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Preface 

The present dissertation is organized as a “cumulative thesis” consisting of three 

manuscripts that are published and are in preparation for publication in ISI-listed peer-

reviewed journals. In all manuscripts, the International System of units was used for all 

physical units. The empirical work for this thesis in the area of Precision Fruticulture was 

performed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB). All 

necessary qualifications for the dissertation were acquired at the University of Potsdam. 

Yield losses and reduction in the quality of products in the plantation are the result of a water 

shortage. The irrigation amount and interval are often determined in the soil water content 

with tensiometers or later analysis of weather data, but in this process the most precious 

commodity of water is lost, since the actual demand of the plant is not included. For these 

reasons, it is necessary to develop water-saving methods for yield optimization. 

This study investigated how the spatial soil information correlates with plant water status, 

generative plant growth and final fruit quality. With this, it should be possible to determine the 

optimal water conditions for the plant. The main studies took place in an experimental plum 

orchard in Potsdam, Brandenburg and in grapefruit in a research facility in Adana, Turkey. 

The findings were evaluated in a plum and grapefruit production system. 

By funding the work of two transnational projects “3D-Mosaic (FP7, ICT-AGRI, 2810ERA095) 

Advanced Monitoring of Tree Crops for Optimized Management – How to Crop with 

Variability in Soil and Plant Properties” and “Usability of Environmentally Sound and Reliable 

Techniques in Precision Agriculture – USER -PA (FP7, ICT-AGRI, 2812ERA038)”, the 

hypotheses (see Chapter 1.3) could be examined and tested in several orchards. 

A short overview of the manuscripts, including the contributions of the authors, is given in the 

section entitled “Thesis at a glance”. Following this, a short summary of the thesis is 

presented. Chapter 1 presents a general introduction presenting the scientific rationale and 

objectives of this thesis. Chapters 2-4 contain the manuscripts, which can be divided into two 

parts: methodological approaches (Chapter 2-3) and research papers (Chapter 2 and 4). The 

methodological manuscripts introduce novel approaches that facilitate and optimize the 

concept of precision fruticulture. The research manuscript focuses on applying methods, but 

due to the new approach even in chapter 4 the methodology needed adaptation for the 

orchard located in semi-humid climate. The whole discussion can be found in Chapter 5. 

Chapter 6 gives a synthesis of the most important findings presented in the manuscripts and 

highlights the accomplished scientific advances.   
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Thesis at a glance 

 

MANUSCRIPT 1 

Interaction of 3D soil electrical conductivity and generative growth in Prunus domestica L.  

(European Journal of Horticultural Science. 2015, 80, 5: 231-239) 

Authors  Jana Käthner and Manuela Zude-Sasse 

Rationale  The concept of precision agriculture has been introduced in horticulture only 

recently. A deeper look into the interaction of generative growth (e.g. number 

of flowers per tree) of fruit trees and spatially measured soil properties is 

missing.  

Methods  An experimenttal plum orchard in temperate climate (Potsdam, Germany), 

capturing 0.37 ha with 156 trees were used. The main soil consists of 

predominantly sandy soils, which were formed by glacial and post-glacial 

deposits. The generative growth of plum trees were closely analyzed and 

classified according to the apparent electrical conductivity (ECa) of the soil in 

three depths. 

Results  Positive correlation with r = 0.52 was found between the soil ECa and 

generative tree growth in two years and planting ages, with enhanced 

interaction in older trees. The most influence on the generative tree growth 

was in this case the topsoil. Furthermore, the slope of the present orchard and 

soil compaction due to mechanical weed control influenced the root zone 

environment. Besides was shown in the soil ECa that the pattern were stable 

over for two years (r = 0.88). 

Conclusions  The concept of precision fruticulture can provide a better insight of correlations 

considering tree growth and soil ECa.  

Author’s contributions  

I worked out the topic and content of this contribution. I developed the study 

idea, the experimental design, collected the data, performed the data analysis, 

interpreted the data, and wrote the manuscript. The visualization technique for 

the 3D ECa cube and the MATLAB® script for the statistical analysis were 

programmed by me. Prof. Dr. M. Zude-Sasse provided guidance and helped 

in constructing the study design, contributed to the data interpretation, and to 

the writing and editing of the manuscript at various stages.  
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MANUSCRIPT 2:  

Getis-Ord's hot- and cold-spot statistics as a basis for multivariate spatial clustering of tree-

based data 

(Computers and Electronics in Agriculture. 2015, 111, 140-150) 

Authors  Aviva Peeters, Manuela Zude, Jana Käthner, Mustafa Ünlü, Riza Kanber, 

Amots Hetzroni, Robin Gebbers, Alon Ben-Gal 

Rationale  Particularly in orchards, the spatial data describe no continuous field/matrix, 

but represent single trees with its own features. The hot-spot analysis enables 

the statistical description of spatial variability found in crops and their 

environment.  

Methods  A novel approach was presented which accounts for the spatial structure of 

data in a multivariate cluster analysis by combining the spatial Getis–Ord 𝐺𝑖
∗ 

statistic with aspatial k-means multivariate clustering. The spatial analysis 

partitions data into homogenus groups which is based on modeling point data, 

i.e. individual trees. Tested were the analyses with data from an experimental 

grapefruit orchard (Citrus paradisi, cv. Rio Red) in Mediterranean climate in 

Adana, Turkey.  

Results  For demonstration its feasibility and assess its performance in relation to the 

common aspatial k-means clustering method was applied the approach in a 

grapefruit orchard. Results highlight that point-based spatial-clustering 

methods represent a valid method to characterize the spatial structure of 

point-based data such as single trees in an orchard based on multiple 

variables, in consideration of the combination of 𝐺𝑖
∗ statistic with aspatial 

clustering. 

Conclusions  Combination of the methods represents a suitable technique for identifying 

homogenous spatial clusters in orchards.The hot-spot analysis can be used as 

a tool for precision management of orchards by partitioning trees into 

management zones. 

Author´s contributions  

Dr. A. Peeters and I developed the experimental design and carried out the 

field measurements. I pre-processed the data for the hot spot analysis. Dr. 

Peeters tested the hot spot analysis with ArgGIS and evaluated the hot spot 

analysis with the k-mean clustering. I performed the approach validation using 
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MATLAB®. Dr. Peeters wrote the manuscript. I contributed to the data 

interpretation and helped with writing and editing the manuscript at various 

stages. The MATLAB® script was used further. A. Ben-Gal and Manuela Zude 

provided guidance and editing of the manuscript at various stages. With Robin 

Gebbers, Alon Ben-Gal, Amots Hetzroni, Robin Gebbers, and Manuela Zude 

were discuss the mathematical apporach. Mustafa Ünlü and Riza Kanber 

provided the orchard, the chemical soil probes, the yield data and weather 

information.  
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MANUSCRIPT 3:  

Evaluating spatially resolved influence of soil and tree water status on quality of European 

plum grown in semi-humid climate  

(Frontiers in Plant Science, 2017, 1-10) 

Authors  Jana Käthner, Alon Ben-Gal, Robin Gebbers, Aviva Peeters, Werner B. 

Herppich, and Manuela Zude-Sasse 

Rationale  Plant water status was analysed in orchard targeting spatial analysis of trees 

considering instantaneous and cumulative water use efficiency. 

Methods  Soil variability and water status of trees was spatially measured by means of 

leaf water potential, and thermal imaging of canopies. From thermal images, 

the crop water stress index was calculated for semi-humid climate. Cumulative 

effect of the degree of water supply was recorded as specific leaf area ratio 

and fruit quality. Applications of the hot-spot analysis provided extremes from 

the multiple tree variables.  

Results  Spatial variation of soil ECa, instantaneous water status of fruit tree, and water 

use efficiency in semi-humid climate was found. In addtion an influence on the 

fruit quality was observed. The hot-spot analysis resulted in 6 spots of soil 

ECa that was correlated with the leaf area (R² = 0.78). Extreme values of 

CWSI were correlated with the fruit quality and WUEc was enhanced with high 

crop load. Furthermore it was shown, that orchard located in semi-humid 

climate, irrigated throughout the vegetation period still suffered from slight 

drought stress.  

Conclusions CWSI provided information on the instantaneous water status of fruit trees. 

Interaction of WUEc and CWSI pointed to considerable effects on the fruit 

quality. 

Author´s contributions  

I developed the study idea and the experimental design, collected the data, 

performed the data analysis, interpreted the data, and wrote the manuscript. For 

analysis of the thermal image and calculation of the CWSI, I developed and 

wrote MATLAB® scripts considering available approaches for semi-humid and 

humid climates. Prof. Dr. M. Zude-Sasse provided guidance and helped in 

constructing the study design, contributed to the data interpretation, and helped 

with writing and editing of the manuscript at various stages. Dr. A. Ben-Gal 

provided guidance and editing of the manuscript at various stages. The other 
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authors A. Peeters and W. B. Herppich contributed with deep discussions and 

revisions of the manuscript. 
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Abstract  

 

Precision horticulture encompasses site- or tree-specific management in fruit plantations. Of 

decisive importance is spatially resolved data (this means data from each tree) from the 

production site, since it may enable customized and, therefore, resource-efficient production 

measures. 

The present thesis involves an examination of the apparent electrical conductivity of the soil 

(ECa), the plant water status spatially measured by means of the crop water stress index 

(CWSI), and the fruit quality (e.g. fruit size) for Prunus domestica L. (plums) and Citrus x 

aurantium, Syn. Citrus paradisi (grapefruit). The goals of the present work were i) 

characterization of the 3D distribution of the apparent electrical conductivity of the soil and 

variability of the plant’s water status; ii) investigation of the interaction between ECa, CWSI, 

and fruit quality; and iii) an approach for delineating management zones with respect to 

managing trees individually. 

To that end, the main investigations took place in the plum orchard. This plantation got a 

slope of 3° grade on Pleistocene and post-Pleistocene substrates in a semi-humid climate 

(Potsdam, Germany) and encloses an area of 0.37 ha with 156 trees of the cultivar ˈTophit 

Plusˈ on a Wavit rootstock. The plantation was laid in 2009 with annual and biannual trees 

spaced 4 m distance along the irrigation system and 5 m between the rows. The trees were 

watered three times a week with a drip irrigation system positioned 50 cm above ground level 

providing 1.6 l per tree per event. With the help of geoelectric measurements, the apparent 

electrical conductivity of the upper soil (0.25 m) was measured for each tree with an 

electrode spacing of 0.5 m (4-point light hp). In this manner, the plantation was spatially 

charted with respect to the soil’s ECa. Additionally, tomography measurements were 

performed for 3D mapping of the soil ECa and spot checks of drilled cores with a profile of up 

to 1 m. The vegetative, generative, and fruit quality data were collected for each tree. The 

instantaneous plant water status was comprehensively determined in spot checks with the 

established Scholander method for water potential analysis (Scholander pressure bomb) as 

well as thermal imaging. An infrared camera was used for the thermal imaging (ThermaCam 

SC 500), mounted on a tractor 3.3 m above ground level. The thermal images (320 x 240 px) 

of the canopy surface were taken with an aperture of 45° and a geometric resolution of 8.54 

x 6.41 mm. With the aid of the canopy temperature readings from the thermal images, cross-

checked with manual temperature measurements of a dry and a wet reference leaf, the crop 

water stress index (CWSI) was calculated. Adjustments in CWSI for measurements in a 

semi-humid climate were developed, whereas the collection of reference temperatures was 

automatically collected from thermal images. 
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The bonitur data were transformed with the help of a variance stabilization process into a 

normal distribution. The statistical analyses as well as the automatic evaluation routine were 

performed with several scripts in MATLAB® (R2010b and R2016a) and a free program 

(spatialtoolbox). The hot spot analysis served to check whether an observed pattern is 

statistically significant. The method was evaluated with an established k-mean analysis. To 

test the hot-spot analysis by comparison, data from a grapefruit plantation (Adana, Turkey) 

was collected, including soil ECa, trunk circumference, and yield data. The plantation had 

179 trees on a soil of type Xerofkuvent with clay and clay-loamy texture. The examination of 

the interaction between the critical values from the soil and plant water status information 

and the vegetative and generative plant growth variables was performed with the application 

from ANOVA. 

The study indicates that the variability of the soil and plant information in fruit production is 

high, even considering small orchards. It was further indicated that the spatial patterns found 

in the soil ECa stayed constant through the years (r = 0.88 in 2011-2012 and r = 0.71 in 

2012-2013). It was also demonstrated that CWSI determination may also be possible in 

semi-humid climate. A correlation (r = - 0.65, p < 0.0001) with the established method of leaf 

water potential analysis was found. The interaction between the ECa from various depths 

and the plant variables produced a highly significant connection with the topsoil in which the 

irrigation system was to be found. A correlation between yield and ECatopsoil of r = 0.52 was 

determined. By using the hot-spot analysis, extreme values in the spatial data could be 

determined. These extremes served to divide the zones (cold-spot, random, hot-spot). The 

random zone showed the highest correlation to the plant variables.  

In summary it may be said that the cumulative water use efficiency (WUEc) was enhanced 

with high crop load. While the CWSI had no effect on fruit quality, the interaction of CWSI 

and WUEc even outweighed the impact of soil ECa on fruit quality in the production system 

with irrigation. In the plum orchard, irrigation was relevant for obtaining high quality produce 

even in the semi-humid climate. 
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German abstract 

Precision horticulture beschreibt ein neues Bewirtschaftungskonzept im Gartenbau, bei dem 

teilflächenspezifisch oder an den Einzelbaum angepasste Maßnahmen eine 

ressourcenschonende, intensitve Produktion ermöglichen. Die Datengrundlage wird aus 

räumlich aufgelösten Messungen aus der Produktionsanlage gewonnen, wobei sowohl 

kurzfristige Faktoren wie der effektive Pflanzenwasserzustand als auch langfristige Faktoren 

wie die Bodenvariabilität zur Informationsgewinnung genutzt werden können. Die 

vorliegende Arbeit umfasst eine Untersuchung der scheinbaren elektrischen Leitfähigkeit des 

Bodens (ECa), des Pflanzenwasserzustandes und der Fruchtqualität (zum Beispiel: 

Fruchtgröße) bei Prunus domestica L. (Pflaume) und Citrus x aurantium, Syn. Citrus paradisi 

(Grapefruit). Zielsetzungen der vorliegenden Arbeit waren (i) die Charakterisierung der 3D-

Verteilung der scheinbaren elektrischen Leitfähigkeit des Bodens und Variabilität des 

Pflanzenwasserzustandes; (ii) die Untersuchung der Interaktion zwischen ECa, kumulativer 

Wassernutzungseffizienz (WUEc) und des crop water stress index (CWSI) bezogen auf die 

Fruchtqualität sowie (iii) eine Möglichkeit zur Einteilung von einzelnen Bäumen hinsichtlich 

der Bewässerung. 

Dazu fanden die Hauptuntersuchungen in der Pflaumenanlage statt. Diese Obstanlage 

befindet sich in Hanglage (3°) auf pleistozänen und postpleistozänen Substraten in semi-

humiden Klima (Potsdam, Deutschland) und umfasst eine Fläche von 0,37 ha mit 156 

Bäumen der Kultursorte ˈTophit Plusˈ auf der Unterlage Wavit. Die Anlage wurde 2009 mit 

ein und zwei-jährigen Bäumen in einem Pflanzabstand von 4 m entlang der Bewässerung 

und 5 m zwischen den Reihen angelegt. Dreimal pro Woche wurden die Bäume mit einer 50 

cm über dem Boden installierten Tröpfchenbewässerung mit 1,6 l pro Baum bewässert. Mit 

Hilfe geoelektrischer Messungen wurde die scheinbare elektrische Leitfähigkeit des 

Oberbodens (0,25 m) mit einem Elektrodenabstand von 0,5 m (4-point light hp) an jedem 

Baum gemessen. Dadurch wurde die Anlage hinsichtlich ECa räumlich charakterisiert. 

Zusätzlich erfolgten Tomographiemessungen zur 3D-Charakterisierung der ECa und 

punktuell die Beprobung von Bohrlochprofilen bis 1 m Tiefe. Die vegetativen, generativen 

und Fruchtqualitätsdaten wurden an jedem Baum erhoben. Der momentane 

Pflanzenwasserzustand wurde mit der etablierten Scholander-Methode zur 

Wasserpotentialanalyse (Scholander Bombe) punktuell und mit Thermalaufnahmen 

flächendeckend bestimmt. Die Thermalaufnahmen erfolgten mit einer Infrarot-Kamera 

(ThermaCam SC 500), die auf einem Traktor in 3,3 m Höhe über dem Boden montiert war. 

Die Thermalaufnahmen (320 x 240 Pixel) der Kronenoberfläche wurden mit einem 

Öffnungswinkel von 45° und einer geometrischen Auflösung von 6,41 mm x 8,54 mm 

aufgenommen. Mit Hilfe der Kronentemperatur aus den Thermalbildern und den 

Temperaturen eines nassen und trockenen Referenzblattes wurde der CWSI berechnet. Es 
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wurde die Anpassung des CWSI für die Messung in semi-humidem Klima erarbeitet, wobei 

die Erhebung der Referenztemperaturen automatisiert aus den Thermalbildern erfolgte.  

Die Boniturdaten wurden mit Hilfe eines Varianz-Stabilisierungsverfahrens in eine 

Normalverteilung transformiert. Die statistischen Analysen sowie die automatisierte 

Auswertungsroutine erfolgten mit eigenen Skripten in MATLAB® (R2010b sowie R2016a) 

und einem freien Programm (spatialtoolbox). Die Hot-spot Analysen dienten der Prüfung, ob 

ein beobachtetes Muster statistisch signifikant ist. Evaluiert wurde die Methode mit der 

etablierten k-mean Analyse. Zum Testen der Hot-spot Analyse wurden ECa, Stammumfang 

und Ertrag Daten aus einer Grapefruitanlage (Adana, Türkei) mit 179 Bäumen auf einem 

Boden vom Typ Xerofkuvent mit toniger und tonig-lehmiger Textur herangezogen. Die 

Überprüfung der Interaktion zwischen den kritischen Werten aus den Boden- und 

Pflanzenwasserzustandsinformationen zu den vegetativen und generativen 

Pflanzenwachtumsvariablen erfolgte durch die Anwendung der ANOVA und die Ermittlung 

des Korrelationskoeffizienten.  

In der Arbeit konnte gezeigt werden, dass die Variabilität der Boden- und 

Pflanzeninformationen in Obstanlagen auch kleinräumig hoch ist. Es konnte gezeigt werden, 

dass die räumlich gefundenen Muster in den ECa über die Jahre zwischen 2011-2012 (r = 

0.88) beziehungsweise 2012-2013 (r = 0.71) stabil geblieben sind. Zum anderen wurde 

gezeigt, dass eine CWSI-Bestimmung auch im semi-humiden Klima möglich ist. Es wurde 

ein Zusammenhang (r = - 0.65, p < 0.0001) mit der etablierten Methode der Blattwasser-

potentialanalyse ermittelt. Die Interaktion zwischen der ECa aus verschiedenen Tiefen und 

den Pflanzenvariablen ergab einen hoch signifikanten Zusammenhang mit dem Oberboden, 

in dem das Bewässerungswasser zu finden war. Es wurde eine Korrelation zwischen Ertrag 

und ECatopsoil von r = 0.52 ermittelt. Durch die Anwendung der Hot-spot Analyse konnten 

Extremwerte in den räumlichen Daten ermittelt werden. Diese Extrema dienten zur Einteilung 

der Zonen in cold-spot, random und hot-spot. Die random Zone weist die höchsten 

Korrelationen zu den Pflanzenvariablen auf. Ferner konnte gezeigt werden, dass bereits im 

semi-humiden Klima der Pflanzenwasserstatus entscheidend zur Fruchtqualität beiträgt.  

Zusammenfassend lässt sich sagen, dass die räumliche Variabilität der Fruchtqualität durch 

die Interaktion von Wassernutzungseffizienz und CWSI sowie in geringerem Maße durch den 

ECa des Bodens. In der Pflaumenanlage im semi-humiden Klima war die Bewässerung 

ausschlaggebend für die Produktion von qualitativ hochwertigen Früchten. 
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List of abbreviation 

ANOVA Analysis of variance  

C-H index Calinski–Harabasz pseudo F-statistic  

CO2 Carbon dioxide  

CWSI Crop water stress index [0;1] 

CWSII Crop water stress index according to Irmak et al.,2000 [0;1] 

CWSIR Crop water stress index according to Rud et al.,2015 [0;1] 

CWSIJ Crop water stress index according to Jones, 1992 [0;1] 

CWSIJB Crop water stress index according to Ben-Gal et al.,2009; 

Jones 2004 

[0;1] 

DA-index Delta absorbance index  

ECa or σsoil  Soil apparent electrical conductivity [mS/m] 

FDR Frequency domain reflectometry  

Fuzzy Clustering methods, each data point can belong to more than 

one cluster  

 

G  Getis- Ord statistic  

Gi
∗ 

Getis-Ord local statistic  

GIS Geographical information system  

GPS Global Positioning System  

GVF Goodness of variance fit  

GWC Gravimetrical water content [%] 

Hot-spot 

analysis 

Method for analyzing the location related tendency in the 

attributes of spatial data  

 

HSD Honest significance difference (Tukey’s HSD test)  

ISODATA Novel method of data analysis and pattern classification  

k-mean Aims to partition observations into k groups  

KM-sPC Combined spatial principal component analysis with fuzzy k-

means 

 

LiDAR Light detection and ranging  
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Max. Maximum  
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1 Introduction 

1.1 Present situation 

At present, the approach of precision fruticulture is based on a concept from arable 

cultivation known as precision farming. Here, differences arise because of perennial cultures, 

developments specific to plant types, higher net value, and an already very high production 

intensity.  

The prerequisites for this are spatially resolved soil and field data and information about plant 

growth specific to individual plants. Optimal concepts are needed, under consideration of 

these different local conditions and plant physiological questions in increasing yield, in order 

to attain an efficient and sustainable production in commercial fruit plantations. Particular 

attention should be paid to an efficient and targeted use of water. 

1.1.1 History of fruticulture 

The roots of fruticulture in Germany can be traced to early history (Schuricht, 2009). 

According to Ritthaler (2012), the history of fruticulture in Germany can be classified by the 

social structures and technological progress in four eras. First, from 200 CE to 1650 CE, fruit 

was a semi-luxury food (Ritthaler, 2012). That said, at that time documented knowledge 

transfers mainly took place through monasteries and household literature (Ritthaler, 2012). 

The second period, from c. 1650 to c. 1830, was marked by subsistence agriculture and local 

use, leading into the third era of wider-ranging agriculture from c. 1830 to c. 1950 (Ritthaler, 

2012). The fourth era, technically specialized operations, has only existed since around 1950 

(Ritthaler, 2012). Through mechanization, irrigation, and the use of fertilizers and agricultural 

control chemicals, the productivity of orchards intensified (Jackson, 2005). This in turn 

enabled the global export of fruit products (Jackson, 2005). Precision fruticulture marks a 

further step in the history of cultivation. The goal is to increase the productivity of the orchard 

while saving resources. 

1.1.2 Quality of fruit 

Particularly for gardening products, the quality of the harvested product is increasingly 

important for commercial profits. Nonetheless, in spite of the existence of a variety of quality 

guidelines, there is no consistent definition of fruit quality (Shewfelt, 1999). According to 

Eccher Zerbini (2002) and Shewfelt (1999), quality cannot be seen as a specific physiological 

property of fruit, but rather as a combination of factors (UNECE-NORM FFV-29, 2014; 

UNECE-NORM FFV-14, 2012), in particular the expectations of consumers and the needs of 
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retailers. High market prices are attained with a high quality level of fruit (Jones and Tardieu, 

1998). The most important quality parameters include, among other things, marketing norms: 

wholeness, cleanliness, healthiness, and the size and weight of the fruit also the fruit flesh 

firmness and soluble solid content (UNECE-NORM FFV-29, 2014). Thus even a few 

millimeters of the fruit size can strongly affect the marketability of fruit and its price (Theron, 

2011). 

 

1.1.3 European orchard  

Depending on climate and local consumer preferences, European orchard fruit that is in 

demand stems primarily from the families Rutaceaen and Rosaceaen (Faostat, 2016). This 

fruit includes unprocessed fruit (stone, seed, and berry fruit) from multi-year, extensive open-

air cultivation of trees and bushes. Stone fruit of the genus Prunus is characterized by its 

pericarp in three levels (Kadereit et al., 2014). From the single fruit leaf not connected to the 

deeper flower bud, the three levels of tissue develop. The result is the woody, usually single-

cell core (endocarp) surrounded by (mostly) edible fruit flesh (mesocarp), and enclosed by a 

skin barrier (exocarp) (Seifert et al., 2015). Typical examples include sweet cherries (P. 

avium), sour cherries (P. cerasus), plums (P. domestica), peaches (P. persica), and apricots 

(P. armeniaca). In Europe, the leader of these — with roughly 4 million metric tons — is 

peaches (Faostat, 2016), of which 883 t were produced in Germany. In Germany in 2015, 

these were followed by plums (48,536 t) and cherries (824,462 t) (Faostat, 2016). 

Citrus fruits belong to the berry genus and, like the stone fruits, develop from a single (if 

multi-seed) fruit leaf. However, in this case the entire pericarp is fleshy (Kadereit et al., 

2014). Examples of berry fruit in orchard cultivation are the citrus fruits (like grapefruit), the 

pomegranate, and the papaya. The citrus fruit most produced in Europe is the orange (6.2 

million metric tons), clementines (3.1 million t), lemons (1.1 million t), and grapefruit (80,000 

t). 

 

1.1.4 Fruit consumption 

Fruit consumption in Germany has risen by 6% in the past 17 years (Gracia and Albisu, 

2001). According to a 2015 study, the annual per capita consumption of marketed fruit is 

about 67.3 kg (BMEL, 2016). In comparison to the previous year, 0.7 kg more were 

consumed. Commercial fruticulture plays an increasing role in securing nutrition, but also an 

important role in physical and psychological health in urban and rural areas (Beddington et 

al., 2008).  
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1.1.5 Cultivation area  

In 2013, 21.3% of Europe’s land area was under cultivation. This translates into roughly 470 

million hectares. Of that, 15 million are used for fruticulture (Faostat, 2016). Therefore 

commercial fruticulture plays an important role in Europe. This is further indicated by the 

increased production of fruit — up to 130.5 t/ha in recent years (Faostat, 2016). At a 

continental level worldwide, Europe (10.9%) is in third place behind Asia (52.8%) and North 

and South America (21.7%) in fruit production (Faostat, 2016). Some of the best-known 

fruticulture areas in Germany are the Alte Land in parts of the lower Elbe River in Hamburg 

and Lower Saxony, the Lake Constance region, and the Havel River region west of Berlin in 

Brandenburg state. Further important fruticulture regions in Europe include the Steiermark in 

Austria, northeastern Switzerland, and large parts of Moldova (Faostat, 2016). 

 

1.2 State of the art 

1.2.1 Precision agriculture  

The concept behind precision fruticulture is derived from the established concept of precision 

agriculture (Auernhammer, 2001; Sadler et al., 1998; Srinivasan, 2006; Stafford et al., 2000). 

In precision agriculture, it is already possible to create, evaluate, and react to georeferenced 

maps from automatically measured and collected data. (Blackmore et al., 2003; 

Auernhammer 2001). This management leads to a significant increase in yield (Fountas et 

al., 2011). The spatial variability of the yield makes it possible to identify areas in the crop 

that are over- or undersupplied with water or fertilizer (Gebbers and Adamchuk, 2010). Using 

this, the growth factor like chemical soil properties can be adjusted and the operations 

optimized for their economy and sustainability (Auernhammer 2001; Zhang et al, 2002; 

Bongiovanni and Lowenberg-Deboer 2004).  

In fruit production, Zude-Sasse et al. (2016) assume that fruit trees are influenced by 

changes in supply of light, water, and nutrients, and further that the plants will likely adjust to 

those changed conditions.  

Site-specific management in field cultures includes the analysis of yield maps, while taking 

into account the relevant soil variables (Hedley, 2015). These parameters are, for example, 

soil texture and chemical properties, especially the pH value (Schirrman et al., 2011, 

Leinweber et al 1996). To get the necessary spatial resolution of soil variability, tried and 

tested sensors were used which were also usable for fruticulture (Corwin und Lesch, 2003), 

taking the structure of the orchard into account (Winter und Link, 2002).  

All sensors currently available differ not just in the way they work, but also in their depth 

range and sensitivity (Gebbers et al, 2009). A commonly used method for analyzing the 
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variability of the soil is its electrical conductivity (ECa) using direct current geoelectricity 

(Allred et al., 2008). The ECa is the ability of a material to conduct electric current (Telford et 

al., 1990). Using the ECa, it is possible to image the variability of the soil, showing 

parameters like texture, water saturation, fluid conductivity, changes in density, and organic 

substances (Lück et al., 2009). The soil’s conductivity depends on many factors, such as 

saturation, activity, and the mixture of soluble salts, as well as the clay content (Corwin und 

Lesch, 2003). Furthermore, the soils are also influenced by variations in how they were 

created, developed, and influenced, for example through glaciation (Richard et al., 2001; 

Kleber, 1992; Kutílek and Nielsen, 1994; Bouma et al., 1990).  

 

1.2.2 Precision fruticulture  

According to Zude-Sasse et al. (2016), “precision fruticulture” is to be understood as follows: 

They consider every approach that uses in-situ information of soil and plant aiming to 

manage the orchard more precisely as PRECISION HORTICULTURE.  

This includes on-site sensor-controlled process solutions for environmentally friendly and 

competitive production of quality fruit (Zude-Sasse et al., 2016). To that end, spatially 

differentiated data about the multi-year plants and soils are collected directly by the 

apparatus, which makes it possible to adjust the work processes and optimize production 

and harvest (Zude-Sasse et al., 2016, Peeters et al., 2015; Fereres and Soriano, 2007).  

Currently, the possibilities of automated data collection include the use of autonomous 

vehicular platforms, unmanned drones, and wireless sensor networks (Bendig, 2015; Nink et 

al., 2015; Fukatsu et al., 2014). The number of automated measurements for the various fruit 

cultures is increasing constantly (Zude-Sasse et al., 2016). This data is then transferred to 

the spatial decision support system (Fountas et al., 2006). 

As with precision agriculture, precision fruticulture can be considered a cycle system 

(Gebbers and Adamchuk, 2010). Figure 1 shows the modified version of the cycle system 

with the following steps: data collection and localization, data analysis, management 

decisions on applications, implementation, and evaluation of management decisions (Zude-

Sasse et al., 2016). 

Data collection is taken on each single tree. Taking into account that measures such as 

flower thinning (Link, 2000; Jafari et al 2014) must be performed in orchards, data such as 

the number of flowers must be collected several times. The data localization is determined by 

the established GNSS method and brought into relation to the boniture data (e.g. manuel 

count of the number of flowers). Furthermore, the data localization is used for measuring 

spatial data. All data collected will be analyzed and the results brought into management 
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decisions on implementations, where they will be implemented and evaluated before the 

cycle system is started new. 

In contrast to precision agriculture, not all steps in precision fruticulture are fully established 

yet (green). The management decisions for implementations are currently the latest research 

question (blue), with the challenge being to record high-resolution spatial data in orchards. 

The steps implementation and evaluation of management decisions are currently still 

challenging (gray).  

 

 

Figure 1. Shows the circle system of precision fruticulture modified from the concept of 

precision agriculture. The different colors symbolize the stage of the steps (green: 

established, blue: ongoing research, grey: future work) related to applications in fruit 

production. 

 

As according to the concept of precision fruticulture, information about yields in tons per 

hectare are probably not enough to react appropriately and save resources (Aggelopoulou et 

al., 2011; Aggelopoulou et al., 2013). The quality of the harvested product must be much 

more intensively considered (Konopatzki et al., 2015, Scharf, 2015; Cohen et al, 2012; 

Ehsani and Karim, 2010). This is the most important challenge in precision fruticulture (Zude-

Sasse et al., 2016). 
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Furthermore, necessary production methods like thinning (Link, 2000; Jafari et al., 2014), 

pruning, irrigation (Ben-Gal et al., 2009; González-Dugo et al., 2015; Goodwin et al, 2008; 

Fereres et al., 2003), harvesting (Zude et al., 2008) present possible macro paths to 

optimization, whereas site-specific management is plausible for individual trees or areas 

(Zude-Sasse et al., 2016).  

This type of data-driven management with the aid of soil and plant information in fruit 

orchards has so far only been discussed in very few scientific papers. Bramley and Hamilton 

(2004) identified yield zones in vineyards. Zaman and Schumann (2006), Nadler (2004), 

Gebbers and Zude (2008), Bramley and Hamilton (2004), and Ben-Gal et al. (2008) 

observed high variability in the soil in between fruit trees. They found that the soil properties 

could be connected to describe plant growth, yield, and fruit quality. Nadler (2004) used a 

portable electric conductivity meter to check variations in water in the soil and to measure the 

root water potential. Zude and colleagues (Zude et al., 2008) analyzed spatial patterns of fruit 

quality in citrus fruit. For apples, Gebbers and Zude (2008) and Aggelopoulou et al. (2013) 

measured temporal and spatial changes in fruit quality as related to electrical conductivity of 

the soil. 

For spatial analyses, the use of remote sensing technology makes it possible to quickly 

gather data for soil and plant information in a contact less blanket method (Thorp and Tian, 

2004; Panda et al., 2010). During the past 20 years the development of different electrical 

sensors for determining soilmoisture at a point has advanced considerably (Robinson et al., 

2008). Among others, tensiometers were used for long-term monitoring (Ling, 2004).  

The variability of chemical properties of the soil can be comprehensively estimated using on-

the-go sensors for visual light and near-infrared (Vis/NIR) spectroscopy (Schirrman et al, 

2011; Schirrmann and Domsch, 2011), electromagnetic induction (Hartsock et al, 2000), or 

apparent resistance measurements (Allred et al., 2008). For the measurement of ECa on 

large fields, various methods and tools from geophysics can be used (Gebbers and Lück, 

2008; Halvorson and Rhoades 1976; Lück and Rühlmann 2013, Lück et al., 2009). Using 

optical multi- and hyperspectral settings, the electromagnetic spectrum can be observed 

(Usha and Sigh, 2013).  

By measuring light reflected from the soil or from plants using the Normalized Difference 

Vegetation Index (NDVI), one can derive useful information about the chlorophyll content of 

the plants and of the harvested product (Govender et al., 2007; Hall et al., 2002; Zude, 

2003). This is reinforced by the work of Ač et al. (2015). This workgroup estimated the 

chlorophyll and water content of the canopy with the help of fluorescence (Ač et al., 2015). 

Liakos et al. (2011) showed a connection between NDVI and yield in apples. Furthermore, 

Tucker et al. (1980) demonstrated a process with near-infrared to find leaf water potential. 



Introduction 

7 

Xujum et al. (2007) demonstrated potential in selective harvesting of citrus fruit with the aid of 

hyperspectral imaging.  

However, the use of nondestructive soil and plant sensors in fruticulture is limited. Open field 

fruit cultivation is characterized by established growth factors like CO2 concentration, air and 

soil temperatures, the chemical and physical soil properties, but also changeable factors like 

microclimate, water supply, and the endogenic distribution of substances (Blume et al., 

2010).  

For long-term cultures, the climate and growth factors of geographic location present a 

challenge. Here is where the potential for precision fruit cultivation lies. The properties of the 

climate for the location may be viewed as fixed, but are not steady-state. The micro climate 

can change through pruning and cutting; this influences other parameters like pests, water 

use, and metabolic activity — in particular the respiration rate (Kang et al., 2002; Simon et 

al., 2006; Schneider and Childers, 1941). 

 

 

1.2.3 Growth factor water 

One of the most important and changeable growth factors is water. The freshwater needed 

for irrigation is a limited resource (Naor et al., 2006). Among other things, a water shortage 

causes reduced yield and equality in the harvested products (Berman and DeJong, 1996). In 

particular, it is important to note the total amount of fruit per liter of water while considering 

the fruit quality (Moriana et al., 2003). Therefore it is necessary to irrigate efficiently. In 

current practice, the irrigation amounts and intervals are regulated through taking 

measurements with tensiometers or evaluating climate data (Nadler, 2004). However, the 

actual water requirements of the plants, which show in stress indicators, are not taken into 

account in commercial fruit production (Naor et al., 2006; Maes and Steppe, 2012; Sadeghi 

et al. 1994). Stress indicators include a rise in leaf temperature (Jones et al., 2002), closed 

stomata (Scholander et al., 1965), and an impaired flow in the xylem (Tromp, 1984). Even a 

small drought stress causes changes in physiological parameters like the leaf water potential 

and stomatic conductivity (Elsayed-Farag and Melgar, 2015). 

For pears, Naor et al. (2006) demonstrated that leaf analysis of water potential, transpiration 

rate, and the maximum change in stem thickness can be used as stress indicators. 

Meanwhile they showed that, for apples and nectarines, soil moisture is a better stress 

indicator (Naor et al., 2006). This is especially true of young tress (Moriana and Fereres, 

2003).  
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With the aid of established water potential measurements, trials in fruit cultivation have spot 

tested current water deficits of plants (Choné et al., 2001, Scholander et al., 1965). By using 

pressure chamber technology, the leaf potential (LWP), the predawn water potential 

(PDWP), as well as the stem water potential (SWP) may be determined (Herroero-Langreo 

et al., 2013).  

This method is based on a high correlation between the LWP and the soil water content 

(Williams and Araujo, 2002). This is true for various fruit (citrus, apples, olives, wine grapes) 

in the subtropics as well as temperate zones (Williams and Araujo, 2002; Jones 2007; Ünlü 

2014; Nadler 2004). Ünlü et al. (2014) further showed the connections between yield and 

LWP (R²= 0.68) and between yield and soil water depletion (R²= 0.66) in grapefruit. Top of 

this, Naor (2000) investigated apples, grapevines, litchi, and nectarines, and found that the 

stem water potential was a better water stress indicator than LWP. This was supported by 

continuing work by Naor and Cohen (2003). Gómez-del-Campo (2013) showed that a 

reduced stem water potential also is a positive influence on the fruit size (Naor et al., 2001). 

Leib et al. (2006) showed the same for apples and Mahhou et al. (2006) did as well for 

peaches.  

For grapevines, Griona et al. (2006) investigated the connection between water potential and 

the fruit quality. The workgroup showed that drought stress was a negative influence on the 

size of the fruit as well as the water content and sweetness of the grapes. That said, 

Herroero-Langreo et al. (2013) had a better result with a higher correlation to fruit quality, 

while the type of water potential measurement was irrelevant. 

In addition, the plant temperature can nondestructively record the plant’s water availability 

(Gates, 1964). This is founded on the work of Ido and Jackson (Ido, 1982; Jackson 1981) 

and is termed the Crop Water Stress Index (CWSI). In 1982, Ido examined various crop non-

water stress baselines using the vapor pressure deficit (VPD), although air temperature (Tair) 

and canopy temperature (Tc) were manually recorded. According to Fuchs (1990), the 

manual measurement of leaf temperature is not possible, since atmospheric influences such 

as air temperature, humidity, wind speed, and solar radiation lead to different conditions 

within each measurement. Jones (1992, 2004) expanded on this approach by taking into 

account variable climactic conditions for arid and semi-arid regions. In 2013, González-Dugo 

et al. investigated water status for five different fruit types (almonds, apricots, peaches, 

lemons, and oranges) with the help of thermal imaging. They were able to show that the 

stem water potential does well with Tair-Tc. Sepaskhah and Kashefipour (1994) reached the 

same conclusions with sweet limes.  

As the plant water status is further influenced by soil, canopy dimension, topography, and 

irrigation intervals, only a few trees could be measured in open field conditions (Cohen et al., 
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2005; Berni et al., 2009). With thermal imaging is it possible to remotely and 

comprehensively collect CWSI data for an entire plot (Jones, 2002; Acevedo-Opazo et al., 

2008; González-Dugo et al., 2006; Bellvert et al., 2014a). A further advantage is the 

possibility of automated measurement, which makes CWSI a cost-effective method 

(González-Dugo et al., 2006). At the same time, the modification of the equation for different 

reference points for wet and dry leads to the CWSI becoming ever closer to the mark (Irmak 

et al. 2000; Jones 1999, Meron et al. 2010). For example, Meron et al. (2010) adjusted the 

equation for the artificially wet reference plot, and Irmak et al. (2000) used the dry reference 

Tair + 5°C. Cohen et al. (2015) connected the method used by Meron et al. (2010) and Irmak 

et al. (2000) and showed a connection (R²= 0.82) between LWP and CWSI in various 

development stages of cotton. For grapevines, Bellvert et al. (2014b) found the same. Aside 

from that, Möller et al. (2007) used an adjusted equation for grapevines that the connection 

between CWSI and leaf conductivity is robust. Rud et al., (2015) supported this with their 

work on salt-induced effects in olives. The work of Cohen et al. (2005) showed that the 

connection between CWSI and LWP is stable. Furthermore, Agam et al. (2014) were able to 

document less distinctive water stress in olives in arid areas with the help of thermal images. 

This group showed further that differences in tree volume were expected to produce varied 

stress level of r² = 0.88.  

Long-term water stress is reflected in the leaf surfaces of the tree (Käthner et al., 2014). This 

can be automatically measured with Light detection and ranging (LiDAR) (Zaman and 

Schuhmann, 2006; Zaman and Salyani, 2004). Rosell et al. (2009) showed that this method 

shows a good correlation between manual and sensor-based measurements of vegetative 

volume in tree row plantations of apples, pears, and grapevines. Acevedo-Opazo et al. 

(2010) were further able to show in their study of a non-irrigated vineyard in France that trunk 

circumference and leaf area are mainly influenced by vine water status. The work of 

Intrigliolo and Castel (2006a) supported this, as they found that reduction in leaf area is 

caused by water stress.  

All these researches were primary performed in arid to semi-arid areas, while most of the trial 

plots in semi-humid climates were artificially irrigated. This study is focused on the use of 

these methods in a semi-humid area. The authors took into account yield maximization, 

sparing resources, and quality optimization. 
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1.3 Statement of the hypothesis and research objectives 

It is hypothesized that:  

1. There is soil variability in our region's fruit plantations. The soil was formed by 

different glacial events during the upper pleitocene. As a consequence different grain 

size distribution and different water saturation was developed. And this influence the 

water and nutrient supply into the soil. Thus it could be an influence of the fruit quality 

2. The water status of the trees could show spatial differences. 

3. Both factors could affect the fruit quality. 

 

To test the previous hypothesizes, the following research objectives were established. 

i) Characterization of the 3D distribution of the apparent electrical conductivity of the 

soil and variability of the plant’s water status  

The present study is intended to characterize a plot based on apparent electrical 

conductivity, land topography, and the trunk water status. For this, a plum orchard in a semi-

humid climate in Marquardt, Germany was tested. The apparent electrical conductivity of the 

soil should be used to see which depth has the most influence on the generative growth, e.g. 

flower set and fruit set, of the fruit tree. To that end, a 3D model of the conductivity of the soil 

over the entire orchard is to be recorded. Aside from that, various monitoring data and fruit 

quality parameters will be recorded for each individual tree. The characterization of the 

connections between the chosen variables shall be determined. 

ii) Investigation of the interaction between ECa, the crop water stress index (CWSI), 

and fruit quality 

The water availability of the tree should be of particular interest, which plays an important 

role in product quality. For this, water content of the soil and plant will be determined with an 

established measurement method. A sensor to monitoring of soil matric potential is called 

pF-meter and a Scholander pressure bomb are particularly effective, since the water 

potential of a plant is recorded. Additionally, the sensor-provided data will be compared to 

the gravimetric tests. With a commercial technique, the Scholander bomb, for measuring the 

median plant water potential, the current plant water deficit should be destructively 

determined. Furthermore, with the aid of thermographic data, the study will seek to find a 

non-destructive and spatially resolved method for determining the plant water status for 

individual trees. From the thermal data, the CWSI of the tree in a semi-humid climate should 

be determined. 
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iii) Possibility of division of management zones with respect to irrigation. 

Various evaluation methods should help determine how the spatially resolved plant and soil 

data relate to one another. For example, the fruit quality, monitor data, and optical fruit data 

will be employed. The statistical analysis will be performed with the statistics package of 

MATLAB® (R2010b & R2016b, MathWorks, USA). 

An evaluation process should be found that makes possible a spatial analysis of soil and 

plant. A free “spatial toolbox” program with algorithms for hotspot analysis shows the 

potential for this.  
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2 Interaction of 3D soil electrical conductivity and generative growth in Prunus 

domestica L.  

(European Journal of Horticultural Science. 2015, 80 (5): 231-239, DOI: 

10.17660/eJHS.2015/80.5.5) 

Correctio: page 17 para 1 were inserted: per tree 

  page 20: # fruit instead of yield  

2.1 Summary  

Examination of spatial soil heterogeneity within orchards may provide an approach for 

precise, more sustainable production processes. In predominantly sandy soil, which was 

formed by glacial and post-glacial deposits, generative growth of plum trees (Prunus 

domestica 'Tophit plus', n=156) were closely analyzed (flower set, fruit set, fruit drop, fruit 

size, fruit pigments, and yield), and classified according to the apparent electrical conductivity 

(ECa) of the soil in three depths (topsoil, root zone, subsoil). The soil ECa showed small 

scale variability between 1.3 mS/m and 76.7 mS/m with stable pattern for two years (r = 

0.88). The ECa in different depths corresponded to the compaction profile and water content 

of the sandy soil. The ECa in the root zone correlated to tree growth. However, the ECa of 

topsoil and the elevation (slope = 3.15°) of the terrain had a similar or enhanced impact. The 

ECa in the topsoil and elevation were correlated with fruit set at r = 0.17 (p = 0.011) and r = -

0.45 (p = 0.133), and fruit size at r = 0.06 (p < 0.001) and r = 0.05 (p < 0.001) respectively. 

Such findings are particularly interesting for orchards with graded elevation gradient or soil 

compaction from mechanical weed control. 

Keywords: electrical conductivity, fruit, plum, precision fruticulture, spatial variability 

 

 

2.2 Introduction 

The concept of precision fruticulture follows the knowledge achieved in site-specific farming 

over the last decades. Using spatial information of soil and variability of plant phenotype, 

zones can be marked that are under- or over-supplied with a certain growth factor. This 

information can be used to optimise farm profitability and sustainability (Auernhammer, 2001; 

Zhang et al., 2002). However, for management charting of orchards, the approach may need 

hedging due to more complex root system responding to the environment in perennial plants.  

In orchards, methods for spatial soil analysis such as georadar, electromagnetic, and seismic 

readings are either not suitable to provide the necessary spatial resolution or interfere with 

machinery and constructions in the orchards such as drip irrigation. Therefore, electrical 

conductivity (ECa) is frequently used for spatially analyzing soil pattern in orchard and 
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vineyard. ECa is measured by means of apparent resistance readings (Allred et al. 2008). To 

map the soil ECa, set-ups as rolling system are unsuitable, again due to interference with 

trees and machinery in the orchard (Gebbers et al., 2009; Lück and Rühlmann, 2013). 

Instead, direct current geoelectric readings can be applied using four electrodes on a mobile 

frame, with the measurement spot close to the tree (Wenner, 1915; Pozdnyakov and 

Pozdnyakov, 2002). Direct current is coupled to the soil and as a function of spatial 

distribution of resistivity; an electrical field is built up. The strength and direction of direct 

current remains equal for each measurement. Using Ohm’s law, ECa can be measured 

(Telford et al. 1990). By setting the distance of electrodes, the desired measuring depth can 

be addressed (Mancuso, 2012). The relative depth response of the signal with a electrode 

spacing of 0.5 m shows a peak at 0.17 m depth (Joschko et al., 2009), where 100% of the 

signal is contributed by this setup. By means of a multi-electrode array, a 3D cube of soil 

ECa can be mapped, providing enhanced spatial resolution by decreasing the electrode 

spacing (Loke and Barker, 1996; Reynolds, 1997). ECa appears to be feasible for delineating 

soil heterogeneity, even if it provides a merged signal for texture, water content, and pH, as 

well as fluid conductivity and organic matter (Lück et al., 2009). In areas with high spatial 

variability, ECa is a qualitative indicator for soil texture (Molin and Faulin, 2012), while in 

particular for low variability, the influence of soil moisture, activity, or composition of 

dissolved ions as well as clay content determine the lead of the current in the soil (Corwin 

and Lesch, 2003; Telford et al., 1990). Consequently, low, but small scale variability of soil 

ECa points to varying root environment caused by natural soil development or production 

measures as mechanical weed control.  

Rodriguez-Perez et al. (2011) applied a soil electrical conductivity meter in a vineyard to 

characterize spatial distribution of soil with high clay content. It was pointed out that ECa 

data can be used to obtain a cartographic representation of spatially complex soil at different 

depths. Mc Bratney et al. (2005) showed that ECa can be used for delineating management 

zones in different parts of New South Wales Australia. The work from Hartsock and co-

workers, which was carried out in an orchard, shows that absolute ECa varied, but spatial 

pattern of ECa were stable over two seasons (Hartsock et al., 2000).  

By means of correlation analysis regarding soil and plant parameters in vineyards, ECa was 

indicated to be useful for describing soil-plant-interaction with respect to trunk circumference, 

and yield (Bramley et al., 2011; 2004). Findings were presented for soil showing high 

variability of ECa. Furthermore, several studies carried out in the Marlborough region of New 

Zealand revealed that plant variability in vineyards was influenced by variation in the soil 

(Bramley and Hamilton, 2004; Trought et al., 2008). Here, pattern of silty hollows, sand, and 

some gravel was interesting for vintners in parceling and harvest scheduling (Trought and 

Bramley, 2011). Furthermore, Cortell et al., (2005) have shown that soil depth and 
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corresponding water-holding capacity have both direct effects on vine vigor as well as 

indirect effects on vine microclimates. As a result, accumulation of phenolic compounds in 

the fruit appeared in spatial pattern. Reynolds et al., (2007) described the interaction of 

chemical composition of grapes and soil texture as well as chemical composition of the soil. 

In fruit trees, soil properties were correlated to plant growth and fruit quality, mainly in studies 

on citrus and pip fruits: Zaman and Schumann (2006) measured spatial pattern of yield and 

its spatial correlation with respect to different soil zones for Citrus × sinensis L. (oranges). 

The influence of spatial variability of chemical soil properties on Pyrus communis L. (pears) 

fruit trees was analyzed by monitoring spatial pattern of fruit diameter (Konopatzki et al., 

2008). In commercial production of Malus × domestica Borkh. (apples), it was pointed out 

that fruit development and soil ECa correlated (Gebbers and Zude, 2010; Türker et al., 

2011). High-value stone fruits have so far been rarely studied. The impact of tomography on 

soil properties including ECa has been described for several landscapes resulting in 

sometimes opposite conclusions. However, elevation was even considered for delineating 

management zones in citrus production (Siqueira et al., 2010). 

The present study is aimed at evaluating the interaction of small-scale variations in soil ECa 

pattern and tree growth. The objectives were (i) to characterize the orchard considering 

spatial variability of soil ECa in different depths and the slope of the terrain, and (ii) to 

evaluate its correlations to generative growth in plum trees. 

 

 

2.3 Material and Methods 

2.3.1 Experimental design 

In 2011 and 2012, measurements were carried out in plum (Prunus domestica L.) orchard 

with a size of 0.37 ha located in Potsdam, Germany. The climate is temperate and the terrain 

is 42 m above sea level. The main soil consists of predominantly sandy soils, which were 

formed by glacial and post-glacial deposits after the last ice age about 10000 years ago. Drip 

irrigation with 0.5 m spacing in the row was maintained in the entire orchard with one 

application level: Each dripper delivered 1.6 +0.1 liters within 30 min. Irrigation was 

performed every three days from April to September. Weed control in the rows was carried 

out using a rotary cultivator three times per year since 2009. 

The plantation consisted of six rows with a total of 180 plum trees, with 5 m between rows 

and 4 m between plants in each row. Trees were planted at two ages, both in the dormancy 

period 2008 – 2009. Consequently, trees were five and six years old in 2012. All 

measurements were carried out in 2011 and 2012 on each of the 180 plum trees. The 
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cultivar used in the experiment is 'Tophit plus' budded on Wavit, while 24 pollinator trees 

('Jojo' on Wavit) were excluded from the data set. All trees had an adventitious root system. 

The unripe fruits are green, while ripe fruit appear as large blue fruits with a yellow flesh.  

 

2.3.2 Topographic readings 

Tree positions were recorded by an RTK-GPS system (HiPer Pro, Topcon Corporation, 

Japan), while providing geographical data using the WGS 84 System. Horizontal data was 

used for linking ECa and tree data. Vertical data provided the elevation of each tree, where 

the positions of highest and lowest trees were used to calculate the slope of orchard.  

The horizontal and vertical margins of error for this system were less than 0.03 m and 0.04 

m, respectively. Topographical data was captured with 5 m measuring intervals in x and 0.50 

m in y-axis. The topographical model was created using a combination of natural nearest 

neighbor interpolation and a triangulation tool from MATLAB® (R2010B, MathWorks, U.S.), 

then converted to grid surface map with 0.50 m grid resolution. 

 

2.3.3 Soil analyses 

2.3.3.1 ECa tomography 

Apparent soil ECa was analyzed using electrode configuration as a Wenner array (4-point 

light hp, LGM, Germany), in which four electrodes are arranged in line equally spaced. Two 

outer electrodes are current electrodes and two inner electrodes are potential electrodes 

(Mancuso, 2012). All measurements were taken with one additional ground electrode in one 

place in order to obtain more stable data. Measurements were carried out in two seasons 

(2011, 2012) on each tree with an electrode spacing of 1 m, and additionally in 2011 with an 

electrode spacing of 0.25 m at right angles to tree rows. When measuring electrical 

resistance, the penetration depth depends on the spacing of transmitting electrodes, which 

were adjusted in the range from 0.75 m up to 20 m. As a result, penetration depth was at 

minimum 0.08 m and at maximum 2.20 m. An area of 192.0 m x 37.5 m was analyzed with 

1.0 m measuring intervals in the x- and 0.5 m in the y-axis.  

The values of electrical resistance were inverted and pre-analyzed in RES2DINV (Geotomo 

software, allied associates geophysical LTD, United Kingdom). Inversion of resistivity was 

conducted by a least-square method involving finite-element and finite-difference methods 

(Loke and Barker, 1996). With these steps, 132 profiles in the y-axis were obtained and, by 

using the tree position, tree-specific ECa values were calculated. 
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2.3.3.2 Boreholes 

Additionally, geoelectric (4-point light hp, LGM, Germany) measurements were carried out in 

boreholes located 0.10 m north to the stem of 37 randomly selected trees in order to 

measure the depth profiles of soil variability with enhanced spatial resolution. ECa was 

analyzed at every 0.05 m for the uppermost 1 m depth by using the Wenner electrode 

configuration with electrode (0.30 m diameter and 0.03 m thickness) distance of 0.25 m.  

The distribution of water infiltration was recorded at the trees, where borehole analysis was 

applied. Mimicking irrigation, over a period of 30 minutes 1.6 liters were deposited at an 

incident point and the profile was cut off with a spade, perpendicular to the irrigation tube. 

Visually wet areas were manually measured with 2 cm resolution in x- and y-axis. 

Also, soil texture was recorded by wet-sieving and sedimentation with the Köhn-Pipette 

method using Na4P2O7 (Hartge and Horn, 1992). The content of fine particles was calculated 

from total clay content plus content of fine silt (< 0.0063 mm). The soil texture classification 

was carried out according to Bouyoucos (Bouyoucos, 1951) at five different depths (0-5 cm, 

15-20 cm, 20-30 cm, 30-60 cm, and 60-100 cm). 

At same positions, penetration resistance (PR) of soil was measured with a hand-held 

penetrometer (06.01.SA, Eijkelkamp, Netherlands) equipped with a probe cone of 3.3 cm 

and an opening angle of 60°. The ratio between measured value and probe cone provides 

the PR [kN/cm²]. The PR was measured along the rows, twice on opposite sides of trees at 

0-5 cm, 15-20 cm, 20-30 cm, 30-60 cm and 60-100 cm. 

Soil samples (n=10) were taken randomized for chemical analysis of organic matter, pH, 

salinity, phosphorus, potassium, magnesium, calcium, sodium, and chlorine according to 

standardized methods (VDLUFA, 2003).  

 

2.3.4 Location of roots 

By the end of the experiment, 31 trees were excavated and the number of roots was counted 

to estimate the root zone. Roots were found between 0 and 60 cm depth with marginal 

number of roots above 25 and below 50 cm, which was defined as root zone in the present 

study. Trees showed their maximum root density between 25 and 30 cm. 

 

2.3.5 Plant readings 

Measurements were carried out in phenological stages 6, 7, and 8 (Meier, 2001). On each of 

the 180 plums the following indicators of generative growth were measured: flower set 

[#flowers/tree], fruit set [#fruit/tree], fruit drop [#fruit/tree], yield [#fruit/tree] and [kg/tree], fruit 
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size [mm/fruit]. Flower set was measured as inflorescences as well as individual flowers per 

tree, with an average of 1.3 flowers per inflorescence. Fruit size was measured by height 

considering the length of fruit in the peduncle plane on all fruit. Fruit development and 

ripening were followed in weekly measurements on 10 fruit per tree. Two non-destructive 

optical fruit sensors were employed, both addressing the chlorophyll content of fruits by 

means of indices established for peach and apple (Zude, 2003; Ziosi et al, 2008). One 

multispectral sensor (DA-Meter, Sintéleia, Italy) used light-emitting diodes and a photodiode 

detector with a filter to measure the absorbance at 670 nm and 730 nm. The DA-index is 

calculated as intensity difference of these two wavelengths. Also, a spectrophotometer 

capturing the wavelength range of 500-1100 nm (Pigment Analyzer, CP, Germany) was 

applied. The variable of note was the normalized difference vegetation index (NDVI) that was 

calculated from remittance (R) intensities at indexed wavelengths (CP, 2002) by NDVI = (R780 

– R660) / (R780 + R660). 

 

2.3.6 Statistical analyses 

Growth data were transformed into a normalized distribution using a variance-stabilizing 

method by processing the root of raw data. The multiple-path analysis of variance, ANOVA, 

was applied (i) to identify the most suitable number of classes of soil ECa and (ii) to test the 

effect of ECa depths and elevation on the means of tree data (Webster and Oliver, 1990). 

Linear correlation analysis and ANOVA were carried out in the statistical package for 

MATLAB® (R2010B, MathWorks, U.S.).  

 

 

2.4 Results and Discussion 

2.4.1 Correlation of soil ECa and tree data in two growing seasons 

Geoelectrical readings of soil ECa revealed spatial pattern ranging from 1.3 mS/m to 76.7 

mS/m (Figure 2). Small-scale differences resulted in variations in soil conditions even for 

neighboring trees. Soil ECa in the root zone, measured in 2011 and 2012, resulted in a linear 

correlation coefficient of r = 0.884, which points to a temporally stable soil pattern over time. 

Also, readings at different soil depths correlated highly with r = 0.917, 0.898, and 0.985 for 

topsoil and root zone, for topsoil and subsoil, and for root zone and subsoil, respectively. 
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Figure 2. 3D soil ECa cube with 35 m in the x- axis, 132 m in the y-axis and 1.5 m in the 

depth. The ECa values of the cube range from 1.3 mS/m to 76.7 mS/m. Legend was cut at 

16 mS/m to increase the contrast in the low variability relevant in the topsoil and root zone. 

 

In 2011, trees, planted as one-year budded material, only approached maturation. The mean 

data for flower set and yield per tree were 1561.28 (+/-493.64) and 240.17 (+/-98.34), 

respectively. The Pearson correlation of soil ECa and tree data measured in 2011 was r = 

0.521 for yield and r < 0.400 for remaining variables (Table 1). In 2012, mean values for 

flower set and yield were increased to 1075.68 (+/-329.20) and 970.49 (+/-190.43), 

respectively. Correlations were found for soil ECa and yield as well as fruit quality 

considering fruit size and fruit pigmentation (NDVI and DA-Index). However, compared to 

data of 2011, in 2012 the correlation coefficient slightly decreased for all variables including 

yield and fruit size, but results are significant only in 2012 due to larger data sets and 

reduced variance in mature trees (Figure 3a). Due to the significance of this, the second year 

of experiments will be presented in further detail. 
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Table 1. Pearson correlation coefficients (r) of generative tree data and soil electrical 

conductivity, ECa, at three depths measured in a Prunus domestica orchard. Fruit data was 

measured on 10 fruit per tree and are given as mean values for each tree (n). The presented 

trees were planted as one-year old budded material and were 4 years old in 2011. 

Tree data (n) ECatopsoil ECaroot zone ECasubsoil 

Flower set (104)   0.10*   0.05*   0.04* 

Fruit set (96)   0.20*   0.14*   0.11* 

Fruit drop (96)   -0.06*   0.02*   0.02* 

# Fruit (71)   0.36*   0.40*   0.40* 

Fruit height (2511)   0.08*   0.18*   0.19* 

Yield (122)   0.52*   0.33*   0.34* 

1 fruit basis, while all other values were measured on a tree basis; 2 note that only 12 trees 

were recorded, since most trees lost their fruit already by pre-harvest fruit drop 

* significance level of 0.05  

 

 

2.4.2 Interaction of soil ECa in different depths and tree data in the second year of the 

experiment  

F values for classes according to ECa values of topsoil and subsoil were calculated. 

However, F values showed no significance apart from flower set (ECatopsoil: F = 1.43 and p = 

0.21; ECasubsoil: F = 4.02 and p = 0.02). The F values for tree data from ANOVA, resulting 

from classes based on ECa in the root zone, ranged from 0.01 to 8.2 with different number of 

soil classes (Figure 4). As a result, ECa values in the root zone were used to group the data 

into 8 classes according to the highest F values. Nevertheless, a test was carried out on 

classes with respect to ECa in other depths (data not shown). In this approach, classes of 

topsoil were evaluated for analyzing the root zone and subsoil; then the classes of root zone 

were applied for analyzing topsoil and subsoil; and subsoil classes were used for analyzing 

root zone and subsoil interaction with yield parameters. For each of these three variants, an 

ANOVA calculation was performed. This approach revealed that only the group related to the 

root zone shows a dependency between tree data and ECa values. Consequently, all 

subsequent calculations of ANOVA were carried out according to 8 soil classes based on 

ECa in the root zone. In the orchard, class 8 is the most frequent, but this disproportion has 

had no effect on the ANOVA results obtained.  
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Figure 3. Scatter plot Scatter plots from six-year-old trees in the second year of the 

experiment, where the root of values of fruit set (n = 97, r = 0.17 for ECatopsoil; and -0.45 for 

elevation), # fruits/tree (n = 83, r = 0.18; -0.45), fruit height (n = 1378, r = 0.06; -0.05), and 

yield in kg/tree (n = 87, r = 0.04; -0.54) are plotted over ECatopsoil (a) and elevation (b). 

 

Interaction of tree data and ECa at different soil depths was found (Table 2). In 2012, soil 

ECaroot zone showed an interaction with flower set and fruit set in trees planted as one-year old 

budded material. Such findings were confirmed on trees planted as 2-year budded material 

and a resulting age of six years (Table 2). 

Figure 4. The F values of normalized plant parameters (flower set, fruit set, fruit drop, # fruit 

per tree, fruit height in mm per fruit, yield in kg per tree) for a different number of classes 

considering ECa in the root zone. 
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Table 2. ANOVA results showing F- and p-values of plant parameters in 2012 for trees 

planted in winter 2008/2009 as one- and two-year-old budded material. ANOVA was carried 

out on the classed tree data after transformation to normal distribution by the root of raw 

data. 

Plant parameter ECa
topsoil

 ECa
root zone

 ECa
subsoil

 

F p < F F p < F F p < F 

5
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r 
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re

e
s
 

Flower set  1.87 0.084 5.65 0.005 9.54 0.003 

Fruit set 1.58 0.153 3.84 0.025 0.01 n. s. 

Fruit drop  1.17 n. s. 0.12 n. s. 2.57 n. s. 

# Fruits  1.26 n. s. 0.03 n. s. 0.02 n. s. 

Fruit height* 5.11 < 0.001 2.52 0.113 1.47 n. s. 

Yield  0.93 n. s. 0.22 n. s. 0 n. s. 

Fruit NDVI* 1.87 0.152 1.47 0.242 0 n. s. 

 DA-index* 3.27 0.032 1.96 0.157 0 n. s. 

6
-y

e
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r 
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ld
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Flower set 14.25 0 5.64 0.022 0.05 n. s. 

Fruit set 9.61 < 0.001 4.55 0.039 1.82 n. s. 

Fruit drop  4.37  0.009 1.65 n. s. 2.15 0.129 

# Fruit 6.70 0.001 0.27 n. s. 1.13 n. s. 

Fruit height* 13.77 < 0.001 21.32 < 0.001 0.95 n. s. 

Yield 2.20 0.125 0.91 n. s. 1.35 n. s. 

 Fruit NDVI* 0.39 0.540 0.08 0.916 4.68 0.042 

 DA-index* 0.50 0.486 0.35 0.708 1.83 0.190 

* means on each tree was considered, calculated from readings on all fruit per tree for fruit 

height and 10 fruits per tree for pigmentation (NDVI, DA-Index) 

In these older trees, flower set and yield were enhanced with mean 2091.39 (+/-660.93) and 

1889.89 (+/-343.38), respectively. Here, the yield was also significantly increased along with 

enhanced soil ECaroot zone.  

 

Fruit height appears highly significant (< 0.001) for topsoil and root zone. This is particularly 

notable because fruit size is the main quality parameter for small stone fruits (cherry, plum, 

apricots). The highest F value of 21.32 was calculated in older trees for ECaroot zone. A similar 

impact of soil properties on fruit size was reported for pears earlier (Konopatzki et al., 2008). 

Flower set and fruit set show high values for F in ECatopsoil and ECaroot zone. In older trees, the 

# fruit depends significantly on the ECa in the topsoil. The maturity-dependent fruit 

chlorophyll was marginally influenced by soil ECa in five-year old trees, for NDVI (F = 1.87 

and p = 0.152) and DA-index (F = 3.27 and p = 0.032). Under the principles of precision 
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agriculture, numerous methods exist for spatial analysis (Gelfand et al., 2010). In practice, 

statistics were developed for small-scale variability in orchard hot spots. Such an approach 

addresses point based data instead of zonal data (Peeters et al., 2015). 

For interaction of soil ECa and tree data, no significant influence was found regarding the 

ECa of subsoil. Flower set appears to be p = 0.003, but this may be assumed to be caused 

by a high correlation between the soil ECa pattern of subsoil, root zone, and topsoil. 

Surprisingly, ECa of topsoil sometimes showed enhanced significance level in comparison to 

ECa of root zone. We assume that in particular the short-term influence of soil moisture in 

cases of low precipitation and irrigation rates result in an increased impact of the ECa of 

topsoil on tree variables.  

 

2.4.3 Impact of ECatopsoil and elevation on generative tree growth 

In the plum orchard, the elevation gradient from the highest (117, 25) to the lowest (1, 1) 

point is 6 meters, resulting in a slope of 3.15°. In higher elevations, the soil showed 

decreased soil ECa. For elevation, negative correlation was found with generative growth 

(flower set, fruit set, yield) and fruit quality (Figure 3b). Such negative correlation of yield and 

elevation was already found earlier in citrus production (Mann et al., 2011).  

Concluding from ANOVA results using 8 soil classes (Figure 4), the ECa of topsoil was 

studied further (Table 2) and compared to the dependencies of elevation gradient. By 

assessing elevation, ANOVA revealed decreased significance levels for ECatopsoil, but 

indicates a dependency on elevation (Table 3). Fruit quality, namely fruit height, is strongly 

significantly influenced by ECatopsoil as well as by elevation. The indicators for maturity-related 

chlorophyll content, NDVI and DA-Index, point to no dependencies at any soil depth or 

elevation for older trees (Table 3). Flower set, fruit set, and fruit drop show a higher level of 

significance in older trees compared to less mature trees (data not shown), again due to 

more homogeneous bearing in more mature trees. Concluding, for all tree variables, ECatopsoil 

showed an enhanced impact in comparison with elevation in the situation of 3° slope (Table 

3).  

 

 

 

 

 



Interaction of 3D soil electrical conductivity and generative growth in Prunus domestica L.  

23 

Table 3. ANOVA results regarding electrical conductivity (ECa) in the topsoil and elevation of 

terrain, showing F- and p-values of tree data in 2012. ANOVA was carried out on the classed 

tree data after transformation to normal distribution by the root of raw data. 

Plant parameter ECatopsoil Elevation 

F p < F F p < F 

6
-y

e
a
r 

o
ld

 t
re

e
s
 

Flower set  3.78 0.007 2.63 0.038 

Fruit set  3.46 0.011 1.80 0.133 

Fruit drop 3.78 0.007 0.47 n. s. 

# Fruit  9.75 0 0.58 n. s. 

Fruit height* 10.72 < 0.001 8.20 < 0.001 

Yield 1.84 0.128 0.65 n. s. 

 Fruit NDVI* 0.46 0.800 1.72 0.184 

 DA-index* 0.70 0.630 0.98 0.441 

* means on each tree were considered, calculated from readings on all fruit per tree for fruit 

height and 10 fruit per tree for pigmentation (NDVI, DA-Index) 

 

It can be assumed that the impact of elevation is due to the merged effects of variations in 

micro-climate in the canopy as well as the water-holding capacity of the soil – the later 

potentially also covered by ECa readings. In the present and former studies (Siqueira et al., 

2010; Mann et al., 2011), generative growth was negatively correlated with elevation, and 

oppositely correlated with ECa, due to a higher percentage of low soil quality uphill and 

presumably decreased water supply due to water transport down-hill.  

 

2.4.4 Interpretation of soil ECa data by means of two characteristic profiles 

Using geoelectric analyses of boreholes, variability of ECa of topsoil and root zone was 

measured with an enhanced spatial resolution. Results reveal no extreme values. The ECa 

of subsoil appeared to be rather homogeneous in the entire orchard. Two characteristic ECa 

profiles are presented out of 37 profiles to achieve a better insight into the soil characteristics 

(Figure 5) and interaction with tree growth. The profiles were measured at trees representing 

the classes 1 and 5, considering the ECa values (Figure 2) classed by ANOVA (Figure 4).  

 



Interaction of 3D soil electrical conductivity and generative growth in Prunus domestica L.  

24 

 

Figure 5. Two representative ECa profiles measured by borehole geoelectric including 

corresponding penetrometer resistance and infiltration figures. The symbols indicate the 

measuring depths, while the line represents the interpolated curve. In addition, zone border 

are shown with a solid line: topsoil (0.0-0.25 m), root zone (0.25-0.5 m), and subsoil (1.00-

1.25 m). Borders were set according to the root distribution measured the 31 trees, which 

were removed from the orchard after the experiment. 

 

The ECa profile of class 5 ranged from 1.3 to 11.8 mS/m (Figure 5, left). Here, the ECa 

values of the root zone increased at the depth of 0.4 m up to 6 mS/ m and then fell back to 

1.4 mS/m. The data represent soil lenses in which loam nourishment is enhanced compared 

to the surrounding environment. In the subsoil, ECa values increased to 3.5 mS/m at a depth 

of 0.75 m. The enhanced ECa indicates higher loam content with increasing depth disturbed 

again by a small sand lens. The subsequent increase of ECa values to 11.8 mS/m suggests 

the appearance of a silt lens or at least enhanced silt content in the soil.  

The ECa profile of class 1 (Figure 5, right) revealed relatively low ECa values ranging from 

0.9 to 5.8 mS/m. The minimum value for this reading with enhanced spatial resolution 

exceeds results from geoelectrical tomography (Figure 2). The low values can be interpreted 
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as sandy sand. An increase in ECa values from 1.9 mS/m to 4.1 mS/m appeared from topsoil 

to root zone, indicating reduced percentage of sandy soil at the root zone and the center of 

horizon A. From root zone to subsoil, ECa values increased to 5.8 mS/m, suggesting a 

marginal increase of silt content in the sandy soil. 

The center of horizon A is visible in both profiles. It may be derived from the sudden increase 

in ECa at 0.40 m and is further supported by texture analysis, showing a transition to smaller 

particles at the same depth. The average percentage of silt content with a particle size 

between 2 µm and 63 µm in the topsoil is at 14.77%, and sand content with a particle size > 

63 µm is at 85.01%. In the root zone, silt content of 14.95% and sand content of 84.74% was 

found. Clay content in all profiles were below 1.27% for topsoil, but showed increasing 

amounts in the root zone with 2.57%. 

The unexpected impact of ECatopsoil, therefore, can be characterized by enhanced ECa 

values in this zone. However, increased ECa in the topsoil can only partly be explained by 

soil texture showing a slightly elevated amount of clay. The cone penetrometer resistance 

(PR) can readily explain the water infiltration measured in opposite classes – represented in 

the bottom of figure 5. High PR in the upper zones (Figure 5 left) hinders the vertical water 

flow and water infiltration appears shallow. As a result, water was stored in the topsoil. It can 

be assumed that enhanced soil compaction was the result of mechanical weed control by 

means of rotary cultivation (Fountas et al., 2011). 

In profiles not showing increased PR values, the water infiltration appears as expected for 

sandy soil with water rapidly infiltrating the soil. In earlier studies, no or low correlation was 

found for penetrometer values and ECa (Jabro et al., 2006), while ECa and soil water 

content correlate highly. Since water transport is hindered by enhanced PR values, we may 

suggest an indirect correlation of ECa and PR in the present study. 

Chemical soil analyses pointed to a normal range for all elements (Schäfer and Grantzau, 

1999), excluding phosphorus and potassium, which appeared slightly elevated. However, no 

impact of the chemical data on the plant growth is assumed for the present study. 

The next step would be to delineate management zones in the orchards. Excellent 

geostatistical methods to analyze spatial data were adapted to this application in fruticulture 

(e.g. Aggelopooulou, et al., 2013; Peeters et al., 2015). However, an additional further look 

into plant interaction with spatially measureable soil properties seems to be reasonable 

before. 
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2.5 Conclusions 

Consistent with findings in precision agriculture of field crops, correlation was found between 

soil electrical conductivity, terrain elevation, generative tree growth, and fruit size. An 

increasing interaction was found in older trees. Considering the depth of the ECa readings, 

ECa in the root zone showed high correlation coefficients for generative tree growth. 

Furthermore, the slope (elevation gradient) of the present orchard and soil compaction 

influenced the root zone environment. Such findings are based on data sets from an orchard 

with relatively small-scale variation in soil ECa due to glacial and post-glacial imprinting and 

soil compaction due to mechanical weed control within the topsoil. 
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3 Getis-Ord's hot- and cold-spot statistics as a basis for multivariate spatial 

clustering of orchard tree data 

(Computers and Electronics in Agriculture. 2015, 111: 140-150, DOI: 

10.1016/j.compag.2014.12.011) 

 

3.1 Abstract 

Precision agriculture aims at sustainably optimizing the management of cultivated fields by 

addressing the spatial variability found in crops and their environment. Spatial variability can 

be evaluated using spatial cluster analysis, which partitions data into homogeneous groups, 

considering the geographical location of features and their spatial relationships. Spatial 

clustering methods evaluate the degree of spatial autocorrelation between features and 

quantify the statistical significance of identified clusters. Clustering of orchard data calls for 

an approach which is based on modeling point data, i.e. individual trees, which can be 

related to site-specific measurements. We present and evaluate a spatial clustering method 

using the Getis–Ord 𝐺𝑖
∗ statistic to the analysis of tree-based data in an experimental 

orchard. We examine the robustness of this method for the analysis of ‘‘hot-spots’’ (clusters 

of high data values) and ‘‘cold-spots’’ (clusters of low data values) in orchards and compare it 

to the k-means clustering algorithm, a widely-used aspatial method. We then present a novel 

approach which accounts for the spatial structure of data in a multivariate cluster analysis by 

combining the spatial Getis–Ord 𝐺𝑖
∗ statistic with k-means multivariate clustering. The 

combined method improved results by both discriminating among features values as well as 

representing their spatial structure and therefore represents a superior technique for 

identifying homogenous spatial clusters in orchards. This approach can be used as a tool for 

precision management of orchards by partitioning trees into management zones. 

 

Keywords: GIS; hot-spot analysis; k-means clustering; management zones; precision 

agriculture; spatial clustering 

 

 

3.2 Introduction 

The growing challenge to diminish the environmental footprint of farming while ensuring food 

security and economic viability of agricultural practices has resulted in the development of 

precision agriculture. Precision agriculture aims to sustainably optimize the management of 

cultivated fields by addressing the spatial variability found in crops and their environment. 

Soil properties and past and present yield distributions are common examples of spatially 
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variable data with potential value for precision agriculture (Zhang et al., 2002). Knowledge 

regarding the form of distribution and the extent of spatial variability of data can support site-

specific management of agricultural crops. 

A well-established approach to recognize homogenous groupings in data uses clustering or 

cluster analysis. This approach has been extended to the analysis of spatial variability in 

agricultural environments. Clustering consists of a group of methods which aim at partitioning 

data into coherent or natural groups based on measures of similarity by maximizing within-

cluster similarities as well as between-cluster differences (MacQueen, 1967). In general, 

clustering methods can be defined as either partitioning or hierarchical. Partitioning methods 

operate by dividing the entire dataset into n clusters, and hierarchical methods work by 

pairing individual data points in a bottom-up or agglomerative process (Jain, 2010). Various 

clustering methods have been developed and adopted from other scientific fields to 

recognize homogenous groupings in spatial agricultural data. Existing methods use either a 

univariate or multivariate approach of yield-defining variable(s) for recognizing homogenous 

groups in field data.  

One of the most popular and well-established algorithms, widely applied in research domains 

such as data mining and pattern recognition, is k-means clustering (Ball and Hall, 1965; 

Lloyd, 1982; McQueen, 1967; Steinhaus, 1956; Theodoridis et al., 2010). While k-means has 

been used extensively in agriculture (Mucherino et al., 2009; Ortega and Santibáñez, 2007), 

its standard algorithm is not very flexible and fuzzy clustering variants to improve its use 

have therefore been developed (Fridgen et al.,2004; Fu et al., 2010; Kitchen et al., 2005; 

Vitharana et al., 2008; Yan et al., 2007). Additional clustering methods for agricultural data 

include the ISODATA method (Fraisse et al., 2001; Guastaferro et al., 2010), a non 

parametric approach developed by Aggelopoulou et al. (2013) and a hierarchical approach 

presented by Fleming et al. (2000). A number of researchers have integrated k-means or 

fuzzy clustering with other algorithms (Córdoba et al., 2013; Davatgar et al., 2012; Fridgen et 

al., 2004). 

In spite of the different clustering approaches that have been developed, only a few make 

use of spatial constraints. Clustering approaches commonly rely only on the data attributes to 

recognize natural groupings and partition data observations. To consider the spatial structure 

of data, clustering methods must integrate the geographical location of objects and the 

spatial relationships between them directly into their mathematics (Cressie and Wikle, 2011; 

Lloyd, 2010; Mitchell, 2005). By accounting for both the differences in attribute values 

between features as well as for spatial location and relationships, spatial clustering methods 

model spatial variability and uncertainties by quantifying the statistical significance of 

recognized patterns and evaluate the degree of clustering of observed spatial distribution.  
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Since agriculture is inherently a spatial phenomenon, in which yield defining variables such 

as soil conditions, topography and microclimate vary in space, processes related to 

agricultural crops and environments should be modeled using spatial methods. Some 

studies, have introduced spatially constrained clustering methods, which limit class 

association to contiguous or proximal features in order to form homogenous management 

zones. Spatially constrained clustering uses aspatial clustering algorithms which are modified 

by introducing constraints of spatial contiguity, for example by introducing spatial 

coordinates, Delaunay triangulation or k nearest neighbors (Gordon, 1996; Legendre and 

Legendre, 2012; Shatar and McBratney, 2001). 

Other studies have examined different approaches to spatial clustering. Pedroso et al. (2010) 

for example, used a segmentation algorithm, adopted from image processing, and compared 

it to k-means clustering and to spatially constrained k-means clustering with promising 

results, and Ping and Dobermann (2003) used a prior classification interpolation (PCI) 

approach preceding the cluster analysis and a post-classification filtering (PCF) approach to 

improve spatial contiguity of yield classes. Perry et al. (2010) have shown that tree properties 

in orchards exhibit spatial autocorrelation and that clustering results could be improved 

considerably by introducing spatial methods. A recent study by Córdoba et al. (2013), for 

example, compared the aspatial k-means algorithm with spatial clustering techniques, when 

applied to wheat and soybean crops. Their proposed approach combined spatial principal 

component analysis with fuzzy k-means (KM-sPC) to classify elevation, soil and yield into 

spatial clusters. They assessed the degree of within-field spatial variation (spatial 

autocorrelation) and came to the conclusion that adding the spatial dimension improved the 

clustering results and produced more contiguous groups. Moreover, they concluded that 

under spatial autocorrelation, unconstrained fuzzy k-means clustering and classical principal 

component analysis (PCA) were insufficient and were likely to less successfully recognize 

spatial structure.  

The majority of relevant agricultural research has concentrated on the use of aspatial 

clustering methods and particularly on their application to field crops (Perry et al., 2010). 

While spatial clustering methods have been applied in agriculture to address various issues 

such as, crop disease (Cohen et al., 2011), yield potential (Lark, 1998; Perry et al., 2010) 

and soil fertility (Cohen et al., 2013; Yan et al., 2007), contributions attempting to apply 

spatial clustering techniques to tree-based data in orchards, are few and rather recent 

(Aggelopoulou et al., 2010, 2013; Kounatidis et al., 2008; Mann et al., 2010; Perry et al., 

2010; Zaman and Schumann, 2006). 

Since existing clustering approaches have been mainly developed for annual crops they are 

based on either sampling continuous data, or on zonal data, such as yield per area, and do 
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not necessarily consider point-based data, such as from individual trees. Attributes 

associated with tree crops can be either discrete or continuous. For example, tree size, 

flowering level and fruit yield are examples of discrete variables associated with single trees 

only, while soil properties and consequential variables including water or nutrient availability 

are continuous and occur throughout the entire orchard, even where trees are not present. 

Therefore, clustering of orchard data calls for an approach which is based on modelling 

point-based data i.e. individual trees and which can be related to site-specific measurements. 

We further investigated the conclusions on the significance of spatial clustering in agriculture 

presented by studies such as Córdoba et al. (2013) and examined the application of spatial 

clustering to data gathered from individual trees in an orchard. We begin by presenting a 

comparative study between two clustering methods; one aspatial and extensively-used and 

the other spatial and often applied to the analysis of point-based data such as crime events, 

rainfall modeling and disease cases, but rarely used in agriculture, to recognize hot-spots 

(clusters of high data values) and cold-spots (clusters of low data values) in orchard data. 

We then present a novel approach which combines spatial and aspatial methods, particularly 

suitable for point-based data, and we evaluate its appropriateness for contiguous spatial 

cluster recognition in orchards. 

 

 

3.3 Spatial vs. aspatial clustering  

Aspatial clustering considers only the values of data points, in partitioning the data into 

clusters. It does not account for the geographical spatial context (spatial location and 

neighborhood), or for the extent of spatial autocorrelation among data points (Aggelopoulou 

et al., 2013; Córdoba et al., 2013). However, spatial autocorrelation which measures the 

degree of similarity between neighboring features (data points), is an important concept in 

the analysis of spatial data as it indicates whether features are spatially dependent or 

independent (Cressie and Wikle, 2011; Lloyd, 2010). If features closer to each other tend to 

be more similar than features farther apart, they are considered to be spatially dependent 

and form a cluster (Lloyd, 2010). Another important aspect in the analysis of spatial data is 

the representation of the spatial structure of the data in the actual computation of clusters. In 

order to compare the attribute values of each feature to the attributes of neighboring features 

the extent of the neighborhood surrounding each feature and the type of spatial interactions 

among features needs to be quantified. For example, if the influence of a feature on 

neighboring features decays with distance, or if there is a sphere of influencebeyond which 

features are not impacted, it should be represented in the computation (Mitchell, 2005). 
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Traditional aspatial statistics is based on the assumptions that observations are independent 

of one another and identically distributed (Chun and Griffith, 2013), and that relationships 

modeled are constant across the study area. However, spatial phenomena exhibit both 

spatial dependence among features, and non-stationarity, i.e. spatial processes and 

relationships vary across the study area (Mitchell, 2005). Spatial statistical methods offer a 

range of inferential tests that measure the degree to which the value of a feature’s attribute is 

similar to the attribute value of neighboring features and can be used to quantify how spatial 

autocorrelation varies locally and recognize spatial clusters. Similar to aspatial inferential 

statistics, spatial methods are evaluated within the context of a null hypothesis which states 

that attribute values do not exhibit local spatial clustering and can be rejected only if results 

can be considered statistically significant within a defined confidence level. Since a statistical 

index is calculated for each feature in the dataset, these can be mapped to indicate both the 

spatial variability in local autocorrelation, and which features have statistically significant 

relationships with their neighbors. The contribution of individual features on the identified 

pattern can be evaluated, thus enabling the recognition of outliers in the data. 

The following presents the two clustering methods examined in the current research: the 

aspatial k-means algorithm and the spatial Getis–Ord 𝐺𝑖
∗ statistic (Getis and Ord, 1996; 

Mitchell, 2005; Ord and Getis, 1995). 

 

3.3.1 Aspatial k-means clustering  

The k-means algorithm is an iterative algorithm for partitioning a set of n data observations 

(x1, x2, …, xn) into homogenous k clusters (k ≤ n) S = {S1, S2, …, Sk}. k-means minimizes the 

within-cluster sum of squares (WCSS) and uses the squared Euclidean distance metric (the 

distance between attribute values) as the measure of similarity - Eq. (1) (Theodoridis et al., 

2010): 

𝑆 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑠 ∑ ∑ ‖𝑥𝑗 −  𝜇𝑖 ‖
2

𝑛

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

                                                            (1) 

where xj is the attribute value of the target feature, and μi is the mean of points in Si. 

At its most basic form, k-means uses an iterative refinement process in which observations 

are assigned to a cluster with the objective that each data observation will belong to the 

cluster with the nearest mean (Jain, 2010). The centroid of each cluster subsequently 

becomes the new mean and the process is repeated again until convergence to a local 

minimum is reached. The k-means method is fast, straightforward and simple to implement, 

however, it suffers from a few drawbacks. The algorithm cannot assure convergence to the 



Getis-Ord's hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data 

36 

global minimum of S. Consequently, different initializations of the algorithm might result in 

different final clusters. Another critical drawback is the prerequisite for a userdefined 

parameter of the number of clusters (k) to be partitioned. A poor estimate will prevent the 

algorithm from recognizing the underlying structure. The algorithm additionally is sensitive to 

the presence of outliers (Theodoridis et al., 2010). 

 

3.3.2 The spatial Getis-Ord 𝐺𝑖
∗ statistic 

The Getis–Ord 𝐺𝑖
∗ statistic (𝐺𝑖

∗), known also as hot-spot analysis (Getis and Ord, 1992, 1996; 

Mitchell, 2005; Ord and Getis, 1995) is a method for analyzing the location related tendency 

(clustering) in the attributes of spatial data (points or areas). Developed in the mid 1990s, this 

method has commonly been used in rainfall and epidemic modeling and has been applied in 

recent years in agriculture as well (Chopin and Blazy, 2013; Kounatidis et al., 2008; Rud et 

al., 2013). The method is an adaptation of the General G-statistic (Getis and Ord, 1992), a 

global method for quantifying the degree of spatial autocorrelation over an area. The General 

G-statistic computes a single statistic for the entire study area, while the 𝐺𝑖
∗ statistic serves 

as an indicator for local autocorrelation, i.e. it measures how spatial autocorrelation varies 

locally over the study area and computes a statistic for each data point. The method 

evaluates the degree to which each feature is surrounded by features with similarly high or 

low values within a specified geographical distance (neighborhood) - Eq. (2).  

𝐺𝑖
∗(𝑑) =  

∑ 𝑤𝑖𝑗 𝑗 (𝑑) 𝑥𝑗

∑ 𝑥𝑗𝑗 
                                                                           (2) 

where 𝐺𝑖
∗(𝑑) is the local G-statistic for a feature (i) at a distance (d), xj is the attribute value of 

each neighbor, and wij is the spatial weight for the target-neighbor i and j pair. Typically, the 

spatial distances between observations at points are calculated by the Euclidean norm. The 

spatial weights wij are the n x n elements of the spatial weight matrix W, where n is the 

number of observations. There are several possible types of W (Haining, 2003). A simple 

form, commonly used in the 𝐺𝑖
∗ statistic is a matrix derived from a threshold (d) for the 

distance between xi and xj (Chun and Griffith, 2013; Ord and Getis, 1995). The threshold 

parameter d defines the distance within which all locations are considered as neighbors 

(indicated by 1 in the W matrix), and beyond which all locations are not neighbors (indicated 

by 0 in the W matrix or by weights which diminish with distance). 𝐺𝑖
∗ is only applicable for 

positive x. 

The statistical significance in the degree of local autocorrelation between each feature and its 

neighbors is assessed by the z-score test. The z-score and p-value reported for each feature 

indicate whether spatial clustering of either high or low values, or a spatial outlier is more 
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pronounced than one would expect in a random distribution, i.e. whether or not it is possible 

to reject the null hypothesis of no apparent clustering. In order to improve statistical testing, 

Ord and Getis (1995) developed a z-transformed form of 𝐺𝑖
∗ by taking the statistic 𝐺𝑖

∗(𝑑) 

minus its expectation, divided by the square root of its variance. Using the same symbology, 

this z-transformation, termed the standardized 𝐺𝑖
∗ statistic is given in Eq. (3). The 𝐺𝑖

∗ statistic 

computed by ArcGIS (ESRI, Redlands, CA, USA) uses this version of 𝐺𝑖
∗ in which the 𝐺𝑖

∗ 

index is combined with the z-score into one single index. The statistic, still called 𝐺𝑖
∗, reports 

a z-score and p-value for each single feature. 

𝐺𝑖
∗(𝑑) =  

∑ 𝑤𝑖𝑗 (𝑑) 𝑥𝑗 𝑗 −  𝑋  ∑ 𝑤𝑖𝑗 (𝑑)  𝑗 

𝑆√𝑛 ∑ 𝑤𝑖𝑗
2

𝑗  (∑ 𝑤𝑖𝑗 (𝑑)𝑗 )
2

𝑛 − 1

                                                     (3) 

with                     𝑋 =  
 ∑ 𝑥𝑗   𝑗 

𝑛
                                  and                           𝑆 = √

∑ 𝑥𝑗
2

𝑗

𝑛
−  (𝑋)

2
          

where 𝐺𝑖
∗(𝑑) is computed for feature (i) at a distance (d) standardized as a z-score. xj is the 

attribute value of each neighbor, wij is the spatial weight for the target-neighbor i and j pair 

and n is the total number of samples in the dataset. A Euclidean method is used to calculate 

the geographical distances from each feature to its neighboring features. The spatial 

structure of the data (neighbourhood and relationships between features) is represented and 

quantified as in Eq. (4) by using the spatial weight (wij), calculated based on a spatial weight 

matrix. The spatial weight matrix is an n x n table (n equals to the number of features in the 

dataset), which surrounds each feature, in which each value in the matrix is a weight 

representing the relationship between a pair of features in the dataset.  

The 𝐺𝑖
∗ statistic introduced by Getis and Ord in 1995 extended the family of G statistics to 

incorporate non-binary weight matrices and account for a wij(d) which varies with distance. 

For example weights can be assigned based on an inverse distance weights matrix (distance 

decay), or a combination of the inverse distance and the fixed distance band models (similar 

to a fixed distance with a fuzzy boundary). Defining the distance band (d) is parametric and 

depends on the nature of the dataset and on the phenomenon modeled and should be 

defined according to the distance in which spatial autocorrelation peaks. This can be 

modeled by applying an iterative and data-driven process which examines how spatial 

autocorrelation varies at different distances. The output of the 𝐺𝑖
∗ statistic is a map indicating 

the location of spatial clusters in the study area. Positive values of 𝐺𝑖
∗ denote spatial 

dependence among high values. Negative values of 𝐺𝑖
∗ indicate spatial dependence for low 

values. The degree of clustering and its statistical significance is evaluated based on a 

confidence level and on output z-scores. These define whether a data point belongs to a hot-
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spot (spatial cluster of high data values), cold-spot (spatial cluster of low data values) or an 

outlier (a high data value surrounded by low data values or vice versa). 

3.4 Materials and Methods 

3.4.1 Data collection 

Data was collected in 2011 and 2012 from individual grapefruit trees (Citrus paradise, cv. Rio 

Red) within an irrigated experimental orchard planted in 1993 in an 8 m x 8 m pattern. The 

orchard was located in the experimental farms of the University of Cukurova, in the vicinity of 

the city of Adana, Turkey (35o22'55" E, 37o1'24" N, mean elevation 53 m) –Fig. 6. Adana has 

a typical Mediterranean climate with hot-dry summers and mild-wet winters. Orientation of 

rows was north-east/ south-west with a rather flat topography. Sampling was conducted on 

179 individual trees located in 9 adjacent rows. Soil at the site was classified as a Typic 

Xerofkuvent with clay and clay–loam textures. Data for plant specific properties, collected 

from individual trees, and environmental data was organized using a geographical 

information system (GIS) schema in which trees serving as the basic features were tied to a 

geographical location together with their associated attributes. A projected coordinate 

system, UTM 36N, was defined for the geodatabase to allow spatial statistical analysis. 

The current study utilized yield (total fruit weight per tree) and two possible yield-determining 

variables, tree trunk circumference [cm] and soil apparent electrical conductivity (ECa 

[mS/m]) (Kitchen et al., 1999, 2003; Lück et al., 2009), each measured for all 179 trees. Tree 

trunk circumference has been shown to be an accurate measure of tree size and growth and 

often related to fruit yield, and soil apparent electrical conductivity has been established as a 

reliable measure to characterize spatial variability in soil productivity (Corwin and Plant, 

2005; Kitchen et al., 1999, 2003). Both these variables are relatively easy to collect.  

ECa was measured with 4-point light hp portable galvanic coupled resistivity meter (LGM 

Lippman, Schaufling, Germany) on the 25th of June 2011. Electrodes were mounted on a 

wooden frame, linearly arranged with a spacing of 1 m (Wenner array). The measurements 

were taken adjacent to the trunk of each tree. Depth of investigation at 70% of the signal was 

0.78 m (Gebbers et al., 2009). Trunk circumference was measured 10 cm above grafting 

points on 27th of June, 2011. Fruit per tree fresh weight was determined at harvest, 16–17 of 

March, 2012. All analysis was performed using the ArcGIS Desktop software package (ESRI, 

Redlands, CA, USA). 
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Figure 6. Location of test site in Adana, Turkey. The red polygon shows the orchard’s 

borders highlighting the monitored trees which are color coded according to their trunk 

circumference size. Base image from ESRI World Map Background, Copyright © 1995–2012 

ESRI. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

 

3.4.2 Proposed spatial-aspatial approach 

The k-means is not, in its basic form, a spatial clustering method as it considers only the 

differences between the data values. The 𝐺𝑖
∗ statistic is a spatial clustering method as it 

accounts for the spatial structure of the data, but as a univariate-based method it considers 

only one attribute (variable) in the clustering process. However, most problems concerning 

agricultural practices are of a multidimensional structure requiring multivariate field 

information (Castrignanò et al., 2012). For practical orchard management considerations, 

such as class management delineation, and to understand the actual spatial structure of 

multiple yield-defining variables, it would be valuable to understand not only the spatial 

structure of each single variable, but the spatial structure of all variables combined. This 

suggests the use of a multivariate approach to account for multiple variables in partitioning 

the orchard into spatial clusters.  
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Spatial clustering approaches in agriculture, as previously explained, often apply spatially 

constrained clustering, a process in which aspatial multivariate clustering methods are 

modified by introducing spatial constraints. The proposed spatial–aspatial approach is 

innovative as it integrates the spatial constraints from the onset, prior to the aspatial 

clustering, by following a process in which each examined variable is first analyzed for its 

spatial structure, recognizing spatial hot-spots and cold-spots in the data, followed by the 

application of k-means to introduce a multivariate classification. The developed approach 

consists of the following steps: 

(1) Defining the optimal number of clusters: The 𝐺𝑖
∗ statistic does not require input 

definition of a rigid number of clusters. However, the k-means, as mentioned earlier, 

does require the user to pre-define the parameter k. Since the spatial recognition of 

hot- and cold-spots is followed by applying k-means clustering, a method is required 

to determine the number of clusters. Numerous methods exist for assisting in 

selecting the optimum k. These are much debated and a matter of ongoing research. 

We employ the Calinski–Harabasz pseudo F-statistic (C–H index) (Calinski and 

Harabasz, 1974; Orpin and Kostylev, 2006), which has been confirmed by previous 

research as one of the best performing and reliable algorithms for determining the 

optimum number of clusters in k-means clustering with squared Euclidean distances 

(Cooper and Milligan, 1988; Milligan and Cooper, 1985) and is recommended in 

recent versions of statistical software (ESRI, 1984; Legendre and Legendre, 2012; 

Milligan and Cooper, 1985; SAS Institute Inc., 2013; The MathWorks, 2013). In the 

current research it is applied iteratively to all input variables combined.  

 

(2) Spatial clustering: Applying the 𝐺𝑖
∗ statistic to partition the different variables into 

spatially contiguous clusters. 𝐺𝑖
∗ statistic was calculated with variable spatial weights 

using an ArcGIS (ESRI, Redlands, CA, USA) model which combines the inverse 

distance (distance decay) and fixed distance band models, i.e. beyond a d-threshold 

the weighting drops off with distance. The 𝐺𝑖
∗ statistic outputs a z-score and p-value 

for each data point representing the type of clustering, the degree of clustering and its 

statistical significance. These z-scores can be subsequently classified into k number 

of clusters. 

 

(3) Aspatial clustering: The z-score output of the 𝐺𝑖
∗ statisticis used as the input variable 

for k-means clustering, which is applied to all variables combined to provide 

multivariate-based clustering. Using the z-scores as the input variable for k-means 

instead of following the common k-means routine, which considers the raw data 
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values at each point as input variables, ensures that the spatial structure is taken into 

account in the multivariate clustering. 

 

 

3.5 Application and results 

The following demonstrates the application of the proposed spatial–aspatial approach on the 

variables collected for the case study orchard in Adana, Turkey: tree trunk circumference, 

ECa and yield (Table 4). It is important to note that any point-based variable associated with 

a single-tree, whether plant or environmentally related, can similarly serve in the analysis. 

The three variables combined were used in the computation of the C–H index to select the 

optimal number of clusters. The options k = 1, 2, 3 ... 15 were iteratively assessed for their 

effectiveness in dividing the trees into groups. The option k = 3 resulted in the highest C–H 

index statistic indicating that 3 groups would be the optimal number of clusters for partitioning 

the trees (Fig. 7).  

Figs. 8–10 illustrate clustering outputs comparing k-means and 𝐺𝑖
∗ methods for each of the 

three variables. The methods produce similar patterns of spatial variability and clustering 

partitioning of the variables with some important notable differences.  

Based on the 𝐺𝑖
∗ results, statistically significant local clustering is indicated for both high 

values and low values in the study area for all variables. In Figs. 8b–11b red dots denote 

statistically significant spatial clusters of high values (hot-spots), blue dots indicate 

statistically significant spatial clusters of low values (cold-spots) and white dots are not 

considered significant, i.e. random distribution with no spatial clustering of either high or low 

values. Table 5 indicates the critical p-values and z-scores associated with Figs. 8b–11b. 

These indicate the degree of spatial clustering and its statistical significance within a 

confidence level. 

Results of the 𝐺𝑖
∗ statistic further characterize the type of clustering and its location, whether 

it is a hot-spot, cold-spot or an outlier. The class partitioning of k-means does not indicate the 

type of cluster in terms of the data values, for example recognize hot-spots and cold-spots, 

but rather partitions the data into clusters based on similarity measures. In addition, k-means 

does not recognize outliers, while the outputs of the 𝐺𝑖
∗ statistic clearly indicate the location of 

outliers. An example of an outlier is illustrated for analysis of trunk circumference within the 

hot-spot in Fig. 9b. 
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Table 4. Summary statistics of tree trunk circumference, ECa and yield data. 

 Mean Min Max Std. Dev. Skewness 

Trunk circumference [cm] 69.84 42.0 93.00     9.25 -0.63 

Yield [kg/tree] 316.16 16.0 640.00 133.03 -0.13 

ECa [mS/m] 79.67 27.9 260.96  36.12 1.04 

 

 

 

Figure 7. C–H index plot. Large circle represents the maximum C–H index, indicating the 

optimum number of clusters for the three variables, ECa, trunk circumference and fruit yield, 

evaluated for 2–15 clusters. Results indicate k = 3 as the optimal number of clusters. 
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Figure 8. Output of cluster analysis applied to ECa [mS/m]: k-means clustering (a) and 𝐺𝑖
∗ 

statistic (b). In the spatial method red indicates significant spatial clusters of high values (a 

hot-spot), blue indicates significant spatial clusters of low values (a cold-spot) and white 

indicates random distribution with no spatial clustering. In k-means the colors represent only 

the different clusters, and do not refer to the type of clustering. The same symbology refers 

to Figs. 9–11. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

It is clearly noticeable that with all variables k-means outputs produce pronounced 

patchiness and spatial discontinuity, while the 𝐺𝑖
∗ statistic results in more spatially contiguous 

clusters.  

It is further noticeable from Figs. 8–10 that each variable resulted in a unique spatial 

structure suggesting that multivariate-based clustering, taking into account all variables 

combined and resulting in an integrated spatial structure of the orchard, could be considered. 

The C–H index was applied again to select the optimal number of clusters, only this time the 

z-scores were used as inputs. The highest C–H index was again reported for k = 3, which 

was therefore selected for partitioning the z-scores into clusters. Fig. 11b demonstrates the 

output of the final step in the model in which the z-score outputs of the 𝐺𝑖
∗ statistic (Figs. 8b–

10b) are used as inputs for k-means clustering. Results clearly demonstrate three spatially 
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contiguous clusters. However, since k-means reports only class numbers without indicating 

the type of cluster, the question is whether the spatial structure of significant hot-spots and of 

significant cold-spots, recognized when applying the 𝐺𝑖
∗ statistic on the single variables, is 

preserved in the multivariate output clusters. 

 

 

Figure 9. Output of cluster analysis applied to tree trunk circumference [cm]: k-means 

clustering (a), and 𝐺𝑖
∗ statistic (b). 
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Figure 10. Output of cluster analysis applied to yield (kg fruit per tree): k-means clustering (a) 

and 𝐺𝑖
∗ statistic. 

 

Table 5. Critical p-values and z-scores. 

z-Score p-Value (probability) Confidence level 

-1.96 < z-score > 1.96 No statistical significance  

z-score < -1.65 or z-score > 1.65 <0.10 90% 

z-score < -1.96 or z-score > 1.96 <0.05 95% 

z-score < -2.58 or z-score > 2.58 <0.01 99% 
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Figure 11. Output of multivariate k-means clustering applied to all variables considering the 

data values of each variable only (a) vs. output of multivariate k-means clustering applied to 

all variables considering the z-score outputs (b) of the 𝐺𝑖
∗ statistic for each variable (Figs. 8b–

10b). 

 

 

3.6 Validation of methods 

To assess the performance of the proposed approach the output clusters were compared 

with results of k-means using the common routine of considering variable data values only; 

i.e. no consideration of spatial structure (Fig. 11a).  

To compare which method divided the data most effectively i.e. maximizing the degree of 

within-cluster similarities as well as the degree of between-cluster differences, the goodness 

of variance fit (GVF) was computed for each variable in each method. The GVF is a well 

established method for measuring the precision of cluster partitioning (Cauvin et al., 2010) 

and was computed using Eq. (4): 

𝐺𝑉𝐹 =  
𝑆𝑆𝑇 − 𝑆𝑆𝑊

𝑆𝑆𝑇
                                                                           (4) 
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Table 6. GVF values comparing between the aspatial k-means clustering and the proposed 

spatial–aspatial approach. 

Method Trunk 

circumference 

variable 

ECa variable Yield variable 

Multivariate aspatial k-means clustering 0.74 0.41 0.39 

Multivariate spatial–aspatial approach 0.77 0.60 0.64 

 

where SST reflects between-group differences and SSW reflects within-group similarities. 

Calculation of SST is based on summing the squared deviations of each value from the 

global mean of the entire dataset. Calculation of SSW is based on summing the squared 

differences of every value from the mean value of the class it belongs to. The closer the GVF 

index is to 1, the more homogenous the clusters are i.e. the better the variable is at 

partitioning the dataset into clusters. Table 6 compares the GVF values for k-means 

clustering applied to all variables without considering the spatial structure (Fig. 11a) and for 

the combined spatial–aspatial approach (Fig. 11b). The tree trunk circumference variable has 

the highest GVF value and is therefore the best of the three variables for discriminating the 

trees into clusters, i.e. recognizing the underlying structure. The combined spatial–aspatial 

method better discriminated trees into groups for all variables with a significant improvement 

recorded for ECa and yield.  

To examine how the spatial structure of hot-spots and cold-spots, recognized for the single 

variables with the 𝐺𝑖
∗ statistic, is represented in the multivariate output clusters, the 

distribution of z-score values, which served as the input for the multivariate classification, 

was examined. Table 7 shows the mean z-score of each variable within each spatial cluster. 

The values illustrate that the combined spatial–aspatial method maintains the general spatial 

structure (hot-spot, cold-spot and no spatial clustering) recognized for the single variables. 

For each of the variables in the multivariate classification, one class has always a mean z-

score >1.65 (hot-spot with 90% confidence level), a mean z-score <-1.65 (cold-spot with 90% 

confidence level) and a mean z-score between -1.65 and +1.65 (random distribution with no 

spatial clustering). The spatial structure of the trunk circumference variable is best 

represented in the multivariate classification, with the mean z-score values in the different 

clusters following a similar pattern to the one recognized with the single variable 

classification (Fig. 9b): a cold-spot at the southern part of the orchard (Class 2), a hot-spot at 

the central part (Class 1) and random distribution with no spatial clustering at the northern 

part (Class 3). 
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Table 7. Minimum, maximum and mean z-score values for each variable in the different 

spatial clusters of the multivariate clustering. 

Trunk circumference Min Max Mean Cluster type 

Class 1 -0.1036 5.2688 2.6865 Hot-spot 

Class 2 -4.6698 -0.2146 -2.6111 Cold-spot 

Class 3 -1.4662 3.0923 0.2654 No spatial clustering 

Yield     

Class 1 -1.2883 4.3254 1.9938 Hot-spot 

Class 2 -4.6057 2.2212 -1.3614 No spatial clustering 

Class 3 -4.9834 0.3433 -2.6511 Cold-spot 

ECa     

Class 1 -2.5884 4.1123 0.9425 No spatial clustering 

Class 2 -3.7397 -1.1026 -2.8426 Cold-spot 

Class 1 -2.5884 4.1123 0.9425 Hot-spot 

 

 

 

3.7 Discussion 

Although clustering methods have been used in agricultural practices for several decades, 

only recently has consideration of spatial structure been introduced in the clustering process. 

Orchards require a spatial clustering approach based on both data collected from individual 

trees (plant attributes) and on data describing environmental conditions and which considers 

location and spatial relations between a tree and its neighbors. Combining a spatial method 

such as the 𝐺𝑖
∗ statistic with the common aspatial k-means clustering method improves 

clustering results. Outputs of k-means clustering or any other aspatial clustering method tend 

to produce zones which are more irregular and patchy then zones from spatial clustering. In 

practice, clustering and mapping of clusters should serve as a method for visual and 

quantitative inspection of complex data sets. If determined appropriate, these clusters could 

be used for delineating management zones. Spatially contiguous clusters/zones resulting 

from applying the 𝐺𝑖
∗ statistic can be beneficial if technology does not allow management of 

individual trees or if small-scale operational variations are too costly. A particular example for 

an application which will profit from relatively large contiguous zones would be irrigation. 

Consideration of a number of points is advised when combining spatial clustering: 

(1) Different input variables result in different output clusters. To create useful 

management zones, the combination of variables used for partitioning a field into 
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clusters must have logical management repercussions. For example, if managing for 

yield, only those variables considered yield defining and representing yield variability 

need to be considered. 

(2) Care should be taken when defining the extent of the spatial neighborhood that 

surrounds each feature and the type of spatial interactions among features. The 𝐺𝑖
∗ 

statistic is affected by the number of neighbors and their spatial interactions, which 

are used for defining the spatial weight matrix and consequently for quantifying the 

spatial weights assigned to each of the neighboring features. For example, a variety 

of spatial weighting schemes could be considered. In addition, the type of variable 

which is being modeled whether soil, plant or environmental, will influence the size 

and type of the spatial neighborhood. 

(3) Additional spatial-based clustering approaches exist which should be further explored 

for their robustness in combined spatial–aspatial approaches. One of these is the 

Local Moran’s I statistic (Anselin, 1995), which is the most commonly used method for 

evaluating local spatial autocorrelation. While the Local Moran’s I and 𝐺𝑖
∗ statistic are 

similar in terms of the questions that they answer, they have some major differences 

which will likely generate unique clustering. One of the main differences is that the 

Local Moran’s I does not consider the value of the feature which is being analyzed in 

the analysis, but only the neighboring values. The 𝐺𝑖
∗ statistic includes both the values 

of neighbors as well as the value of the tree in question. Since the value of the 

feature contributes to the emergence of the cluster, the 𝐺𝑖
∗ statistic may be more 

suitable for locating contiguous cold-spots and hot-spots and therefore is expected to 

better locate potential homogenous areas to be used as management zones. 

(4) Point-based spatial clustering methods require sufficient sampling to achieve reliable 

results in the spatial statistical analysis. The rule-of-thumb considers the number of 

30 samples as a lower threshold (ESRI, 1984) in order to mitigate too large an effect 

by outliers or by points laying on the edge which will inevitably have fewer neighbors. 

It is also known that k-means is sensitive to outliers (Theodoridis et al., 2010). 

(5) While we envision the major contribution of the proposed spatial clustering method to 

be in the determination of zones for optimal precision management of tree crops, it 

has other potential uses. Since testing of statistical significance of belonging to a 

certain cluster is based on single trees, decision makers can evaluate both the 

condition of each tree and its correlation with local influencing variables. The 

approach can therefore be used, when appropriate, to guide management of 

individual trees. The tree level spatial statistics provided can also aid in identifying 

locations for optimal field sampling (of soil or leaves, for example) or of placement of 

sensors for plant or environmental monitoring (Agam et al., 2014). 
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3.8 Summary and conclusions 

A combined spatial–aspatial clustering approach for partitioning tree-based data in orchards 

has been developed. Essentially, the proposed algorithm spatially scales raw data using the 

𝐺𝑖
∗ statistic and converts it into spatial-variables before submitting it to (aspatial/standard) k-

means clustering. The approach was applied to a case study to demonstrate its feasibility 

and assess its performance in relation to the common aspatial k-means clustering method. 

Results demonstrate that point-based spatial-clustering methods and, in particular, the 𝐺𝑖
∗ 

statistic, when combined with aspatial clustering, represent a valid method to characterize 

the spatial structure of point-based data such as single trees in an orchard based on multiple 

variables. Introducing spatial clustering allows modeling two of the most important concepts 

in spatial phenomena: spatial autocorrelation and spatial heterogeneity. Another important 

aspect in the developed approach is that it is based on inferential spatial statistics and thus 

probabilities are assigned to the conclusions drawn from the analysis. Calculating the 

probability that an observed spatial cluster is not simply due to random chance is important 

especially when a high level of confidence is required, as in decision making. This provides 

tools for promoting reliable, informed decisions and for evaluating management decisions. 

The combined spatial–aspatial approach forms a basis for further inquiry regarding 

application of spatial clustering methods to horticultural data. More research is required to 

apply and test the validity of the method for cases with other and a larger number of 

variables. 
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4.1 Abstract: 

In orchards, the variations of fruit quality and its determinants are crucial for resource 

effective measures. In the present study, a drip-irrigated plum production (Prunus domestica 

L. 'Tophit plus'/Wavit) located in a semi-humid climate was studied. Analysis of the apparent 

electrical conductivity (ECa) of soil showed spatial patterns of sand lenses in the orchard. 

Water status of sample trees was measured instantaneously by means of leaf water 

potential, Ψleaf [MPa], and for all trees by thermal imaging of canopies and calculation of the 

crop water stress index (CWSI). Methods for determining CWSI were evaluated.  

A CWSI approach calculating canopy and reference temperatures from the histogram of 

pixels from each image itself was found to suit the experimental conditions. Soil ECa showed 

no correlation with specific leaf area ratio and cumulative water use efficiency (WUEc) 

derived from the crop load. The fruit quality, however, was influenced by physiological 

drought stress in trees with high crop load and, resulting (too) high WUEc, when fruit driven 

water demand was not met. As indicated by analysis of variance, neither ECa nor the 

instantaneous CWSI could be used as predictors of fruit quality, while the interaction of 

CWSI and WUEc did succeed in indicating significant differences. Consequently, both WUEc 

and CWSI should be integrated in irrigation scheduling for positive impact on fruit quality. 

 

Keywords: fruit quality, precision horticulture, plum, spatial variability, tree water status. 

 

 

4.2 Introduction 

Following the concept of precision agriculture, correlation of spatial variation of soil and yield 

data has been analyzed in field crops, vegetable production, vineyards, and orchards. Spatial 

patterns of fruit yield are typically explained in one of two approaches. The first analyzes the 

spatial correlation between soil properties influencing the water supply as one main growth 

factor and yield as the target variable. This is consistent with findings in precision viticulture, 
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where soil maps have provided a basis for delineating management zones (Williams and 

Araujo, 2002). The second approach is more driven by the endogenous growth factors of the 

plant. It uses the correlation of plant data such as canopy volume representing the growth 

capacity, tree water status, and fruit quality at harvest (Zaman and Schumann, 2006). This 

latter approach may be more appropriate for orchards where fruit quality is crucial for 

marketing. However, the analysis of spatially-resolved soil and plant data and its influence on 

fruit quality has rarely been studied.  

 

The most common method for soil mapping is to analyze the apparent electrical conductivity 

(ECa) of the soil (Bramley and Hamilton, 2004). Soil ECa measurements can be performed 

at field capacity to gain information regarding texture of the soil, while measurements in dry 

periods may better indicate soil water distribution. Mapping of electrical properties in orchard 

soils appears not without its challenges as commercial rolling systems often fail to measure 

close to the trees. Manually performed readings, most often with equidistant Wenner array, 

have been used with more success in covering the entire orchard soil (Halvorson and 

Rhoades, 1976; Gebbers et al., 2009). Experimental-scale ECa mapping, concomitantly 

performed with fruit yield analyses, confirmed a correlation between soil patterns and yield in 

various fruit crops including apples (Türker et al., 2011; Aggelopooulou et al., 2013), olives 

(Fountas et al., 2011; Agam et al 2014), and citrus (Zaman and Schumann, 2006; Peeters et 

al., 2015). However, while patterns of soil properties are generally stable over time (Mann et 

al., 2011), spatial patterns of variables measured on trees are more likely to vary 

(Aggelopoulou et al., 2010). Furthermore in orchards, soil water status is frequently 

influenced by irrigation causing intentionally reduced impact of a-priori patterns of soil 

properties on vegetative and generative plant growth. As a result, the effect of soil patterns 

on the quality of fruit might be reduced.  

 

Using a physiological approach, the spatial variability of yield and quality have been found to 

be highly correlated with the canopy volume in citrus production (Zaman and Schumann, 

2006; Zude et al., 2008). From a physiological point of view, it may be assumed that canopy 

volume, yield, and fruit quality are influenced by the exogenous water supply and the 

endogenous crop load (Palmer, 1992; Naor et al., 2001; Naor et al., 2006; Bustan et al., 

2016). Strong interaction between water status of soil and trees has been pointed out in arid 

and semi-arid conditions (Naor et al., 2006; Ben-Gal et al., 2009; Gómez del Campo, 2013; 

Bustan et al., 2016), but also more ambiguous effects of crop load on tree water status have 

been reported for crops including peach, apple, and olive (Berman and DeJong, 1996; 

Bellvert et al., 2016; Bustan et al., 2016). The ultimate objective of orchard management of 
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course would be to optimize not only the fruit quality, but also the cumulative water use 

efficiency (WUEc) in terms of yield per liter of totally applied irrigation and precipitation water 

(Viets, 1962). 

 

The measurement of both, soil water status and plant water status, is challenged by the fact 

that any individual proximal sensor represents only a small volume of interest; a tree or part 

of a tree or a small volume of soil. Consequently, measuring the spatial distribution of water 

status in fruit trees has been approached by means of remote sensing, often via thermal 

imaging. Thermal images of canopies provide a measure of instantaneous tree water status 

interpreted by means of the crop water stress index (CWSI) (Jones, 1992). The CWSI is a 

surface-temperature based index between 1 and 0, with 1 representing the temperature of 

non-transpiring dry leaves and 0 equivalent to that of fully transpiring wet leaves (Jackson et 

al., 1981; Sammis et al., 1988; Maes and Steppe, 2012). While application of thermal 

imaging is easily applied in the laboratory, the technique has also been developed for field 

studies, particularly in the semi-arid and arid sub-tropics (Jones, 1992; Cohen et al., 2005; 

Hellebrand et al., 2006). Thermal imaging of canopies has been applied by means of 

unmanned aerial systems (Berni et al., 2009; Gonzáles-Dugo et al., 2013) and frequently 

tractor-mounted cameras providing either top or side views. The method has further been 

refined to measure CWSI and guide irrigation protocols in olives in Israel (Ben-Gal et al., 

2009). In peach orchards located in a semi-arid environment, the CWSI was found to 

successfully differentiate between irrigation treatments (Bellvert et al., 2016). In differently 

irrigated apple trees under a hail net, CWSI values ranged between 0.08 and 0.55. Values > 

0.3 were considered as stressed trees under the given conditions (Nagy, 2015). The 

development and use of CWSI has focused on sub-tropical, arid and semi-arid climates and 

has not yet been sufficiently studied under semi-humid conditions, where improving fruit 

quality, instead of providing for canopy transpiration, may be the most significant driver of 

irrigation water management. It is questionable if instantaneous methods for measuring 

water status, such as the thermal based CWSI, can support optimization of fruit quality on 

one hand and WUEc on the other side. 

Consequently, this study aimed (i) to select a feasible method for utilization of thermal 

imaging in a semi-humid climate, (ii) to spatially characterize the soil ECa and instantaneous 

water status of fruit trees in an orchard, and (iii) to analyze the interaction of tree water status 

and quality of fruit. 
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4.3 Material and Methods 

4.3.1 Site Description and Plant Material  

The experiment was carried out in a 0.37 ha commercial Prunus domestica L. (plum) orchard 

located in the ‘Werder fruit production’ area in Brandenburg, Germany (52° 28′ 1.56″ N, 12° 

57′ 28.8″ E). The soil is typical for fruit production in temperate climate of Europe and Asia 

formed by glacial and post-glacial deposits after the last ice age about 10,000 years ago with 

typically small scale variability. The cultivar was 'Tophit plus' with 'Jojo' serving as a 

pollinator. 104 seven year old 'Tophit plus' trees, located every 4 m in 4 rows spaced 5 m 

apart, were considered. On average, trees were 2.10 m tall and insertion height of the first 

branch varied between 0.46 m and 0.96 m above the soil. Mean soil texture was 45 % sand, 

29 % silt, and 26 % clay with a mean pH of 7.72. Plum trees were irrigated using a drip 

system with one line per row and two emitters every 0.5 m. The irrigation laterals and 

drippers were mounted 50 cm above the ground to facilitate mechanical weed control. 

Independent of precipitation, trees were irrigated twice a week for 1.5 h with flow rate of 0.96 

L h-1. 

4.3.2 Meteorological readings 

Global radiation, wind speed, air temperature, air pressure, precipitation, and relative 

humidity were measured at 24 minutes intervals by a weather station (UNIKLIMA vario, Toss, 

Germany) positioned 100 m from the experimental orchard. Canopy temperature and relative 

humidity (Modul DLTi, UP GmbH, Germany) were recorded in 18 trees every 5 minutes. 

Water vapor pressure deficit (VPD) of the air was calculated according to the Goff-Gratch-

equation (Jones, 1992; von Willert et al., 1995) from hourly averages of air temperature, 

relative humidity and air pressure. 

4.3.3 Soil readings 

A resistivity meter (4-point light hp, LGM, Germany) was used to map the ECa of the soil at 

the experimental site on 16th August 2012 and 2nd August 2013. The four electrodes were 

arranged in a Wenner array with the tree trunk in the center to obtain ECa values 

representing 25 cm depth (Telford et al., 1990). Full details are given in Käthner and Zude-

Sasse (2015). Soil water matric potential (pf-meter 80, ecoTech Umwelt-Messsysteme 

GmbH, Germany) was measured at 15 cm, 35 cm, and 45 cm depths. In addition, the 

gravimetrical soil water content (GWC) was ascertained by drying soil samples at 105 °C for 

48 hours with n = 26 in 2012 and n = 6 in 2013. 

4.3.4 Leaf water status 

Three mature leaves were randomly detached from the north-eastern side of each tree and 

rapidly transported to the laboratory. Here, projected surface area [cm²] was measured for 

each leaf with a portable area meter (CI-203, CID Bio-Science, Inc., USA). Leaf dry mass [g] 



Evaluating spatially resolved influence of soil and tree water status on quality of European plum grown in semi-
humid climate 

60 

was consequently obtained after oven drying at 65 °C for 24 h and specific leaf area (SLA) 

was calculated as the ratio of leaf area and dry mass.  

In the orchard, leaf water potential (Ψleaf) was measured with a Scholander bomb (Plant 

Water Status Console 3000, Soilmoisture Equipment Corp., USA) on three shaded leaves 

from the lower part of the canopy on the east side of the tree. In 2012, 44 trees were 

analyzed predawn and midday over 4 days (19th June - 27th June). In 2013, 67 trees were 

sampled over 5 days (19th July – 2nd August). Following determination of Ψleaf, the leaves 

were rapidly packed in plastic bags, transported to the laboratory, frozen at -30°C. After 

thawing, centrifuged tissue sap was analyzed for osmotic content (cosmol) with a water vapor 

osmometer (Vapro 5520, Wescor Inc., USA). The osmotic potential (Ψπ) of tissue sap was 

calculated according to the van’t Hoff’s equation (von Willert et al., 1995). 

 

4.3.5 Crop water stress index 

Thermal images of the canopies were taken with an uncooled infrared thermal camera 

(ThermaCAM model SC 500, FLIR Systems, Inc., USA) with resolution of 320 pixel x 240 

pixel and spectral sensitivity range from 7.5 µm to 13.0 µm in the temperature range of -50 to 

60 °C on 15th August 2012 and 25th July 2013. The camera was mounted on a tractor with z 

= 3.3 m above ground and pointed to the top of the canopies. Images were acquired with an 

opening angle (β) of 45° resulting in the length (l) of the imaged area (Equ. 5). 

l = 2 ∙ z ∙ tan(
β

2
)      (5) 

 

For extraction of temperature values, the raw thermal images were obtained in the FLIR 

systems’ proprietary format and converted to text file format for the processing with 

MATLAB® (R2010B, MathWorks, USA). Crop water stress index (CWSIJ) was calculated 

(Equ. 6) according to Jones (1992) ranging from 0 - 1: 

CWSIJ =
Tc−Twref

Tdref−Twref
          (6) 

 

where Tc is actual canopy temperature, Tw is temperature of a fully transpiring leaf with open 

stomata obtained from a wet paper leaf analog, and Td is temperature of a non-transpiring 

leaf. When using references Tdref was obtained from a dry and Twref from paper leaf analog 

(Jones, 2004). For this purpose, green paper leaves were cut to the formerly measured 

mean leaf area of 6 cm², mounted on a 2 m stick, and manually placed in the center of the 

canopy in each tree. 
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In addition, CWSI was also calculated according to three alternative methods. Irmak et al. 

(2000) calculated the CWSII (Equ. 7) setting non-transpiring leaf temperature at 5°C higher 

than air temperature (Td+5) and Tw as the minimum temperature found in the canopy.  

CWSII =
Tc−Twmin

Td+5−Twmin
      (7) 

 

As described by work groups of Jones (1999) and Ben-Gal (2009), Tw and Td was obtained 

analytically (Appendix) to calculate CWSIJB (Equ. 8). 

CWSIJB =
Tc−Twana

Tdana−Twana
     (8) 

  

CWSIR was determined according to the work of Rud et al. (2015). Likely the most suitable 

for automated readings, this method calculates (Equ. 9) the canopy temperature (Tchisto) and 

reference temperatures of dry (Tdhisto) and wet (Twhisto) leaves from the histogram of pixels 

from each image itself. 

CWSIR =
Tchisto−Twhisto

Tdhisto−Twhisto
     (9) 

 

In the CWSIR approach, before processing histograms, extreme values above air 

temperature representing Fresnel reflection from the sun were removed from the further 

analysis. In the histogram of pixels, thresholds were determined for separating temperatures 

of soil, grass, and canopy. Dry reference, Tdhisto, was defined as the minimum temperature of 

soil visible as a peak with high values in the histogram. Wet reference, Twhisto, was taken as 

the minimum temperature of canopy. Since the canopy and grass partly coincided, pixels 

were spatially compared considering equal values as grass and varying values as canopy. 

This threshold was found with Wiener filter to enhance the contrast (Honig and Goldstein, 

2002; Chen et al., 2006). After removing the soil and grass data, the Tdhisto and mean 

canopy temperature (Tchisto) were extracted and averaged for each tree. 

 

 

4.3.6 Water Use Efficiency 

On the day of CWSI measurement, a portable porometer (CIRAS-1, PP Systems, Hitchin, 

UK) was used to monitor the diurnal course (n = 3) of CO2 exchange and transpiration. The 
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instantaneous water use efficiency (WUEi) was calculated as ratio of these parameters (von 

Willert et al., 1995) in µMol CO2 m-2 s-1 / mMol H2O m-2 s-1. 

The cumulative water use efficiency (Eq. 10) of the production system represents the ratio of 

yield (y) and water volume supplied to the plants [g L-1], 

WUEc  =  y/((i+pp))      (10) 

 

with i = irrigation water, pp = precipitation from the start of vegetation period until harvest 

time.  

In 2012, the accounted period lasted from 17th April – 30th August during which 182 mm of 

irrigation and 273 mm rain with a total of 455 mm water were supplied. In 2013, irrigation 

water was given from 22nd April – 9th September accounting for 168 mm of irrigation water 

and 248 mm of rain was recorded summing up to 416 mm water supply. 

4.3.7 Fruit quality 

Soluble solids content [%] of fruit was analyzed using a digital refractometer (DR 301-95, A. 

Krüss Optronic, Germany). Dry matter content of fruit [%] was calculated as the ratio of fruit 

dry mass and fruit fresh mass. Fruit flesh firmness [N cm-²] was analyzed as maximum force 

measured with a convex plunger at a velocity of 200 cm min-1 (TA-XT Plus Texture Analyzer, 

Stable Micro Systems, UK). Fruit size measured as height [mm], fresh mass [g], and yield as 

number of fruits per tree and fresh mass per tree, was measured at harvest. In 2012, the 

analysis of fruit quality was carried out on all fruit of every tree, while in 2013, 3 fruits per tree 

were analyzed. 

 

4.3.8 Data analysis 

Statistical analyses were carried out using the statistical package for MATLAB® (R2014b, 

MathWorks, U.S.). Multi-way analysis of variance (ANOVA) was used for testing the effects 

of multiple factors on the plant variables. Therefore, the ECa data were grouped in 8 classes 

(Käthner and Zude, 2015), while CWSI and WUEc were grouped according to the results of 

hotspot analysis. 

Descriptive statistics of spatially resolved data was carried out using hotspot analysis 

according to Peeters and co-authors (Peeters et al., 2015), who used ArcGIS (ESRI, 

Redlands, CA, USA). In the present study, the algorithm was adapted for using the free 

spatial Matlab toolbox (Spatial Filtering, Max Planck Institute for Biochemistry, Germany). 

The method is based on the general (G) statistic for testing the effect of spatial 
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autocorrelation (Getis and Ord, 1992) of the variables. Thereby a locally weighted mean 

around each observation is separately compared with the mean of the whole data (Anttila 

and Kairesalo, 2010). The outputs of the statistic are the z-score and the p-value, which 

indicate whether an observed pattern of clusters is statistically significant. Spatial clusters 

with statistically significant positive z-score are called hot spots, whereas the clusters with 

statistically significant negative z-score are called cold spots (Getis and Ord, 1992; Ferstl et 

al., 2007). 

4.4 Results  

4.4.1 Soil, meteorological conditions, and thermal imaging 

 

Figure 12. Plum orchard in north orientation with trees marked, showing apparent electrical 

conductivity of soil in false color. 

 

The ECa of soil at 25 cm depth indicated small-scale variability (Figure 12). The values of 

soil ECa reached a maximum of 24 mS m-1 with a pattern of reduced values pointing to a 

sand lens visible in the center-eastern part of the experimental field (Figure 12) and 

neighboring area. Another sandy area was located in the south-west of the orchard. Values 
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of soil ECa measured in 2013, increased compared to those obtained in 2012. This may be 

due to wetter soils, which was caused by the relatively high precipitation occurring in July 

and August 2013. This assumption is further supported by the close correlations found 

between the gravimetrical soil water content and ECa with R = 0.45 and R = 0.68 in 2012 

and 2013, respectively (Table 8). In contrast, correlation coefficients of soil matric potential 

(pF) and soil ECa were only R = 0.15 and R = 0.44 in 2012 and 2013, respectively (Table 8). 

Repeated analyses showed similar pattern in different years with R = 0.88 considering 2011 

and 2012 and R = 0.71 for years 2012 and 2013. 

 

Table 8. Summary of soil properties measured in plum orchard. 

Variable n Mean Minimum Maximum SD Skewness 

2012  
     

ECa [mS/m] 104 7.09 1.67 15.38 2.77 0.90 

pf-meter [0;7] 19 1.63 0.04 2.10 0.44 -2.58 

Water content [%] 26 7.61 4.43 9.63 1.37 -0.57 

2013  
     

ECa [mS/m] 180 32.43 8.89 83.89 13.69 0.75 

pf-meter [0;7] 19 1.70 0.01 3.30 0.98 -0.51 

Water content [%] 6 18.58 9.14 31.13 4.07 0.25 
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In 2012, during the acquisition of thermal images on 15th August from 13:40 until 16:19 

(Figure 13), the mean global radiation was 641.1 W m-². August was the warmest month of 

the year with a mean maximum temperature of 25.6 °C. The maximum air temperature on 

the day of measurement was 25.4 °C. The diurnal increase of air temperature coincided with 

increasing VPD. The mean wind speed was 0.9 m s-1. In 2013, mean global radiation of 

306.8 W m-², maximum air temperature of 25.4 °C, and wind speed of 1.2 m s-1 were 

measured.  

 

Figure 13. Air temperature (dotted line), water vapor pressure deficit (VPD; solid line) and 

instantaneous water use efficiency (WUEi as PN E-1, dashed line) measured in the orchard 

on 15th August 2012. In addition, the variation (n = 18) and diurnal course of tree canopy 

temperature is shown as boxplot. The dashed area indicates the period used for analyzing 

the CWSI. 

Compared to the free air temperature recorded by the automatic weather station, maximum 

temperature measured within the tree canopy occurred with a 3 h-delay. Maximum 

instantaneous water use efficiency was calculated just before noon and then declined during 

the rest of the day. In general, it ranged from 4.42 to 1.28 µMol CO2 m-2 s-1/ mMol H2O m-2 s-1 

(Figure 13). Inside the canopy, the VPD increased midday reaching a maximum in the 

afternoon at 17:00.  

The instantaneous Ψleaf at midday varied between -0.40 and -2.14 MPa and Ψπ between -

1.93 and -2.56 MPa. At predawn, Ψleaf varied between -0.12 and -1.48 MPa and Ψπ between 

-1.50 and -2.46 MPa.  
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Thermal images were acquired on partially cloudy days and wet and dry leaf-references were 

moved with the camera for each tree record within the orchard. With our camera set-up, l = 

2.734 m and thus one pixel corresponded to 8.543 mm in width. This resolution was, thus, 

high enough to differentiate leaves, and to select the pixels that represent the wet and dry 

leaf-references (Table 9). In 2012, Vaseline® covered leaves were additionally used as dry 

leaf-references; however, the fingerprints of the application procedure remained visible on 

thermal images thus producing artefacts (data not shown). 

The reference temperatures calculated with the analytical method (Ben-Gal et al., 2009) 

were always lower (Twana 12 – 15 and Tdana 17) compared to those measured on paper 

references or obtained from the histogram of images (Twhisto 16 – 21°C and Tdhisto 21 – 

25°C). Furthermore, the correlations between leaf water potential (ψleaf) or osmotic potential 

(ψπ) and the different crop water stress indexes were analyzed using data that were all 

obtained on the same day. Of all tested approaches, correlation coefficients for both ψleaf and 

ψπ were highest for CWSIJB, i.e. when the dry and wet temperatures were calculated 

analytically. In contrast, correlation between CWSIJ and ψleaf was low, showing enhanced 

variability caused by the appearance of clouds (Table 9). The use of air temperature plus 5° 

as Td and minimum temperature in the image as Tw for calculating CWSII (Irmak et al., 

2000) resulted in a bias with overestimated values and also tremendously high variability due 

to clouds and, therefore, data were not used further. The CWSIR ranged from 0.15 to 0.88, 

while the CWSIJ and CWSIJB ranged from 0.03 to 0.78 and from 0.47 to 0.51, respectively. 

For CWSIJB correlation with ψleaf was high, while the automated analysis of CWSIR resulted in 

slightly reduced, but significant (p < 0.001) correlation coefficient of R = 0.52 (Table 9). 

However, the latter approach provided the advantage of feasible analysis of Td and Tw 

based on the individual images taken in the varying environment. Consequently, all further 

analyses were based on CWSIR.  

 

Table 9. Ranges of wet (Tw) and dry (Td) reference temperatures obtained according to work 

groups of Jones and Ben-Gal (Ben-Gal et al., 2009) using weather data (CWSIJB), Jones 

(Jones, 1992) using dry and wet paper leaves (CWSIJ), and Rud (Rud et al., 20015) using 

both references from the histogram of image (CWSIR). Correlation coefficients (R) and F-

values, asterisks (***) denoting significance at p<0.001 considering leaf water potential (ψleaf), 

osmotic potential (ψπ), and crop water stress indexes are given of the same measuring day. 

Variable n  CWSIJB CWSIJ CWSIR 

Tw   12.07-15.03 19.98 16.10-20.80 
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Td   16.95-17.06 24.93 21.00-24.00 

ψleaf 11 R - 0.65 - 0.12 - 0.52 

  F 4800*** 3671*** 3671*** 

ψτ 11 R - 0.57 0.33 - 0.11 

  F 872*** 911*** 911*** 

 

4.4.2 Hotspot anayses 

Hotspot analysis of ECa revealed one cold spot representing extreme low conductivity and 5 

hot spots showing soil of high conductivity. Around the cold spot with critical z value of < -

1.65 (90% confidence level) a sand lens with an extension of approx. 20 m x 25 m was found 

(Figure 12), while at the hot spots with critical value > 1.65 (90% confidence level) water 

logging was observed after heavy rain fall indicating soil with lower particle size (Figure 14). 

The soil ECa was correlated with the number of leaves per tree. Consistently, spatial 

variability of canopy VPD within the orchard was found in the x-direction, which pointed to an 

influence of geographical position in the orchard (Rx = 0.31, Ry = 0.03, Rz = 0.20). This is 

the same direction as found for extreme values of soil ECa.  
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Figure 14. False colour maps providing the spatial distribution of (a) soil apparent electrical 

conductivity (ECa) and (b) instantaneous tree water status measured as crop water stress 

index (CWSIR) in the experimental plum orchard. Given are raw data (left), critical values by 

hotspot analysis (middle), and histograms of critical values (right). 

 

The CWSIR ranged from 0.15 to 0.88. The hotspot analysis of CWSIR revealed 5 cold spots 

occurring at z values < -1.65 representing trees with no water shortage. The 3 hot spots 
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appeared at critical value >1.65 referring to high CWSIR. Here, the hot spots refer to 

unfavorable conditions with enhanced water deficit. The hot spots appeared on the east side 

of the orchard, within and adjacent to the position of the central sand lens (Figure 14). The 

cold spots were found in the western positions of the orchard.  

The comparison of spots considering soil ECa and CWSIR pointed to no correlation. Also, no 

correlation was found between canopy size dimension and CWSIR considering the canopy 

length parallel to the row (R = 0.010), canopy width perpendicular to the row (R = 0.015), and 

volume calculated from length, width, and distance between first branch and last shoot (R = 

0.001). 

 

4.4.3 Tree Water Status and Fruit Quality 

In 2012, the average leaf number per tree was 2362. The SLA ranged from 32.00 cm² g-1 to 

59.76 cm² g-1 and showed no correlation with soil ECa. The fruit size was correlated with soil 

ECa at R = 0.223 considering the hot and cold spots. However, other fruit quality variables 

did not correlate with soil properties.  

No correlation between leaf water potential and fruit quality was found in the few trees 

measured. CWSIR was correlated with SLA, but no significant difference was found for the 

number of leaves or fruit quality (Table 10). Cumulative water use efficiency obviously 

depends primarily on the degree of crop load, because the water supply was kept uniform in 

the orchard. Mean WUEc was 2.362 g L-1 in 2012 and 2.521 g L-1 in 2013. In 2012, WUEc 

seemed only slightly, if at all, affected by soil ECa (R = 0.133), while in 2013, the correlation 

increased (R = 0.274).  

The WUEc showed a correlation of R = -0.367, R = 0.183, and R = -0.270 with the fruit size, 

dry matter, and fruit flesh firmness, respectively, in 2012 (Table 10). Particularly, larger fruit 

size was correlated with low WUEc, and consequently with decreased crop load (Figure 15). 

Correlation between the above parameters seemed to be stronger in 2013. However, the 

reduce sample size in 2013 hampered the statistical comparison of the influence of slight 

drought stress on fruit quality in the different years. 

 

 

Table 10. Mean values and p-level of plant variables grouped according to low (cold spot), 

random, and high (hot spot) crop water stress index (CWSIR) and cumulative water use 

efficiency (WUEc) considering mean values of all fruits and leaves of each tree. 

Variable CWSIR CWSIR CWSIR    p WUE WUE WUE p 
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cold-

spot 

rando

m 

hot-spot cold-spot random hot-spot 

# leaves per tree 1973 2341 2734 0.589 2180.58 2399.26 2266.36 0.5681 

Specific leaf area 

[cm2 g-1] 
na 47.07 49.27 0.0229 29.05 29.29 28.48 0.7300 

Fruit size [mm] 58.22 55.04 54.67 0.6704 59.82 54.79 52.34 < 0.0001 

Firmness [N/cm²] 3.59 2.70 2.80 0.6346 3.29 2.75 2.23 0.1093 

Dry matter [%] 33.97 32.37 32.08 0.3931 32.30 32.27 32.96 0.0312 

 

 

 

Figure 15 Regression analyses of data (means per tree; n = 88) of fruit dry matter (diamonds, 

y = 5.903x1 + 34.67), fruit size (circles, y = -80.17x2 + 24.29), fruit flesh firmness (squares, y = 

-0.129x3 + 3.017), and cumulative water use efficiency (WUEc). Increased symbol size 

represents cold and hot spots. 

 

 

WUEc showed no correlation with CWSIR with R = 0.071 and R = 0.093 in 2012 and 2013, 

respectively. However, fruit quality was strongly affected considering the interaction of both 



Evaluating spatially resolved influence of soil and tree water status on quality of European plum grown in semi-
humid climate 

71 

variables (Table 11). Grouping according to WUEc and the instantaneous values of CWSIR 

resulted in highly significant differences for fruit size and dry matter. 

 

Table 11. Interaction of cumulative water use efficiency (WUEc) x crop water stress index 

(CWSIR) and its effect on fruit quality analyzed by 2 factorial ANOVA considering all data and 

data excluding hot and cold spots. 

 WUE x CWSIR WUE_Spot x CWSIR_Spot 

 F p F p 

Fruit height [mm] 1.94 < 0.0001 1.89 < 0.0001 

Dry matter [%] 1.91 < 0.0001 1.82 < 0.0003 

Fruit flesh firmness [N/cm²] 1.16 0.2178 0.5 0.9977 

  

4.5 Discussion 

4.5.1 Spatial Patterns in the Orchard 

Shortly before harvest, the spatial patterns of soil ECa appeared closely related to soil water 

content with decreased ECa values at the positions of a sand lens found in the experimental 

orchard. This finding is consistent with earlier investigations carried out in areas with arid 

conditions (McCutcheon et al., 2006). The low correlation between soil matric potential and 

soil apparent electrical conductivity could be expected because previous chemical analyses 

of soils (Käthner and Zude-Sasse, 2015) at 10 spots of the same experimental site indicated 

only marginal < 5 % variations of phosphorus and potassium content, salinity, and pH. 

Increased, but still < 10 % variation was found for magnesium, calcium, sodium, and chloride 

contents. Nevertheless, the analyses of the variations of soil ECa during fruit development 

may provide data and information for the evaluation of spatial distribution pattern of water, 

which could potentially affect the quality of the mature fruit. 

The Ψleaf measured predawn showed high variability and minimum value of -1.48 MPa 

indicating at least slight drought stress in some trees. Based on the measurements of 

weather and tree canopy microclimate, stable environmental conditions (Bellvert et al., 2014) 

during thermal imaging between 13:40 and 16:19 can be assumed for both years. Only the 

variation of radiation due to changing cloud cover could have slightly impaired thermal 

imaging due to the different dynamics of surface and air (ambient) temperatures (Agam et al. 

2013). On the other hand, the analysis of the instantaneous WUEi, performed at the same 

time, revealed diurnal changes in a value range reported in other investigations on plum 
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trees under similar conditions (Flores et al., 1985). Consequently, consistent sets of thermal 

readings may have been obtained on each measurement day. 

The influence of clouds indeed appeared as a perturbing factor in the present study, 

especially when using dry and wet paper as references for obtaining Tw and Td. The use of 

air temperature plus 5 K for setting Td with low difference of Td and Tw resulted in high bias 

of CWSII. The analytical analysis of Td and Tw, as well as the automated approach resulted 

in significant correlation of CWSI and Ψleaf. Calculating Td and Tw analytically (Jones, 1999; 

Ben-Gal et al., 2009) had the disadvantage that weather data were needed. However, this 

method provided some insurance against artefacts. In the approach of intrinsic analysis of 

thermal images to calculate CWSIR (Rud et al., 2015), references are directly obtained from 

the images, which is presumably the most feasible approach for an application of thermal 

imaging in a real world orchard avoiding the need for additional measurements. The 

approach appeared to be appropriate for the semi-humid summer rain region with cloudy 

conditions of the current study. The correlation coefficient of R = -0.52 considering Ψleaf and 

CWSIR was at least encouraging to estimate the water stress of the plum trees. 

Hotspot analysis (Getis and Ord, 1992) was applied to identify geographically located trees 

that differ from the mean. The spots found in the ECa data set point to significantly different 

clusters of trees appearing in the orchard. This small scale variability of soil ECa is typical for 

postglacial deposits which are common sources of soils in fruit production regions in 

temperate areas of Europe and Asia.  

The CWSIR varied between 0.15 and 0.88 presumably indicating a range of unstressed to 

stressed trees in the orchard. As for the ECa patterns, the appearance of significant clusters 

considering instantaneous CWSIR points to a possible impact of tree water status on plant 

growth. However, we can certainly make no a-priori assumption on stable CWSI patterns, 

since crop load, stage of fruit development, and vegetative growth are all expected to 

influence water demand. This said, neither ECa nor crop load in the current study showed a 

correlation with CWSIR. 

4.5.2 Potential of Irrigation Adjustment for Improving Fruit Quality 

Bellvert and co-authors identified an influence of the fruit development stage on the 

correlation coefficient of leaf water potential and CWSI in peach and nectarine (Bellvert et al. 

2016) with increased correlation shortly before harvest, which is developmental stage 3. In 

olive fruits, less severe but equally directed correlation was found (Martin-Vertedor et al., 

2011). In the current study, CWSIR was similarly measured in stage 3 of plum fruit 

development corresponding to the second peak of fruit growth rate with high water demands.  
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In plum production, fruit size is of highest economic importance. In the present study, no 

effect of instantaneous tree water status as indicated by CWSIR on fruit size was found. 

However, at high crop load, fruit size was reduced and water required to produce high quality 

(large enough) fruits may have been deficient. While the instantaneous canopy transpiration 

based CWSIR alone did not indicate this level of potential water deficit, cumulative data of 

WUEc was correlated with fruit quality.  

The reducing effect of crop load on Ψleaf or stem water potential has been pointed out 

previously (Naor et al., 2001; Marsal et al., 2010), particularly under very high crop load 

(Sadras and Trentacoste, 2011). An impact on the fruit size is consequent. WUEc, by 

definition, was dependent of crop load, since, as said, the water supply was uniform in the 

orchard. However, the variability of soil ECa might point to differences in effective water 

supply, which would be worthwhile to consider in future studies for calculating the effective 

WUEc.  

Considering the spatial variability measured in the present study, the factor combination of 

the cumulative WUEc and instantaneous CWSIR resulted in highly significant interaction with 

fruit quality. The effects of WUEc and CWSI outweighed the effect of soil ECa on the fruit 

quality. However, these findings certainly need additional experimentation and confirmation 

before development as a practical management tool.  

 

4.6 Conclusions 

Spatially resolved soil analysis is commonly applied in precision horticultural applications. In 

the present study, analysis of histograms of thermal images in a plum orchard located in a 

temperate climate characterized by cloud cover and semi-humid conditions was additionally 

confirmed as a feasible method for spatial quantification of water status.  

Different spatial clusters of apparent electrical conductivity of soil and instantaneous crop 

water stress index were found, but none was correlated with fruit quality in the evenly 

irrigated orchard. While the cumulative water use efficiency showed an effect on fruit size, 

only combined analysis of instantaneous water status and cumulative water use efficiency 

yielded a close correlation with various fruit quality parameters. In practice, i.e. in model-

based regulated deficit irrigation of orchards with frequently present small scale variability of 

soil and varying crop load, the coupled CWSI and WUEc, together with the stage of fruit 

development, is expected to be an effective driver. 
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4.10 Appendix  

Calculation of analytical analysis of wet and dry reference temperature 

 

 

Twana = Tair +  
Rni

rHR

ρCp
      (11) 

Tdana =  Tair +   
rHRrv γ

ρCp(srHR+ rv γ )
Rni

− 
rHR

srHR+ rv γ
VPD   (12) 

  

Where ρ is the density of dry air [kg m-3], Cp the specific heat of dry air at constant pressure 

[J kg-1 K-1], γ the thermodynamic psychrometer constant (≈0.066 kPa K-1), rv the 

aerodynamic resistance [s m-1] calculated by latent heat transport (rH/1.08), Tair the air 

temperature [K], the VPD [kPa], and s representing the slope of the curve relating saturation 

vapor pressure to temperature. The aerodynamic resistance to sensible heat transport rH [m 

s-1] and the resistance for radiative heat loss rR [s m-1] are compiled into the resistance to 

sensible heat transport rHR [s m-1]. 

rH = 100√
d

u
        (13) 

 rR =
ρCp

4εσTair
3          (14) 

Where d is the characteristic length [m] of the leaf in the direction of the prevailing wind, u 

represents the wind speed [m s-1], ε the emittance of the canopy with 0.99 (Jones, 2014) and 

σ refers to the Stefan-Boltzmann constant (5.67 * 10-8 W m-2 K-4).  

rHR =
1

1

rH
+

1

rR

       (15) 

The net energy at the canopy Rn [W m-2] is the sum of the incoming short-wave radiation RSW 

[W m-2] and the incoming and outgoing long-wave radiations (Ben-Gal et al., 2009):  

Rn = Rsw(1 − α) + 1.24(
10eair

Tair
)

1

7σTair
4 − εcσTc

4    (16) 

 

Where RSW is the incoming short-wave radiation [W m-2], α is the albedo of the canopy, set to 

0.16 (Jones, 2014). The eair is the ambient water vapor pressure [kPa] and Tc the 

temperature of the canopy [K]. The VPD [kPa] was determined by calculating the difference 

of the saturation vapor pressure eabs [kPa] and the actual vapor pressure eair [kPa] 
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following Goff (1981) modified by (Gomez Galindo et al., 2004). The actual vapor pressure 

was calculated using the measured relative humidity ϕ [%] and air pressure pair [MPa].  

VPD =  

eair
eabs

pair
           (17) 

with    

eair = e
(

52.57633−6790.4985

Tair
−5.02808 ln Tair)

      (18) 

eabs =  eair
φ

100
      (19)
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5 Discussion  

For the first time, the connection between spatial variability of soil and plant water status 

related to generative growth of fruit trees was shown. 

For an evaluation of the potential and for the investigation of applicability, comprehensive 

insights into site-specific soil and plant information from the plantation are essential. As basic 

data, blanket information about the variability of soil data with the help of ECa were used 

along with CWSI and topographical data, which are already commonly used in soil mapping 

for precision agriculture.  

In the following illustration (Figure 16), aspects of the concept of precision fruticulture are 

presented. With the aid of ECa and CWSI, the plantation was characterized 

comprehensively. By using the hot-spots, the spatial data was divided into three areas. 

These were further used to determine the interaction between plant variables. From this, 

conclusions may be drawn about the WUE and quality. 

 

 

Figure 15. Modified circle system of the concept of precision fruticulture with the concrete 

realisation approached in this thesis. The transparent (grey) steps were not included. 
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The highlights of the thesis considering the three chapters on specific objectives are: 

- Yield and fruit quality correlate with soil ECa and instantaneous water status of fruit 

trees 

- Yield and fruit quality correlate with soil ECa and topography, with soil ECatopsoil is the 

most dominant factor 

- Isolines of critical values (extremes) enlighten effect of soil ECa on instantaneous 

CWSI. Isolines of critical values effectively removed extreme trees 

- Spatial pattern of plant data were revealed considering fruit quality (height, SSC, 

firmness, dry matter) 

- Water use efficiency 

• Intrinsic WUE points to midday CWSI acquisition and potentially automated 

analysis in semi-humid climate of Brandenburg 

• Enhanced cumulative WUE resulted in high fruit quality and potentially 

ressource-efficient fruit production 

 

 

5.1 Spatial variability of soil ECa, topography and plant water status  

5.1.1 Spatial variability of soil ECa 

The ECa values indicated that the local variability of soil and plant information in the tested 

plantation in Brandenburg was high (see Manuscript 1, Manuscript 3), so that a randomly 

performed spot check measurement was not enough to characterize the plantation. It should 

be kept in mind that the ECa value is only an integrative value and this method is not 

evaluable without reference analysis such as texture or chemical analysis. Furthermore, this 

type of measurement is currently not able to be automated, since only measurements right 

on the fruit tree get the desired information (Manuscript 1). 

 

The spot check reference analyses of the soil were usable in the study’s own work when 

targeted with the ECa-mapped pattern. Through the local analysis of selected areas, 

effective work is possible and sampling can be optimized. Further, the costs can be 

optimized as well. With these cost savings, a soil test becomes possible to determine the 

content of various substances like nitrogen (ion balance and osmosis regulation), 

phosphorous (energy budget for the plant), potassium (co-factor by enzyme reactions), sulfur 

(ion balance), and minerals like iron, zinc, copper, manganese, and magnesium (co-factor by 

enzyme reactions), which affect plant health and the harvest yield (Konopatzki et al., 2008, 

Kumar et al., 2011). 
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In addition it was indicated that the patterns that were investigated are stable over the years, 

which leads to savings on measurements (Manuscript 1; Manuscript 3). The same could be 

demonstrated by the workgroup of Mann et al. (2011) in a grapefruit orchard in Florida. 

This leads to a new potential in precision fruticulture by using the spatial patterns for 

irrigation in accordance to the soil properties. 

Furthermore, the spatial soil ECa patterns may be used to customize and localize fertilizer 

distribution. Currently in fruticulture, a blanket fertilization is applied to the entire plantation, 

but spatial variations in ECa values show that this is not an effective use of fertilizer.  

 

5.1.2 Spatial variability of the topography 

By using a real-time kinematic global positioning system (RTK-GPS), highly precise 

positioning of each tree was performed and a precise characterization of the orchard with 

respect to topography was completed (Manuscript 1).  

Exact positioning is a necessity prerequisite for precise and individualized evaluation of the 

data. For the highest possible precision in positioning the trees, the rover was manually 

repositioned using RTK-GPS. This is tied to a very high time investment and is therefore 

impractical for commercial farmers. Only thus can this necessary precise and tree-specific 

evaluation take place. In an alternative measurement setup that is less time- and cost-

intensive, the rover is installed on a platform and driven at a constant walking speed through 

the orchard (Fukatsu et al., 2014). This was tested in the plum orchard. As it turned out, that 

tiniest changes in speed, vibrations because of uneven ground, or disturbances in reception 

to the reference base station lead to a great loss of precision or position data and to 

deviations from position. However, for finding the blanket elevation information for the whole 

orchard, it is a viable method. 

In the plum orchard, the topography plays only a marginal role (Manuscript 1). It was shown 

that the topography does not have any significant influence on the yield in the general too 

gross parameters in the tested orchard with a slope of 3° (Manuscript 1). This was confirmed 

by the results from Faniadia et al (2010) in sweet cherries. For sweet cherries with an 

elevation difference of 507 m, it was shown that the elevation difference had no influence on 

the fruits’ physical character (Faniadia et al., 2010).  

 

5.1.3 Spatial variability of CWSI 

5.1.3.1 Instantaneous plant water status 

The CWSI is an established method for the blanket collection of plant water status in a semi-

arid climate and thus makes efficient irrigation possible. The measurements that form the 

basis of this study made it possible to modify the analytic equation that enabled the use of 
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this method in a semi-humid area (Manuscript 3). Further factors formed the basis for this 

modification (Manuscript 3). Thus information was required for this analytical approach such 

as wind speed, air temperature, and environmental radiation (Manuscript 3). The prerequisite 

for this data is a weather station located nearby and additional reference sensors located in 

the plantation itself. These reference sensors are useful for determining temperature 

variations, so that the data may be corrected if necessary. To minimize the resultant costs, a 

mobile weather station would make sense. However, installation of such a station on the 

platform would not be possible because of the driving speed and the resulting air currents, 

because these would influence the additional information being collected. Furthermore, the 

values collected by Jones in 2014 for emissions and albedo for the canopy of a leafy tree 

served as a basis for the analytical computations (Jones, 2014). For an exact computation of 

the CWSI, these parameters must however be determined specific to the species, since 

every species has specific characteristics (López et al., 2012). Aside from that, the median 

leaf area per tree was used for the computation, and because of the measurement apparatus 

design, only a part of the canopy was measured. For the optimization of the method, the 

median leaf area of the leaves visible in the thermal images should be used. The weighting 

of the visible leaves could imply a change in the median leaf area. Further aspect that could 

be optimized is taking into account the distorted optics that result from the imaging geometry. 

The geometric calibration of the system can reduce such errors. 

Alternatively, with the aid of image editing software, the required reference temperatures 

were taken directly from the thermal images (Manuscript 3). This form of evaluation does, on 

the one hand, enable automated measurements, but no surrounding factors whatsoever are 

taken into account. This could lead to an over- or underestimation of the CWSI. It should also 

be noted that any cloud cover might negatively influence the capture of thermal images in 

open fields. This aspect was taken into account in this study by taking measurements on a 

particularly clear (RG [W/m²] = 288.00) and calm (u = 0.9 m/s) day. The comparison of the 

analytical equation with the alternative approach showed only minimal differences 

(Manuscript 3). 

With all that it can be said that for experimental orchards, and automated measurement and 

evaluation was possible. However, this cannot be copied one to one to a commercial 

orchard. The crowded planting typical in commercial orchards in the “Schlanke Spindel” form, 

or fruit bushes or trees planted in walls, prohibit a tree-specific determination of CWSI 

through image processing. Even an individual tree-by-tree identification by hand was barely 

possible. To make this concept transferable, a modification of the measurement method is 

necessary.  
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For the blanket characterization of plant water status for an entire orchard, the developed 

method seems to be very effective. It is cost-effective and quickly performed. With it, an 

efficient and customized water use in semi-humid regions can be implemented and possible 

negative influences on quality can be reduced. This characterization represents only a 

snapshot of the plant water status because of the climactic conditions. This aspect must be 

taken into account as a result of the varying water requirements of the fruit bushes and trees 

depending on the fruit development phase (Bellvert et al., 2016). One possible 

implementation would be to monitor fruit development and CWSI long term in order to 

effectively determine CWSI. This aspect in the study is based on the determined influence of 

low water stress on the commercially relevant fruit quality. 

 

5.1.3.2 Cumulative plant water status 

How optimally the fruit tree was supplied can be illustrated long-term using laser scanner 

data. With the help of the automatically collected laser data, the orchard was quickly and 

comprehensively characterized (Käthner et al., 2014). We can further show that we only 

need a few destructive tests of leaf area to determine total leaf area, which we in turn use in 

measurement point graphs to calculate the leaf area per tree (Käthner et al., 2014). The leaf 

area proportion can additionally be used to adjust the leaf-to-fruit proportion. The 

disadvantage of this method is that the result is only visible in the following year. The result is 

also a relative value, which could be improved with 3D images of the tree and a precise 

evaluation. As with to the thermal images, the transfer of this process to commercial 

orchards is made difficult by the very tight spacing of the plants.  

 

5.2 Hot-spot analysis — characterizing the extreme values 

Hot-spot analysis was introduced as a new alternative static distribution method for ECasoil 

and CWSI data for location-specific management. Spatial soil as well as plant data are useful 

for analysis (Manuscript 2, Manuscript 3). Consequently, blanket measurements must take 

place to serve as a basis for decision-making using the location-specific data (Manuscript 2; 

Manuscript 3).  

In this study, a comparison of hot-spot analysis with the established k-mean analysis showed 

that hot-spot analysis is useful as an alternative method (Manuscript 2). In particular the 

threefold division into cold-spot, random, and hot-spot makes the evaluation method very 

user-friendly and it is easily turned into a color scale for maps. In the process, individual trees 

are investigated, which can be quite different even from neighboring trees. It should be taken 

into account that the spots found with this message are extreme values. These extreme 
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values can simultaneously be used as pointers for the orchard. Thus sensors can be 

targeted for the exact spots to define boundary values for the orchard. These boundary 

values can also be used for controlling irrigation. By using these spots to position sensors, 

the sensors’ use becomes more effective and thus saves costs. In addition, hot-spot analysis 

allows an evaluation of measurement data to be performed and as a result the data can be 

more precisely evaluated. 

This provides a possible model for DSS and can lead to an improved precision management 

in fruticulture. The further advantage of this method lies in its portability to various 

comprehensive data — an aspect that is far more difficult with other common methods. 

Because of the requirement for comprehensive information, remote sensing is necessary 

(Fountas et al., 2011). This means and increased time investment in the measurement and in 

editing, in particular because large gaps in data lead to unreal spots. Furthermore it should 

be noted that the spots do not confirm the null hypothesis and are not randomly distributed. 

For precise management, an analysis that produces these spots leaves its mark. 

 

 

5.2.1 Extreme values of soil ECa 

The discovered spots that result from the soil and ECasoil data can have many causes. For 

example, concretion could be an explanation for the spots. A concretion leads to a reduction 

in pore volume and therefore to poor aeration of the soil. This in turn prevents the water from 

soaking into the soil and the ground stays wetter longer. As a result, the ground becomes 

slimy over time and the water cannot be stored in the soil. Furthermore, a concretion can 

limit root density at greater depths (Bengough and Mullins, 1991).  

In the reference plum orchard, a concretion could partly be confirmed as a reason for the 

spots (Manuscript 1). A further explanation for the spots could be pre-existing plant material, 

like old roots.  

Furthermore, the spots could be an indication of short-term flooding or possibly extreme 

dryness. Flooding prevents the release of CO2 from cell respiration and hinders the oxygen 

supply leading to an oxygen deficit, which as a result limits cell respiration.  

The ground moisture was measured with pF meter data (Manuscript 1; Manuscript 3). This 

only explains the cold-spots. The measured values do not exceed a value of 3.3 (Manuscript 

3) and thus there are no dry areas that could explain the hot-spots. Besides that, it could be 

shown that the spots were not explained by a deficit or surplus in chemical components. A 
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spot check of randomized samples showed no extreme properties and therefore no 

explanation for the spots (Manuscript 1). 

 

5.2.2 Extreme values of CWSI 

The study showed that the spots could be correlated to the texture shown by the ECa values. 

Thus the spots in the plum orchard can be assigned to loamy and loam-sandy areas. 

Additionally, the ECa values can be influenced by chemical substances.  

Due to the topography differences in global radiation could occur. The spots found in the 

CWSI data can be caused by maxima and minima in wind, irradiation, moisture, and air 

temperature. The study’s analytical computation of CWSI did not show any anomalies in the 

weather data. Due to the topography differences in global radiation could occur. The spots in 

the topography were located by the pollenating trees and were therefore not relevant for the 

investigation. 

Furthermore, the calibration of the camera could lead to anomalies. However, this was taken 

into account in data collection and checked afterwards. Above and beyond that, reflections 

could lead to extreme values. An evaluation routine was programmed for this calculation to 

remove these values from the computation of the index and replaced with NaN.  

In addition, the spots could be caused by the general situation. For one thing, the study could 

indicate that the stage of development like the tree’s age should be taken into account in the 

evaluation (Manuscript 1). The same was shown by Khalid et al. (2012) for 3, 6, 18, and 35 

year old mandarin trees in Pakistan.  

Another aspect was that the study showed that in spite of constant irrigation, there was a 

high variability in canopy temperature in the orchard (Manuscript 3). This was a sign of 

stress, which influenced photosynthesis. The lack of water limited enzyme and physiological 

processes as well as membrane transport (Jones und Tardieu, 1998). Furthermore, the 

transpiration was also limited. Consequently, the leaf surface temperature rose.  

Water consumption varies by plant type and therefore must be determined for each culture. 

The established LWP measurement confirmed this, and was additionally shown with a CWSI 

of 0.69 in the plum orchard. This confirmed what González-Dugo et al. (2013) found in their 

study of five different fruit types. 

The spots could be used for more precise irrigation control. Since CWSI is a snapshot of the 

plant water status, hot-spot analysis could help locate the distressed areas and allow for 

timely intervention to prevent possible reductions in fruit quality. Precise data in the form of 

3D images could improve hot-spot analysis. 
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5.3 Interaction of soil ECa and CWSI with plant growth (and fruit quality) 

With the help of descriptive, inductive, and spatial statistics, the interaction was indicated 

between soil ECa and CWSI with growth variables and fruit quality (Manuscript 1; Manuscript 

3). Thanks to the additional recognition of its impact, possibly new knowledge about the 

potential for precise management of fruit cultures has been generated. Additionally, it was 

shown with the ANOVA which depth of the soil ECa had the greatest influence on growth 

variables and fruit quality (Manuscript 1). By charting the soil ECa at various depths, whole 

new approaches may have been opened. In the process, the root growth may be charted 

indirectly. Limited deep root growth can lead to fruit trees having limited health and are 

susceptible to tree diseases. The causes can be physiological constraints such as water-

saturated soil and/or mechanical compression. 

Underlying causes can lead to physiological limitations like waterlogged soils and mechanical 

limitations like concretion. Additionally, the substrate’s properties can lead to reduced deep 

root growth. This assumption is reinforced by the results from various plum cultivars from 

Grzyb et al. (1998). In the plum orchard, however, this could not be shown. The cultivar as 

well as the pollenator are on the same substrate and show no significant difference. Hence 

the influence of the substrate may be discounted. 

At the same time, ground sensors may be placed at the depth needed to investigate irrigation 

and fertilizer requirements. A subsurface irrigation system offers the potential for remote ECa 

measurements. A further advantage would be the use as a mechanical weed control. For 

phytosanitary reasons, this must be performed periodically. In so doing, the pressure 

damage is reduced in the plantation. 

Contrary to expectations, the evaluation showed that the topsoil has a significant influence 

on the plum orchard (Manuscript 1). This was clearer in the grapefruit plantation (Manuscript 

2). Thus sandy soils lead to rather less vegetative growth in the grapefruit orchard 

(Manuscript 2). The same could be confirmed in the study of an apple orchard from 

Blumenstein (1986). Additionally, the ground level had an influence on yield and fruit quality. 

The result is surprising, since previous studies showed this only with great variation in 

elevation, for example Prunus avium L. at 507 m (Faniadia et al., 2010) and Malus domestica 

L. Borkh at 250 m difference in elevation (Cin et al., 2007). In a combined look at ECa values 

in topsoil and the ground level, a significant connection with vegetative growth variables was 

recognizable (Manuscript 1). Furthermore, there was a positive connection between yield 

and soil ECa (Mann et al. 2011). In particular the fruit height showed a significant relationship 

to the ECatopsoil (Manuscript 1). Thus could be used to improve the marketability (Theron, 

2011) in that one can produce using selective management in the orchard. 
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Thus it could be shown in a semi-humid area that trees in sandy areas in the plum orchard 

were more stressed than trees in loamy-sandy areas (Manuscript 3). Unlike in the study from 

Milošević und Milošević (2011), they show that plum trees from loamy-sandy areas have a 

decrease in the median fresh weight.  

This study was able to show that water stress also influences quality (Manuscript 3). This 

was already shown in many other studies. Among others, Chalmers et al. (1981) 

demonstrated that irrigation can positively influence fruit quality in the form of increases in 

sugar content in peaces. Irrigation can not only influence the quality, but also the vitality, 

growth, fruit bud formation, lifespan, and frost and heat resistance (Levitt, 1951; Hoad, 1983). 

Sensationaly is the fact that one must rely on irrigation even in semi-humid areas 

(Manuscript 3). This is supported by our demonstration that even a small amount of water 

stress has an effect on fruit quality (Manuscript 3). The same was found by Intrigliolo and 

Castel (2006b) with Japanese plums. With apples, it was shown that a high crop load leads 

to high transpiration (Naor et al., 2008). Furthermore, a clear connection between SWP and 

yield in apples (Naor, 2004) and plums (Naor and Cohen, 2003) has been shown. By 

increasing evapotranspiration, surface temperature falls (Maes and Steppe, 2012). It is thus 

possible through targeted irrigation including precipitation to keep evapotranspiration stable. 

Using the CWSI, a possible method was shown to characterize this for an entire area. The 

same was shown by Bellvert et al. (2014a) for peaches and Nagy (2015) for apples. Given 

that fruit trees require differing amounts of water at different growth stages (Bellvert et al. 

2016), a long-term monitoring of fruit development and CWSI should be performed to deduce 

the actual CWSI.  

All these insights could be used for fruit trees in semi-humid areas to intervene with irrigation 

in a targeted manner, and thus reach the highest possible quality with less water usage. This 

will be supported by the work from Ruiz-Sánchez et al (2000) on apricot and González-

Altozano and Castel (2000) on citrus.They show that full irrigation influence the fruit growth 

postively.Futhermore, Fereres et al. (2007) could show how important irrigation is in the 

semi-arid area in fruit treesand through targeted irrigation management can be save water.  
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6 Conclusion 

The results of this study indicated that in domestic orchards, there is a variability in soil and 

plant water status. In addition, the results implied that soil ECa and CWSI affect the fruit 

quality. The cumulative WUE of trees and the fruit quality were improved on soils with higher 

soil ECa and lower CWSI values. Particularly, the recognition that irrigation is necessary for 

fruit quality indicates that a precise management is necessary for an optimized irrigation of 

orchards. 

Furthermore, the results demonstrated that the spatial pattern remains stable in the soil ECa. 

Besides, the study pointed to another possibility for improving the precision management 

using the 3D mapping of the soil’s ECa. It is worth noting that in the examined plum tree, the 

topsoil had a significant impact on the variables of growth and fruit size. The evaluation could 

further lead to the conclusion that the tree’s age should be taken into account. 

By modifying the equation for the CWSI, it seemed possible to characterize the plant water 

status of the facility in semi-humid climate. By calculating the CWSI directly from thermal 

imaging, an alternative possibility was introduced to automatically measure and evaluate the 

plant water status. Both approaches were verified with established LWP methods. 

Despite standard irrigation, the CWSI indicated a high variability in both approaches in the 

plum orchard in semi-humid climate. Furthermore, the two approaches for calculating the 

CWSI lead to assume that the fruit quality is affected by the plant water status. The water 

use efficiency might by a more complex, but feasible variable to assess the optimum water 

status within the orchard. 

The study also presented a method for the classification of management zones. The 

comparison of the hot-spot analysis to the traditional k-mean classification came to 

comparable results when determining spatial patterns. Spatial grouping allows for precise 

causal research and opens up new possibilities for evaluations. Thus, better conclusions for 

the increase in quality could be drawn. Based on the detected spatial patterns in the orchard, 

a potential for site-specific management may have been revealed. With the triple subdivision, 

the data is likely more user-friendly and could be evaluated more simply. At the same time, 

the hot-spot analysis highlighted the extreme values in the spatial soil’s ECa and CWSI. In 

addition, the study argued that the variability of the data could be minimized by the removal 

of the extreme values in the data. Hence management could be performed in a better way. 

Thus, significant correlations appeared in the remaining trees’ fruit quality and growth 

variables. With the results of WUE, a potential opportunity for resource-efficient irrigation was 

presented. The rapid analysis of thermal images of spindle-like plum trees could create an 
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opportunity to carry out automatic monitoring of the current water status in a semi-humid 

climate. 

In summary, it could be said that adequate data is a necessary precondition for the 

characterization of the orchard. The analysis of the interaction between spatial soil ECa and 

CWSI to the vegetative and generative growth variables indicated a significant correlation. 

This information could be used to optimize the management of orchards. 
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