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We present an approach to the correlated dynamics of many-electron systems. We show, that the two-
electron reduced density matrix �2RDM� can provide a suitable description of the real time evolution of a
system. To achieve this, the hierarchy of equations of motion must be truncated in a practical way. Also, the
computational effort, given that the 2RDM is represented by products of two-electron determinants, is
discussed, and numerical model calculations are presented.
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I. INTRODUCTION

In recent years there has been a growing interest in the
correlated dynamics of systems of many electrons. Espe-
cially the tremendous progress in experimental technology,
which allows the observation of the movement of electrons
on their natural time scale of femtoseconds �1 fs=10−15 s�
or less, has contributed to this development �1–8�. At the
same time, theoreticians have approached the problem in two
different ways: On the one hand, there are density functional
�DFT� based methods �9–12�, in which the three-dimensional
electron density is propagated. DFT can treat rather large
systems, but they provide only qualitative results, because
the functionals are usually made to reproduce ground-state
properties. Wave-function-based methods for correlated elec-
tron dynamics are much more accurate, but can treat only
much smaller systems �13–21�. The reason for this is, that
wave functions are 3N dimensional, with N being the num-
ber of electrons. Thus, the computational effort for accurate
solutions becomes prohibitively large with increasing N.

In this paper we suggest using the reduced two-electron
density matrix �2RDM� instead, because it combines attrac-
tive features from both worlds. The idea to establish a quan-
tum chemistry based on the 2RDM goes back to Löwdin,
Meyer, and Coulson �22–25�. They realized that the func-
tional that calculates the electronic energy from a 2RDM is
analytically known, and easy to evaluate. �See the next sec-
tion for details.� At the same time, the 2RDM has the size of
just a four-electron wave function, independent of the actual
number N of electrons. The fact that a comparatively small
object allows the calculation of the exact energy �or FCI
energy, full configuration interaction� has led to a lot of time
and effort being invested into this approach. However, it
turned out to be surprisingly difficult to turn this ansatz into
a competitive tool for electronic structure calculations. This
is due to the fact that a naive variation of the 2RDM in
search for the lowest energy produces a result well below the
ground-state energy, because there are more 2RDMs than can
be derived from a proper, antisymmetric N-electron wave
function. Therefore, the naive variational approach leads in
general to a nonfermionic ground state. Those 2RDMs that
correspond to a true fermionic ground state are called N rep-
resentable �26�. But to impose N representability during
variation has long been a problem which scaled as K16,
where K is the number of spatial one-electron basis func-

tions, and could be improved to a still expensive K6 only
recently �27�. Fortunately, this problem does not translate
one-to-one to the solution of time-dependent problems, if the
initial state of the propagation is derived from a wave func-
tion, thus ensuring N representability. It is the subject of this
paper to discuss the possibilities and problems of electron
dynamics using the 2RDM.

Two questions will be at the center of this study: The first
concerns the equation of motion. The time evolution of den-
sity matrices of correlated particles is governed by a hierar-
chy of equations �28�. In other words, the time derivative of
the 1RDM depends on the 2RDM, the derivative of the
2RDM depends on the 3RDM, and so on. The truncation of
this hierarchy is a necessary approximation that must be in-
troduced for practical calculations. The second question con-
cerns the representation of the 2RDM. Even if only K=100
spatial basis function are employed, then the density matrix
requires 24 GB memory, in the product basis. Obviously, a
more efficient approach is required. Here, an ansatz with
products of two-electron determinants suggests itself in the
context of quantum chemistry.

The paper is organized as follows. The next section de-
scribes the theory, both for the representation of the 2RDM,
as well as for the truncation of the hierarchy of equations of
motion. Section III will provide numerical examples, and
discuss the performance of the method. Atomic units will be
used throughout this paper, if not stated otherwise. �The sym-
bol Eh denotes the Hartree energy, where 1Eh
=27.211 38 eV.�

II. THEORY

We begin the theory section of this paper by describing
the representation of the 2RDM, �̂�2�, by means of products
of two-electron Slater determinants. Section II B will
rederive briefly the equation of motion, and Sec. II C dis-
cusses our ansatz for the truncation of the hierarchy of equa-
tions of motion.

A. Representation of �̂(2)

A representation by means of determinants requires the
choice of orbitals, from which the determinants are built. We
follow here the standard quantum chemical approach, and
choose Hartree-Fock orbitals. For a given number K of basis
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functions or grid points, 2K Hartree-Fock spin orbitals are
obtained. We enumerate them by small italic letters j, and
denote N-electron determinants by

�det�JN�� = �det�j1 ¯ jN�� . �1�

Every ordered N-tuple JN defines uniquely a determinant, so
that arbitrary electronic wave functions can be represented as

��� = �
JN

ord

AJN�det�JN�� . �2�

Note that the summation of all ordered N-tuples corresponds
to a FCI state, if all 2K orbitals are used, or a complete active
space configuration interaction �CASCI� state, if a smaller
number of orbitals is used. Correspondingly, we expand �̂�2�

with the help of two-electron determinants �det�J2��,

�̂�2��1,2;1�,2�� = �
J2,K2

ord
1

�2!�2BJ2,K2�det�J2��1,2��

��det�K2��1�,2��� , �3�

where i=xi= �ri ,si� describes a combined position and spin
variable. From this, the reduced one-electron density matrix
is obtained by tracing out electron coordinate 2,

�̂�1��1;1�� = Tr2	�̂�2��1,2;1�,2�
 = �
j,k

Dj,k�j�1���k�1��� .

�4�

Equations �3� and �4� serve also to define the coefficients
BJ2,K2 and Dj,k.

Practically, solving the time-dependent Schrödinger equa-
tion means to solve an initial value problem, with the initial
state often being the ground state. Therefore, we start from a
wave function �0, defined by the coefficients AJN in Eq. �2�,
and calculate the coefficients BJ2,K2 of the 2RDM with the
help of the so-called double-hole functions, �J2

DHF:

�� =
1

2!�
J2

ord

�det�J2 det�J2����

�
J2
DHF

)� �

,�

�5�
and

�̂�2� = �
J2,L2

ord
1

�2!�2 ��L2
DHF��J2

DHF�
BJ2,L2

�det�J2���det�L2�� .

�6�
This leads to the following expression for the initialization of
the 2RDM �see the Appendix for details�:

BJ2,L2 = �N − 2� ! �2!�2 �
KN−2

ord

�AL2KN−2��AJ2KN−2. �7�

B. Equations of motion

The time evolution of the N-electron wave function is
governed by the Hamiltonian

Ĥ�N� = �
i=1

N

�T̂�i� + V̂en�i�� + �
i�j

N

V̂ee�i, j� , �8�

with kinetic energy T̂, electron-nuclear attraction V̂en, and

electron-electron repulsion V̂ee. As mentioned in the intro-
duction, it is possible to calculate the energy expectation
value from the 2RDM alone, because the Hamiltonian con-
tains only up to two-particle interactions,

�Ĥ�N�� = N Tr1	�T̂�1� + V̂en�1���̂�1�


+
N�N − 1�

2
Tr1,2�V̂ee�1,2��̂�2�� . �9�

The time evolution of the 2RDM is most easily derived from
the NRDM,

�̂�N� = ������ , �10�

which is governed by the closed-system Liouville–von Neu-
mann equation

�̇̂�N� = − i�Ĥ�N�, �̂�N�� . �11�

The time derivative of �̂�2� is then, in principle, obtained
by tracing out electrons 3 through N,

�̇̂�2� = − i Tr3¯N	�Ĥ�N�, �̂�N��
 . �12�

Practically, the elimination of the electrons 3 through N is

problematic. The first step is to divide the Hamiltonian Ĥ�N�

into three parts: Part one contains only the first two electron
coordinates and momenta, part two depends only on elec-
trons 3 to N, and part three contains the coupling,

�̇̂�2� = − i Tr3¯N	�Ĥ�2�, �̂�N��
 − i�
i=3

N

Tr3¯N

���T̂�i� + V̂en�i� + �
j=i+1

N

V̂ee�i, j�, �̂�N��
− i�

j=3

N

Tr3¯N	�V̂ee�1, j� + V̂ee�2, j�, �̂�N��
 �13�

=L1��̂�N�� + L2��̂�N�� + L3��̂�N�� . �14�

The first term can be evaluated easily to give

L1��̂�N�� = − i�Ĥ�2�, �̂�2�� . �15�

The second term, L2��̂�N��, is zero. The third term survives,
and can be simplified as follows. Due to the indistinguish-
ability of the electrons, each of the �N−2� summands of L3
labeled by the electron j provides the same contribution,
which can be derived by performing the trace on all electrons
but j �using the commutativity in partial traces�,
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L3��̂�N�� = − i�
j=3

N

Tr3¯N	�V̂ee�1, j� + V̂ee�2, j�, �̂�N��


= − i�N − 2�Tr3	�V̂ee�1,3� + V̂ee�2,3�, �̂�3��
 .

�16�

Thus, the time derivative of �̂�2� depends on �̂�3�. If �̂�3�

should also be determined by the equations of motion �EOM�
one would have to know �̂�4�, and so on. This leads to a
hierarchy of EOMs �28� where �̇̂�M� depends on �̂�M� and
�̂�M+1� in analogy to the Bogolyubov-Born-Green-Kirkwood-
Yvon �BBGKY� hierarchy in statistical mechanics �29�.
Summarizing, the equation of motion is given by

�̇̂�2� = − i�Ĥ�2�, �̂�2�� − i�N − 2�Tr3	�V̂ee�1,3� + V̂ee�2,3�, �̂�3��

�17�

= �̇̂�2�,pair + �̇̂�2�,add. �18�

Because the dependence on �̂�3� cannot be eliminated, we
will outline a simple reconstruction scheme in the next sec-
tion. Equation �18� can be recast into an equation for the
expansion coefficients of the 2RDM, to give

ḂJ2,K2 = �det�J2���̇̂�2��det�K2�� = ḂJ2,K2
�pair� + ḂJ2,K2

�add� . �19�

The first part describes an uncoupled electron pair and can be
expanded into

ḂJ2,K2
�pair� = −

i

2!�
L2

ord

HJ2,L2
�2� BL2,K2 − BJ2,L2HL2,K2

�2� , �20�

where the HJ2,L2
�2� are matrix elements of the two-electron

Hamiltonian, �det�J2��Ĥ�2��det�L2�� which can be evaluated
easily and efficiently by means of Slater-Condon rules �30�.
The second part ḂJ2,K2

�add� represents the electron-electron cou-
pling between this electron pair and all other electrons.

C. Reconstruction of �̂(3)

Several groups have made suggestions for reconstruction
functionals for the 3RDM or the 4RDM, with various de-
grees of sophistication �28,31–34�. In this paper we will deal
with the most simple approach, namely, we reconstruct �̂�3�

with a Grassmann product �31,35� of the 2RDM and 1RDM,

�̂�3� � �̂rc
�3� =

3N

N − 2
Â	�̂�1�

� �̂�2�
Â†, �21�

where the prefactor is included for reasons of normalization,

Â represents an idempotent antisymmetrizer for three particle
wave functions,

Â =
1

3!
�Î − P̂12 − P̂13 − P̂23 + P̂23P̂12 + P̂23P̂13� , �22�

and P̂ij interchanges the ith and jth electron. Insertion of our
representations of the one- and two-electron density matrices
and rearranging gives

�̂rc
�3� =

3N

�N − 2� �
J3,K3

ord
1

�3!�2 �
i,l=1

3

�− 1�i+lDji,kl
BJi

2,Kl
2�det�J3��

��det�K3�� �23�

�J3 is the ordered composition of ji and Ji
2� which is our

working equation for the reconstruction for the examples in
Sec. III.

III. EXAMPLES AND DISCUSSION

In this section we discuss the performance of
configuration interaction- �CI� based electron dynamics us-
ing the 2RDM and the example of a one-dimensional Be
atom. It is the smallest possible closed shell system, where
the 2RDM represents a number of electrons larger than 2,
and it is at the same time possible to solve it in a numerically
exact way. The purpose of these examples are to demonstrate
the level of accuracy that can be achieved by the reconstruc-
tion scheme for �̂�3� given in Eq. �21�. As outlined in the
preceding section, the reconstruction can provide only a cer-
tain fraction of the correlation. Therefore, we will present
two examples, based on configuration interaction with single
excitations �CIS� and CASCI selections for the �det�JN�� ba-
sis functions. In both cases, we have restricted ourselves to
NSO=20 spin orbitals, which gives converged results as can
be checked by the time-dependent HF orbital populations. In
traditional quantum chemical notation the active space of
CASCI would then be denoted �4,10�, for four electrons in
10 spatial orbitals.

In order to avoid the Coulomb singularity, we screen the
potentials as usual �13,16,36� in one-dimensional model sys-
tems in the following way:

Ven�ri� = −
4

�ri
2 + c

, �24�

Vee�ri,rj� =
1

��ri − rj�2 + c
. �25�

The screening constant was chosen to be c=1a0
2.

Next, we determined the Hartree-Fock orbitals of the sys-
tem on a grid with K=64 grid points. These are used to
construct the two-electron determinants for the representa-
tion of the 2RDM, and serve also in our wave-function-based
benchmark calculations.

Initially, at time t=0, the system is assumed to be in its
ground state. In the case of CIS the ground-state wave func-
tion �GS

CIS is the Hartree-Fock determinant, by Brillouin’s
theorem. In the case of CASCI the Hamiltonian matrix is
represented by all 4845 determinants in the active space, and
then diagonalized, yielding �GS

CASCI. On both levels of theory
the corresponding ground-state 2RDM is then determined via
the double-hole function approach described in Sec. II.

The dynamics of the four-electron system is initiated by
an ultrashort laser pulse of tw=2 fs duration, a carrier fre-
quency of �=0.5Eh /�, and a sine-square envelope
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E� �t� = E� 0 sin2�	t/tw�cos��t� t � �0,tw� , �26�

which is coupled to the electrons in the semiclassical dipole
approximation. The ultrashort duration implies that the pulse
is spectrally very broad, and populates several excited states.
�The first excitation energy is 0.222Eh for CIS and 0.210Eh
for CASCI.�

A. Single excitations

In this section we compare wave-function based time-
dependent CIS �TD-CIS� calculations with time-dependent
2RDM calculations, where the 2RDM and the reconstructed
3RDM are restricted to contain at most single excitations. At
time t=0 the 2RDM is build from a Hartree-Fock �HF�
ground state, and therefore the reconstruction of �̂�3� is ini-
tially exact. The laser pulse then transfers population to ex-
cited states, and thus creates correlations, which can be re-
constructed only in an approximate fashion in the 3RDM.

We begin with the time-dependent position expectation
value. Figure 1 compares results for a comparatively low
laser fluence of about 3.16�1011 W /cm2. For about the first
10 fs the agreement between 2RDM �black solid line� and
wave function calculations �green dashed line� is excellent,

but later errors are accumulating, and the propagation gets
out of control. Concurrent with this, we observe an exponen-
tial violation of the positive semidefiniteness, and thus of the
N representability.

Because the origin of the error is the reconstruction of the
3RDM, it is tempting to make the additional assumption of
independent electron pairs. In this case, the coupling be-
tween electrons number 1 and 2 to electron number 3 is

ignored, and thus the term ḂJ2,L2
�add� in Eq. �19� vanishes.

Equivalently, one could say that we are neglecting the terms

Vee�1,3� + Vee�1,4� + Vee�2,3� + Vee�2,4� �27�

in the Hamiltonian. Electrons 1 and 2 still are interacting.
Figure 1 shows �orange solid line�, that in this case the
propagation remains stable, but a phase shift occurs. The
stability of the propagations is supported by the finding that
throughout the propagation all diagonal 2RDM remain posi-
tive, which identifies the reconstructed 3RDM clearly as the
source of instability. Also, it should be noted that the EOM
becomes nonlinear through the reconstruction of �̂�3� which
complicates the propagation further.

The corresponding energy expectation values are shown
in the upper panel of Fig. 2. Again, the wave function and
2RDM results are in good agreement at early times, but later
start to deviate exponentially. The energy expectation value
for independent electron pairs �see orange solid line in Fig.
1�, is shown separately in the inset, because it is shifted by
about 2.25Eh to lower energies. Such a low value can be
obtained, because the modified Hamiltonian does not de-
scribe indistinguishable electrons anymore. However, we re-
port these values here in order to illustrate the stability of the
propagation in the absence of the nonlinear term.

In this first example, a comparatively small amount of
energy was deposited in the electronic system. An increase of
the laser fluence to 3.51�1012 W /cm2 and 3.16
�1013 W /cm2 causes higher excited determinants to be-
come important, and thus pose a greater challenge to the
reconstruction. The lower panel of Fig. 2 reports the energy
expectation values for all three fluences and two methods.
The lowest pair of curves �lowest fluence� is also shown in
the upper panel. The deviations from the wave-function cal-
culation begin for higher fluences at earlier times, and are
more pronounced, as expected. As for the low fluence, we
find that the energy expectation value is a much more sensi-
tive probe of the quality of the propagation, than the position
expectation value. The latter is generally well reproduced for
about 10 fs.

In contrast to the independent pair approximation, the
positivity of the diagonal 2RDM elements is violated within
the first fs and the mean value of the most negative matrix
element is rising while the laser field is on. Later, these ele-
ments oscillate around a fixed value which is approximately
proportional to the laser intensity. After 10 fs, the most nega-
tive 2RDM elements start rising subtly but continuously and
pass into an exponential increase around 15 fs. A method for
avoiding the positivity violation was suggested �37� and
could be implemented in the future.
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FIG. 1. �Color online� Comparison of the time-dependent posi-
tion expectation values for a 2RDM calculation �black solid line�,
2RDM approach using independent electron pairs �orange solid
line�, and wave function computation �green dashed line�. All cal-
culations are restricted to a CIS orbital space.
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The restriction to singly excited determinants has been
used, because the reconstruction is known to work better in
this case. However, a 2RDM can ideally represent a full CI
state, which is why we turn our attention now to the fully
correlated dynamics.

B. Complete active space

From now on, we do not restrict anymore the character of
the determinants of the 2RDM and 3RDM. As mentioned
above, this corresponds to a CASCI using the lowest 20 spin
orbitals. This yields a numerically exact ground-state wave
function, from which then the initial prefactors BJ2,L2�t=0� of
the 2RDM are calculated. Additionally, �GS

CASCI serves as the
initial state of a TD-CASCI calculation, for comparison. A
population analysis shows, that the wave-function propaga-
tions are extremely close to a FCI result.

The upper panel of Fig. 3 compares the position expecta-
tion value. Obviously, the differences begin to appear much
earlier now. And just as in the case of CIS, the energy ex-
pectation value �lower panel� is a much more sensitive indi-

cator that something is going wrong. Therefore, we must
conclude that the more correlation is present, the more un-
stable the propagation becomes.

IV. CONCLUSIONS AND OUTLOOK

We conclude that the 2RDM approach to electron dynam-
ics is burdened with an only approximate determination of
d�̂�2� /dt, and a nonlinear equation of motion that leads to a
fast growth of errors. If certain limitations are imposed, like
the restriction to single excitations only, then propagations of
the order of 10 fs are possible, depending on the energy in
the system. Of course, this limitation must be overcome, if
the 2RDM shall become a useful tool sometime in the future.
Our way to truncate the hierarchy of equations of motion and
to reconstruct the 3RDM was based on the most obvious
choice for this task. Other, more sophisticated reconstruction
functionals have already been developed �28,31–34�. It re-
mains to be seen whether these can perform better than the
present approach.
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APPENDIX: DERIVATION OF BJ2,L2 FROM DOUBLE-HOLE
FUNCTIONS

From Eqs. �2�, �5�, and �6� we know, that

Bjijk,lmln
= ��lmln

DHF�� jijk
DHF�

= �2!�2 �
Ji,k

N−2,Lm,n
N−2

ord

�− 1�i+k−3�− 1�m+n−3ALN
� AJN

��det�Lm,n
N−2��det�Ji,k

N−2�� , �A1�

where Ji,k
N−2 is created from JN by omitting ji and jk and

leaving the order unchanged. Using the antisymmetry of the

A coefficients and tracing out the electrons 3 through N lead
to

Bjijk,lmln
= �2!�2 �

Ji,k
N−2,Lm,n

N−2

ord

AlmlnLm,n
N−2

�
AjijkJi,k

N−2�det�Lm,n
N−2��det�Ji,k

N−2��

= �N − 2� ! �2!�2 �
Ji,k

N−2

ord

AlmlnJi,k
N−2

�
AjijkJi,k

N−2. �A2�

Again, due to the antisymmetry of the A coefficients the
summation can be extended to all N−2 tuples. Replacing jijk

by J2, lmln by L2, and Ji,k
N−2 by KN−2 we obtain

BJ2,L2 = �N − 2� ! �2!�2 �
KN−2

ord

AL2KN−2
� AJ2,KN−2. �A3�
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