensive grassland 76 18 6 - - - - 

extensive grassland 2 94 0 - - 2 2 

wet meadow 8 18 65 - 7 2 - 

salt marsh - - - 98 1 1 - 

reed 1 8 2 1 83 5 - 

  

b) predicted species predicted habitat type (% of plots with observed type) 

observed type IG EG WM SM R ambig miss 

intensive grassland 62 26 6 3 - - 3 

extensive grassland 2 81 11 2 2 - 2 

wet meadow 5 20 60 3 5 5 2 

salt marsh - - - 98 1 1 - 

reed - 4 11 6 77 2 - 
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Figure C4.2: Time series of all species being present in any year (2010-2100) in example polygons A, B, C 

(see map in Fig. 4.1 and groundwater level and salinity time series in Fig. 4.11). Species that were absent for 

the entire time series are not shown. Solid lines mean the predicted occurrence probability is > κmax 

(species-specific classification threshold, see Table C4.2), i.e. the species is classified as present; broken 

lines mean the opposite, i.e. classified absence. The colours sort species into groups characteristic for each 

habitat type   (IG = intensive grassland, EG = extensive grassland, WM = wet meadow, SM = salt marsh,    R = 

reed). The grey line is the time series of the classified habitat type (axis on the right). 
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Synthesis 

 

5. Synthesis 

 

 

 

 

 

 

 

 

5.1. Summary of this thesis’ results 

In this thesis, I applied and compared existing statistical (chapter 2) and process-based approach-

es (chapter 3) to predict species distributions, and I discussed their respective limitations, specifi-

cally for applications in changing environments. As a potential solution, I added a new approach 

(chapter 4) to the repertoire of existing hybrid models linking statistical and process-based 

models to combine their respective advantages. 

5.1.1. Statistical models have their limits… 

In chapter 2, we applied a sophisticated statistical method with two objectives going beyond a 

mere mapping exercise: (i) understanding the driving factors that determine the current position 

of one of the most prominent biome boundaries (boreal treeline) and thereby assessing its sensi-

tivity to ongoing climate change; and (ii) examining the spatial and temporal transferability of the 

resulting models to evaluate whether they are able to predict future distributions. 

We were fortunate to obtain large sets of abundance data from 1978 and 2003 which we addi-

tionally classified into presence-absence records. Thus, our data basis exceeded that of many 

recent climate change impact studies using presence-only records (Yackulic et al. 2013). The two 

data sets allowed us to assess environmental change over a 25-year interval during which the 

climate had warmed and precipitation patterns had shifted. We, thus, had the opportunity to 

observe, not hypothesize about, the performance of statistical models trained on historical data 

(1978) in an application to future climate data (2003) by assessing the temporal transferability of 

our models (see also Araújo et al. 2005b).  
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We employed a complex method (Boosted Regression Trees) which captures non-linear relation-

ships as well as interactions among predictors and frequently outperforms other SDM methods in 

comparative studies (Mainali et al. 2015, Valle et al. 2013, Bahn and McGill 2013, Revermann et 

al. 2012). We carefully accounted for methodological issues such as zero inflation (Martin et al. 

(2005); which we counteracted using a conditional model, Fletcher et al. (2005)), overfitting 

(which we controlled by cross-validation, Elith et al. 2008) and spatial autocorrelation (Dormann 

et al. 2007; specific testing in model residuals revealed none). 

Based on studies which recommend the inclusion of more meaningful predictors into SDMs 

(Petitpierre et al. 2017, Mod et al. 2016), we added non-climatic, abiotic factors such as edaphic 

and topographic characteristics as well as biotic interactions (abundance of co-occurring species) 

to the commonly used climatic predictors. We additionally used more complex temperature 

indices capturing seasonality for more process detail. Thus, climate sensitivity was not inherent in 

our models, as it is in SDMs based exclusively on climatic predictors. Indeed, we identified non-

climatic predictors site fertility and biotic interactions as very important factors in the models, 

thus reducing their sensitivity to climatic changes. We compared the relative importance and 

response curves of predictors between occurrence and abundance models, between spatial and 

temporal data subsets as well as among species. The results accurately revealed ecological 

processes described in the literature: (i) competitive exclusion of P. sylvestris by the stronger 

competitor P. abies on fertile soils despite nutrient-limited growth of P. sylvestris; (ii) easing of 

temperature limitation of P. sylvestris in the north due to climate change; (iii) edaphic, not 

climatic, limitation of P. abies, supporting the hypothesis that the Lapland Granulite Belt functions 

as dispersal barrier to this species’ northward migration after the last glaciation. 

We rigorously examined the resulting models with respect to their predictive performance and 

transferability. As AUC alone has proven to be an unreliable measure of model performance 

(Mainali et al. 2015, Lobo et al. 2007), we additionally reported explained deviance from a tenfold 

cross-validation (internal evaluation). The resulting models were good (regarding AUC and 

explained deviance) and successfully reproduced observed patterns of presences and absences as 

well as general abundance patterns. However, autocorrelation in hold-out internal validation 

results in overly optimistic performance measures (Araújo et al. 2005a). Therefore, external 

evaluation on spatially segregated data is much more meaningful (Bahn and McGill 2013). We 

applied a transferability index (Dobrowski et al. 2011, Randin et al. 2006) to quantify the expected 

loss of performance on external datasets. Spatial model transfer between models trained on 

northern and southern data subsets proved to be more successful than temporal transfer 

between 1978 and 2003 models. However, in all external applications we found considerably loss 

of predictive accuracy. By visualizing the environmental space of training and application data (via 

environmental overlap masks, Zurell et al. 2012a) we demonstrated that the sampled 

environmental space differed between 1978 and 2003 as well as for northern and southern 

regions. Thus, the model transfer often meant extrapolation to novel predictor space which 

violates basic assumptions of SDMs and is a plausible explanation for poor model transferability. 

In our SDM application, we used data of high quality, made careful choices regarding method-

ology as we built on results of former studies in order to estimate the best possible models, and 

we compared our model relationships to ecological knowledge as plausibility test. The resulting 

models provided valuable insights into the processes limiting boreal trees and were successful 

within their training data boundaries. Model transfer, however, revealed critical limitations and 

we consequently would not trust our SDMs with climate change projections.  
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5.1.2. … but so do process-based models. 

As an alternative modelling approach, we applied the established, widely used ‘fitted’ process-

based model (Dormann et al. 2012), LPJ-GUESS (Sitch et al. 2003, Smith et al. 2001), to the same 

data, i.e. the same spatial extent, time periods and species in chapter 3. It is a regionalized version 

of the DGVM LPJ (Sitch et al. 2003) which models vegetation dynamics at a greater level of detail 

similar to gap models. Because process-based models function in a mechanistic way, they are 

expected to be better transferable and thus more appropriate than statistical models in changing 

environments (Gustafson 2013, Cuddington et al. 2013). The European parameterization of LPJ-

GUESS used in chapter 3 successfully reproduces general present-day vegetation patterns across 

Europe (86 % of the area correctly classified in broad vegetation types, Hickler et al. 2012). Among 

the discrepancies between model simulations and potential natural vegetation map, Hickler et al. 

(2012) noted the transition of hemiboreal mixed forest to boreal forest in Southern Finland. This 

transition is a fine distinction based on the composition of understorey species (not modelled in 

LPJ-GUESS, Hickler et al. 2012). In contrast, the boreal treeline is a very important and clear 

pattern which we expected LPJ-GUESS to reproduce even if the exact biomass pattern would not 

be matched perfectly. However, our application revealed a systematic mismatch between 

observed and simulated biomass values. The range of biomass values simulated for northern 

Finland matched observations for P. sylvestris and B. pubescens, although the spatial pattern was 

not captured correctly. Picea abies, however, was greatly overestimated in terms of both, range 

of simulated biomass and spatial distribution, i.e. LPJ-GUESS simulated P. abies to occur far north 

of its current treeline. A second important finding was species imbalance indicated by single-

species vs. multi-species model runs: P. abies was far too competitive in the model and conse-

quently suppressed P. sylvestris and B. pubescens. Both, the overestimation of P. abies and 

species imbalance were also reported in studies of previous LPJ-GUESS applications. 

 Letting our knowledge about important factors from chapter 2 guide us, we examined the 

implementation of competition between species in LPJ-GUESS via species-specific shade and 

drought tolerance, fire resistance, disturbance susceptibility and nutrient limitation more closely. 

In addition, we reviewed processes missing in our model version, but implemented in alternative 

LPJ-GUESS versions, i.e. nitrogen limitation, dispersal, pest calamities, storm damage, forest 

management. It is important to note that the LPJ-GUESS community is very active with 20-30 

publications per year (2012-2016), and ongoing model development in different working groups 

leads to disparate model versions which are all promising (e.g. Jönsson et al. 2015, Smith et al. 

2014, Snell et al. 2014). However, a model version combining all process additions for boreal 

ecosystems is not yet available. 

We identified important areas for model development in LPJ-GUESS that are also recognized 

for DGVMs, in general (Bachelet et al. 2015, Quillet et al. 2010). For example, Bachelet et al. 

(2015) listed dispersal, CO2 fertilization, nitrogen limitation, land management and lateral cell-to-

cell water flow as missing processes in a similar DGVM (MC1). LPJ-GUESS reproduces the CO2 

effect (Hickler et al. 2008), and nitrogen limitation (Smith et al. 2014), dispersal (Snell et al. 2014) 

as well as forest management (Jönsson et al. 2015) are implemented in alternative LPJ-GUESS 

versions. However, other issues with MC1 (Bachelet et al. 2015) and DGVMs, in general (Quillet et 

al. 2010), equally apply to LPJ-GUESS: soil data uncertainty, the modelling of potential natural 

vegetation in the absence of human interactions, and more realistic representation of distur-

bances. Two issues identified by Quillet et al. (2010) are more relevant to our case study are: first, 
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many DGVMs (including LPJ-GUESS in cohort mode as applied in chapter 3) model single average 

individuals instead of many heterogeneous individuals of a plant functional type (PFT) or species. 

This promotes dominance of the most competitive PFT (here: P. abies) instead of co-existence of 

different PFTs. Second, Quillet et al. (2010) stress that bioclimatic limits should be replaced by 

causal physiological constraints which are able to respond dynamically to climate change (as 

Arora and Boer (2005) did for leaf phenology). We demonstrate the limitations of static relation-

ships by comparing the bioclimatic limits currently implemented in LPJ-GUESS with thresholds 

from our response curves in chapter 2. These thresholds had shifted between 1978 and 2003 due 

to the delayed response of trees to climate change, exemplifying the inherent problem of using 

correlational thresholds to parameterize process-based models. As long as bioclimatic limits are 

used in ‘fitted’ process-based models, they cannot be expected to be much more reliable in 

climate change applications than statistical SDMs. 

5.1.3. Combining the two approaches is one way forward. 

After identifying limitations of statistical and process-based approaches in chapters 2 and 3, we 

introduced a new method to combine the two in chapter 4. We propose a two-step procedure 

that is similar to existing hybrid model approaches (see Table 1.3) in using the output from one 

model type to feed into the other. Unlike most of the existing hybrid models, which transfer SDM-

derived habitat suitability, we transfer temporal patterns of species responses. The temporal 

pattern emerges from dynamically modelled individual-level processes of population and commu-

nity dynamics. We, thereby, condense the complexity of the PBM into one pattern, the develop-

ment of species after disturbance events. This is the relevant process-detail in our specific appli-

cation which SDMs lack. The application of the coupled model consists of looking up simulated 

species responses for similar cases occurring in the application data, thereby minimizing compu-

tational effort, which is a limiting factor in long-term, large-scale applications. 

The proposed framework to link PBM and SDM via condensed process knowledge from PBM 

experiments overcomes the limitations of SDMs (missing process detail to capture transient 

dynamics following disturbances) and PBMs (computational effort). While we still require detailed 

species data for the parameterization of the PBM (persisting limitation), we avoid combining the 

two approaches’ weaknesses. Because our direction of knowledge or information transfer is from 

PBM to SDM (contrary to current approaches), we neither transfer the SDM’s weakness of low 

transferability to the PBM, nor do we face circularity problems (Schymanski et al. 2013). Circular-

ity refers to the fact that SDMs are based on real-world observations, the result of processes such 

as biotic interactions, population dynamics and dispersal. These processes are thus implicitly (not 

explicitly!) included in SDM predictions and may subsequently be contained twice in hybrid 

models linked by SDM-derived habitat suitability (circularity, Gallien et al. 2010).  

Another advantage of transferring the well-defined output from one model type to the other is 

the flexibility of the resulting framework. This is similar to existing hybrid models in which SDMs 

are interchangeable as long as they estimate habitat suitability. We hope that our framework will 

be utilized by other modellers, as hybrid models are still promising improvements on classic SDMs 

in environmental change applications, although even more complex and sophisticated approaches 

are looming on the horizon (see section 5.3.2).   
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5.2. Lessons learned 4 

5.2.1. Don’t blame the hammer (for screwing wrong) 

Statistical SDMs predict species-specific habitat suitability based on observed species distribution 

and concurrently observed environmental variables. Environmental input variables are often 

restricted to abiotic, mostly climatic, factors (Araújo and Peterson 2012, Pearson and Dawson 

2003). However, the observed species distribution results from a complex interplay of abiotic and 

biotic limitations as well as from dynamic processes over time (see section 1.1). These additional 

processes are not included explicitly as predictor variables in SDMs, but implicitly, as they are 

‘hidden’ in the observed distribution of species (Gallien et al. 2010). The observed correlation 

between species distribution and e.g. climate is a surprisingly good estimate of habitat suitability 

for all cases in which the estimated as well as hidden relationships remain constant (stationarity, 

Osborne et al. 2007). This is the application for which the tool SDM is made: hammering (e.g. 

successful SDM application within training data ranges in chapter 2). 

Applying SDMs to cases in which the relationships of underlying processes differ (e.g. in distant 

regions, Osborne et al. (2007), or due to climate change, chapter 2) is like driving in a screw with a 

hammer: using a tool designed and optimized for a specific task for something else. It can be done 

by brute force, but it will not result in the desired quality and prompt qualified craftsmen to sadly 

shake their heads. In this light, SDMs do not ‘fail’ by not explicitly including factors limiting species 

except climatic suitability (e.g. Warren et al. 2014), but they are simply ill-equipped for the new 

task (Araújo and Peterson 2012, Pearson and Dawson 2003). Predicting species distributions in 

changing environments requires the relevant processes to be added to SDMs, e.g. by coupling 

them to PBMs (with explicit process representation) in hybrid models (Zurell et al. 2016, Thuiller 

et al. 2008). 

Similarly, process-based models in which relevant processes are missing (e.g. dispersal bar-

riers, chapter 3) or miscalibrated (e.g. competition, chapter 3) may not be expected to function 

satisfactorily. Global DGVMs (e.g. LPJ) need to be downscaled for regional applications (e.g. LPJ-

GUESS), analogous to regional climate models which downscale general circulation models 

(Fowler et al. 2007). This includes adding process detail irrelevant on the more aggregated global 

scale (e.g. detailed soil or topography information, Bachelet et al. 2015). In conclusion, model 

failure in inappropriate applications (including our application of well-behaved SDMs beyond their 

training data range in chapter 2 or our application of LPJ-GUESS without reparameterization in 

chapter 3) is not really a problem of the model but of the modeller ignoring inherent model 

limitations.  

5.2.2. Knowing your model’s weaknesses is actually a strength 

Especially for statistical SDMs, recent years have seen publications soaring that are dedicated 

exclusively to their limitations (e.g. Warren et al. 2014, Zurell et al. 2009, Jiménez-Valverde et al. 

2008, Guisan et al. 2006). While this might seem daunting combined with the dizzying multitude 

of methods available (see overview in Beaumont et al. (2016) and Heikkinen et al. (2006)), the 

awareness of model limitations actually promotes more sound applications. For example, there 

are more tools available to detect and eliminate violations of underlying assumptions, e.g. spatial 

                                                           
4 Being worthy of a cheesy motivational poster does not mean it is without merit!  
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autocorrelation (Crase et al. 2012, Dormann et al. 2007, Segurado et al. 2006), non-stationarity 

(Hothorn et al. 2011, Osborne et al. 2007) or collinearity (Dormann et al. 2013). Available tools to 

better fit and interpret models include supporting R functions for BRT (Elith et al. (2008); now part 

of R package dismo, Hijmans et al. (2016)) and the detection and visualization of spurious 

extrapolation (Zurell et al. (2012a); used in chapter 2). The virtual ecologist approach (Thibaud et 

al. 2014, Zurell et al. 2010) allows the selection of sampling strategies and analysis of potential 

bias before collecting field data to estimate or validate SDMs, and to vigorously assess SDM 

methods themselves (Zurell et al. 2016). Several publications provide proper guidelines that help 

users to choose the right methodologies (Anderson 2015, Jarnevich et al. 2015, Guillera-Arroita et 

al. 2015, Heikkinen et al. 2006), concerning e.g. data preparation (Zuur et al. 2010), model 

selection (Symonds and Moussalli 2011, Ye 1998), specific model types such as BRT (Elith et al. 

2008, Bühlmann and Hothorn 2007) or MaxEnt (Elith et al. 2011, Elith et al. 2010), variable 

selection (Petitpierre et al. 2017, Bradter et al. 2013, Austin and Niel 2011) and model 

performance measures (Bahn and McGill 2013). 

5.2.3. Model failure is not a failure as long as you learn from it 

Publication bias describes the fact that negative results (i.e. contradicting initial expectations, 

unable to reject the null hypothesis) are less likely to be submitted and accepted for publication 

(Coursol and Wagner 1986). Combined with the prevailing ‘publish-or-perish’ culture in academia 

(Fanelli 2010), scientists often abandon less successful attempts instead of trying to publish 

results from a failed experiment (van Hilten 2015). This bias is widely recognized, especially in 

medical research (e.g. Dirnagl and Lauritzen 2010, Easterbrook et al. 1991) but also in ecology 

(Parker et al. 2016, Jennions and Møller 2002), although Harlos et al. (2017) recently claimed no 

bias occurs in climate research. Publication bias mainly impacts on results of literature reviews 

and meta-analysis (Leimu and Koricheva 2004, Murtaugh 2002). But there is more to it: if 

researchers do not publish their so-called failed attempts, fellow scientists cannot benefit from 

their experience. This in turn wastes their time and money in unnecessary replications of the 

same trials (van Hilten 2015). Replication studies are only of value independently testing the 

reproducibility of results if these results are published (Parker et al. 2016, Thiele and Grimm 

2015). As a solution, specified journals explicitly call for negative results of clinical trials (e.g. 

Journal of Negative Results in BioMedicine, since 2002; Journal of Pharmaceutical Negative 

Results, since 2010) and ecological experiments (Journal of Negative Results, since 2004; New 

Negatives in Plant Science, 2014-2016). An alternative attempt to promote the publication of all 

research results is the preregistration of studies (Parker et al. 2016). 

There is a huge difference between ‘negative’ results of sound scientific experiments (which 

are proper results, just not the expected results) and a model’s inability to reproduce observed 

patterns (model failure). Model failure may be dismissed as mistakes made by the modeller (e.g. 

in choosing the model, preparing the data, setting the parameters etc.) and simply seen as a step 

of the model development process unworthy of publication. However, I argue, these model 

failures are of interest to fellow modellers, especially if they are further discussed (as we did in 

chapter 3). For example, when discussing our findings within the LPJ-GUESS community, we 

frequently learned that our problems were well-known, but as yet untackled issues within the 

community. Unfortunately, we were unable to find references for these insights, because they 

had never been published. Publishing more problematic issues (as demonstrated in the field of 
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statistical SDMs, see section 5.2.2) would become the process-based modelling community5. In 

order to learn from (other researchers’) model failure, less successful modelling studies need to 

be discussed and published, thereby serving as a starting point for further modelling attempts. 

How else are we supposed to stand on the shoulders of giants? 

5.3. Ways forward 

Bearing in mind the lessons learned in this thesis, I summarize four ways forward in species 

distribution modelling. These include congruent predictions by different modelling approaches, 

integration of process-based and statistical methods, better data for model estimation and 

validation as well as more transparency when reporting and communicating model results.  

5.3.1. Compare predictions by different approaches 

The aim of several of the studies listed in Table 1.2 is a methodological comparison of model 

approaches (Cheaib et al. 2012, Webber et al. 2011, Elith et al. 2010, Buckley et al. 2010). Others 

focused specifically on producing congruent, robust forecasts and reducing model uncertainty 

(Briscoe et al. 2016, Estes et al. 2013, Morin and Thuiller 2009). Even models, which agree on 

current species distributions (most example studies in Table 1.2), frequently disagree when 

projecting future distributions. Similar behaviour has been reported for model comparisons 

among the same model type, e.g. DGVMs (Sitch et al. 2008, Cramer et al. 2001) as well as for 

global and regional climate and hydrological models (Teklesadik et al. 2017, Radić et al. 2014). For 

validation, future predictions cannot be compared to observations, and data sets of historical 

climate change for tests of temporal model transferability are rare (but see Araújo, Whittaker et 

al. (2005b) and chapter 2; simulated data using the virtual ecologist approach (Zurell et al. 2010) 

is another alternative). Thus, differences among forecasts by various models are an indication of 

their uncertainty (Pearson et al. 2006), whereas consistency of model predictions for current and 

future conditions (Lozier and Mills 2011, Kearney et al. 2010, Hijmans and Graham 2006) suggest 

robust predictions (consensus, Gritti et al. 2013). The harder the test, i.e. the greater the 

difference between model approaches in structure, process representation and input data, the 

more confidence do congruent predictions inspire. For example, BIOMOD offers different 

consensus algorithms to aggregate a suite of statistical models (Meller et al. 2014) which result in 

more robust predictions than single models (Marmion et al. 2009). In contrast, Gritti et al. (2013) 

covered an even wider methodological spectrum by integrating statistical and process-based 

model predictions into consensual maps. In most of our example cases (Table 1.3), the two model 

approaches agreed in some areas and differed in others (e.g. Briscoe et al. 2016, Webber et al. 

2011), thereby marking areas of differing uncertainty. 

In the case of disagreement between models, identifying the reason provides valuable insights 

into e.g. missing processes and inspires future model development. For example, the effect of CO2 

fertilization (missing in SDMs) explains the divergent predictions of maize and wheat in South 

Africa (Estes et al. 2013) as well as tree species in Spain (Keenan et al. 2011) and France (Cheaib et 

al. 2012). Other reasons for disagreement between model predictions include extrapolation 

                                                           
5 I do acknowledge that I may well be biased in my perspective on critical literature in ecological modelling, 
and there may in fact be as many critical publications about PBMs (yet unknown to me) as there are about 
SDMs. 
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behaviour (Webber et al. 2011, Pearson et al. 2006) and missing biotic interactions in ecophysio-

logical models (Buckley et al. 2010, Morin and Thuiller 2009).  

Our application of two different model approaches to the same region, species and input data-

sets (chapter 2 and 3) was originally aimed at comparing future predictions. But the results of the 

temporal transferability experiment of the SDM (chapter 2) inspired no confidence in their applic-

ability to future climate data, and the PBM even failed to correctly reproduce current observa-

tions (chapter 3). Yet, while investigating the reasons of model discrepancy, we discovered spuri-

ous extrapolation (chapter 2) and identified missing and miscalibrated processes requiring further 

model development (chapter 3; see also learning from model failure, section 5.2.3). Comparing 

the temporal development of SDM and PBM predictions in chapter 4 revealed discrepancies that 

support our expectation of the inability of SDMs to model species responses over time. This 

served as motivation for transferring the required process detail from PBM to SDM by linking the 

two model approaches.  

5.3.2. Find (more) ways to integrate statistical and process-based 

approaches 

While existing hybrid models (including the novel approach presented in chapter 4) are promising 

as they introduce more process detail to SDMs, critical limitations remain (Ehrlén and Morris 

2015). For example, detailed species data are still required to parameterize PBMs, and using SDM 

output transfers the weakness of lower transferability and potential circularity problems along 

with e.g. habitat suitability (see section 5.1.3). A fundamentally different approach compared to 

hybrid models is integrating statistical and process-based methods as in e.g. dynamic range 

models (DRMs, Pagel and Schurr 2012). DRMs do not rely on SDM-derived habitat suitability, but 

instead use a hierarchical Bayesian framework to directly relate processes such as dispersal and 

population dynamics to environmental conditions (Pagel and Schurr 2012). Thus, they may be 

seen as the extension of a gradient reaching from classic SDMs (without dynamic process imple-

mentation) to hybrid models of increasing complexity, incorporating dispersal, population and/or 

community dynamics (see Table 1.3). DRMs jointly estimate and simulate these processes and, 

therefore, are expected to outperform not only classic SDMs but also hybrid models (Zurell et al. 

2016). 

Using simulated species data (virtual ecologist approach, Zurell et al. 2010), Zurell et al. (2016) 

compared alternative modelling approaches: classic SDMs, hybrid models of different complexity 

(all using SDM-derived habitat suitability to define demographic rates or patch matrix) as well as a 

DRM. Under current (equilibrium) conditions, DRMs indeed outperform all alternative model 

approaches, although differences are marginal (Zurell et al. 2016). Thus, SDMs are confirmedly 

successful in their designed application, i.e. predictions under equilibrium conditions (see section 

5.2.1). Their disadvantages compared to models including dynamic processes (hybrid models and 

DRM) become apparent only under future (climate change) conditions. Here, SDMs are clearly 

outperformed by hybrid models and DRMs (among which no clear winner emerges, Zurell et al. 

2016). These results highlight the importance of introducing dynamic behaviour (dispersal, 

population dynamics and biotic interactions) into species distribution models for climate change 

applications. To this end, data availability remains a crucial limiting factor. 
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5.3.3. Improve data basis for model estimation and validation 

Further sophistication of current modelling approaches will surely improve our ability to make 

robust predictions, but without the respective data there is only so much you can do. Earlier, I 

stressed the advantage of SDMs able to use abundant data sources of varied quality, including 

presence-only data (see section 1.2.1). However, introducing more process detail into species 

distribution models (hybrid or integrated models) requires more detailed, often species-specific 

data. For example, mechanistic niche models require detailed experimental data on physiological 

limits, and the corresponding environmental data need to be at the appropriate temporal resolu-

tion (Kearney et al. 2012). Furthermore, Zurell et al. (2016) found uncertainty caused by structural 

decisions in the model building process (e.g. the form of relationships) to be much reduced if the 

relevant ecological knowledge was available. Schurr et al. (2012) explicitly list empirical data 

collection on their demographic research agenda, including the temporal development of species 

distribution and abundance (response variable of SDMs) as well as the relationship between 

environment and demographic parameters (required for DRM estimation). Independent, long-

term observations of species distributions (and the corresponding environmental data) are also 

required to better validate SDMs and test their temporal transferability (Araújo, Pearson et al. 

(2005a)and chapter 2 of this thesis). 

5.3.4. Be clear about assumptions, limitations and uncertainties 

In general, the community of ecological modellers (exceptions confirm the rule) is acutely aware 

of limitations of especially statistical modelling approaches and underlying assumptions (see 

section 5.2.2). We also widely appreciate the need to not only quantify (Wang et al. 2016, Buisson 

et al. 2010, Dormann et al. 2008) and account for uncertainty (Stoklosa et al. 2015, Cressie et al. 

2009), but also to visualize and communicate (Gritti et al. 2013, Elith et al. 2002) uncertainty in 

model predictions to decision-makers (Guisan et al. 2013, Hayes et al. 2013, Ascough II et al. 

2008).  

To facilitate communication of model structure and uncertainty, Schmolke et al. (2010) pro-

posed transparent and comprehensive ecological modelling (TRACE) documentation. TRACE is a 

standard format to document model building and application, similar to the ODD protocol for 

individual-based models (Grimm et al. 2006) which we used to describe IBC-grass_coast in chap-

ter 4 (Appendix C2, on CD). On the one hand, this protocol supports the modeller to properly 

document her model. On the other hand, it promotes more complete communication of key 

issues (model validation, sensitivity and uncertainty analysis) which end-users should consider 

when interpreting and using model results. Subsequent usage of TRACE documentation revealed 

that the diversity of models is not easily captured by standard protocols (Augusiak et al. 2014). 

Therefore, it has been updated and refocused on the validation and evaluation aspect (Grimm et 

al. 2014). In conclusion, while it is easier said than done, there are attempts to make being clear 

about our model’s assumptions, limitations and uncertainties easier. 

5.4. Conclusions  

In this thesis, I have explored the limitations of statistical and process-based modelling approach-

es to predict how species will respond to changing environments. Being neither a clear success, 

nor a definite failure, the first two modelling studies were important food for thought to move 
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forward. With the final study, I proposed a novel approach to link statistical and process-based 

models in order to combine their strengths. I further argued that we already have a diverse range 

of modelling tools at hand, which can be refined further. But most importantly, they need to be 

applied more thoughtfully. Bearing their limitations in mind, combining their strengths and openly 

reporting the assumptions and uncertainties involved is the way forward. 
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