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Abstract

Since the start-up of the GRACE (Gravity Recovery And Climate Experiment) mission in 2002
time dependent global maps of the Earth’s gravity field are available to study geophysical and
climatologically-driven mass redistributions on the Earth’s surface. In particular, GRACE obser-
vations of total water storage changes (TWSV) provide a comprehensive data set for analysing
the water cycle on large scales. Therefore they are invaluable for validation and calibration of
large-scale hydrological models as the WaterGAP Global Hydrology Model (WGHM) which sim-
ulates the continental water cycle including its most important components, such as soil, snow,
canopy, surface- and groundwater. Hitherto, WGHM exhibits significant differences to GRACE,
especially for the seasonal amplitude of TWSV. The need for a validation of hydrological models
is further highlighted by large differences between several global models, e.g. WGHM, the Global
Land Data Assimilation System (GLDAS) and the Land Dynamics model (LaD).

For this purpose, GRACE links geodetic and hydrological research aspects. This link demands
the development of adequate data integration methods on both sides, forming the main objec-
tives of this work. They include the derivation of accurate GRACE-based water storage changes,
the development of strategies to integrate GRACE data into a global hydrological model as well
as a calibration method, followed by the re-calibration of WGHM in order to analyse process
and model responses. To achieve these aims, GRACE filter tools for the derivation of region-
ally averaged TWSV were evaluated for specific river basins. Here, a decorrelation filter using
GRACE orbits for its design is most efficient among the tested methods. Consistency in data and
equal spatial resolution between observed and simulated TWSV were realised by the inclusion of
all most important hydrological processes and an equal filtering of both data sets. Appropriate
calibration parameters were derived by a WGHM sensitivity analysis against TWSV. Finally,
a multi-objective calibration framework was developed to constrain model predictions by both
river discharge and GRACE TWSV, realised with a respective evolutionary method, the ε-Non-
dominated-Sorting-Genetic-Algorithm-II (ε-NSGAII).

Model calibration was done for the 28 largest river basins worldwide and for most of them im-
proved simulation results were achieved with regard to both objectives. From the multi-objective
approach more reliable and consistent simulations of TWSV within the continental water cycle
were gained and possible model structure errors or mis-modelled processes for specific river basins
detected. For tropical regions as such, the seasonal amplitude of water mass variations has in-
creased. The findings lead to an improved understanding of hydrological processes and their
representation in the global model. Finally, the robustness of the results is analysed with respect
to GRACE and runoff measurement errors. As a main conclusion obtained from the results,
not only soil water and snow storage but also groundwater and surface water storage have to
be included in the comparison of the modelled and GRACE-derived total water budged data.
Regarding model calibration, the regional varying distribution of parameter sensitivity suggests
to tune only parameter of important processes within each region. Furthermore, observations of
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single storage components beside runoff are necessary to improve signal amplitudes and timing
of simulated TWSV as well as to evaluate them with higher accuracy.
The results of this work highlight the valuable nature of GRACE data when merged into large-

scale hydrological modelling and depict methods to improve large-scale hydrological models.
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German Abstract

Seit dem Start der GRACE-Mission (Gravity Recovery And Climate Experiment) im Jahr 2002
sind globale Daten von zeitlichen Veränderungen des Erdschwerefeldes verfügbar, mit deren Hilfe
sich geophysikalische und klimatologische Massenumverteilungen auf der Erdoberfläche studieren
lassen. Insbesondere die von GRACE beobachteten Variationen des gesamten Wasserspeichers
(TWSV) bieten erstmals einen globalen Datensatz für die Analyse des Wasserkreislaufes auf
großen räumlichen Skalen. Sie sind außerordentlich wertvoll für die Validierung und Kalibrierung
von großskaligen hydrologischen Modellen, wie das "WaterGAP Global Hydrology Model"
(WGHM), welches kontinentale Wasserspeicher, einschließlich der wichtigsten Komponenten (Bo-
den, Schnee, Interzeption, Oberflächen- und Grundwasser), simuliert. Bisher weist WGHM ins-
besondere in der saisonalen Amplitude der TWSV gegenüber GRACE signifikante Differenzen
auf. Sehr große Unterschiede zwischen hydrologischen Modellen, z.B. dem WGHM, dem "Global
Land Data Assimilation System" (GLDAS) und dem "Land Dynamics model" (LaD) betonen
die Notwendigkeit hydrologische Modelle zu validieren.

Zu diesem Zweck verbindet GRACE die Wissenschaftsbereiche der Geodäsie und der Hydro-
logie. Diese Verknüpfung verlangt von beiden Seiten die Entwicklung geeigneter Methoden zur
Datenintegration, welche die Hauptaufgaben dieser Arbeit darstellen. Dabei handelt sich es
insbesondere um die Ableitung von genauen GRACE-basierten TWSV und um die Strategie-
Entwicklung zur Integration von GRACE Daten in ein hydrologisches Modell sowie zur Kali-
brierung von WGHM. Das abschließende Ziel ist die Rekalibrierung von WGHM, mit der Motiva-
tion Prozess- und Modellverhalten zu analysieren. Um diese Ziele zu erreichen, wurden in der vor-
liegenden Arbeit für bestimmte Flusseinzugsgebiete verschiedene GRACE-Filter evaluiert, die zur
Ableitung von räumlich gemittelten TWSV dienen. Als effizienteste unter den getesteten Meth-
oden erwies sich ein Dekorrelationsfilter, für dessen Design GRACE-Orbits angewendet werden.
Die Konsistenz zwischen den zu vergleichenden Daten und deren räumlicher Auflösung wurde
durch den Einschluss aller wichtigen hydrologischen Prozesse sowie eine äquivalente Filterung
beider Datensätze realisiert. Durch eine Sensitivitätsanalyse des Modells auf TWSV wurden
geeignete Kalibrierparameter bestimmt. Abschließend konnte ein multi-kriterieller Kalibrierrah-
men entwickelt werden, der eine entsprechende evolutionäre Kalibriermethode ε-Non-dominated-
Sorting-Genetic-Algorithm-II (ε-NSGAII) anwendet, um hydrologische Modellsimulationen an
gemessene Abflusszeitreihen und an GRACE-abgeleitete TWSV anzupassen.

Die Modellkalibierung wurde weltweit für die 28 größten Flusseinzugsgebiete durchgeführt.
In den meisten Fällen ergab sich eine Simulationsverbesserung gegenüber beiden Kalibrierkri-
terien. Mit Hilfe des multi-kriteriellen Ansatzes wurden verlässlichere und konsistentere Simu-
lationen von TWSV erreicht sowie mögliche Modell-Strukturfehler oder unkorrekt modellierte
Prozesse aufgedeckt. Für tropische Regionen ergeben sich z.B. größere saisonale Amplituden in
den Wassermassenvariationen. Die Ergebnisse führen zu einem verbesserten Verständnis hydrol-
ogischer Prozesse und helfen bei der Optimierung des globalen Modells. Zum Schluss konnte
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die Robustheit der Ergebnisse gegenüber Fehlern in GRACE- und Abflussmessungen erfolgreich
getestet werden. Nach den wichtigsten Schlussfolgerungen, die aus den Ergebnissen abgeleitet
werden konnten, sind nicht nur Bodenfeuchte- und Schneespeicher sondern auch Grundwasser-
und Oberflächenwasserspeicher in Vergleiche des gesamten Wasserbudgets zwischen simulierten
und GRACE detektierten Analysen einzubeziehen. Für die Modellkalibrierung sind regional
variierende Parametersensitivitäten zu beachten, z.B. in dem für ein bestimmtes Einzugsgebiet
nur Parameter bedeutender Prozesse kalibriert werden. Weiterhin sind neben Abflussmessungen
zusätzlich Beobachtungen von Einzelspeicherkomponenten notwendig, um die Signalstärke von
simulierten TWSV sowie deren zeitliche Anpassung zu verbessern und mit größerer Genauigkeit
zu evaluieren.
Die Ergebnisse dieser Arbeit zeigen wie wertvoll GRACE Daten für die großskalige hydrolo-

gische Modellierung sind und eröffnen eine Methode zu Verbesserung selbiger.
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1 Introduction

1.1 Interfaces between geodesy and hydrology

Geodesy comprises the survey of the Earth’s figure. Herein, an important research objective is
the determination of the gravity field, which provides a natural height system and influences all
geodetic measurements. It derives from a superimposition of centrifugal as well as gravitational
forces and therefore, it depends on mass distributions on and below the Earth’s surface. For
many years, the potential field was considered as a geometrical and static figure. Since the end
of the 20th century, satellite missions enable a global survey of the Earth including is gravity field.
The continuously increasing measurement accuracy directed the focus to dynamical behaviours.
Temporal variations in the gravity field are caused by geophysical or climatic induced mass trans-
fers above and below the Earth’s surface. Within geosphere, oceans, atmosphere, hydrosphere,
cryosphere and biosphere system typical substances change their location and distribution inside
and between the individual subsystems. By the reflection of these mass transfers in changes of
the planets gravitational field, they affect the location of satellite orbits in space. In return, the
geodetic survey of these orbits enables the observation of mass transfers in the Earth-system (see
Sect. 1.1.3). Developed as such, the Gravity Recovery And Climate Experiment (GRACE, see
Sect. 1.1.2) provides monthly up to 10-day measurements of the gravity field with global coverage
and regional resolution. From the view point of geodesy, the gravitational measurements have
to be reduced by short scale mass transfers in oceans, atmosphere, cryosphere and hydrosphere,
to separate them from geodynamics or long-term changes in the geosphere.

Research fields that belong to the "residual" signals profit from the possibility to detect respec-
tive mass variations on the Earth’s surface. As one of these fields, in hydrology it is an important
aim to understand the mechanisms of water transports on the continents (see Sect. 1.1.1). Water
is a vital resource, but its quantity on the globe is critical. Approximately 3% of the total water
available on the planet is fresh water (Baumgartner & Liebscher, 1990). A large proportion of
that is bounded as ice in polar regions. Due to the fast increase of human population and climate
warming, water availability decreases in many regions. Knowledge of the development of fresh
water resources is of significant interest. On the other hand, extreme precipitation or runoff
events on the continents threaten the life of humans and animals. Hence, knowledge about the
possible enhancement of hazard due to climate change are relevant for the protection of civilised
regions. In order to achieve this knowledge, the observation of water discharge and storage
processes is necessary to provide reliable predictions for future water availability and hazardous
risks. In hydrology, research is undertaken on different scales, like small catchments of a few
hundred meter up to the scale of large river basins. But a global observation and understanding
of the water cycle is necessary to gain a broad overview on the hydrological system, to link it to
other subsystems like oceans or atmosphere and to couple it with climate studies. Widely applied
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and useful tools depict large-scale hydrological models, as the conceptual WaterGAP Global Hy-
drological Model (WGHM, see Sect. 1.2). But the application of such models also increases the
need of global hydrological observations to validate model simulations or calibration.
The link between Hydrology and Geodesy is the gravity attraction of water mass, that causes

a change of the gravity field (see Fig. 1.3) when the water cycles through the Earth’s subsystems
(see Fig. 1.1). Geodetically recovered water mass variations by GRACE deserve as an input for
hydrological process studies. Furthermore, they are applicable as model input and to discover
simulation uncertainties, that reflect a lack of our knowledge about the water cycle mechanisms.
In order to take these challenges, the aim of this work is the integration of water mass variations
from global GRACE gravity fields into the global hydrological model WGHM (see Sect. 1.4), by
a sophisticated model optimisation method (see Sect. 1.3). A main difficulty depicts the analysis
and the combination of data from both research fields, with e.g. different spatial resolution.
The latter is realised in a multi-objective re-calibration of WGHM model parameter with river
discharge data and GRACE-based mass variations (see Sect. 1.5).

1.1.1 The global water cycle

Water on the Earth is not fixed to certain storages of the planet, but it circulates between oceans,
atmosphere and the continental surface as a medium of energy fluxes. The global water cycle
(see Fig. 1.1) is a complex system on different scales, and it is a main force of life on our planet
(Jones, 1997; Baumgartner & Liebscher, 1990) and it is closely linked to the global climate.
The available energy for water transport on the Earth depends on the radiation intensity of

the sun and the absorption capacity of the ground. Depending on energy fluxes, water changes
its phases between ice, liquid and vapour. Hence, water evaporates from the oceans and from
land sites, to precipitate as rain and snow back to oceans and land. On the continents, the liquid
may be temporarily stored in soil, plants, lakes, wetlands or groundwater storages. Ice and
snow accumulates in glaciated or cold regions and during melt seasons liquid water transfers to
rivers. Not evaporated or stored water on the continents fluxes back to the oceans, which occurs

Figure 1.1: The global water cycle.
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above the surface along rivers or below the surface through soil and groundwater aquifers. The
individual processes of water transports depend on climatic conditions and the constitution of
the ground, like vegetation coverage, soil characteristics, elevation, disposition or roughness and
they exhibit large differences in their temporal behaviour. The continental water cycle includes
hydrological water transports on the land sites, and its dynamics determine the availability of
fresh water for human consumption on the globe. Especially, soil moisture represents a key
parameter of the hydrological cycle, since it links the energy cycle of evapotranspiration with the
subsurface processes of infiltration and solute transports (Ilk et al., 2005).

The importance of fresh water for human makes the continental water cycle and its variations in
particular an important subject of research studies. A fundament in its survey is the hypothesis
of mass conservation. For any time interval, it asserts that the mass volume entering a defined
space body is equal to the volume exiting plus the storage changing in the space body, no
matter of the space size and the interval length (Baumgartner & Liebscher, 1990). Following
that principle, the dynamic water budged for the drainage basin of a river is described by

δS

δt
=
δP

δt
− δET

δt
− δR

δt
, (1.1)

with the change of water storage S, precipitation P , evapotranspiration ET and total discharge
R for an infinitesimal time element δt. The static approach

∆S = P − ET −R (1.2)

describes the total water storage change TWSC (∆S) of the basin for a specific time interval ∆t.
On the global scale, P and R are accessible by various ground or space based measurements.
ET may be determined from satellite observations followed by physical modelling of the energy
balance (Sheffield et al., 2009). For a long time only ∆S (or S) was not directly accessible by
measurements at large scales, since it accumulates from all existing water storages on and below
the surface between canopy and the deepest groundwater storage. Therefore, the total water
storage change is simulated on large scales by hydrological models, that imitate the continental
water cycle with different strategies (see a comparison of three global models in Chapter 2). The
only independent data set to validate these models is available from satellite gravity missions,
which indirectly detect water storage variations by their mass change induced effect on the
gravitational field of the Earth.

1.1.2 Satellite gravimetry by GRACE

Gravitation is the attraction between mass bodies. As every large mass body in space, the Earth
features a measurable gravitational field, that forces the Moon as well as artificial satellites
staying on an orbit around the Earth. The gravitational potential V at a location (x, y, z) in the
field (Heiskanen & Moritz, 1967; Torge, 2003)

V (x, y, z) = G ·
∫∫∫
Earth

dm

l
(1.3)
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is an integrated effect of all mass elements dm = ρdV . These elements may be described by their
density ρ and volume element dV and they are of distance l to the location (x, y, z). Consequently,
the gravitational field is induced by the density distribution of the planet. Changes in the density,
e.g., due to mass transfers in or between the Earth’s subsystems (see Fig. 1.3) lead to changes
in the field. In satellite gravimetry, the inverse effect of mass changes on satellite orbits is used
to measure the global gravity field.
In satellite geodesy, a spherical harmonic (SH) expansion of the time dependent gravitational

potential V is applied, which can be written outside the Earth’s surface (r ≥ R) as (Torge, 2003;
Schmidt et al., 2008b):

V (r, λ, θ, t) =
GM

r

∞∑
n=0

n∑
m=0

(a
r

)n
P̃nm(cos θ) [Cnm(t) cosmλ+ Snm(t) sinmλ] , (1.4)

where a is the semi major axis, G the gravitational constant and M the total mass of the Earth.
The colatitude θ, the longitude λ and the radius r are geographical coordinates that belong to
an Earth-fixed reference frame. P̃nm(cosθ) denotes the fully normalised associated Legendre-
polynomials, with the integers n and m being degree and order of the spherical harmonic ex-
pansion. The dimensionless spherical harmonic coefficients Cnm and Snm are the gravitational
parameters which describe the mass distribution of the Earth. Their lower terms can be inter-
preted as physical properties of the Earth (Schmidt et al., 2008b). For example, the C00-term
defines the total mass and C20 the flattening of the planet.
In satellite gravimetry, the SH-coefficients are determined by the analysis of satellite orbits.

Due to the decreasing sensitivity to spatial variations in the gravitational signal with increasing
distance from the Earth, so called low-earth orbiting (LEO) satellite missions as the Gravity
Recovery And Climate Experiment (GRACE) are launched to an altitude of about 500 km
are. GRACE is the direct successor of the first GFZ-1 and CHAMP (CHAllenging Minisatellite
Payload) gravity missions. Started in 2002, it consists of two satellites that chase each other
in about 220 km distance on the same polar orbit with an inclination of 89,5◦. The mission
configuration (see Fig. 1.2) enables low-low satellite to satellite tracking (SST-ll), which is realised
by accurate (µm-level) quasi instantaneous distance measurements with a microwave K-band
instrument between the two LEO’s (Schmidt et al., 2008b). The reference of the measurement
to an Earth fixed frame is realised by on-board GPS receivers, that absolutely track the satellite
orbits with mm-resolution. The orientation of both space-crafts is undertaken with observations
of a mrad-accurate two star camera assembly (Reigber et al., 2005). Non-gravitational forces
on the satellites, e.g. from atmospherical friction, are determined in three directions with a
capacitive accelerometer, that is located in the mass center of each satellite. Furthermore, a laser
retro-reflector is installed at the bottom of each satellite to enable laser range measurements for
calibration of GPS and K-Band data (Schmidt et al., 2008b). Though, the expected lifetime of
the satellites was 5 years, optimistic estimations expect to receive data for several more years,
which depends on the survival of the individual measurement instruments as well as on remaining
fuel resources necessary to prevent a critical orbit-height decline.
The analysis of the raw data is mainly undertaken by three scientific teams at the German

Research Center for Geosciences (GFZ) in Germany, the Center for Space Research (CSR) in
Texas, USA and the Jet Propulsion Laboratory (JPL) in California, USA. Here, gravitational
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field and other unknown parameters of the measurement system are derived in a least-squares
adjustment of the satellite equations that base on the Newtonian equations of motion. Data
of about one month are necessary to achieve a spatial resolution of maximal 400 km, which
corresponds up to degree and order 50 of the SH (Schmidt et al., 2008b). Consequently, GRACE
provides information of mass change induced variations in the gravitational field averaged for
one month. These variations can be expressed by monthly averaged changes of the gravitational
parameters relative to a reference, e.g. a mean field, by:

V (r, λ, θ,∆t)− Vref (r, λ, θ) = ∆V (r, λ, θ,∆t) = f
(
∆Cnm(∆t),∆Snm(∆t)

)
, (1.5)

if ∆t = 1 Month. Only at the cost of spatial accuracy, some processing centers started to provide
gravity fields with 10-days or weekly temporal resolution (e.g. Lemoine et al., 2007).
Followed from the formulations above, the GRACE signal integrates from all mass variations on

the Earth’s surface. Fig. 1.3 provides an overview of GRACE’s spatial and temporal sensitivity
towards mass changes of the Earth. The separation of the gravitational signal from one of
these systems is only possible with further information on mass variations of the other system.
Therefore, known proportions of the gravitational influences are a-priori estimated by geophysical
models and reduced from the GRACE SH coefficients during the gravity field computation. These
known effects are due to gravitational attraction of solar system bodies, the luni-solar lunar tides
of the Earth system (solid Earth, oceans and atmosphere) including loading and deformation
effects, monthly as well as sub-monthly mass redistributions in the Earth’s subsystems of oceans
and atmosphere as well as effects from variations in the Earth’s rotation (for details see Schmidt
et al., 2008b).
The previously unrivaled accuracy of the GRACE mission for the determination of the grav-

itational field enables the detection of further signals, that remain unmodelled in the GRACE
gravity fields. This concerns mass changes of continental hydrology, post glacial rebound, the
cryosphere as well as seismic deformation of the solid Earth from earthquakes. But a draw-

Figure 1.2: Configuration principle of the GRACE satellite mission. After (Schmidt et al.,
2008b).
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back for the mass change recovery (see next section) from theses signals are uncertainties in the
GRACE data that constitute from their limited spatial resolution as well as errors in the GRACE
instrument data (e.g. accelerometer), parametrisation deficiencies or errors in the applied geo-
physical models (Schmidt et al., 2008b). These uncertainties generate spurious gravity signals
that indicate correlated errors in the models, i.e. their SH coefficients (Kusche, 2007) and that
become visible by characteristic north-south-stripe artifacts in maps of GRACE based gravity
fields. Since errors of SH coefficients increase with increasing degree (i.e. increasing spatial reso-
lution) filtering methods are introduced, that enable a smooth down-weighting of SH coefficients
with increasing degree (Swenson & Wahr, 2002). The weighting factors are represented in the
SH domain by filter coefficients wnm = [0; 1] that are directly applied to the SH coefficients:{

Cwnm

Swnm

}
=

{
wcnm · Cnm
wsnm · Snm

}
. (1.6)

In the literature, several isotropic, non-isotropic or de-correlating filter methods are available and
user of GRACE data may decide for a method that generates an optimal signal-to-noise relation
in the smoothed data. This is is described in Chapter 2.

1.1.3 Hydrological prospects from satellite gravimetry

The mass volume of the seasonal water cycle depicts the largest of the unmodelled contributions
in the GRACE gravity field (Tapley et al., 2004a). Furthermore, temporal scales and spatial
occurrence of the unmodelled signals are sufficiently dissimilar, which is important to split the
integrative gravity signal into mass variations from hydrology and other subsystems of the Earth.

Figure 1.3: Temporal and spatial scales of geoid variations Ilk et al. (2005)
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For example, ice mass changes occur mainly in the polar regions, while hydrology is of main
interest for the inhabited continents. Solid earth processes are either instantaneous (seismic
deformation) or secular (post glacial rebound), and therefore, they can be separated from the
non-secular proportions of the hydrological signal. A separation of hydrological trends from post
glacial rebound would be necessary for e.g., Scandinavia in Europe and for the North American
Great Lake region. But long term changes in hydrology are not of subject in the present study.
Therefore, GRACE depicts the first large-scale monitoring system of continental water storage
variations ∆S (Ilk et al., 2005), that enables the closure of the continental water cycle (e.g.,
Sheffield et al., 2009) and the study of hydrological mass transports on the continents (see an
overview from Ramillien et al., 2008b) with unrivaled accuracy. GRACE-based estimates of
∆S are a useful tool to validate and calibrate large-scale hydrological models (Güntner, 2009).
Therewith, the combination of satellite gravimetry and hydrological modelling shall lead to
an improved understanding of the Earth’s water cycle in order to better analyse and predict
developments and consequences of the changing climate onto freshwater resources or hazardous
potentials for different regions.

Numerous existing large-scale or global hydrological models (see Dirmeyer et al., 2006; Widen-
Nilsson et al., 2007; Liu et al., 2007, 2009; Milly & Shmakin, 2002a; Rodell et al., 2004b) differ
in terms of spatial and temporal resolution, model strategies, number and type of parameters
or input data, but they may be classified into two main types. On the one hand, land surface
models simulate energy and water fluxes between the Earth’s surface and the atmosphere by
physically-based heat and mass balance equations. State-variables of these models are usually
tuned by a direct integration of measurements as parameter or system states into the model, e.g.
with Kalman-filtering. A land surface model widely used within GRACE studies is the Global
Land Data Assimilation System (GLDAS) (Syed et al., 2008). On the other hand, water balance
models more completely represent the water cycle based on more conceptual equations and they
mainly developed to simulate the streamflow of a river basin (Güntner, 2009). Here, parameter
tuning is done by model calibration, which denotes the selection of model parameter values
by evaluating the simulation performance via a model output objective against observations.
In contrary to data assimilation, the system is tuned by determining model parameter values
during a pre-defined time interval, and the resulting parameter set may be used for subsequent
independent model runs. An example for a land surface model with calibrated parameters is the
Land Dynamics model (LaD) (Milly & Shmakin, 2002a). Comparative studies (see Chapter 2)
have shown large differences between existing large-scale hydrological models of various types.
GRACE data will help to understand these discrepancies to reduce errors in the models and
therewith increase our knowledge about the water cycle mechanisms.

In order to derive monthly water mass variations from GRACE, surface density variations are
recovered from the SH coefficients by (Wahr et al., 1998; Swenson & Wahr, 2002):

∆σ(θ, λ,∆t) = a
∞∑
n=0

n∑
m=0

KnP̃nm(cosθ)
[
∆Cwnm(∆t) cosmλ+ ∆Swnm(∆t) sinmλ

]
(1.7)

with Kn =
ρE
3

(2n+ 1)
(1 + kn)

. (1.8)

7



CHAPTER 1. INTRODUCTION

Where the average density of the Earth ρE is 5517 kg/m3 and the load love numbers kn describe
the elasticity of the Earth (Farrell, 1972). ∆Cwnm(∆t) and ∆Swnm(∆t) represent the filtered
gravitational parameter as difference to a mean field and averaged for ∆t = 1 Month. ∆σ may
be expressed as mass equivalent to a water column [1mm w.eq. = 1kg/m2].
The measurements errors and the lack of small scale information decreases for regional averages

of GRACE data (Swenson & Wahr, 2002). Therefore, a more reliable estimate of water mass
variations is given by a regionally averaged surface mass density. The average may be obtained
in the frequency domain by the following formula (Swenson & Wahr, 2002), applied throughout
this work:

∆σregion(∆t) =
a

ΩA

∞∑
n=0

n∑
m=0

Kn

(
ϑcnm∆Cwnm(∆t) + ϑsnm∆Swnm(∆t)

)
. (1.9)

The coefficients ϑcnm and ϑsnm describe the spatial characteristics of the regional averaging func-
tion ϑ(θ, λ), which is 1 inside and 0 outside the region of interest. ΩA represents the angular
area of the investigated region (i.e., the area value of the region on a unit sphere).

∆σregion is equal to the monthly TWSC ∆S of a river basin (see 1.2), if the regional function
describes the shape of that basin. But the user has to keep in mind the limited spatial resolution
of GRACE. Practically, the ineluctable smoothing of GRACE coefficients in Eq. 1.9 applies also
to the coefficients of the regional averaging function. The incomplete information on small scales
results in a fuzzy or non discrete realisation of the averaging function, which may be larger than
0 outside and smaller than 1 inside the basin. No matter if the spatial average is undertaken
in the frequency (as in Eq. 1.9) or in the spatial domain, the limited spatial accuracy results
in a leakage error in GRACE-based mass estimates. The error accumulates from the influence
of signals outside and the non-unity weighting of the signal inside the region of interest and
prevents a clear spatial separation of mass variations. This cutback of GRACE data has to be
considered for any hydrological application of the satellite observations (see also Chapter 2).

1.2 The WaterGAP Global Hydrological Model (WGHM)

The WaterGAP Global Hydrological Model (WGHM) was developed by Kaspar (2004) and Döll
et al. (2003) as hydrological component for the water use model WaterGAP (Alcamo et al.,
2003). The original application of WGHM is to provide information about water availability
on large-scales and the determination of water stress within river basins (Alcamo et al., 2003).
Therefore, the heuristic water balance model simulates the most important components of the
continental water cycle, which constitute to the total water storage change of WGHM:

∆SWGHM = ∆Sc(canopy) + ∆Ssn(snow) + ∆Ssw(surface) + ∆Sg(groundwater) + ∆Ss(soil) (1.10)

∆Ssw(surface) = ∆Sl(lakes) + ∆Swl(wetlands) + ∆Sr(river) (1.11)

A daily water balance is calculated for the land fraction of each 0.5◦-grid cell. A vertical balance
simulates interception by canopy, snow accumulation and water throughfall to soil. In the lateral
water balance groundwater transport and surface runoff are computed (see a routing-scheme in
Fig. 1.4). Each grid cell of WGHM is located inside the river network of the global drainage-
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direction map DDM 30 (Döll & Lehner, 2002) and provided with information about land cover,
soil properties, hydrogeology as well as reservoirs, lakes and wetlands from different data sets
(see Fig. 1.4, Hunger & Döll, 2008; Kaspar, 2004). The model is forced by monthly 0.5◦-gridded
climate data for precipitation, temperature, cloudiness and number of wet days. Daily values
for rainfall are distributed synthetically as a two-state, first order Markov-chain (for details see
Kaspar, 2004). The conceptual formulations of WGHM represent physical processes of the water
cycle in a simplified manner. Therefore, WGHM parameters are not measurable but clearly set to
different processes along the water path. The most important and relevant parameter of WGHM
2.1f (Hunger & Döll, 2008) have been considered for calibration of the present study. They are
listed in Chapter 4, Table 4.1 together with their standard values and uncertainty ranges. Below,
a brief description of the model equations is given. Parameter abbreviations in brackets refer to
Table 4.1.

Atmospherical influences The actual evapotranspiration Ec describes the real water transfer
from the surface to the atmosphere. But in WGHM, the potential evapotranspiration Ep has to be
calculated ahead. Ep constitutes from evaporation and transpiration. The first is the physically
drive transfer of water between the uncovered ground and the atmosphere. The latter describes
the water transfer due to variable physiological characteristics of the growth (evaporation from

Figure 1.4: Scheme of the WaterGAP Global Hydrological Model (WGHM, Döll et al., 2003;
Kaspar, 2004; Hunger & Döll, 2008) and its input and forcing data.
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plants). From open water bodies, only potential evaporation occurs, but for all other areas
transpiration has to be taken into account.

The potential evapotranspiration Ep isolates the influence of atmospherical conditions onto the
evapotranspiration processes from the growth characteristics and in many hydrological models it
provides a basis to derive Ec. In WGHM, Ep quantifies the amount of water, that may evaporate
for the given atmospheric conditions from an idealised area-unit covered by grass and with an
albedo of 0.23. The computation of Ep is realised by the Priestley-Taylor equation (Priestley &
Taylor, 1972):

Ep = αPT
∆

∆ + γpsy
(Rn −G), (1.12)

where ∆ is the grade of the saturation vapour pressure that depends on the actual tempera-
ture and which is applied according to Shuttleworth (1993). γpsy is the psychrometer constant
determined by atmospheric conditions (Kaspar, 2004). The soil heat flow G is neglected, as
recommended by Shuttleworth (1993). The Priestley-Taylor coefficient αPT is an empirical pa-
rameter. It differs between humid (parameter ER-5 in Table 4.1) and wet (ER-6) areas and
in the original WGHM its values are taken from Shuttleworth (1993). Rn represents the net
radiation, its formulations belong to the Priestley-Taylor approach and they are explained in
detail by Kaspar (2004). Exemplarily, Rn is determined by temperature T , sunshine hours n or
the surface albedo α as well as by parameters for radiation proportion as (ER-1) of the global
radiation that reaches the Earth’s surface and the radiation correction for cloudiness ac. The
latter is differentiated for humid (ER-2) and arid areas: Rn = f(as, ac,humid, ac,arid, T, n, α).

Canopy water balance Subsequent to the determination of atmospherical influences on evap-
oration processes, WGHM begins the simulation of the water cycle itself. The contact of water
with the ground occurs in the vegetation. Here, the surface of the plants constitutes a canopy
storage Sc. Its maximum capacity is Sc,max in WGHM. Consequently, rain Pt either falls through
the canopy storage, if Sc ≥ Scc,max. Or the precipitated water stays inside the canopy, if
Sc < Scc,max, then Pt = 0. Subsequently, evaporation occurs from the interception water, which
is computed by (Deardorff, 1978) in WGHM:

Ec = Ep

(
Sc

Sc,max

)β
(1.13)

In case, the canopy storage is not filled completely, the canopy evaporation exponent β de-
termines the leaf enclosure by water representing an area proportion. From this proportion the
potential evaporation is taken. The maximum canopy storage is computed from the maximum
canopy water height mc (IN-1) and the leaf area index:

Sc,max = mc · LAI. (1.14)

The leaf area index depends on two further parameters, the biomass multiplier (IN-3) and
the specific leaf area multiplier (IN-2). The leaf mass is derived from the input data sets (see
Fig. 1.4). Here, a minimal and a maximal LAI value is computed to enable a differentiation of
growth and non-growth seasons depending on temperature and precipitation (Kaspar, 2004).
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Snow accumulation Water, that falls through interception stores to the snow storage Ssn, if
the actual temperature T is below the snow freeze temperature Tf (SN-1). Sublimation from
snow is computed similar to the potential evaporation (Kaspar, 2004) but with a snow albedo
(ER-3). The snow storage remains filled until the actual temperature rises above the snow melt
temperature Tm (SN-2) and snow melting initiates:

M = Ks · (T − Tm) (1.15)

Herein, Ks is the degree-day factor (SN-3), that determines the proportion of snow melt to
the difference of T and Tm. To consider the spatial heterogeneity of elevation and temperature
within a 0.5◦cell, the WGHM snow algorithm is interpolated on a 30” subgrid resolution (Schulze
& Döll, 2004). A temperature gradient parameter (SN4) determines the decrease of the actual
temperature with increasing sub-cell height.

Soil water balance The remaining effective precipitation Peff = Pt − Psn +M enters the soil
water balance, that is modelled as one layer in WGHM and where processes of evaporation Ea
and runoff from the landside Rl occur:

dSs
dt

= Peff −Rl − Ea (1.16)

The actual evaporation from the soil depends on a parameter for maximum potential evapo-
transpiration Ep,max (ER-7), the soil water content Ss in the effective root zone and the total
available soil water capacity Ss,max:

Ea = min

(
(Ep − Ec), (Ep,max − Ec)

Ss
Ss,max

)
. (1.17)

By this, the actual evaporation is proportional to the saturation of the soil (Ss/Ss,max), but it
can not be larger than the potential evapotranspiration reduced by canopy evapotranspiration.
The latter substraction is necessary to sustain the energy balance. The maximum soil storage is
derived thought the land-cover specific root depth and the water capacity of the belonging root
zone: Ss,max = mdroot · droot ·Cs. These parameter are taken from input data sets (see Fig. 1.4).
For model calibrations, the root depth is calibrated by the multiplier mdroot (SL-1), which is 1
in a normal simulation.

The second soil process, runoff from landside, depends on effective precipitation as well as on
the saturation of the soil. According to Bergström (1995):

Rl = Peff

(
Ss

Ss,max

)γ·mγ
(1.18)

Runoff strongly depends on the runoff coefficient (0.3 ≤ γ ≤ 3). In presence of a rain event,
γ < 1 leads to a fast increase of runoff, even if the soil storage is empty. In contrast precipitated
water will first saturate the soil and slowly lead to an increased runoff, for γ > 1. mγ (SW-1) is a
neutral factor of 1 in the original WGHM version (see its function in Sect. 1.5). The proportion
of effective precipitation that is not discharged via surface runoff directly enters the soil storage
Ss. Here, an exception is made for cropped areas (given by the land cover data set), where soil
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infiltration is set to zero and the water is directly diverted to open water bodies. Exchange of
soil and groundwater (capillary rise) is not taken into account, because the lack of information
about groundwater tables on the global scale (Döll et al., 2003).

Groundwater transport The groundwater model was developed by Döll et al. (2002). Its
recharge volume Rg is proportional to the landside runoff (see also Fig. 1.4) but may not exceed
the maximal groundwater recharge, characteristic for the soil texture of the present grid-cell:

Rg = min(Rg,max, Rl · fg), (1.19)

where a comprehensive groundwater factor 0 ≤ fg ≤ 1 derives from fg = fsftfafpg. The
individual groundwater factors are slope-, texture-, aquifer- and permafrost/glacier-related, re-
spectively. The factors as well as Rg,max are taken from the input data sets (see Fig. 1.4). The
groundwater outflow Qg derives from the groundwater storage Sg and the outflow coefficient kg
(GW-1):

Qg = kg · Sg (1.20)

and it is assumed to discharge to the surface water bodies (see Fig. 1.4) because information of
groundwater flow paths are not available at the global scale (Döll et al., 2003).

Surface water transport Additional to the inflow from groundwater discharge, lakes and wet-
lands are filled by landside runoff (reduced for groundwater recharge), the inflow from upstream
cells and direct precipitation on the water body area. The water is transported from local lakes to
wetlands, further to global lakes and wetlands and finally the river segment (see Fig. 1.4). Local
and global water bodies are simulated equally, but their differentiations refers to the extension of
global surface water bodies over more than one grid-cell, which are computed comprehensively.
Local lakes and wetlands only get inflow from the cell of their location. Man-made reservoirs
are treated as natural-lakes in the applied WGHM version (Hunger & Döll, 2008). Location and
area of open water bodies are taken from the input data sets (see Fig. 1.4).

The evaporation of lakes and wetlands is equal to potential evaporation reduced by a factor
that considers the decreasing surface area available for evaporation from open water bodies with
decreasing water level: El,wl = Ep(αsw) · rl/wl. The potential evaporation Ep (Eqn. 1.12) is
computed for an idealised open water body but with a specific open water albedo αsw = 0.08
(ER-4), in the original model. The reduction factor

rl/wl = 1−
( | Sl/wl − Sl/wl,max |

fl/wl · Sl/wl,max

)3.32

(1.21)

was introduced by Hunger & Döll (2008) and leads to increased simulation accuracy of lake
level dynamics, because it prevents lake water levels below −Sl/wl,max and wetland water levels
below 0, when for lakes fl = 2 and for wetlands fwl = 2 is applied.

The surface water outflow of lakes and wetlands is proportional to the relation of the actual
active storage Sl/wl and the maximum surface water storage Sl/wl,max:
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Ql/wl = kl/wl · Sl/wl
(

Sl/wl

Sl/wl,max

)x
(1.22)

that is regulated by the outflow coefficient parameter kl/wl (SW-5). The value of outflow
exponent x = 1.5 for lakes leads to a faster outflow compared to wetlands with x = 2.5. The
maximum surface water storage is a product from the area of the open water body F and the
maximum active storage depth hl/wl,max: Sl/wl,max = F · hl/wl,max. In the original model, the
latter parameter values hl,max = 5m for lakes (SW-3) and hl,max = 2m for wetlands (SW-4).
The outflow of lakes and wetlands enters the river segment, from where water can be trans-

ported to the next cell. The outflow from the river storage Sr is given by

Qr =
vr
s
· Sr (1.23)

with the river velocity vr (SW-2) and the distance s between two neighbouring grid-cells. The
flow direction is provided by the drainage-direction map (see Fig. 1.4). A further calculation step
of WGHM accounts the water loss that occurs by human consumption for irrigation or water
supply. This water demand is derived from the Global Water Use Model of WaterGAP (Alcamo
et al., 2003) and reduced in respective order from the available storages of river, global and local
lake within a grid cell. The reduction is done until the water demand is satisfied or memorized
for the next day (see details in Döll et al., 2003).

Original model calibration The runoff coefficient γ (Eqn. 1.18) represents the only calibration
parameter of the original WGHM (Döll et al., 2003; Kaspar, 2004). It is determined in a global
calibration (the latest version by Hunger & Döll, 2008), which is done consecutively downstream
for each available measurement station in a river basin, so that the longterm-mean of simulated
gauge levels from 30 years fit optimal to the measurements. γ becomes equal for all grid-cells of
the sub-basin area upstream to a measurement stations until the next available station or the river
source in the river network. The worldwide 1240 applied measurement stations cover about 70%
of active drainage areas. For the remaining sites, γ is regionalised. Adjacently, runoff correction
factors (a station and an area-based factor) are computed to improve the model performance.
A detailed explanation of the original model calibration is given by Kaspar (2004) and a global
validation of WGHM simulations by Hunger & Döll (2008).
In a superimposed modus, the calibration results for γ from the original model provide a basis

for the calibration work of the present study. But, because of the limited resolution of GRACE
data sets, calibration is done at once for a complete river basin. The sub-basin variability of
river discharge regulation from the original model calibration is kept by the introduction of
the multiplier mγ (parameter SW-1, see Eq. 1.18), that is valid for the whole river to tune
the complete γ-set of the basin. The physical limitations for the parameter space of the runoff
coefficient γ (see Kaspar, 2004) are kept as constraints (0.3 ≤ (γ ·mγ) ≤ 3). The runoff correction
factors are not applied for the present study, to sustain a closed water cycle.
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1.3 Model optimisation

1.3.1 Computer models and calibration methods

Models represent a simplified copy of the real world. There exists no optimal model (Beven &
Binley, 1992), because the purpose of the creator of the model determines its composition. Models
are designed to learn how the mechanisms of real processes act together (Fig. 1.5a). Herein,
measured phenomenon consider as input of mathematic models, which imitate the reaction of the
real world. Model parameters and model structure determine the reaction characteristics of the
model system. The quality of the simulations and therefore our understanding of reality can be
controlled by a comparison of the model output with respective measurements. Model parameter
are derived from this comparison by inversion techniques, e.g. from calibration. Further, feedback
may be given to model formulations. This principle of modelling an parameter estimation holds
for any research field. A specific difficulty in hydrology is that the number of measurements is
usually smaller than the number of parameters. Furthermore, hydrological models are usually
non-linear. Therefore, analytic inversion techniques are not eligible for parameter estimations.
In hydrology, parameters are derived with calibration methods, which denote a trial-and-error

process of parameter variation and model simulation, until a sufficient simulation accuracy is
achieved. For this purpose, a various number of techniques exists. Characteristics of specific
automatic techniques, that depict an important criteria for the selection of a technique are:

• Ability of the algorithm to find a global optimum

• Accuracy of the optimum solution

• Computation efficiency, i.e. convergence speed

• Applicability of the method settings for different calibration problems

But in the past years, the problem of parameter equifinality, that arises from similar simulation
accuracies for different parameter sets, led to the development of further method characteristics
(Gupta et al., 2005):

• Consideration of calibration uncertainties (e.g., Thiemann et al., 2001; Beven & Freer,
2001; Beven & Binley, 1992)

• Ability of multi-criterial calibration (e.g., Yapo et al., 1998; Duan, 2003; Vrugt et al., 2003a)

• Calibration of model structure (e.g., Jakeman & Hornberger, 1993; Wagener et al., 2003;
Clark et al., 2008)

To decide for a calibration method the user can select one of the three following main types
(Duan, 2003), depending on the specific calibration requirements and available resources:

• Passive search: Methods with gridded or random sampling of the parameter space are
highly adaptive but computationally intensive and they inhere slow convergence to find
a global optima. Their convergence is proportional to the grid size or the density of the
random samples, respectively.
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• Controlled random search: Random methods may be speeded up by sophisticated sampling,
that learn from previous model evaluations. Examples are gradient-based methods, a
search with greater density in promising regions, simulated annealing methods or genetic
algorithms. Combined with a multi-start search these methods can inhere fast convergence
speeds with medium computational demands.

• Stochastic methods. A probabilistic optimisation is derived with stochastic distributions
of parameters. Such methods demand high computational efforts and inhere a low adapt-
ability. They are highly complex but sophisticated, since they consider uncertainties of the
calibration. Examples are bayesian or generalised likelihood methods.

Independent from the type of the calibration method, a decision about a good or bad parameter
set has to be made. Therefore, objective (i.e. mathematical) functions are applied, that measure
the fit of simulations to observations. Examples for such functions are the root mean squared error
(RMSE), the correlation coefficient (CC) or the Nash-Sutcliffe-coefficient (NSC, see Chapter 2),
which is widely used in hydrological applications.

1.3.2 Main aspects of multi-objective evolutionary algorithms

The application of multi-objective methods is ineluctable, if different aspects of the simulation
output should be captured (e.g., peak-flow and base-flow of hydrographs) or several measurements
have to be integrated into the process of parameter selection. Such multi-criterial values can
only be captured together by the evaluation of model simulations with more than one objective
function.
Hence, for a multi-objective or multi-criterial calibration, the selection of "good" parameter

sets becomes a multi-dimensional problem. Therefore, the theory of Pareto-optimality (Vincent
& Grantham, 1981) was introduced to such hydrological calibration problems by (Yapo et al.,
1998). The parameters are partitioned into "good" solutions, i.e. Pareto-solutions and "bad"
solutions (see Fig. 1.5b). The Pareto solutions are located along a Pareto-frontier towards the

Figure 1.5: a) Principles of modelling and calibration. b) Principle of Pareto-optimisation for
a multi-objective calibration problem. The Pareto-frontier is given by the non-
dominated Pareto-solutions (gray dots) which are separated from all dominated pa-
rameter sets (black dots) of a two-dimensional optimisation problem within the ob-
jective space.
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optimal fit and they are "non-dominated" (gray dots) over all other "dominated" solutions (black
dots). A ranking between Pareto solutions is not possible without additional information or
restrictions, because parameter sets that provide a good fit for one criteria, may lead to large
errors concerning another. When moving along this frontier, one may increase the fit for one
criteria but decrease the fit for at least one other criteria.
As advantages of multi-objective calibration methods, they illustrate the trade-off between

opposing objectives, they inhere a smaller likelihood of unbalanced model performance and the
calibration results are not too sensitive to a specific measure (Gupta et al., 2003). Therefore,
such methods reduce the number of uncertain variables and provide more reliable calibration
results.
The higher order of multi-objective optimisation problems, leaded to an agglomerate applica-

tion of genetic algorithms in hydrology, which feature high computational efficiency and strong
convergence abilities (Yapo et al., 1998; Gupta et al., 1998; Reed et al., 2003; Kollat & Reed,
2006). The basic principle of evolutionary methods is the transfer of biological courses like mu-
tation, crossover and selection into the mathematics of model optimisation. Parameter sets are
not only varied on a random basis to generate new samples. They are also combined with each
other (crossover). Or only one parameter of the whole set is changed (mutation). After model
evaluation the best parameters are kept (selection). Herein, elitist methods keep parameter
sets, that provide a good fit in an memory archive. This depicts one of three main strategies,
that can guaranty the convergence of evolutionary multi-objective algorithms towards the real
Pareto-frontier. A second strategy is the usage of an efficient fitness assignment like the de-
termination of non-dominated parameter sets, to separate the Pareto-solutions from the "bad"
solutions. And thirdly, the preservation of diversity in the solutions is realised by statistical den-
sity estimations of the parameter sets, which prevents that the algorithm traps in on area of the
objective space. A successfully validated and applied multi-objective genetic algorithm, that ap-
plies an elitist strategy with an dynamic archive, an efficient non-dominating sorting scheme and
that eliminates sharing parameter to preserve diversity is the ε-Non-dominated-Sorting-Genetic-
Algorithm-II (ε-NSGA-II Kollat & Reed, 2006; Tang et al., 2006). Herein, the ε-dominance
archiving enables the user to specify the precision of the objective-function quantification.

1.4 Research objectives

The main motivation to calibrate hydrological models with GRACE gravity data, was due to
differences between GRACE-recovered estimates of water mass variations and respective simu-
lations of global hydrological models (Schmidt et al., 2006). The latter often exhibits smaller
seasonal amplitudes of mass variations in the water cycle, than the observation-derived values by
GRACE, which is specifically true for WGHM simulations (see Introduction of Capter 3 and 4;
Schmidt et al., 2008a; Güntner, 2009).
Furthermore, differences between several models are large (see more details in Chapter 2;

Güntner, 2009). None of the models fits globally best to GRACE, when looking at correlations
of time series for water mass variations of different river basins (see Table 1.1). This situation
complicates the explanation of differences between GRACE and specific models as well as the
determination of possible model structure errors by inter-model comparisons. Consequently, and
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Table 1.1: Correlation correspondence of basin averaged monthly time series of total water stor-
age from the global models WGHM, GLDAS, LaD with GRACE data (2003-2006)
with 500 km Gaussian smoothing (Werth & Güntner, 2008).

Correlation with GRACE
Basin WGHM GLDAS LaD
Amazon 0.93 0.95 0.84
Amur 0.40 0.35 0.42
Columbia 0.89 0.76 0.86
Danube 0.83 0.80 0.79
Ganges 0.98 0.96 0.94
Huang He 0.53 0.79 0.59
Indus 0.44 0.33 0.67
Lena 0.82 0.59 0.80
Mackenzie 0.90 0.46 0.94
Mekong 0.88 0.90 0.89
Mississippi 0.83 0.86 0.81
Murray 0.59 0.34 0.62
Nelson 0.74 0.59 0.66
Niger 0.95 0.96 0.85
Nile 0.87 0.89 0.84
Ob 0.92 0.56 0.91
Orange 0.56 0.74 0.53
Orinoco 0.97 0.92 0.94
Parana 0.86 0.92 0.81
St. Lawrence 0.88 0.59 0.83
Tocantins 0.96 0.96 0.84
Volga 0.89 0.58 0.80
Volta 0.88 0.95 0.77
Yangtze 0.96 0.77 0.96
Yenisei 0.88 0.47 0.89
Yukon 0.91 0.22 0.88
Zaire (Congo) 0.75 0.58 0.65
Zambezi 0.90 0.94 0.71
Global correlation 0.54 0.49 0.52

what is the basic innovation of the present work, GRACE-based estimates of water storage vari-
ations shall be applied to re-calibrate WGHM, in order to achieve model simulations consistent
to the satellite observations.
For the region of a specific river basin, WGHM simulations and GRACE data can be compared

by:
∆SWGHM + εstruc + εin + εleak = ∆SGRACE + εmeas + εleak, (1.24)

where ∆SWGHM can be derived from Eq. (1.10) and ∆SGRACE from Eq. (1.9). For GRACE,
measurement (εmeas) and leakage errors (εleak) have to be considered. The hydrological sim-
ulations include model structure errors εstruc that derive from an incomplete or mis-modelled
representation of the water cycle as well as uncalibrated model parameter. Furthermore, model
input errors represent measurement errors of input and calibration data like precipitation, tem-
perature, runoff or TWSV. Errors in input data may also cause errors in calibrated model
parameters. The hydrological modeler has no influence on the size of εin but he can determine
its influence on the model parameter and the model output uncertainty. For a comparison of
TWSV data sets, model simulations have to be filtered to the same spacial resolution as GRACE.
Therefore, WGHM simulations are altered by leakage errors as well. If both data sets inhere the
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same leakage error, it simply constraints the spatial resolution of the comparison and may be
neglected. A general similarity of leakage errors is likely, since the spatial distribution of seasonal
hydrological signals is similar for both data sets (see Chapter 2), though this may differ between
the geographical regions.
The intention of this study is the reduction of εstruc. For regions where εmeas is smaller

than εstruc + εin (and εin is smaller than εstruc), GRACE data are applicable to decrease εstruc
and therefore, improve WGHM simulations of total water storage change. This condition may
be given for large river basins with sufficient GRACE data accuracy (see Sect. 1.1.2). For
such basins, the calibration results of WGHM by a comparison of GRACE data and model
simulations may help to understand possible reasons for mis-modelled processes or structural
errors of WGHM. Hence, for the integration of GRACE TWSV into the global hydrological
model WGHM, three main research questions arise:

Research questions

• How can GRACE based estimates of TWSV be integrated in a global hydrological
model?

• Do GRACE data help to improve large-scale TWSV simulations and if yes, for
which regions?

• What can we learn from the results for global hydrological model development?

In response to these questions and in order to achieve a better accuracy for ∆SWGHM , the
main objectives that follow for this study are:

Research Objectives

• Derivation of GRACE-based storage change estimates for hydrological applications
with best accuracy (Chapter 2)

• Development of a strategy to integrate GRACE data into WGHM (Chapter 3)

• Development of a calibration approach for storage change (Chapter 3)

• Global re-calibration of WGHM by the developed calibration approach (Chapter 4)

• Process analysis of calibration results and detection of possible WGHM model
structure errors (Chapter 4)
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1.5 Data and computational challenges

The calibration approach for the integration of GRACE data into WGHM is explained in Chap-
ter 3 (see especially Fig. 4.2). To meet the above explained main objectives by the developed
calibration approach, specific challenges had to be beared within the present study. The compu-
tational challenges and respective consequences are explained in detail by the paragraphs below.

Relative nature of GRACE data GRACE data provide an basin-averaged integrated estimate
of water storages changes. Hence, GRACE does not provide data of absolute water storages in
a river basin. In a model calibration, solutions for equal signal variations but different abso-
lute values of water storage in the river basin are not distinguishable from GRACE data only.
Therefore, absolute measurements as from river discharge should be used for the calibration as
well. A multi-objective calibration method enables the combination of several measurements of
different nature and increases parameter accuracy (e.g., Vrugt et al., 2003a; Gupta et al., 2005).
By such an approach, GRACE data with regional resolution may be combined with station based
discharge measurements.

Limited spatial resolution of GRACE data Because of the limited spatial resolution of GRACE,
the accuracy of mass variations is only sufficient for large river basins with diameter of several
hundred kilometer. Therefore, the 28 largest and most important river basins are selected for a
calibration of WGHM (as listed in Table 1.1). Since storage variations of GRACE have to be
averaged for whole regions, e.g. a river basin, the model calibration is done river basin wise.
River discharge measurements are taken from the last available station of each river basin.
The limited spatial resolution of GRACE demands the application of filtering techniques and

causes the GRACE leakage error. While filtering decreases the GRACE measurement errors, it
increases the leakage error in the GRACE data. A minimal sum of both is desirable. There-
fore, an estimation of optimal filter techniques, that may be different for various river basins,
is undertaken for the 28 river basins (in Chapter 2). Furthermore, to ensure equal spatial reso-
lution in the modelled data, a-priori to the comparison of modelled and GRACE-based storage
variations, WGHM simulations are smoothed with equal techniques as the GRACE data. For
a complete filtering, the signal within the surrounding region of the calibration basin has to be
loaded from the original model version and the simulated mass variations are transferred to a
SH representation, by new integrated software into the source code of WGHM.

Lack of alternative measurements On the global scale GRACE data and model simulations are
the only purely measured estimations for water mass variations on the continents. Consequently,
the data accuracy improvements are limited to an iterative approach. Combined atmospherical-
terrestrial water balances may provide an GRACE-alternative estimate of TWSV (e.g., Hirschi
et al., 2006; Seneviratne et al., 2004). But such water balance studies depend on atmospherical
reanalyses and runoff measurements. Therefore, they represent modelled not observed data and
due to the usage of runoff they are not independent to hydrological model simulations. The
lack of alternative measurements in combination with the limited spatial resolution of GRACE,
makes each of the two data set a validation tool for the other. Despite the need of input data for
model calibration, GRACE filter methods have to be validated by hydrological model estimations,
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because the filtering of GRACE data has a huge effect on the amplitudes of derived time series
for mass variations. The estimation of GRACE filter techniques is done by the fit of filtered
GRACE data to a filtered mean field of three widely used global hydrological models, including
WGHM (see Chapter 2).

Increase model sensitivity to all processes of the water cycle The original model is calibrated
against river discharge for one runoff parameter. Since total storage variations inheres water
mass variations from other storage compartments besides river water, model parameter from
these storages should be calibrated as well. The calibration of further model parameter is only
reasonable, because of the usage of additional measurements as calibration data (Savenije, 2009),
hence the application of a multi-objective instead of a GRACE-only calibration. In an a-priori
model sensitivity analysis for each river basin (Chapter 3 and 4), the most sensitive parameter
against storage variations and river discharge are determined. The six to eight most sensitive of
the overall 26 parameter are then optimised in the multi-objective calibration. A reduction of
the calibration parameter also decreases the number of demanded evaluation runs.

High computational costs WGHM model runs effort high computational costs, as visible from
the overview of the evaluation time for different run types in Table 1.2. These temporal statistics
limit the number of model evaluations for a calibration of WGHM to 1000 until 2000. Further-
more, the optimisation problem of WGHM for six to eight parameters is highly non-linear and
the multi-objective optimisation of WGHM with GRACE and river discharge demands a deci-
sion making in two dimensions. To minimise the computational demands, for the calibration
of WGHM with GRACE data an efficient genetic and multi-objective calibration algorithm ε-
NSGA-II is applied, that is able to diverge fast to global optima. The method was coupled with
the WGHM software for a multi-objective calibration.

Table 1.2: Computational costs of WGHM model runs for the period 1) 1992-2007 and 2) 2002-
2007, inclusive 3 initial years as well as spherical harmonic analysis for smoothing
and GRACE data comparison for 2003-2007. The employed hardware cluster holds
an AMD Opteron CPU of 284 GHz and a RAM of 1 GB.

run type evaluation time
complete global run1 6h, 40min

1 x Amazon2 19min
1 x Volta2 17min

1200 x Amazon2 15d, 22h
1200 x Volta2 14d, 3h

1200 x 28 basins2 parallel ca. 15d

1.6 Content overview

In preface to the following chapters, an overview of the structure and the content of the
present work is provided in Fig. 1.6. The work is divided into overall five chapters. Chapter 1
provides the introductorily theoretical and technical background for the following three main
Chapters 2-4. The three following chapters depict the main body of this work. These comprise
the derivation of regionally averaged water mass variations from GRACE gravity data with
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best possible accuracy (Chapter 2), the development of a calibration technique that enables the
integration of GRACE data into the global hydrological model WGHM (Chapter 3) and the
global calibration analysis of WGHM (Chapter 4). Each of these parts contributes a piece to the
outlined main objectives (Sect. 1.4) and an improved data set of total water storage variations.
Chapter 5 summarises the complete work and provides an overall conclusion.

Figure 1.6: Content and structure of the chapters.
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2 Data Preparation: "Evaluation of GRACE
filter tools from a hydrological
perspective"∗

Abstract

Approximately seven years of time-variable gravity data from the satellite mission GRACE
(Gravity Recovery And Climate Experiment) are available to quantify present-day mass vari-
ations on and near the Earth’s surface. Mass variations caused by the continental water cycle
are the dominant signal component after subtracting contributions from atmosphere and oceans.
This makes hydrology a primary area of application of GRACE data. To derive water storage
variations at the scale of large river basins, appropriate filter techniques have to be applied to
GRACE gravity fields given in a global spherical harmonic representation. A desirable filter tech-
nique minimises both GRACE data error and signal leakage across the border of the region of
interest. This study evaluates the performance of six widely used filter methods (isotropic filters,
anisotropic filters and decorrelation methods) and their parameter values to derive regionally av-
eraged water mass variations from GRACE data. To this end, filtered time series from GRACE
for 22 of the world’s largest river basins were compared to continental water mass variations from
a multi-model ensemble mean of three global hydrological models (WGHM, GLDAS and LaD).
Filter-induced biases for seasonal amplitudes and phases of water storage variations, as well as
satellite and leakage error budgets, were quantified for each river basin and explained in terms
of storage variations in and around the basin. The optimum filter types and filter parameters
were identified for each basin. The best results were provided by a decorrelation method that
uses GRACE orbits for the filter design. Our ranking between all filter types and parameters
depended on the geographical location, shape and signal characteristics of the specific river basin.
Based on a multi-criterial evaluation of satellite and leakage error, as well as an error assessment
of the hydrological data, the filter selection and parameter optimisation results were shown to be
reliable for 17 river basins. The results serve as a guideline for the optimal filtering of GRACE
global spherical harmonic coefficients for hydrological applications.

∗Werth, S., Güntner, A., Schmidt, R., Kusche, J. (2009b), Geophysical Journal International (accepted).
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2.1 Introduction

Global monthly gravity field solutions from the US-German satellite gravity mission GRACE
(Gravity Recovery And Climate Experiment) trace mass redistributions close to the Earth’s sur-
face (Reigber et al., 2005; Tapley et al., 2004b). Assumptions as defined by Chao (2005) and
Wahr et al. (1998) enable the transformation of gravity variations into time series of global maps
of surface mass anomalies. Due to their integrative nature, global coverage and previously unri-
valled accuracy, GRACE-derived mass variations give insight into processes within the Earth’s
subsystems. This knowledge helps to improve understanding and modelling of geophysical mass
transfers within the Earth’s system. For example, recent studies have considered estimations
of ice mass loss within polar regions (Chen et al., 2008; Wouters et al., 2008), observations
of oceanic circulations (Dobslaw & Thomas, 2007), components of the continental water cycle
(Boronina & Ramillien, 2008; Swenson et al., 2008; Niu et al., 2007a) and interactions between
these subsystems (Chambers et al., 2007; Ramillien et al., 2008a).

Water mass variations within the continental hydrological cycle are a major signal recovered
from the GRACE gravity data after removal of signals from tides, atmosphere and oceans.
Numerous studies show an overall good agreement between variations of total continental wa-
ter storage (TWS) from global hydrological models and from GRACE, especially for large river
basins (for a recent overview see Güntner, 2009). Ramillien et al. (2005) and Schmidt et al. (2006)
compared output from the WaterGAP Global Hydrology Model (WGHM) and the Land Dynam-
ics model (LaD) to GRACE data and found a good general correspondence. Syed et al. (2008)
confirmed this agreement for the Global Land Data Assimilation System (GLDAS). Schmidt
et al. (2008c) found similar dominant seasonal and inter-annual TWS periods for GRACE and
simulated data of GLDAS, LaD and WGHM for the Amazon, the Ganges and the Mississippi
river basins. However, the degree of agreement between GRACE and hydrological models clearly
varies with the region and river basin of interest (e.g., Ramillien et al., 2005). Except for a few
regions (e.g., Swenson et al., 2006), there is a lack of independent TWS observation data at large
spatial scales that are consistent with GRACE. Thus, in spite of the uncertainties inherent in
hydrological models, simulation data are currently the only way to evaluate TWS variations from
GRACE for large areas.

A method of deriving time series of total regionally-averaged mass variations from global
GRACE gravity fields represented as coefficients of spherical harmonics (SH) has been suggested
by Wahr et al. (1998). GRACE measurement and processing errors, which are often referred to as
satellite errors, mostly distort SH coefficients of high resolution. One way to reduce noise in the
monthly solutions is to constrain (or regularise) the coefficients (e.g., towards a mean field) in the
course of GRACE data processing (e.g., Save et al., 2008; Watkins et al., 2008; Lemoine et al.,
2007). But the need for regularisation characteristics vary widely between different scientific
applications of GRACE data (Kusche, 2007). As a result, unconstrained solutions are mostly
published by the processing centres, making the application of a post-processing filter technique
indispensable. Filtering aims at the suppression of noisy high-resolution coefficients of the gravity
field, i.e., smoothing the original data to a lower spatial resolution. Furthermore, decorrelation
techniques can be applied to remove striping artefacts of GRACE gravity data, which can be
interpreted as realisation of anisotropically correlated noise in the coefficients (Swenson & Wahr,
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2006). In this paper, both smoothing and decorrelation techniques are subsumed under the term
filtering.

As a drawback, filtering implies the leakage of signals from outside the region of interest into
the resulting time series as well as the non-unity weighting of the signal variability inside the
region of interest (Swenson & Wahr, 2002; Klees et al., 2007). Hereafter, both effects will be
referred to as leakage. According to Swenson & Wahr (2002), leakage varies between different
filter types. Klees et al. (2007) listed three simplified cases of leakage scenarios: a) The signal
(TWS anomaly) outside the area of interest is of the same sign as the signal inside, b) The signal
outside is zero, and c) The signal outside is of a different sign than the signal inside. Using
a Gaussian smoother of different filter widths, Klees et al. (2007) concluded that the first case
would lead to the lowest total leakage error and the third case to the highest leakage error. Since
the signal intensities outside and inside of a river basin vary widely between different regions due
to varying hydrological characteristics, the leakage error also depends on the region of interest.

Consequently, in order to select an appropriate filter method, the user has to balance between
remaining satellite errors and the spatial resolution (i.e., leakage error), and has to find an
optimal balance, specifically, for each river basin they intend to analyse. Filter types developed
so far differ in their assumptions on signal-noise properties of the true GRACE-derived mass
variations. Some studies evaluate specific filter types. For example, Swenson & Wahr (2002)
developed two anisotropic methods and compared them with an isotropic Gaussian filter by
evaluation of signal leakage. Han et al. (2005) showed that anisotropic smoothing is necessary
to consider the degree and order dependence of GRACE coefficient errors. Seo et al. (2006)
described error reductions within GRACE water-mass variations when using a time-dependent
noise-minimising filter instead of the Gaussian method. Schrama et al. (2007) determined the
radius of the Gaussian smoother with an empirical orthogonal function (EOF) analysis and by
comparing it with GPS load measurements. A recent decorrelating filter method and an overview
of several GRACE filter techniques was given by Kusche (2007). In order to compensate for the
effect of amplitude damping by filtering, Velicogna & Wahr (2006) introduced a scaling factor
to recover the full hydrological signal in time series of TWS variations. Similarly, Chen et al.
(2007a) used a scale factor to readjust amplitude damping effects caused by the Gaussian filtering
of GRACE data relative to TWS from GLDAS simulations.

An optimised spatial resolution of GRACE data by use of an adequate filter algorithm is
especially crucial for hydrological studies, where a separation of water-mass variations of different
river basins is of high interest for water balance studies. The transport of water masses can be
concentrated to small regions like the river network and its inundation areas with low signal
correlations to other mass transport processes. In addition, the hydrological signal of interest is
composed of mass variations in several water storage compartments of the continental water cycle
(such as snow, surface water or groundwater), which differ in their modes of temporal variability
or spatial correlation lengths (Güntner et al., 2007b). Hence, particular hydrological features
have to be considered when selecting appropriate GRACE filter techniques with small leakage
and satellite errors for applications in continental hydrology. Nevertheless, a comprehensive
evaluation of various filters from this perspective is missing in the literature so far. In particular,
the following questions arise: (1) Which filter is optimal for which scale, location or shape of
a river basin of interest? (2) Which filter is superior for which regional signal properties, i.e.,
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for different sources of water mass variations in continental hydrology? (3) What are the filter
properties in terms of TWS amplitude falsification and phase shifts? (4) Which filter removes
striping artefacts sufficiently well? In this study, we address the first three questions from the
perspective of hydrological applications such as water balance analysis or hydrological modelling.
To this end, we evaluate GRACE filter methods by simulating data from global hydrological
models, which at present provide the only alternative data set of TWS variations for large areas.

2.2 Methods and data

To evaluate different filter types, time series of continental water storage variations from GRACE
(Sect. 2.2.2) were evaluated using the three global hydrological models WGHM, GLDAS and LaD
(Sect. 2.2.3). In the absence of alternative observation data at the relevant scale, hydrological
model data were considered the most realistic information on continental water mass variations.
An analysis of differences between the models was undertaken to uncover their uncertainties
(Sect. 2.3.1). To reduce model-specific errors in the evaluation data set, an ensemble mean of
the three models was used for the filter analysis. It was assumed that the reduced GRACE
signal used in this study is governed by hydrological processes, and that the GRACE data are
corrupted by satellite errors but not by other geophysical processes. The different filter methods
(Sect. 2.2.1) were applied to compute time series of water storage variations for selected large
river basins, after converting the hydrological fields into a spherical harmonic representation. To
assure consistency, GRACE and model data were filtered in the same way. The similarity of
measured and modelled TWS time series was evaluated by a correspondence criterion, which is
described in Sect. 2.2.4. Computations were repeated for each filter method with varying filter
parameters. The optimal filter method of deriving water mass variations was selected for each
river basin from the maximum of the correspondence criteria, which is expected when the total
error (leakage and satellite error) in the filtered GRACE data is minimal.

2.2.1 Filter methods

In this study, six post-processing filter methods for derivation of regionally averaged water mass
variations from GRACE’s global gravity field solutions were evaluated. The smoothing of the
gravity field can be interpreted by a weighted spatial averaging for a region of every point on
the globe in order to reduce noise that disturbs the signal components on higher spatial scales.
A short description of the isotropic (degree dependent) filters, the anisotropic (degree and order
dependent) filters and the two anisotropic decorrelation methods used in our study, is given below.
For details on the filter methods, the reader should refer to the respective original publications.
For each filter method, the parameters that define the degree of smoothing strength are explained
below (see a list in Table 2.1).
(I) The widely used isotropic Gaussian filter was proposed by Jekeli (1981) as a way of smooth-

ing out the Earth’s gravity fields. Its weighting function is derived from the Gaussian probability
density function, which has its highest weight in the centre and diverges to zero with increasing
distance from the kernel. The form parameter of the symmetric bell-shaped weighting function
may be expressed as filter width rg (eqn. 59 in Jekeli, 1981). rg represents the radius at which
the filter weighting function declines to 50% of its maximum value, and it is used to tune this
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degree-dependent smoothing method. (II) Another filtering method was developed by Swenson
& Wahr (2002) and applied with degree- and order-dependency for this analysis. The idea behind
this filter design is to apply less smoothing to GRACE coefficients with relatively small errors
that are relevant to a signal within the region of interest. Hence, a spherical harmonic represen-
tation of the basin function is used to compute the filter weights. No direct assumption about the
signal is introduced. The user may tune this method by deciding for a total maximum satellite
error of basin average ∆max (eqn. 45 in Swenson & Wahr, 2002). To approximate this a-priori
fixed maximum satellite error, the filter weights are computed iteratively from a propagation of
the smoothed GRACE coefficient errors to the basin average.

(III) Another degree- and order-dependent technique by Swenson & Wahr (2002) minimises
the sum of GRACE satellite error and signal leakage. The satellite error is propagated from the
GRACE coefficient errors. Signal leakage is estimated by an exponential signal model, which
is parameterised by the auto-correlation length Gl and standard deviation σ0 of the expected
geophysical signal (eqn. 41 in Swenson & Wahr, 2002). (IV) Seo et al. (2006) proposed a time-
dynamic filter that optimises the signal-to-noise ratio of each GRACE coefficient individually.
We applied the method B4 of their study, which uses the GRACE SH coefficients themselves as
a signal estimate. Seo et al. (2006) derived a monthly filter version from the monthly GRACE
coefficient errors. For the present study, a static filter was computed from the variance of the
monthly coefficient errors. These variances were modified with a dimensionless error factor f , as
a means of tuning the filter’s degree of smoothing.

(V) Swenson & Wahr (2006) published an empirical decorrelation method that has to be
followed by a subsequent application of one of the filter methods explained above. To reduce the
correlation between coefficients of the same order but increasing degrees, they fit and remove
a quadratic polynomial in a moving window from the coefficients, and they do so separately
for even and odd degrees. The moving window is cantered at the coefficient to be filtered. No
details on the window size are provided by Swenson & Wahr (2006); therefore, its design orients
on Press et al. (1992) for the present study. The size of the window has to be decreased (e.g.,
with a Gaussian function) for increasing degrees in order to avoid too much signal damping.
Consequently, one has to define four parameters for the decorrelation process: the initial and
the final window size, wa and we, as well as the degree of the first and last coefficient to be
filtered, na and ne. For computations represented below, na = 2 and we = 3 were fixed. Discrete
variations for wa = [10, 20, 30, 40, 50] and ne = [10, 20, 30] were tested. Thereafter, a global filter
optimisation described by Chen et al. (2006b), who proposed to maximise the ratio of the spatial
signal root mean square (RMS) for ocean versus land, was applied. The three optimised versions
of filter V were concluded from a combination of ne = [30] with wa = [10, 20, 30], which were
used for further investigations.

(VI) Another decorrelation method, by Kusche (2007), makes use of the GRACE orbital geom-
etry and can be interpreted as an anisotropic filter. This method imitates the regularisation of
GRACE data processing, using a-priori diagonal signal and dense error covariance matrices. The
latter are derived synthetically from GRACE orbits. The filter’s degree of smoothing may be
tuned by a regularisation parameter a = 10x of the signal covariance matrix (eqn. 22 in Kusche,
2007). Three filter versions with x = 12, x = 13 and x = 14 were applied in this study.
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Table 2.1: Overview of the tested filter methods I-VI.

Method Variable parameter Reference
I rg Jekeli (1981)
II ∆max Swenson & Wahr (2002)
III Gl, σ0 Swenson & Wahr (2002)
IV f Seo et al. (2006)
V wa, ne Swenson & Wahr (2006)
VI x Kusche (2007)

2.2.2 GRACE data

Monthly basin-averaged surface-mass variations were derived from GRACE-only global gravity
field-model time series generated at GFZ German Research Centre for Geosciences (GRACE
Level-2 products, version GFZ-RL04, Schmidt et al., 2008b). These data were obtained from
the GFZ Information System and Data Center for a period ranging from 02/2003 until 07/2007
(excluding unavailable months 06/2003 and 01/2004) up to degree and order 120. They consist of
unconstrained gravity fields (Flechtner, 2007). Effects of the atmosphere and oceans are removed
at the GRACE data centre by applying the appropriate model data. For this study, water mass
variations are derived relative to a mean field for the years 2003-2006, and trends were removed
from the time series. Coefficients from degree 2 were used, and degree 1 coefficients were set
to zero. This is adequate because degree-1 coefficients are also excluded from the hydrological
model data used for comparison. The accuracy of GRACE gravity fields varies in time and space.
Schmidt et al. (2008b) quantified the global average error of derived water mass variations to
13-15 mm of a water mass equivalent column (w.eq.) for a circular area with a radius of 800 km.
For filter parameterisations, estimates of GRACE error covariances were taken from calibrated
coefficient errors, which are published together with GFZ-RL04 fields.

2.2.3 Hydrological data

Continental water-storage data provided by three global hydrological models were used for the
analyses.
The WaterGAP Global Hydrology Model (WGHM, Döll et al., 2003) is a conceptual global

model that simulates the continental water cycles, excluding the regions of Antarctica and Green-
land. Modelled water storages include interception, soil water, snow, groundwater and surface
water. For this study, data sets were available from 01/2003 until 12/2007 from the most recent
version of the model (Hunger & Döll, 2008). WGHM was forced by monthly climate data from
ECMWF (European Centre for Medium-Range Weather Forecasts) and precipitation data from
GPCC (Global Precipitation Climatology Centre). Output were of 0.5◦ resolution and were cal-
ibrated by tuning a runoff coefficient parameter against observed river runoff at 1,235 discharge
stations worldwide. Water storage simulated with WGHM has recently been analysed at the
global scale by Güntner et al. (2007b).
The Global Land Data Assimilation System (GLDAS, Rodell et al., 2004b) may incorporate a

variety of land-surface models. For this study, the ’National Centers for Environmental Prediction
/ Oregon State University / Air Force / Hydrologic Research Lab Model’ (NOAH, Ek et al., 2003)
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was used. GLDAS was forced by precipitation data from NRL (U.S. Naval Research Laboratory)
as well as a number of atmospheric conditions from different sources, such as ECMWF and
GDAS (Global Data Assimilation System, Rodell et al., 2004b). Model tuning was realised by
assimilation of skin temperature observations from the Television Infrared Observation Satellite
(TIROS, Rodell et al., 2004b). GLDAS-NOAH represented simulations for snow, canopy and soil
water storages covering the period from 03/2000 until 04/2008 on a 0.25◦-grid between latitude
60◦S and 90◦N. The Land Dynamics (LaD) model was developed as a land-surface model by Milly
& Shmakin (2002a) to simulate global water and energy balances with ISLSCP (International
Satellite Land Surface Climatology Project) data for radiation, precipitation, surface pressure,
temperature, humidity and wind speed. The variability of soil, groundwater and snow storages
was modelled over all continents, excluding Antarctica and Greenland, with a spatial resolution
of 1◦. The model was tuned by an adjustment of seven parameters of land properties, e.g., surface
albedo, thermal conductivity or surface roughness length (Milly & Shmakin, 2002b). Validation
of the model output was undertaken by observation-based discharge measurements for large river
basins (Milly & Shmakin, 2002a). For this study, the LaD model version, LadWorld-Gascoyne,
was available from 01/1980 until 07/2007.

Model strategies, tuning concepts and input data vary widely between the three models used
here. GLDAS and LaD were developed as land-surface models with physically based model
equations that describe both water and energy fluxes. The sub-grid variability of hydrologi-
cal processes within these models is either ignored (LaD) or captured by additional parameters
or functions (GLDAS). In contrast, WGHM is a water-balance model with conceptual equa-
tions that are a simplified representation of water transport processes on large scales. In a
station-based calibration, WGHM parameters that are not directly observable are varied until
a sufficient agreement of modelled and observed river discharge is achieved. Similarly, LaD is
calibrated by river discharge applying spatially distributed parameters. In contrast, data assim-
ilation in GLDAS denotes the direct integration of spatially distributed satellite measurements
as parameter or system states into the model by Kalman-filtering.
In addition, it has to be noted that the three models represent different water storage compart-
ments on the continents. While soil water and snow storage changes are simulated by all models,
only WGHM simulates the water transport and storage in surface water bodies and only LaD
includes an ice component. Moreover, GLDAS-NOAH does not include groundwater in its model
structure. Due to the small variability of canopy interception water, its absence in LaD can be
neglected.
Errors in input data, model structure and parameters propagate to errors in the model output.
Due to the different concepts and data used by GLDAS, LaD and WGHM, their errors are ex-
pected to be of different spatial and temporal characteristics, which are analysed by differences
in TWS in Sect. 2.3.1.

To reduce uncertainties caused by specific errors of individual models, multi-model ensembles
and, in particular, the ensemble mean, are often used in hydrology, oceanography and atmo-
spheric sciences as a more robust estimate of the system state or of forecast fields (e.g., Hagedorn
et al., 2005; Tebaldi & Knutti, 2007; Regonda et al., 2006). In this study, comparisons of GRACE
with simulated hydrological data was undertaken with a multi-model mean of WGHM, GLDAS
and LaD, hereafter named as Average of three global Hydrological Models (A3HM). In order
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to compute the A3HM, global fields of total continental water storage were calculated for each
hydrological model by adding up all simulated storage compartments. The TWS data of each
model were averaged to monthly means and re-gridded to a common 0.5◦ resolution. Then, for
each month, the mean of the three model data sets was calculated to give the A3HM monthly
time series. Antarctica and Greenland were excluded from the analysis. See Table 2.2 for global
signal intensity of A3HM compared to the other models. A3HM data were transformed into time
series of spherical harmonic coefficient sets, up to degree and order 150. To ensure consistency
of A3HM and GRACE data, monthly basin-average TWS variations around the mean were com-
puted with the same filter methods as the GRACE data. The common period of analysis in this
study was 02/2003-07/2007.
For the regional analysis, the 22 biggest river basins worldwide, with catchment areas greater

than 730000 km2,were selected (Fig. 2.1). As example basins of different climate zones, the
Amazon, the Indus, the Nile and the Ob river basins were analysed in more detail.

Figure 2.1: The 22 largest river basins worldwide (with an area greater than 730000 km2).

2.2.4 Correspondence criteria

In hydrology, the Nash-Sutcliffe coefficient (NSC, Nash & Sutcliffe, 1970) is a widely used param-
eter to measure the performance of simulated time series against observations. The coefficient is
defined by the sum of squared differences between predicted (P) and observed (O) values, nor-
malised by the sum of squared deviations of the observations to their mean, during the period
of interest with n time steps:

NSC = 1−
n∑
i=0

(Oi − Pi)2 · [
n∑
i=0

(Oi − Ō)2]−1, (2.1)

where Ō is the mean of the observations over the examined period. NSC ranges from 1.0 (indi-
cating perfect fit) down to −∞. A value lower than zero denotes that the model is worse than
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if Ō was used as a predictor. Therefore, results with values < 0 were discarded in this study.
NSC not only evaluates consistency in phase, like the correlation coefficient (CC), but also in
amplitude and absolute level of simulated versus observed time series. This is demonstrated in
Fig. 2.2 by comparing two sine waves that only differ either in phase (x-axis in Fig. 2.2a) or in
amplitude (x-axis in Fig. 2.2b). In this study, NSC was used as a correspondence criterion to
evaluate several filter techniques by comparing measured (filtered GRACE data) and simulated
(filtered modelled data) time series.

Figure 2.2: Nash-Sutcliffe coefficient (NSC) versus correlation coefficient (CC) for two sine waves
that differ in (a) phase or (b) amplitude.

For stronger smoothing, the amplitudes of seasonal TWS variations usually are reduced more
strongly, due to an increasing leakage effect. At the same time, the satellite error would decrease
in GRACE time series, while it is zero for any filter parameter in the hydrological time series. If
the modelled hydrological data comprehend no simulation error, and if they represent the only
remaining seasonal signal in GRACE, the leakage error would be the same in both time series, and
they would become more similar to each other for stronger smoothing. This may misleadingly
cause higher NSC values for higher filter parameter values. Therefore, a measure of the leakage
effect was introduced by weighting NSC with an attenuation factor w, which accounts for strong
signal attenuation due to filtering.Hence, w was computed from the summed squared difference
(ε∗ =

∑n
i=0(P ∗i − Pi)2) between the filtered (P ) and unfiltered (P ∗) time series of simulated

hydrological data normalised by the squared sum of the unfiltered time series (σ∗ =
∑n

i=0 P
∗
i

2).
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Finally, we get

wNSC =
(

1− ε∗

σ∗

)
∗NSC. (2.2)

To evaluate the reliability of the results obtained with wNSC, an alternative correspondence
measure, the index of agreement (see Willmot, 1984) was used. This measure also evaluates
phase and amplitude differences between modelled and observed time series.

2.3 Results and Discussion

2.3.1 Uncertainties of the hydrological model data

Since GRACE provides the only large-scale observation data of continental water storage change,
global hydrological models provide the only means of evaluating GRACE methods for the esti-
mation of TWS variability. In this respect, errors and differences in hydrological models need
to be carefully considered. In Sect. 2.2.3, it was shown that model structure, forcing data and
strategies for parameter tuning, differ considerably between WGHM, GLDAS and LaD. Maps of
TWS variability for the hydrological models (Fig. 2.3) expose the consequences of these different
concepts.
The spatial distribution of the TWS variability in WGHM tends to exhibit linear patterns,

reflecting the presence of the surface water storage compartment in the model, including rivers
and their inundation areas (see Fig. 2.3a). In contrast, TWS variability from GLDAS and LaD is
more gradually distributed in space (Fig. 2.3b and c) in line with larger correlation lengths of soil-
water storage (and groundwater for LaD), which dominates TWS in these models. Furthermore,
GLDAS amplitudes of TWS variations are larger than those of the other two models. Thus, for
the 0.5◦-cell-wise RMS-differences between the models (Fig. 2.4), the largest differences occur for
GLDAS versus WGHM or LaD, whereas WGHM and LaD are more similar to each other. The
differences in the simulated TWS variability between the models may amount to 300 mm w.eq.,
which is close to the signal magnitude itself. In the difference maps of Fig. 2.4, the linear patterns
caused by surface water storage in WGHM not present in the other models, are obvious again.
The largest differences occur within the river basins of the Amazon, Congo, Ganges, Mekong,
Yukon, St. Lawrence and Ob rivers. Thus, a main difference in TWS variability between the
models can be attributed to the fact that different storage compartments with different spatial
characteristics are represented in the models.
However, the cell comparisons between models, as shown in Fig. 2.4, may be misleading if

basin-average water storage variations and water balances are of interest. This is the case when
considering the lower resolution GRACE data. Relative differences between models decrease on
the river basin or global scale, e.g., after computing basin averages or reducing the resolution of
TWS data by applying a GRACE-filter method. Relative model differences of global (latitude)
weighted RMS of TWS reduce after a Gaussian filtering of 500 km, when compared to unfiltered
data (Table 2.2). Nevertheless, much smaller differences in signal magnitudes between WGHM
and LaD, than of both models relative to GLDAS, remain even after global averaging (Table 2.2).
In contrast, temporal correlations of TWS time series are very high between the hydrological

models (Fig. 2.5). WGHM and LaD are nearly perfectly correlated on all land areas (Fig. 2.5b),
except for a small region in the Himalayas and some linear river courses (e.g. Lena river).
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(a) WGHM

(b) GLDAS

(c) LaD

Figure 2.3: RMS of monthly variability of TWS from (a) WGHM, (b) GLDAS and (c) LaD
during 2003-2006 (unfiltered).
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Figure 2.4: RMS of monthly differences of TWS variability between WGHM, GLDAS and LaD
during 2003-2006 (unfiltered).

The first deviation may be due to differences in the snow algorithms and the latter due to the
absence of surface water routing in LaD. This process causes longer residence times and, thus,
delayed storage depletion within river basins for WGHM. But correlation maps for WGHM versus
GLDAS (Fig. 2.5a) and WGHM versus LaD (Fig. 2.5c) indicate good temporal correlations for
the major river basins (e.g., Amazon, Zaire, Ganges, Mississippi, or large parts of Ob, Yenisei
and Lena) despite large differences in amplitudes of TWS variations as shown in Fig. 2.4. Dry
areas, such as North Africa, central North America, central Australia and central Asia, are not
well correlated in time between the models, but the TWS change signals are very small (compare
to Fig. 2.3) or negligible in these areas. Low correlations for regions with large TWS variability
only appear in small areas of Scandinavia, East-Siberia and the northeast of North America.

To conclude, differences of TWS variations between the three global hydrological models are
quite large when evaluated at the grid scale. These differences are mainly due to different model
structures in terms of water storage components represented in each of the models. In previous

Table 2.2: Global weighted-RMS of TWS variations (in mm of a water mass equivalent column)
for the global hydrological models WGHM (W), GLDAS (G), LaD (L) and the multi-
model mean A3HM (col. 2-5) are derived from unfiltered data sets after application
of a Gaussian filter with 500 km half-length. Columns 6-8 show relative differences of
wRMS values between the hydrological models.

wRMS [mm] relative difference
W G L A3HM (G-W)/G (G-L)/G (L-W)/L

unfiltered 60.8 97.8 62.4 64.4 0.38 0.36 0.03
gaussian, 500km 15.5 20.7 16.0 16.3 0.25 0.23 0.03
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(a) WGHM vs. GLDAS

(b) WGHM vs. LaD

(c) GLDAS vs. LaD

Figure 2.5: Correlation of monthly TWS between WGHM, GLDAS and LaD during 2003-2006.
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studies (e.g., compare Güntner, 2009; Werth & Güntner, 2008), no model was shown to be
most consistent relative to GRACE-derived TWS variations. Nevertheless, global hydrological
models represent the most comprehensive and state-of-the-art data on continental water-cycle
processes on large scales. Therefore, they are the only data source to evaluate GRACE-derived
estimations of TWS variability. Relative differences between the models reduce on the scale
of river basins and are relevant for comparisons to GRACE data. Furthermore, the models
show a good temporal agreement, especially within regions of large TWS variations. For this
study, the model mean A3HM provided a compromise between the three independent model
realisations of different concepts. A3HM averaged out particular model errors due to individual
model structures and input data sets. Only a few systematic errors that may prevail in all input
data sets, such as those due to the generally small number of precipitation stations in specific
regions (e.g., parts of Africa, South America or Central Asia), cannot be reduced in this way. In
evaluating GRACE filter methods, A3HM currently provides the most adequate estimation of
water storage variations on the continents.

2.3.2 Filter evaluation

2.3.2.1 Filter effects on seasonal amplitude and phase

Different filter methods cause different GRACE error reduction and leakage effects when applied
to different river basins. To understand reasons for such differences, filtered time series with
non-decorrelating filter methods and different filter parameters are shown in Fig. 2.6-2.8 (a-d)
for GRACE (top) and A3HM (bottom) derived TWS variations. Examples are given for three
river basins (Amazon, Indus, Ob) to illustrate the effects of different climate zones with diverse
hydrology and different regimes of TWS variations. The Amazon exhibits a strong signal that
dominates northern South America (Fig. 2.6, dotted time series). The signal of a surrounding
area of the Amazon basin (defined by a latitudinal and longitudinal buffer of 8◦ around the
catchment boundaries) exhibits a much smaller signal with a slight phase shift (triangles). The
application of filters with a weaker smoothing strength (blue coloured time series) generates
erroneous time series in terms of GRACE and nearly undamped time series in terms of A3HM.
Stronger smoothing (pink coloured time series) leads to higher TWS amplitude attenuation due
to the small signal in the surrounding areas. The amplitude damping is stronger for filter I
compared to filter IV and most prominent for filter II with small parameter values, as well as
for filter III, with very small signal variance parameter values. Phase shifts of the surrounding
areas are too small to have a noticeable influence on the seasonal phase of the filtered Amazon
time series.
In contrast to the Amazon basin, higher differences between the model-based and GRACE-

derived TWS data occur for the Indus river basin. Also, the smaller size of this basin leads
to more erroneous GRACE time series for weaker smoothing, and differences between the filter
methods become more evident (Fig. 2.7). The Indus basin is influenced by a strong signal in
surrounding regions with opposite seasonal phase. For example, the closely located Ganges
River has a strong signal caused by the Indian summer monsoon, whereas Indus water storage
variations are more influenced by snow accumulation and melt. Furthermore, the eastern desert
in the Indus basin exhibits low TWS variability. Thus, a strong leakage effect of the surrounding
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Figure 2.6: Time series of TWS variations for the Amazon river basin after applying the non-
decorrelating filter methods: (a) I, (b) II, (c) III and (d) IV. For different values of the
filter parameter, the graphs colour gradually changes from blue (weak smoothing) to
pink (strong smoothing). From the two parameters of filter III, Gl is colour-coded and
σ0 graphs, with maximal and minimal values, are exemplarily indicated in sub-Figure
(c). See further explanations in the main text.

Figure 2.7: Same as Figure 2.6 but for the Indus basin.
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Figure 2.8: Same as Figure 2.6 but for the Ob basin.

areas causes strong phase shifts towards the surrounding signal when using filter IV and I, with
strong smoothing. This occurs with filter III, as well, with signal variance parameters (50 or
20 mm w.eq.) that are too small. In contrast, for filters II and III (the latter with signal variance
parameters greater than 100), only amplitude damping can be observed.

The Ob basin (Fig. 2.8) is surrounded by regions with equal phase and similar amplitude (see
Fig. 2.3). Hence, signal leakage is less dominant. The similar hydrological signal characteristics
of surrounding river basins (e.g. Volga, Yenisei) balance signal truncation inside the Ob basin.
Therefore, filters I and IV cause, overall, very little amplitude damping. Filter IV even exhibits
slightly increased amplitudes for some parameters compared to the unfiltered A3HM signal. On
the other hand, amplitude damping of filters II and III becomes strong for very small parameters
of II and small signal variance parameters of III. For the Ob basin, phase shifts are a negligi-
ble filter effect. Compared to the Amazon, the more erroneous GRACE time series for lower
smoothing are explainable by other factors, such as the more complex shape, or smaller size, of
the Ob river basin.

These three examples show that phase shifts and amplitude attenuation of TWS time series
differ between the river basins depending on the applied filter methods, the signal properties
inside and outside the basin, and the basin size or shape. If phase shifts between the time series
outside and inside a basin are of negligible size, the leakage scenarios established by Klees et al.
(2007) are comprehensible. For example, the small signal of the Amazon’s surrounding region
biases the TWS time series of the Amazon basin more strongly than does the time series of the
Ob basin when influenced by a signal of similar size outside the Ob basin. But when a marked
phase shift between the signal outside and inside the basin is present, the three leakage scenarios
vary between months because the ratio of the signal outside the basin to the signal inside the
basin varies. Therefore, phase shifts occur in the filtered time series of such regions. This applies
especially to high (strong) parameters of filters I and IV (smoothing), as shown for the Indus
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basin. In such cases, the application of amplitude scaling or bias correction factors as proposed
by Velicogna & Wahr (2006) and Klees et al. (2007) will not recover the hydrological signal after
filtering.

A summary of seasonal phases and amplitudes for the 22 river basins and their surrounding
areas is given in Table 2.3. Phase shifts and amplitude differences as an effect of filtering are
shown in Table 2.4. To make them comparable, the different filter methods were parameterised
in such a way that they generate the same RMS of monthly satellite error (propagated from the
coefficient errors) as a Gaussian smoother of 500 km radius. If phase shifts of the surrounding
region are large, and if amplitudes are of similar magnitude as the signal inside the basin, an
impact of the phase of the surrounding signal is clearly visible in the filtered time series (e.g.,
Amur, Indus). A much smaller signal amplitude in the surrounding region compared to the basin
itself results in strong amplitude damping (e.g., Ganges, Tocantins, Zambezi). Both effects are
simultaneously visible for a few basins (e.g. Amur, Indus, Parana). Also, the size and sign of both
effects vary between the filter methods. Some basins (e.g., Amur, Lena, Nelson, Nile) exhibit
phase shifts of different signs. For other basins, the size of amplitude damping differs largely
between filter methods of equal satellite error reduction (e.g., Danube, Ganges, St. Lawrence,
Tocantins). Due to a weak annual signal of the Orange basin (see seasonal amplitude of Orange
in Table 2.3), leakage tends to increase the annual amplitude for this basin. Probable reasons
for the different filter effects will be given in the next section.

Table 2.3: Seasonal amplitude (A, col. 2) and phase (Φ, col. 3) of TWS variations for the 22
river basins, derived from the ensemble model mean A3HM. Respectively, seasonal
amplitude difference (∆A, col. 4) and phase shift (∆Φ, col. 5) are computed for an
8◦ surrounding region.

Basin Surr. region
Basin A Φ ∆A ∆Φ

[mm] [day] [mm] [day]
Amazon 136 -23 -119 -32
Amur 10 154 -4 -54
Danube 47 -1 -15 +13
Ganges 125 -182 -75 -3
Indus 14 -65 +27 -126
Lena 26 36 -17 -3
Mackenzie 34 9 -8 -2
Mississippi 26 5 -16 +43
Nelson 23 26 +8 -16
Niger 77 165 -59 +19
Nile 37 -182 -34 -32
Ob 50 -2 -26 -6
Orange 1 -40 +18 +21
Parana 76 -5 -20 -7
St. Lawrence 85 3 -49 +12
Tocantins 230 -15 -129 -17
Volga 73 -3 -41 +1
Yangtze 39 -146 +9 -31
Yenisei 32 9 -16 -9
Yukon 43 9 -17 +1
Zaire 23 8 -19 +180
Zambezi 103 -19 -60 +7
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Table 2.4: Filter-induced bias of the seasonal amplitude (∆A, col. 3-8) and phase (∆Φ, col. 9-14)
for 22 river basins and six filter methods (I-VI). Parameters for each filter were set
to give the same propagated satellite error (εsat in col. 2) as a Gaussian smoother of
500 km radius. Results were computed from A3HM data. See Table 2.3 for seasonal
amplitude and phases of the un-smoothed signal.

εsat ∆A [mm] ∆Φ [day]
Basin [mm] I II III IV V VI I II III IV V VI
Amazon 10 -18 -2 -6 -18 -47 +1 -2 +0 +0 -1 -2 +0
Amur 11 -3 +0 -4 -3 -9 -1 -29 +7 +8 -40 -64 -7
Danube 15 -3 -15 -1 -1 -17 -2 +5 +1 +4 +2 +9 +3
Ganges 14 -27 -19 -22 -43 -49 -6 -3 -1 -2 +1 -3 -2
Indus 18 -2 -7 -7 +2 +7 -5 -94 -41 -67 -91 -117 -29
Lena 10 -3 -1 -7 +6 -8 +0 +1 +1 +6 -9 -5 +3
Mackenzie 12 +5 -1 -3 -9 -1 +2 +0 -1 -1 +4 +1 +1
Mississippi 10 -1 +0 -1 -7 -7 +0 +2 -1 +1 +17 +1 -1
Nelson 12 +1 -4 +1 -5 -4 +1 -3 +2 +1 +6 -14 +4
Niger 14 -8 -9 -15 +2 -23 +2 +1 -1 -2 -1 +2 +0
Nile 15 -4 -4 -1 -17 -9 +0 -4 -7 -4 +8 -5 -5
Ob 10 -3 -1 -7 -2 -24 +1 +0 +0 -1 +2 +5 +0
Orange 19 +3 +7 +5 +4 +5 -1 +21 -167 -171 +11 +20 -119
Parana 14 -10 -31 -29 -16 -20 -11 +2 +9 +8 +7 +3 +4
St. Lawrence 14 -17 -16 -16 -47 -42 -2 +6 -1 +4 +4 +6 +1
Tocantins 22 -42 -145 -27 -45 -89 -22 -4 +2 -3 -4 -6 -4
Volga 12 -12 -7 -9 -10 -33 -2 +1 +0 +2 +4 +4 +1
Yangtze 13 +2 -4 -1 -11 -5 +0 -8 +2 -3 +1 -9 +0
Yenisei 10 +0 +0 +1 +7 -15 +2 -1 +0 -2 -2 -2 -1
Yukon 13 +4 +3 -7 +6 -8 +17 -1 -3 -3 -3 -1 -2
Zaire 13 -1 -1 +0 +4 -8 +1 -5 -2 -3 -19 -5 -5
Zambezi 16 -17 -22 -25 -21 -38 -2 +2 +2 +2 +1 +2 +1

2.3.2.2 Correspondence of GRACE to hydrology data

The different filter methods and smoothing rates were evaluated with the wNSC correspondence
criteria (explained in Sect. 2.2.4) against A3HM data (Table 2.5). Example results for the
Amazon and Ob basins are shown in detail in Fig. 2.9.Applying the Gaussian filter for the
Amazon basin, averaged time series are very sensitive to damping when evaluated by wNSC.
A radius of 300 km results in the highest wNSC value, i.e., the best correspondence of GRACE
and A3HM data. This radius is similar to the results of Schrama et al. (2007), who selected a
globally optimal Gaussian filter radius of 275 km by comparison with GPS load measurements.
The wNSC correspondence rapidly decreases for smaller and higher radii than 300 km. The
degree-only dependency of filter method I does not take into account differences in accuracy for
coefficients of equal degree but different order. Therefore, method I may either filter coefficients
with an acceptable signal-to-noise ratio too strongly or may not sufficiently filter coefficients
containing large errors. Thus, basin average values are either affected by signal leakage from
surrounding areas or by large errors.The Amazon basin is located close to the ocean (which
inheres a signal close to zero) both to its east and to its west. To its north it borders on the
equator (where a shifted seasonality of water storage occurs further north). Therefore, basin
averages for the Amazon are quite sensitive to leaking signals or amplitude damping (as shown
above) for large filter radii. This causes high parameter sensitivity of filter I.
Filter II and IV also exhibit a distinct sensitivity to filter parameters. In the case of filter II,
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the correspondence to hydrological model data is poor for maximum admitted satellite errors
smaller than about 5 mm in both river basins. In this case, parameter values that are too low
(i.e., strong smoothing) increase signal leakage (i.e., amplitude damping). Smoothing with filter
II, for admitted maximum satellite errors in the range of 8 to 15 mm, performs well for both
basins. Maximum wNSC values of II are slightly higher than optimum results of I for the
Amazon, and are somewhat lower than optimum results of I for the Ob basin. These results
follow from the design of filter II, which preferably preserves coefficients that contain important
signals of the examined basin and, thus, reduces signal leakage. Furthermore, the anisotropic

Figure 2.9: Weighted NSC (wNSC) performance of different filter types (I-VI) and grades of
smoothing strengths for: (a) the Amazon and (b) the Ob river basins. Bold lines
in blue: Gaussian (I), red: basin optimised (II), purple: signal model optimised
(III), green: SNR optimised (IV), yellow: decorrelation VI. Light coloured lines:
decorrelation V (additionally applied to I-IV) with ne = 30 for all displayed graphs.
Grey lines: seasonality removed before computation of wNSC for all filters. See a
filter description in Sect. 2.2.1.
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design of II (compared to the isotropic Gaussian) distinguishes between the orders of coefficients
with the same degree, which enables a finer adjustment of the filter weights. The filter II design
is of particular benefit for the Amazon basin, where signal separation from the surrounding areas
is important for preventing amplitude damping, as described above. This strategy of filter II
is of less advantage for the Ob basin, where leakage of I is compensated by similar signals in
surrounding areas (as described above). This also explains the lower filter parameter sensitivity
of II for the Ob basin.

The optimal error factor of the anisotropic filter IV is f = 1 for Amazon and f = 4 for Ob. This
implies that the correlated GRACE coefficient errors are properly estimated within the Amazon
basin, whereas they are regionally underestimated within the Ob region. Optimal error factors
for IV differ between the river basins because the quality of GRACE coefficient error assessment
varies regionally (see also Horwath & Dietrich, 2006). The optimised filter IV is nearly as good
as each of the other optimised filter types for the Amazon. Again, due to similarly large signal
characteristics around the Ob basin, signal damping by leakage is small when using filter IV. The
positive leakage for some smoothing rates of that filter increases TWS amplitudes, as shown in
the previous section. Therefore, larger parameter values for IV hardly damp regionally averaged
time series and only reduces errors. This also leads to a smaller parameter sensitivity of that
filter for the Ob basin than for the Amazon.

By contrast, the anisotropic filter type III is comparatively insensitive in terms of wNSC values
to parameter variations. Correlation lengths greater than 300 km, and standard deviations
greater than 100 mm, provide wNSC values that differ less than 0.04 in both river basins.
Sensitivity of the standard deviation parameter is higher than that of the correlation length
parameter. This confirms Swenson & Wahr (2002), that an exponential signal model is a good
approximation for estimating the leakage error, and that it does not strongly depend on the
exact estimation of its parameter values, as long as σ0 and Gl are not too small. Compared to
the other filters, III provides the highest wNSC results for the Amazon and the second highest
for the Ob basin.

For the Amazon basin, decorrelation by V (thin coloured lines in Fig. 2.9) does not improve
the correspondence between filtered GRACE and hydrological model time series for any of the
four filter types discussed above. This follows from the low efficiency of V in equatorial regions.
Signals of these regions are dominant in near-sectorial coefficients (with similar degree and order),
which are corrected incompletely by that method (Swenson & Wahr, 2006). Decorrelation with
filter V does not give better results than the four non-decorrelating methods for the Ob basin.
Outside the equatorial region, improvement by decorrelation filter V only occurs for the Lena,
Orange, Mississippi, Parana and St. Lawrence basins.

The alternative decorrelation method VI for a = 1012 gives a wNSC value close to the filter
III optima for the Amazon (black dashed line in Fig. 2.9). Results of VI for a = 1013 are superior
to all filter methods for the Ob basin. A low parameter sensitivity of VI is visible for both river
basins.

Schaefli & Gupta (2007) showed that the NSC is very sensitive to seasonality. Since seasonality
is the most dominant signal in most river basins, wNSC was re-computed after removing the
seasonal signal from the time series. These results are shown by the grey graphs in Fig. 2.9 for
all filter types, respectively (including the optimal filter V with wa = 30). The wNSC values
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become smaller due to relatively high errors in the small non-seasonal water storage signal of
GRACE and the models. But the highest wNSC is likely to occur for similar filter parameter
values when compared to results that include the seasonal signal. This shows that the optimum
filter technique for a specific river basin is more a function of filter properties in combination
with the geographical characteristics of the region of interest, than a function of the selected
time period or of TWS temporal dynamics. Thus, the results obtained here can be expected to
be of broad relevance for hydrological studies.
A summary of filter comparison for all 22 basins is given in Table 2.5, with the highest wNSC

value and the corresponding filter parameter value for each filter type. The optimal filter type
for each basin is indicated by bold numbers. Among the basins, different filter methods with
different filter parameter values appear to be optimal. GRACE basin-average TWS time series
with optimum filtering generally have a high correspondence to A3HM, except for Amur, Indus,
Nelson, St. Lawrence and Orange. For the latter five basins, the error map (Fig. 2.4) shows large
differences of TWS variability between the hydrological models for the St. Lawrence basin only;
but temporal correlations between the models are poor for large areas inside all of the five basins
(Fig. 2.5). Hence, large uncertainties in the hydrological model data may lead to uncertain results
for the filter optimisation for these basins.For filter I, the highest wNSC occurs for radii from
300 km to 400 km for nearly all river basins. This indicates that the spatial resolution of GRACE-
derived TWS variations is mostly better than 500 km. The optimised maximum satellite error
of filter II tends to be larger than the 10 mm water equivalent. This illustrates the limitations in
accuracy of GRACE TWS estimates due to GRACE measurement errors. Furthermore, optimal

Table 2.5: Weighted NSC (wNSC) evaluation of GRACE filter types with A3HM data: highest
wNSC for each filter type and corresponding filter parameter values in brackets. Bold
wNSC values indicate the overall optimal filter method for each basin.

weighted Nash-Sutcliffe-Coefficient (wNSC)
I II III IV V VI

Basin (rg[km]) (∆max[mm]) (σ0[mm], Gl[km]) (f) (wa) (x)
Amazon 0.82 (300) 0.84 (11) 0.87 (250,300) 0.83 (1) 0.70 (30),II 0.86 (13)
Amur 0.27 (300) 0.35 (25) 0.31 (300,100) 0.26 (2) 0.15 (30),I 0.21 (13)
Danube 0.63 (300) 0.69 (27) 0.70 (250,1000) 0.66 (0.6) 0.46 (30),II 0.75 (12)
Ganges 0.81 (300) 0.81 (17) 0.88 (300,500) 0.77 (1) 0.76 (30),II 0.91 (12)
Indus 0.15 (400) 0.29 (21) 0.33 (200,1000) 0.25 (2) 0.11 (30),III 0.32 (13)
Lena 0.49 (300) 0.42 (13) 0.49 (300,1000) 0.49 (2) 0.50 (20),IV 0.49 (12)
Mackenzie 0.60 (400) 0.59 (13) 0.65 (150,200) 0.60 (1) 0.42 (30),II 0.60 (12)
Mississippi 0.61 (400) 0.59 (13) 0.64 (150,1000) 0.54 (1) 0.60 (30),I 0.66 (12)
Nelson 0.31 (500) 0.29 (30) 0.33 (200,1000) 0.22 (0.4) 0.30 (30),II 0.51 (12)
Niger 0.85 (300) 0.88 (23) 0.89 (200,200) 0.86 (0.7) 0.78 (30),IV 0.89 (12)
Nile 0.56 (400) 0.58 (14) 0.61 (150,900) 0.43 (0.5) 0.57 (30),II 0.59 (13)
Ob 0.76 (300) 0.73 (13) 0.80 (100,900) 0.74 (4) 0.43 (30),IV 0.81 (13)
Orange 0.29 (600) 0.09 (41) 0.32 (20,1000) 0.17 (7) 0.38 (20),I 0.28 (14)
Parana 0.67 (500) 0.48 (16) 0.69 (200,1000) 0.63 (2) 0.58 (30),II 0.73 (12)
St. Lawrence 0.37 (200) 0.15 (20) 0.24 (20,1000) 0.24 (0.1) 0.22 (30),I 0.21 (14)
Tocantins 0.78 (400) 0.78 (34) 0.85 (300,900) 0.80 (0.7) 0.69 (30),II 0.85 (12)
Volga 0.70 (300) 0.66 (15) 0.75 (100,900) 0.70 (1) 0.50 (30),II 0.78 (13)
Yangtze 0.74 (400) 0.71 (17) 0.79 (300,700) 0.69 (2) 0.62 (30),III 0.82 (12)
Yenisei 0.60 (400) 0.57 (12) 0.63 (50,500) 0.63 (16) 0.42 (30),IV 0.66 (14)
Yukon 0.50 (300) 0.59 (16) 0.59 (150,100) 0.52 (1) 0.24 (30),IV 0.57 (12)
Zaire 0.41 (400) 0.47 (12) 0.49 (100,300) 0.47 (2) 0.41 (30),III 0.51 (13)
Zambezi 0.75 (300) 0.81 (27) 0.81 (300,200) 0.82 (0.7) 0.64 (30),III 0.82 (12)
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correlation lengths of filter III vary considerably between the river basins. Lower correlation
lengths may be due to the importance of surface water storage concentrated in a small spatial
domain, as pointed out by Güntner et al. (2007b). Filter V provides optimal filter results for only
two river basins (Lena, Orange). Parameter optimisation of V is not straightforward, because
the four filter parameters (wa, we, na and ne) may have to be adjusted individually for each basin
in addition to the parameter of the subsequently applied filter method. Method VI provides the
highest wNSC for sixteen river basins, and its performance is also in the same range as the best
alternate filter methods for the remaining basins. The anisotropic decorrelation method of VI
seems to efficiently preserve the hydrological signal while reducing GRACE satellite errors. In
addition, VI exhibits low filter parameter sensitivity. This supports the method’s strategy of
deriving an error covariance matrix from satellite orbits in order to decorrelate the coefficients in
the filter process.Finally, the computations were repeated for the Index of Agreement (Willmot,
1984). This measure of correspondence between GRACE and hydrological model data generally
confirms the results as provided above (not shown).
For all filter methods, a final estimation of biases of the seasonal amplitude and phase in the

TWS time series after application of the optimised filter, is provided in Table 2.6, based on A3HM
data. For both amplitudes and phases, biases are reduced for many river basins in comparison
to Table 2.4, where a standard Gaussian filter, or filter of equivalent smoothing strength, were
applied. This indicates a successful optimisation of the filter type and parameter. Large phase
shifts remain for the Indus and Orange basin only. For most of the other basins, filters III and

Table 2.6: Filter-induced bias of the seasonal amplitude (∆A, col. 2-7) and phase (∆Φ, col. 8-13)
for 22 river basins and the six optimised filter methods (I-VI) as listed in Table 2.5.
Results were computed from A3HM data. See Table 2.3 for seasonal amplitude and
phases of the un-smoothed signal.

∆A [mm] ∆Φ [day]
Basin I II III IV V VI I II III IV V VI
Amazon -7 -4 +0 -4 -27 -1 -1 +0 -1 +0 +0 +0
Amur -2 +0 +0 +0 -8 -1 -11 +3 +5 -12 +23 -7
Danube -2 -5 -2 -4 -10 -3 +3 +0 +2 +2 +10 +2
Ganges -13 -12 -5 -13 -25 -4 -1 +0 -1 +0 -3 -1
Indus -5 -5 -4 -4 +0 -5 -74 -27 -24 -26 -105 -29
Lena -1 -2 +0 +5 -3 +0 +2 +2 +2 -4 -11 +3
Mackenzie +5 -2 +1 +1 +2 +2 +0 -1 +0 -1 -2 +1
Mississippi -1 -1 +0 -1 -3 +0 +1 -1 +0 +3 -1 +0
Nelson +1 -1 +0 -2 -9 -1 -3 +0 +2 +1 -9 +4
Niger -2 -2 +0 +5 -9 +2 +1 +0 +0 -1 +1 +0
Nile -3 -3 -1 -6 -5 -1 -3 -5 -3 +3 -1 -1
Ob +0 -2 +0 +3 -18 +1 +0 +0 +0 +0 +6 +0
Orange +4 +0 +1 +4 +4 +2 +21 +11 -181 +12 +18 -138
Parana -10 -14 -8 -12 -20 -6 +2 +4 +3 +5 +6 +3
St. Lawrence -4 -6 -37 +0 -42 -14 +2 +0 +4 +0 +6 +3
Tocantins -31 -21 -10 -16 -55 -7 -3 -2 -2 -1 -4 -3
Volga -6 -7 -3 -2 -27 -2 +1 +0 +2 +1 +5 +1
Yangtze +1 -2 +0 -7 -6 +0 -5 +1 +0 +0 -2 +0
Yenisei +1 -1 +0 +3 -9 +2 -1 -1 -2 +0 -2 -2
Yukon +10 +4 +6 +8 +1 +13 -1 -3 -3 -1 -1 -2
Zaire -1 -1 +1 +6 -4 +1 -5 -1 -3 -18 -6 -5
Zambezi -6 -1 +0 -1 -21 +2 +1 +1 +1 +0 +1 +1
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VI had the smallest seasonal phase shifts and amplitude damping.

2.3.2.3 Multi-criterial error analysis

For an alternative evaluation of the filter methods with hydrological data, satellite and leakage
errors of the different filters were evaluated in a multi-criterial way (Fig. 2.10). The leakage
error was derived as an RMS of differences between filtered and unfiltered A3HM time series in
monthly TWS variations. The satellite error was derived as an RMS from a monthly propagation
of the calibrated coefficient errors into the basin averages. The total error is given by the squared
sum of both error components. Hence, the point closest to the origin in Fig. 2.10 provides the
smallest total error and indicates the optimum filter type according to the error budget.
The error budgets of the Amazon (Fig. 2.10a) and the Ob (Fig. 2.10d) basin show a well

defined ranking between the filter methods. The decorrelation method VI is superior in reducing
the total error. The second best error budget is provided by filter III. Furthermore, the more
complex the shape (e.g., Nile) or the smaller the size of a river basin (e.g., Indus), the larger is
the total error and the smoother are the error graphs in Fig. 2.10. For the Indus and the Nile
basin, leakage for low smoothing rates amounts to several millimetres. Also, for these critical
basins’ characteristics, filters VI and III, respectively, provide the filter versions with the best
error budgets, though versions of method II are located close to the optimum as well. The
method V exhibits high leakage errors in the error plots of all basins, which explains the wNSC
results from above. Hence, method V is not a generally efficient filter approach for deriving
basin-averaged TWS variations from GRACE gravity fields.
In summary, the order of the filters in terms of their total error budget in Fig. 2.9 closely

matches the filter type ranking by the wNSC-evaluation (Table 2.5). For most cases, the decor-
relation method VI provides the best error budget. For a similar satellite error reduction in the
GRACE data, the leakage error of VI is much smaller compared to the other filter methods. This
explains the small seasonal amplitude damping and phase shifts for this method in many river
basins (Table 2.4). A list of TWS satellite, leakage and total error for the 22 river basins after
application of the optimised decorrelation method VI, is provided in Table 2.7. The comparison
of these total error values with estimations of seasonal TWS amplitudes from A3HM (Table 2.3)
indicates that the estimation of GRACE-derived seasonal water mass variations is not reliable
for the Amur, Indus, Nelson and Orange basins, as the error exceeds the signal magnitudes.
This coincides with the small correspondence of GRACE and A3HM-derived time series of TWS
variations for these river basins in Table 2.5.
Besides method III in the Indus basin, the best filter methods found for each river basin in

the previous section, by the wNSC-evaluation (black circles in Fig. 2.10), are very close to the
minimum satellite and leakage error budget. This result confirms the broader validity of the
optimum filter selection procedure.

2.3.2.4 Sensitivity to errors in amplitude of the hydrological data

In Sect. 2.3.1 it was shown that the differences in TWS variations between the hydrological
models consist of amplitude differences rather than phase shifts. Consequently, the influence
of amplitude errors in the hydrological data on the wNSC-evaluation of filter parameter and
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Figure 2.10: Error budget as hydrological leakage error (RMS differences of filtered and unfiltered
A3HM time series) versus GRACE satellite error (RMS of propagated monthly
coefficient errors) of TWS variations of : (a) the Amazon, (b) Indus, (c) Nile and (d)
Ob river basins. Applied filter methods are shown by lines in blue: Gaussian (I), red:
basin optimised (II), purple: signal model optimised (III), green: SNR optimised
(IV). Light coloured lines: decorrelation filter V. Yellow line: decorrelation filter
VI. Black circles indicate the individual optimised filter parameter from Table 2.5
and the bold black circles indicate the respective optimal filter method. See a filter
description in Sect. 2.2.1.
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Table 2.7: 22 basin individual standard deviation of monthly satellite and leakage error for decor-
relation VI optimised filtering (see Table 2.5 for respective parameter).

εsat εleak εges
Basin [mm] [mm] [mm]
Amazon 9.4 2.4 9.7
Amur 11.1 2.6 11.4
Danube 21.6 4.5 22.1
Ganges 17.1 4.2 17.6
Indus 18.6 7.6 20.1
Lena 10.0 1.3 10.1
Mackenzie 12.3 2.2 12.5
Mississippi 11.0 1.6 11.1
Nelson 16.2 5.6 17.1
Niger 18.3 2.0 18.4
Nile 14.0 7.5 15.9
Ob 8.9 1.5 9.0
Orange 12.9 4.7 13.7
Parana 16.3 5.8 17.3
St. Lawrence 10.3 16.7 19.6
Tocantins 32.0 12.3 34.3
Volga 11.2 2.6 11.5
Yangtze 14.9 1.4 15.0
Yenisei 8.0 2.8 8.5
Yukon 16.3 11.6 20.0
Zaire 11.9 5.3 13.0
Zambezi 20.7 3.6 21.0

methods has to be estimated. Therefore, a second wNSC-evaluation is undertaken in this
section. Ahead of filtering and wNSC evaluation, the monthly A3HM grid data are multiplied
by a factor of 1.5. This factor is estimated as an average maximum difference between A3HM
and GRACE TWS amplitudes. Subsequently, the wNSC-evaluation is repeated. Normalised
differences of the optimised filter parameters relative to the ones optimised with the original
A3HM data (Table 2.5) are shown in Fig. 2.11. The results for the Nelson and St. Lawrence
basins are excluded because wNSC values below zero were obtained and, therefore, no optimised
parameter values could be achieved. Differences for the other basins mainly occur for parameters
of filter III, which exhibits a low sensitivity for its filter parameter concerning filter performance
(see Fig. 2.9). Parameter selection of VI also shows differences (Amur, Ob, Orange, Zaire), but
here as well, the sensitivity of filter performance is low (see Sect. 2.3.2.2). Parameter differences
of I, II and IV are either zero or are of expected evaluation uncertainties of one or two parameter
step sizes (100 km, 2 mm and 1, respectively). Hence, except for the Nelson and St. Lawrence
basins, these results prove that a possible error in the amplitude of the hydrological data would
have small effects on the selection of optimal filter parameters by the wNSC-evaluation. This
robustness of filter parameters is mainly due to the identical filtering of both data sets (GRACE
and hydrological data) for the wNSC evaluation, in combination with an accounting of leakage
errors by the weighting factor w in wNSC. This approach prevents a simple fitting of GRACE
to hydrological amplitudes, since amplitude damping affects both data sets.
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Figure 2.11: Parameter differences for Gaussian (I, blue), basin optimised (II, red), signal model
optimised (III, light and dark purple), SNR optimised (IV, green), decorrelation V
(grey) and decorrelation VI (black) filter methods for 20 river basins. Parameter dif-
ferences are derived from wNSC-evaluations with A3HM versus a modified A3HM
version of one-and-a-half times increased signal amplitudes: ∆p = p(A3HM) -
p(1.5*A3HM). In the graphic, differences are normalised by the maximum parameter
values chosen in this study (see legend).

2.4 Conclusions

The results show that filter types and their corresponding parameters have to be selected carefully
in order to derive basin-averaged time series of water storage variations from GRACE spherical
harmonic data. The different smoothing effects of the different filter methods lead to varying
balances of satellite and leakage errors in each river basin. We could determine the individual best
filter methods for deriving basin-averaged water mass variations for the 22 largest river basins
worldwide. When being evaluated by global hydrology, optimal parameters of the individual
filter types vary for different basin sizes, shapes, and locations, as well as for signal type and
intensity. Filter type VI provides generally good results. The differences of signal characteristics,
like seasonal amplitude and phase, inside and outside a region of interest, highly influences the
efficiency of a filter method. If phase shifts due to signals outside the river basin affect the TWS
estimation, a bias or amplitude correction by a scale factor will not adequately recover the signal.
Instead, a previous selection of an optimal filter type is expected to allow for a best possible bias
correction. Additionally, for many filter types, the selection of an optimal parameter for the
specific location and shape of the basin or process is necessary.

The decorrelation method VI was be the most efficient approach for the set of river basins
analysed in this study. Only for basins of generally poor agreement between GRACE and hydro-
logical data (Amur, Orange and St. Lawrence), was there a considerably higher correspondence
provided by other filter methods. The usage of GRACE orbit-configurations to design a syn-
thetic error covariance matrix sufficiently reduces the satellite error while preserving most of the
hydrological signal for most of the river basins - even if they exhibit a small size or complex signal
characteristics (e.g., Danube). To conclude, the general and global adaptability with moderate
parameter sensitivity makes method VI the most reliable of the six analysed filter tools.
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The isotropic Gaussian filter technique (I), or filter methods with little information on total
error characteristics (II, IV, V), does not sufficiently address globally varying conditions for the
extraction of basin-averaged TWS variations. Strong smoothing filter versions of method II and
III tend to have more pronounced amplitude damping, while filters I and IV generally lead to
phase shifts in the time series. Thus, the particular parameter values for these filter methods
must be chosen carefully. It was shown that filter I gives acceptable results if the signal around
the basin exhibits equal characteristics (Ob, Lena). If the river basin is characterised by a
strong signal of TWS variability and is of large size and circuit shape, like the Amazon, leakage
effects may be small if the parameter of filter I is chosen carefully. But if the signal around
the basin is of different characteristics because of such factors as the vicinity of oceans (Ganges,
Yukon), deserts (Nile, Indus) or smaller signals in surrounding regions (Danube), leakage may
reach high values for filter I. Furthermore, the leakage effect may be time-dependent in cases
in which surrounding areas are characterised by a different seasonal water storage regime. In
this case, method I is inappropriate. The principle of method II is only advantageous when its
parameter values are optimised and the river basin of interest exhibits a complex shape or small
size (e.g., Niger, Yukon and Zambezi). Method III can efficiently deal with similar (e.g., Ob)
or different (e.g., Nile) signal characteristics outside the area of interest, as well as with small
or complex basin shapes (Niger, Zambezi). It provides good filter results for half of the river
basins due to its efficient leakage estimation with an exponential signal model. Because of high
leakage effects, the decorrelation method V only provides satisfactory filter results in some basins
(Orange, Lena). However, when using method V for decorrelation additional smoothing, and
therefore parameter optimisation, is necessary. A non-practical basin-based (instead of global)
optimisation of the decorrelation parameter, in addition to the parameter of the superimposed
filter method, may lead to improved results for that method. The conclusions above have been
supported by reduction of amplitude and phase differences, total error budget maps and an
amplitude sensitivity test.

It should be remembered that the results are derived from comparisons with model-based
hydrological data, which might contain structural errors within specific basins. Such errors are
caused by mis-modelled or missing processes, within any model, erroneous mode-forcing data or
parameters. However, global hydrological models provide the only source of alternative TWS
data sets for evaluating GRACE data. The ensemble mean A3HM was used as a compromise
between three widely used hydrological models (GLDAS, LaD and WGHM) in order to evaluate
GRACE filter parameters with the best possible accuracy, at present. Furthermore, the applied
models mainly differ in amplitudes of TWS and it is shown that an amplitude error has a small
effect on the filter evaluation. Only for the Indus, Amur, St. Lawrence, Orange and Nelson, may
filter parameter type and selection be unreliable. A rather low correspondence between modelled
and GRACE-derived data sets is due to temporal uncertainty of simulated TWS variability for
these basins. The results in terms of optimum filters were shown to be robust, both for seasonal
and non-annual TWS dynamics, in river basins. Nevertheless, for other applications, such as
those with a focus on spatial patterns or secular trends, another prioritisation of filter methods
may be more appropriate.

Hence, the discussion of adequate filter methods will likely continue as long as there is no
breakthrough in accuracy for GRACE or GRACE-Follow on gravity field models. Filter types
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and parameters, as derived in this study, are particularly useful for GRACE data analysis within
hydrological applications, such as monitoring of water mass exchange on the continent, studies
of inter-annual variability in the hydrosphere, or using reliable water storage data as input for
assimilation into large-scale hydrological models. The results obtained here can also be used as
a guideline for filter selection for areas that were not specifically considered in this study.
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3 Calibration Method Development:
"Integration of GRACE mass variations
into a global hydrological model"∗

Abstract

Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite
mission provide global information on temporal variations of continental water storage. In this
study, we incorporate GRACE data for the first time directly into the tuning process of a global
hydrological model to improve simulations of the continental water cycle. For the WaterGAP
Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to con-
strain model predictions by both measured river discharge and water storage variations from
GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and
Congo. The approach leads to improved simulation results with regard to both objectives. In
case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm
for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results
highlight the valuable nature of GRACE data when merged into large-scale hydrological mod-
elling. Furthermore, they reveal the utility of the multi-objective calibration framework for the
integration of remote sensing data into hydrological models.

∗Werth, S., Güntner, A., Petrovic, S., Schmidt, R. (2009a), Earth and Planetary Science Letters, 270(1-2),
166-173.

51



CHAPTER 3. CALIBRATION METHOD DEVELOPMENT

3.1 Introduction

By mapping time variations of the Earth’s gravity field with the Gravity Recovery and Climate
Experiment satellite mission (GRACE) since its launch in 2002, an unprecedented global data
set of mass variations close to the Earth surface became available (Tapley et al., 2004b). After re-
moval of mass variations due to tides and non-tidal atmospheric and oceanic transport processes,
the time-variable gravity data mainly represent water mass variations in continental hydrology,
i.e., total water storage change (TWSC) on the continents (see a recent review by Schmidt et al.,
2008b). In specific regions, also mass variation from post glacial rebound (Tamisiea et al., 2007)
and seismic activities (Chen et al., 2007b) could be revealed from the GRACE data.

For the field of hydrology, the past six years of GRACE operation contributed to a significantly
improved understanding of the spatio-temporal patterns of water storage variations on the con-
tinents because no comprehensive TWSC data were available before at large spatial scales due
to the absence of adequate monitoring systems (Lettenmaier & Famiglietti, 2006). Thus, the
GRACE TWSC data give new insights into the Earth’s water cycle including the contribution
of TWSC to sea level variations (Ramillien et al., 2008a), the impact of climate variability or
extremes on water storage (e.g. Andersen et al., 2005; Seitz et al., 2008), or melting of glaciers
and ice caps (e.g. Chen et al., 2006a; Luthcke et al., 2006). Numerous regional or river basin
studies analysed GRACE TWSC from seasonal to inter-annual time scales (see a recent review
by Schmidt et al., 2008b). Others solved the water balance using TSWC from GRACE for other
hydrological components such as evapotranspiration (Rodell et al., 2004a; Ramillien et al., 2006)
or runoff (Syed et al., 2007), or separated individual storage compartments such as groundwater
(Rodell et al., 2006; Strassberg et al., 2007) or snow (Frappart et al., 2006; Niu et al., 2007a).

Besides observation data, hydrological simulation models are an indispensable tool to assess
the impact of environmental change on the continental water cycle and the particular processes
mentioned above. Thus, in turn, they are a prerequisite for implementing measures of sustain-
able management of water-related issues in future. At continental to global scales, hydrological
models are an integral part of atmospheric circulation models where they represent the land
surface processes for climate and weather prediction simulations, see Dirmeyer et al. (2006) for
an overview on land surface models and their comparison. In addition, water balance models are
used to represent the full water cycle in river basins for purposes such as stream flow forecast-
ing and water resources assessment (for a recent overview on global water balance models see
Widen-Nilsson et al., 2007). However, these large-scale hydrological models are known to suffer
from uncertainties in terms of model structure, parameter values and climate forcing data. As
a consequence, simulation results for hydrological state variables and water fluxes on the conti-
nents vary considerably between models (e.g. Dirmeyer et al., 2006). While river discharge has
for a long time been the only observable to validate and calibrate global water balance models
(Hunger & Döll, 2008), considerable model uncertainties remain for other components of the
water cycle, e.g., water storage, evapotranspiration or groundwater recharge due to the lack of
adequate observation data.

In this context, GRACE provides a unique data set to evaluate and improve the simulation of
TWSC on large scales and therewith to uncover shortcomings in model designs and parameters.
Numerous studies compared GRACE-derived TWSC data with simulation results of hydrological
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models and concluded with a recommendation to use GRACE data as a model constraint (see
a recent overview by Güntner, 2009). First attempts have been made to modify large-scale
hydrological models and to evaluate the modifications with GRACE observations (Niu & Yang,
2006; Ngo-Duc et al., 2007) and very recently, Zaitchik et al. (2008) assimilated GRACE TWSC
into a land surface model for the Mississippi river basin. A global integration of GRACE data
with hydrological models to improve model performance by calibration has not been reported so
far.

This motivated the present study to incorporate for the first time GRACE data into the
tuning process of a global hydrological model (Sect. 3.2.1). For this purpose, a multi-objective
calibration scheme has been developed (see Sect. 3.2.2). Calibration denotes the selection of
model parameter values by evaluating the simulation performance via a model output objective
against observations. In contrary to data assimilation, the system is tuned by determining
model parameter values during a pre-defined time interval, and the resulting parameter set may
be used for subsequent independent model runs. Multi-objective calibration denotes that more
than one model output objectives are taken into consideration. In this study, two different
types of measured data are used to constrain parameter sets (Sect. 3.2.3). Improvements for the
simulation of TWSC are analysed (in Sect. 3.3) and the value of calibration procedure using
GRACE data towards enhanced predictions of the continental water cycle is outlined (Sect. 3.4).

3.2 Methods and Data

3.2.1 Global Hydrological Model

The WaterGAP Global Hydrology Model (WGHM) is a conceptual water balance model which
simulates the continental water cycle including the most important water storage components,
i.e., interception, soil water, snow, groundwater and surface water. The major hydrological
processes are simplified by conceptual formulations. WGHM has a 0.5◦x0.5◦ spatial resolution
and a daily computation time step. Information on land surface characteristics such as the spatial
distribution of vegetation, soil types, land use, groundwater and surface water bodies is given
in the model from global data sets. For details on model equations and their parameters see
Döll et al. (2003). The model has widely been used to analyse continental water storage change
(Güntner et al., 2007b). In comparisons with GRACE TWSC, a general agreement of seasonal
and other periodic characteristics of TWSC was found at the global scale, but amplitudes and
phases in the model showed significant differences (larger than GRACE errors) in particular river
basins (Ramillien et al., 2005; Schmidt et al., 2006, 2008c).

In this study, WGHM is driven by climate data (temperature, cloudiness and number of rain
days per month) of the European Centre for Medium-Range Weather Forecast (ECMWF) and
monthly precipitation data of the Global Precipitation Climatology Centre (GPCC). Precipi-
tation is disaggregated to a daily resolution with the given number of rain days per month.
The climate input data are available from 01/1992 until 12/2007 for this study. Antarctica and
Greenland were excluded from the simulations.

We used the most recent WGHM version as described by Hunger & Döll (2008), who calibrated
(i.e. tuned) the model against observed mean annual river runoff at 1235 discharge stations
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worldwide, by varying one runoff generation parameter. This model version is called the original
version in the following. Overall, the model includes 26 process parameters. Their values in
the original model as well as parameter ranges for the calibration are based on literature and
qualitative reasoning (Kaspar, 2004), see Table 3.2 for the parameters calibrated in this study.
Thereof, the parameter root depth is based on the global land cover distribution and can be
calibrated by a multiplicative factor. The Priestley-Taylor coefficient is used in the corresponding
approach to quantify potential evapotranspiration. The radiative fraction of the extraterrestrial
radiation that reaches the Earth’s surface is determined by cloud cover data and the radiation
proportion parameter. The variability of snow melt temperature is due to different elevation
and vegetation cover of different regions. A more detailed description of the model parameters
is provided by Döll et al. (2003).

3.2.2 Calibration Technique

Combining both the present station-based accuracy of WGHM in terms of river discharge and
the integrative nature of the GRACE data with global coverage, improved simulation results
were expected from a multi-objective calibration approach. Calibration in the sense used here
denotes an iterative method of testing different parameter values and selecting the best parameter
sets based on performance criteria that evaluate simulation results against observation data.
Calibration methods differ in their strategies to select parameter sets for each iteration from
the given parameter space. Furthermore, multi-objective calibration denotes the selection of
parameter values through evaluating model performance against more than one objective. In
this study, these objectives are based on two observation data sets: river discharge and periodic
TWSC (see Sect. 3.2.3); hence, it is a two dimensional problem. Instead of a single optimum
parameter set, such an approach will lead to a Pareto set of optimal solutions (Gupta et al.,
1998). Each Pareto optimum of this set is an optimal solution from a multi-objective point of
view in the sense that no other solution exists that provides a better simulation performance
for both model output objectives. Hence, when moving from one Pareto solution to another,
simulation performance increases for one objective while it decreases for the other objective.
Without additional information it is not possible to undertake a ranking among the Pareto
solutions. The trade-off (i.e. the spread) between the Pareto solutions reflects the minimum
parameter uncertainty (Vrugt et al., 2003a) caused by errors in the input and the measured data
as well as by model structure.
The calibration of a number of model parameters against more than one objective depicts

a highly non-linear optimisation problem and requires a global optimisation method. Further-
more, only stochastic methods like a multi-start simulated annealing or an evolutionary al-
gorithm assure a feasible computing time for the calibration of the global hydrological model
WGHM. Therefore, to handle the complexity of a multi-objective and multi-parameter cali-
bration problem as well as the computational demands we select the ε-Non-dominated-Sorting-
Genetic-Algorithm-II (ε-NSGAII) (Kollat & Reed, 2006), which ranks among the most effective
and efficient multi-objective optimisation methods (Tang et al., 2006). This global optimisation
algorithm solves multi-objective problems using the concept of evolutionary parameter variation
(mutation, crossover and selection). It is an elitist algorithm with a Pareto ranking routine.
Furthermore, as an extension of NSGAII (Deb et al., 2000) by the concept of ε-dominance, it
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allows to specify the accuracy to be fulfilled by each objective. For this study, we parameterise its
operators as proposed by Kollat & Reed (2006). Furthermore, we use a population size of N = 8
and an ε-resolution of 0.05 for both objectives and stop the optimisation after 400 iterations.

The calibration of WGHM is exemplarily done for the Amazon, the Mississippi and the Congo
river basins in this study. These basins were selected because of their large size of over three
million km2. The period 01/2003-12/2006 was used for WGHM calibration.

Güntner et al. (2007b) showed that WGHM parameter sensitivity for TWSC simulations varies
considerably between the river basins. This inter-basin variability of parameter sensitivity can be
explained by differences of the climatic conditions (represented in the model by the climate input
data and parameters steering evaporation or snow melt processes, for instance) and of the land
surface properties (represented by, e.g., vegetation or soil parameters) between the river basins.
This results in different water flow and storage characteristics in the basins. In particular,
different storage components dominate the individual river basin response, e.g., snow storage
in higher latitude areas or surface water storage in some tropical areas with large inundation
zones. Thus, also the sensitivity of model parameters used to govern these individual dominant
storage processes varies between the river basins. Consequently, ahead of the calibration work, a
sensitivity study was undertaken by a Latin Hypercube sampling for 2000 parameter sets and by
an analysis scheme going back to Hornberger & Spear (1981), who selected sensitive parameters
based on their ability to provide behavioural model simulations. For each river basin, we selected
the six most sensitive parameters for calibration against TWSC and river discharge (see row (e)
and row (f) of Table 3.1). Parameter values and ranges are documented in Table 3.2.

For the Amazon basin, three of these parameters concern the process of surface water transport,
because of the high water volume during an important flood season. In contrast, evaporation
is most important in the tropical Congo river basin with a distinct dry season. A diverse set
of important processes (e.g. snow, evaporation and surface water) provides the most sensitive
parameter of the Mississippi river basin, due to its location in three different climate regions
(cold in the north, subtropical in the southeast and dry in the southwest).

The evaluation of model performance for each iteration is effected by the following four steps:
1) Model simulation of monthly global TWSC fields and river discharge with the current param-
eter set. 2) Application of a GRACE-equivalent filter procedure, which comprises the conversion
of WGHM TWSC fields into the frequency domain, i.e. spherical harmonic coefficients, fol-
lowed by Gaussian smoothing (Jekeli, 1981) and the computation of basin averages of TWSC
according to Wahr et al. (1998). 3) Fitting amplitudes and phases of significant periods which
were determined from GRACE data (see Sect. 3.2.3.2) to the simulated basin averages of TWSC
and reconstruction of a basin-average time series of TWSC from these periods. 4) Evaluation of
each calibration objective (discharge and TWSC) by computation of the Nash-Sutcliffe-efficiency
coefficient (NSC) (Nash & Sutcliffe, 1970) as a criterion of agreement between modelled and
measured time-series.

NSC is a simulation performance measure that normalises the squared difference of a predicted
(P ) to an observed (O) time series by the variance of the observed values with n time steps:

NSC = 1−
∑n

i=0(Oi − Pi)2∑n
i=0(Oi − Ō)2

, (3.1)
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where Ō is the mean of the observations over the examined period. NSC evaluates both phase
and amplitude agreement between two time series. It ranges from −∞ to 1 (optimal fit), with a
value of 0 indicating a simulated time series that performs as well as a model being equal to the
mean of the observable. Therefore Pareto solutions are restricted to NSC values greater than 0.

3.2.3 Calibration data

3.2.3.1 River basin discharge: Objective 1

River discharge data of Amazon, Mississippi and Congo from the most downstream gauging
station were used (Table 3.1). We computed monthly mean values for the calibration period.
For the Congo river where no up-to-date measurements were available, we assigned the monthly
mean discharge of earlier observations to the calibration period.

3.2.3.2 GRACE TWSC: Objective 2

Reconstructed significant periodic parts of basin-averaged TWSC resulting from the investigation
presented in Schmidt et al. (2008c) are used as calibration input for this study. These data are
chosen, because errors in the GRACE original data and the difficulty to separate the errors from
real signals mark the greatest challenge for application of satellite gravity solutions.
Schmidt et al. (2008c) developed a technique to extract significant water storage change in-

formation from GRACE data by three steps: 1) Identification of the dominant spatio-temporal
patterns in mass variations derived from GRACE observations through a principal component
analysis (applied at the scale of the river basins to grids previously filtered by a Gaussian smooth-
ing with a 500 km averaging radius), 2) Identification of significant periods of TWSC contained
in the principal components without fixing a priori the period lengths, and 3) Reconstruction of
(error-reduced) basin-average time series of TWSC from the significant periods.
As a basis, monthly GRACE-only time series of global gravity fields generated as spheri-

cal harmonic expansions up to degree and order 120 at the GFZ German Research Center for
Geosciences (GRACE Level-2 products, version GFZ-RL04, Schmidt et al., 2008b) for the time
period from 02/2003 until 12/2006 (excluding unavailable months 06/2003 and 01/2004) were
used. The noise contained in the spherical harmonics increases with the degree of the expansion
terms, and the noise/signal ratio reaches unacceptably high values in higher-degree terms. In the
space domain this noise becomes visible in the form of the typical meridional-oriented spurious
gravity signals (“stripes”) (e.g. Swenson & Wahr, 2006; Schmidt et al., 2008b). Hence, a spa-
tial filtering is mandatory when computing water storage variations from GRACE gravity field
models in order to reduce these errors. For the present study a widely used Gaussian smoothing
(Jekeli, 1981) with an averaging radius of 500 km was applied. Mass variations (TWSC) were
derived relative to a mean field (i.e. in the form of mass anomalies) for the considered data
period applying the procedure presented by Swenson & Wahr (2002).
Since the effects of the atmospheric and the oceanic circulations were previously removed in

the course of the gravity field recovery from the raw GRACE data by applying appropriate
geophysical models (Flechtner, 2007), the major part of the signal contained in the derived grids
of mass anomalies can be attributed to hydrological variations. Due to the rather short time
period covered by the available GRACE data, the long-term trends determined both from the
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Table 3.1: (a) Re-calibrated river basins with (b) corresponding area and (c) discharge station.
(d) Discharge source and time series for computation of monthly means. (e) Number
of WGHM parameters from different processes (S: Soil, SW: Surface water, GW:
groundwater, ER: Evaporation and Radiation, SN: Snow, IN: Interception) derived
from a sensitivity study against TWSC and river discharge. The underlined process
includes the most sensitive parameter. (f) Calibration parameter in corresponding
order to row (e) (MCWH: maximum canopy water height, PT: Priestley-Taylor).
(g) Significant GRACE derived TWSC periods Pn of basin averages with associated
amplitudes An and phases φn, with t0 =01.01.2005. (h) Cumulative proportion of the
significant periods in the full GRACE signal variability.

(a) Amazon Mississippi Congo
(b) 5.9 Mio km2 3.0 Mio km2 3.6 Mio km2

(c) Obidos Tarbert Landing Kinshasa
1.9◦S, 55.5◦E 31.6◦N, 91.5◦W 4.3◦S, 15.3◦W

(d) ORE HYBAM US ACE GRDC
2003-2006 2003-2006 1903-1983

(e) 3 SW, 1 GW, 1 S, 1 SW, 1 S, 2 ER 2 ER, 1 S, 1 GW,
1 IN 1 SN, 1 IN 2 SW

(f) runoff coefficients runoff coefficient radiation proportion
river velocity root depth PT coefficient
wetland depth radiation proportion rooting depth
GW baseflow coeff. PT coefficient GW baseflow coeff.
rooting depth snow melt temperature wetland depth
MCWH MCWH SW baseflow coeff.

(g) P1=0.9833 a P1=0.9826 a P1=0.9881 a
A1=146 mm A1=33 mm A1=30 mm
φ1=3.82 mon φ1=2.99 mon φ1=1.82 mon
P2=2.5297 a P2=2.4824 a P2=0.5022 a
A2=22 mm A2=22 mm A2=15 mm
φ2=19.29 mon φ2=29.59 mon φ2=4.75 mon

(h) 99% 75% 73%

Table 3.2: Calibration parameter values and their ranges for the calibration work (GW: ground-
water, MCWH: maximum canopy water height, PT: Priestley-Taylor, SW: surface
water).

Parameter Standard value and unit Minimum Maximum
GW baseflow coefficient 0.01 / day 0.006 0.1
MCWH 0.3 mm 0.1 1.4
PT coefficient 1.26 0.885 1.65
radiation proportion 0.25 0.08 0.54
river velocity 1 m/s 0.05 2.0
root depth mult. 1 0.5 2.0
runoff coefficient mult. 1 0.5 2.0
snow melt temperature 0◦C -3.75 3.75
SW baseflow coefficient 0.01 / day 0.001 0.1
wetland depth 2 m 1.0 5.0
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hydrology model WGHM and from the GRACE gravity fields should be regarded as less reliable
than the periodic components resulting from the same data. Therefore, as the last preparatory
step, the data used in this study have been de-trended.
Subsequently, the three-step strategy for the detection of significant periodic components,

depicted at the beginning of this section, was realised, see (Schmidt et al., 2008c) for more details.
It is important to note, that the period search was not a-priori constrained to seasonal or other
postulated variations. For all three river basins, considered in this study, two periods resulted to
be significant with respect to their signal proportion and an uncertainty study. Corresponding
amplitudes and phases used for the calibration are given in Table 3.1, row (g). TWSC of all three
basins exhibit a seasonal period. A second period of inter-annual scale (about 2.5 years) occurs
for the Amazon as well as the Mississippi and of semi-annual scale for the Congo river basin. The
cumulative variability of the reconstructed periodic components dominates the integral GRACE
signal (see Table 3.1 row (h) for percentage proportion).
Error estimations of GRACE data differ between several studies. For example, using a Gaussian

smoothing with an averaging radius of 750 km Wahr et al. (2006) derived latitude-dependant
errors of GRACE mass estimates ranging from 8 mm near the poles up to 25-27 mm at low
latitudes, when expressed in water column equivalents. This results in a global area-weighted
mean of 21 mm. Schmidt et al. (2007) gave for a 500 km Gaussian filtering a global error
estimate of 24-30 mm water column. According to Schmidt et al. (2008b) the accuracy of the
GFZ-RL04 used in this study is approximately two times better than the accuracy of the earlier
releases used in both cited studies. However, it should be taken into account that errors may be
higher for particular regions and months, and are also influenced by leakage errors after forming
basin-average values.

3.3 Results and Discussion

The multi-objective calibration of WGHM with GRACE TWSC and river discharge led to im-
proved simulation results in all three river basins (Figure 3.1). Each Pareto solution (on the red
line) is superior to the original model version (green dot) with regard to both objectives.
Best results were obtained for the Amazon basin. NSC performances better than 0.95 with

respect to both objectives were achieved for the Pareto solution closest to the optimum (hereafter
referred as the selected Pareto-optimum, blue dot in Figure 3.1a). The amplitude of periodic
terms of TWSC increased markedly in the Pareto solutions when compared to the original model
(Figure 3.2a). Since the narrow uncertainty band given by the Pareto set of solutions does not
include the original model time series, the significance of model improvement is substantiated.
Although the amplitudes of basin-average TWSC were slightly overestimated by the selected
Pareto solution in 2003 and 2006, its root mean square error (RMSE) of the complete (but de-
trended) TWSC signal was reduced by 50% compared to the original model version (Table 3.3).
The reduction of RMSE for discharge was even greater, since a phase shift of discharge seasonality
could be corrected by the multi-criteria calibration (see Figure 3.3a). A main reason for the model
improvements in the Amazon basin could be attributed to longer residence times of surface water
in rivers and floodplains as expressed by lower values for the flow velocity parameter in the Pareto
solutions.
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Table 3.3: RMSE of simulated versus detected hydrological states for the calibration period
01/2003-12/2006: monthly mean river discharge (col. 2-3) and de-trended TWSC sig-
nal with non-periodic components (col. 4-5). RMSE is given for the original WGHM
(original) and for the selected Pareto solution of the re-calibrated (re-cal.) WGHM ver-
sion. For the validation period 01/2007-12/2007 RMSE of TWSC is given in col. 6-7.

Discharge [kg3/month] TWSC [mm] TWSC [mm] (2007)
Basin original re-cal. original re-cal. original re-cal.
Amazon 126.6 28.1 49.6 24.7 64.0 34.1
Mississippi 17.2 4.0 21.8 16.1 18.9 13.4
Congo 22.0 13.5 24.7 23.6 25.4 30.5

Also in the Mississippi basin a very good fit to observations with NSC performances of about
0.9 for both objectives were obtained for the selected Pareto-optimum (Figure 3.1b). Although
the results for river discharge are more uncertain than for TWSC, the improvement compared to
the original WGHM is greater for discharge than for TWSC. This is reflected by the reduction of
the RMSE of the monthly mean discharge of about 80%, respectively 13 km3/month (Table 3.3)
for the selected Pareto-optimum. The clear improvement of monthly discharge simulations is
also due to the fact that the original model was calibrated for mean annual values and did not
take into account the seasonal distribution of discharge as in the present scheme. Therefore,
the overestimated peaks of monthly discharge during spring in the standard model version could
be corrected for all Pareto solutions (see Figure 3.3b). The reconstructed calibrated time series
of water storage variations shows a slightly shifted phase and an amplitude which is closer
to the GRACE time series (Figure 3.2b). The RMSE of the full de-trended time series of
TWSC was improved about 6 mm compared to the original model version (Table 3.3). This
improvement was most likely caused by changes of two model parameters. An increased effective
root zone increases the soil storage capacity and an increased snow melt temperature smooths
the previously overestimated runoff peaks.

Calibration for the Congo basin resulted in a much wider trade-off between both objectives
(note the different scaling of both axes in Figure 3.1c). The performance of the Pareto solutions
varies between 0.0 and 0.8 for discharge and between 0.7 and 0.9 for TWSC (Figure 3.1c).
This trade-off resulted in a wider uncertainty band for the calibrated TWSC periods of the
Pareto solutions (Figure 3.2c). Nevertheless, a small phase shift of TWSC periods was achieved
for all Pareto solutions. The RMSE of the full TWSC signal for the selected Pareto-optimum
was improved by about 1 mm (Table 3.3). All other Pareto solutions provide greater RMSE
reductions, since they show a higher simulation performance for the significant periods of TWSC,
as the selected Pareto-optimum. For discharge, there were slight improvements in the monthly
regime (Figure 3.3c), as indicated by higher peaks during the turns of the year (from October till
January) for the re-calibrated hydrograph of the selected Pareto-optimum. While the RMSE for
discharge could clearly be decreased by the calibration procedure, the NSC value for the selected
Pareto-optimum of 0.76 still indicates only moderate correspondence of simulated and observed
river discharge. Though, the rather discontinuous course of the Pareto frontier may imply that
a higher number of function evaluations would give better calibration results. These limitations
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Figure 3.1: Calibration results in terms of NSC indicating the simulation performance for a) the
Amazon, b) the Mississippi and c) the Congo river basin.

in achieving better discharge and TWSC simulations as well as the wider uncertainty in the
calibration of the Congo basin are likely due to the lack of river runoff measurements during
the calibration period and complicate the assignment of improved processes for the Congo basin.
The particular characteristics of the rainfall distribution in each year will cause substantial
deviations from the mean hydrograph that was used for model evaluation in this basin (Figure
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Figure 3.2: Calibration results in terms of time series of TWSC from reconstructed periodic terms
for a) the Amazon, b) the Mississippi and c) the Congo river basin.

3.3c). This may also point out errors in the model structure, the model input data, or in
the parameter space allowed for calibration in the Congo basin and is subject to further studies.
Introduction of further observables to the multi-objective calibration scheme could further reduce
the resulting equifinality of parameter sets as expressed by the dense Pareto-Frontier shown for
Amazon and Mississippi. In particular, parameter values of storage processes that are represented
by these additional observations could be more effectively constrained. For example, surface
water storage derived from satellite altimetry and imagery can provide such data sets for an
individual storage compartment (Papa et al., 2008). Though, the success will be limited as long
as the observables contain high errors (e.g. groundwater, Döll & Fiedler, 2008) or the approach
demands sophisticated model modifications to make model state variables match the observables
(as for remotely sensed surface soil moisture).
A validation of the calibrated model was performed for de-trended GRACE signals including

non-periodic components and errors from January until December 2007 (see Figure 3.4). For
this year, a simulation run was realized with WGHM using the parameter values that were
calibrated for the period 2003-2006. For the Amazon and the Mississippi river basins, simulation
results were markedly better for the validation period, when they are compared to the results
of the standard model in terms of amplitude, phase and RMSE values. This improvement is
similar to what was achieved in the calibration period (see Table 3.3). This corroborates the
model improvement of TWSC that could be achieved by the multi-criterial calibration for these
basins. For the Congo river basin, however, the RMSE value increased, indicating that the
model performs somewhat worse with the re-calibrated parameter set in the validation period.
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Figure 3.3: Calibration results in terms of measured time series of monthly river discharge for a)
the Amazon, b) the Mississippi and of mean monthly river discharge for c) the Congo
river basin. See Table 3.1 for detailed sources of discharge measurements.

This confirms the above results that improvements by calibration are difficult to achieve with
the present model set up and data availability for this river basin. For further studies it should
also be taken into consideration that it might be justified to reduce the weight assigned to
the river discharge data during calibration in the Congo basin due to their high uncertainties.
This may enable the selection of Pareto optima with higher TWSC-simulation performance (see
Figure 3.1c).

3.4 Conclusions

The first multi-objective calibration of the global hydrology model WGHMwith TWSC data from
GRACE and monthly mean river discharge was successfully carried out. By this approach, phase
and amplitude differences of periodic water storage variations between GRACE and WGHM
could be significantly reduced as compared to earlier versions of WGHM. We could show that
the direct integration of GRACE data into the calibration process of WGHM leads to a clear
improvement of simulated monthly TWSC signals on a scale of large river basins. At the same
time, a better simulation of river discharge could be achieved. This highlights the particular value
of multi-objective process analyses. If two observables are considered within the calibration
approach, the trade-off in model performance of different hydrological variables is taken into
account. Finally, this allows for an improved representation of the water balance as a whole.
It should be pointed out that the calibration approach adopted in this study followed two

principles that can be seen as a prerequisite for the successful integration of GRACE water
storage data into large-scale hydrological models (Güntner, 2009). First, GRACE and WGHM
model data were treated exactly in the same way before comparison and parameter adjustment,
i.e., the same methods of filtering and basin-averaging were applied to both data sets. This
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Figure 3.4: Validation of de-trended TWSC by model simulations during the period 01-12/2007
(which was not used for calibration) for a) the Amazon, b) the Mississippi and c) the
Congo river basins.

excludes the risk of poor comparability of the time series if unfiltered model data are compared
to filtered GRACE data which may include filter-induced biases. Secondly, with WGHM a
hydrological model was used that represents all relevant water storage compartments in the
analysed river basins, including surface water storage. Thus, it is assured that water storage
calibrated in the model is consistent with the observation variable, i.e., the integrative nature of
GRACE-based TWSC.

A better process understanding in global hydrology is necessary to provide more reliable esti-
mates of changes in the continental water cycle, which constitutes an important input for climate
studies or water resources management. In order to get a closer view into the reasons why the
model differs from the real world, more accurate input data and improved calibration settings
should be applied. The former can be achieved by using up-to-date river discharge data (i.e. for
the Congo basin) and better GRACE filter methods. For the latter, technically more extensive
model calibrations in terms of the size of parameter set population and of function evaluation are
necessary to shift the Pareto frontier towards an even better model performance. Also, the anal-
ysis of a posteriori model states and parameter sets will help to uncover potential errors in model
structure or input data. In this way, an improved understanding of continental water storage
processes may finally be achieved by a stepwise modification of the modelling concept (Fenicia
et al., 2008). Especially for regions like the Congo river basin with a very inaccurate or lacking
coverage of terrestrial data, the usage of GRACE data is most proliferous concerning model
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improvement. Longer GRACE time series and the continuing error reduction within GRACE
gravity recovery are likely to reduce the uncertainty of GRACE TWSC recovery and therefore the
data assimilation into global hydrology modelling in further studies. Additionally, the presented
approach is promising for the integration of alternative data sets from remote sensing, such as
soil moisture, snow cover or surface water volumes into hydrological models. Furthermore, the
methods considered here to achieve consistency of model variables and GRACE observations in
terms of, e.g., data filtering and the selection of dominant signals, may similarly apply to other
areas of Earth system modelling where GRACE data are to be used as a model constraint, such
as for processes of the cryosphere or the Earth’s interior.
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4 Calibration Analysis: "Calibration analysis
for water storage estimations of the global
hydrological model WGHM"∗

Abstract

This study contributes to an improved global simulation of continental water storage variations
by calibrating the WaterGAP Global Hydrology Model (WGHM) for 28 of the largest river
basins worldwide. Five years (01/2003-12/2007) of satellite-based estimates of total water storage
changes from the GRACE mission are combined with river discharge data in a multi-objective
calibration framework of the most sensitive WGHM model parameters. The uncertainty and
significance of the calibration results is analysed with respect to errors in the observation data.
An independent simulation period (01/2008-12/2008) is used for validation. The contribution of
single storage compartments to the total water budget before and after calibration is analysed
in detail. A multi-objective improvement of the model states is obtained for most of the river
basins, with mean error reductions up to 110 km3/month for discharge and up to 24 mm of a
water mass equivalent column for total water storage changes, as for the Amazon basin. Errors
in phase and signal variability of seasonal water mass changes are reduced. The calibration is
shown to primarily affect soil water storage in most river basins. The variability of groundwater
storage variations is reduced at the global scale after calibration. Structural model errors are
identified from a small contribution of surface water storage including wetlands in river basins
with large inundation areas, such as the Amazon or the Mississippi. The results demonstrate the
value of GRACE data and the multi-objective calibration approach for improvements of large-
scale hydrological simulations, as they constitute a starting-point for improvements of model
structure. The integration of complimentary observation data to further constrain the simulation
of single storage compartments is encouraged.

∗Werth, S and Güntner, A. (2009), Hydrology and Earth System Sciences - Discussions, 6, 4813-4861.
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4.1 Introduction

In the face of global climate change, forecasts about water shortage accumulate for many regions
and water shortage becomes an increasing social-humanitarian problem. Global hydrological
models are indispensable to track consequences of the alternating climate and to study the
dynamics of water resources distribution. For a reliable monitoring of the stability and dynam-
ical behaviour of the water cycle, changes in the water budget (change in total water storage
∆TWS = P − E − R) of specific regions like large river basins play a key-role. To simulate
the water cycle, hydrological models are forced by e.g., precipitation (P) and different climatic
conditions, to estimate flow and storage of water on the continents and its charge to other Earth’s
subsystems like atmosphere and oceans by processes of evaporation (E) and runoff (R), respec-
tively. A consistent representation of the continental water cycle and its components are a major
issue for hydrological modelling. Only recently, however, variations of TWS have become a key
variable in evaluating large-scale models (Güntner, 2009).

Several large-scale or global hydrological models exist (see Dirmeyer et al., 2006; Widen-Nilsson
et al., 2007; Liu et al., 2007, 2009; Milly & Shmakin, 2002a; Rodell et al., 2004b), but estimates
of variations in the total water storage (TWS) differ largely between them. Werth et al. (2009b)
compared global TWS variations (TWSV) of the conceptual WaterGAP Global Hydrological
Model (WGHM) with two physically based land surface models (the Global Land Data Assim-
ilation System, GLDAS and the Land Dynamics model, LaD) and discovered differences in the
magnitude of the signal itself between the three models, though temporal correlations are high.
Reasons are different input data and modelling strategies for representing storage and flow pro-
cesses at the coarse scale. Also, there is still a lack of knowledge about the regional importance
and characteristics of individual storage processes. For example, surface water storage or deeper
groundwater are absent or inattentively treated in many land surface models (Güntner, 2009;
Niu et al., 2007b).

Syed et al. (2008) assessed TWS variability of GLDAS on the global scale being too small
and concluded that the absence of groundwater and surface water or uncertain snow param-
eterisations were possible reasons for model errors. For the land surface model ORCHIDEE,
TWS amplitudes and phases could be improved by introducing a cumulative surface water and
groundwater reservoir that allowed for a longer residence time of water in the river basins (Ngo-
Duc et al., 2007). Recent regional studies focus on modelling of groundwater storage with land
surface models (e.g., Gulden et al., 2007; Lo et al., 2008; Kollet & Maxwell, 2008) but ground-
water is still absent in several large-scale or global models. Although the global model WGHM
simulates the most important storages compartments, including surface water and groundwa-
ter, simulation accuracy of the conceptual model was originally low for river discharge in snow
dominated and semi-arid regions. Here, difficulties in the representation of evaporation or snow
accumulation appeared (Döll et al., 2003). In response, Hunger & Döll (2008) and Schulze & Döll
(2004) improved model equations for both processes. For TWS, however, WGHM still tended to
underestimate seasonal TWS variations and phase shifts appeared (Schmidt et al., 2008c, 2006).
Güntner et al. (2007b) found a regional varying sensitivity of WGHM parameters. Since only
one parameter of the original model has globally been calibrated so far, this calls for an extension
towards a regional calibration with respect to dominant processes of a river basin.
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Theoretical studies propagate an iterative working process of model prediction, model analysis
and process understanding (e.g., Fenicia et al., 2008; Savenije, 2009). An evaluation of model pre-
dictions should be undertaken by comparisons of simulated states of the water cycle to real-world
observations. Model behaviour during tuning processes like data assimilation (e.g., Houtekamer
& Mitchell, 1998; Reichle et al., 2002) or model calibration (e.g., Duan et al., 2003; Gupta et al.,
2005) provides information on process behaviour and structural model deficits. But, the learning
process is especially difficult on the global scale and limited to iterative steps, primarily because
of the lack of adequate model forcing and validation data with global coverage and acceptable
resolution and accuracy.

In this respect, the Gravity Recovery And Climate Experiment (GRACE) is of extraordinary
benefit for large-scale hydrological studies. With global coverage, monthly gravity observations
from this twin-satellite-mission are transferable to the variability of water stored on and below
the Earth’s surface with a resolution of a few hundred kilometres (e.g., Tapley et al., 2004b;
Wahr et al., 2004). After removal of atmospheric and oceanic gravity effects, GRACE observa-
tions enable temporarily reliable studies of different hydrological processes (like snow and ice,
groundwater, soil, surface, as done by Wouters et al., 2008; Niu et al., 2007b; Swenson et al., 2008;
Papa et al., 2008, respectively) that include different climatic conditions and extreme events for
many regions (e.g., Zeng et al., 2008; Seitz et al., 2008) or the water balance itself (Sheffield
et al., 2009). Since the first GRACE record became available, large progress has been made
in order to improve GRACE data accuracy and, thus, the reliability of water mass variations
from GRACE. These include studies on dealiasing (Han et al., 2004), error estimates (Horwath
& Dietrich, 2006), development of filter (Swenson & Wahr, 2002) and decorrelation techniques
(Kusche, 2007) as well as filter optimisation (Werth et al., 2009b). Consequently, GRACE de-
picts a valuable tool for validation and calibration of large-scale hydrological models (Schmidt
et al., 2008b; Güntner, 2009; Lettenmaier & Famiglietti, 2006). Application of GRACE data for
large-scale hydrological modelling started out with validation of simulated water storage varia-
tions for large river basins or with global coverage (e.g., Ngo-Duc et al., 2007; Syed et al., 2008;
Güntner, 2009). More recently, promising further steps were made towards the integration of
GRACE data into model development and model tuning for particular regions, e.g., the Ama-
zon or Mississippi basin (e.g., Zaitchik et al., 2008; Werth et al., 2009a; Lo et al., 2010). As a
subsequent step that makes full use of the global coverage of GRACE, a world-wide integration
of TWS variations towards an improved simulation of continental TWSV as a whole would be
desirable. But many combinations of simulated single storage compartments may lead to a good
fit for the integrative GRACE TWS variations with only coarse resolution. Hence, to obtain
additional model constraints, higher parameter accuracy (Yapo et al., 1998; Vrugt et al., 2003a;
Gupta et al., 2005) and to reduce parameter equifinality (Beven & Binley, 1992), the combi-
nation with other system states, like river discharge, in a multi-objective method is promising.
In addition, using GRACE-based TWSV and river discharge is of particular interest for water
balance analyses as both are integrated measures of the hydrological dynamics in a river basin.

In this context, this study makes a step forward in the iterative learning process of large-scale
hydrological modelling towards improved global simulation of the continental water cycle and its
storage compartments by a multi-objective calibration (Sect. 4.2.2) of the global model WGHM
(Sect. 4.2.1) against river discharge and GRACE-based estimations (Sect. 4.2.3) for 28 of the
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largest and most important river basins world wide (Sect. 4.3.1).

4.2 Methods and Data

4.2.1 Global Hydrological Model

The WaterGAP Global Hydrology Model (WGHM, Döll et al., 2003) simulates the continental
water cycle by conceptual formulations of the most important hydrological processes. WGHM
was originally developed by Döll et al. (2003) for water availability studies at the continental
scale (Alcamo et al., 2003, e.g.,). But since the model provides estimates of water masses, it
may serve for for hydrological analyses of water storage and its global dynamics (Güntner et al.,
2007b) as well as for individual storage compartments, such as groundwater recharge (Döll &
Fiedler, 2008) or storage of surface water bodies (Papa et al., 2008). WGHM was numerously
applied for comparison of continental water storage variability to GRACE-based water mass
variations (Schmidt et al., 2006, 2008c).

The conceptual model equations of WGHM are described in detail by Döll et al. (2003), Kaspar
(2004) and Hunger & Döll (2008). In general, if water precipitates as rain it is passed through the
storages of interception, surface water (including rivers, reservoirs, lakes and wetlands), soil and
groundwater, reduced for evapotranspiration losses. In case of precipitation falling as snow, it
accumulates as snow storage and follows the above liquid water cycle after melting. Additionally,
human water consumption is considered (Döll et al., 2003). Accumulation of ice or permafrost is
not accounted for in WGHM (Hunger & Döll, 2008). The model is computed on a daily time step
and cell-wise with a 0.5◦spatial resolution, excluding Antarctica and Greenland, hence, 66896
grid cells world wide. The water passes from cell to cell according to a global drainage direction
map (Döll & Lehner, 2002) until it reaches a coastal cell, where it discharges to the oceans. The
simulations of the hydrological cycle are supplied by cell-based information on properties of soil,
land cover, hydrogeology as well as on locations of reservoirs, lakes and wetlands (Döll et al.,
2003).

A very recent version of WGHM as described by Hunger & Döll (2008) with updates for the
input data for surface water bodies and human water consumption, an improved snow algorithm
and a more realistic formulation of evaporation of lakes and wetlands was used in this study. To
allow model runs for the GRACE period (2002 - to date), the model was forced by climate data
(temperature, cloudiness and number of rain days per month) from the operational forecasts of
the European Centre for Medium-Range Weather Forecasts (ECMWF). Monthly precipitation
input from the Global Precipitation Climatology Centre (GPCC) was used. Precipitation data
were corrected for precipitation measurement errors according to Legates & Willmott (1990)
following Fiedler & Döll (2007). This model set up formed the reference of the present study
and is hereafter called the original model version.

Döll et al. (2003) and Hunger & Döll (2008) tuned the original WGHM against long-term
river discharge by a runoff coefficient parameter, which determines the fraction of effective pre-
cipitation that translates into runoff, depending on the saturation of soil water (Eq. 3, Döll
et al., 2003). Both studies noted that calibrating this parameter only was not sufficient for some
areas to get acceptable simulation results for river discharge because, for instance, the water
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balance of lakes and wetlands is not influenced by this calibration approach, and because of
other mis-modelled processes. Therefore, this study intends to calibrate WGHM parameters of
all important process formulations besides runoff within a river basin (see Sect. 4.2.2.1). We
consider calibrated parameter values as effective values that account for non-resolvable features
in a large-scale model such as sub-scale variability, input data errors, model structure errors or
simplifications in model equations.

WGHM consists of 36 model parameters. They are explained in detail in the publications
of the original model versions while an overview of the 21 relevant WGHM parameters for this
study is given below and in Table 4.1. The admitted parameter ranges for calibration were based
on literature data and qualitative reasoning (Kaspar, 2004).

The soil storage capacity depends on the soil type and the land cover and is regulated by the
root depth parameter. This parameter is calibrated as a multiplicative factor (SL-1), i.e., the
particular value for soil storage capacity based on the soil and land cover data in each model cell
is multiplied by the value of SL-1 (here in the range of 0.5 to 2, see Table 4.1). Groundwater
storage and outflow is governed by the groundwater baseflow coefficient (GW-1).

Surface water transport may on the one hand be calibrated by the river velocity (SW-2). On
the other hand, the surface water flow coefficient (SW-5) as well as the maximum range of water
levels in lakes (lake depth, SW-3) and wetlands (wetlands depth, SW-4) determine storage rates of
surface water bodies and are possible calibration parameter for surface water transport processes.
Furthermore, the runoff coefficient parameter, which was tuned against river discharge for the
original model versions, is calibrated as a multiplier (SW-1) in this study.

The potential evapotranspiration is computed in WGHM by the approach of Priestley & Taylor
(1972) (PT). The equation is adjusted by the PT-coefficient that differentiates between humid
(average relative humidity of 60% or more, ER-5) and arid regions (average relative humidity
less than 60%, ER-6). The net radiation required as input for the PT-approach is computed ac-
cording Shuttleworth (1993) (see Döll et al., 2003). Herein, the radiation proportion parameter
(ER-1) is used to determine the radiation fraction of the extraterrestrial radiation that reaches
the Earth’s surface. The radiation fraction may be reduced by cloud cover following a radia-
tion correction parameter (ER-2). The actual evaporation of open water can be calibrated by
the open water albedo (ER-4) and sublimation of snow by the snow albedo (ER-3). Land sur-
face evapotranspiration is limited by the maximum potential evapotranspiration (MPET, ER-7)
parameter (see Döll et al., 2003).

Interception storage capacity depends on three parameters: The maximum canopy water height
(MCWH, IN-1) as well as a specific leaf area multiplier (IN-2) and a biomass multiplier (IN-3).

The rates of snow melt and accumulation depend on land cover and elevation. Snow melt
is computed in WGHM by a degree-day approach. The degree-day factor depends on the land
cover type. It is calibrated in this study by a multiplicative factor (SN-3). Sub-grid variability
of elevation within a 0.5 degree model cell is represented in WGHM (100 sub-units per 0.5◦-cell)
and elevation effects are accounted for by a temperature gradient (SN-4). Additional effects on
snow storage processes can be adjusted by a cell-averaged snow freeze temperature (SN-1) and
snow melt temperature (SN-2).
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Table 4.1: Detail information on the calibration parameter (col. 1; MCWH: maximum canopy
water height, MPET: maximum potential evapotranspiration, PT: Priestley-Taylor)
is provided by belonging processes and numbering (col. 2; SL: Soil, GW: groundwater,
SW: Surface water, ER: Evaporation and Radiation, SN: Snow, IN: Interception),
original WGHM value (col. 3), minimum and maximum value (col. 4 and 5). Literature
references to model parameter and according equation numbers are provided in col. 6
and 7, English references are preferred.

Parameter Abbrev. Original Min. Max. Literature (Eq.)
number value & unit value value reference or page

Root depth mult. SL-1 1 0.5 2 Kaspar (2004) (2.26)
GW baseflow coefficient GW-1 0.01/day 0.006 0.1 Döll et al. (2003) (5)
Runoff coefficient mult. SW-1 1 0.5 2 Döll et al. (2003) (3)
River velocity SW-2 1 m/s 0.05 2 Kaspar (2004) (2.38)
Lake depth SW-3 5 m 1 20 Döll et al. (2003) (6)
Wetland depth SW-4 2 m 1 5 Döll et al. (2003) (6)
SW baseflow coefficient SW-5 0.01/day 0.001 0.1 Döll et al. (2003) (6)
Radiation proportion ER-1 0.25 0.08 0.54 Kaspar (2004) (2.11)
Radiation correction ER-2 1.0 0.7 1.3 Kaspar (2004) (2.13)
Albedo snow ER-3 0.4 0.3 0.9 Kaspar (2004) p. 19
Albedo open water ER-4 0.08 0.03 0.5 Kaspar (2004) p. 15
PT coeff. (humid areas) ER-5 1.26 0.885 1.65 Kaspar (2004) (2.4)
PT coeff. (arid areas) ER-6 1.74 1.365 2.115 Kaspar (2004) (2.4)
MPET ER-7 10 mm/day 6.25 13.75 Döll et al. (2003) (2)
MCWH IN-1 0.3 mm 0.1 1.4 Döll et al. (2003) (1)
Specific leaf area mult. IN-2 1 -0.2 2.2 Kaspar (2004) (2.19)
Biomass mult. IN-3 1 0.25 1.75 Kaspar (2004) (2.19)
Snow freeze temperature SN-1 0◦C -1 3 Kaspar (2004) (2.22)
Snow melt temperature SN-2 0◦C -3.75 3.75 Güntner et al. (2007b) (2)
Degree day factor SN-3 1 0.5 2 Güntner et al. (2007b) (2)
Temperature gradient SN-4 0.006◦C/m 0.004 0.01 Hunger & Döll (2008) p. 845

4.2.2 Calibration technique

4.2.2.1 Calibration regions and parameter sensitivity

Due to the limited resolution of GRACE data, the 28 largest and most important river basin
worldwide were selected for this study (Fig. 4.1). Except for Volta in western Africa, all basins
are larger than 600000 km2 in size (see Table 4.2). WGHM calibration is carried out separately
for each basin.

Güntner et al. (2007b) showed that WGHM parameter sensitivity for water storage variations
varied between the river basins. This inter-basin variability is due to different climatic conditions
as well as land surface properties and, thus, varying relevance of different storage processes. Con-
sequently, for each region, only the sensitive parameters should be calibrated in order to reduce
computational costs and to simplify the interpretation of the calibration results. A sensitivity
analysis (SA) against TWSV and river discharge was undertaken (see also Werth et al., 2009a)
following the SA approach of Hornberger & Spear (1981). The parameter sensitivity was anal-
ysed by a Latin Hyper-cube sampling for 2000 parameter sets for all 28 river basins. Applied
parameter ranges are given in Table 4.1. The resulting six to eight most sensitive parameters for
TWSV and river discharge (Table 4.3) were used for the regional calibration of each river basin
and non-sensitive parameters were set to their original values (Table 4.1, col. 3).
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Figure 4.1: The 28 largest and most important river basins worldwide (black polygons) with
underlying Köppen-Geiger climate zones (for 1951-2000, by Peel et al., 2007) and
gauging stations (white diamonds) of each basin used for calibration of river discharge.
See Table 4.2 for station names.

The results of the SA confirmed that the subset of sensitive parameters varied considerably
between the river basins. While snow parameters are not sensitive in tropical basins, parameters
that control surface water transport appeared as particularly sensitive in basins with important
flood plains, such as the Amazon. A broader range of sensitive parameters resulted, for instance,
in the Indus river basin which is, on the one hand, dominated by snow storage in the northern
mountain area and, on the other hand, high evaporation rates in desert region of the lower Indus.
Hence, sensitive parameters belong to these two processes and, e.g., soil water parameters are
comparatively less important in the Indus basin. As an example of a river basin that stretches
among three different climate regions (cold in the north, subtropical in the southeast and dry in
the southwest), important parameters for the Mississippi cover a variety of processes (soil, snow,
evaporation, interception and surface water).

4.2.2.2 Multi-objective calibration approach

The multi-objective calibration approach of WGHM was explained in detail by Werth et al.
(2009a). Fig. 4.2 and the description below gives an overview. The calibration was done for all
28 river basins in an automated framework for the period 01/2003-12/2007.
Calibration is a widely used optimisation technique in hydrological modelling. In an iterative

process, different parameter values are tested for their ability to generate model system states
that fit well to observations. The best parameter set provides the lowest simulation error or the
highest simulation performance expressed by an objective value. Several functions to measure
the objective value are possible, like the normalised root mean square error or the correlation
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Table 4.2: Details of the 28 calibrated river basins (col. 1-3) and calibration data (col. 4-6)
used. Col. 4: River runoff station, col. 5: Source of discharge data (1: GRDC, 2: US-
ACE, 3: ORE-HYBAM) and period runoff data applied for calibration, col. 7: applied
GRACE filter method and belonging filter parameter (I: isotropic filter of Swenson &
Wahr (2002) for an a-priori given maximum error of basin average ∆max; II: Swenson
& Wahr (2002) computed by by the auto-correlation length Gl and standard deviation
σ0 of an exponential signal model; III: decorrelation method by Kusche (2007) with
the power x of the regularisation factor a = 10x of the signal covariance matrix.)

No. Basin Basin area Discharge data Discharge Filter parameter I) a
[Mio km2] source & period station II) ∆max,III) σ0/Gl

B1 Amazon 5.96 3: 2003-2007 Obidos III: 250/300
B2 Amur 1.87 1: 1975-2004 Bogorodskoye II: 2.5
B3 Columbia 0.67 1: 1977-2006 Dalles I: 13
B4 Danube 0.80 1: 1973-2002 Ceatal Izmail I: 12
B5 Ganges 1.59 1: 1973-2002 Farakka I: 12
B6 Huang He 0.80 1: 1973-2002 Huayuankou I: 13
B7 Indus 0.85 1: 1950-1979 Kotri III: 200/1000
B8 Lena 2.45 1: 1973-2002 Stolb I: 12
B9 Mackenzie 1.70 2: 2003-2007 Arctic Red River III: 150/200
B10 Mekong 0.80 1: 1980-1991 Kompong Cham I: 12
B11 Mississippi 3.24 1: 2003-2007 Tarbert Landing I: 12
B12 Murray 1.06 1: 1965-1984 Lock 9 III: 150/900
B13 Nelson 1.20 1: 1976-2005 Kelsey I: 12
B14 Niger 1.80 1: 1977-2006 Lokoja I: 12
B15 Nile 2.91 1: 1973-1984 El Ekhsase III: 150/900
B16 Ob 2.70 2: 2003-2007 Salekhard I: 13
B17 Orange 0.96 1: 1972-2001 Vioolsdrif III: 20/1000
B18 Orinoco 0.97 1: 1960-1989 Tunente Angostura II: 4.1
B19 Parana 2.58 1: 1965-1994 Timbues I: 12
B20 St. Lawrence 1.05 1: 1976-2005 Cornwall III: 200/1000
B21 Tocantins 0.88 1: 1978-1999 Tucurui I: 12
B22 Volga 1.39 1: 1973-2002 Volgograd I: 13
B23 Volta 0.41 1: 1955-1984 Senchi I: 13
B24 Yangtze 1.93 1: 1975-2004 Datong I: 12
B25 Yenisei 2.54 2: 2003-2007 Igarka I: 14
B26 Yukon 0.83 1: 1977-2006 Pilot Stn. III: 150/100
B27 Congo (Zaire) 3.72 1: 1954-1983 Kinshasa I: 13
B28 Zambezi 1.39 1: 1976-1979 Matundo-Cais I: 12

coefficient. Within this study, the Nash-Sutcliffe-efficiency coefficient (NSC, Nash & Sutcliffe,
1970) is applied. NSC is a simulation performance measure that normalises the squared difference
of a predicted to an observed time series by the sum of squared deviations of the observations to
their mean during the period of interest. It ranges from −∞ to 1 (optimal fit), with a value of 0
indicating a simulated time series that performs as well as a model being equal to the mean of
the observable. NSC is applied here because it measures errors in phase, amplitude and mean of
a simulated time series at the same time.
Within a multi-objective calibration, more than one observation is applied to evaluate the

model simulations, which makes the selection of the best parameter set less trivial. Due to errors
in the model structure and the input data (Vrugt et al., 2003a), the approach will no longer
provide one single optimal parameter set, but lead to a Pareto set of optimal solutions (Gupta
et al., 1998). Each Pareto solution provides a better simulation performance than any other
Pareto solutions for at least one of the objectives (but not all objectives). Without additional
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Table 4.3: Most sensitive and calibrated parameter for the 28 river basins. See Tab. 4.2 for
complete basin names and parameter description.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
SL-1 SL-1 SL-1 SL-1 SL-1 SW-1 SW-1 SL-1 SW-1 SL-1
GW-1 SW-1 SW-1 SW-1 GW-1 SW-5 SW-2 SW-1 SW-3 GW-1
SW-1 ER-3 ER-1 SW-3 SW-3 ER-3 SW-5 ER-1 SW-5 SW-1
SW-2 ER-1 ER-3 ER-1 SW-4 IN-1 ER-1 ER-3 ER-3 SW-2
SW-4 IN-1 SN-2 ER-5 ER-1 IN-2 ER-3 ER-5 ER-4 SW-4
IN-1 SN-2 SN-4 SN-2 SN-2 IN-3 ER-5 IN-1 SN-1 IN-1

SN-2 IN-2 SN-2 IN-2
SN-4 SN-2 SN-3 IN-3

B11 B12 B13 PB14 B15 B16 B17 B18 B19 B20
SL-1 GW-1 SW-1 SL-1 SL-1 SW-1 GW-1 SL-1 SL-1 SL-1
SW-1 SW-1 SW-5 GW-1 GW-1 SW-2 SW-1 GW-1 GW-1 SW-1
ER-1 SW-5 ER-1 SW-2 SW-2 SW-5 ER-7 SW-2 SW-1 SW-3
ER-5 ER-2 ER-3 SW-4 SW-3 ER-2 IN-1 SW-5 SW-3 ER-4
IN-1 ER-5 ER-4 SW-3 SW-4 ER-3 IN-2 ER-1 SW-4 ER-5
SN-2 ER-6 ER-5 ER-1 ER-1 SN-1 IN-3 IN-2 SW-5 IN-1

IN-1 SN-2 IN-2 ER-3 SN-2 ER-1 IN-2
IN-2 SN-3 IN-1 SN-2 SN-3 ER-5 SN-2

B21 B22 B23 B24 B25 B26 B27 B28
SL-1 SL-1 SL-1 SL-1 ER-1 SL-1 SL-1 SL-1
GW-1 GW-1 GW-1 SW-2 ER-3 SW-1 GW-1 ER-6
SW-2 SW-2 SW-1 ER-1 ER-5 SW-4 SW-4 SW-1
SW-3 SW-3 SW-2 ER-3 SN-1 ER-1 SW-5 SW-3
SW-4 ER-1 SW-3 ER-5 SN-2 ER-3 ER-1 ER-1
ER-1 SN-2 ER-1 SN-2 SN-3 SN-2 ER-5 ER-7
ER-4 IN-1 IN-1
IN-2 IN-2 IN-2

information on the observations or a defined priority of simulation accuracy, the Pareto solutions
are equal. In this study, river discharge and TWSV were applied for the calibration of WGHM and
a balanced improvement of simulation performance for both objectives was intended. Therefore,
the solution closest to the optimum of the objective values (here a value of NSC=1 for both
objectives) was selected as the best parameter set and used for further analyses.

For parameter variation, ranking and archiving the calibration algorithm ε-Non-dominated
Sorting Genetic Algorithm-II (ε-NSGAII, Kollat & Reed, 2006) was used. The multi-start scheme
and the evolutionary strategy of the algorithm (mutation, crossover and selection) enable a
global optimisation of the parameter values and are able to solve highly non-linear optimisation
problems. The algorithm is one of the most efficient and effective multi-objective optimisation
methods used in hydrological modelling (Tang et al., 2006). These features enable a multi-
objective calibration for more than one parameter of the non-linear and computational expensive
WGHM model system. ε-NSGAII operators were set to values proposed by Kollat & Reed (2006)
and a population size of N=12, an ε-resolution of 0.05 for both objectives and a generation size
of 100 (hence, a maximum of 1200 model evaluations) were used.

In contrast to Werth et al. (2009a) who applied significant signal periods within the GRACE
data for their calibration, a calibration against full time series of GRACE TWSV was undertaken
in the present study (see data Sect. 4.2.3). During the calibration of WGHM, TWSV simulations
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were filtered in the same way as GRACE data (see Sect. 4.2.3.2 and Table 4.2) to ensure equal
resolution and a consistent comparison of both data sets.

4.2.3 Calibration data

4.2.3.1 Discharge data

River discharge data of the most downstream gauging station of each river basin were used (Ta-
ble 4.2, col. 4 and Fig. 4.1). Data were obtained from the Arctic Regional Integrated Hydrological
Monitoring System for the Pan-Arctic Land Mass (ArcticRIMS, http://rims.unh.edu), the En-
vironmental Research Observatory for geodynamical, hydrological and biogeochemical control
of erosion/alteration and material transport in the Amazon (ORE HYBAM, http://www.ore-
hybam.org) and the Global Runoff Data Center (GRDC, grdc.bafg.de).

Figure 4.2: Concept scheme of multi-objective WGHM calibration for a specific river basin and
with input from Werth et al. (2009b) for applied GRACE filter methods.
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For the Amazon, Mississippi, Mackenzie, Ob and Yenisei monthly discharge data were avail-
able for the GRACE operation period. For all other basins, up-to-date measurements were not
available and mean monthly river discharge (for Jan-Dec) was computed from the most recent
period of available data (maximum period of 30 years, see Table 4.2).
Errors of discharge measurements depend on the individual measurement methods and channel

cross sections are likely to vary for the individual stations and time periods. Unfortunately, no
details are provided from the data centres on the accuracy of discharge measurements. Therefore,
the error of discharge measurements was set to a conservative value of 20% for the uncertainty
analysis of the calibration results.

4.2.3.2 GRACE data

The greatest challenge in the application of GRACE-based TWSV is marked by the difficulty
of separating error from signal as well as separating signal from the region of interest and its
neighbouring regions. The spatial resolution of the GRACE data is limited due to the decreasing
sensitivity of the satellites to mass variations with smaller geographical extent. Simulation data
of atmospheric and oceanic circulation models are applied to de-alias the gravity fields from
sub-monthly circulation effects in both systems. Errors in these de-aliasing data and satellite
measurement errors increase the noise in spherical harmonic coefficients particularly for higher
degrees of the expansion terms, i.e., higher spatial resolution (e.g., Schmidt et al., 2008b). The
error budget is also influenced by signal leakage errors from surrounding areas. As a conse-
quence, the application of filter methods is indispensable to reduce noise in the GRACE data.
Nevertheless, the magnitude of errors varies between particular regions and months. Therefore,
the user has to decide on an adequate filter method as well as for filter parameter settings to
balance and minimise GRACE measurement errors and leakage errors. Filtering in turn may
change the final signal properties. Werth et al. (2009b) showed that filter induced amplitude
damping and phase shifts in time series of basin-averaged TWSV differs between regions because
of varying signal characteristics inside and outside of the river basin and basin shape. Hence,
the selection of an optimum filter method is a function of the river basins. For the present
study, the optimal filter methods (and parameter values) of Werth et al. (2009b) were applied
for smoothing of GRACE and hydrological data in 22 river basins. For the remaining six basins
(Columbia, Huang He, Mekong, Murray, Orinoco and Volta) optimum filter settings were derived
by repeating the method of Werth et al. (2009b) (see Table 4.2 for a summary of applied filter
methods).
GRACE derived time series of TWSV from different processing centres show significant dif-

ferences (as for the Lena basin in Fig. 4.3). These differences are due to different processing
strategies, background models or processing software (Schmidt et al., 2008b) and reflect un-
certainties in the GRACE data. Consequently, an average of GRACE gravity fields (Level-2
products, most recent version RL04) from three processing centres was used (Flechtner, 2009):
the German Research Center for Geosciences (GFZ, until degree 120), the Center for Space Re-
search (CSR, until degree 60) and the Jet Propulsion Laboratory (JPL until degree 120). The
three sets of coefficients were averaged from degree 2 to 60 for each month in the period from
02/2003 until 12/2008, excluding 06/2003 and 01/2004 due to missing data from GFZ. For GFZ,
regularised solutions for 07-10/2004 and 12/2006 were applied.
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GRACE errors were estimated from the error coefficients of the individual data sets published
by the processing centres, i.e., correlated errors as provided by GFZ and CSR (Schmidt et al.,
2008b; Wahr et al., 2006). As correlated errors were not available for JPL gravity fields, the
confidence interval of JPL coefficient errors is increased to 99% by assuming a normal distribution.
This results in a multiplication by ≈2.6 of the formal coefficient errors. The final error estimates
for the averaged coefficients from the three processing centres amounts to:

εavefieldknm =
√
εGFZknm

2 + εCSRknm
2 + εJPLknm

2
, k = [0, 1], n = [2, 60],m = [0, 60]. (4.1)

Errors in the coefficients are propagated to the basin averages of water storage for each river
basin. See Fig. 4.3 for an example of basin-averaged TWSV derived from the three gravity
solutions, the average solution and associated errors.

4.2.4 Uncertainty estimation due to observational errors

The uncertainty of the calibration results due to errors in the calibration data is estimated
for each river basin by the following procedure: 1) Selection of the calibration run with the
Pareto solution closest to the optimum (see an example for the Lena river basin in Fig. 4.4).
2) Propagation of GRACE coefficient errors to basin-averaged estimates of TWSV as well as
determination of the 20% discharge error. 3) Generation of 5000 normally distributed samples
within the estimated error ranges for the monthly data points of GRACE-based TWSV and
monthly river discharge, respectively. The sample size was tested ahead and selected to provide
stable statistical results. 4) Estimation of both objective functions (NSC) for each sample against
simulated time series of the selected optimal solution, respectively for TWSV and discharge. 5)
Determination of the NSC standard deviations for both objectives as the semiaxis for an error
ellipse around the selected optimal solution. And 6) Selection of all calibration runs within the
error ellipse (see Fig. 4.4 for the Lena basin).
The described approach determines all Pareto solutions around the selected optimum and non-

Pareto solutions close to the Pareto frontier, which cannot be evaluated to provide a better fit
to the observations than the selected Pareto solution if the error range of the observations is
considered. The selected cluster of calibration solutions represents the total uncertainty of the
calibration results in view of the observation errors.

4.3 Results and Discussion

4.3.1 Calibration results

Detailed results for Lena basin (Fig. 4.4) show a typical objective function response that was
found after calibration of most river basins. A clear trade-off exists between both objective
functions for TWSV and mean monthly discharge. The best solutions for the single objectives
are located at the end of the Pareto frontier (crossed dots). Best results for a single objec-
tive, however, give an undesirable decrease in the accuracy for the other objective. The selected
Pareto optimum (large gray dot) provides a balanced improvement between both objectives. The
multi-objective calibration approach also decreases equifinality of the parameter sets, since unac-
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Figure 4.3: Basin-averaged time series of TWS variations from GRACE for the Lena river basin
from the processing centres CSR (green), GFZ (red) and JPL (blue) and the averaged
field (black) with propagated coefficient errors (black dots and error bars).

Figure 4.4: Calibration results for the Lena river basin in terms of objective function values. Each
point (gray and black) represents one model run. The Pareto optimal solutions form
a frontier (gray solid line) towards the optimal model fit (lower left corner). The
Pareto solution closest to the optimum (gray large dot) is selected as the optimal
solution of the calibration providing a balanced improvement for both objectives and
it is used for further studies. Best solutions for each single objective are located
at the end of the Pareto frontier (crossed large dots). From errors of the measured
calibration data, an uncertainty range for both objectives is indicated by an error
ellipse around the selected Pareto solution. The solutions lying in that range (black
small dots) show a significant improvement of the calibrated model compared to the
original model simulation (plain black circle).
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ceptable parameter sets for any of the objectives are excluded by the multi-objective evaluation
scheme. A more pronounced equifinality for simulating total water storage variations originates
from the character of total water storage data. Since GRACE provides no absolute values but
only variations of water masses, the same storage variations may be simulated by different model
representations with different absolute amounts of water stored in the river basin. This is not
the case for river discharge where both absolute values and variations are given by the obser-
vation data. Hence, a smaller number of model realisations provides good objective values for
evaluation by discharge than by TWSV. The large ellipse around the selected Pareto optimum
represents its uncertainty caused by measurement errors in the calibration data. Variations of
parameter values or model output for model realisations within this range are not significant for
the assumed observation data errors. Nevertheless, a significant improvement was achieved for
both objective values relative to the original model for the example of the Lena basin.

An overview of the calibration results for all river basins is given in terms of relative root
mean squared error (RMSE, Fig. 4.5). The relative RMSE was computed from the RMSE of
time series of mean monthly discharge (circles) and TWSV (squares) against root mean squared
(RMS) values of the respective measurements. Absolute values of signal RMS and model RMSE
are presented in Table 4.4. Uncertainty ranges due to observational errors were transferred to
RMSE and relative RMSE values and they are indicated by error bars in (Fig. 4.5). A comparison
of the results for the calibrated model (black symbols) and the original model (gray symbols)
indicate a successful calibration with significant improvements for both objectives for most of
the basins. The highest relative improvement of TWSV simulations are provided (and respective
RMSE improvements as height of a water column) for the Amazon (ca. 24 mm), Danube (7 mm),
Lena (4 mm), Mekong (13 mm), Mississippi (8 mm), Volga (13 mm) and Zambezi (15 mm).
Mean monthly discharge simulations improved in particular for the Amazon (with 10 km3/month
decrease in RMSE), Danube (3 km3/month), Niger (14 km3/month), Tocantins (10 km3/month)
and Volga (18 km3/month). For Huang He, Indus and Mekong, improvements were achieved for
TWSV simulations only. For the first two of these basins, discharge accuracy is of the same level
for the calibrated compared to the original model and the accuracy decreased slightly for Mekong.
But the discharge simulations of all three basins are within the measurement error bands. Nelson,
Orange, Yukon and Congo (Zaire) exhibit an improvement of discharge simulations while TWSV
simulations are of the same performance as for the original model.

With the selected optimum parameter sets, WGHM simulations were repeated between
01/2008-12/2008 beyond the calibration period for validation against GRACE-based TWSV.
Table 4.4 shows that the improvement relative to the original model is similar to the calibration
period for most of the river basins. For example, RMSE differences to the original model are
promising for the Amazon (31 mm), the Lena (10 mm), Mackenzie (10 mm), Mekong (14 mm),
St. Lawrence (19 mm) or Zambezi (25 mm). For Murray, Nelson, Orange and Yenisei only a
slight improvement for TWSV simulation is achieved in the validation period. A larger RMSE
than for the original model was found for Ganges, Huang He, Indus, Orinoco, Nelson, Orange and
Congo. This corresponds to the calibration failure of the latter three basins mentioned above.
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Figure 4.5: Simulation performance for the 28 calibrated river basins in terms of relative root
mean squared error (rRMSE) for river discharge (circles) and TWSV (squares) of the
original (gray) and the calibrated model version (black). See Table 4.4 for absolute
values. Error bars are derived from GRACE and discharge measurement errors as
described in Sect. 4.2.4.
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4.3.2 Simulation of seasonal TWSV

The effects of model calibration on seasonal amplitudes and phases of TWSV are given in Fig. 4.6.
For the most basins, the amplitude was shifted towards the GRACE observations. The strongest
improvements for the seasonal amplitude are achieved, e.g., for Amazon, Mackenzie, Niger,
Orinoco and Zambezi. For some basins, reduced seasonal phase differences between GRACE
and WGHM could be achieved by calibration (e.g., Amazon, Mississippi, Ob and Congo). Only
phases could be corrected for Columbia, Danube, Lena, Nelson, Parana and Yenisei. No success
for the calibration results again for Huang He in case of the seasonal signal. For Amur and
Orange phases differ strongly between GRACE and WGHM, but TWS does not exhibit a distinct
seasonal signal in both basins (not shown).

4.3.3 Parameter values and single storage compartments

A detailed analysis of parameter changes (Fig. 4.7) and their effects on single storage compart-
ments (Fig. 4.8-4.9) is provided below for the example of seven river basins of different continents,
climatic conditions and calibration success. Storage in lakes, floodplains and wetlands (denoted
surface water) is analysed separately from water in the river channel (denoted river storage) in
the following sections.

Amazon. The better representation of TWSV simulations for the tropical Amazon after
multi-criterial calibration is mainly due to a lower river flow velocity (SW-2) in the calibrated
model version as well as a larger runoff coefficient (SW-1). The adjustment of both parameters is
stable against calibration uncertainty from observation errors (Fig. 7a). The parameter changes
cause a longer-lasting storage of more water in the river network which leads to larger and
delayed seasonal amplitudes of TWS in line with GRACE observations (Fig. 4.8a). Also, inter-
annual variations of TWS such as a heavy drought experienced in the Amazon in 2005 (Zeng
et al., 2008) are better represented with the calibrated model (Fig. 4.8a). A slightly increased
soil water storage is due to the larger rooting depth (SL-1) in the re-calibrated model. But the
rooting depth parameter is highly uncertain and it is not significant relative to the original model
as can be seen from the wide spread of parameter values for the Pareto solutions in Fig. 4.7a.
The larger value of the parameter wetland depth (SW-4) has nearly no effect on the storage
variability in lakes and wetlands in spite of the large importance of wetlands and floodplains for
water storage in the Amazon (e.g., Papa et al., 2008). Surface water storage is mainly attributed
to river channel storage in WGHM (Fig. 4.8a) although the large inundation areas are taken
into account as model input. This may indicate structural model errors in representing surface
water exchange processes between floodplains and the channel due to the conceptual model
formulations and the cell-based simulation of surface water bodies in WGHM.

Mississippi. The Mississippi basin is located in different climate zones ranging from cold
to temperate (Fig. 4.1) and therefore it shows a more complex contribution of the individual
storage compartments (see Fig. 4.8b) than the Amazon. The most important change in TWSV
after model calibration is due to a larger soil storage variability and a longer storage persistence
in the early summer, caused by a deeper rooting depth (SL-1). Secondly, a higher snow melt
temperature (SN-2) causes an increased snow peak and later melting by one month. The changes
for snow and soil storage are supported by a lower radiation proportion absorbed by the surface,
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which leads to higher snow accumulation as well as a delayed snow melt. These parameter changes
for the Mississippi compared to the original model are reliable considering calibration uncertainty
(Fig. 4.7d). An earlier seasonal peak of simulated TWS compared to GRACE data (see Fig. 4.8b)
can possibly be attributed to underestimated groundwater storage that are typically characterized
by a later seasonal phase compared to near-surface storage. In fact, studies of (Rodell et al., 2006)
and Zaitchik et al. (2008) indicate a higher groundwater volume than represented by WGHM. A
change for groundwater was prevented by the missing sensitivity of groundwater parameter for
WGHM (B11 in Table 4.3), which may be due to the overlap with soil storage variations. The
groundwater parameters should therefore be included in further calibration studies.

Lena. For the Lena basin, the seasonality of river water storage exhibits an opposite phase
to total storage which is dominated by snow storage variations. This makes a fit of the overall
small TWSV amplitude (below 50 mm w.eq. in average) more difficult than for the two previous
basins. Model improvements by calibration for this cold, high-latitude basin (Fig. 4.1) mainly
are of temporal nature. The phase of TWSV could be corrected (see also Fig. 4.6) based on
changes of water accumulation in snow, river and soil (Fig. 4.8c). Due to a larger snow melt
temperature (SN-2), snow accumulation lasts nearly one month longer while snow melt finally

Figure 4.6: Results for seasonal amplitude (circles) and phase (squares) of TWSV for the original
(gray) and the calibrated model version (black) compared to GRACE (red). Error
bars of TWSV amplitudes are derived from GRACE and discharge measurement
errors as described in Sect. 4.2.4.
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occurs later but more rapidly in April and May. The larger snow albedo (ER-3) decreases snow
sublimation and supports the slightly larger variability of snow storage. In line with the later
and faster snow melt in spring, water storage dynamics in river network change accordingly. A
larger and later monthly runoff peak also corresponds to the river discharge measurements and
is better represented by the calibrated model (see embedded graph in Fig. 4.8c). Changes in soil
storage dynamics due to calibration are of minor importance in the Lena basin but, in general,
are characterised by slightly larger seasonal variations with a later phase commensurate to the
snow dynamics but also to overall lower evapotranspiration rates caused by smaller radiation
proportion (ER-1) and PT-coefficient (ER-5) parameters.

Danube. As for Lena, mainly a phase correction of TWSV was achieved by calibration
(Fig. 4.6) for the cold and partly temperate (Fig. 4.1) Danube basin. This resulted in a smaller
RMSE of TWSV time series (Fig. 4.5). While the seasonal amplitude was not changed, a better
fit of extreme events like heat waves or floods as observed by Andersen et al. (2005); Seitz et al.
(2008) are visible in the time series for autumn of 2003, 2005 and 2006, as well as for the water
mass maxima in 2004 and 2006 (see Fig. 4.8). In the calibrated model, snow is melting faster due
to a higher snow melt temperature, hence reducing the snow storage volume. The released water
is mainly stored in the soil of which the storage capacity was increased by a larger root depth
parameter after calibration. Also river water is reallocated to the soil where it can remain for
longer periods during the spring season than in the quickly draining river network. The smaller
river discharge in spring is confirmed by observations (not shown here, due to limited space),
hence, a smaller RMSE for mean monthly discharge (Fig. 4.5). Groundwater storage variations
slightly decreased and delayed in the Danube basin.

Zambezi. Increased storage variations in the hot-temperate and partly dry Zambezi basin
(Fig. 4.1) are due to larger soil, groundwater and surface water storage amplitudes (Fig. 4.9a).
The largely corrected seasonal variability of TWSV (Fig. 4.6) in the calibrated model originates
mainly from less evapotranspiration of surface and soil water as controlled by a smaller PT-
coefficient (ER-6) and a smaller maximum potential evapotranspiration (ER-7). As WGHM
contains only one soil layer, it may be exhausted too quickly by evapotranspiration in the dry
Zambezi region instead of being stored in deeper soil layers. This is supported by the increased
groundwater volume, that confirms the high relevance of water exchange with deeper soil zones
for Zambezi basin (see also Winsemius et al., 2006a). Surface water volume changes in wetlands
increase after calibration and cause longer residence times of water in the Zambezi basin. The
importance of this storage mechanism in the Zambezi basin was also found by Winsemius et al.
(2006a).

Nelson. The seasonality of snow and groundwater storage exhibits a marked anti-phase
in the Nelson basin according to the WGHM simulation results (Fig. 4.9b). This decreases
model sensitivity for TWS variations and makes an effective calibration of the individual storage
components difficult, since many combinations of different snow and groundwater states can lead
to an equally good fit of simulated to GRACE-based TWSV. In addition, the required smoothing
of GRACE data has a huge effect on overall water storage dynamics for this basin (Fig. 4.9).
Major seasonal signals are smoothed out, but remaining TWSV time series correspond reasonably
well between GRACE and WGHM. Comparatively small changes occur by model re-calibration
relative to the original model.
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Figure 4.7: Normalised parameter for exemplary river basins. Parameter sets are shown for the
selected optimum (black solid line), the original model version (gray dashed line) and
all calibration runs within the uncertainty range (gray solid lines) due to observational
errors.

Congo. TWSV in the Congo (Zaire) basin is dominated by inter-annual patterns such as a
water loss between 2003 and 2005 as described before by Crowley et al. (2006). But as assumed
by these authors, the loss is not of secular nature and the storage is filled up again during
2006 and 2007 (Fig. 4.9c). Though the calibrated WGHM exhibits an improved simulation for
seasonal amplitude and phase of the Congo basin (Fig. 4.6), the simulated inter-annual variability
of basin-average TWS is still different from GRACE, e.g. a too large negative anomaly in 2005.
Also, RMSE values did not improved after calibration (Table 4.4). The inter-annual variations
in TWS mainly derive from soil and groundwater storage (Fig. 4.9c). For the calibrated model,
a larger seasonal variability in soil storage causes a slightly delayed phase of storage variability.
This delay appears to be compensated by a negative phase shift in groundwater. As a result,
the faster outflow of the groundwater (due to a larger outflow coefficient GW-1) causes a smaller
groundwater volume and decreases the inter-annual variation of groundwater storage in the
calibrated model.
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Figure 4.8: Basin-averaged time series of single storage compartments from the calibrated and
the original model version (unsmoothed, below) as well as smoothed total storage
from both model versions and GRACE (smoothed, above) for a) the Amazon, b) the
Mississippi, c) the Lena and d) the Danube basin. See Fig. 4.8 for legend.
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Three of the four basins (Nelson, Orange, Congo) with an unsuccessful calibration for TWS
exhibit strong inter-annual variations (see Fig. 4.9b,c for Nelson and Congo). The inter-annual
variations are visible in GRACE as well, but the short period of five years used here may impede
the effective calibration of inter-annual changes in total storage variability and its components.
Furthermore, for Congo, Nelson and Orange a large trade-off occurs for the Pareto solutions
between simulation performance of river discharge simulation and TWS (not shown). Therefore,
calibration difficulties within these basins may also be due to the use of mean monthly discharge
values, which neglect inter-annual variations during the calibration period. As a further drawback
for Congo, available discharge data are from the period 1954-1983 for this basin.

Figure 4.9: Same as Fig. 4.8 but for a) the Zambezi, b) the Nelson and c) the Congo basin.
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Table 4.4: Root mean squared signal of observed river discharge (σmeasDis , col. 2) and standard
deviation of GRACE TWSV (σmeasTWSV , col. 5) compared to the root mean squared
error (RMSE) of the calibrated (εcal, col. 3 and 6) and the original (εorg, col. 4 and 7)
model against respective observation data for all 28 river basins. Col. 8 provides
differences of RMSE values of TWSV from the calibrated and the original model for
the validation period (01/2008-12/2008). Here, negative values indicate an improved
simulation compared of the calibrated compared to the original model.

Basin σmeasDis εcalDis εorgDis σmeasTWSV εcalTWSV εorgTWSV ∆ε2008TWSV (cal − org)
No. [km3/mth] [km3/mth] [km3/mth] [mm] [mm] [mm] [mm]
B1 471 39 149 118 29 53 -31
B2 31 10 11 30 25 29 -2
B3 13 4 6 65 33 35 -3
B4 17 2 6 61 28 36 -7
B5 44 9 19 103 21 24 2
B6 4 2 2 26 25 26 0.4
B7 11 3 3 40 26 28 2
B8 64 14 24 31 16 20 -10
B9 29 9 14 34 15 20 -10
B10 34 6 3 113 42 54 -14
B11 42 5 15 41 18 26 -12
B12 0.8 0.4 0.8 24 15 16 -0.1
B13 5.3 0.3 2 46 20 20 -1
B14 18 2 16 76 23 29 -5
B15 3 1 17 50 22 27 -6
B16 43 15 21 46 20 23 -5
B17 0.7 0.3 0.6 12 9 9 -0.1
B18 98 20 31 168 36 50 18
B19 45 4 33 49 17 20 -7
B20 20 1 2 39 38 50 -19
B21 36 4 14 157 36 46 -10
B22 23 2 20 48 22 35 -7
B23 3 0.9 1 84 38 42 -7
B24 80 10 18 36 17 19 -3
B25 73 23 38 37 16 16 -0.4
B26 21 8 10 65 20 20 -5
B27 112 9 25 41 25 24 -4
B28 9 2 5 107 52 67 -25

The water mass variation of the Orange basin, which also exhibit inter-annual variations (not
shown), are smaller than 12 mm of a water column (see Table 4.4 and Fig. 4.6) and for some
months below GRACE data accuracy. While inter-annual variations are not relevant for the
Yukon basin, similar to Nelson, a clear anti-phase between snow and groundwater storage as well
as soil storage causes a small model sensitivity for TWS variations.

4.3.4 Global analysis

A global analysis of simulated TWSV for the calibrated model (see spatial distribution in Fig. 4.10
and variability of basin averages in Table 4.5) shows that its variability increased for the most
river basins compared to the original model. On the global average (last row of Table 4.5), TWS
variability increased by 7 mm w.eq., which is mainly due to a larger variations of soil, river
and surface water storage. Most variability is gained within the tropical and temperate regions,
like the Amazon (total 60 mm for the basin average), Congo (9 mm), Niger (14 mm), Mekong
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Table 4.5: Variability of unfiltered and basin-averaged continental TWSV simulations from the
calibrated WGHM version for total storage and single compartments: σcal(storage)
(TS: total storage, SL: soil, GW: groundwater, SN: snow, R: river, SW: surface water,
C: canopy). Every other line provides deviations of storage variability to the original
model: ∆σstorage = σcal(storage)− σorg(storage).

Basin σcal(TS) σcal(SL) σcal(GW ) σcal(SN) σcal(R) σcal(SW ) σcal(C)
∆σTS ∆σSL ∆σGW ∆σSN ∆σR ∆σSW ∆σC

B1 150 +60 37 +8 25.7 +0.4 0.1 +0.0 82.9 +49.6 2.1 +0.8 0.0 +0.0
B2 20 +3 10 +3 7.8 -0.4 21.0 +1.7 5.0 +0.2 1.4 +0.2 0.5 +0.3
B3 55 -1 12 -7 4.4 -0.6 40.2 +6.1 3.5 +0.1 1.7 -0.2 0.2 +0.0
B4 64 +4 43 13 10.6 -2.2 16.0 -9.4 4.1 -3.0 1.4 +0.9 0.4 +0.0
B5 90 +7 17 -8 21.0 -5.6 1.8 +0.3 20.1 +3.6 10.6 +4.2 0.1 +0.1
B6 18 -2 9 +1 5.9 -1.4 0.3 +0.0 2.7 -0.6 0.3 -0.2 0.1 +0.1
B7 28 +4 7 +1 4.8 +0.7 24.6 +3.4 6.4 +0.2 1.0 +0.4 0.0 +0.0
B8 32 +0 8 +2 1.7 +0.2 47.9 +2.8 15.2 +4.7 1.8 +0.1 0.8 +0.5
B9 44 -8 7 -1 7.8 +0.5 50.7 +0.1 6.9 +3.5 1.5 -1.3 0.3 +0.0
B10 129 +36 54 +22 33.5 +0.6 0.3 +0.0 37.1 +11.2 3.1 +0.7 0.1 +0.1
B11 48 +14 27 +11 6.3 -0.4 12.1 +2.6 3.4 -0.6 1.9 +0.0 1.1 +0.9
B12 17 +3 9 +1 2.1 -0.6 0.0 +0.0 0.6 +0.4 2.4 +0.7 0.0 -0.1
B13 57 +2 10 -1 12.2 +1.2 39.8 +2.4 0.5 -0.2 7.7 +0.5 0.2 +0.0
B14 58 +14 26 +12 14.8 -4.6 0.0 +0.0 11.1 +4.2 3.2 -0.2 2.6 +2.6
B15 35 +2 21 +8 1.6 -5.3 0.0 +0.0 9.7 +1.2 3.5 +0.3 0.0 +0.0
B16 61 +0 14 -2 14.6 +2.2 67.5 +9.3 5.3 +0.4 1.5 -0.7 0.3 +0.0
B17 6 -1 3 -1 2.3 -0.3 0.0 +0.0 0.5 -0.3 0.4 -0.1 0.3 +0.3
B18 169 +51 57 +18 35.8 +1.7 0.0 +0.0 54.6 +26.0 7.6 +1.3 0.1 +0.0
B19 59 +1 22 +6 19.3 -0.8 0.0 +0.0 5.1 -10.3 5.6 +2.4 0.1 +0.0
B20 78 -20 15 -5 9.8 -4.9 43.4 -21.4 1.2 -1.4 9.2 -0.3 0.6 +0.3
B21 145 +18 39 +17 43.0 +0.8 0.0 +0.0 16.0 -9.4 13.1 +2.3 0.3 +0.3
B22 68 -16 33 +8 11.9 -2.6 56.0 -15.1 11.5 -5.4 1.7 +0.6 0.3 +0.0
B23 80 +26 49 +28 19.2 +1.9 0.0 +0.0 2.5 -0.4 4.6 -1.8 1.0 +1.0
B24 30 -5 4 -2 13.0 +1.2 1.2 +0.5 12.3 -3.4 0.7 +0.0 0.3 +0.0
B25 41 +2 9 +1 6.8 +1.3 56.0 +7.5 9.1 +3.9 1.9 +0.5 0.3 +0.0
B26 52 -3 7 +0 3.4 +0.3 57.6 +0.0 8.8 +1.1 2.9 +0.5 0.2 +0.0
B27 47 +9 26 +12 6.3 -8.8 0.0 +0.0 7.3 +1.2 2.8 +0.6 0.0 +0.0
B28 80 +26 41 +20 23.3 +5.3 0.0 +0.0 3.6 -0.7 9.1 +2.6 0.0 +0.0
global 66 +7 24 +3 15.4 -0.6 20.5 +0.2 9.4 +3.3 13.2 +2.7 0.2 +0.1

(35 mm) as well as for the Mississippi (14 mm). A spatial redistribution between sub-regions
for some of these basins is visible in Fig. 4.10, e.g., Ganges and Parana. A smaller total water
budget appears only for basins in cold regions like Mackenzie, St. Lawrence, Volga or Yangtze
(Table 4.5). Some further cold regions like Lena or Ob exhibit an unchanged water budget.
This comparison shows that TWS variability in the original WGHM was mainly underestimated
in tropical and temperate regions but overestimated in cold regions, similar to the seasonal
components (Fig. 4.6).

For the individual basins and storages, largest differences to the original model occur within
soil storage, mainly for tropical and temperate regions like Mekong, Mississippi, Orinoco, Volta or
Zambezi, which is visible by area distributed TWSV differences to the original model in the lower
Fig. 4.10 and reflected in the basin-averages (Table 4.5). Soil has the highest seasonal capacity
to store water and contributes most to the gravity signal discovered by GRACE that is usually
dominated by seasonal features. Linear structures in the spatial distribution TWSV differences to
the original model are mainly due to changes in river storage, being the second most contributor
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to changes for the basin-averages (Table 4.5). Very large increase of river water volumes occur
in rainy tropical regions of Amazon, Mekong and Orinoco, where a slow discharge in the river
network causes a longer maintenance of river water in the basin (see analysis for Amazon in
Sect. 4.3.3 above). In contrast, a decrease of river water volume is visible for temperate and dry
regions. Snow storage increases for regions in cold climate zones e.g., Columbia, Ob, Yenisei).
But it decreases for cold climates with a warm summer (St. Lawrence, Volga, Danube). In these
transition zones, less snow precipitation may be due to global climate warming, that is relevant
for the calibration period but not incorporated in the calibration of the original model.
Simulated groundwater storage changes decreased on the global scale. A large decrease of

groundwater variations occurred for regions with a distinct dry season (Ganges, Niger, Nile)
and for some cold regions (St. Lawrence, Volga). Groundwater seasonality is usually delayed
compared to soil and surface storage, because groundwater recharge and runoff are temporar-
ily filtered by soil transfer processes. As seen from seasonal phase shift between GRACE and
WGHM, water often drains too quickly from river basins compared to GRACE even for the
calibrated model version. This may be explained by a too small groundwater recharge and vol-
ume in WGHM (e.g. Zambezi or Mississippi). Also the sensitivity of the model to changes in
groundwater storage may be superimposed by the soil storage with a different seasonal phase.
Therefore, future calibrations against GRACE data should include groundwater timing and vol-
ume parameters for each river basin.

4.4 Conclusions

This study demonstrates that a multi-objective calibration with TWS variations from the
GRACE satellite mission and river discharge enables a world-wide improved simulation of changes
in the continental water cycle and its compartments. The presented strategy for improving sim-
ulations of continental water storage includes the following key points: 1) Inclusion of the most
important storage compartments (soil, snow, canopy, rivers, surface water and groundwater) in
the simulation of continental water storage for a comparison with satellite observations. 2) Multi-
objective calibration by absolute values of river discharge and relative values of TWS variations.
3) Basin-specific calibration of dominant processes, hence of the most sensitive model parame-
ters. 4) Assuring consistency of observables and model state variables (equal spatial scale) by
identical smoothing of GRACE and model data, as well as the application of most optimal filter
method for each river basin. 5) Consideration of measurements errors in an uncertainty analysis
of the calibration results. 6) Analysis of calibration results to reveal model structural errors and
to broaden the knowledge about hydrological processes on large-scales.
The multi-objective calibration of WGHM led to higher simulation accuracy for TWS variations

and river discharge for most of the 28 calibrated river basins. Seasonal amplitudes and phases of
the water budget for most river basins were improved. A global comparison showed that TWS
variability was mostly increased for tropical regions. The highest proportion of the increase
occurred for soil storage. An analysis of single storage compartments for seven river basins
from different continents and diverse climatic regions revealed reasonable changes within single
storage compartments of the calibrated model that contributed to a better representation of
TWS variability. Herein, the deviation of the calibrated parameter sets to the original model
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Figure 4.10: Global distribution of total storage variability of the calibrated WGHM (above) and
its deviations to the original model version (below). Negative values below indicate
decreased and positive values increased variability. Units are in mm of water column.
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version and their uncertainty due to measurement errors provide an insight into the control and
reliability of the individual process simulations.

For some basins, possible model structural errors are uncovered by the calibration, e.g., too
small wetland volumes in the Amazon and the Mississippi basin. For some basins, errors or limits
of the calibration data restrict the calibration success. An update of global river discharge data
sets to the GRACE mission period is an urgent need for further progress. As another strategy for
the calibration of basins with strong inter-annual variations and scarce discharge data availabil-
ity, smaller weights could be given to mean monthly discharge data in the calibration process.
However, the model representation of TWS variations inheres more parameter equifinality than
river discharge due to the lack of absolute values and the integrative nature and limited spatial
resolution of GRACE TWS variations. Consequently, GRACE data alone are not adequate for
calibrating water storage state variables in large-scale hydrological models.

Calibration difficulties are also due to the complexity of interaction between single storage
components and to the inability to separate these storages with the integrative TWSV data.
Many different single storage combinations can lead to similar variations in the total water budget
of a river basin. The decrease of model sensitivity for TWS or its components is catalysed if clear
anti-phases occur between storage variations in individual compartments. Since groundwater
seasonality deviates mostly from the other storages, it plays an important role in the timing of
TWSV in a river basin. A parameter sensitivity analysis for such basins should be undertaken
carefully and for future studies, an increased attention should be given to groundwater storage
in the calibration process.

The improvement of large-scale hydrological models and the validation of GRACE water mass
estimates is an iterative process. Model structure errors may complicate the calibration of
WGHM with GRACE TWSV. But also limited spatial resolution or regional varying accuracy
(e.g., Winsemius et al., 2006b) as well as different smoothing effects between GRACE and mod-
elled data may affect the calibration performance. Therefore, GRACE uncertainties are still an
important object of research. Furthermore, due to the general data scarcity of hydrological ob-
servations at the global scale, newly developed observation systems like GRACE in turn depend
on global model estimations for validation and error reduction. This will complicate the inde-
pendence of model re-calibrations and again it limits the application of GRACE for hydrology
(and vice versa) in the sense of an iterative learning process.

As consequence to the named difficulties, it is desirable to include further hydrological observa-
tions into the calibration and validation process. Only satellite data are in the run for large-scale
hydrological modelling and the rise of satellite observation systems with global coverage are
promising. Groundwater observations are not available with global coverage and this storage is
not directly accessible by space techniques. But satellite observations of snow storage (e.g., by
MODIS, Parajka & Blöschl, 2008), surface water (Papa et al., 2008) or soil moisture from the
future satellite missions such as SMOS and SMAP are applicable for tuning or validation of large
scale-hydrological models with more than two objectives.

Due to the large diversity of processes in different regions of manifold climatic conditions,
global hydrological modelling is a challenging ambition. The present study expands experiences
on representing hydrological processes on the global scale with a particular emphasis on water
storage dynamics. The continuation of similar studies is motivated by the steadily improved
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accuracy of GRACE solutions and the future prospect of a GRACE-follow on mission. Longer
time series of gravity data will in particular allow focusing on hydrological extremes, inter-annual
variations and secular trends in both observations and modelling capabilities.
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5 Final Summary and Conclusions

The main aim of this work was to improve global simulations of total water storage varia-
tions (TWSV) from the hydrological model WGHM by applying monthly TWSV estimates from
GRACE gravity fields and therewith, to learn about the reasons for simulation discrepancies
to GRACE, in particular about model errors. To achieve this aim, a multi-objective calibra-
tion approach for the integration of GRACE into WGHM was developed and applied. Several
questions arisen for such a novel data combination and not all of them may be answered, but
they shall motivate our attempts for the multi-data integration of remotely sensed hydrological
observations into large-scale hydrological modelling in order to improve our understanding of the
Earth’s water cycle as a whole.

5.1 Main strategies and results

The undertaken studies are a combination of a-priori model and data analyses, model re-
calibration as well as a-posteriori data and uncertainty analyses. Herein, the study period was
reclined to the GRACE mission period from 2003 until 2007 (Chapter 3) and 2008 (Chapter 4),
respective to the state of the studies. Nevertheless, applied discharge data partly go back to
1950, depending on the most recent available data sets (see Table 4.2). In the following sec-
tions, the components of the developed approach and the main results of the re-calibration are
summarised.

5.1.1 Iterative concept

A challenge in the application of GRACE data is the separation of signal from one region to
another as well as signal from noise (Schmidt et al., 2008b). The limited spatial resolution
of GRACE is reflected by increasing errors in GRACE coefficients of higher spatial resolution.
Therefore, the coefficients have to be smoothed before transferring them to mass variations.
Herein, a critical point depicts the selection of an adequate filter method and a respective pa-
rameter value. The discussions of proper filter strategies (just some main examples are Jekeli,
1981; Swenson & Wahr, 2002; Han et al., 2005; Sasgen et al., 2006; Chen et al., 2006b; Swenson
& Wahr, 2006; Seo et al., 2006; Kusche, 2007; Schrama et al., 2007; Davis et al., 2008; Klees
et al., 2008; Kusche et al., 2009) and of restoring strategies (e.g., Swenson & Wahr, 2007; Chen
et al., 2007a; Klees et al., 2007) are likely to prolong until there is no break through regarding
the GRACE gravity field accuracy.
A validation of GRACE filter methods and respective parameter demands independent global

data sets of mass variations. For continental hydrology, only global models provide such data
and they are widely used to validate filter methods (e.g., Chen et al., 2005; Swenson & Wahr,
2006; Chen et al., 2007b; Kusche et al., 2009; Klees et al., 2008). On the other hand, differences
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between global hydrological models are as large as the signal they feature, which is due to
different modelling strategies and input data (see Chapter 2). In return, this underlines the
need of GRACE-based hydrological mass variations to improve large-scale hydrological modelling
concepts (Schmidt et al., 2006; Niu & Yang, 2006; Ngo-Duc et al., 2007; Syed et al., 2008;
Schmidt et al., 2008c; Zaitchik et al., 2008). Consequently, at this stage and until further global
observations become available, which cover the main components of the global water cycle,
the improvement of TWSV simulations and the validation of GRACE data analysis tools is
an iterative procedure. This constraint is reflected by the present work, where a validation of
GRACE filter methods was undertaken with hydrological model simulations.

5.1.2 GRACE filter evaluation

The strategy and the strength of a GRACE filter, that is applied to suppress coefficients, strongly
influences the spatial resolution and the total error in GRACE data (Chapter 2). The latter is an
accumulation of the satellite error and the filter induced leakage (e.g., Klees et al., 2007). In this
study, the respective methods and their parameters were evaluated (see Chapter 2) by a compar-
ison of six of the most common non-decorrelation and decorrelation filter methods (Jekeli, 1981;
Swenson & Wahr, 2002; Seo et al., 2006; Swenson & Wahr, 2006; Kusche, 2007) and for different
values of the filter parameters. This comparison was undertaken by a measure of correspondence
between basin averaged TWSV derived from equally filtered GRACE data and model simula-
tions (Table 2.5). The latter are computed from an average of three global hydrological models
GLDAS, LaD and WGHM, which are widely applied for comparisons with GRACE. It is ex-
pected, that the total hydrological simulation error is reduced when averaging three independent
models, since all models rely on different strategies and input data (see Chapter 2).
A comparison of the filter methods shows that smoothing strategies and strengths but also

basin properties and signal characteristics inside and outside a river basin influence the filter’s
performance and efficiency. Different filter and parameter settings introduce different amplitude
and phase distortion of the TWSV time series of different river basins (Table 2.4). Two of the
filter (method II and III) more likely produce amplitude damping, while two other methods (I
and IV) can lead to strong phase shifts in the time series of TWSV (Fig. 2.6-2.8). If smoothing
induced phase shifts are of relevance, amplitude restoring factors are not applicable alone to
recover the signal amplitude. Optimal filter methods and parameter values for individual basins
were determined to be used in hydrological applications, i.e. WGHM model calibration. These
optimised methods and filter parameter provide reduced differences in amplitude and phase as
well as a better total error budget compared to not optimised filter methods (see Table 2.4 and
2.6). It is shown that the integration of a-priori information into the filter design like a signal
model or orbit-configurations is benefiting and leads to a better error budged, than e.g., the
standard Gaussian filter method (Fig. 2.10). One of the decorrelation methods (Kusche, 2007),
which uses orbit-configurations, was exposed to be optimal for most of the river basins (Table 2.5).
Exception occurs only for Amur, Orange and St. Lawrence, where agreement between model
simulation and GRACE data is generally low. Additionally, the results for Nelson and Indus
are not reliable due to low general correspondence for all filter methods. The filter evaluation
results were supported by estimation and graphical comparison of the total error budget for
all filter methods and admitted parameter values. Finally, a sensitivity test towards amplitude
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errors in hydrological simulations confirmed the reliability of the filter evaluation. The filter
evaluation results are an important and valuable input for the application of GRACE data in
WGHM re-calibration studies.

5.1.3 Data consistency

GRACE data and hydrological model simulations have been filtered equally. Because GRACE is
not sensitive to small scale mass variations, no clear separation between signal of different regions
is possible with any analysis strategy or without alternative data sets. Since such data sets are
not available, the resolution of hydrological simulations has to be down-scaled. A consistency to
the resolution of GRACE data may be achieved by filtering the simulated data. The remarkable
differences between filtered and unfiltered time series of basin-averaged TWSV are visible for
some example river basins in Fig. 4.8 and 4.9. They have a significant effect on the detection
of signal amplitudes, e.g. in particular of extreme events. Some studies neglect the necessity
to equally filter both data sets (e.g., Zaitchik et al., 2008; Rodell et al., 2004a). But as it
is reasonable only to compare data with equal temporal resolution, similar spatial resolution
should be ensured as well before the comparison of modelled and GRACE based TWSV (as done
by Chen et al., 2009; Klees et al., 2008; Schmidt et al., 2008c).
Another type of data consistency refers to the inclusion of relevant hydrological process.

WGHM is an appropriate global hydrological model to be calibrated by GRACE data, since
it simulates the main components of the continental water cycle, including soil, canopy, snow,
surface water storage (see Chapter 1). Especially surface water (rivers, lakes and wetlands) is
often neglected in global hydrological models (Syed et al., 2008; Ngo-Duc et al., 2007; Milly
& Shmakin, 2002a, see also Chapter 2), though a representation of all relevant components of
the continental water cycle is important to preserve consistency with the integrative GRACE
observations. Furthermore, a closed water balance is guaranteed if all important storages are
simulated. The complete closure of the water cycle is a basic demand to be able to increase our
understanding of the water cycle as a whole.

5.1.4 Parameter sensitivity

The global hydrology model WGHM is originally calibrated against one river runoff parameter,
because it bases on river discharge measurements only. The application of GRACE data for
the re-calibration of WGHM enables the tuning of parameter from other processes besides river
runoff, since GRACE data include variations of all water storage components. This makes the
regulation of the surface water balance possible, which is not affected by the runoff parameter
(Döll et al., 2003). Furthermore, the empirical or literature-based values of overall 36 model
parameters may be verified. But since a calibration of all parameter is technical not reasonable,
the six to eight most sensitive parameter towards river discharge and TWSV were selected by a
sensitivity analysis with a Latin Hypercube sampling for 2000 model evaluations (see Chapter 3
and 4). Here, the number of six to eight is a compromise between the optimisation of all param-
eters with high sensitivity towards model output and the reduction of parameter equifinality as
well as computational effort. The latter would rise fast with the number of optimisation param-
eters. The results of the sensitivity analysis are reasonable from a hydrological point of view,
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since they reflect the importance of specific processes within a river basin, e.g., they allocate a
high importance of surface and soil water to the Amazon region or a large importance of snow
parameter to the Mackenzie region (see Table 4.3). The elimination of insensitive parameters
from the calibration list not only reduces computation time but also simplifies the interpretation
of the re-calibration results for WGHM.

5.1.5 Calibration technique

For the monitoring of the continental water cycle on large scales GRACE depicts a very valuable
tool providing access to a previously immeasurable variable, the total water mass variation of
a specific region. Nevertheless, due to the integrative and relative nature of GRACE data it
is necessary to use further measurements during the calibration which ensure a correct water
level within the simulated water cycle. Furthermore, a new calibration of WGHM was ought to
predicate on the station-based accuracy of the original model version evaluated by river discharge
measurements. Therefore, a key strategy for the re-calibration of WGHM is the multi-objective
decision making against two sets of measurements, being GRACE TWSV and river discharge
measurement.
The application of multi-objective methods in hydrological model calibration started with

(Gupta et al., 1998), as an answer to parameter equifinality (Beven & Binley, 1992). The
multi-objective approach provides more reliable results for the system optimisation, because any
single observations is contaminated by errors and it would reflect only one aspect of the system
behaviour (Vrugt et al., 2003a; Wagener et al., 2003; Fenicia et al., 2007; Yapo et al., 1998;
Gupta et al., 1998; Duan, 2003). Furthermore, hydrological model optimisation is often an over-
parameterised optimisation problem. So, the integration of additional measurements increases
the predictability of the system (Beven, 2001) and a multi-objectively calibrated parameter set
will lead to model simulations that are consistent to different system states. The second answer
in hydrological sciences to equifinality was the consideration of parameter uncertainty. In this
work, parameter uncertainty is respected by a a-posteriori uncertainty analysis for GRACE and
discharge measurement errors (Chapter 4). The application of respective optimisation methods
(e.g., GLUE, BaRE or SCEM-UA by Beven & Binley, 1992; Thiemann et al., 2001; Vrugt et al.,
2003b, respectively), recently combined with multi-objective methods (e.g., MOSCEM-UA by
Vrugt et al., 2003a) are not applicable for WGHM re-calibration at the moment, because they
demand a very large number of model evaluations (minimum between 10.000 and 100.000) to
enable statistical analyses.
The gain from a multi-objective calibration strategy is best shown for the example of the

Congo river basin (see Fig. 3.1), where a large trade-off between both calibration objectives
occurs. A single-objective calibration for Congo would lead to good estimates for either TWSV
or river discharge but at the same time result in very inaccurate simulations for the second
variable. As mentioned above, this problem is of high relevance, when using GRACE data. A
large number of model versions may reflect the relative variations of TWS but different absolute
water levels in the river basin. Consequently, a larger equifinality towards GRACE TWSV
(as for Amazon and Mississippi in Fig. 3.1 and for Lena in Fig. 4.4) is exhibited. Here, a
multi-objective calibration which additionally constrains absolute river discharge measurements
decreases parameter equifinality and restricts good TWSV solutions to model versions consistent
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to both components of the continental water cycle. For the multi-objective parameter ranking
and sampling the efficient genetic algorithm ε-NSGAII (Tang et al., 2006; Kollat & Reed, 2006;
Deb et al., 2000) was linked to the WGHM software.
To accommodate the limited spatial resolution of GRACE data, the re-calibration of WGHM

was done basin-wise for basin averaged TWSV and for river discharge at the last discharge station
of the basin towards the ocean. The sub-basin heterogeneity of river water flow of the original
model version was kept by the calibration of a runoff coefficient factor for the whole river basin
(see Chapter 2).
The algorithm was first applied for the Amazon, the Mississippi and the Congo (Zaire) river

basins (Chapter 3) with a limited number of 400 model evaluations. The river basins were se-
lected for for varying signal intensity and to test the calibration method on different geographical
locations. An aim for the test runs was to minimise the noise in GRACE data at best possible,
since a standardly used Gaussian filter had to be applied at that time. Therefore, the cali-
bration was done against significant TWSV periods in the GRACE signal, that are verifiable
by hydrological model simulations, though they may exhibit different size and timing (Schmidt
et al., 2008c). From the calibration an improved simulation of TWSV signal periods as well as
its complete signal could be achieved for all three river basins, parallel to an increased simula-
tion accuracy for river discharge. This successful calibration encouraged the application of the
developed approach for further river basins world wide.

5.1.6 Global model calibration

Due to the limited spatial resolution of GRACE data, their application is limited to large river
basins. Though, the size of GRACE observation error is site dependent (Winsemius et al., 2006b;
Horwath & Dietrich, 2009), satellite errors may mask out the signal of mass variations at very
small basins. Therefore, the final calibration (Chapter 4) was done for the 28 largest and most
important river basins worldwide (see the basin list in Table 4.2).
For each basin most sensitive parameter (Table 4.3) are calibrated with the developed multi-

objective approach after 1200 model runs (Chapter 3). Time series of GRACE TWSV were
smoothed by a-priori determined optimal filter methods (Chapter 2). Herein, most updated
monthly GRACE RL04 solutions were taken from the data centres of GFZ, CSR and JPL. Dif-
ferences between the solutions originate from different processing strategies of the data centres
(Klees et al., 2008). Averages of these three different fields were used as a best guess of the
monthly GRACE mission’s gravity fields. Calibrated errors of the three data sets where propa-
gated to an error estimation of the average fields (Eq. 4.1). River discharge data were taken from
different data centers at the last available discharge station of a river basin (see Table 4.2). Due
to missing error estimations from the runoff data centers, the error of discharge measurements
was conservatively set to 20%. This agrees quite well with a very resent and first general estima-
tion of discharge measurements by Di Baldassarre & Montanari (2009), who estimated the error
to about 25% for the Po River. Consequently, the reliability of the calibration towards GRACE
and river discharge errors was analysed in an a-posteriori uncertainty analysis (see Sect. 4.2.4,
Fig. 4.5 and 4.6).
Strongest accuracy increase in hydrological simulations was achieved for the Amazon basin,

where RMSE reduced about 24 mm for TWSV and 110 km3/month for river discharge. Accuracy
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increase is best for the Amazon, because the strong signal of water mass variations routing
through the river basin more significantly contrasts to measurement errors. Though, smaller
than for the Amazon a significant improved simulation performance regarding both objectives
could be achieved for other basins as well (see Fig. 4.5). Only for Huang He, Indus and Mekong
improvements are limited to TWSV, and for Nelson, Orange, Yukon and Congo to river discharge
respectively. Seasonal amplitude and phase of TWSV improved similarly, except for basins
lacking a distinct seasonal signal in the GRACE data like Amur and Orange (see Fig. 4.6). For
these two basins, GRACE data accuracy is not sufficient.
A validation of the calibration results was done for a temporal period 01/2008-12/2008 follow-

ing after the calibration time frame. Regarding river basins, the validation results correlate with
calibration success.

5.1.7 Simulations of TWSV and its components

After the re-calibration, simulations of TWSV and its components are analysed in detail for seven
river basins (Sect. 4.3.3) and for the global scale (Sect. 4.3.4). In total, water storage variations
show a global increased variation of 7 mm, which mainly results from a larger variation in tropical
and temperate regions (e.g., Amazon, Mekong, Niger, Figure 4.10, Table 4.5). In contrast,
TWSV was overestimated by the original model for most of the cold regions (e.g., for Mackenzie
or St. Lawrence).
Analysing differences between single storage compartments of the calibrated and the original

model version on the global scale, largest changes occur within soil, river and surface water storage
(see last row of Table 4.5). On the basin scale, it becomes clear that these changes mainly derive
from changes in tropical regions (whole Table 4.5). But also increasing snow storage is exhibited
for cold regions. Decrease in water storage variations of single WGHM compartments occurs
for river water in temperate and dry regions as well as for snow in cold regions with a warm
winter. In these transition zones, global climate warming during the GRACE period may have
an effect, because the original model calibration belongs to earlier periods (Hunger & Döll, 2008).
The variation in groundwater was decreasing globally on the basin scale. This loss in variability
mainly derives from regions with a distinct dry region or some cold river basins.
It is also interesting to have a look on TWSV of the re-calibrated single storage compartments

of WGHM. In average, soil depicts the highest variable capacity to store water on the continents
and therefore, it inheres the largest part of changes in the GRACE gravity field (last row of
Table 4.5). Variations in snow storage may reach very high values for cold regions and average
to the second largest storage variations on the global scale. Together, rivers and water of lakes
and wetlands (surface water) are of similar size as snow storage. Otherwise, storage variations of
lakes and wetlands alone are the fourth largest contributor to the variable gravity signal, together
with variations in the groundwater. Compared to other storages and to signal accuracy canopy
storage variations are negligible on river basin and on global scale. But because vegetation has an
important influence on evaporation, the simulation of canopy storage is necessary for a complete
represenation of the continental water cycle.
Time series of simulated basin-averages of the single storage components, exhibit a complex

interaction (some examples are shown in Fig. 4.8 and 4.9). Single storage variations are not
directly evaluated during calibration, but only through their proportion in TWSV. Instead, a
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brief loot at single storage variations and parameter changes was undertaken to investigate the
reasonability of the calibration results (Sect. 4.3.3). Phase shifts between single storages is visible
in the time series, that are strongest for groundwater or snow in cold regions. Furthermore, a
too low surface water variability was found for Amazon and Mississippi, which may be caused by
surface water exchange of river and surface water due to the conceptual WGHM formulation on
an aggregated cell-basis. It is likely, that also the absence of reservoir information in the applied
WGHM version introduces an error to the timing of time series of surface water storage.

5.1.8 Difficulties and disappointments

The limitation of the WGHM calibration with GRACE became apparent by the analysis of time
series of single storage compartments (Fig. 4.8 and 4.9). Total water storage depicts a sum of all
components and it is not possible to separate GRACE time series without further information.
Other studies separated the components from GRACE mass variations using modelled hydro-
logical data (Swenson & Wahr, 2009; Rodell et al., 2006; Ramillien et al., 2006; Frappart et al.,
2006; Niu et al., 2007a). But such a separation is illegitimate, when GRACE data are applied
for hydrological modelling itself, as in this study. Hence, during model calibration a combination
of the strongly seasonal single storage variations could sum up to similar TWSV time series for
many model versions, i.e. many combinations of different storage compartments. Consequently,
the calibration is rather insensitive to the simulation of single storages. Furthermore, it is known
from independent model simulations, that groundwater storage exhibits the strongest phase shifts
to other components of TWSV and therefore, it plays an important role in the timing of TWSV
(Güntner et al., 2007a). For WGHM, larger groundwater variations would lead to a better tim-
ing of seasonal TWSV. But Fig. 2.2 showed that NSC is more sensitive to amplitude differences
than to phase differences of the seasonal TWSV. This may have reduced the sensitivity of the
groundwater factor parameter, which is not among the six to eight most sensitive parameters for
any basin. On the other hand, the groundwater baseflow coefficient regulates the groundwater
phase and its sensitivity might have been overestimated. These limitations could be responsible
for the reduced groundwater variation after the calibration, which is not reasonable regarding
previous studies, e.g. for the Mississippi basin (due to Rodell et al., 2006; Zaitchik et al., 2008).
Further difficulties occurred for river basins with strong inter-annual variations. These varia-

tions are not present in mean monthly river discharge, applied for the multi-objective calibration.
This points out the high need of more up to date river discharge measurements on the global
scale.
It might be expected to apply real alternative data sets to validate the WGHM re-calibration.

But due to data scarcity of hydrological observations on global scales and due to the difficulties
in the application of remotely sensed surface soil moisture into global hydrological models (e.g.,
Basara & Crawford, 2000; Wilson et al., 2003; Choi et al., 2007) such data were not available for
the present study. Therefore, a validation of the calibration results was limited to a second time
period instead of alternative measurements.
A further limitation for the re-calibration respects to the long evaluation time of WGHM,

reducing the possible number of model evaluations (see Table 1.2). To achieve a secure global
optima, usually many thousands of model evaluations are calculated. For WGHM, a compro-
mise between model evaluation time and security of the calibration results had to be taken.
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The selected number of evaluations follows findings of Tang et al. (2006) regarding convergence
efficiency of ε-NSGAII.

5.1.9 Open questions

The present study concentrates on TWSV variations close to the seasonal time scale. An evalu-
ation of simulated trends in hydrological variables would be another important insight into the
model performance for evaluating modelling strategies. Steffen et al. (2008) excluded secular
trends in GRACE data from geophysical signals like glacial isostatic rebound and compared
them to hydrological models. He argued that hydrological models do not well represent trends
in continental hydrology and that they have to be improved before their secular components are
applicable for further studies. This issue is still an open question in hydrological research. But
the knowledge gained by the present study serves as a guideline for respective model analyses.

Climate warming has a significant effect on water storages of ice (e.g., glaciers) and permafrost
(e.g., Haeberli & Beniston, 1998; Lawrence & Slater, 2005). These storages are not included in
WGHM (see Sect. 1.2). On the one hand, increased melting may introduce errors in simulated
discharge variations by WGHM compared to GRACE or to models that include these storage
components. On the other hand, effects of climate change may explain some differences of
water storage variations between the re-calibrated and the original model version, especially
for transition climate zones (see Chapter 4). As the influence of climate change may increase
together with the extension of GRACE time series, it would be interesting to quantify this effect
specifically for WGHM to evaluate its representation of the hydrological cycle or to separate
effects of climate change.

Another open question that appears at this point and in the face of global climate change, is
the transferability of the re-calibrated WGHM parameter to the past and to the future. Due to
the IPCC report (Bates et al., 2008), the global climate change causes very different hydrological
system states. But at what stage of the system change are we and how long will it maintain?
Climate modelers will help to answer this questions. But changes in the distribution of climate
zones, as we know them today (e.g., Peel et al., 2007), may limit the calibrated model states to
certain periods. Dynamic behaviour of certain parameters or e.g., land cover types may have to
be introduced into global hydrological modelling, especially for long-term studies.

The calibration with GRACE was be done for large river basins only. For small basins, resolu-
tion of GRACE is insufficient. It has still to be tested, whether a calibration of a group of several
river basins clustered to a region of sufficient size would work out. To answer this open question
would exceed the time limit for this work. But it would help to realise a complete integration
of GRACE into global models as well as the application of GRACE for continents like Europe,
where rivers are relatively small but very important for e.g., hazard assessment or water demand.

5.2 Integration of GRACE data into WGHM

The main research questions of this study, that were posed in the introducing Chapter 1 shall
be answered by the following sections.
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5.2.1 How can GRACE be integrated into global hydrological modelling?

The most important characteristics of GRACE data integration into the global hydrological
model WGHM can be summarised to the following.

I. Separation of GRACE signal from error by a basin specific filter evaluation towards an op-
timal error budged in GRACE-based time series of TWSV: Smoothing of GRACE gravity
fields is indispensable and the available filter methods have different effects on different
regions. Filter specific parameter especially of non-decorrelation methods should be opti-
mised to reduce the satellite error in GRACE data but achieve the best possible spatial
resolution, hence, an optimal separation of signal and noise in GRACE data. Not optimised
filter methods may cause insufficient GRACE data accuracy.

II. A-priori model analysis: Process analysis and parameter calibration based on GRACE data
integrations may be simplified by a-priori considerations of regional characteristics. An a-
priori model sensitivity analysis may eliminate insensitive parameter against the calibration
variables for specific river basins. Therewith it not only reduces computation time but also
simplifies interpretation of the results.

III. Consistency of compared data sets: a) First, this respects to the simulation of all impor-
tant water storage components when they are compared to total water mass variations
from GRACE. Outside polar regions, these depict storages of soil, snow, rivers, canopy,
surface and groundwater. b) Secondly, consistency of data sets respects to an equal spatial
resolution among the compared data sets. This demands equal filtering of GRACE and
modelled data.

IV. Calibration for large river basins: The limited spatial resolution of GRACE restricts their
applicability to regions with a diameter of a few hundred kilometer. Therefore, only sim-
ulations for large river basins or for a region clustering several basins may be calibrated
with the satellite data. The minimum size of the region of interest depends on its shape,
location and the real regional distribution of GRACE errors.

V. Multi-criterial calibration: The continental water cycle includes a complex composition of
many water storages and transport processes. A single type of observation represents only
one sight or aspect of that cycle and may bias the calibration of a hydrological model. The
integration of multiple data sets increases the stability of the results and enables a more
consistent representation of the continental water cycle.

VI. Uncertainty estimation of the calibration results: Errors in calibration data are propagating
towards errors in parameter and errors in model output. This uncertainty has to be taken
into account and to be quantified for an estimation of the reliability of the results.

Two strategies were applied concerning the issue II.b within this study. The global calibration
(Chapter 4) based on optimised filter methods and respective parameter (Chapter 2). For the test
calibration, significant signal periods were extracted (Schmidt et al., 2008c) to separate signal
from error (Chapter 4). Though, the second method demands a larger computational effort,
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amplitudes and phases of these significant periods showed to be applicable for an adjustment of
hydrological simulations, as well.
The listed strategies provide a guideline for similar studies, that compass the integration of

GRACE data into large-scale hydrological models in order to solve the water balance of a river
basin. Components of the method may be of relevance for studies on further Earth subsystems
as well, e.g. periodic signals from oceans or secular processes of the solid earth.

5.2.2 Were simulations of TWSV improved?

The re-calibration of WGHM for three basins in test modus (Chapter 3), as well as globally for 28
of the largest river basins (Chapter 4) proofed the benefit of GRACE satellite data for large-scale
hydrological modelling. Improved time series of TWSV were achieved worldwide and for most of
the river basins parallel to a better representation of mean monthly river discharge. Most effects
on single storage compartments appeared to be reasonable and provided an input for further
improvements of the model structure, hence, of TWSV simulations. The re-calibration was only
limited for river basins that exhibit large errors or scarcity in the calibration data. These results
confident the further usage of GRACE data for large-scale hydrological modelling.

5.2.3 What can we learn from the results for global hydrological model
development?

The sensitivity analysis of all available model parameter and the re-calibration showed two
important aspects, that have to be regarded for global hydrological simulations. Except for
the calibration parameter, all parameters are of the same values worldwide in the original model
version, though some are global factors multiplied to land properties (like the rooting depth)
or other characteristics of the individual land-cells. In fact, it is the aim of global hydrological
modelling to find an algorithm that is worldwide valid. But different processes are of highest
importance within different river basins, hence, different parameter need to be calibrated. This
was shown by the sensitivity analysis. Furthermore, in different regions other parameter values
improve simulations of water cycle components, which was shown by the re-calibration results.
For example, the river velocity was reduced in the Amazon basin, leading to a slower outflow
from the watershed and better timing of TWSV time series. For many other basins, river velocity
was either modelled sufficiently accurate by the original model version or not that significant as
other processes (e.g., the Lena basin).
In general, the most important parameter changes were significant compared to the original

model version and respective calibration data errors. This enables the application of the cali-
brated parameters within further studies.
From the re-calibration, further consequences follow for subsurface water and groundwater

storages. On global average, groundwater variations are the fourth largest proportion of TWSV,
that includes more than ten percent of mass transports within the water cycle. If river water
is included, subsurface water amounts to the second largest proportion of TWSV from WGHM.
Both storages are of large importance for a complete representation of the water cycle and
therefore should be included in any water balance study.
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Due to the conceptional approach of WGHM, the distribution of water between rivers, lakes,
wetlands and reservoirs may be erroneous (as it was shown for the Amazon and the Mississippi
riverss). A revision of the subsurface algorithms may be necessary, if a separation of the in-
dividual subsurface components is of interest. Furthermore, the model sensitivity of WGHM
towards TWSV appeared to be critical for groundwater factor parameters, which may be due to
inaccuracies for WGHM simulations of this storage as well.

5.3 Outlook for future research

5.3.1 Consequences from the experiments

The correct modelling of single storages has to be evaluated by further measurements beside
GRACE data or river discharge measurements. Such validations are necessary for a further
accuracy improvement of global hydrological simulations. Herein, the general data scarcity and
limited data accuracy on the global scale is a significant drawback, which has to be overcome
to enable the complete simulation, understanding and the closing of the terrestrial water cycle
with sufficient accuracy (Sheffield et al., 2009).

Additional data from satellite and ground observations are desirable to fill the data gap. An-
other chance is the development of new techniques to assimilate available data into hydrological
models for which it has been difficult until now. Some regional examples are given by Papa
et al. (2008) for surface water extends, Parajka & Blöschl (2008) for snow coverage or river
discharge speed by Smith & Pavelsky (2008). These techniques together with others should be
made applicable for global studies.

5.3.2 Suggestions

To integrate GRACE data into the simulations of smaller than the 28 selected watersheds, a cali-
bration of basin clusters would be possible. These basins should belong to similar climate regions
or exhibit similarities in important characteristics of the water cycle. This is necessary to en-
able the calibration of clustered parameter and to minimise the additional number of calibration
parameter.

The sensitivity of groundwater factors against TWSV could be increased by an inclusion of
seasonal phases in the performance measure, in order to give them a larger weight in the eval-
uation process. Herein, further objective values or an aggregation-based combination of several
aspects of the time series into one objective function are applicable.

In future, global hydrological model adjustments should be undertaken more independently
from GRACE data, to be able to continue with the iterative concept of GRACE data evaluation
and improved modelling of global TWSV. For example, GRACE data integration into models
can provide an estimation which specific processes are mis-modelled (as done for groundwater
and surface water). Afterwards, improved simulation of TWSV could base on improved model
structure instead of GRACE-based parameter calibration.
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5.3.3 Prospects

Interim updates of the WGHM algorithm undertaken parallel to this study enable more accu-
rate analysis for future studies. These updates include a new reservoir algorithm (Döll et al.,
2009), which is important for a correct timing of surface water storage changes due to the an-
thropogenic regulation of water outflows from lakes. Furthermore a technically improved model
algorithm significantly reduces the model evaluation time (Verzano, 2009). This enables more
comprehensive calibration runs in the future, which is a basis for a greater reliability of model
and parameter uncertainty analyses.
GRACE time series are enlarging month by month. The mission is performing very well,

though its expected lifetime is already exceeded. Also, a GRACE follow-on missions is likely
to come (Ries & Bettadpur, 2008). Enlarged time series of TWSV increase the probability of
extreme events available in the data (as already available for Amazon and Australia from Chen
et al., 2009; Leblanc et al., 2009, respectively). This further challenges the evaluation of large-
scale hydrological models. The determination of interannual variations and trends in TWSV as
well as increased variability of TWSV due to climate change will be more reliable from longer
time series of GRACE satellite measurements.
GRACE errors have been under strong investigation (e.g., Han et al., 2004; Horwath & Dietrich,

2006; Winsemius et al., 2006b; Kusche, 2007; Klees et al., 2007). Significant error decreases were
already achieved during the last years (e.g., de-aliasing, de-correlation, smoothing Schmidt et al.,
2008b). This process is likely to continue by ongoing investigations of instrumental and processing
errors (Ries & Bettadpur, 2008). Smaller errors in the GRACE data would increase the accuracy
of GRACE data integrations as well as the applicability of these data on smaller scales and for
smaller signal components.
As on the global scale, the same link of gravity changes and mass variations is given for terres-

trial gravity measurements and local hydrological variations, (Neumeyer et al., 2006). Promis-
ingly, the observation of the single storage compartments is even easier and faster to realise on
local scales (Creutzfeldt et al., 2008) and current local studies investigate on the integration of
gravity data into hydrological models (Christiansen et al., 2008). Besides difference in scale, the
calibration technique of the present study can be valuable for local data combinations, as well. In
return, global studies may profit from experimental results on the small scales, in cases they are
transferable to the globe. Furthermore, a first combination of terrestrial gravity measurements,
e.g., from superconducting gravimeters and global hydrological simulations by Wziontek et al.
(2009) are promising for global hydrology.
Lastly, planed and soon started measurement systems, e.g., the European Space Agency’s

satellite mission Soil Moisture and Ocean Salinity (SMOS) will provide additional global obser-
vations of the continental water cycle. The rise of such missions trends towards a permanent
observation of the Earth’s subsystems, including hydrology.
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