Cell physiology based pharmacodynamic modeling of
antimicrobial drug combinations

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

an der Mathematisch—Naturwissenschaftlichen Fakultat der

AVEISs-.
\BOW SJZ(Q}

Christoph Philipp Hethey
Juli 2017



This work is licensed under a Creative Commons License:
Attribution — Noncommercial 4.0 International

To view a copy of this license visit
http://creativecommons.org/licenses/by-nc/4.0/

Published online at the

Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-401056
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401056



Hiermit versichere ich, dass die vorliegende Arbeit mit dem Titel “Cell physiology
based pharmacodynamic modeling of antimicrobial drug combinations” selbsténdig von
mir ausschliefSlich mit den angegebenen Mitteln angefertigt wurde und bisher an keiner
weiteren Hochschule eingereicht worden ist.






Abstract

Mathematical models of bacterial growth have been successfully applied to study the rela-
tionship between antibiotic drug exposure and the antibacterial effect. Since these models
typically lack a representation of cellular processes and cell physiology, the mechanistic
integration of drug action is not possible on the cellular level. The cellular mechanisms
of drug action, however, are particularly relevant for the prediction, analysis and under-
standing of interactions between antibiotics. Interactions are also studied experimentally,
however, a lacking consent on the experimental protocol hinders direct comparison of
results. As a consequence, contradictory classifications as additive, synergistic or antago-
nistic are reported in literature.

In the present thesis we developed a novel mathematical model for bacterial growth
that integrates cell-level processes into the population growth level. The scope of the model
is to predict bacterial growth under antimicrobial perturbation by multiple antibiotics in
vitro.

To this end, we combined cell-level data from literature with population growth data for
Bacillus subtilis, Fscherichia coli and Staphylococcus aureus. The cell-level data described
growth-determining characteristics of a reference cell, including the ribosomal concen-
tration and efficiency. The population growth data comprised extensive time-kill curves
for clinically relevant antibiotics (tetracycline, chloramphenicol, vancomycin, meropenem,
linezolid, including dual combinations).

The new cell-level approach allowed for the first time to simultaneously describe single
and combined effects of the aforementioned antibiotics for different experimental proto-
cols, in particular different growth phases (lag and exponential phase). Consideration of
ribosomal dynamics and persisting sub-populations explained the decreased potency of
linezolid on cultures in the lag phase compared to exponential phase cultures. The model
captured growth rate dependent killing and auto-inhibition of meropenem and—also for
vancomycin exposure—regrowth of the bacterial cultures due to adaptive resistance devel-
opment. Stochastic interaction surface analysis demonstrated the pronounced antagonism
between meropenem and linezolid to be robust against variation in the growth phase
and pharmacodynamic endpoint definition, but sensitive to a change in the experimental
duration.

Furthermore, the developed approach included a detailed representation of the bac-
terial cell-cycle. We used this representation to describe septation dynamics during the
transition of a bacterial culture from the exponential to stationary growth phase. Result-
ing from a new mechanistic understanding of transition processes, we explained the lag
time between the increase in cell number and bacterial biomass during the transition from
the lag to exponential growth phase. Furthermore, our model reproduces the increased
intracellular RNA mass fraction during long term exposure of bacteria to chloramphenicol.

In summary, we contribute a new approach to disentangle the impact of drug effects,
assay readout and experimental protocol on antibiotic interactions. In the absence of
a consensus on the corresponding experimental protocols, this disentanglement is key
to translate information between heterogeneous experiments and also ultimately to the
clinical setting.






Zusammenfassung

Der Zusammenhang zwischen antibiotischer Exposition und antibakterieller Wirkung wird
derzeitlich erfolgreich mithilfe von mathematischen Bakterienwachstumsmodellen studiert.
Ublicherweise ignorieren diese Modelle jedoch die bakterielle Physiologie und Prozesse auf
Zellebene. Es folgt, dass das mechanistische Einbinden von Wirkstoffeffekten auf Zellebene
nicht mdglich ist. Jedoch ist der zellulare Wirkmechanismus besonders relevant fiir die
Vorhersage, die Analyse und das Verstdndnis von Antibiotikainteraktionen. Leider gibt
es keinen Konsens beziiglich des experimentellen Protokolls, um diese Interaktionen zu
untersuchen. Das ist einer der Griinde, warum wir in der Literatur widerspriichliche Klas-
sifizierungen von Antibiotikainteraktionen als additiv, synergistisch oder antagonistisch
finden. In der vorliegenden Arbeit entwickelten wir ein neuartiges mathematisches Bak-
terienwachstumsmodel, welches Prozesse auf Zellebene in das Populationswachstum ein-
bindet. Der Anwendungszweck dieses Models ist die Vorhersage bakteriellen Wachstums
unter antimikrobieller Mehrfachexposition in vitro.

Um das zu erreichen, kombinierten wir die Zellebene beschreibende Daten aus der Lit-
eratur mit Wachstumsdaten fir Bacillus subtilis, Escherichia coli und Staphylococcus au-
reus. Die die Zellebene beschreibenden Daten bezogen sich auf Wachstums-bestimmende
Charakteristika einer Referenzzelle, unter anderem auf die ribosomale Konzentration und
Effizienz. Die Wachstumsdaten beinhalteten umfangreiche Zeit-Absterbe-Kurven fiir klin-
isch relevante Antibiotika (Tetracyclin, Chloramphenicol, Vancomycin, Meropenem, Line-
zolid) und Zweifachkombinationen aus diesen.

Der neue Zellebenen-Ansatz erlaubt es erstmalig, einzelne und kombinierte Effekte
der erwahnten Antibiotika fiir unterschiedliche experimentelle Protokolle gleichzeitig zu
beschreiben. Insbesondere beziehen sich diese Unterschiede auf die Wachstumsphasen
(Lag oder exponentiellen Phase). Die Beriicksichtigung der ribosomalen Konzentration
und persistenter Subpopulationen erklarte die verminderte Potenz von Linezolid gegen
Kulturen in der Lag Phase im Vergleich zu Kulturen, die sich in der exponentiellen Phase
befanden. Das Model erfasst Wachstumsraten-abhéngiges Zelltéten und die Selbstinhi-
bierung von Meropenem und—ebenso fiir Vancomycin—ein Wiederanwachsen der bak-
teriellen Kulturen aufgrund von adaptiver Resistenzentwicklung.

Stochastische Analysen der Interaktionsoberflichen zeigen, dass der ausgeprigte An-
tagonismus zwischen Meropenem und Linezolid zwar robust gegeniiber Variation der
Wachstumsphase und der Definition des pharmakodynamischen Endpunktes reagiert, je-
doch empfindlich von der Zeitspanne des Experiments beeinflusst wird.

Desweiteren enthélt der entwickelte Ansatz eine detaillierte Repriasentation des bak-
teriellen Zellzyklus. Wir nutzten diese Reprasentation, um Septierungsdynamiken wahrend
des Ubergangs einer bakteriellen Kultur aus der exponentiellen Phase in die stationire
Phase zu beschreiben. Basierend auf einem neugewonnenen mechanistischen Verstédndnis
fiir diese Ubergénge, konnten wir auerdem die zeitliche Verzogerung erkléren, die zwis-
chen dem Anstieg der Zellanzahl und der Biomasse wahrend des Ubergangs von Lag
zu exponentieller Phase auftritt. Auflerdem reproduziert unser Modell den erhéhten in-
trazellularen RNA Massenanteil, der auftritt, wenn Bakterien Chloramphenikol ausgesetzt
werden.



Zusammenfassend steuern wir einen neuen Ansatz bei, der es erlaubt, die Einfliisse
von Wirkstoffeffekten, Endpunktdefinitionen und des experimentellen Protokolls zu ent-
flechten. Da kein Konsens hinsichtlich eines entsprechenden experimentellen Protokolls
existiert, ist eine solche Entflechtung der Schliissel, um Informationen zwischen unter-
schiedlichen Experimenten—und letztendlich auch in die Klinik—zu transferieren.



In memory of Niklas Werner,
with whom I would have loved to discuss this work in more detail.
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Chapter 1. Introduction

The looming antibiotic resistance crisis threatens the current success of anti-infective
treatments [1, |2]. The extent of this success becomes visible when comparing the mortality
associated with infectious diseases before and after the discovery of the first antibiotics
[3]: while according to the Centers of Disease Control and Prevention, infectious diseases
represented more than 50% of all causes of death for the US in the pre-antibiotic era
in 1900 [4], this contribution to mortality decreased to less than 5% in 1998 [4]. These
numbers highlight the deadly potential of infectious diseases and the vital dependency of
society on efficacious (drug) therapies, particularly antibiotics.

While the demand for new antibiotics has increased due to epidemic resistance devel-
opment [5, 6], the supply, i.e., the development of new antibiotics, has not been ensured.
Consequentially, we are currently facing a period characterized by dwindling numbers of
new entries of antibiotics into the market |5, |7, [8]. At the same time, effective therapy
options based on the remaining drugs become more and more limited.

In cases where the risk of therapy failure would be fatal, clinical guidelines recommend
to administer combinations of antibiotics. For example guidelines for treating pneumonia
[9} 110] recommend dual combinations of meropenem with either linezolid or vancomycin as
initial empiric therapy of hospital-acquired (non-ventilator-associated) pneumonia in high
risk patients. In this indication, the extension of the antibacterial spectrum of the therapy
motivates the combination of antibiotics, because the causative pathogen has usually not
yet been identified during this critical first phase of treatment. Other motivations to
combine antibiotics include faster clearance of infections [11], exploitation of synergies
[12] or control of resistance development |11} 13].

A critical bottleneck in advancing antibiotic combination therapy is the lack of a quan-
titative understanding of the joint effect of drug combinations, even if the individual effects
and mechanisms of action are generally well described [11]. Brute force in vitro testing
of potential drug combinations is one option to improve this understanding, though it
is cumbersome, time-consuming and does not necessarily provide insight into the reasons
underlying observed interaction patterns [14]. A promising alternative are in silico studies
based on combined pharmacokinetic (PK) and pharmacodynamic (PD) models that are
driven by well designed in vitro data 15} |16].

Since the mechanism of action of antibiotics has been shown to be predictive of in-
teraction patterns of antibiotic combinations [17], a physiological and mechanism based
modeling approach is expected to be most powerful. Therefore, this thesis focuses on the
development of a PD model to predict time-kill curves (TKC). In short, TKC are repeated
measurements of the bacterial population size over time, with the addition of known con-
centrations of one or more antibiotic drugs. As TKC data resolve both, the time and
the drug concentration dependency of bacterial growth, derived models can be seamlessly
integrated into the PKPD context [15, |1§]. Antibiotic PKPD models have been applied
with increasing success in clinical practice [19-22].

It is a major and unmet challenge to represent the diversity of antibiotic drug targets
and corresponding mechanisms of action in a single PKPD model. Conventionally, coarse
grained models, which lack representation of cell-level processes and targets, are used to
predict TKC data [15] |16, 23]. To overcome this limitation, the objective in this thesis
was to develop a novel cell-level bacterial population growth model that allows for a
mechanistic integration of drug actions of multiple antibiotics.

We achieved this by firstly exploring the ‘Background of bacterial growth and its in-|
hibition!” (p.[5]), including experimental and theoretical considerations of {Bacterial pop-]
ulation growthl” (p.[6). As the bacterial cell-cycle links the ‘Single cell replication]” (p. [9)
to bacterial population growth, this process served as a starting point for developing a
corresponding transit compartment model to describe the replication process. Together
with the established [24, [25] concept of ‘Balanced growth and the cell-state]’ (p. [11)),
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new cell-level models
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Figure 1.1: Overview of modeling approaches linking drug and population level. New developed
cell-level models allow prediction of bacterial population growth while accounting for drug action on cellular
level. Drug level includes pharmacokinetics of antibiotic drugs (indicated by capsule). Cellular level
comprises, e.g., dynamics of intracellular concentrations of RNA polymerase or ribosomes (indicated by
stylized cell). Population level refers to bacterial population growth and accounts for sub-populations like
persisters (indicated by Petri dish).
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we further developed this mathematical construct to the ‘{Prototype cell-level model of|
[bacterial population growth’ (p. . Although extraordinary versatile in application—
including the prediction of ‘[Single drug time-kill curves’ (p. , “Septation dynamics|
[during shift-down]” (p.[37)) and the ‘fmpact of antibiotic exposure on RNA mass fractionl’
(p. —the prototype model was limited in its broader applicability for several reasons,
see ‘{Interim evaluation of the prototype model’ (p. .

In order to overcome the limitations, we returned to our initial objective in ‘{Cell-Teve]|
[model for antibiotic combinations]” (p. [47) and thoroughly reduced our approach. The
main lesson learned from the prototype model was that the ribosomes play a central role
in reporting and predicting bacterial population growth in the PKPD context. Indeed,
consideration of ribosomal dynamics allowed to correctly capture the reduced sensitivity
of lag phase bacteria to linezolid compared to exponentially growing cultures. This, and
other results, including the correct description of complex population growth dynamics
and pharmacodynamic drug-drug interactions, are described in the chapter ‘Model based]
[analysis of antibiotic combinations and beyond|” (p. . For the first time, a cell-level
PKPD model for antibiotic combinations systematically accounts for aspects of the exper-
imental protocol including the growth phase. This allowed to perform an analysis of the
‘Impact of the experimental protocol on antibiotic interactions| (p. . We found the
pronounced antagonism between meropenem and linezolid to be robust against variations
in the growth phase and pharmacodynamic endpoint definition, but sensitive to a change
in experimental duration.

The translational value of any in vitro data is limited by the lack of knowledge of how
the experimental protocol influences the assay readout. As this thesis contributes a new
approach to disentangle the impact of drug effects, assay readout and experimental pro-
tocol on antibiotic interactions, it offers new insights for experimenters and theorist alike.
Since no consensus exists on the experimental protocol to assess antibiotic interactions,
such insight is crucial to advance the field of anti-infective research.
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Chapter 2. Background of bacterial growth and its inhibition

2.1 Bacterial population growth

A bacterial population refers to all individual bacteria in a defined experimental environ-
ment. Since the description of population growth necessitates the definition of population
size, we outline typical quantification methods and related assumptions to determine this
quantity in an in vitro setting. Classically, bacterial population growth is divided into sev-
eral growth phases. We use the sequential framework of these growth phases to describe
the biological background, introduce parameter notation and present empirical growth
modeling approaches.

2.1.1 Bacterial population size

The development of the bacterial population size over time is a direct measure of how suc-
cessfully bacteria colonize an environment. While repeated counting of the total popula-
tion provides that dynamics, exhaustive counting is prohibitive for repeated measurements
and not practical for large bacterial populations because of the resulting high work load.
Instead, if the cells are predominantly in planctonic (free floating) state, it is commonly
assumed that bacteria are well mixed in their environment (spatial homogeneity). It fol-
lows that the total bacterial population size can be approximated based on the analysis of
reasonable large fraction of the environment, which is, i.e., the growth medium. Table
lists an overview of typical methods to quantify the bacterial population size.

Inference of the bacterial population size by indirect quantification methods (turbidity,
bioluminescence and plating) requires the additional assumption that the number of bac-
teria is proportional to the assay readout. In the following we recapitulate an ezemplary
procedure to quantify the number of colony forming units (CFU) via plating, because it
is a central unit throughout this thesis: from a constantly shaken reaction compartment
confining the growth environment of a bacterial culture in some large volume (90 mL) the
experimenter shall

(i) Extract a small volume (100 pL)
(ii) Dilute the extracted volume by a defined factor DF (usually between 1:10 and 1:107)
(iii) Apply a fraction of the dilution onto an agar plate
(iv) Incubate the agar plate for a defined time (24 h)
(v) Count the macroscopically visible colonies (CFU)

(vi) Use the dilution factor to back-calculate the bacterial concentration in the reaction
compartment in CFU/mL

The dilution factor DF is chosen based on the experimenters prior expectations such
that a posteriori counted numbers of CFU are optimal with respect to the plate size.
This dilatation factor also determines the lower limit of quantification (LLOQ) of the
assay. Since the aim is to obtain plates which are neither empty nor overgrown, this often
requires running several experiments in parallel using different values for DF. The main
strength of the plating method is that it is an established method which is able to detect
viable cells with minimal experimental equipment [26, p. 25]. Not counting dead cells and
particles is of importance when performing experiments including antibiotic drugs, where
a high number of dead bacteria is expected.
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Table 2.1: Overview of bacterial counting techniques.

Time Viability
Method Description until result screen Strengths ‘Weaknesses
Mi i isual f ifi . iecti
icroscopic Visua .count of magnified Minutes Yes Low LLOQ Subjective
counts bacteria
Flow Analysis of cell stream Real-time High Expenswe
cytometer throughput equipment
Limited
a) Non-labeled cells (e.g., . a.ddltlonal
. . Nondestructive  single-cell
impedance in Coulter Yes assa. arameters
counter or CASY systems) Y p
(cell volume,
viability)
Multiparamet- Complex
ric single-cell method
b) Labeled cells (e.g., & (combination
. Yes measurements, .
fluorescence in FACS) . of dye, fixation
sub-population
analysis and laser
excitation)
Determination of optical ﬁf:u hput Indirect count
Turbidity . b Real-time No shput, via absorbtion,
density (e.g., UV-VIS) nondestructive .
High LLOQ
assay
Bio- ATP quantification via . High Indlrect. cell
. . Real-time Yes count via
luminescence  luciferase assay throughput .
biomarker
. After Simple Indirect cell
. Count of macroscopic . . .
Plating . . . incubation, Yes experimental count as colony
colonies after incubation . .
e.g., 24h setup forming unit

2.1.2 Growth phases

Any meaningful model of bacterial growth inhibition requires a proper baseline model
describing bacterial population growth in the absence of drugs. Thus, we first focus on
the growth phases observed in drug-free growth media. Early in the last century, in 1918,
Buchanan described the typical growth curve of a batch culture, i.e., the development of
the bacterial population size over time in a confined environment [27]. We reproduced
the original trajectory from [27] to illustrate the sequence of bacterial population growth
phases in Figure [2.1

Lag phase

Per definition in 27|, the lag phase is a time interval of positive growth acceleration after
initial inoculation. In order to model the mechanisms governing this phase, it is of im-
portance to understand the biological function and evolutionary benefit conveyed by this
growth behavior.

From an evolutionists perspective, the conversion rate of nutrients into biomass is
an important determinant of fitness, because a fast conversion rate allows to outgrow
competitors in constant growth supporting environments [28]. The bacterial physiology
determines this conversion rate via the abundance of growth limiting cellular components
(ribosomes, DNA, cell wall, etc.). For all growth limiting cellular components, any in-
crease in the abundance of one component implies savings at the cost others, because of
a shared and limited cellular synthesis capacity [29]. Thus, the cellular synthesis capacity
determines the abundance of growth limiting cellular components. On the transcriptional
and translational level, the synthesis capacity is determined by the abundance of RNA
polymerase (RNAP) [24] and ribosomes |24} 28| [30], respectively. Furthermore, the syn-
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Phases of bacterial population growth

o _ ’d Cw~ - -
L P . \f E
o | (o} stationary |
= ] phase
St exponential -
I I phase
3 (death phase)
8 |
2| lag b
(V]
+ | phase
©
O e = .
time

Figure 2.1: Bacterial population growth phases. Typical bacterial population growth curve in a
batch culture (semilogarithmic scale). After inoculation, the bacteria start in a growth arrested state (lag
phase). After a transition phase (dashed lines) with increasing growth rate (¢ — b), the culture enters
exponential growth (b — ¢). Because of the limited abundance of nutrients and space in the confined
growth environment, a transient phase with a slow down of growth (¢ — d) leads to the stationary phase
(d — e). Eventually, for long experimental durations, the culture transits (e — f) into a death phase.
Reproduced from [27]

thesis capacity depends on the supply of energy and amino acids (aa), which is provided
by the corresponding metabolic enzymes [30] and the growth environment. Changes in
gene expression indicate an adaptation of the synthesis capacity during transition from
lag into exponential phase [31]: the most up-regulations are observed in the functional
categories related to the RNAP, the ribosomes, the fatty acid biosynthesis and the aa-
tRNA synthesis. Ideal adaptation, i.e., an optimal balance between the components, is
maintained, when the capacity of all individual components is fully utilized and therefore
no resources for its production are wasted.

But how do bacteria approach and maintain a state of ideal adaptation, the so-called
cell maintenance? Under the hypothesis that synthesis processes are irreversible invest-
ments, unconditioned cell maintenance imposes a risky strategy in changing environments.
And indeed, bacteria typically dilute rather than actively recycle proteins [32] and ribo-
somes [33, 34]. As such the lag phase offers a protective mechanism against oversensitive
adaption, conveying a moment of inertia to the cell maintenance.

Exponential growth

In the exponential phase a bacterial population size doubles at a constant frequency. Let
N = N(t) denote the total bacterial population size at some time ¢, then

d
N = Fet - N (2.1)

describes the exponential growth using parameter ke, which is the net exponential growth
rate constant or so-called Malthusian parameter in 1/h. In a stochastic setting, the time
to replication of a bacterial population is exponentially distributed with

T ~ Exp(knet)- (2.2)

An often used re-parameterization is in terms of doubling time (or population half-life for
Enet < 0) defined via 7 = SF - 1og(2)/knet , with 7 in min and SF = 60 min/h.
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On the population level, 7 quantifies the time interval in which the population size
doubles N(t +7) =2 N(t). Furthermore, 7 quantifies the time interval in which half of
all individual cells replicate once. Thus, 7 corresponds to the median of T'. As a bacterial
population consists of individually growing cells, the doubling time allows interpretations
beyond the population level: for individual cells, 7 characterized the expected doubling
time. Note that individual cells may replicate more than or not at all in this time interval.

Stationary phase

Bacterial growth is typically limited by a so-called carrying capacity, representing the
finite space and nutrient availability in a confined growth environment. Individual cells
communicate the saturation of the population density via quorum sensing [35, 36, e.g., by
secreting the signaling molecule Autoinducer-2 [36]. A quorum triggers changes in gene
expression [35] which inhibit growth and ultimately prevent the bacterial concentration to
exceed the carrying capacity.

On the population level, the logistic growth equation is the most simplistic model
to describe the transition into stationary phase. The corresponding ordinary differential
equation (ODE) is given by

d
aN = knet - (1 — N/Npax) - N, (2.3)
where Npax denotes the bacterial carrying capacity. The ODE of the logistic growth
equation has the analytical solution

— Nm&x
1+ exp(—Fknpet - t) - (N%:X -1)

N(t) (2.4)

Beyond the logistic growth equation, there exists a variety of other, more complex growth
models (e.g., Gompertz, Richards, Stannard, Schnute) as described in the comparative
review [37].

2.2 Single cell replication

Bacterial population growth may be interpreted as the result of the replication of individual
cells. Since the objective was to develop a cell-level model of bacterial population growth,
we firstly investigated how single cell replication is linked to bacterial population growth.
Therefore the bacterial cell-cycle was of interest. Once developed, this model served as a
starting point to predict time-depended adaption processes during antibiotic exposure in
“Metabolic adaptation processes]’ (p. [33).

The bacterial cell-cycle was divided into three phases, the B, C and D period (see
Figure 2.2). During the B period, cells increased in mass. Start of a new round of
chromosome replication marked the entry into the C period. The initiation of the septation
process (indicated by invaginations of the cell envelope) marked the transition from the C
to D period, which was completed with the division into two newborn cells.

The durations of the B, C and D periods depended on the growth rate constant [24].
For E. coli and B. subtilis, we compiled corresponding data from |24} [38| [39] and fitted
continuous functions as suggested in [24], see Figure For the corresponding equations
and estimated parameters, see Table

Cells skip the B period completely during fast growth [40]. To further speed up the
chromosome replication, multiple origins of replication are initiated (multifork-replication),
leading to overlapping division cycles (7 < B+ C+ D). For E. coli, the D period has been
described as relatively constant over different growth rate constants [24].
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We interpreted the bacterial cell-cycle as a maturation process leading to the division
of a cell. To justify a final maturation stage we used the common assumption that
the number of growth limiting components is finite. For the definition of growth limiting
components see the description of the " (p. @

This assumption allowed to define a transit compartment model for population growth
similar to the Leslie matrix approach in terms of describing population growth in an
age structured framework: we described the bacterial cell-cycle by m maturation stages
s=1,...,m, with cells gradually progressing from stage s = 1 (just after birth) to s =m
(just before division). The gradual progress was determined by transition rate constant
ktrans- The transition rate constant kiyans was linked to the sum of the durations of the B,

C and D period
m

B+C+D

Excursion to derive the number of transit compartments

The number of maturation stages m impacts the structure of the transit compart-
ment model and determines the transition rate constant via eq. . In our case,
this parameter was unknown. We exploited its link to the variability of the doubling
time 7, represented by the coefficient of variation CV. Let the doubling time be
the sum of m independent and identically distributed (i.i.d.) exponential random

variables
m
T = E Ts,
s=1

where 75 ~ Exp(ktrans) 1S the time spent in a single maturation stage, then 7 is
Erlang distributed. The expected value of this Erlang distribution is given by

(2.5)

k;trans =

/J,:E(T) =R (ZTS> :m'E(Ts) = m/ktrans,
s=1

which is equal to eq. (2.5)). The variance of the doubling time is given by

Var(7) = Var (i Ts) = ivar(TS) = i k% _ #
s=1 s=1

g—1 ‘trans trans

With these first two moments and the definition CV? = Var/u? it follows that
number of transit compartments is given by

1

To apply the Leslie matrix approach in the bacterial population growth context, we
denoted the absolute number of cells in stage s by As. The rate of change for A =
(Ay,...,A,) over time is then described by the following system of ODEs

d

aAl(t) - 2ktrans : Am(t) - ktrans : Al (t) (2-6)

d

&AS(t) = ktrans : As—l(t) - ktrans ' As(t) (2.7)
for s =2,...,m. The factor 2 in the first equation reflects the division of a single mother

cell in stage s = m into two daughter cells in stage s = 1. Since we were only interested

10
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Compartmentalization of the bacterial cell-cycle

D> o

chromosome replication  cell septation

B period C period D period
| | |
trans
¢ k k k
.1 trans l 2 trans I trans I m

Figure 2.2: Compartmentalization of the bacterial cell-cycle. The prokaryotic cell-cycle is divided
into the B, C and D period. The sketches in the upper panel depict a bacterial cell at different stages of
the cell-cycle. The round boxes, inner ovals and red dots represent cell envelopes, chromosomes and origins
of replication, respectively. During the B period, the cell increases in mass. Beginning of a new round
of chromosome replication marks the entry into the C period. Start of the septation process indicates
the transition from the C to D period, which is completed with the division into two cells. We used a
transit compartment model to divide the cell-cycle in m compartments, each corresponding to a distinct
cell-cycle phase and maturation stage. The cycle starts just after division with stage s = 1 and terminates
just before division with stage s = m. Progress of a cell through the cell-cycle was characterized by rate
constant kirans. After division, two cells re-enter the cycle in the first compartment.

in the relative abundance Fy = Ag/ Y o0 As, we determined the rate of change of the

distribution of maturation stages F' = (F1,..., F),;) based on the chain rule, yielding
d
@) = 2huans - Fon(t) = Kuwans (1 + Fn (1)) - Fi(#) (2.8)
SR = R Fr() — Fosans 1+ Fn(t)) - Fo(0) (2.9)
for s = 2,...,m. During exponential growth, the distribution of maturation stages is

stationary—a state called balanced growth. The steady state solution is given by

2q
Fbs -~ and = /2 -1. 2.10

The stationary distribution of maturation stages in eq. (2.10]) is equivalent to what has
been postulated |25, p. 10] as the ideal age distribution during exponential growth
FP% =log(2) - 2072) with relative age

a=(s—1)/(m—-1). (2.11)
Note that FPg = (Flb & .. .,Frl,)lg) is not only time-invariant, but also independent of the
growth rate constant. Unsurprisingly an exponentially growing bacterial culture comprises

twice as many newborn cells (s = 1) compared to cells which are just before division
(s =m).

2.3 Balanced growth and the cell-state

We have shown how the replication cycle links the maturation of individual cells to changes
in the bacterial population size. To increase the level of detail of the modeling approach

11
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up to a point where a mechanistic integration of antibiotic drug effects is feasible, we
analyzed next, how cellular characteristics are related to bacterial population growth.

In this context it is useful to define extensive characteristics as characteristics describ-
ing the sum of all cells in a population [25, p. 9] (e.g., protein mass of the culture P ot
or population size N). During the exponential growth phase as defined in eq. , all
extensive characteristics increase exponentially. Intensive characteristics represent cellu-
lar properties and refer to quantities per cell (e.g., protein mass per cell ;). As such,
intensive characteristics are time invariant during exponential, i.e., balanced growth [24,
43, 44].

We have pointed out that the distribution of maturation stages, i.e., the age distribu-
tion of the bacterial culture, is stationary during exponential growth, see eq. . We
assumed for our model that each maturation stage was associated with a defined set of
N cellular characteristics, which we henceforth call the cell-state

S =(S1,5,...,5N.). (2.12)

From the experimentalists perspective, the cell-state describing an approximately half ma-
ture reference cell is of special interest because of the implied experimental simplifications:
under the assumption that a cellular characteristic S; increases exponentially with relative
age a and doubles from cell birth to division (exponential growth law), it is this reference
cell, whose value of S; coincides with the corresponding extensive characteristic divided by
the population size (see excursion on p.[14)). For cellular characteristics describing parts of
the cytoplasm including proteins, RNA, polyamines and glycogen, the exponential growth
law is appropriate [45]. For the chromosome, on the contrary, the exponential growth law
is inappropriate because of the discontinuity in DNA synthesis during the replication cycle
[45], see Figure

In 1958, Schaechter, Maalge and Kjeldgaard [46] have made the surprising discovery
that a cell-state of a bacterial population is primarily defined by the exponential growth
rate constant. In other words, different growth media supporting similar growth rates
lead to similar cellular characteristics of the growing bacteria. For E. coli, an extensive
compilation of cellular characteristics for a range of growth rates has been published by
Bremer and Dennis [24]. For S. aureus similar, but more sparse data are available [47),
48]. The cellular characteristics describe an approximately half mature reference cell, see
excursion on p.[I4} A selection of cellular characteristics is shown in Figure [2.3]

2.4 Antibiotic drugs

In this thesis, the term antibiotic refers to chemical compounds which kill bacteria or
limit their growth at therapeutically usable concentrations. Unwanted side effects usually
limit the application of chemical compounds as antibiotics. To link the antibiotic drug
concentration C' to a corresponding effect E, we typically used a sigmoidal Emax model

Emax - C7

T EC50 + O (2.13)

The parameter EC50 denoted the concentration, at which half of the maximum effect
Emax was exerted. The Hill factor v quantified the steepness of the concentration-effect
relationship. As we used the Emax model on many occasions also for different antibiotics,
the definition of a uniform notation for the corresponding parameters was appropriate:
in the sequel, we say that the drug or some related effector species exhibited an effect
E = Eapcxys on a targeted process or cellular characteristic Xyz, if the corresponding
concentration Abc was linked to the effect via the Emax model , parameterized in
terms of Emax = Emaxapc Xy, EC50 = EC50pc xyz and v = Yabe, Xyz-

12
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Figure 2.3: Cellular characteristics as functions of the growth rate. Growth rate is quantified
via the exponential growth rate constant k.. Experimental data for the organisms E. coli (red), S. aureus
(blue) and B. subtilis (green) are shown as crosses. We fitted power functions to the data, represented by
solid lines in corresponding color. From left to right, top panel: number of ribosomes (N;), the protein
mass per cell (F.), ribosomal concentration (rib) and percentage of active RNA polymerase (£,). Middle
panel: peptide chain elongation rate per active ribosome (cp), fraction of active ribosomes (3;), ribosomal
efficiency (er) and percentage of RNAP synthetizing rRNA and tRNA (Us). Bottom panel: percentage of
total protein which is RNA polymerase o and duration of the individual cell-cycle periods. For description,

parameterization and units, see Tables szl and@
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Excursion to derive the relative age of the reference cell

The cell-level data used in this thesis reportedly described the composition of an
average cell in the population . The authors state that the average cell is an
approximately half mature cell. In the following, we contribute a theoretical justi-
fication for that claim. The cellular characteristics of the reference cell depend on
the relative age « of the reference cell. For example, let P o, = log(2) - 2¢ describe
the exponential increase of protein mass per cell up to division (in arbitrary units),
assuming the exponential growth law. Next we determine for which « a cellular
characteristic coincides with the corresponding extensive characteristic divided by
the population size. In our example, the corresponding extensive characteristic is
P tot, which describes the total protein mass of a bacterial culture with

1
P tot = N/ P.. - F®da.
0

As both, the corresponding extensive characteristic and the population size, are
measurable without age fractionation of the bacterial population, such definition
of the relative age of the reference cell implies considerable simplifications for the
experimentalist p. 11]. To determine the relative age of the reference cell,
whose protein mass equals to the average cell mass P to1/N, we used the inverse of

this function

log (2 -log (2) )
log (2)
which describes an approximately half mature cell.

& = P, (Pegor/N) = ~ 0.47,

2.4.1 Systematic classification of antibiotics

Grouping antibiotics into classes is an essential tool for the clinician to start and switch
treatments. Furthermore, grouping antibiotics enables researchers to analyze antibiotic
interactions beyond the level of individual compounds. In the following, we present a
classification system based on compound properties of numerous antibiotic substances.
The properties referred (i) to the corresponding perturbed superordinate cellular process
or structure, (i) to the target and (iii) to the chemical class of the antibiotic, listed in
decreasing hierarchical order in the classification system.

Ezample: The antibiotic linezolid (compound) belongs to the group of oxazolidinones
(chemical class). The drug binds to the 50S subunit (target). On a larger scale, linezolid
inhibits translation (perturbed superordinate cellular process or structure).

Superordinate cellular processes or structures

On the highest hierarchical level, we grouped antibiotics by the superordinate cellular
process or structure perturbed by the individual compound. In particular we described
the cell envelope, DNA replication, transcription and translation. Each of these processes
or structures is vital for the bacterium—perturbations kill the cell or prevent replication.
The description of the processes and structures was tailored to the 4 drugs which were used
in this study and whose mechanism of action is described in ‘{Pharmacological profiles for]
[drugs used in this study]’ (p.[L7).

14
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Cell envelope. The cell envelope comprises the cell wall, inner membrane and for gram
negative bacteria also an outer membrane (see ‘{Clinical pathogens and Gram staining]’
(p. for a definition of the Gram method). The cell envelope conveys structural in-
tegrity, which is necessary to maintain the hydrostatic pressure inside of the cell (turgor).
Furthermore, the cell envelope controls the cellular influx and outflow of substances via
porins and pumps, while the membranes represent diffusion barriers. The main constituent
of the bacterial cell wall is peptidoglycan (also known as murein), which is a macromolec-
ular polymer. Since peptidoglycan synthesis is essential and unique in bacteria, it is
an excellent target for antibiotics. Peptidoglycan synthesis is initiated in the cytoplasma
and completed in the exoplasmic space [49, 50]. The cytoplasmic part of the synthesis
pathway is catalyzed by the enzymes MurA-F, MraY, MurG and flippase. The exoplasmic
part is catalyzed by the enzymes flippase, glycosyltranferase and transpeptidase, where
the last two are penicillin binding proteins (PBP). Enzymes of both parts, as well as the
cell membrane are targeted by therapeutically relevant antibiotics.

DNA replication. In order to prevent the loss of genetic information when dividing in
two, a bacterial cell replicates its DNA. Between replications, DNA is stored in a space-
saving super-coiled state. The semi-conservative replication of DNA is catalyzed, amongst
others, by the enzymes toposiomerase I, helicase, DNA polymerase and topoisomerase 11
(gyrase). The toposiomerases I and II de- and re-coil the DNA strands, respectively. The
toposiomerase II is targeted by therapeutically relevant antibiotics. Beside the catalyzing
enzymes for DNA replication, also the supply of substrates in form of nucleic acids repre-
sents targets for antibiotic perturbations. Many prokaryotes rely on the dihydropteroate
pathway to obtain tetrahydrofolate (THF'), which is essential for the synthesis of nucleic
acids (e.g., adenine, guanine and thymidine). Since the dihydropteroate pathway is not
present in eukaryotic cells, the inhibition of THF synthesis also represents an excellent
target to inhibit bacterial growth.

Transcription. During transcription, RNA polymerase (RNAP) molecules move along
de-coiled DNA strands and catalyze the synthesis of template mRNA strands. As such, the
transcription depends on the preceding activity of toposiomerases and a steady supply
of nucleic acids. Accordingly, inhibition of THF synthesis also impairs the transcrip-
tion process. Furthermore, some antibiotics inhibit the activity of the prokaryotic RINA
polymerase itself.

Translation. The translation process is classically divided into initiation, elongation
and termination phase. During initiation, the ribosome is assembled as a complex from
the following educts [51, p. 374]: the 30S ribosomal subunit (comprising 16S rRNA),
initiator fMet-tRNA, mRNA and the 50S ribosomal subunit (comprising 5S and 23S
rRNA). After this complex formation, the ribosome enters the elongation phase, where
single amino acids are added sequentially to the growing protein strand. The ribosome in
the elongation phase has three tRNA binding sites, termed P (peptidyl), A (aminoacyl)
and E (exit) site. During the elongation process, charged tRNA enter the A site and leave
the E site uncharged. The formation of a peptide bond between the transported amino
acid and the C-terminal end of the growing peptide is catalyzed by the ribozyme pep-
tidyl transferase. A termination codon induces the dissociation of the completed peptide,
tRNA, mRNA and ribosome.

Other targets, specifically the redox system, did not fit into any of the above cat-

egories and were listed as miscellaneous superordinate cellular processes or structures.
Effecting 11 of 178 grouped compounds, we consider this acceptable.
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Targets and chemical classes

In the following trees we assigned chemical classes, including exemplary compounds, to
targets. The 1st level indicates the target level of the classification system. The 2nd level
comprises the targets. The 3rd and 4th level lists the corresponding chemical groups and
compounds, respectively. The compounds used in this study are printed in bold.

Targets Targets
L Peptidoglycan synthesis | Cell membrane
| Penicillins | Polypeptides
Amoxicillin Polymyxin B
Dicloxacillin Colistin (=Polymyxin E)
Methicillin Tyrothricin
Nafcillin Cecropin
Oxacillin Bacitracin
Ticarcillin Gramicidin
. Nisin
| Cephalosporins
Cefaclor | Lipopepides
Cefadroxil Daptomycin
Cefuroxime v
Cephalexin | Aminoglycosides (atypical) ... [52]
Chelocardin
| Monobactams Anhydrotetracycline
Aztreonam Anhydrochlortetracycline
Tigemonam
| Other
| Carbapenems Bacitracin
Doripenem D-Cycloserin
Ertapenem Ethambutol
Imipenem Ethionamid
Meropenem Fosfomycin
Isoniazid
| Glycopeptides Loracarbef
Moenomycin Platensimycin
Teicoplanin Teicoplanin
Telavancin Triclosan
Vancomycin
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Targets Targets
| Topoisomerases | 50S subunit
L Quinolones | Oxazolidinones
Ciprofloxacin Linezolid
Levofloxacin Radezolid
Nalidixic acid Torezolid
Norfloxacin .
Ofloxacin | Other
v Capreomycin
, THF synthesis Nitrofurantoin
Sulfonamides o
Sulfamethoxazole | 30S subunit
Sulfasalazine . Aminoglycosides
Amikacin
Other Gentamicin
Dapsone Kanamycin
Pyrimethamine Neomycin
Trimethoprim Tobramycin

. RNA polymerase

| Tetracyclines (typical)

Ansamycines Doxycycline
Rifampin (=Rifampicin) Minocycline
Rifamycin Oxytetracycline
.. Tetracycline

Other

t Mupirocin | Other
. Nitrofurantoin

| 50S subunit Tigecyclin
| Macrolides Viomycin
Azithromycin
Clarithromycin | Redox system
Erythromycin Nitrofurans
Furazolidone
| Lincosamide Nitrofurantoin
Clindamycin .
Lincomycin Other
Isoniazid
| Streptogramins Pyrazinamide
Dalfopristin .
Pristinamycin | Other
Fusidic acid
| Phenicols Metronidazole
Chloramphenicol Sulbactam
Thiamphenicol Tazobactam

2.4.2 Pharmacological profiles for drugs used in this study

To highlight the importance of the individual antibiotics analyzed in this study, we de-
scribe in the following the pharmacological profile for the drugs. The pharmacological
profile includes clinical indications, antimicrobial spectrum (see ‘{Clinical pathogens and|

[Gram_staining]” (p. for definitions) and the mode of drug action of the compound.
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The latter comprises a description of drug action on molecular level, as well as a charac-
terization as either bacteriostatic or bactericidal. The characterization as bacteriostatic
or bactericidal was based on the minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) of the compound, see Figure for exemplary deter-
mination via serial dilution technique. Following [53], we consider a compound bacterio-
static if MBC/MIC < 5, and bactericidal otherwise. Note that the terms bacteriostatic
and bactericidal may alternatively refer to the killing activity of the drug. In that case,
bacteriostatic and bactericidal drug action differentiates between growth inhibition and
death induction. The pharmacological profiles complement the corresponding paragraphs
in ‘Integration of drug effects’ (p.[51), where we discuss technical and modeling related
aspects of the drugs.

Tetracycline

Tetracycline is a protein biosynthesis inhibitor and perturbs translation. The drug exhibits
a low toxicity and a broad spectrum of activity (gram positive and gram negative bacteria
including intracellular chlamydiae, mycoplasma and rickettsia) [20, p. 267]. It is used in
treatment against community-acquired respiratory tract infections, infections of skin and
skin structure and sexually transmitted diseases [20, p. 267]. Due to resistance, the drug is
typically a secondary choice compared to other antibiotics and predominantly used against
intracellular infections |20, p. 268]. The binding site of tetracycline is located on the 30S
subunit of a 708 ribosome [54} 55] and interferes with the anticodon stem-loop of an tRNA
which is charged with amino acids (aa), i.e., aa-tRNA at the A site [56]. Thus, the supply
of amino acids is disrupted and translation is perturbed. Furthermore, under saturated
cytoplasmic aa-tRNA concentrations, also the P site is blocked by tetracycline [57]. In
both cases, bacterial growth is inhibited by reducing the fraction of active ribosomes [56].
The binding of tetracycline to the ribosomes is reversible and the drug effect is usually
described as bacteriostatic [58].

Chloramphenicol

Chloramphenicol is a protein biosynthesis inhibitor that perturbs translation. The drug
is considered a reserve antibiotic due to its severe side effects, including the potentially
lethal bone marrow suppression. Therefore, its use is limited to severe infections, which
are uncontrollable with other antibiotics [71]. Due to its excellent tissue penetration and
broad antibacterial spectrum including gram positive and negative bacteria, it is used
against several infectious diseases, e.g., meningitis and enteric fever [71]. Oral, topic and
parenteral routes of administration are available. The binding site of chloramphenicol is
located on the 50S subunit of a 70S ribosome. Specifically, the drug interacts with 23S
rRNA nucleotides, which are part of the peptdidyl transferase cavity [56} [72]. The drug
directly blocks the binding of aa-tRNA to the A site [72] and thus disrupts the consumption
of amino acids. Typically, chloramphenicol is described as a bacteriostatic drug [56].

Vancomycin

Vancomycin is a cell wall active antibiotic that impairs the integrity of the cell envelope.
Because of its activity against multi resistant Staphylococci, the glycopeptide vancomycin
is an important drug to treat nosocomial infections. Vancomycin impairs the integrity of
the cell envelope of gram positive bacteria. In particular, it interferes with the peptidogly-
can synthesis by preventing the transglycosylation of the cell wall subunits [68]. Since the
activity of the penicillin binding protein (PBP) transglycosylase is highest at the proximal
side of the extracellular matrix [73], we consider this region as the target site and critical
for drug action. On the molecular level, vancomycin binds to the D-Ala-D-Ala end of
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Excursion about antibiotics and the stringent response

The stringent response is a protective mechanism limiting waste of cellular synthesis
capacity in stressful conditions like nutrient deprivation or exposure to antibiotics.
The stringent response is mediated via the alarmone (p)ppGpp. Along with
limiting the cellular synthesis capacity and cell metabolism, (p)ppGpp stimulates
resistance to drugs [59], persister [60, 61] and biofilm formation [62]. Thus, the
stringent response impacts antibiotic drug action.

For proteinbiosynthesis inhibitors acting during the elongation phase of translation,
it is the ribosomal binding time of the drug (74rue) which is predictive of the effect
on (p)ppGpp [63} 64] in relation to the average time needed to complete a protein
(Tprotein) and the average time needed to add a single amino acid (7,a), both referring
to an elongation active ribosome. For E. coli, it is Tprotein =~ 165 and Taa = 0.05s,
assuming an average peptide chain elongation rate of 20aa/s [65] and an average
length of 317 aa per protein [66]. The following table is condensed from [63]:

Type 1 Type 11 Type 111

Tdrug < Taa < Tprotein Taa < Tdrug < Tprotein Taa < Tprot < Tdrug

e Competitive inhibition e Activates stringent re- e Deactivates stringent
sponse response

e Examples: no substance

known e Increases (p)ppGpp lev- e Decreases (p)ppGpp
els (activates RelA) levels (deactivates
SpoT)

e Similar to heat-shock

_ . e Similar to cold-shock
e Similar to amino acid

starvation e Similar to single amino

B . acid starvation
e Induces “translational
pause” e Reduces fraction of ac-

o tive ribosomes
e Premature termination

of protein strands

Allosteric inhibition

e Examples: puromycin, Examples: chloram-
streptomycin, kanam- phenicol, tetracycline,
cycin erythromycin, Spi-

ramycin, fusidic acid

In E. coli (p)ppGpp is regulated via a (p)ppGpp synthetase and a bifunctional
synthetase / hydrolase, which are the enzymes RelA and SpoT, respectively [67,
p. 343]. “RSH” proteins, i.e., RelA and SpoT homologes, are abundant in many
organisms and were also recently characterized in S. aureus [61]. Vancomycin [68],
linezolid [69] and beta-lactams including meropenem [70] have the same effect on
the stringent response: activation.

the peptidoglycan precursor Lipid II [68], which is the substrate of the transglycosylation
reaction. Vancomycin is typically described as a bactericidal drug [53].
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Meropenem

Meropenem is a cell wall active antibiotic that impairs the integrity of the cell envelope.
It belongs to the group of carbapenems and is considered a broad spectrum antibiotic
because of its activity against gram positive and negative bacteria. Yet, it is not active
against methicillin resistant S. aureus (MRSA) [74]. Furthermore, meropenem is classified
as a reserve antibiotic. Therefore, its use is limited to severe, live threatening infection,
e.g., sepsis. The drug inhibits the peptidase domain of multiple PBPs, preventing the
transpeptidase to catalyze cross-linking of peptidoglycan [75]. The beta-lactam ring of
meropenem is remarkably stable against hydrolyzation. Only a few of the hundreds of
known beta-lactameses inactivate meropenem [76]. Meropenem is described, similar to
other beta-lactam antibiotics, as a bactericidal drug [26} p. 11].

Linezolid

Linezolid is a protein biosynthesis inhibitor that perturbs translation. Linezolid belongs
to the synthetic class of oxazolidinone antibiotics. The name oxazolidinone refers to the
central heterocyclic ring present in all drugs of this class. Linezolid is reserved for severe
nosocomial infections because of its outstanding feature to be active against multi resistant
gram positive bacteria 77}, 78]. The antibacterial spectrum includes MRSA, vancomycin
intermediate S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). Furthermore,
linezolid exhibits total oral bioavailability |78] and excellent tissue penetration into almost
all body organs [77], making the drug an indispensable tool for the clinician. Linezolid
binds to the 23S rRNA of the 50S subunit of the ribosomes. More specifically, it binds to
the A site, where the peptidyl transferase center is located [56]. As a unique mechanism of
the oxazolidinones, linezolid acts during the initiation phase of translation. This phase is
the rate limiting step of translation [78]. However, non-physiologically high drug concen-
trations are required to inhibit this step [56]. As such, the exact ribosomal state during
the inhibition is yet inconclusive and under current research. Linezolid is considered as a
bacteriostatic drug.

2.5 Bacteria

Bacteria is the taxonomic term referring to one of the three classical domains of life
[79]: Bacteria, Archaea and Eukaryota. The bacterial domain comprises astoundingly
adaptable microorganisms which survive even in harshest environments like the outer hull
of the international space station (Bacillus pumilus [80]), in radioactive waste water of
a nuclear plant (Deinococcus radiodurans) or in Arctic climates. Some bacteria cause
diseases, i.e., they are pathogenic. In the sequel, we give an overview of clinically relevant
pathogens and describe the bacteria considered in this thesis—including infections, therapy
and mechanisms of resistance. Beside the bacterial type, clinical pathogens may also refer
to viruses, fungi, prions and algae.

2.5.1 Clinical pathogens and Gram staining

In the clinical setting, key determinants of individual treatment success are pharmacoki-
netic properties of the antibiotic compound [21] and the spectrum of antimicrobial activity.
As the diversity of bacteria is large, a full specification of the spectrum of antimicrobial ac-
tivity is not feasible. Instead of specifying the susceptibility of individual organisms, coarse
grained differentiations for groups of pathogens are used. One of the most common meth-
ods to group bacteria is the Gram method. This method differentiates almost all bacteria
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based on their characteristic cell wall staining into gram positive and gram negative organ-
isms [81]. The few exceptions include Mycobacterium tuberculosis, which results in gram
neutral stain [82]. Clinically relevant gram positive pathogens are bacteria of the genera
streptococcus, enterococcus and staphylococcus. Problematic in terms of limited treat-
ment options [83] are infections with methicillin resistant Staphylococcus aureus (MRSA)
and vancomycin resistant enterococci (VRE). The group of gram negative pathogens com-
prises Haemophilus influenzae, Moraxella catarrhalis and the family of Enterobacteriaceae
including Salmonella, Escherichia coli, Yersinia pestis, Klebsiella and Shigella. Especially
problematic [83] are bacteria which synthesize extended spectrum beta-lactamases (ESBL)
or exhibit carbapenemase activity, in particular Klebsiella species and Escherichia coli.
These bacteria require the use reserve antibiotics. Further problematic [83] are Acine-
tobacter baumannii, Pseudomonas aeruginosa and Enterobacter species due to extensive
resistance development.

2.5.2 FEscherichia colz

The gram negative bacterium Escherichia coli (E. coli) is rod shaped and potentially
pathogenic. Its pathogenicity strongly depends on the site of colonization: interaction
between the human host and E. coli are symbiotic when the colonization is limited to
the gut. Outside the intestinal tract, E. coli causes a variety of diseases including in-
fections of the urinary tract and meningitis. The ability of some strains to produce
extended spectrum beta-lactamases (ESBL) implies serious clinical problems [83] as it
renders antibiotics of the chemical classes penicillins, cephalosporines and monobactams
as ineffective. As a model organism, the cellular physiology of E. coli is well known and
quantitatively described [24]. Thus, the bacterium is an ideal candidate to develop the
‘IPrototype cell-level model of bacterial population growth| (p. .

2.5.3 Staphylococcus aureus

The gram positive bacterium Staphylococcus aureus (S. aureus) is sphere shaped and
potentially pathogenic. Serious corresponding infections include endocarditis, pneumonia,
sepsis and toxic shock syndrome, which may all be nosocomial or community acquired.
It is estimated that 20% of the worlds population are carriers of S. aureus [84]. Clinical
difficulties in treating S. aureus infections arise due to resistance development against
almost all antibiotics showing activity against the bacterium. In particular infections with
methicillin resistant S. aureus (MRSA), vancomycin (intermediate) resistant S. aureus
(VISA, VRSA) threaten patients worldwide and require the use of the reserve antibiotics
like linezolid. Therefore our choice to analyze combinations of meropenem with either
linezolid or vancomyecin is of highest clinical interest: clincial guidelines [9, |10] recommend
both dual combinations as first line therapy in the same indication (initial empiric therapy
for hospital-acquired pneumonia (non-ventilator-associated) in high risk patients). The
choice to use the methicillin susceptible S. aureus (MSSA) strain ATCC 29213 as a test
organism is based on the high incidence for MSSA to be the pathogen causing hospital-
acquired pneumonia [10]. The results based on TKC experiments with S. aureus are
presented in ‘{Model based analysis of antibiotic combinations and beyond!” (p. .

2.5.4 Bacillus subtilis

The gram positive bacterium Bacillus subtilis (B. subtilis) is rod shaped and usually
not pathogenic. Under stressful conditions, such as the transition from exponential into
stationary phase, B. subtilis undergoes characteristic sporulation processes leading to the
formation of extraordinary resistant endospores. Because of its high importance for the
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Figure 2.4: Minimum inhibitory and bactericidal concentrations. Determination of the minimal
inhibitory and bactericidal concentration via serial dilution technique (twofold increments). After a first
incubation step (20h) the turbidity in the reaction vessels indicates growth (orange) or no growth (gray).
The lowest concentration showing no growth is the minimal inhibitory concentration (MIC). To determine
the minimal bactericidal concentration (MBC), those cultures who exhibit no growth are transfered into
antibiotic free medium. The MBC is the lowest concentration, at which no growth is observed after a
second incubation step.

industry, e.g., as fungicide or for biotechnological enzyme production, the organism is
among the best analyzed bacteria, including a full sequencing of its genome [85]. In this
study, we use morphological data from electron microscopy in |38 39| to parameterize
the cell-cycle of B. subtilis, see Table and Figure Application of the developed
age structured cell-cycle model allowed to describe the transition from exponential into
stationary phase with respect to the fraction of septated cells, see ‘{Septation dynamics|
[during shift-down|” (p. [37).

2.6 Antimicrobial in vitro activity

The ability to culture bacteria in vitro allows to assess the effects of antibacterial drugs in
the absence of animal or human hosts—with benefits (less sources of variability, more con-
trolled environment, less expensive and more humane) and drawbacks (less translational
power, no pharmacokinetic interactions) compared to corresponding in vivo experiments.
In the anti infective setting, the most established in vitro assays are static assays in terms
of reference to a single time point, which usually represents the end of the experiment.
Among the static assays, the determination of the minimal inhibitory concentration (MIC)
is the most prominent one. Harmonized protocols for individual bacterial species are avail-
able [86]. We summarized the in [86] suggested serial dilution technique in Figure

A mayor drawback of static assays in general, and of the MIC determination in partic-
ular, is the exclusive reference to the end of the experiment. The MIC is not informative
with respect to dynamic aspects like regrowth or ongoing prevention of bacterial growth,
which both are critical information for the evaluation of antibacterial effects. In contrast,
the TKC assay resolves the bacterial population size over time and thus gives a more
detailed insight into bacterial population growth dynamics.
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Figure 2.5: Time-kill curve assay. Time-kill curve observations yons,i; are repeated counts of the
bacterial population size over time t;; after the addition of known doses of one or more antibiotics into
the reaction vessel (indicated by red fill). The observations include Nc¢ trajectories, each comprising Nt ;
measurements, i.e., counts. The figure illustrates viable plating as a counting technique. The duration of
the pre-incubation period determines the growth phase at the start of the experimental duration.

2.6.1 Time-kill curve assay

Time-kill curve (TKC) observations are repeated counts of the bacterial population size
over time after the addition of known doses of one or more antibiotics into the reaction
vessel (for applicable counting techniques, see Table [2.1)). In the static TKC assay, a
standardized inoculum is pre-incubated in a constantly stirred or shaken reaction vessel
before the antibiotic is added. The duration of the pre-incubation period is the key
determinant for the initial growth phase (lag, exponential or stationary phase). The
observation time interval defines the experimental duration 7. In dynamic TKC assays,
additional pumps and filters enable control over the concentration time course of the
antibiotic(s) to mimic in vivo pharmacokinetic profiles. Data from dynamic setups were
not part of this study. However, extensive experimental durations up to 7g = 48h lead
to a significant change in drug concentrations due to degradation. Usually, several doses
of the antibiotic(s) are explored in addition to control experiments without drugs. See
Figure for a schematic of the TKC methodology.

2.6.2 Antibiotic resistance

In clinical practice [87], antibiotic resistance is quantified via the MIC of an isolate: the
isolate, that is a bacterial population, is considered resistant or susceptible with reference
to MIC breakpoints. These breakpoints are based on previously determined MIC values
for the same strain (as reported, e.g., in the EUCAST database [88]). Since antibiotic
resistance threatens the (still) ongoing success of antibacterial therapies [2} |83] and repre-
sents a mayor driver of bacterial regrowth in time-kill curve (TKC) data [16, 89, 90] we
outline general mechanisms of antibacterial resistance. On the cellular level, mechanisms
of resistance are diverse and fall into the following categories [1]:
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Firstly, prevention of access to the target due to reduced permeability or increased
efflux. For example, tet(A-E,1Y) genes encode for efflux pumps which confer resistance to
tetracycline in E. coli [58]. Secondly, modifications in the antibiotic target, e.g., by muta-
tion. And thirdly, modifications of the antibiotic, like the inactivation of chloramphenicol
via the chloramphenicol acetyltransferase [91, p. 353].

A bacterial population may have inherited resistance, i.e., the bacteria are intrinsically
resistant due to existing (mutated) genes, or they acquire resistance, which includes purely
phenotypic (non-inherited) modifications [92]. The time-scale for acquiring resistance
ranges from days to hours of antibiotic exposure. Such remarkable fast adjustments are
termed adaptive resistance and rely on epigenetic factors, population heterogeneity, high
mutation rates, gene amplification, efflux pumps and biofilm formation [93, [94].

In pharmacodynamic models based on the Emax function in eq. , adaptive re-
sistance may decrease either the Emax parameter [89] or the drug concentration C' [89],
which is equivalent to an increase in the EC50 parameter.

Based on [89, 90|, we developed a generic methodology to describe the time-depended
development of adaptive resistance. Let ARX = ARX(t) quantify the adaptive resistance
against some antibiotic, with 0 < ARX < 1, where ARX = 1 denoted full resistance. The
concentration of the antibiotic is denoted by X = X(¢). With notation introduced for
eq. , the reduced drug effect(s) were implemented by substituting the Emax and C
components of the Emax function(s) effected by adaptive resistance with

Emax - (1 — ARX) or C-(1—-ARX), (2.14)

implying that ARX was in unit fractional reduction. The development of adaptive re-
sistance was described as a time and drug concentration depending process with rate of

change

d
G ARX = Bx anx - (ARXumax — ARX) — kaeg arx - ARX (2.15)

where Ex arx denoted the selective pressure for resistance development and kgeg ARX
accounted for a corresponding fitness cost. The parameter ARX,,.« represented the max-
imum adaptive resistance value, implying 0 < ARX < ARXax < 1 for initial values
0 < ARX(0) < ARXjax < 1. The particularities of S. aureus resistance to meropenem
and vancomycin, where we applied this methodology, are discussed in detail in the corre-
sponding paragraphs in ‘{Integration of drug effects]’ (p. [51)).

2.6.3 Persistence

In contrast to resistance, which is defined with respect to the MIC of a whole bacterial
population, persistence is the ability of a specialized sub-population to survive transient
exposure to antibiotic concentrations far above the MIC [87]. The hallmark characteristic
of persistence is reversible dormancy in form of a phenotypic switch [95, 96]. Re-inoculation
of a persisting sub-population results in a similar MIC as the original population [87].
The trait of reversible dormancy is shared among persisters of numerous bacterial species
[96], although the biological mechanisms are different. The mechanisms include toxin-
antitoxin systems [97] and stationary phase respiration [98] (E. coli), or ATP depletion
[99] (S. aureus).

While switching from persisting to growing state is usually described by single rate
constant [95, [97], the effective rate of persister formation is stimulated by many factors
[100]: environmental insults [100] (starvation, oxidative or acidic stress, heat shock), social
engagement [100] (quorum sensing during transition to stationary phase [60, 101]) and
exposure to antibiotics [101] are reported amongst others. The stimulation of persister
formation is predominantly mediated via the alarmone ppGpp [97].
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From an evolutionary perspective, persistence represents an “insurance policy” against
antibiotic encounters [102] at the cost of reducing the reproductive capacity of the whole
bacterial population (depending on the size of the persister fraction).

2.7 Drug-drug interactions

Patient medication often includes the simultaneous use of multiple drugs [103] with the
aim to diversify or boost the effects of drug therapy. Drug-drug interactions on phar-
macokinetic and pharmacodynamic level are the consequence, e.g., via shared metabolic
capacity, crosstalk of signaling pathways [104] or chemical incompatibility [105]. Such
interactions may critically impact the overall success (or failure) of drug therapy.

Let pharmacodynamic summary endpoint (PSE) quantify the overall success or failure
of a two drug therapy. To emphasize the dependence of the PSE on the drug exposures(s),
PSE = PSE(A, B) denotes the summary endpoint of a combination of two drugs with
exposures A and B, e.g., dose or initial concentrations.

The classification of drug combinations as synergistic or antagonistic is defined with
respect to some reference. This reference is the definition of additivity, i.e., the expected
PSE of a drug combination based on the single drug exposures. To this end, typically
the concept of Bliss independence [106] or Loewe additivity |107] are used. Both defini-
tions result in an ezpected endpoint assuming pure additivity. Other references have been
derived from those basic definitions, see comparative review [108].

Bliss independence assumes independent drug action and effect additivity. As such,
it is more appropriate for combinations with different mechanisms of drug action. We
defined the expected endpoint based on Bliss independence by

PSEguss(A, B) = PSE(A, 0) + PSE(0, B) — PSE(A4, 0) - PSE(0, B). (2.16)

Note that “sham” combinations [107], where the interaction of a drug with itself is ana-
lyzed, do not result in unity of PSE(A, B) and PSEp)iss(A, B). Yet, we see this result not
as a drawback, because sham combinations clearly violate the assumption of independent
drug action and do not represent a realistic experimental scenario.

Loewe additivity automatically assumes dose additivity, because the dose of one drug
is substituted by an equipotent dose of the other drug resulting in

PSELswe,4 = PSE(A + PSE™(0, B),0) (2.17)
PSEpswe,5 = PSE(0, B + PSE™(4,0)), (2.18)

where PSE™! maps one drug exposure to an equipotent exposure of the other drug such
that both exposures result in the same response, i.e., PSE(A4,0) = PSE(0, B). We dif-
ferentiated between the substitution of exposure A or B (via PSErswe,a and PSEpswe, B,
respectively) because of potentially heterodynamic drug combinations. Drug combina-
tions are considered heterodynamic if the corresponding exposure-response functions are
of different shape [107], e.g., different values for v or Emax in the Emax model defined in
eq. . The Loewe concept results for homodynamic, i.e., non-heterodynamic combi-
nations in a unique expected endpoint

PSELswe, 4 = PSELswe,B- (2.19)

This is not the case for heterodynamic combinations, where either one, two or none are de-
fined. Accordingly, the Loewe is concept more appropriate than Bliss independence when
two drugs have similar mechanisms of action and homodynamic behavior is expected.
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Finally, we defined synergy or antagonism as deviation A of the predicted PSE (based
on the predicted effect for the drug combination) from the expected PSE (based on the pre-
dicted effect for single drugs and its expected combined effect based on Bliss independence
or Loewe additivity). For Bliss independence it is

Apiiss(A, B) = PSE(A, B) — PSEpyis(A, B), (2.20)

and analogously for Loewe additivity. Well defined summary endpoints (0 < PSE < 1)
imply —1 < Agijies < 1, where negative deviation Apjiss < 0 indicates antagonism. Positive
deviation Apyss > 0 indicates synergy. No deviation Apyss = 0 defines additivity.
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While susceptibility assays for MIC determination rely in general on good harmoniza-
tion and international standards [86], the experimental setups for time-kill curves (TKC)
are quite diverse in terms of protocol. A model that allows to account for these differences
should integrate the following groups of parameters:

(i) strain-specific parameters, which are transferable between different experimental se-
tups and thus broaden the applicability of the approach

(ii) drug-specific parameters that might be general or specific to a strain

(iii) experiment-specific parameters, which are expected to vary between experimental
protocols

As a consequence, experimental data of diverse origin could be combined. Finally, the
mechanistic integration of drug action is a prerequisite for understanding and quantifying
the effect of antibiotic drug combinations. In the following, we develop a prototype cell-
level model satisfying the mentioned criteria.

To this end, we first considered bacterial growth in the absence of antibiotics, and
describe the characteristics of a reference cell in the bacterial population. Drug action
was included by modulation of one or more of these characteristics—according to the
mechanism of action of the drug.

Adaptational changes have been described [44] for bacterial cultures that are exposed to
drugs for prolonged periods. Potentially relevant for antibiotic drug action, we accounted
for such adaptations in the model. Finally, we also considered bacterial growth in changing
growth environments.

3.1 Growth in the absence of antibiotics

Since bacterial persistence is a typical growth behavior observed in time-kill curves, we
assumed for our model that the bacterial population consisted of two sub-populations:
normal cells at counts n = n(t) that grew, divided and were subject to cell death, and
size of the persister population p = p(t) that were dormant (yet alive). This results in the
total bacterial population size

N =N(t) =n+p. (3.1)

Two sub-populations are the minimum to account for a persisting population during drug
exposure. In the model depicted in Figure |3.1} normal cells grew and died with rate con-
stants kg and kq, both in units 1/h. Furthermore, growth was limited by a carrying capac-
ity Nmax, which accounted for experiment specific nutrient limitations, and—important for
the consideration of persister cells—space limitations. The logistic term was introduced
in eq. . Normal cells switched to persister phenotype and wvice versa with effective
rate constants kn, o and kp,er. Since the persister fraction was only observable during
antibiotic exposure, the effective rates included basal and persister formation triggered by
antibiotics. This yielded the following system of ODEs for the rate of change of normal
and persister cells:

d
an = (kg (1= (n+p)/Nmax) — kd) N — Knpeff * 0+ Kpneff - D (3-2)
d
ap = knp,ef‘f N — kpn,eff -p (33)

Experimental setups typically specify the starting inoculum N(0) = n(0) 4+ p(0). Depend-
ing on the experimental protocol, in particular the preparation of the bacterial culture
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Figure 3.1: Effects of antibiotics on bacterial growth dynamics. On population level, the total
concentration of cells N is sum of two sub-populations: normal, growing (n) and resting persister (p)
cells. Switching from growing to resting state and back is described by rate constants knp s and kpn es,
respectively. Antimicrobial concentration C stimulated death rate constant kq via death model and also
inhibited growth according to growth model including cellular characteristics (red).

before the experiment, the relation between n(0), p(0) and N(0) varied substantially. We
parameterized the initial conditions as n(0) = (1— f;,)-N(0) and p(0) = f,- N(0). Thereby
we defined the fraction of persister cells

folt) = 2 (3.4

() +p(t)

A typical time course of n(t), p(t) and fy(t) is shown in Figure In the exponential
phase, the persister fraction reached a quasi steady state

knp,eff
)
net 1 knp,eff + kpn,eff

To.exp ~ - (3.5)

in which normal cells largely out-competed persister cells (see ‘{Persister fraction during]
lexponential growthl” (p. for derivation). The persister fraction was parameterized in
terms of the net growth rate constant

ket = kg — ka, (3.6)

which described growth in the absence of capacity and nutrient limitations. Only this
parameter is usually inferable from TKC data. To determine k, and kq from kpet, we
assumed based on data in [109] that the probability of cell death per generation pg = 0.01
was constant across generations and cell maturations (no cell senescence). This yielded
kq = pq - kg and finally

kg = knet/(l - pd) and kd = knet 'pd/(l - pd)- (37)

In the stationary phase the persister fraction was solely determined by the switching rate

constants

knp,eff

fp,stat - L (38)

np,eff + kpn,eff

Typically, we had knp off, kpn,eff << Enet [99], Implying fpexp << fpstat (see also Figure [3.2)).
Depending on the experimental protocol, the initial conditions were thus defined with the
persister fraction reached in the exponential phase f, = fpexp Or in the stationary phase

fp = fp,stat-
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Figure 3.2: Bacterial population growth and persister fraction. E. coli B/r cells in drug-free
media simulated with parameters estimated from the training data set as described in ‘{Single drug time]

kil curves (p.[37). (A) Population dynamics during transition from exponential to stationary phase.
(B) The persister fraction f, exhibited two characteristic values (dashed lines): quasi steady state during

the exponential phase fp cxp, followed by transition to steady state in stationary phase fp stat, Wwhere the
persister fraction became maximal.

3.2 Cellular characteristics

Antibiotic drug molecules act according to their mechanism of action on the cellular level.
The effect of antibiotic drugs on the population level, observed and quantified as a change
in bacterial population size, originates from drug induced perturbations on the cellular
level. Thus, we explicitly included a cellular level into our model and a link to population
growth and death. We exploited the interplay between growth rate and cellular charac-
teristics, described in [24} [110]. To this end, we used the concept of the cell-state S, as
introduced with eq. . The cell-state comprised cellular characteristics that allowed
(i) to represent the mechanism of action of the drug by modulation of one or more of
its elements; (ii) to capture key biological processes that determine growth; and (iii) to
describe adaptational processes of the cells during prolonged drug exposition.

Based on definitions and notation in [24], we selected the cell-state S = S;—1 11 with

S = (DUCI'/prib‘a a'a/p01'7 ft7 pr Cs, \Ijs’ apa cp7 /8r7 PC7 Mcell) P (39)

where, e.g., ¢, denoted the peptide chain elongation rate per active ribosome, and j;
denoted the fraction of active ribosomes, see Tables and Given a detailed charac-
terization of the cell-state at various growth rates, the individual cellular characteristics
were determined solely from the growth rate constant [24} |46] via the mapping

kg 1 i (Fg). (3.10)

Bremer and Dennis had determined the relationship experimentally under various growth
conditions corresponding to a range of growth rate constants [24]. Based on the exper-
imental measurements for E. coli in [24], we estimated continuous representations, see

Figure and Tables and The estimation method is described in ‘{Cell-state]
Estimatiod (p. 0.

Obviously, variations on the cellular level, i.e., changes in S;, may impact growth. For
antibiotic perturbations, we exploited the following two links between cellular character-
istics and the growth rate constant. Firstly, each invertible cellular characteristic S; (i.e.,
all S; in Table with b; # 0) allowed to infer k, as a function of S, i.e.,

Si — kg(SZ) (3.11)
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Table 3.1: Cellular characteristics as functions of the growth rate constant. Cellular character-
istics S; = a; - kgi for the reference E. coli and S. aureus cell as power functions of the exponential growth
rate constant kg in 1/h. Not available parameters are marked by N/A.

E. coli S. aureus
Si Description and units a b a b References
Ny Number of 103 ribosomes per cell 25.50 1.89 37.96 1.07 |24, 147
. . 8 . .
P. Protein mass per cell in 10° amino acid 12.70 198 16.75 0.48 (24l 47 [111)
(aa) residues
. Septl‘de chaln.elongatlon rate per ac- 1743 0.39 11.97 0.42 {24l a7}
ive ribosome in aa/s
Br Fraction of active ribosomes 0.80 0 1.00 0 124]
Fraction of active RNA polymerase
s synthesizing rRNA and tRNA in % 51.26 0.86 N/A N/A 24
Bp Fraction of active RNAP in % 22.95 0.36 N/A N/A 124]
ap Fractlon of total protein that is RNAP 1.97 0.39 N/A N/A f24)
in %
Pe g Protein mass per 10 cells in pg 239.07 1.05 N/A N/A |24]
Re g RNA mass per 109 cells in ug 73.63 1.90 N/A N/A |24]
Meen Dry weight per 10° cells in pg 413.25 1.31 N/A N/A |24]
nucl./prib. (lilii)s(z)r;ucleotide residues per rRNA pre- 6000 0 N/A N/A 24)
aa/pol. Amino acid residues per RNAP core 3407 0 N/A N/A 124]
fe Fraction of stable RNA that is tRNA 0.14 0 N/A N/A |24]
Stable RNA chain elongation in nu-
o cleotides 1/s 85 0 N/A N/A [24)
nucl./rib. iiiznucleotide residues per 70S ribo- 4566 0 N/A N/A 24)
fs Fraction of RNA that is stable RNA 0.98 0 N/A N/A |24]

Table 3.2: Cell-cycle characteristics as functions of the doubling time. Duration of the bacterial
growth phases (B, C and D period) as functions of the doubling time 7, all in min. It is D(7) = e and
C(r) =a+ (b7°)/(7° 4+ d°), while B() =7 —C — D for 7 > C + D; and B(7) = 0 otherwise.

Parameters
Bacterium a b c d e References
E. coli 45 13 15 50 20 124]
B. subtilis 42 35 4 80 26 138 [39]
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As expected, under balanced growth conditions, each cellular characteristic S; resulted
in the same growth rate constant kg4 (.S;). Secondly, it has been shown [24, 110] that the
growth rate constant is also a function of a combination of key cellular characteristics:

\I’s<1 - ft)csﬁp apcp/Br
nucl. /prib. aa/pol.’

S+ ky(S) = SF - \/ (3.12)

where the factor SF = 3600s/h accounted for difference in units between ¢y and ¢, (in
1/s) and kg (in 1/h). In summary, egs. (3.10), and assumed that in the
absence of drugs and during balanced growth, the growth rate constant predominantly
determined the cell-state in a one-to-one relation. This interrelation was a key for our
cell-level approach because it allowed to switch between the population and cellular level.

3.3 Antibiotic perturbations

During balanced growth, bacteria exhibit well defined cellular characteristics which ensure
optimal growth, see ‘{Growth phases/’ (p. (7)) and ‘Balanced growth and the cell-state]
(p. . Upon antibiotic exposure, this balance is perturbed. In the following, we define
how these perturbations effect the cell-state.

Antibiotic effects are typically analyzed and quantified with respect to some control
experiment without drugs. We used the control experiments to infer the associated control
(net) growth rate constant Apet.c. The control growth and death rate constants kg and kq
were determined based on eq. . The corresponding cellular characteristics S, defined
a reference (control) cell-state according to egs. and . In our model, exposure
to antibiotics was assumed to directly perturb one or more of the cellular characteristic of
this reference cell-state according to the mechanism of action of the drug

Se  — S, (3.13)

antibiotic action

where subscripts ¢ and p abbreviate control and perturbed, respectively. As it is commonly
done, we realized this via a variation of the parameters according to the introduced Emax
model which linked the antibiotic concentration to the degree of perturbation (see example
below). We termed these perturbed cellular characteristics “directly drug-controlled”.
We considered the antibiotics tetracycline and chloramphenicol, both protein biosyn-
thesis inhibitors that lower the fraction of active ribosomes 3, as described in detail in
‘IPharmacological profiles for drugs used in this study|" (p.[L7]). To determine the resulting
growth rate corresponding to the perturbed cell-state S;,, we assumed that the (invert-
ible) cellular characteristic S; with smallest corresponding growth rate constant kg (.S;)
determined the perturbed growth rate constant, since it most severely limits growth. The
assumption was based on the idea of Liebig’s law of the minimum [112] and resulted in

kg p = min kg(S;). (3.14)
7
We modeled the induction of cell death from antibiotic exposure via the Emax model
described in eq. (2.13). The relationship between antibiotic concentration, and growth /
death effects is illustrated in Figure [3.1

Example: Tetracycline at concentration C' reduces the fraction of active ribosomes

according to
= 1 @ 3.15
P 6&6'( ~ EC507 + C7 —i—C7>’ (3.15)
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where EC50 = EC50, denoted the concentration corresponding to the half-maximal effect,
and v = 7, denoted a Hill exponent. We assumed that tetracycline exposure may result
in full, i.e., 100% inhibition of translation. This has been observed experimentally [113].
Additionally, we assumed that as an immediate consequence, the intracellular concentra-
tion of amino acids rises due to decreased translation. Because of the increased amino
acid availability, the peptide chain elongation rate of the active ribosomes was assumingly

effected via o
Cp,p = Cp,c T (Cp,max — Cp,c) - EC507 +C’ (3.16)

with ¢p max denoting the maximal protein chain elongation rate in addition to the same
notation as in eq. (3.15).

The product e, = ¢, - f; is known as the ribosomal efficiency [24]. Following expo-
sure to tetracycline, the perturbed ribosomal efficiency e, was strongly decreased. We
assumed that no other cellular characteristic was directly drug-controlled by tetracycline.
According to eq. , the reduced ribosomal efficiency e, ;, was the cellular characteristic
that most severely impaired growth, i.e., kg, = kg(erp). This example was analogously
applied for chloramphenicol.

The drug effect on the death rate constant kq;, was described as a sigmoid function

v

kd,p = kd + EmaX . m,

(3.17)
where Emax = Emaxgq denoted the maximum induced death rate constant, C' the drug
concentration, EC50 = EC504 the concentration of half-maximal effect, and v = 4 the
Hill exponent.

3.4 Metabolic adaptation processes

During prolonged antibiotic exposure on the time-scale of hours, bacteria adjust their cell-
state to adapt to the perturbations, eventually resulting in some adapted cell-state [44].
After defining the perturbed cell-state, we continue in the following to define this adapted
cell-state

Sy — S, (3.18)

adaptation

with associated growth rate constant kg ,. Subscripts p and a abbreviate perturbed and
adapted, respectively. We assumed for simplicity that the gradual transition from the
perturbed to the adapted growth rate constant followed a first-order adaptation process.
We parameterized this process with rate constant A. During the adaptation process, the
growth rate constant ks = kg (t) changed over time according to

d

e =2 (kga — kg) (3.19)

with k¢(0) = kg, upon antibiotic exposure at time ¢ = 0. To determine the adapted growth
rate constant, we decomposed the cell-state 5, into three subsets: cellular characteristics
Sdirect that were directly effected by the drug; Singirect that were indirectly effected by the
drug, depending on the specific mechanism of action; and Sgrowtn that were growth rate
controlled and subject to the adaptation process.

Ezxample: For tetracycline and chloramphenicol, the adapted cell-state was partitioned

into the following groups: directly drug effected characteristics Sqirect = (Br, Cp, €r) de-
fined in S,. As reported in [63, |114, 115, the peptide chain elongation rate ¢, was
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a sensor to induce changes in RNA (R ,e) and protein mass (P, P e) of the refer-
ence cell. Since ¢, was directly perturbed by the antibiotic, we defined the indirectly
drug effected characteristics as Sindirect = (Re,ug, Pes Peug). Hence, for S; as part of
Sindirect; We assumed S; = Si(cpp). This functional dependence was realized by first
determining the growth rate constant associated with ¢, in eq. , and then using
this growth rate constant in eq. to determine .S;. Growth rate controlled character-
istics Sgrowth = (nucl./prib.,aa/pol., fi, cs, Vs, ap, Bp, B, C,D) with growth rate constant
kg p. Together, this defined the adapted cell-state Su = (Sdirect, Sindirects Sgrowth ), and thus
based on eq. the adapted growth rate constant

kga = kg(Sa)- (3.20)

It remained to determine the adaptation rate constant A in eq. (3.19). This was done
based on a cell-cycle and maturation distribution model described in the section ‘[Single

cell replication|” (p. E[) During balanced growth, cellular characteristics are largely time-

invariant [24, 43, 44]. This was also the case for the distribution of maturation stages and
cell ages [25, p. 10]. Upon a change of environment (a shift), e.g., a nutritional shift-up in
the growth rate or shift-down due to antibiotic exposure, the pre-shift distribution was per-
turbed, resulting in a post-shift distribution. Over time, and if the environment remained
constant, eventually a new time-invariant distribution was reached. We determined the
adaptation rate constant A from the dynamics of this adaptation process.

The cell-cycle characteristics shown in Figure [2.2] were functions of the target growth
rate constant kpost-shifta i.e., B = B(kpost-shift)a C= C(kpost-shift) and D = D(kpost-shift)-
The corresponding functions are defined and parametrized in Table In the case of a
drug-induced shift-down, we set kpost-shift = Kg,a, since the adapted growth rate constant
described growth under prolonged antibiotic exposure.

For the strain E. coli B, Plank et al. [116] have estimated the coefficient of variation CV
for the doubling time 7 in several different growth media over three generations. They have
inferred an approximately constant value of CV = 0.226 for a wide range of of doubling
times (35 < 7 < 95min). For B. subtilis, we estimated based on data in |117] a similar
value of CV = 0.210. According to the excursion on p. [0 this implied a comparable
number of m = 22 and m = 23 stages for E. coli and B. subtilis, respectively.

Upon perturbation, the duration of the B and C periods changed (the D period was
relatively constant). As a consequence, the overall progress of a single cell changed within
the cell-cycle, i.e., its fractional completion of the cell-cycle. In contrast, progress of a sin-
gle cell did not change within its period, i.e., the fractional completion of its B or C period.

Ezample: In Figure the pre-shift and post-shift distributions are shown for the case
of a shift-down from ks = 0.4/h to kpost-shitt = 0.2/h. As exemplary cells, we choose those
which have replicated half of their chromosome at the instant of the shift and were thus
half-way in the C period (s &~ 11 of 22). In the post-shift distribution the same cells were
located in a more mature stage (s ~ 16 of 22), due to the shifted duration of the cell-cycle
periods.

The above outlined perturbation of the balanced growth distribution of maturation
stages defined a perturbed post-shift distribution Fj,ost-shife, which we used as the initial

condition for egs. (2.8)-(2.9), i.e., F(to) = Fpost-shitt- By setting Fireshitt = F;D & we
assumed that the bacterial culture was initially in steady state age distribution. The
post-shift distribution Fj,ost-shite Was defined as follows:

Fs,post—shift = Ws - Fs,prc—shift7 (321)

34



Chapter 3. Prototype cell-level model of bacterial population growth

16
Distribution of maturation stages =1 |
during shift-down
14} .
Pre-shift (balanced growth) Post-shift 13 ]
0.1 0.1

L 0.05 LL 0.05

6 . .
0 10 20

time in h

Figure 3.3: Progress of cells through the maturation cycle. Distribution of maturation stages
during shift-down from pre-shift k; = 0.4/h to kpost-shitt = 0.2/h. Left histogram shows the normalized
frequency F' for each maturation stage s starting in balanced growth. Each stage is part of a cell-cycle
period B (yellow), C (blue) or D (green). A shift-down lead to a temporal right-shift of this distribution,
shown in the right histogram as the post-shift initial condition. Solving a system of ordinary differential
equations, starting with the post-shift distribution, we determined the population mean of s—denoted
by p—over time (red crosses) which fitted a damped oscillation function (blue line). The transition rate
constant A\ was identified with the oscillatory damping rate constant (envelope function as dashed blue
line).
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where the re-weighting factor was defined as

fOB(kg) F;Dg ds

fB(kpost—shift) Fbg dS ’
0 S

(3.22)

Wg =

for all stages in the B period and analogously for s € C' and s € D.

Due to the discrete nature of the compartment model, a few special cases needed
further specification: if no post-shift compartment was linked to the B or C period, which
was the case for fast growth ( kpost-shite > 1/h) and very slow growth (kpostsnite < 107%/h),
respectively, then all pre-shift B or C period cells were transferred to the first post-shift
compartment of the following period. The relative abundance of cells in the interval [a, b]
within one replication period (B + C' + D) were given by the following integral

b 2
bg _
/a Fg2ds _log(q +1)-(¢+ 1)(a/(B+O+D)(m—1))+1 (3.23)

2q
- log(q +1) - (¢ + 1)®/(B+C+D)(m—1))+1” (3.24)

with ¢ = %/2—1. Limits a and b were in unit min. The progress through the cell-cycle was
denoted by stage s of total m stages. Hence, as before mentioned, each cell remained in
its relative position within its period, but its overall progress changed within the cell-cycle,
i.e., its stage relative to division.

We finally determined A from the relaxation of the oscillating mean stage of cell-cycle
progress pu(t) = Y 0t s - Fs(t), as shown in Figure The mean relative maturation
stage followed a damped oscillation, described by

g(t) = piss + acos(v -t + @) exp ((A) - t), (3.25)

where pgs denoted the new stationary post-shift mean maturation stage, v the frequency
and ® the phase shift. We estimated A by fitting g(¢) to the predicted change of p(t) over
time.

As expected, the larger the variability of the doubling time 7 in terms of CV, the
shorter was the observed duration to reach balanced growth again. Oscillations arose
from the unsteady re-entering of newborn cells into the cell-cycle until balanced growth
was reached.

3.5 Summarized prototype cell-level model of bacterial pop-
ulation growth

In the following we summarize the detailed prototype model. The bacterial population

was defined in terms of the concentrations of normal and persister cells, n = n(t) and

p = p(t), respectively, and the growth rate constant k; = kg(t). After some initial lag
time, population growth was described by

%n :(kg(1 — (n+ D)/Numax) — k:d> ‘n

- knp,eff -+ kpnyeff P (326)
d
&p = knp,eff ‘n = kpn,eff D (327)
d
T (kga — kg), (3.28)
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with initial values n(0) and p(0) resulting from eq. (3.4). We set the initial growth and
death rate constants to the perturbed growth and death rate constants by kg(0) = kg

and kq = kqp, according to egs. (3.14) and (3.17)). The parameters Npax and Kpet,c were
set to values as stated in the corresponding references or estimated separately. Finally,

the values of A and kg, were predicted using egs. (3.12]) and (3.25]), respectively.

In the absence of a drug, death effects were negligible and the persister fraction could
not be inferred from a growing culture. In this case, the part of our model describing
the population dynamics, i.e., egs. - simplified to good approximation to a
logistic growth model, see eq. . The cell-cycle model described below eq.
remains compatible with this simplification as demonstrated in the prediction of septation
dynamics.

3.6 Applications of the prototype model

In the following, we present results based on the prototype model. Beyond time-kill curve
dynamics, we described septation dynamics and intracellular RNA mass fractions. Finally,
we predicted the lag between increase in cell number and biomass.

3.6.1 Single drug time-kill curves

To study bacterial growth dynamics under antibacterial perturbations we assessed TKC
experiments for different E. coli strains that have been exposed to static concentrations
of tetracycline in several growth media.

We partitioned the data into training and test data sets. The resulting fit for the train-
ing data set is shown in Figure[3.4] A. Strain- and drug-specific parameters are summarized
in Table where E. coli B/r was used as a reference strain.

The parameter EC504 exceeded its growth inhibiting pendant EC50, by a factor of
50. This was in agreement with a high MBC/MIC ratio, which was expected for a bac-
teriostatic drug like tetracycline [53]. We did not observe a saturation of the killing rate
even at high concentrations of tetracycline and thus fixed Emaxy to a high value to in-
crease parameter identifiability. Missing saturation of the killing effect may be related
to the quantification method in CFU/ml, which relied on the countable regrowth after
drug removal and the resulting lower limit of quantification, see discussion on p. The
Hill coefficient v, was separately estimated based on data in [113] and fixed in subsequent
analyses. Due to the sparse data situation for bactericidal drug concentrations, we fur-
thermore fixed the switching rate constant kpn s based on [95]. The parameter knp cf
represented both, triggered persister formation (stationary phase and antibiotic exposure)
and continuously generated non-growing cells, as a single rate constant.

We validated our predictions using data sets from experimental setups with different
growth media and strains, as listed in Table The different strains showed different
sensitivities to tetracycline. Based on the validation data sets, we estimated an up to
16-fold variation in EC50 values, see experiment-specific parameters in Table The
model showed very good predictive power for all validation data sets, see Figure [3.5
For detailed information regarding strains, growth media, antibiotic concentrations, used
counting techniques and duration of the experiments, see also Table

3.6.2 Septation dynamics during shift-down

Funakoshi et al. [128] have simultaneously measured bacterial concentrations N and the
fraction of septated cells fsp for B. subtilis over time. Septated cells are cells which
show signs of a binary fission, which ultimately leads to division [39]. While the bacterial
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Figure 3.4: Time-kill curves (E. coli, TET, exp. phase, prototype model). E. coli B/r cells
exposed to constant tetracycline concentrations. Bacterial concentrations N were measured over time
(crosses) and simulated by the prototype model (solid lines). (A) The training data set was used to
estimate the strain- and drug-specific parameters, which are summarized in Table[3.3] Experiment specific
parameters were estimated individually for each data set (including validations) and are compiled in
Table (3.5l For detailed information regarding the data sets, e.g., counting techniques or growth media, see
Table[3:4 Exposure to bactericidal drug concentrations revealed a persisting sub-population which evaded
eradication. Note that the persister related parameters were not estimated, but fixed based on literature
data. (B) & (C) The predicted and observed time-kill curve data from validation sets 1 and 7 are shown
representatively.
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Figure 3.5: Goodness of fit plot prototype model. As validation, the detailed prototype model
was evaluated with data from experiments with different E. coli strains and growth media, see Table [3.4]
The goodness of fit plot shows the observed versus predicted bacterial concentrations N in CFU/ml. We
observed excellent correlation between observations and model predictions.

38



Chapter 3. Prototype cell-level model of bacterial population growth

Table 3.3: Strain- and drug-specific parameter estimates for the prototype model. Estimation
was performed in the training dataset, where E. coli B/r was exposed to tetracycline.

Parameter Unit Comment Value References

EC50g mg/ml EC50 tetracycline growth inhibition 0.0003 estimated

Ve _ s?ope factor tetracycline growth inhibi- 1.42 [113]
tion

EC504 mg/ml EC50 tetracycline death induction 0.015 estimated

Yd B s?ope factor tetracycline death induc- 1 fixed
tion

Pd - cell death per cell per generation 0.01 |109]
effective  switching rate constant

Fnp, eft 1/h (n > p) 0.01 fixed
effective switching rate constant

Kpn,eft 1/h (p— n) 0.1 [95)

Emaxg 1/h Emax tetracycline death induction 10 fixed

Cp.max aa/s Maximum peptide chain elongation 28 24, 11181120

rate

Table 3.4: Experimental details E. coli exposed to tetracycline. During the development of the
prototype model, we used digitized data. The table comprises experimental methods and references to the
corresponding data sources.

Dataset Strain Medium Detection Duration Measurements References
ini . Antibiotic Viable ]
Tr E. coli B K 121, Fig.
aining coli B/r medium 3 plating 5h 7 (121} Fig. 3]
) ibioti Viabl .
Validation 1 E. coli B/t Antibiotic 1abe 5h 38 [121} Fig. 2]
medium 3 plating
R . Antibiotic Viable
Validation 2 E. coli B/r medium 3 plating 4h 16 |122]
R E. coli Mueller Optical
. 12
Validation 3 ATCC 25922 Hinton density 24h 14 (123]
E. coli Mueller Viable
o : 124
Validation 4 51A0150 Hinton plating 24 h 8 | |
S E. coli Lysogeny Viable
. 12
Validation 5 ATCC 35218 broth plating 6h 12 |125]
R E. coli Mueller Optical
. 12
Validation 6 MC1655 Hinton density 5h 27 |126]
. Viabl .
Validation 7 E. coli B/r Custom lla. y 6h 40 |127, Fig. 4A]
plating
) Viabl .
Validation 8 E. coli B/r Custom e 6h 36 [127, Fig. 4B]
plating
. Viabl .
Validation 9 E. coli B/r Custom lla. © 6h 37 |127, Fig. 4C]
plating
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Table 3.5: Experiment-specific parameter estimates for the prototype model. The listed pa-
rameter values were used to describe the listed datasets, where Ny denoted the starting inoculum, Npmax
the carrying capacity, ti.g the lag time, knet,c the apparent control growth rate constant, f, the method
used to determine the initial persister fraction and SFrcs0 was the scaling factor on EC50 values for strains
other than FE. coli B/r, which has been used in the training data set.

Parameter values

Dataset Ny Nmax tlag knet,c fo SFEcs0
Training 1.92 x 106 8.5 x 108 0 2.0 stat. 1.0
Validation 1 7.84 x 10° 8.5 x 108 0 1.7 exp. 1.0
Validation 2 1.15 x 108 10° 0 2.6 exp. 1.0
Validation 3 10° 3.3 x 1011 4 2.2 exp. 16.0
Validation 4 3.16 x 10° 4.7 x 10° 0 1.7 exp. 10.5
Validation 5 4.23 x 108 1010 0.5 2.0 exp. 3.0
Validation 6 3.53 x 107 2 x 108 2.7 1.2 exp. 5.0
Validation 7 several 2.3 x 10° 0 2.1 exp. 1.0
Validation 8 several 2.3 x 10° 0 2.1 exp. 1.0
Validation 9 several 2.3 x 10° 0 2.0 exp. 1.0
Unit CFU/ml CFU/ml h 1/h - -

population growth dynamics followed the typical course of a batch culture during the
transition from exponential to stationary phase, the septation dynamics showed an abrupt
increase in the fraction of septated cells at some time point, which we interpreted as the
start of the transition process. Using only the prototype model, the time point of the
start of the transition process and the population growth data, we were able to predict
the septation dynamics.

By definition septated cells are in the D period, as illustrated in Figure 2:2] The
solution of the logistic growth model in eq. fitted the bacterial population dynamics.
We estimated Ny = 1.6 x 10" CFU/ml, Npax = 2.0 x 108 CFU/ml and kyet = 1.10/h. The
resulting fit is shown in Figure (A).

We determined the fraction of septated cells as Fip = > . Fs, where s € D denoted
all indices s that corresponded to stages in the D period. Since the pre-shift distribution
was determined during balanced growth, it was kg = kpet assuming that kq < kg. In the
stationary phase, it was kner =~ 0, implying kg ~ k4. Since the data did not allow to infer
kq, we assumed a physiologically-motivated range of (post-shift) growth rate constants
0.05 < Epost-shitt < 0.1/h. The resulting predictions are shown in Figure (B) for five
exemplary post-shift growth rates.

While the transition from exponential to stationary phase was gradual for the pop-
ulation dynamics, it was switch-like for the cell septation process. Our model correctly
reproduced the septation dynamics without any estimation step involved. When the ex-
periment was stopped, the fraction of septated cells was still decreasing without showing
any signs of a new stationary level. Our model predicted an oscillatory approach to the
new stationary level, including the steady state value itself. These oscillations resulted
from replication waves, which were induced into the system by the change of growth rate—
the bacterial culture became partially synchronous. To verify these predictions, one may
exploit the prototype cell-level model to optimally design further experiments. From the
predictions we moreover inferred that the time to reach steady state depended on the
variability of the doubling time: the larger CV, the faster the steady state was reached.
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Figure 3.6: Septation dynamics. (A) Bacterial concentration N of B. subtilis (crosses) during transi-
tion from exponential to stationary phase. The fitted logistic growth model is shown as a black line. (B)
Corresponding fraction of septated cells (crosses). Starting in balanced growth, the fraction of septated
cells was predicted for a potential range of target growth rate constants, each as a single curve. Note that
in the stationary phase, growth and death rate balanced each other. Each transition was characterized by
an abrupt increase of the fraction of septated cells, which marked the start of a transition process. The
extrapolation exhibited an oscillatory fade-out to a new steady state value, which was not apparent from
the experimental data due to the short experimental duration.
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3.6.3 Impact of antibiotic exposure on RNA mass fraction

In their innovative article on the regulation of cell-level characteristics, Scott et al. have
found dramatically increased RNA mass fractions during exposure to protein biosynthesis
inhibitors [44]. We challenged our model with this experimental data |44, Supplement].
In the corresponding experiments, the growth of E. coli B/r cells has been systematically
controlled by the nutrient quality and exposure to chloramphenicol. The RNA and protein
mass per cell have been quantified under balanced growth condition after prolonged drug
exposure and was found to increase with drug concentration and nutrient quality. The
prototype cell-level model was able to reproduce these dynamics.

In our model, the cellular RNA mass fraction frana = Re g/ Pe g is the ratio of two
cellular characteristics in the adapted cell-state. Chloramphenicol lead to a decreased
fraction of active ribosomes and increased peptide chain elongation rates, as outlined in
eqs. and , respectively. The growth rate constant ke decreased with increas-
ing drug concentrations and approached static population sizes at high concentrations.
This is in agreement with the bacteriostatic nature of the drug. Based on the data from
[44], we estimated EC50, = 0.0024mg/ml and v, = 1.22. Since reportedly only sub-
lethal drug concentrations C' = 0, 0.0006, 0.0013, 0.0026 and 0.0039 mg/ml were used [44],
we assumed that death related effects on E. coli B/r were negligible for chloramphenicol
concentrations CHL < 0.0039 mg/ml. The experimental data and model predictions are
shown in Figure Across the six control experiments, frya increased linearly with the
apparent exponential growth rate knet (black dashed line). In the model, this was the
result of the relation between growth rate and cellular characteristics P. and R.. In the
presence of drugs like chloramphenicol, the steepness of this linear relation changed and
frna was determined by both kpet . and C' (color coded thick lines).

The difference in frna between the drug-perturbed and control state was maximal for
nutritionally unfavorable media (small knetc). In such media, cells are under stringent
control. Therefore, the relaxation of the stringent control during the adaptation process
has a marked impact on the cellular composition. This impact was a result of an increase
in ¢p. The smaller ¢, in the control state, the more pronounced it can be adapted by
the cell, up to the maximal peptide chain elongation rate c¢pmax (limited by physical
constraints). We estimated c¢pmax = 28aa/s per active ribosome, which is about 25%
higher than the rate observed in experiments without drugs [24, 118-120] for E. coli. This
indicated that the drug-induced translational block lead to higher translation rates of the
remaining active ribosomes.

3.6.4 Lag between increase in cell number and biomass

Optical density measurements deliver fast and cheap information on the total biomass of
the population—but lack information on the viable count (see Table . Colony counting
fills this gap, but demands a high work load. The developed prototype cell-level model
differentiated between cell number and population mass and thus linked both variables.
For bacteria which have very long replication times, e.g., Mycobacterium tuberculosis, a
lag time between an increase in cell number and in population bio-mass is potentially
substantial and should be corrected for. Also the duration of the lag phase depends on
the quantification method of the bacterial population size [129)].

To demonstrate how a model based approach can translate between experiments with
different quantification methods, we modeled a virtual experiment in which an E. coli
B/r population was assumed to grow exponentially with k; = 0.5/h. In this simulation,
nutrients were added to the medium after 2 h supporting faster growth with kg , = 1.5/h.
We predicted both, the change in population size N in number of cells and mass M
in pg over time. To this end, we assumed the absence of a limiting carrying capacity,

42



Chapter 3. Prototype cell-level model of bacterial population growth

RNA mass fraction

08 T T T T T T T o
0.7F -
0.001
c % I
(0]
Q
o
S
o
2 osf i
S~
<ZE - 0.002
o
(@) - .
=5 0.4
£
<<
P
“_I
03f _
0.003
0.2F .
01 1 1 1 1 1 1 1 0004
0.2 0.4 0.6 0.8 1 1.2 1.4
knet in 1/h in mg/ml

Figure 3.7: RNA mass fraction depends on growth rate and drug concentration. Bacterial
cultures have been exposed to constant, sub-lethal concentrations of chloramphenicol (C) in different
growth media (data from [44]). During balanced growth, the net exponential growth rate constant knet
and the cellular RNA mass fraction frna have been determined. Experimental data as colored circles.
Solid black lines indicate drug concentration series in the same growth medium. Thick color coded lines are
predictions using the prototype model and are in good agreement with the data. The control experiments
(deep blue circles) exhibited an apparently linear increase of frna with ket during exponential growth
(black dashed line).
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Figure 3.8: Lag time between increase in cell number and population mass. (A) Dry weight
per cell Mcen as a function of the population growth rate kg; experimental data (red crosses) and estimated
power function (solid blue line). (B) Predicted relative increase in cell number N and population mass M
over time for E. coli B/r in nutritional rich medium. After supplement of additional nutrients at t = 2h,
the culture exhibited a lag between increase in cell number and population mass of ~ 1 h.

i.e., N € Npmax. The population mass M was defined as the product of the dry weight
of the reference cell M.y (per 10 cells) and the bacterial concentration N, i.e., M =
N - Meen/10°. Note that since M was in unit pg/10%cells, it was mandatory to simulate
N in unit cells rather than CFU. The change of kg over time was given in eq. , with
ks p and kg . denoting the growth rate constants before and after the modification of the
growth medium. We predicted a transition rate constant of A = 0.8/h.

Figure B shows the relative increase in bacterial number N and population mass
M for an initial inoculum size of N(0) = 100 cells. The increase in biomass exhibited no
lag behavior, whereas the increase in cell number was delayed. We observed Atj,; ~ 1h
between an increase in population mass tj,g 37 and cell number j,5 v

A plausible biological interpretation of this lag behavior has been presented in [30]:
the increased supply of nutrients relaxed the stringent response, which first lead to in-
creased expression of ribosomal and amino acid biosynthesis genes. For the definition of
the stringent response, see the excursion on p. Thus, the reference cell accumulated
more ribosomes and increased in mass such that ribosomal concentrations increased, too.
Secondary this lead to an accelerated cell division as cells passed cell-cycle periods faster
compared to previous cycles. Eventually, the population reached balanced growth again.

3.7 Interim evaluation of the prototype model

The main advantage of the proposed model is the decomposition of parameters of different
origins:

(i) strain-specific parameters
(ii) drug-specific parameters (for a given bacterial strain)
(iii) experiment-specific parameters

Consequentially, the model allowed to integrate data from different types of experiments
and enabled a combined approach in a unified quantitative framework. Parameters of
group (i) captured key cell-state characteristics of the reference strain and were estimated
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based on literature data, see Tables and Additionally, this group of parameters
included pq, which denoted the probability of cell death per cell per generation (estimated
based on data in [109]), ¢pmax the maximum peptide chain elongation rate (manually
inferred based on [24} [118-120]) and the switching rate constants knpeq (fixed based on
TKC data including validation sets) and kpy, o (stated in [95]). Depending on the strain
and parameter, individual elements of this group were representative for other bacterial
strains as well: in our case, all strain-specific parameters were suitable to describe other
strains in validation data sets, see Figure Parameters of group (ii) described the
perturbation of cellular characteristics by drug action and comprised the parameterization
of the two Emax models (EC50, (estimated on TKC data), EC504 (estimated on TKC
data), 7, (estimated based on data from [113]), yq (fixed) and Emaxy (fixed)). Parameters
of group (i) and (ii) are compiled in Table Parameters of group (iii) accounted for
the experimental features and comprised the maximum carrying capacity Nmax, the lag-
time fj,4, the control net growth rate constant kyetc, the initial inoculum Np, and the
scaling factor SFgrcs0, which accounted for the different drug sensitivities of the strains.
The dichotomous parameter f, represented the method of persister fraction initialization.
Group (iii) parameters were manually inferred from the TKC data, see Table

Overall, the parameterization included a minimal number of free parameters to be
directly estimated from TKC data (EC50, and EC50q). Accordingly, estimations were of
low computational effort.

Although successful in many regards, a broader application of the prototype model was
limited in a number of ways: firstly, and most important, the model required constant drug
concentrations. Dynamic drug concentrations would necessitate repetitive evaluations of
the perturbed and adapted cell-state at each time point, which is computationally highly
inefficient. In the PKPD context this is a serious limitation. Secondly, the complexity
of the model limited its applicability. While detailed data existed for F. coli, this is not
the case for other bacteria. A reduced model—confined to parameters and a cell-state
directly related to the TKC data—would allow application in less data rich situations.
Thirdly, important aspects of TKC such as persistence were not or only rudimentary
implemented. For example, we did not explicitly consider triggered persister formation
as described in [95], because of the focus on the bacteriostatic drugs chloramphenicol and
tetracycline. The persister-fraction is hardly quantifiable using viable plating or particle
counting techniques in combination with bacteriostatic drugs. This is to be expected
because the normal cells in a bacterial population are hardly eradicated at physiological
concentrations and the detection methods quantify the total population size. An extension
to more antibiotics (including bactericidal drugs like cell wall antibiotics) would allow the
identification of more sophisticated mechanisms of persister formation.

The developed prototype model represents a “proof of concept” for the feasibility of a
bacterial population growth model that integrates cell-level characteristics.
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4.1 Overcoming the limitations of the prototype model

In view of the shortcomings of the prototype model, we further developed the cell-level
approach. As part of a cooperation with Prof. Charlotte Kloft and Sebastian Wicha (De-
partment of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitat
Berlin, Berlin, Germany), we obtained access to extensive S. aureus TKC data for van-
comycin, meropenem and linezolid, including dual combinations. We focused on predicting
bacterial population growth dynamics for these drug combinations and organism. We sig-
nificantly reduced the cell-state complexity from 11 to 4 elements as described in ‘{Linking]
[the cell-state to bacterial population growth and wvice versal (p. , and implemented
antibiotic drug action in ‘{Integration of drug effects (p.[51)). This required an extension
of the approach to cell wall antibiotics. Finally, in order to systematically analyze antibi-
otic interactions, we defined ‘{Pharmacodynamic summary endpoints for time-kill curve)
data]’ (p.[57). The results based on this model are presented in ‘{Model based analysis of]
antibiotic combinations and beyond]" (p. [63)).

4.2 Linking the cell-state to bacterial population growth
and vice versa

To further develop the cell-level approach, we re-visit the work of Bremer and Dennis, on
which we also based the prototype model. In their seminal work [24] Bremer and Dennis
have established a quantitative relationship between the rate at which a bacterial popula-
tion grows and its characteristics at the cellular level. They showed that the exponential
growth rate constant can be predicted by the product of the ribosomal concentration and
the ribosomal efficiency of a defined reference cell. As in [24], we defined the ribosomal
concentration by

rib = N}/ P, (4.1)

where N, denoted the number of ribosomes per cell in 103 ribosomes, and P, the protein
mass per cell in 10% amino acid (aa) residues. The ribosomal efficiency was defined by

er = ¢p - fBr, (4.2)

where ¢, denoted the peptide chain elongation rate per active ribosome in aa/s, and f;
the fraction of active ribosomes. The ribosomal efficiency depended on the quality of
the growth medium (quantified via the maximally supported growth rate constant in the
control experiment kg ), resulting in e, = cp(kgc) - fr(kg,c). Confirmed by a large body of
experimental data, Bremer and Dennis [24] have established the following key relationship
between the growth rate constant

kg = SF -1ib - e, (4.3)

in 1/h and the cell-state, with SF = 0.036 in 10° s/h accounting for a conversion of units.
Based on egs. (4.1)-(4.3]), we defined the cell-state

S=0S8i=1.4= (Nry P, Cp, Br) (4'4)

that collected the key cellular characteristics to predict the growth rate constant of a
bacterial population. Note that compared to the previously defined cell-state for the
prototype model in , this considerably reduced the number of elements of the cell-
state from 11 to 4. Schaechter et al. demonstrated in [46] for a variety of different growth
media that cellular characteristics can be predicted by the bacterial population growth rate
constant kg, i.e, Ny = Ny(kg), P. = Pe(kg) and ¢, = cp(kg). This relationship has been
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applied in numerous modeling approaches |24} |44} |130] and was used here to determine the
ribosomal concentration in control experiments during exponential, i.e., balanced growth
based on

ribe = Ny(kgc)/Pe(kgc). (4.5)

We utilized data from |24} 47, 48] describing a reference cell of approximately mean matura-
tion, see excursion on p. Figure depicts the corresponding growth rate dependency
of the cell-state for E. coli B/r and S. aureus MF32. For the parameterization of the
power functions, see Table These power functions, combined with eq. , allowed
to switch between the population growth rate constant and the cell-state, which is a key
element of the cell-level bacterial population growth model.

A shortcoming of the prototype model was the lack of a time-continuous representa-
tion of the cell-state. To overcome this limitation, we defined a corresponding equation
describing the rate of change of the cell-state over time. Active ribosomal RNA degrada-
tion was found to be negligible during exponential growth [34, 131]. Thus, we assumed
that the rate of change of the ribosomal concentration was solely determined by ribosomal
synthesis with rate constant kgy, i and dilution due to cell growth with rate constant
kg Assuming that ribosomal RNA degradation was negligible in all growth phases, it
followed that

d
Erlb = ksyn,rib - kdﬂ . I‘ib, (46)

with kg4 = kg. By definition, the ribosomal concentration is time-invariant during bal-
anced growth (drib/d¢ = 0). Exploitation of the balance between ribosomal synthesis
and dilution in eq. (4.6]) resulted in

ksyn,rib = kg . I'ibc, (47)

with rib. defined in (4.5). This allowed to infer the ribosomal synthesis rate constant from
the control experiment.

Time-kill curve experiments show remarkable differences in population growth dynam-
ics depending on the experimental protocol. In particular, as it has been demonstrated in
[16] that large differences resulted from the choice whether the culture started in lag or
exponential phase. Increased ribosome synthesis has been described as a hallmark char-
acteristic of the transition of a bacterial culture from lag into exponential growth phase
[30} 31]. To account for ribosomal dynamics in a bacterial population growth model, we
described the rate of change of the total bacterial concentration N = N () by the following
system of equations

d
—N =k, N 4.
kg = SF -1ib - ¢cp - B¢ (4.9)
d . . . .
arlb = ksyn,rib — kg - 1ib = kg - (mbC — rlb), (4.10)

with SF = 0.036 in 10°s/h accounting for a conversion of units. The above cell-level
bacterial population growth model explicitly accounted for the dependence of ks = kg(t)
on the ribosomal concentration rib = rib(¢), which in turn was influenced by the initial
ribosomal concentration rib(0) = ribg and the growth medium (via rib.). To explicitly
differentiate between lag and exponential phase experiments, we choose

(4.11)

" {ribC for experiments starting in exponential phase
ribg =

ribg 1ag  for experiments starting in lag phase.
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initial ribosomal concentration rib(0) in 10>/amino acid residue
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Figure 4.1: Sensitivity of lag phase duration to initial ribosomal concentration. Dynamics
of total bacterial concentration N, intracellular ribosomal concentration rib and growth rate constant kg
depending on the initial ribosomal concentration rib(0). As can be seen from the bacterial population
growth dynamics, the initial ribosomal concentration determined the duration of the lag phase. Over time
rib approached rib., which is the predicted ribosomal concentration in balanced growth. The range of
simulation results is marked by gray dashed lines. Simulations based on lag phase S. aureus cultures in
drug-free growth media without persisters. Remaining parameters as in Tables and

Since ribg 1 Was unknown, it was estimated from the TKC data. Thereby we assumed
that the initial ribosomal concentration and the quality of the growth medium were the
main determinants of the lag. The quality of the growth medium was represented in the
model by the estimated control growth rate constant kg . and determined rib. via eqgs. (4.5)
and . The sensitivity of the model predictions with respect to the riby estimate is
visualized in Figure The figure demonstrates that the time-kill curve dynamics can
be used to inform the ribg estimate.

To account for antibiotic tolerant sub-populations, we considered two different cell-
types: normal cells with concentration n = n(t) and non-growing, yet viable persister cells
with concentration p = p(t). Hence,

N =n+p. (4.12)

In contrast to normal cells, which grow and are effected by antibiotics, persister cells
exhibit antibiotic tolerance and reversible dormancy as described in " (p. .

While antibiotic induced death effects can be significant, we assumed non-antibiotic
induced death effects to be negligible. In E. coli, e.g., non-antibiotic induced death effects
have been described as relatively low [109] with death rate constant kg ~ 0.01 - k. To
account for the transition into stationary phase, we used the logistic term introduced
in eq. . In the absence of antibiotics, the following system of differential equations
described the sub-population dynamics

%n = (kg — ka) -1 — knpeff * 0+ Kpneff - D (4.13)
%p = Knpeff * 70— Kpn,eff * P (4.14)
kg = SF -1ib-cp - Br - (1 — (n+ D)/ Ninax) (4.15)
%rib = kg - (ribe — 1ib), (4.16)

with SF = 0.036 in 10°s/h accounting for a conversion of units. Bacterial growth was
limited by a carrying capacity Nmax, representing nutrient and space limitations. We used
the common [89] assumption that the effective rate of persister formation is proportional
to the logistic term, i.e., knpef = knp - (2 + P)/Nmax. Based on the observation that
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persisters are more abundant in slowly growing or growth arrested cultures [98], this
assumption seemed legitimate. The parameter ky, quantified switching from the growing
to the persisting state during stationary phase. Switching back from persisting to growing
state was described by the effective switching rate constant Ky, e = kpn. Antibiotics may
impact both, the rate of persister formation and re-entering into the growing state [100].
The initial values of normal and persister cells were parameterized by the persister fraction
fp with n(0) = (1— f;)- N(0) and p(0) = fp- N(0), respectively. Since normal cells largely
out-compete persisters in the exponential phase, as shown in Fig. we assumed that
the persister fraction was negligible for experiments starting in the exponential growth
phase

0 for experiments starting in exponential phase
Jo = { (4.17)

fplag for experiments starting in lag phase.

Since fp1ag Was in general unknown, it was estimated from the data.

4.3 Integration of drug effects

Antibiotics perturb bacterial growth by interfering with growth and/or death related pro-
cesses. In the following, we describe how we implemented the drug action for the antibiotics
tetracycline, vancomycin, meropenem and linezolid. The cell-state of the cell-level model
for antibiotic combinations allows for a cell-level integration of drug action of protein
biosynthesis inhibitors like tetracycline and linezolid. Drug effects of cell-wall active an-
tibiotics vancomycin and meropenem were integrated empirically on the population level
because the cell-state excluded characteristics describing the bacterial cell wall. On many
occasions we linked an antibiotic drug concentration C' to a corresponding effect E by the
sigmoidal Emax model described in eq. using the corresponding notation.

4.3.1 Tetracycline

The total extracellular concentration of the protein biosynthesis inhibitor tetracycline was
denoted by TET. In the following, we define tetracycline related growth and death effects.
Furthermore, the model allowed to estimate the drug effects on the persister dynamics.
Supported by our TKC data, we assumed that tetracycline induces a death effect
E = EtgT,q resulting in
k‘d = ETET,d- (418)

Tetracycline has been described to exert a growth inhibiting effect by reducing the fraction
of active ribosomes [56]. In our model, the fraction of active ribosomes was termed ;.
We accounted for the reduced fraction of active ribosomes with effect £ = Etgr on S,
resulting in a reduction of the growth rate

kg = SF -1ib - ¢, - Be(1 — ETET8)S (4.19)

with SF = 0.036 in 10° s/h accounting for a conversion of units. Both effects require the
binding of tetracycline to the ribosomes [56], such that C' = TET - rib was the effector
species. We normalized the effector species by rib, resulting in

C = TET - rib/rib... (4.20)

Thus, the estimated EC50 values had units mg/l and were with reference to balanced
growth (where C' = TET). This normalization of the effector species is equivalent to
scaling the potency parameters EC50TgT  and EC50TgT,q by the dimensionless factor
ribe /rib. We accounted for drug induced modification of the persister formation via

Fnp,eff = knp - (1 + ETETp)- (4.21)

51



Chapter 4. Cell-level model for antibiotic combinations
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Figure 4.2: Sensitivity of resistance development to corresponding EC50 value. Dynamics
of bacterial concentration N, adaptive resistance against vancomycin ARV and death rate constant kq
depending on the onset of adaptive resistance development (quantified by EC50van,,arv). The range of
simulation results is marked by gray dashed lines. Simulations based on lag phase S. aureus cultures
exposed to vancomycin VAN(0) = 8 mg/l. Remaining parameters as in Tables and ARV in unit

fractional immunity.

Since switching back to normal state depends on the synthesis of key proteins (e.g., anti-
toxins in E. coli ), the corresponding switching rate constant

kpn,eff = kpn : (1 - ELZD,g) (4.22)

was also effected by the growth-inhibiting effect of the protein biosynthesis inhibitor tetra-
cycline. The model accounted for a decay of the extra-cellular drug concentration by a
first order process with rate constant kqeg TET-

4.3.2 Vancomycin

Vancomycin prevents the cross-linking of growing peptidoglycan strands and had thus
to reach the proximal inner regions of the cell wall for causing lethal cell wall damage.
We observed regrowth in TKC where vancomycin was used alone or in combination with
meropenem. The developed model accounted for vancomycin related cell death and the
development of adaptive resistance, see egs. and E[)

An increased cell wall thickness has been reported in @ﬂ for vancomycin intermediate
resistant S. aureus strains (such as the used ATCC 29123 [133]), which linearly correlated
with the minimal inhibitory concentration for vancomycin [134]. A plausible mechanism
for this morphological adaptation is an overproduction of false target structures which
leads to a binding of vancomycin molecules in the non-critical distal regions of the cell

wall [35)].

In our model, the vancomycin concentration at the target site

VAN; = VAN - (1 — ARV) (4.23)

was expressed as a fraction of the total extracellular concentration VAN = VAN(¢). In-
creasing wall thickness conferred adaptive resistance against vancomycin ARV = ARV(¢)
with 0 < ARV < ARVpax. The impaired diffusion of the drug to the target site was
the mechanism of resistance. The maximum adaptive resistance against vancomycin was
denoted by ARViax, where the maximum ARV, = 1 confers total immunity against
the antibiotic and the minimum ARV .x = 0 represents normal sensitivity.

It turned out that the data did not allow to infer a maximum adaptive resistance
against vancomycin (likelihood profiling as described in [136]). In agreement with the
data, we set the corresponding parameters to ARV, = 1. The impact of this fixation
is shown in Figure 4.2l The adaptive resistance ARV approaches one inevitably, i.e.,
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Figure 4.3: Sensitivity of meropenem killing to growth medium. Dynamics of bacterial concentra-
tion N, growth rate constant kg and death rate constant k4 depending on the growth medium (quantified
in the cell-level model for antibiotic combinations as control growth rate constant kg ). Meropenem killing
critically depends on growing cells as indicated by the change of nadir in N(¢) and maximum of ka(t).
The decreased killing after 6h is related to the development of adaptive resistance against meropenem
(ARM, not shown). The range of simulation results is marked by gray dashed lines. Simulations based on
lag phase S. aureus cultures exposed to meropenem MER(0) = 0.0625 mg/l. Remaining parameters as in

Tables @ and @

drug concentration independent. Accordingly, simulations for vancomycin concentrations
far beyond the tested concentration range will predict regrowth at some (very late) time
point.

The mechanisms driving the increasing cell wall thickness during exposure to van-
comycin include selection and metabolic adaption [134]. We represented the effect of
vancomycin blocking the cellular disposition of itself with Eyan, arv, which was linked to
VAN;. In view of the faster adaptive resistance development in experiments starting in
exponential phase, we empirically scaled the extent of the effect by k, and rib/rib, see
eq. . The dynamics of adaptive resistance development against vancomycin were
described in eq. and visualized in Figure The vancomycin related death effect
was accounted for via kg = Evan,d, see eq. (A.17). The effect of vancomycin on the
persister formation was quantified in Fyan,p, see eq. (A.19).

4.3.3 Meropenem

For meropenem, we observed following four effects experimentally: regrowth, auto inhibi-
tion, death induction and increased persister formation. We accounted for all of them in
the model. Since the cellular disposition of the drug was reported [1] to be closely linked
to the development of drug resistance, we explicitly modeled the meropenem concentra-
tion at the target site (MER). The target site is localized at the outer surface of the
cytoplasmic membrane and inside the cellular splitting system [137] where the targeted
penicillin binding proteins are located [50, [138]. The peripheral cell wall separates this
space from the growth medium. We denoted the total meropenem concentration in the
growth medium with MER = MER(¢). We assumed a fast equilibrium

MER; = MER - (1 — ARM), (4.24)

where ARM summarized factors impairing the effectiveness of the antibiotic against normal
cells in form of adaptive resistance against meropenem with ARM = ARM(¢) and 0 <
ARM < ARMpax-

For the dynamics of adaptive resistance development against meropenem, we applied
the same methodology as for vancomycin with the same limitations with respect to the
non-identifiability of the estimate for maximum adaptive resistance. As for vancomycin,
the adaptive resistance against meropenem is related to the cellular disposition of the drug.
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For meropenem, several cellular mechanisms lead to adaptive resistance development: (i)
decreased influx, (ii) modification of target PBPs, (iii) induction of beta-lactamases (iv)
increased efflux.

To answer the question which of the mechanisms is relevant for the experiments with
S. aureus ATCC 29213, we discuss each of them in detail. We ruled out mechanism (i)
since gram positive bacteria like S. aureus lack an outer membrane. The over-expression of
selective porins is known for gram negative bacteria only. Mechanism (ii) typically confers
high level beta-lactam resistance (MRSA) from the acquisition of the mecA gene [139,
140|, which encodes for a modified target structure. ATCC 29213 is MSSA and has been
reported to be mecA negative [86]. Meropenem is substrate only for a few of the hundreds
of currently known beta-lactamases [76], where predominantly extended spectrum beta-
lactamases, carbapenemase and metallo beta-lactamases show activity. Although S. aureus
ATCC 29213 is beta-lactamase positive [133], it has weak activity of those beta-lactamases
[86]. If (iii) would be true, one would expect the addition of ATCC 29213 cells to increase
the extracellular degradation rate of meropenem—also because of the lytic activity of the
drug [141], which would release the beta-lactamases from the periplasm to the growth
medium. In growth medium comprising a growing bacterial culture, a degradation rate
constant kgeg Mpr = 0.0144/h has been measured [142] in comparison to Edeg, MER =
0.0190/h, which has been determined in sterile growth medium [16]. Thus, the bacterium
induced degradation was negligible (for tested inoculation sizes). This result has also
been confirmed in [143|, where no significant increase in degradation rate was observed
for non-sterile compared to sterile growth medium. Regarding mechanism (iv): efflux
pumps which are expressed in S. aureus include AbcA, which has medium affinity to
hydrophilic drugs like meropenem [144] and no affinity to vancomycin [145]. The regulation
of such efflux pumps has been described to depend on drug exposure [146]. All in all,
we expect mechanism (iv) to be the dominant mechanism conferring adaptive resistance
against meropenem for this strain. Yet, only additional experiments including a precise
quantification of meropenem in the growth medium could ultimately differentiate between
mechanism (iii) and (iv).

We observed in the TKC data that the onset of meropenem killing and development
of resistance was delayed with respect to the time point when the drug was added. We
assumed that the development of meropenem resistance is a delayed, time dependent pro-
cess. Microscopic observation studies showed that beta-lactam killing is typically delayed
between one or two doubling times [138]. Accordingly, we assumed that cells with a faster
metabolism (in terms of growth rate constant) had shorter response times with respect
to meropenem effects. Therefore, we introduced a growth depending effector species for
meropenem, termed eMER = eMER(t), which accounted for the delay of all meropenem
effects. The rate of change of this species is described in eq. .

For the induction of adaptive resistance via the corresponding effect Fner arMm, see
eq. (A.22). The differential equation eq. (4.34) defines the transition of the bacterial
population from meropenem sensitivity to resistance.

With respect to a mechanistic representation of the meropenem related death effects,
we investigated the key mechanism causing the staphylococcal cell death during exposure
to the beta-lactam antibiotic meropenem. According to [138], the death effect was a
growth dependent lytic process involving a fatal placement of so-called murosomes during
the replication cycle. Thus, Ee\ER,a Was linked to the delayed effector species eMER and
its extent was scaled by the growth rate constant kg, see eq. (A.20).

The delay of the meropenem effector species, as well as, the meropenem related death
effect depend on the growth rate constant. As a consequence, the growth medium directly
influences the TKC dynamics for meropenem. This influence is visualized in Figure If
a medium supports fast growth, it also results in a pronounced killing effect of meropenem.
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Figure 4.4: Sensitivity of the Eagle effect to meropenem exposure. Dynamics of bacterial con-
centration N, meropenem effector species eMER and death rate constant kq depending on the initial
meropenem concentration MER(0). The paradoxically reduced killing of beta-lactams at highest concen-
trations is known as the Eagle effect. The range of simulation results is marked by gray dashed lines.
Simulations based on lag phase S. aureus cultures. Remaining parameters as in Tables @ and @

For beta-lactams the so-called Eagle effect is reported [147]: high antibiotic concen-
trations can result in a reduced killing activity compared to medium-high concentrations.
We also observed this effect in the TKC data where S. aureus was exposed to meropenem,
see Figure (G,I), (H,J). We accounted for the Eagle effect in the characterization of
the death rate constant for meropenem kyq = Eemer,d(1 — EMER,,E) by introducing the
self-inhibitory effect Eyigr,,E in eq. . For an explanation of the Eagle effect, see cor-
responding paragraph in ‘{Model based analysis of antibiotic combinations and beyond|’
(p. . The effect of meropenem on the persister formation was quantified by FuvgR,p,
as defined in eq. . Since we did not observe a saturation of the Eagle effect the
Emax model was not fully identifiable. We resolved the identifiability problem by setting
EmaxevmerE = 1. Accordingly, extrapolation far beyond the tested concentrations (e.g.,
MER(0) > 100mg/1) are not supported by the current parameter values of the model.
The impact of the Eagle effect on meropenem drug action was demonstrated in Figure [£.4]
for a range of meropenem concentrations.

4.3.4 Linezolid

Linezolid and tetracycline show similarities with respect to their mechanism of drug action
because both drugs inhibit protein biosynthesis by targeting the ribosomes, as described
on p. Accordingly the implementations of both drugs were similar in our cell-level
approach. Therefore we keep the following description of the implementation of linezolid

short. For a detailed description, see ‘{Tetracycling’ (p.[51). We accounted for linezolid

induced growth inhibition, death induction and persister formation.

The growth inhibiting effect of linezolid was modeled as a lowered fraction of active
ribosomes, as reported in [56]. An inhibition term was added to eq. (4.3]). Thereby linezolid
effected growth indirectly via

kg = SF -rib - Cp . 5r(1 - ELZD,g); (4.25)

where SF = 0.036 in unit 10°s/h accounted for a conversion of units. Beyond growth
inhibition, linezolid also exerted bactericidal drug action k4 = FErzpd, see eq. (A.25).
Linezolid effects originate from a drug-ribosome complex [56] and we scaled the sensitivity
parameters EC50r,zp ¢ and EC501zp g4 accordingly. Furthermore, linezolid modified the
persister formation via Eyzp 5, see eq. . As a protein biosynthesis inhibitor, linezolid
inhibited the switching back from persisting to growing state (Erzp g, see eq. (A.24))) by
modulation of the effective switching rate constant kpy e = kpn(1 — ELzD g)-
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4.4 Cell-level model of bacterial population growth for an-
tibiotic combinations

We summarize the introduced model components in a comprehensive system of ODEs
including drug effects for tetracycline, vancomycin, meropnem and linezolid. Again, we
use the nomenclature introduced below eq. for the drug effects ' = Eapc xyz,
resulting in

d

= (kg —ka) -n —knp et -1+ kpnef - P (4.26)

d

&p = knp,eff ‘n— kpn,eff -p (427)
kg =SF -1ib - cp - Be(1 — Ergrg)(1 — Erzng) - (1 — (n 4 p)/Nmax) (4.28)
k4 = EteT.d + Evan,d + Eemir,d(1 — EeMERE) + FLZD.d (4.29)

Fupeff = knp - (1 + ETeTp) - (1 + Evanyp) - (1 4+ EmeRp) - (14 Erzpp) - (7 + P)/Nmax

(4.30)
kpn,eff = kpn : (1 - ETET,g) ' (1 - ELZD,g) (431)
d
—rib = kg - (ribe — rib) (4.32)
dt
d
ARV = Evan,arv - (ARV pax — ARV) (4.33)
%ARM = EeMERARM * (ARMpax — ARM) (4.34)
%eMER = kg - (MER - (1 — ARM) — eMER) (4.35)
%TET = —kgeg TET - TET (4.36)
d
aVAN = —kdeg,vaN - VAN (4.37)
d
G MER = —kaeg vier - MER (4.38)
d
32D = —Kaegzp - LZD, (4.39)

with N = n + p and SF = 0.036 in 10°s/h accounting for a conversion of units. For an
alternate representation of the drug effects, see ‘{Comprehensive effect equations|’ (p. .

The initial value for normal cells was set to n(0) = (1— f,)-N(0), with N(0) = Ny and
p(0) = fp - N(0) for the persister cells. We determined the persister fraction f,, according
to eq. (4.17). For experiments that started in lag phase, the initial ribosomal concentra-
tion rib(0) = ribg was unknown and therefore estimated. For exponential phase cultures
rib(0) can be determined from eq. via rib(0) = rib.. The initial drug concentrations
TET(0), VAN(0), MER(0) and LZD(0) were chosen according to the experimental proto-
col. Since no increased adaptive resistance against meropenem and vancomycin has been
described for S. aureus ATCC 29213, we defined ARV(0) = ARM(0) = 0. The effector
species for meropenem was initialized at eMER(0) = 0.
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Since the effects of the antibiotics on the persister formation were similarly observed in
all experiments including drugs, the data did not allow to infer the concentration depen-
dency of these effects. To still account for them, we set corresponding EC50 parameters
to a hundredth of the lowest experimentally tested drug concentration. This allowed to
infer the extent of these effects in terms of estimates for the Emax parameters.

4.5 Pharmacodynamic summary endpoints for time-kill curve
data

Time-kill curve data provide detailed information on the antibacterial in vitro dynamics.
Sometimes, however, it is desirable to reduce TKC data to a single numerical quantity, the
so-called pharmacodynamic summary endpoint (PSE) [15], e.g, to classify the interaction
of antibiotic combinations. The numerous PSE definitions proposed in literature have
been divided into two classes by Firsov et al. [148]: either having integral character, when
referring to time and amplitude of the time-kill trajectory, or having snapshot character
when referring to a single time point. To study the impact of the choice of the PSE on
the evaluation of antibiotic interactions, we define in the sequel two exemplary cases: an
integral endpoint (PSErg) and a snapshot endpoint (PSEy).

The integral endpoint was chosen to depend on the area under the TKC, defined as
R
AUTKC = / log(V) dt, (4.40)
0

where 7 denoted the experimental duration. To allow for a probabilistic interpretation,
which was needed in eq. (2.16]), the endpoint was normalized with respect to the control
experiment, resulting in

AUTKCrug
AUTKC,

The snapshot endpoint was chosen to depend on the population size at the end of the
experiment, resulting in

PSE@p =1— (4.41)

1Og(]\fdrug (TE))
log (Ne(T8))

To emphasize the dependence of the PSE on the drug concentration(s) in the TKC ex-
periments, PSE(A, B) denoted the summary endpoint of a combination of two drugs with
initial concentrations A and B. The classification of antibiotic combinations as synergistic
or antagonistic required a definition of additivity, i.e., the expected PSE of an antibiotic
drug combination based on the single drug exposures. To this end, we used the concept
of Bliss independence as defined in eq. .

To be well defined in terms of 0 < PSE < 1, we assumed N > 1CFU/ml (resulting
in log(N) > 0) and AUTKCgyg < AUTKC,.. Both are reasonable assumptions in our
context due to the lower limit of quantification LLOQ = 10 CFU/ml in the TKC data and
the expected antimicrobial effect of the antibiotics.

PSEx =1 — (4.42)
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The presented cell-level approach utilizes data describing the cell-level as well as bac-
terial population growth data in terms of time-kill curves (TKC). In the following we
describe, how we estimated parameters on both kinds of data. Furthermore, we describe
how we performed the stochastic interaction surface analysis resulting in a discrete classi-
fication of antibiotic interactions.

5.1 Cell-state estimation

The data informing the cell-state was measured in different growth media and resulting
discrete values of the exponential growth rate constant ks.. In order to allow a broad
application of the approach, we estimated a continuous representation of the cell-state S
over a range of exponential growth rate constants kg .. For each element of the cell-state,
we assumed this representation to follow the power function of the form

Si = a; - (kg,c)bi. (51)

We chose this form because it represented an appropriate balance between model com-
plexity and accuracy of the description of the data. Based on data in [24] 47 48],
we estimated parameters a; and b; for E. coli B/r and S. aureus MF32 with the least
squares method. The parameters are summarized in Table Experimental data
and predictions are shown in Figure 2.3l Due to the sparse data situation for S. au-
reus, we constrained the optimization using the identity condition kz = k:g(S (k:g)), with

kg (S) = SF - rib(kg) - B; - ¢p(kg), as introduced in eq. (4.3).

5.2 Bayesian inference

In this section we define predictions, observations and the statistical model as used for the
analysis of time-kill curve data in ‘{Model based analysis of antibiotic combinations and|
’ (p. . These analyses included parameter estimation and uncertainty quantifi-
cation via sampling based methods which we also describe in the following paragraphs.

Model predictions and observations. Let § € RNT denote the vector of parameters of
length N1 > 0. Using the structural model in eqs. (4.26)) to with the model predicted
total number of bacteria N(t;j;0) = N = n + p, we obtained the model predictions as a
function of time and parameters

Ypred,ij = N(tij; 0) with 1=1... NC and j =1... NTﬂ'. (5.2)

The index ¢ denoted the ith time-kill trajectory and j denoted the jth time point. This
indexing is illustrated in Figure[2.5] Note that 6 also includes covariates like drug exposure
and growth phase. We obtained these predictions by numerically solving the referenced
ODEs of the structural model using the Matlab 2015a built in function ode45 (or odelbs
in cases when the model was stiff as indicated by warnings with the non-stiff solver).
Observations were denoted by yobs 4;-

Statistical model. As it is commonly done for TKC and recommended in [15], we
log-transformed model predictions and observations. Furthermore we made the common
assumption [149] that the observations yops;; are realizations of the random variable

log(Yi;) = log(Ypred,ij) + €ijs eij ~ N(0,07) (5.3)
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with independent and identically distributed errors €;; parameterized by zero mean and
variance 02 > 0. The log transformation implies an exponential error model on the original
scale

Yij = Ypred,ij - €xp(€ij)- (5.4)

We disregarded all values below the lower limit of quantification (LLOQ = 10 CFU/ml).
Since most censored data had replicates with other dilution factors and the number of
effected data points was low (1% of all measurements), we expected that the overall
impact of the censoring on the analysis was also low.

Maximum likelihood estimation. Based on above assumptions, the likelihood func-
tion £ = £(9 ] (yobs’ij)) is defined as

N¢ Nt

~2108(£) & 5 3 (108 (Wotn) — 08(0preais)) (55)

i=1 j=1

It remained to determine variance o2 for the likelihood function. To this end, we exploited
that given the additive normally distributed error defined in eq. (5.3)), the ML estimate
O, is identical to the least squares estimate

Nc¢ Nt

. 2
Ovr = argmeln; Zl (10g(Yobs,ij) — 10g(Ypred,ij)) (5.6)
i=1 j=

where ypreq,;; Was a function of 6 according to eq. . We determined 6y, via cor-
responding minimizations using Matlab 2015a bounded Nelder Mead simplex algorithm
followed by the constraint nonlinear optimization algorithm fmincon. We estimated vari-
ance o2 based on the error distribution in eq. and Oy,

Parameter sampling. We quantified the uncertainty in the model predictions as a
combination of uncertainty in parameter estimates (based on the MCMC samples) and
residual variability (based on the ML estimate). Samples of the posterior were obtained by
Markov chain Monte Carlo (MCMC) methods. We chose the Delayed Rejection Adaptive
Metropolis (DRAM) MCMC algorithm [150] because of its good performance in high
dimensions [151]. If not stated otherwise, we used flat (non-informative) priors for all
parameters. We tested for non-convergence of the DRAM-MCMC sampler by computing
the Gelman Rubin [152] potential scale reduction factor R as defined in [153, p. 604]
over k = 3 chains. The chains started from highly dispersed initials and contained 10°
samples each (disregarding 2.5 x 10* samples burn-in period). The factor R diagnoses
the non-convergence of the sampler by comparing the variance based on 6 in the target
distribution and the average variance of the k chains [153, p. 605]. All inferences satisfied
R < 1.2 as recommended in [152].

For a Monte Carlo simulation of a single TKC trajectory, we sampled once from the
posterior. The residual error was added for each of the N1 ; = 100 equidistant time points
by sampling independent and identically from the error distribution in eq. . We
computed the 5th to 95th percentiles of the prediction interval based on 103 simulations.

5.3 Stochastic interaction surface analysis

One of the main aspects of this thesis is the analysis of antibiotic combinations and result-
ing interactions. Previously, we defined the pharmacodynamic summary endpoint (PSE)
and the deviation from additivity Agjigs, see {Pharmacodynamic summary endpoints for]
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[time-kill curve datal’ (p. . It remained to derive a discrete classification as additive,
synergistic and antagonistic of an antibiotic interaction based on Apjss. To this end, we
used our model and the sampled parameters. Based on the simulation of a TKC trajectory
(using the same parameter set for the corresponding drug-free control curve), we derived
the pharmacodynamic summary endpoint (PSE) and the deviation from additivity Apjiss.
After repeated Monte Carlo simulations (n = 250), an interaction was classified as addi-
tive, if we did not reject the null hypothesis that the realizations of Apjss were from a
normal distribution with mean equal to zero and unknown variance. We used the one-
sample t-test at the 5% significance level to test this hypothesis. If significant deviation
was detected, we characterized the interaction based on the sign of the mean of the Apiies
distribution: positive = synergy and negative = antagonism.

To allow insight into the antibiotic interactions over a range of concentrations for
two antibiotics, we applied this methodology on a concentration grid. The bounds of
the concentration grid based on the estimated potencies (EC50 values) of the drugs
(15x15, logarithmically spaced 10~* < VAN(0) < 100mg/1, 10~ < MER(0) < 100 mg/1
and 10~% < LZD(0) < 100mg/1).
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In this chapter we present the results obtained based on the ‘{Cell-level model for an-|
[tibiotic combinations| (p. . First we describe the dynamics of the extensive time-kill
curve (TKC) data. The TKC data were challenging because of the diverse observed phe-
nomena: we found a reduced linezolid potency on lag phase bacteria, adaptive resistance
development, antibiotic interactions and the Eagle effect.

As we observed a considerable impact of the growth phase on the TKC dynamics,
we expected also a potential impact on the interactions. We used the cell-level model for
antibiotic combinations to quantify the impact of the experimental protocol (growth phase,
experimental duration and the endpoint definition) on antibiotic interactions. We found
that in some (but not all) cases the classification of antibiotic interactions was strongly
influenced by the experimental protocol.

6.1 Analysis of time-kill curves

TKC dynamics capture bacterial population growth during exposure to one or more an-
tibiotics. In addition to the TKC data, the developed model relied on the availability
of cellular characteristics as a function of growth. For E. coli, the most extensive com-
pilation is available [24] (four measurements per cell-level characteristic, see Figure [2.3).
Therefore, we first used TKC data from [121, Fig. 3] for E. coli to study the ability of
the proposed model to predict bacterial growth in the exponential phase while exposed
to a wide range of tetracycline concentrations (bacteriostatic and bactericidal). We used
the Bayesian approach described in section ‘Bayesian inference” (p. for all subsequent
parameter inference on TKC data.

In the TKC experiments, exponentially growing E. coli B/r cultures have been exposed
to constant concentrations of tetracycline (77 CFU measurements for a range of increasing
tetracycline concentrations up to 0.008 mg/1). The data showed no signs of regrowth, as
expected for the short experimental duration 75 = 4h. As seen in Figure[A.T] the model fit
is in good agreement with the experimental data (see Table for parameter estimates).
The estimated variance of the residual error was 0 = 0.1853. The results successfully
demonstrate the ability of the model to predict bacterial population growth from the
cellular level of a reference cell, when cellular characteristics are perturbed by a drug for
a wide range of initial concentrations.

For the clinically relevant S. aureus strain ATCC 29213, an extensive TKC dataset was
analyzed, which has been specifically designed to study drug-drug-interactions (2442 CFU
measurement in 82 distinctive experimental setups), combined with more sparse cell-level
data. In addition to experiments starting in exponential phase, the TKC data included
experiments in which the antibiotics vancomycin, meropenem and linezolid have been
added directly after inoculation during the lag phase. A detailed experimental protocol
can be found in |16]. All data and predictions are plotted in Figures and
Overall, the model fits are in very good agreement to the experimental data (see
Table and Table for parameter estimates). The estimated variance of the residual
error was 02 = 2.3172. In the following we analyze key aspects of the TKC data.

6.1.1 Reduced linezolid potency on lag phase bacteria

For drug-free control experiments with S. aureus, the differences between lag and expo-
nential phase cultures were (hardly) distinguishable and confined to the initial phase, see
Figure (A,B). In contrast, the bacterial population dynamics differed substantially be-
tween exponential and lag phase when exposed to linezolid, as shown in Figure (C,D).
For example, linezolid acted bacteriostatic on lag phase bacteria, even at the highest tested
initial concentration of 32mg/l. For the same concentration, linezolid exerted bacterici-

64



Chapter 6.

Model based analysis of antibiotic combinations and beyond

(A) exp. (B) lag (C) exp. (D) lag
= 1 control control LZD 32 LZD 32
g 10 B B
L 6 J -
O 10 Mamaze ot B
C -4
z 10°
(E) exp. (F) lag (G) exp. (H) lag
E 12 MER 0.0625 MER 0.0625 MER 0.5 MER 0.5
10
) 4
T
5 oo .
£ B i
0
< 10 (K) exp. (L) lag
(1) exp. (J) lag MER 8 MER 8
E 1o MER 8 MER 8 LZD 32 LZD 32
£ 10
)
L 106 i Hedeldetad
— _&_ p
0
= 10 (P) lag
(M) lag (N) exp. (O) lag VAN 0.0625
— VAN 0.75 VAN 16 VAN 16 MER 0.125
E 10'2
5 =3
= 4
O 106"“#(’5’— | w
c R
Z 109
0 10 20 0 10 20 0 10 20 0 10 20
timein h time in h time in h timein h

Figure 6.1: Time-kill curves (S. aureus, selection). S. aureus cultures in lag and exponential
(exp.) phase exposed to antibiotic combinations. Selection shows: Negligible impact of growth phase
in control experiments (A,B). Considerable impact of growth phase in experiments with linezolid (C,D).
Delayed onset of meropenem drug action (E,F). Eagle effect, i.e., paradoxically decreased killing activity
at higher meropenem concentrations (G,I). Less pronounced Eagle effect on lag phase cultures (H,J).
Linezolid antagonizes meropenem drug action (LK) and (J,L). Regrowth during vancomycin exposure
(M,N,0O) combined with meropenem (P). Data as red crosses. Solid black line is simulation based on
the maximum a posteriori estimate. Gray area represents 0.05 to 0.95 quantile of prediction interval.
Initial drug concentrations for vancomycin (VAN), meropenem (MER) and linezolid (LZD) in mg/l. For

a comprehensive list of time-kill curves, see Figures and
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Figure 6.2: Time-kill curves (S. aureus, LZD, exp. phase, validation). Using the estimates from
the main dataset, we described exponential phase cultures exposed to different initial concentrations of
linezolid (LZD) in mg/l. Data as red crosses. Solid black line is simulation based on the maximum a
posteriori estimate. Gray area represents 0.05 to 0.95 quantile of prediction interval.

dal effects when added to exponential phase cultures. This surprising difference can be
explained based on our cell-level approach: in the model, the differences between lag and
exponential phase experiments were represented by the persister fraction and the initial
ribosomal concentration. The latter was estimated as ribg = rib. = 2.63 x 107°/aa for
exponential phase cultures and ribg = 0.93 x 107°/aa for lag phase cultures, impacting
the linezolid potency as described for tetracycline in eq. . The persister fraction
was initially much higher in lag phase cultures f, = 0.42, while it was negligible in the
exponential phase.

The ability to simultaneously analyze TKC data in lag and exponential growth phases is
a key benefit of our approach. The cell-level model allows to link the resulting differences in
TKC dynamics to cellular characteristics, such as the ribosomal concentration and thereby
mechanistically explains the reduced drug action of linezolid on lag phase cultures.

We validated the predictive power of the model for linezolid using a separate dataset
(844 CFU measurements in 8 distinctive experimental setups) with the same strain and
quantification method but different growth medium (see [23] for details). As shown in
Figure [6.2] the model predictions are in good agreement with the data.

6.1.2 Adaptive resistance

Resistance development threatens the success of antibiotic treatments and is a driver for
regrowth of a bacterial culture. We observed regrowth in experiments involving expo-
sure to either vancomycin, meropenem or to a combination of the two antibiotics, see
Figure (E,F,M,N,P). Meropenem significantly degraded during the experimental time-
course (kgegMrr = 0.019/h [16]), contributing to the observed regrowth. Degradation
alone, however, was not sufficient to explain the observed regrowth (indicated by a model
misfit, where more regrowth was observed than predicted, data not shown). Additionally,
adaptive resistance development can contribute to regrowth. The model accounted for
mechanisms of drug resistance against vancomycin and meropenem. Both mechanisms,
assumingly eflux pumps and cell-wall thickening, lowered the effective drug concentra-
tions at the target site and may be preexistent as less susceptible subpopulations. For a
detailed description of the biological mechanisms and corresponding implementation, see
{Integration of drug effects]’ (p. [51)).
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6.1.3 Antibiotic interactions

Both, the meropenem-linezolid and the vancomycin—-meropenem combination, are recom-
mended in guidelines for use in clinical practice [9, [L0]. A combination of high initial
concentrations of meropenem and linezolid resulted in a reduced killing activity compared
to single drug meropenem exposure in exponential and lag phase experiments, see Fig-
ure (I,J) compared to (K,L). Meropenem induced killing required ongoing progression
of cells through the replication cycle and, implying continued protein biosynthesis [13§].
Since linezolid impairs growth by inhibition of protein biosynthesis, it also lead to a re-
duced susceptibility of the bacteria to meropenem compared to single drug exposure to
the beta-lactam. Lag phase bacteria benefit from the same protection mechanism against
meropenem. In the model, the protection was represented by defining the death effect of
meropenem to be proportional to the growth rate constant, see eq. (A.20)).

We observed that based on the mechanism of drug action in the model and the corre-
sponding predictions, linezolid did not impair vancomycin effects in the developed model.
This combination, however, is not of clinical interest because of the overlapping antibacte-
rial spectra. Furthermore, against MRSA, the vancomycin-linezolid combination showed
antagonistic effects in vitro [154]. In contrast, the addition of meropenem enhanced the
killing effect of vancomycin, as shown in Figure (M,P), where the vancomycin concen-
tration dramatically differed by more than an order of magnitude.

6.1.4 Eagle effect

One of the challenges during model development was that we observed a paradoxically
decreased killing activity at increased drug concentrations for meropenem, a phenomenon
known as the Eagle effect |[147]. The Eagle effect was more pronounced in lag phase
experiments compared to exponentially growing cultures, as seen in the initial slope in
Figure (G,I) and (H,J). Possible mechanisms how meropenem antagonized its own
killing effect (auto-inhibition) include: (i) decreased protein-biosynthesis (via stringent
response [155] and activation of the cell wall stress stimolon [156]); and (ii) decreased
activity of autolysins |[157H159|. The latter is also a consequence of the former, according
to the surface stress theory [160]. This theory assumes that ongoing protein synthesis
drives the autolytic activity. Since meropenem killing depends on the intrinsic activity of
autolytic enzymes [138], both mechanisms contribute to the Eagle effect. In the model, an
auto-inhibition term on the meropenem related death effect represented this phenomenon,

see eqs. (A.21) and (4.29). Overall, the Eagle effect was reasonably well described.
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Table 6.1: Parameter estimates (S. aureus, growth and linezolid related).

Maximum a posteriori estimate with 0.05 and 0.95 quantiles of the marginals in brackets Bounds /
Parameter Unit Comment exponential phase lag phase Reference
i 14.44 13.85

log(No) log(CFU/ml) initial inoculum (14.27-14.63) (13.68-13.97) [0,1og(10%)]

. 5 initial ribosomal con- . 0.93 fixed and
ribo 107" /aa centration ribe (0.72-1.25) [0, +o0]
¥ _ initial persister frac- 0 0.42 fixed and

P tion (0.31-0.61) [0,1]
ko o 1/h control growth rate 1.43 (1.31-1.53 0

8¢ / constant ( ) [0, o0
log(Nmax) log(CFU/ml) carrying capacity 23.13 (22.71-23.68) [log(108), +o0]

switching rate con-
knp 1/h stant (stationary 0.48 (0.17-1.06) [0, +o0]
phase, n — p)

switching rate constant

kpn 1/h (p—n) 0.74 (0.69-0.79) [0, +o0]
degradation rate con-

k € 1

deg,LZD 1/h stant of linezolid 0.000101 [143]

EC50 linezolid growth

EC50LzD,g mg/1 inhibition, scales with 0.58 (0.49-0.71) [0, +00]
ribe /rib
EC50 linezolid death

EC501zD,d mg/1 induction, scales with 96 (78-121) [0, +00]
ribe /rib

Emaxyzp 4 1/h Emax . linezolid death 5 fixed
induction

EC50120.p mg/1 EC50 linezolid persis- 0.0050 fixed

ter formation

Emaxizp,p - Cmax Tnezolid persis 0.32 (-0.21-1.47) (=1, +00]
Slope factors y1,zD,g, Y1.ZD,d> YLZD,p and maximum effect Emaxy,zp ¢ were fixed to 1 to increase

parameter identifiability
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Table 6.2: Parameter estimates (S. aureus, vancomycin and meropenem related).

Maximum a posteriori estimate with 0.05 and 0.95 quantiles of the marginals in brackets Bounds /
Parameter Unit Comment exponential phase lag phase Reference
Kdeg, VAN 1/h degradation rate con- 0.0039 (143

stant of vancomycin
EC50 vancomycin
EC50 4 . .481-0.
VAN,d mg/1 death induction 0.496 (0.481-0.510) [0, +00]
slope factor van-
YVANg,d - comycin death induc- 17 (10-98) [0, +o0]
tion
Emax vancomycin
E 1/h 1. 1.78-2.01
THAXVAN,d / death induction 90 (1.78-2.01) [0, +o0]
EC50 vancomycin
EC50 . .80-13.
VAN ARV mg/l adaptive resistance 12.23 (10.80-13.56) [0, +o0]
Emax vancomycin
Emaxvan;, ARV - adaptive resistance, 1 fixed
scales with rib/ribc
EC50yAN p mg/1 EC50 vancoymcin per- 0.000625 fixed
sister formation
Emaxyan p ~ Emax vancoymcin per- 32 (21-62) [~1, +o0]
sister formation
degradation rate con-
kaeg MER 1/h stant of meropenem 0.019 [L43)
EC50 meropenem
EC50 1 . .0490-0.0621
eMER,d mg/ denth induction 0.0539 (0.0490-0.0621) [0, +00]
slope factor
“YeMER,d - meropenem death 4.59 (3.59-6.24) [0, +o0]
induction
Emax meropenem
EmaxeMmER,d 1/h death induction, scales 4.35 (3.41-6.36) [0, +o0]
with kg(t)
EC50 meropenem
EC50 1 2. 1.05-5.61

eMER,E me/ auto-inhibition 05 (1.05-5.61) [0’ +OO]

EC50cMER, ARM  mg)/] EC50 ~ meropenem 0.804 (0.740-0.870) [0, +00]
adaptive resistance

EC50MER, p mg/1 EC50 meropenem per- 0.00015625 fixed
sister formation

Emaxyer p ~ Emax meropenem per- 905 (513-2059) [~1, +00]

sister formation

The maximum adaptive resistances ARVmax, ARMmax, slope factors yvan,, ARV, YVAN,p»

YeMER,E> YeMER,ARM, YMER,p and maximum effects Emaxyan,,ARv, EmaxeMER,E,
EmaxcMER,ARM Were fixed to 1 to increase parameter identifiability

6.2 Impact of the experimental protocol on antibiotic inter-
actions

There is a plethora of different experimental setups to assess antibiotic interactions in
vitro, including checkerboard, E-test and TKC assays [161]. Especially for the latter, a
harmonized experimental protocol (including standardized metrics) is still to be estab-
lished. Even for the same compounds and strain, contradicting categorizations of the
interaction with respect to additivity, synergy or antagonism are reported |14]—a result
which we additionally confirmed across publications, see Figure [6.3

Our new developed in silico approach allows to understand these contradictory catego-
rizations. We analyzed the impact of the experimental protocol in terms of different drug
concentrations, growth phases, experimental durations and endpoint definitions. Start-
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Figure 6.3: Reported qualitative antibiotic interactions. In total n = 382 reports were com-
piled from literature. Reports classified interactions as antagonistic, additive or synergistic across different
in vitro assays, interaction indices and bacterial species. The interaction classifications showed similar
variability when grouped as compounds (cefepime & tobramycin) and chemical class (penicillins & oxazo-
lididones). When we clustered the antibiotics by perturbed superordinate cellular processes or structures
(cell wall & translation), the pattern was more heterogeneous. This example demonstrates that the cellular
mechanism of drug action for a chemical class of antibiotics is predictive for the interaction pattern, as
previously described in [17].

ing the analysis with first comparing the drug combinations meropenem-linezolid and
vancomycin—meropenem with respect to response and interaction surfaces for a single
experimental protocol, we then systematically explore diverse experimental protocols. Fi-
nally, we demonstrate how the experimental duration impacts the interaction between
meropenem and linezolid.

6.2.1 Pairwise comparison of drug combinations

As antibiotic response is related to the corresponding drug exposure, we expected that
antibiotic interactions are impacted by the initial concentrations of the drugs. Previously,
we described how the antibiotic response in terms of resulting TKC dynamics can be re-
duced to a single numerical quantity called pharmacodynamic summary endpoint (PSE),
see ‘[Pharmacodynamic summary endpoints for time-kill curve datal’ (p. . In addition
to the exposures, also the experimental protocol is of relevance for the PSE. The quan-
tification of an antibiotic interaction was obtained by using the PSE in the definition of
the deviation from additivity in eq. . The combination of response and interaction
allowed to determine the response and interaction surfaces as described in ‘Drug-drug]

Foreractiond) (p. 23).

To get insight into the concentration dependency, we simulated the response and in-
teraction surfaces over a range of initial concentrations for combinations of vancomycin,
meropenem and linezolid. The results for S. aureus are shown in Figure[6.4] for the integral
endpoint PSE = PSEg as response (experimental protocol: lag phase, 7 = 24 h).

For meropenem-linezolid, the corresponding interaction surface indicates antagonism
for clinically relevant concentrations [16]. For vancomycin—meropenem and the same ex-
perimental protocol, the interaction surface indicated mostly additive interactions with
a small region of synergy, showing superiority compared to meropenem combined with
linezolid. The vancomycin—meropenem combination was also superior with respect to the
maximum response compared to the meropenem-linezolid combination. For visualization
of the response surfaces, see Figure [6.4
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Figure 6.4: Response and interaction surfaces. Response surfaces for integral summary endpoint
PSEr predicted for lag phase S. aureus cultures observed over 24 h using maximum a posteriori estimate
(darker shade represents stronger response). Based on Bliss independence, we derived corresponding
deviation from additivity (Agiiss), i-e., the interaction surface. While the meropenem-linezolid combination
exhibited a large fraction of antagonistic interactions, the vancomycin—-meropenem combination interacted
mostly additive. Initial antibiotic concentrations for vancomycin (VAN), meropenem (MER) and linezolid
(LZD) in mg/l. Contour lines indicate trajectories of equal response and interaction levels, respectively.

6.2.2 Systematic exploration of different experimental protocols

A key ability of our approach is that the model allows to predict TKC for different exper-
imental protocols. In particular the ability to switch the growth phase for the prediction
of the antibiotic combinations is unique and was leveraged to systematically explore the
impact of the experimental protocol on antibiotic interactions. To this end, we determined
response and interaction surfaces for lag and exponential growth phase and both endpoint
definitions (PSEjg or PSEN). Instead of a graphical representation, we quantified the frac-
tions of the interaction surface categorized as antagonistic, additive or synergistic. The
classification was based on a significance test against the null hypothesis that the drug
combination interacts additively, as described in ‘{Stochastic interaction surface analysis|’
(p. . Additionally we reported the strength of the interaction with respect to antag-
onism and synergy as the 5th and 95th percentiles across the whole interaction surface,
i.e., the central 90% range. The results are compiled in Table [6.3

While we observed considerable impact of the growth phase on TKC dynamics for
some drugs, in particular linezolid, this was not the case for the pharmacodynamic sum-
mary endpoints of the combinations. For both tested antibiotic combinations, the growth
phase (lag/exponential) did not strongly impact the fractions of classifications and range.
Assuming that any potential impact of the initial growth phase subsides with time, this
observation is to be expected. In contrast, the endpoint definition clearly showed an im-
pact on the fractions of classifications. The integral endpoint PSEg resulted in a lower
fraction of additive classifications compared to snapshot endpoint PSEy, in particular for
the meropenem—linezolid combination. The ratio of antagonism to synergy, however, re-
mained comparable, as well as the overall strength of the interaction, i.e., the Apj;ss range.
This agreed with our expectations, since integrating over multiple time points to obtain
PSEg resulted in a narrower distribution of Agje compared to the exclusive reference
to a single time point for PSEyx due to the independent and identical distribution of the
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residual error, see ‘Bayesian inference]” (p. [60).

6.2.3 Time and concentration dependency of interactions

As expected, most tested interactions surfaces did not describe a flat landscape. The
deviations from additivity were confined to specific concentration regions on the interac-
tion surface, as shown in Figure ﬂ and indicated by a large Apjiss range in Table
In addition, antibiotic interactions depended on time, i.e., they were sensitive to the ex-
perimental duration (see Table . The impact of the experimental duration on the
classification depended on the endpoint definition. For the snapshot endpoint PSEy, we
observed a tendency to shift from antagonistic to additive classifications with increasing
experimental durations. This tendency was much weaker for the integral endpoint PSEg
(see Table . A possible explanation is that for very long experimental durations the
system reaches a steady state close to N = Nyax due to adaptive resistance development
and drug degradation. To analyze the time dependency in more detail, we focused on the
meropenem-—linezolid interaction in lag phase S. aureus cultures. As shown in Figure [6.5
the interaction pattern changed from clear antagonism (0 < 75 < 12h) to a mixed additive
and antagonistic interaction surface for longer experimental durations. A potential reason
might be the comparatively fast degradation of meropenem. However, the emergent addi-
tivity prevailed also in simulations with kqeg MER = 0. Rather, the phenomenon resulted
from the adaptive resistance development against meropenem, while susceptibility against
linezolid remained high.

Table 6.3: Impact of the experimental protocol on antibiotic interactions. The interaction
surfaces were partitioned in antagonistic (ant.), additive (add.) and synergistic (syn.) fractions. The
strength of the interactions with respect to antagonism and synergy is reported as the central 90% range
of the interaction surface (5th and 95th percentiles denoted by A%DS and A%2.).

Experimental protocol Fractions Range

Drug A Drug B Endpoint Growth phase Duration ant. add. syn. A%Sg’s AOB'SSSS
LZD MER PSEg exponential 6h 0.89 0.11 0.00 [-0.33  0.00]
LZD MER PSEg exponential 12h 0.61 0.19 0.20 [-0.40 0.01]
LZD MER PSEg exponential 24h 0.55 0.19 0.26 [-0.44 0.01]
LZD MER PSEg exponential 48 h 0.48 0.20 0.32 [-0.37  0.03]
LZD MER PSEg lag 24h 0.52  0.22 0.26  [-0.42 0.01]
LZD MER PSEN exponential 6h 0.93 0.07 0.00 [-0.39 -0.01]
LZD MER PSEN exponential 12h 0.46 0.40 0.13 [-0.44  0.03]
LZD MER PSEN exponential 24h 0.40 0.43 0.17 [-0.43  0.05]
LZD MER PSEN exponential 48h 0.26 0.44 0.29 [-0.32  0.10]
LZD MER PSEN lag 24h 0.37 044 0.19 [-0.44 0.05]
VAN MER PSEg exponential 6h 0.60 0.00 0.40 [-0.27  0.09]
VAN MER PSEg exponential 12h 0.60 0.04 036 [-0.28 0.10]
VAN MER PSEig exponential 24h 0.60 0.00 0.40 [-0.20  0.11]
VAN MER PSEg exponential 48h 047 0.01 052 [-0.14 0.13]
VAN MER PSEg lag 24h 0.59 0.00 0.40 [-0.15  0.11]
VAN MER PSEN exponential 6h 0.63 0.05 0.32 [-0.28  0.09]
VAN MER PSEN exponential 12h 0.56 0.04 0.40 [-0.21 0.12]
VAN MER PSEN exponential 24h 0.45 0.05 0.50 [-0.19 0.14]
VAN MER PSEN exponential 48 h 0.00 0.01 0.99 [0.04 0.17]
VAN MER PSEN lag 24h 0.40 0.11 0.49 [-0.11 0.14]

simulations without drug degradation (kdeg,VAN = kdeg,MER = kdeg,LZD =0)

LZD MER PSEn exponential 24h 0.77 0.20 0.04 [-0.43 0.01]
VAN MER PSEn exponential 24h 0.49 0.10 0.40 [—0.19 0.11}
LZD MER PSEg exponential 24h 0.70 0.09 0.20 [-0.44  0.01]
VAN MER PSEg exponential 24h 0.60  0.00 0.40 [-0.20 0.11]
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Figure 6.5: Time dependency of interactions. Lag phase S. aureus cells exposed to different initial
concentrations of meropenem (MER) and linezolid (LZD), both in mg/l. (A) Bacterial concentration N
over time (symbols denote experimental data and solid lines the corresponding model prediction based
on the maximum a posteriori estimate). Compared to meropenem exposure alone, the combination with
linezolid exerted inferior initial killing. On the long term, however, the combination was at least on par.
(B) The interaction surface, i.e., the deviation from expected additivity (Agiss) over time, predicted for
pharmacodynamic summary endpoint PSEn. The initially pronounced antagonism (red) shifts towards
higher concentrations and a new, slightly synergistic plateau emerges. The black triangle marks the
concentrations of the meropenem-linezolid combination which is also depicted in the time-kill curves.
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In the following, we critically discuss limitations, assumptions and possible generaliza-
tions of the developed cell-level approach. The discussion complements the evaluation of
the prototype model in ‘{Interim evaluation of the prototype model]’ (p. .

Time dependency of interactions and experimental implications. We demon-
strated that the experimental duration strongly impacted the classification of antibiotic
interactions. For example, when too short experimental durations censored regrowth dy-
namics, see Figure Our analysis showed that in this case, the interaction surface
changed remarkably over time—especially when evaluating snapshot endpoints, because
of the exclusive reference to the end of the experiment. The classification of antibiotic
interactions are expected to strongly differ between experimental protocols without stan-
dardization of the experimental duration with respect to regrowth. Our findings are in
line with Firsov [148] in urging experimenters to prevent unjustified shortening of TKC
experiments. In light of the demonstrated variability in the interaction classifications, the
observed variability in literature reports is now more understandable, see Figure [6.3

Link between pharmacokinetic and pharmacodynamic interactions. In this the-
sis, we studied the antibacterial effects in terms of TKC data for several antibiotics. Some
of these drugs were not stable under the experimental conditions. We exploited the de-
veloped in silico approach to study the impact of the stability on the corresponding in-
teraction for two example drugs: meropenem (fast degraded, kgegmer = 0.019/h) and
linezolid (stable, kqeg 1.zp ~ 0) and simulated the interaction surface without degradation
(Kdeg, VAN = Kdeg MER = Kdeg,LzD = 0, exponential phase, 24h using PSEy). We found
that the fast degradation of meropenem weakened the observed antagonism. Thus, line-
zolid perpetrated meropenem effects even more than observed in the TKC data where
drug degradation took place in the growth medium. In simulations without degradation,
the antagonism was more pronounced (the antagonistic fraction of the interaction sur-
face increased from 0.40 to 0.77) and the slight synergy even less pronounced (synergistic
fraction of the interaction surface reduced from 0.17 to 0.04) compared to simulations
including degradation processes. For a full overview, see Table [6.3] The strength of the
interactions remained comparable. This is an example of how PK properties influence PD
interactions. It highlights the necessity of a combined PKPD approach to determine any
“true interaction” with respect to clinical importance.

Alternate additivity criteria. In order to classify synergy and antagonism, we exclu-
sively used Bliss independence to define additivity. An alternate additivity criterion is
given by Loewe [107], as introduced in ‘{Drug-drug interactions’ (p.[25]). In his concept,
instead of response additivity, dose additivity is assumed, i.e., one drug is exchanged for
an equipotent dose of the combination partner. The resulting response defines the ex-
pected additivity. This approach was not applicable in our case: to determine a (unique)
equipotent dose, the dose response relationship needed to be invertible. This condition
was at least not satisfied for meropenem due to the Eagle effect.

Inter-species translation of the cell-level data. The developed approach integrated
cell-level data into the bacterial population growth dynamics as introduced in ‘{Balanced]
lerowth and the cell-state]” (p. . Our analysis of the cell-level data revealed a surprising
correlation: the strong dependence of the intracellular ribosomal concentration and effi-
ciency on growth was remarkably conserved across the two bacterial species S. aureus and
E. coli, as shown in Figure 2.3] This may suggest a generalizable pattern of inter-species
conservation. When no or very sparse cell-level data are available, the presented Bayes
approach would offer rigorous implementation of such patterns as prior knowledge. Yet,
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the validity of such assumptions has to be critically considered: external model validations
and a check of the physiological plausibility of the parameters including proportions of cell
size and mass are mandatory.

Limitations of the growth rate to cell-state interrelationship. A prerequisite
for our modeling approach is an invertible relationship between growth rate and cellular
characteristics of some reference cell under balanced growth condition, as exploited in
‘ILinking the cell-state to bacterial population growth and wvice versa” (p. . This as-
sumption holds true in nutritional rich media, as typically used to assess antibiotic action.
In nutritionally highly unfavorable media, however, cells may employ alternative metabolic
pathways to prevent starvation. Then, the descriptions of the reference cell may not be
representative for the culture of interest. Thus, extrapolation beyond the tested control
growth rate constants should be ideally supported with additional cell-level data in the
corresponding media.

Another aspect concerns the applicability of the growth rate to cell-state interrelation-
ship. During drug exposure, as shown for chloramphenicol in Figure the relation of
growth rate and cell-state was not one-to-one anymore. Instead of a one-to-one relation,
a combination of growth rate and drug concentration determined the cell-state. Thus, the
assumption related to egs. , and is violated for long term drug exposure.
In the following we explain, why this does not impair our approach. We exploited the link
of the growth rate to cell-state exclusively for the initialization of the cell-state. More
precisely, the link was used for experiments starting in the exponential growth phase, as
we estimated the initial cell-state for lag-phase bacteria. Using nutrient rich and drug free
media, this is the same growth condition under which Bremer and Dennis performed the
corresponding experiments to determine cellular characteristics at different growth rates
[24]. Thus, the use of the growth rate to cell-state relation is valid for all used experi-
mental setups where the addition of antibiotics was at the beginning of the experimental
duration, see Figure Assuming validity of the inverse direction of the link (cell-state
to growth rate), it follows that drug effects do not impair the general use of the growth
rate to cell-state interrelationship.

Count data and analytical challenges. As it is the common approach [15, 18], we
treated the bacterial concentration, stated in unit CFU/ml, as a continuous variable—
ignoring the discrete count nature of the data. Such simplification is appropriate for
high counts, but may result in unrealistic predictions for very small population sizes with
respect to regrowth. Especially, the interpretation of zero colony counts after plating and
incubation clearly depends on the (adaptively chosen) dilution scheme. Furthermore, when
we inferred the bacterial concentration via viable plating, we assumed that all individual
cells had the same probability to form colonies after incubation. Clearly, the number and
size of the colonies depends on the incubation time. The validity of the assumption has
been demonstrated for the performed viable plating assay by Scheerans |[162, p. 56]. He
has found no significant change in CFU counts when increasing the incubation time from
24 to 48 h.

Death of a bacterial cell or its division may be modeled as events effecting a discrete
bacterial population size. Accordingly, bacterial population dynamics could be described
by time to event models. Time to event models would naturally account for both—the
count nature of the plating process and also for the related analytical challenges—and
represent a more mechanistic alternative compared to treating counts as continuous data.

Explanations for increased RNA levels. A key ability of our approach is the descrip-
tion of cell-level characteristics during antibiotic exposure as exemplified in ‘{Applications]
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lof the prototype model’ (p. . The predicted increased RNA levels during exposure
to protein biosynthesis inhibitors was in agreement with other literature reports: in [163]
increased transcription of ribosomal mRNA has been linked to rising intracellular energy
levels. In our prototype model these energy levels were represented as the peptide chain
elongation rate of the active ribosomes during antibiotic perturbation. This is also in
line with the hypothesis that the main drivers for this rate are the levels of intracellu-
lar amino acid pools. The amino acid supply has been described to generally impact
cellular metabolism of clinically relevant bacteria, including S. pneumoniae, S. aureus,
E. faecalis and P. aeruginosa [164]. In particular, rising amino acid pools release the
ppGpp-mediated repression of rRNA synthesis [165]—a mechanism which we integrated
in the prototype model. Passive regulation could be an additional mechanism resulting
in increased RNA levels: while translation is inhibited, transcription continues, leading to
an excess of RNA [166], which in return causes defects in ribosome assembly [56]. Our
decision to omit increasing RNA levels in the interaction model is based on the gap of
mechanistic knowledge of how RNA levels impact drug action. We estimated that linezolid
does not significantly increase the rate of persister formation (see Table, which is now
understandable in light of the link between rising amino acid pools and a relaxation of the
stringent response.

Death effect corrected prediction of the RNA mass fraction. We predicted the
RNA mass fraction during exposure to chloramphenicol in Figure Overall, the pre-
dictions were in good agreement with the experimental data. Yet, we observed a trend
of increasing deviations at higher chloramphenicol concentrations. Based on the bacte-
riostatic nature of chloramphenicol we assumed negligible death effects for the applied
concentrations. In light of an assumed Emax model for the death effects and the larger
deviations at higher concentrations, the validity of the assumption has to be critically
discussed. A consideration of death effects could possibly improve this minor misfit.

Parallels between tumor and bacterial growth. Modeling a cell population as the
combination of growing and non-growing cells is one of many examples (among drug re-
sistance, carrying capacity and stress response) where elements of bacterial and tumor
growth models overlap. In both cases persisting or quiescent cells prevent an eradication
of the population—possibly leading to a relapse of tumor growth or to the re-occurrence
of an infection. Accordingly, theoretical considerations for tumor growth models could
be applicable in bacterial growth models and wvice versa. In eq. , we stated an ap-
proximation for the fraction of non-growing cells in an exponentially growing population.
Analyzing tumor growth, Hartung derived in [167] an analytical solution for the same
problem, see eq. . Simulations showed that for all datasets the approximation in
eq. leads to similar results (absolute deviation for fj exp < 5%).
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We successfully developed a cell-level model of bacterial population growth for antibi-
otic combinations. The novel combination of cell-level and time-kill curve data did not
only allow to describe complex population growth dynamics, but also to systematically
disentangle the impact of drug effects, assay readouts and experimental protocols on an-
tibiotic interactions. In scenarios involving bacterial regrowth, the experimental duration
critically impacted antibiotic interactions, as exemplified by the exposure of S. aureus to
meropenem, vancomycin and linezolid. Although the impact of the initial growth phase
on time-kill curve dynamics was considerable for linezolid, observable for meropenem and
negligible for vancomycin, the corresponding impact on interaction surfaces turned out to
be always minor. The performed stochastic simulation studies to evaluate time-kill curve
data showed that the application of integral summary endpoints resulted in lower propor-
tions of additive interactions compared to the use of snapshot endpoints. The reason was
the increased variability of the interaction surfaces due the exclusive reference to a single
point implied by the snapshot character. Yet, across tested scenarios, we confirmed the
recently found antagonistic interaction between linezolid and meropenem [16].

Overall, the consideration of cell-level processes in the developed pharmacokinetic-
pharmacodynamic model to describe time-kill curve data was advantageous regarding
some aspects compared to conventional models which are confined to bacterial population
growth: an increased versatility allowed to integrate prior knowledge from literature, as
demonstrated with the prototype model for F. coli. Prior knowledge integration included
the correction for different experimental protocols via identification of experiment specific
parameters. Moreover, consideration of ribosomal dynamics allowed to explain the reduced
potency of linezolid against lag phase S. aureus cultures. The increased level of detail
implied high model complexity and necessitated the availability of cell-level data. We
showed that the cell-level approach can be tailored to specific mechanisms of drug action
and thereby we reduced the amount of necessary cell-level data.

In view of the currently emerging antibiotic resistance crisis there is a dire need to
improve the understanding of the effects of multiple antibiotics on bacteria. Therefore the
developed approach contributes a well-timed piece of research bridging mathematics and
biology. The ultimate aim remains to predict antibiotic effects in vivo. To this end, this
thesis may serve as a starting point for further research. To further advance to this aim,
next steps should additionally account for a potential impact of the immune system, the
target site pharmacokinetics and the particularities of the in vivo habitats, like biofilm
formation.
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Nomenclature

PSE Pharmacodynamic summary endpoint

(p)ppGpp Guanosin tetraphosphate (phosphorylated)

i.i.d. Independent and identically distributed

aa Amino acid

aa-tRNA Aminoacyl tRNA, charged tRNA

ATP Adenosine triphosphate

DNA Deoxyribonucleic acid

DRAM-MCMC Delayed Rejection Adaptive Metropolis MCMC
ESBL Extended spectrum beta-lactamases

FACS Fluorescence-activated cell scanning/sorting
fMet-tRNA N-formylmethionyl tRNA

LLOQ Lower limit of quantification

MAP Maximum a posteriori

MBC Minimal bactericidal concentration

MCMC Markov chain Monte Carlo (sampler)

MIC Minimal inhibitory concentration

ML  Maximum likelihood

mRNA Messenger RNA

MRSA Methicillin resistant Staphylococcus aureus

ODE Ordinary differential equation

PBP Penicillin binding protein

PD  Pharmacodynamics, “What the drug does to the body”
PK  Pharmacokinetics, “What the body does to the drug”
QSS Quasi steady state

RNA Ribonucleic acid

RNAP RNA polymerase
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rRNA Ribosomal RNA

THF Tetrahydrofolate

TKC Time-kill curve

tRNA Transfer RNA

UV-VIS Spectrum covering ultraviolet to visible light wavelengths (200 to 800 nm)

VRE Vancomycin resistant enterococci
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Appendix A. Appendix

A.1 Persister fraction during exponential growth

In the following, we derive the approximation stated in eq. (3.5)). Consider the following
ODE system describing the rate of change of a population consisting of normal n = n(t)
and persisting p = p(t) cells during exponential growth

d
an = knet n— knp,eff 'n + k;pn7eﬂ' : p (Al)
d
&p knp,eff n—= kpn,eff “p- (A2)

As it is typically the case, we assumed kyp eff < knet and kpp eff < knet. For convenience we
set n(0) =1 and p(0) = 0. Thus, n was to good approximation given by n = exp(knet - t)-

This resulted to d

ap = knp,eff ’ eXp(knet ’ t) - kpn,eff - D (A3)

Solving for p gave

p = p(O) ) exp(_kpn,eff : t)

—i—/ot Enp eft - €XP(knet - 8) - exp(—kpn et - (£ —s))ds (A.4)
— Fpet /0 " exp (et + Fometr)s) s - exp(— ket - 1) (A5)
= Fnpefr - €xXp(—Knpeff - 1) T + oot exp((Knet + Fpn,eff) - 5) : (A.6)
— gt - oXD(—hup et t)w - (exp((kuet + kpmer) - £) — 1) (A7)
- m@xp(km ) = exp(—hupet - 1))- (A8)

From this one can show that the persister fraction defined in eq. (3.4) is approximated by

knp,eff
knpﬁff + knet + kpn,eff

(A.9)

fp,exp ~

An alternative to this approximation has been pointed out in [167]: considering the
system of ODEs in egs. (A.1) and (A.2) with the same assumptions (Knp et < knet and
kpn et < knet) and defining the total bacteria count N = N(t) = n + p, this implies

d d? d
&N = kpet - 1 and dt2N ket - an, (A.10)
leading to the second order equation
d? d
@N = (knet - knp,eff - kpn,eff) : aN + Enet - kpn,eff : N7 (All)

which is a Sturm-Liouville equation and has the known solution

N(t) = N(0)-[a-exp(0.5t- (A++/ A2 + 4B))+(1—a)-exp(0.5t- (A—\/ A% + 4B))], (A.12)

with A = ket — knp,eff — Kpn,eff; B = Knet - kpn,et @and some proportionality factor a. Since
we have n = 1/kpet - %N, it follows that n/N = 1/kyet - %N -1/N. Finally we write the
quotient using the derivative of the solution, where the 1 — o weighted term approaches
zero for large ¢, and « cancels out yielding

knet - knp,eff - kpn,eff + \/(knet - knp,eff - kpn,eff)Q + 4]€net : kpn,eff
2k7net .

fp,exp =1-

(A.13)
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A.2 Comprehensive effect equations

Find below the effect equations used in ‘{Cell-level model of bacterial population growth]
[for antibiotic combinations/” (p. . The corresponding parameter estimates are compiled
in Table [6.1] and Table 6.2

TET growth re-

EmaXTETg - TETVTET g

E =— A4
duction TET.g (rrlibbc . EC50TET,g)'YTET’g + TETTETg ( )
" E . TETYTET.d
TET death ef Brpry — MaxXTET,d (A15)
fect ) (rrlibc . EC50LZD7d)’YTET,d + TETYTET,d
i E . TET TET,p
fTET i persister ETETvp = ma}’{Y:l{‘l];:E;p YTET (A'16)
ormation EC50;zp ; + TET™=T»
VAN death ef- 5 _ Emaxyan,a- VAN, VANe (A7)
fect i EC50n. + VAN, VAN '
VAN adaptive BUAN, ARV _kg : rriibbc - Emaxvan, ARV 'VANZVANE’ARV (A.18)
resistance " EC50;’/‘X*§:$§‘\// VAN VARGARY .
. E . VANYVAN,p
E/AN i persister EVAN,P = ma}’(yilfﬁl\?;)p TVAN (A.19)
ormation EC5OVAN7p + VAN P
MER death ef- B kg - EmaxemEgR q - eMERTMERA A.20
eMER,d - YeMER,d VeMER.d ( . )
fect EC50 grq + e MER ’
_ E . eMEReMER,g
fl}/[ER Fagle of EeMER,B = ma}i:i/llgfég - “VeMER (A.21)
ect EC5OEMER7g + eMER e
MER adaptive B _ EmaxempR,ARM - eMERYeMER,ARM (A.22)
resistance eMER,ARM EC503§}[\%‘3§:X§1\& + eMEReMER,ARM )
i E . MERMER.p
R Do By e (423
ormation ECSOMER,p + MER P
_ E . LZDLzD,
LZD growth re Fion _ mMaxr,zp,g g A4
7g

duction

(% . ECE)OLZD’g)'YLZD,g + LZDzD.g
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LZD death ef-
fect

LZD  persister
formation

Erzpa

Evzpp

EmaxLZDd . LLZDtzD.d

(% . EC5OLZD7d)’YLZD7d + LZDWLZDyd

— EInaXLZD,p - LZD"%zb.p
_EC5OELZZDD$ + LZDzDp
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A.3 E. coli exposed to tetracycline

Table A.1: Parameter estimates (E. coli, growth and tetracycline related).

Maximum a posteriori estimate with 0.05 and 0.95 quantiles of the marginals in brackets Bounds /
Parameter Unit Comment exponential phase lag phase Reference
log(No) log(CFU/ml) initial inoculum 14.34 (14.15-14.52) [0,10g(107)]

. 10-5 initial ribosomal con- b

rib0 07°/2a centration f1be fixed

o _ 1;11;;1211 persister frac- 0 fixced

kg.c 1/h control growth rate 2.01 (1.71-2.35) [0, +00]
constant

log(Nmax) log(CFU/ml) carrying capacity 22.31 (21.71-23.08) [log(107), 4+o0]
switching rate con-

knp 1/h stant (stationary 1 fixed
phase, n — p)

kpn 1/h ?:)Vlt_f};;ig rate constant 01 fixed

Kdeg, TET 1/h Steagi?datlon rate con- 0 fixed
tetracycline growth in-

EC50TET ¢ mg/1 hibition, scales with 0.000142 (0.000122-0.000163) [0, 4+00]
ribe /rib
tetracycline growth

YTET, - 4.02 (2.51-8.61 0,

€ inhibition ( ) [0, +oc]

tetracycline death in-

EC50TET,q mg/1 duction, scales with 0.0194 (0.0132-0.0292) [0, 4+00]
ribe /rib
tetracycline death in-

Ema: 1/h u

XTET,d / duction 5 fixed

EC5071mT p mg/1 tetracylchne persister 0.0000003 fixed
formation
EmaxtgT ~ tetracycline persister 100 fixed
P formation *e

The maximum effect EmaxTgt,¢ and slope factors yrgT,q4, YTET,p Were fixed to 1 to increase
parameter identifiability
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Figure A.1: Time-kill curves (E. coli, TET, exp. phase). Exponential phase cultures exposed to
different initial concentrations of tetracycline (TET) in mg/l. Data from [121} Fig. 3] shown as red crosses.
Solid black line is simulation based on the maximum a posteriori estimate. Gray area represents 0.05 to
0.95 quantile of prediction interval. Note the sparse data situation in the control curve.
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A.4 Comprehensive time-kill curves S. aureus

N in CFU/ml N in CFU/ml N in CFU/ml

N in CFU/ml
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T e T
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10
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e e / g&/ ' e
100 T _
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Figure A.2: Time-kill curves (S. aureus, MER, LZD, exp. phase). Exponential phase cultures
exposed to different initial concentrations of meropenem (MER) and linezolid (LZD) in mg/l. Data as red
crosses. Solid black line is simulation based on the maximum a posteriori estimate. Gray area represents

0.05 to 0.95 quantile of prediction interval.
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N in CFU/ml N in CFU/ml N in CFU/ml

N in CFU/ml
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Figure A.3: Time-kill curves (S. aureus, MER, LZD, lag phase). Lag phase cultures exposed to
different initial concentrations of meropenem (MER) and linezolid (LZD) in mg/l. Data as red crosses.
Solid black line is simulation based on the maximum a posteriori estimate. Gray area represents 0.05 to
0.95 quantile of prediction interval.
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Figure A.4: Time-kill curves (S. aureus, VAN, MER, exp. phase). Exponential phase cultures
exposed to different initial concentrations of vancomycin (VAN) and meropenem (MER) in mg/l. Data
as red crosses. Solid black line is simulation based on the maximum a posteriori estimate. Gray area
represents 0.05 to 0.95 quantile of prediction interval.
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Figure A.5: Time-kill curves (S. aureus, VAN, MER, lag phase). Lag phase cultures exposed to
different initial concentrations of vancomycin (VAN) and meropenem (MER) in mg/1. Data as red crosses.
Solid black line is simulation based on the maximum a posteriori estimate. Gray area represents 0.05 to
0.95 quantile of prediction interval.
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