
Efficiency of Difference-List Programming

Ulrich Geske1, Hans-Joachim Goltz2

1University of Potsdam
ugeske@uni-potsdam.de

2Fraunhofer FIRST, Berlin
goltz@first.fraunhofer.de

Abstract. The difference-list technique is described in literature as effective
method for extending lists to the right without using calls of append/3. There ex-
ist some proposals for automatic transformation of list programs into difference-
list programs. However, we are interested in construction of difference-list pro-
grams by the programmer, avoiding the need of a transformation step. In
[GG09] it was demonstrated, how left-recursive procedures with a dangling call
of append/3 can be transformed into right-recursion using the unfolding tech-
nique. For simplification of writing difference-list programs using a new cons/2
procedure was introduced. In the present paper, we investigate how efficieny is
influenced using cons/2. We measure the efficiency of procedures using accu-
mulator technique, cons/2, DCG’s, and difference lists and compute the result-
ing speedup in respect to the simple procedure definition using append/3. Four
Prolog systems were investigated and we found different behaviour concerning
the speedup by difference lists. A result of our investigations is, that an often
advice given in the literature for avoiding calls append/3 could not be confirmed
in this strong formulation.

1 Introduction

Appending an additional element E as last element to an existing list could be per-
formed by copying all existing list elements and the additional element E into a new
list (using the Prolog procedure append/3).. Instead of, this operation could be per-
formed by an efficient (physical) concatenation using the difference list notation.
Every list may be presented as a difference list. For example, the list [1,2,3] could
be represented as difference of the lists [1,2,3|X]and X. If list X contains E as
first element (e.g. X=[E|Y]), E is the next element after 3 without a copying opera-
tion). A term [E|Y] is called an incomplete list. The Prolog standard does not provide
any special notation for difference lists. A possible notation of a difference list from
two lists L and R may be given by a notation L R, e.g. L-R or L\R (the symbol
used must be defined as oparator in the concrete Prolog system). If denotes a
comma (,), L and R are two arguments in an argument list. The earliest extended de-
scription of difference lists was given by Clark and Tärnlund in [CT77]. A concatena-
tion of the difference lists U V=[1,2,3|X] X and V W>=X nil results in the dif-
ference list U W=[1,2,3,4] nil [1,2,3,4] as soon as X is computed to

177

4 nil. The difference list notation is a syntactic variant of the accumulator tech-
nique (a comma is used for). While in the accumulator technique accumulator and
result parameter are separated into two terms, which needs two variables for accessing
them, in the difference list notation both information are accessible by one variable
with the advantage of an easy to survey structure of procedures.

Our analysis of presentations of the use of difference list in Prolog textbooks
showed that this technique is often not adequately explained [see also GG09]. Espe-
cially, a clear and convincing rule, where in procedures to specify the incomplete list
(e.g. [E|Y]) is not supplied. Dependent from a concrete problem, the incomplete list
has to be specified in the head of a rule, in one of the calls of the body or in the last
(recursive) call of the body of a rule. A solution of this problem could be the use of
the paradigm of grammar rules or its extension, Definite Clause Grammar (DCG),
which was originally developed for language processing but may be used for list
processing, too. Natural language sentences, coded as list of words, must be processed
phrase by phrase from left to right, consuming some words for a phrase and leaving
the rest for the following phrases. In the DCG formalism it is sufficient to specify the
sequence of phrases. The argument pattern for traversing the list will be generated
automatically in accumulator technique.

%DCG-Specification for copying a list
dcg_copy([]) --> [].
dcg_copy([X|RR]) --> [X], dcg_copy(RR).

%Generated program by automatic program transformation
dcg_copy([],L,L).
dcg_copy([X|Xs],Acc,Res):-
 'C'(Res,X,RR),
 dcg_copy(Xs,Acc,RR).

Fig. 1 Copying a list as DCG specification

An specification example for DCG’s is copying a list (Fig. 1). The specification [X]
means, taking the first element X from a list [X|Xs]. This specification is transformed
into a call of the built-in procedure ‘C’/3, which could be defined as Prolog procedure
by ‘C’([X|Xs],X,Xs).

For supporting teaching and application of difference list programming, we have
proposed a procedure cons(X, [X|Xs]-Xs) in [GG09] which takes pattern from the
‘C’/3 procedure. The advantages of cons/2 are both, its difference-list format, and that
the definition of cons/2 could be added to each Prolog system while ‘C’/3 and the
DCG formalism are not part of the ISO-Prolog until now and are not available in
each system. The use of cons/2 allows the application of a simple rule for writing ex-
plicit difference-programs and to find out simply the right place for the mentioned in-
complete list [E|Y]. In this paper we investigate the efficiency applying cons/2 com-
pared with other kinds of specification.

178

2 Top-down and Bottom-up Construction of Lists

The notions of top-down and bottom-up procedures for traversing structures like
trees are well established. We will use the notions top-down construction of lists and
bottom-up construction of lists in this paper to describe the result of the process build-
ing lists with a certain order of elements in relation to the order in which the elements
are taken from the corresponding input list.

Top-down construction of lists

The order el1’ – el2’ of two arbitrary elements el1’, el2’ in the constructed
list corresponds to the order in which the two elements el1, el2 are taken from
the input term (perhaps a list or a tree structure).

Bottom-up construction of lists
The order el2’ – el1’ of two arbitrary elements el1’, el2’ in the constructed

list corresponds to the reverse order in which the two elements el1, el2 are
taken from the input term (perhaps a list or a tree structure).

An input list may be, e.g., [2, 4, 3, 1]. A top-down construction of the result list [2,
4, 3, 1] is given if the elements are taken from left to right from the input list and put
into the constructed list in a left to right manner. If the elements are taken from the
input list by their magnitude and put into the result list from left to right, the list [1 2 3
4] will be (top-down) constructed. A bottom-up construction of the result list [1, 3, 4,
2] is given if the elements of the list [2, 4,3,1] are taken from left to right from the in-
put list and put into the constructed list in a right-to-left manner. If the elements are
taken from the input list by their magnitude and put into the result list from right to
left, the list [4 3 2 1] will be (bottom-up) constructed. Which programming techniques
could be used for a top-down- respectively a bottom-up construction of lists? Accu-
mulator technique is an often used technique, which allows both, top-down- and bot-
tom-up construction of lists. Examples are the procedures for traversing in pre-order
manner accapp_pre_td/3 and accapp_pre_bu/3 (Fig. 5).. These procedures use besides
accumulators calls of append/3. But, also without use of accumulators, top-down and
bottom-up list-constructions are possible. Examples are pre_order/2 and
pre_order_bu/2 (see also Fig. 5). Again, calls of append/3 are needed in these defini-
tions.

3 Construction Rules for difference list procedures

There are different possibilities to avoid the use of a call of append/3. A rather triv-
ial improvement is given by unfolding an append/3 call which puts a single element X
in front of a list A to give the result list RR, i.e RR=[X|A]. E.g., the append-free pro-
cedures acc_pre_td/3 result (Fig. 2), if in accapp_pre_td/3 the equivalent [X|L1] for
Xs is inserted and the corresponding call of append([X],L1,Xs) is crossed.
The difference-list procedure dl_pre_td/2 (see Fig. 5) is a syntactic variant of the ac-
cumulator version of the corresponding procedure acc_pre_td/3, which results by sub-
stitution of the second and third argument, say ARG2 and ARG3 (ARG2 should be

179

the accumulator parameter, ARG3 the result parameter) with the difference list
ARG3-ARG2.

 acc_pre_td(tree(X,L,R),Rs, [X|L1]):-
 acc_pre_td(L, L2, L1),
 acc_pre_td(R, Rs, L2).
acc_pre_td([],L,L).

Fig. 2 Append-free pre-order tree-traversal by accumulator technique

The presented transformation steps for a procedure into difference-list notation has a
serious disadvantage: the starting point is a procedure definition which uses an ap-
pend/3-call (which should be avoided). Moreover, the precondition for the transfor-
mation, an admissible call of append/3, is not always given as examples
pre_order_bu/3 (Fig. 5) shows. An admissible structure is given if a single element
should be put in front of a list, i.e. this element is part of the first argument of the call
of append/3. The fulfilment of this condition can not be always ensured. Therefore
append/3 calls must be avoided at all. An alternative, we propose, is the use of the
cons/2 procedure. The definition of cons/2 is choosen to suit the syntactic format of
the difference list notation.

cons(Element,[Element|Rest]-Rest).

Fig. 3 Definition of the cons operation

The advantage of this format is its correspondence to the format which is needed for
composing a resulting difference list from its parts. The position of the call of cons/2
in the body of a procedure is irrelevant, in general, but if this call occurs at its “natu-
ral” position a formal guideline for constructing difference list is possible.

Top-down construction of a difference list Res-Acc results from the “natural” order of
sub-difference-lists Res-Temp1, ..., TempI-TempI+1, ..., TempN-Acc.

Bottom-up construction of a difference list Res-Acc results from the “natural” order
of sub-difference-lists Temp1-Acc, ...TempI-1 - TempI, ..., Res-TempN

Rule 1 Informal rules for top-down- and bottom-up composition of difference lists

4 Benchmarks
4.1 Benchmark tests - processing trees

There exist, corresponding to [Sterling-Shapiro86], three different possibilities for the
linear traversal of trees. Any node X in a binary tree, besides the leave nodes, has a
Left and a Right successor tree. A pre-order traversal visits the tree in the following
order: X, Left Right, which may be programmed using a call append([X|Left], Right,
Tree) (pre_order/2 in Fig. 5). Correspondingly, an in-order traversal is given by the

180

call append(Left, [X|Right],Tree) and a post-order traversal by the sequence of calls
append(Right,[X],T), append(Left,T,Tree). A concrete example is shown in Fig. 13.

Fig. 4 Examples for linear traversals of binary trees

Fig. 4 presents four different algorithms for the pre-order-functions. A naive
algorithm uses the append procedure to compose the result from the different parts.
An extension of this algorithm is the additional use of an accumulator with the
advantage that the first argument of the append/3-call is always a list of one element –
there is no danger for looping forever. A further improvement is the avoidance of
append/3-calls at all by substituting it by the new introduced cons/2 procedure.
Finally, unfolding of the call of cons/2 leads to the known difference list format. A
procedure in a difference-list format could be derived step-by-step, as explained or it
may be specified in one step as described in the following for pre-order tree-traversal.
Specification of a pre-order traversal: The result of a pre-order traversal is the
difference-list L-LN. In a top-down construction of the result, the node X of the
structure tree(X,Left,Right) is visited first and supplies the difference-list L-L1, the
traversal of the left subtree supplies the difference-list L1-L2, and the traversal of the
right subtree supplies L2-LN. In a bottom-down construction of the result, the node
X of the structure tree(X,Left,Right) is visited first and supplies the difference-list
L2-LN, the traversal of the left subtree supplies the difference-list L1-L2, and the
traversal of the right subtree supplies L-L1. The in-order and post-order traversals are
specified analogous (see also Fig. 6, Fig. 7).

For processing the procedures a tree of a certain depth is automatically generated
by a call of the procedure

binary_tree([],_,0).
binary_tree(tree(LR-T,Left,Right),LR,T) :-
 T1 is T-1,
 binary_tree(Left,LR-l,T1),
 binary_tree(Right,LR-r,T1).

181

Definitions for pre-order tree-traversal
Top-down construction of result Bottom-up construction of result
%use of append/3; accumulator-free
pre_order(tree(X,L,R), Xs) :-
 pre_order(L,LN),
 pre_order(R,L0),
 append([X|LN],L0,Xs).
pre_order([],[]).

%use of append/3; accumulator-free
pre_order_bu(tree(X,L,R), Xs) :-
 pre_order_bu(L,LN),
 pre_order_bu(R,L0),
 append(LN,[X],L1),
 append(L0,L1,Xs).
pre_order_bu([],[]).

%use of append/3;use of accumulator
accapp_pre_td(tree(X,L,R),L0,LN):-
 append([X],L1,LN),
 accapp_pre_td(L,L2,L1),
 accapp_pre_td(R,L0,L2).
accapp_pre_td([],L,L).

%use of append/3;use of accumulator
accapp_pre_bu(tree(X,L,R), L0,LN) :-
 append([X],L0,L2).
 accapp_pre_bu(L,L2, L1),
 accapp_pre_bu(R,L1,LN).
accapp_pre_bu([],L,L).

%use of cons/2
%use of accumulator (part of DL)
d_pre_td(tree(X,L,R),LN-L0):-
/*LN=[X|L1]*/ cons(X,LN-L1),
 d_pre_td(L, L1-L2),
 d_pre_td(R, L2-L0).
d_pre_td([],L-L).

%use of cons/2
%use of accumulator (part of DL)
d_pre_bu(tree(X,L,R),LN-L0):-
 /*L2=[X|L0]*/ cons(X, L2-L0),
 d_pre_bu(L, L1-L2),
 d_pre_bu(R, LN-L1).
d_pre_bu([],L-L).),

%call of cons/2 unfolded
%use of accumulator (part of DL)
dl_pre_td(tree(X,L,R),[X|L1]-L0):-
 dl_pre_td(L,L1 -L2),
 dl_pre_td(R,L2 -L0).
dl_pre_td([],L-L).

%call of cons/2 unfolded
%use of accumulator (part of DL)
dl_pre_bu(tree(X,L,R),LN-L0):-
 dl_pre_bu(L, L1-[X|L0]),
 dl_pre_bu(R, LN- L1).
dl_pre_bu([],L-L).

Fig. 5 Different procedure definitions for pre-order tree-traversal

Definitions for in-order tree-traversal
Top-down construction of result Bottom-up construction of result
%use of append/3; no accumulator
in_order(tree(X,L,R), Xs) :-
 in_order(L,LN),
 append(LN,[X|L0],Xs),
 in_order(R,L0).
in_order([],[]).

%use of append/3; no accumulator
in_order_bu(tree(X,L,R), Xs) :-
 in_order_bu(L,LN),
 in_order_bu(R,L0),
 append(L0,[X|LN],Xs).
in_order_bu([],[]).

%use of append/3;use of accumulator
accapp_in_td(tree(X,L,R), L0,LN) :-
 accapp_in_td(L,L1,LN),
 append([X],L2,L1),
 accapp_in_td(R,L0,L2).
accapp_in_td([],L,L).

%use of append/3;use of accumulator
accapp_in_bu(tree(X,L,R), L0,LN) :-
 accapp_in_bu(L,L0,L2),
 append([X],L2,L1),
 accapp_in_bu(R,L1,LN).
accapp_in_bu([],L,L).

%use of cons/2;accumulator (in DL)
d_in_td(tree(X,L,R),LN-L0):-
 d_in_td(L, LN-L1),
/*L1=[X|L2]*/ cons(X,L1-L2),
 d_in_td(R, L2-L0).
d_in_td([],L-L).

%use of cons/2
%use of accumulator (part of DL)
d_in_bu(tree(X,L,R),LN-L0) :-
 d_in_bu(L, L2-L0),
 /*L1=[X|l2]*/ cons(X,L1-L2),
 d_in_bu(R, LN-L1).
d_in_bu([],L-L).),

%cons/2 unfolded; accumulator(in DL)
dl_in_td(tree(X,L,R),LN-L0):-
 dl_in_td(L,LN–[X|L2]),
 dl_in_td(R,L2-L0).
dl_in_td([],L-L).

% cons/2 unfolded;accumulator(in DL)
dl_in_bu(tree(X,L,R),LN-L0):-
 dl_in_bu(L, L2-L0),
 dl_in_bu(R, LN-[X|L2]).
dl_in_bu([],L-L).

Fig. 6 Different procedure definitions for in-order tree-traversal

182

Definitions for post-order tree-traversal
Top-down construction of result Bottom-up construction of result
%use of append/3; no accumulator
post_order(tree(X,L,R), Xs) :-
 post_order(L,LN),
 post_order(R,L0),
 append(L0,[X],L1),
 append(LN,L1,Xs).
post_order([],[]).

%use of append/3; no accumulator
post_order_bu(tree(X,L,R), Xs) :-
 post_order_bu(L,LN),
 post_order_bu(R,L0),
 append([X],L0,L1),
 append(L1,LN,Xs).
post_order_bu([],[]).

%use of append/3 and accumulator
accapp_post_td(tree(X,L,R),L0,LN) :-
 accapp_post_td(L,L1,LN),
 accapp_post_td(R,L2,L1),
 append([X],L0,L2).
accapp_post_td([],L,L).

%use of append/3 and accumulator
accapp_post_bu(tree(X,L,R),L0,LN) :-
 accapp_post_order_bu(L,L0,L2),
 accapp_post_order_bu(R,L2,L1),
 append([X],L1,LN).
accapp_post_order_bu([],L,L).

%use of cons/2
%use of accumulator (part of DL)
d_post_td(tree(X,L,R),LN-L0):-
 d_post_td(L, LN-L1),
 d_post_td(R, L1-L2),
/*L2=[X|L0]*/ cons(X,L2-L0).
d_post_td([],L-L).

%use of cons/2
%use of accumulator (part of DL)
d_post_bu(tree(X,L,R), LN-L0):-
 d_post_bu(L, L2-L0),
 d_post_bu(R, L1-L2),
/*LN=[X|L1]*/ cons(X, LN-L1).
d_post_bu([],L-L).),

%call of cons/2 unfolded
dl_post_td(tree(X,L,R),LN-L0):-
 dl_post_td(L, LN–L1),
 dl_post_td(R, L1–[X|L0]).
dl_post_td([],L-L).

%call of cons/2 unfolded
dl_post_bu(tree(X,L,R),[X|L1]-L0):-
 dl_post_bu(L, L2-L0),
 dl_post_bu(R, L1-L2).
dl_post_bu([],L-L).

Fig. 7 Different procedure definitions for post-order tree-traversal

and finally processed by an ordering processed by an ordering procedure, e.g. (meas-
urement of cpu-time not included):

?- binary_tree(Tree,0,16),!,pre_order(Tree,L).

A depth of 16 for the tree was a good compromise for the used computer with 331
MHz processor takt rate and 192 MB memory concerning consumption of time and
memory. Each benchmark test was repeated 10 times and the mean value was com-
puted.
The investigated systems, in which the benchmark procedures were consulted (using
consult/1), are CHIP version 5.8.0.0, ECLiPSe version 5.8 #95, SWI-Prolog ver-
sion 5.6.64, and SICStus-Prolog version 4.07.

4.2 Speedup

The speedup is the relationship of the processing time of the (naive) accumulator-free
version of a procedure by the processing time of the improved version for the same
algorithm. In Table 1 the speedup is presented for each tree-order traversal (in-order,
pre-order, post-order), each method (top-down (TD), bottom-up (BU)), and each algo-
rithm (append/3+accu, cons/2, DCG’s, difference lists) in each of the investigated
Prolog system. For comparision purpose the naive programming method using calls

183

of the built-in append/3 without using an accumulator argument is used (procedures
in_order/2, pre_order/2, post_order/2, in_order_bu/2, pre_order_bu/2,
post_order_bu/2 – in Table 1 denoted by: append/3). The rows denoted by myap-
pend/3 show the speedup with a user-defined append/3-procedure. The other classes
of algorithms use an accumulator either as separate argument or as part of a difference
list. The algorithm which complements the naive procedure by an accumulator is
called append/3+accu in Table 1 (procedures accapp_in_td/2, accapp_pre_td/2, ac-
capp_post_td/2, accapp_in_bu/2, accapp_pre_bu/2, accapp_post_bu/2). A substitution
of append/3 by a call of the new procedure cons/2 leads to the class of algorithms
which is called cons/2 in Table 1 (procedures d_in_td/2, d_pre_td/2, d_post_td/2,
d_in_bu/2, d_pre_bu/2, d_post_bu/2).

Table 1: Speedup for TD/BU-in-/pre-/post-order traversal of a tree

Prolog system CHIP 5.8 ECLiPSe 5.8 SWI 5.6.64 SICStus 4.07
Construction TD BU TD BU TD BU TD BU
pre-order
myappend/3 1.27 1.25 0.96 1.06 0.99 1.00 0.32 0.24
append/3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
append/3+accu 2.90 4.84 4.21 6.33 3.72 8.48 1.09 1.44
cons/2 3.90 6.10 3.24 5.15 4.00 8.70 0.96 1.23
DCG(‘C’/3) 4.21 6.74 5.35 8.77 4.74 10.58 0.93 1.22
DCG(-->/2) 5.30 8.51 6.24 11.73 1.22 1.58
difference lists 5.00 7.80 4.50 7.06 5.19 12.84 1.35 1.91
in-order
myappend/3 1.22 1.22 0.97 1.06 1.01 0.99 0.36 0.34
append/3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
append/3+accu 2.51 2.56 2.90 3.85 2.41 2.45 1.08 0.99
cons/2 3.72 3.32 2.47 3.18 2.71 2.61 0.86 0.93
DCG(‘C’/3) 3.60 3.69 4.07 5.54 3.15 3.11 0.92 0.85
DCG(-->/2) 4.00 5.64 3.63 3.50 1.18 1.17
difference lists 4.29 4.25 3.61 4.66 3.98 3.73 1.48 1.42
post-order
myappend/3 1.25 1.14 0.97 0.96 0.99 1.00 0.25 0.34
append/3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
append/3+accu 4.52 3.32 6.41 4.44 7.96 5.04 1.42 1.34
cons/2 5.78 4.25 5.20 3.57 8.16 5.37 1.23 1.14
DCG(‘C’/3) 6.57 4.50 8.43 5.65 10.48 6.45 1.21 1.16
DCG(-->/2) 8.68 5.69 12.05 8.57 1.47 1.53
difference lists 7.59 5.55 7.87 4.66 12.34 7.24 1.91 1.83

184

Finally, unfolding the call of cons/2 results in the procedures which form the class
called “difference lists” in Table 1 (procedures dl_in_td/2, dl_pre_td/2, dl_post_td/2,
dl_in_bu/2, dl_pre_bu/2, dl_post_bu/2). A possible class of procedures with an addi-
tional argument for the accumulator instead of combing it with the result parameter in
a difference list is not considered here. It is a syntactic variant of the difference-list
notation and is denoted in the literature as “accumulator” version.
Table 1 shows that each of the investigated Prolog systems behave in a different man-
ner. But, roughly we may classify the systems into two groups. One group consists of
the CHIP system and SWI-Prolog.. Each improvement in the algorithm (in the as-
sumed order of improvement: append/3+accu, cons/2, difference list) mirrors in a
partly significant speedup of the execution. Depending of the problem, the speedup of
execution times of the method append/3+accu compared with the append/3 algorithm
is between about 2.5 and 5 for CHIP and about 2.5 and 8.5 for SWI-Prolog. Applica-
tion of the cons/2-algorithm gives a speedup of about 25% less the speedup of the dif-
ference list method (cf. also Table 2). The maximum speedup by the cons/2-method is
about 8-fold compared with the execution time by the append/3-method. Both sys-
tems process obviously a built-in procedure and a user-defined procedures compara-
ble fast (see also rows myappend/3 and append/3 in Table 1).
The second group of Prolog systems contains the systems ECLiPSe and SICStus-
Prolog. The characteristic of this class is a missing strong connection between the as-
sumed improvement given by the algorithms and the speedup of execution. The ac-
cumulator-procedures which contain a call of append/3 may have a greater speedup
than the corresponding procedures which use a call of cons/2 instead of append/3. An
explanation for this effect may be that calls of the built-in (compiled) procedure ap-
pend/3 will be processed faster than calls of the user-procedure cons/2. The cons/2-
algorithm supplies a speedup of about 30% less the speedup of the difference list
method (see also Table 2). The maximum speedup by the cons/2 procedure in this
group is 5.2. For SICStus-Prolog the maximum speedup of about 2 occurs for the dif-
ference list procedure.

Table 2: Average relative speedup for TD/BU-in-/pre-/post-order traversal of a tree

Prolog system CHIP 5.8 ECLiPSe 6.0.82 SWI 5.6.64 SICStus 4.0/7
Construction TD BU TD BU TD BU TD BU
append/3 0.33 0.51 0.36 0.69
append/3+accu 0.60 0.88 0.66 0.74
cons/2 0.77 0.72 0.72 0.65
DCG(‘C’/3) 0.85 1.18 0.85 0.64
DCG(-->/2) 1.19 1.02 0.82
difference list 1.00 1.00 1.00 1.00

In these tests the minimum measured speedup of the algorithms append/3+accu and
cons/2 reaches 58% of the speedup by difference lists (TD-pre-order with CHIP and
TD-in-order in SICStus-Prolog). This result may be important for programming prac-
tice. DCG’s algorithms are able to perform procedure execution more efficient than
difference list algorithms (Table 2).

185

5 Summary and Future Work

We have proposed simple, schematic rules for using difference lists. Our rule gen-
eralizes both bottom-up construction of lists using accumulators and top-down con-
struction of lists using calls to append/3 to the notion of difference list. The introduc-
tion of the cons/2 operation serves as a didactic means to facilitate and simplify the
use of difference lists. This operation could easily be removed from the procedures by
an unfolding operation.

The benchmark tests demonstrate that the gain concerning the speedup depends
from the used Prolog system. Speedup factors of 1.35 minimum to 12.84 maximum
could be found for the same traversal order (pre-order) in different systems by using
difference lists instead of the naive algorithm with calls of append/3. SWI-Prolog
supplies for the procedures of the benchmark tests a maximum speedup of about 12,
for CHIP-system this figure is about 8, for ECLiPSe a maximum speedup of about 2
results, and the for SICStus system the maximum speedup is about 2. The highest
possible speedup occur when difference lists or DCG’s are used. A reasonable
speedup occurs when a call of cons/2 is used, with the advantage that such a proce-
dure is easier to read and to maintain. Because of considerable high speedup values
for the append+accu algorithm the often given advice “calls of append/3 should be
avoided” should be substituted by “try using accumulators as often as possible”.

A comparison of the efficienies of the difference-list algorithm and the DCG algo-
rithm leads to the assumption which is to verify yet that a compiled version of the
proposed cons/2 procedure will improve the efficieny significant.

References

[AFSV00] Albert, E.; Ferri, C.; Steiner, F.; Vidal, G.: Improving Functional Logic-
Programs by difference-lists. In He, J.; Sato, M.: Advances in
Computing Sciece – ASIAN 2000. LNCS 1961. pp 237-254. 2000.

[CT77] Clark, K.L.; Tärnlund, S,Å: A First Order Theory of Data and Programs.
In: Inf. Proc. (B. Gilchrist, ed.), North Holland, pp. 939-944, 1977.

[GG09] Geske, U.; Goltz, H.-J.: A guide for manual construction of difference-
list procedures. In: Seipel, D.; Hanus, M.; Wolf, A. (eds): Applications
of Declarative Programming and Knowledge Management, Springer-
Verlag, LNAI 5437, pp 1-20, 2009.

[MS88] Marriott, K.; Søndergaard, H.: Prolog Transformation by Introduction of
Difference-Lists. TR 88/14. Dept. CS, The Univ. of Melbourne, 1988.

[MS93] Marriott, K.; Søndergaard, H.: Prolog Difference-list transformation for
Prolog. New Generation Computing, 11 (1993), pp. 125-157, 1993.

[SS86] Sterling, L; Shapiro, E.: The Art of Prolog. The MIT Press, 1986.
Seventh printing, 1991.

[ZG88] Zhang, J.; Grant, P.W.: An automatic difference-list transformation
algorithm for Prolog. In: Kodratoff, Y. (ed.): Proc. 1988 European Conf.
Artificial Intelligence. pp. 320-325. Pittman, 1988.

186

	Practice of Logic Programming
	Efficiency of Difference-List Programming (Ulrich Geske and Hans-Joachim Goltz)
	Abstract
	1 Introduction
	2 Top-down and Bottom-up Construction of Lists
	3 Construction Rules for difference list procedures
	4 Benchmarks
	4.1 Benchmark tests - processing trees
	4.2 Speedup

	5 Summary and Future Work
	References

