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Abstract

Numerous reports of relatively rapid climate changes over the past century make a clear case of the
impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s
radiation balance is altered by aerosols depending on their size, morphology and chemical composition.
Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol
microphysical properties, which are the focus of the present work.

The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used
such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and
ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have
been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model
(LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer
provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as
dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain
optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the
spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution.

Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-
linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency
towards highly oscillatory solutions, explores the available options for a generalized solution through
regularization methods and quantifies the ill-posedness. The latter will improve our understanding on
the main cause fomenting instability in the produced solution spaces. The new approach facilitates the
exploitation of additional lidar data points from depolarization measurements, associated with particle
non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem.
The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is
computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the
discretization of the model equation by a 2D collocation method, proposed in this work, involves double
integrations which are further time consuming. We overcome these difficulties by using precalculated
databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially
developed for our purposes, capable of performing multiple-dataset inversions and producing a wide
range of microphysical retrieval outputs.

Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms.
Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the
efficiency of different regularization methods. The gap in contemporary literature in providing full sets
of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most
appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding
accuracy and stability. The general trend of the initial size distributions is captured in our numerical
experiments and the reconstruction quality depends on data error level. Moreover, the need for more
or less depolarization points is explored for the first time from the point of view of the microphysical
retrieval. Finally, our approach is tested in various measurement cases giving further insight for future
algorithm improvements.
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Zusammenfassung

Zahlreiche Berichte von relativ schnellen Klimaveränderungen im vergangenen Jahrhundert liefern über-
zeugende Argumente über die Auswirkungen von Aerosolen und Wolken auf Wetter und Klima. Aerosole
und Wolken wurden als Quellen größter Unsicherheit in Klimaprognosen identifiziert. Die Strahlungs-
bilanz der Erde wird verändert durch die Partikelgröße, ihre Morphologie und ihre chemische Zusammen-
setzung. Konkurrierende Effekte in der Atmosphäre können durch die Bestimmung von mikrophysi-
kalischen Partikeleigenschaften weiter untersucht werden, was der Fokus der vorliegenden Arbeit ist.

Die Aerosolgrößenverteilung, der Brechungsindex der Partikeln und die Einzel-Streu-Albedo sind
solche häufig verwendeten Parameter, die mit dem Aerosoltyp und dem Strahlungsantrieb verbunden
sind. Hoch entwickelte Lidare (Light Detection and Ranging) haben die Aerosolüberwachung und
die optische Profilierung zu einem Routineprozess gemacht. Lidar-Daten wurden verwendet um die
Größenverteilung zu bestimmen, was durch die Inversion des sogenannten Lorenz-Mie-Modells (LMM)
gelingt. Dieses Modell bietet eine angemessene Behandlung für sphärisch angenäherte Partikeln, es stellt
aber keine brauchbare Beschreibung für andere natürlich auftretende beliebig geformte Partikeln -wie z.B.
Staubpartikeln- bereit. Andererseits stellt die Einbeziehung einer nicht kugelförmigen Geometrie -wie
z.B. einfache Sphäroide- bestimmte optische Eigenschaften mit verbesserter Genauigkeit dar. Angesichts
dieser Tatsache erweitern wir das LMM durch die Approximation von Sphäroid-Partikeln. Dazu ist es
notwendig den Begriff einer zweidimensionalen Größenverteilung einzuführen.

Die Inversion einer sehr geringen Anzahl optischer Datenpunkte zur Bestimmung der Form der
Größenverteilung ist als ein nichtlineares schlecht gestelltes Problem bekannt. Eine kurze mathema-
tische Analyse wird vorgestellt, die die inhärente Tendenz zu stark oszillierenden Lösungen zeigt. Wei-
terhin werden Optionen für eine verallgemeinerte Lösung durch Regularisierungsmethoden untersucht
und der Grad der Schlechtgestelltheit quantifiziert. Letzteres wird unser Verständnis für die Haupt-
ursache der Instabilität bei den berechneten Lösungsräumen verbessern. Der neue Ansatz ermöglicht
es uns, zusätzliche Lidar-Datenpunkte aus Depolarisationsmessungen zu nutzen, die sich aus der Nicht-
sphärizität der Partikeln assoziieren. Die Verallgemeinerung des LMMs erhöht erheblich die Komplexität
des Problems. Die zugrundeliegende Theorie für die Berechnung der beteiligten optischen Querschnitte
(T-Matrix-Ansatz) ist rechnerisch so aufwendig, dass eine Neuberechnung dieser nicht sinnvoll erscheint.
Darüber hinaus wird ein zweidimensionales Kollokationsverfahren für die Diskretisierung der Modell-
gleichung vorgeschlagen. Dieses Verfahren beinhaltet Doppelintegrationen, die wiederum zeitaufwendig
sind. Wir überwinden diese Schwierigkeiten durch Verwendung vorgerechneter Datenbanken sowie einer
hochentwickelten Retrieval-Software (SphInX: Spheroidal Inversion eXperiments). Diese Software wurde
speziell für unseren Zweck entwickelt und ist in der Lage mehrere Datensatzinversionen gleichzeitig
durchzuführen und eine große Auswahl von mikrophysikalischen Retrieval-Ausgaben bereitzustellen.

Eine hybride Regularisierung in Verbindung mit einem Minimierungsverfahren wird als Grundlage
für unsere Algorithmen verwendet. Synthetische Daten-Inversionen werden mit verschiedenen atmo-
sphärischen Szenarien durchgeführt, um die Effizienz verschiedener Regularisierungsmethoden zu un-
tersuchen. Die Lücke in der gegenwärtigen wissenschaftlichen Literatur gewisse Unsicherheiten durch
breitgefächerte numerische Fälle bereitzustellen, ist ein Hauptanliegen dieser Arbeit. Motiviert davon
werden die am besten geeigneten Verfahren einer gründlichen Analyse in Bezug auf ihr Gesamtverhalten,
d.h. Genauigkeit und Stabilität, unterzogen. Der allgemeine Trend der Anfangsgrößenverteilung wird in
unseren numerischen Experimenten erfasst. Zusätzlich hängt die Rekonstruktionsqualität vom Daten-
fehler ab. Darüber hinaus wird die Anzahl der notwendigen Depolarisationspunkte zum ersten Mal aus
der Sicht des mikrophysikalischen Parameter-Retrievals erforscht. Abschließend verwenden wir unsere
Software für verschiedene Messfälle, was weitere Einblicke für künftige Verbesserungen des Algorithmus
gibt.
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Introduction

Climate research has become nowadays more favorable than ever, largely due to the rise of powerful
machines which have the capacity to watch closely the atmospheric processes. The ongoing global
temperature increase is known to be only one aspect of the change of the climate patterns, now supported
by compelling evidence. The imminent risks on agriculture, human health and safety and the long-term
preservation of our planet in relatively stable conditions are the predominant reasons of keeping this field
at the acme of interest. Keeping in mind that some of the effects to come are inevitable e.g. principal
greenhouse gases CO2, CH4, N2O, CFCs may reside in the atmosphere for hundreds of years (see [41]
for a comprehensive list of the atmospheric lifetime of various gases) our greatest concern is the limit of
predictability and the extent of such effects on climate.

The Intergovernmental Panel on Climate Change (IPCC) reports are an attempt to communicate the
available information about climate change based on published sources led by experts all over the world.
Their latest efforts (see [64], working group one) included for the first time policy relevant background
based on sophisticated climate models which will help decision-makers develop adaptation strategies in
possible future climate projections in a global and regional level, see [63]. The 4th and 5th assessment
reports, see [62, 64] not only highlight the anthropogenic influence driven by greenhouse emissions, mostly
attributed to energy production, but also developed high confidence that aerosol-radiation- and aerosol-
cloud interactions still carry the largest uncertainty to the total radiative forcing estimate. The latter
have set off a substantial portion of global mean forcing from well-mixed greenhouse gases, see Fig. 1.

As a result, a deeper understanding of the link between climate processes and the aerosol direct and
indirect effect, requires focus on aerosol profiling and especially on the temporal and spatial variability
of aerosol microphysical properties, for which instruments have only recently started to fill in the obser-
vational gap. The derivation of the microphysical properties will exclusively be the focus of the present
thesis. Widely known such properties are the aerosol size distribution, the complex refractive index, the
mean particle radius (effective radius), the volume concentration and the single scattering albedo, the
combined knowledge of which could provide information for particle size, scattering, and absorption and
by extension shape and chemical composition. These properties, in turn, link to human health, Earth’s
radiation budget (upwelling and downwelling radiance) [76], and precipitation when aerosols act as cloud
condensation nuclei of water vapor [93].

The structural and chemical complexity of aerosols is too high to analyze which is why the aerosol
size distribution is of central interest among the microphysical properties for a probabilistic approach.
Alterations in chemical composition of aerosols directly affect their number and size and cloud micro-
physics as well. In addition, the accurate knowledge of the size distribution is often a prerequisite for
other important parameters like the aerosol effective radius or the number concentration. However,
there are only a few real-time measurements of the size distribution to date but they are often limited
in size-ranges, e.g. measurements with Aerosol Mass Spectrometers [68], and they are costly as well
when they refer to instruments attached to an aircraft (e.g. [6]). A common practice is to derive instead
of measuring the size distribution through some knowledge on scattering and absorption phenomena,
i.e. the aerosol optical properties, involving the target aerosols. Indeed, today’s technology allows for
a variety of instruments to measure these properties practicing remote sensing. As R. Colwell, a pio-
neer in photogrammetry, put it, the latter is ”...the art, science, and technology of obtaining reliable
information about physical objects and the environment, through the process of recording, measuring
and interpreting imagery and digital representations of energy patterns derived from non-contact sensor
systems” (requoted from [21]).

One of the most popular examples of passive remote sensing is the sun-sky radiometer (or sun pho-
tometer) operated by NASA’s AErosol RObotic NETwork (AERONET). AERONET provides a long-
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(Introduction)

Figure 1: Working Group I Contribution to the IPCC 5th assessment report, 2013: The Physical Science
Basis, Figure SPM.5. Role of the greenhouse gases in total radiative forcing estimate in 2011 relative to
1750 and aggregated uncertainties for the main drivers of climate change. Black diamonds indicate the
best estimates of the net radiative forcing with corresponding uncertainty intervals on the right of the
figure, and the confidence level in the net forcing (VH: very high, H: high, M: medium, L: low, VL: very
low). Figure credit: [65]

term, continuous database of aerosol optical and microphysical properties extracted by sun photome-
ter measurements and inversions worldwide. The operational protocol of AERONET consists of sky
radiances inversions together with measurements of aerosol optical depth to produce the aerosol size
distribution and various microphysical and forcing parameters. Sun photometers are impressive fully
automated energy-autonomous devices, providing measurements characteristic of the entire atmospheric
column but on the other hand lack information regarding the vertical distribution of aerosols. A de-
tailed description of the inversion advancement and the retrieval products of AERONET can be found in
[33, 34, 35, 36, 136]. Other examples of passive sensors can be found in microwave radiometers, imaging
radiometers, spectrometers and sounders.

Laser invention in 1960 [95] has literally brought to light the concept of remote sensing already used
with radars. Optical radars known as lidars (light detection and ranging), see [153], are an evolving
technology leading the branch of active atmospheric remote sensing. Although it was not after 1962
that a ruby laser was involved in atmospheric observation [40] that their potential was revealed, the idea
of light-based study of the atmosphere dates back to World war II with search-light beams (e.g. [69])
for military purposes, and later on we have the first studies involving cloud heights [1]. Lidars do not
depend on a clear sky like sun photometers, since they emit their own radiation probing the target of
interest and collecting the returning light from the scattering scene they trigger. They now allow for
continuous routine vertical profiling of atmospheric constituents with high spatial and temporal resolution
enhancing our observational capacity. The advancement of a lidar system reflects its ability to analyze
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(Introduction)

spectrally the atmospheric response to the emitted pulsed laser beam; the elastic scattered light, the pure
rotational Raman spectra and the rotational-vibrational Raman spectra of atmospheric molecules (N2,
O2). Elastic-Raman multi-wavelength (355, 532, 1064 nm) polarization lidars offer a variety of intensive
and extensive aerosol properties, among which are the particle extinction and backscatter, lidar ratio,
water vapor mixing ratio, temperature and particle depolarization ratio.

At this point we need to mention the great efforts of European Aerosol Research Lidar Network
(EARLINET), now part of the ACTRIS project (Aerosols, Clouds, and Trace gases Research Infras-
tructure network), to provide a comprehensive, and statistically significant database for the horizontal,
vertical, and temporal distribution of aerosols on a continental scale, see [118] for the recent state of
the network. Since its foundation in 2000 it has been a milestone for aerosol research carrying the most
extensive ground-based data collection for the aerosol vertical profiling over Europe with increasingly
higher quality assurance standards and instrumental optimization.

Lidar products cover knowledge on the atmospheric state as well as aerosol typing. The extinction
and backscatter coefficients are relatively straightforward to obtain through a relation between the power
of the backscattered light (converted to electrical signal) and lidar geometrical characteristics, called the
lidar equation. In this work, we will use these parameters as inputs for the retrieval of the size distribution.
The latter is related to the optical parameters through an integral operator which actually contains most
of what we care about, namely shape, size and composition of the particles, in the form of the so-called
kernel functions. For one we have to solve an inverse problem, which mathematically suffers from non-
uniqueness of solutions (if any) and great instability even in the presence of low rounding, modelling or
measurement errors, producing dubious results. As seen from the standing point of the forward problem,
the noise-related loss of control is a result of the smoothing phenomenon of the operator acting to the
size distribution and therefore, conversely, the very process of inversion could magnify potential noisy
components. This defect has been effectively dealt using regularization to suppress the noise spikes for
particles which resemble spheres e.g. very small particles, fresh smoke (biomass burning) or stratospheric
sulphate (volcanic eruptions). Algorithms have been employing textbook techniques e.g. the Truncated
SVD [14, 17], and Tikhonov regularization, [86, 107, 145], but also iterative methods, [16, 113] and
continue to evolve since late 90’s mainly by using various physical and mathematical rules to confine
the solution space. Simulated retrievals have reached a good level of theoretical maturity, so that real
lidar data are now efficiently inverted and analyzed, e.g. [2, 104, 113, 117, 131, 150]. Artificial data
as opposed to real-life data include no risk of mishandling some of the initial parameters (e.g. the size
range) as physical entities. Dealing with real-life data, on the other hand, requires their predetermination.
Numerical experiments show that poor selection of these parameters directly affects the solution space
quality and compromises the retrieval regardless of the robustness of the regularization algorithm. As
demonstrated in [131], sensitivity tests have to be taken over as preliminary retrievals in order to set the
ground for a meaningful solution.

Spheres are nonetheless no longer a viable representation for the non-spherical case such as mineral
dust. This aerosol type is important since its forcing is underlined for its global significance and its
impact on the alteration of cloudoptical properties by the Saharan Mineral Dust Experiment (SAMUM),
see [4]. In addition, particle shape is known to have substantial effects for the scattering in sideward
and backward direction [100]. Since there is no prescription-formula to cover every possible shape, one
needs to presuppose in some manner the shape and reduce the problem to finding out what are the
characteristics of the particular geometrical symmetry which was chosen. T-matrix theory [100, 152] is
among the very few powerful techniques for solving the electromagnetic scattering problem for a given
shape but its computational complexity keeps research for the non-spherical aerosols still in its early
years of development. Indeed, the computations of the kernel functions even for one of the simplest
non-spherical approximation, i.e. spheroids, require extensive stability tests which would hold back the
microphysical inversion significantly. This is the reason why, all microphysical codes based on this theory
to date, operate with precalculated look-up tables and it also the case for this work as we will see later
on.

There are only two basic works to our knowledge which use the spheroid-particle approximation
for the microphysical retrieval problem, namely [35, 143]. The algorithms used are based on a model
of randomly oriented spheroids where aerosols are modeled as a mixture of spherical and non-spherical
components, but ultimately for simplicity shape and size are assumed to be independent. In this work we
also adopt the spheroid-particle approximation with a simultaneous generalization of the size distribution
to a shape-size distribution in two dimensions first proposed by [18, 112], where the entanglement of shape
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and size is yet to be found. After investigating how the 2D-generalization affects our problem in terms
of complexity (e.g. discretization, shape-size distribution reconstruction) we proceed to build a database
to be able to conduct massive synthetic retrievals. In a first stage, the performed simulations pertain to
a large atmospheric diversity (size, shape, refractive index) using most of the regularization techniques
in literature, in the search for the most suitable one. This will allow us to familiarize deeply with the
retrieval outcomes and unveil the robustness but also crucial limitations of our approach. Moreover, we
will be able to differentiate between dissimilar needs that each method covers. A missing piece from
today’s literature is a systematic way for a first level evaluation of an algorithm, to which this work
contributes employing different error-related uncertainties. These quantities will be the key feature not
only for our (method) comparisons but also for analyzing statistically the effect of different physical
factors in the inversion.

The ideal lidar setup is one of the most important topics which concerned researchers since the early
years of the microphysical retrievals and forged today’s lidar engineering. The minimum requirement at
least for the spherical case is now established to be a set of 3 backscatter coefficients (β) at 355, 532
and 1064 nm and 2 extinction coefficients (α) at 355 and 532 nm (”3β + 2α”). The current consensus
strongly points to the use of depolarization profiles to account for particle non-sphericity, but it is still
unknown what is the ideal combination of α and β for data inversion either quantitatively or qualitatively.
This work provides an answer for the first time for what is theoretically possible by comparing the
microphysical outputs of several lidar setups in terms of the aforementioned uncertainties.

The applicability of our algorithm is tested with measurement cases carried out in different lidar sites
and covering real-life physical phenomena. Finally, our conclusions are summarized and followed by a
discussion about what can be achieved in the future.

This dissertation is structured as follows:

• In Chapter 1 we present an up-to-date mathematical view of inverse ill-posed problems, and intro-
duce the general framework within which the computations will take place.

• Chapter 2 exposes the physical setting of our problem in the context of electromagnetic theory and
summarizes all the important physical entities for this work.

• In Chapter 3 we introduce the generalized physical model and show technical details and compu-
tational aspects about the microphysical retrieval problem.

• Chapter 4 constitutes the core of this work and is occupied with extensive numerical tests on
our methods and algorithms with simulations, through which we elaborate on the different topics
discussed in the previous paragraphs.

• In Chapter 5 we apply our approach to measurement data from different lidar stations.

• Finally, we conclude this work with a full synopsis of the main results followed by a discussion on
limitations of the developed software and potential advancements for the future.

Table 1: List of abbreviations.
Name Abbreviation
Appendix App.
Chapter Ch.
Definition Def.
Example Ex.
Figure Fig.
Section Sec.
Theorem Th.
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Chapter 1

Mathematical apparatus

Foreword

There is not enough room to expand on every mathematical aspect we came about during this work.
Here we borrow some basic definitions and results from the field of inverse ill-posed problems where the
need for the regularization technique arises. We present, an operator decomposition (Singular Value
Decomposition - SVD) of great theoretical interest which has fundamental role for the study of the
degree of ill-posedness of a certain case scenario and gives an insightful demonstration of the noise
effect. SVD analysis can further result in a regularization method (Truncated SVD) through a noise-
filter procedure introducing the notion of parameter choice rules (PCRs). We will use this opportunity
to define intuitively another filter method, Tikhonov, and an iterative method (Padé iteration) from
the family of the generalized Runge-Kutta iterative methods. Several popular PCRs are shown here
emphasizing their importance in parallel with the underlying regularizer; if regularization is the driving
wheel to reach a meaningful solution space, PCRs are the brakes. Finally we define the B-spline functions
which hold an eminent position in our work, both for the discretization and the solution reconstruction.
We note that most of the theoretical background is given in the context of Hilbert spaces, although in
some cases they can be generalized to Banach spaces. We follow this line, since later in our work we will
have to use orthogonality and projection spaces which require a Hilbert space configuration. For more
details in the theory of inverse problems see e.g. [10, 57, 123].

1.1 Inverse problems & ill-posedness

In the physical world, distinguishing the link between forward and inverse problems, usually implies a
form of cause and causality. What makes a problem be in ”forward mode” is that it usually refers to
a collection of data (from a sort of measurement) for which the causal agent is sought and where the
conversion mechanism between them is assumed to be known. The inversion process is intuitively not a
”spontaneous” act. We need to set a bar above which a problem qualifies to be solved (inverted), and
at the same time try to see to what extent it meets a physical problem. For this we recall the definition
of well-posedness by J. Hadamard, see [52] which applies to any problem.

In what follows, L (V,G) denotes the set of linear bounded operators between the normed spaces V
andG with the inner products 〈·, ·〉V and 〈·, ·〉G respectively, and K (V,G) = {T ∈ L (V,G)| T is compact}.
Note, that we often omit the space-subscripts in the inner products for brevity when there is no risk of
confusion.

Definition 1.1.1 (Well-posedness by Hadamard). Let T : V → G be a linear operator between Hilbert
spaces. We consider the model linear equation Tv = g, where v is the unknown function. If all the
following statements hold true:

1. There is a solution v ∈ V of the Eq. Tv = g for every g ∈ G,

2. The solution is unique.

3. The solution is stable in the sense that a perturbed right hand side should cause a distortion of
the solution of equal strength,

1



1.1. Inverse problems & ill-posedness (Mathematical apparatus)

then the problem (T, V,G) is called well-posed, otherwise is called ill-posed.

The bijectivity of T (1, 2), will assure the existence of the inverse of T , T−1 and the stability
requirement (3) translates into a form of continuity. The following result shows when an inverse operator
inherits the stability property from the forward operator.

Theorem 1.1 (Banach’s inverse mapping theorem). If T : V → G is a bijective bounded linear operator
then T−1 exists and is also bounded, i.e. T is an isomorphism.

We note that boundedness in linear operators between normed spaces is equivalent to continuity and
does not necessarily imply the usual boundedness in the sense of a function. It turns out that we need
one-to-one correspondence to assure the desired noise control in the solution, but this demand is not
everyday-life in applications. In principle we may be able to rule out an injective T (2) by subtracting
the nullspace of T from V , thus restricting to V r kerT . The so-called annihilators, i.e. the elements of
kerT can often be detected numerically, despite the discretization errors which might hinder the process.
However, the surjective part of the requirement cannot be bypassed. For instance, what we get as input
from a measurement is a noisy version of g, gε, for which there might not exist vε such that Tvε = gε,
or gε /∈ im(T ).

We will see shortly how the first two requirements (1, 2) are treated by the theory and focus later
on the main struggle in an application associated with an ill-posed problem, which is the restoration
of continuity (3). As already hinted, the spaces where the problem is defined make all the difference
regarding its solvability and stability. Let us demonstrate this through a well-known ill-posed problem.

Example 1.1.1 (The problem of the first derivative). The first derivative of a function g with g(0) = 0,
can be defined as follows

(Tv)(r) =

∫ r

0

v(x) dx = g(r), (1.1.1)

where r ≥ 0. For every continuously differentiable function g ∈ C1
∗ [0, 1] there is a unique solution of

1.1.1. Using the standard norms of the spaces C and C1 and the definition of the operator norm, it is
straightforward to show that ‖T−1‖ ≤ 1 and thus the triple (T,C[0, 1], C1

∗ [0, 1]) is a well-posed problem.
Choose now V = G = L2[0, 1], endowed with the usual (L2) inner product. Clearly, every function

in the range of T is continuous, hence C[0, 1] ⊇ im(T ) * L2[0, 1]. Picking a perturbed right hand side
gε(x) = ε sin

(
ε−2x

)
, we can see that ‖gε‖L2[0,1] stays small for a small ε > 0. However, a solution

vε(x) = ε−1 cos
(
ε−2x

)
has very large L2-norm.

Compact linear operators are the extension of matrices in Hilbert places, in which one is able to
generalize the spectral theorems. A special compact linear operator which models precisely our problem
and many other applications, arises from the so-called Fredholm equation defined below.

Definition 1.1.2. A Fredholm integral equation of the first kind has the following general form

Tv =

∫ b

a

K(λ, r)v(r)dr = g(λ), (1.1.2)

where, K(λ, r) is called kernel function.

Choosing [a, b] = [0, 1] and

K(λ, r) =

{
1, if 0 ≤ λ ≤ r ≤ 1

0, if 0 ≤ r < λ < 1
(1.1.3)

leads back to the Ex. 1.1.1, i.e. the problem of the first derivative belongs to this class of integral
operator equations (also in the class of Volterra integral equations).

The following theorem states the underlying reason for the ill-posedness of these integral equations.

Lemma 1.2 (Riemann-Lebesgue Lemma). Consider the function sequence vn(r) = sin(2nπr). Then for
a Riemann-integrable function K(s, t) it holds

lim
n→∞

∫ 1

0

K(λ, r)vn(r)dr → 0. (1.1.4)

2
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Figure 1.1: Illustration of the Riemann-Lebesgue lemma 1.2 for the gravity surveying problem. Left:
Plots of the function v(r) = sin(2nπr), for n = 2, 10 and 50. Right: Plots of the right hand side by
running the forward model. This example is also shown in [57].

This result summarizes the smoothing phenomenon imposed by the Fredholm operator to any solution
candidate. Let us demonstrate this rather discouraging property through an example from geophysics
which belongs to the important family of deconvolution problems.

Example 1.1.2 (The gravity surveying problem). We look at the forward problem in 1.1.2 with [a, b] =
[0, 1] and K(λ, r) = 16/(1 + 16(λ− r)2)−3/2, where 0 ≤ λ ≤ 1 and 0 ≤ r ≤ 1, and v(r) = sin(2nπr). Fig.
1.1 left shows 3 instances of v(r) for n = 2, 10 and 50 and the right hand sides by running the forward
model each time. The oscillations are drastically suppressed, eliminating any sign of what the source
function was like. We are going to look more into this, by analyzing the general operator with a special
decomposition of fundamental theoretical interest.

Theorem 1.3 (Singular Value Decomposition - SVD). Let T ∈ K (V,G) and let T ∗ be the adjoint of T .
There exist sequences fj ∈ V , hj ∈ G, and µj ∈ R with 0 < µj+1 ≤ µj and j ∈ N such that the following
statements hold:

i. limj→∞ µj = 0.

ii. The sequences {hj}j∈N and {fj}j∈N form a complete orthonormal system of the spaces im(T ) and

ker(T )⊥ respectively.

iii. Tfj = µjhj and T ∗hj = µjfj for all j ∈ N.

iv. Tv =
∑∞
j=1 µj〈v, fj〉V hj, and T ∗v =

∑∞
j=1 µj〈v, hj〉Gfj for all v ∈ V .

The triple (µj , fj , hj)j∈N is called the singular system of the compact operator T . In particular, the se-
quences {fj}j∈N and {hj}j∈N are called the left and right singular functions respectively and the sequences
{µj}j∈N are called the singular values of T .

At this point it is interesting to see what happens if we assure the bijectivity of T . The following
result comes out of Th. 1.1 for Hilbert spaces and Th. 1.3.

Proposition 1.4. Let T ∈ K (V,G) be a bijective operator and (µj , fj , hj) its singular system. Then
there exists a unique solution of Tv = g given by:

v(r) =

∞∑
j=1

〈g, hj〉G
µj

fj(r). (1.1.5)

Remark. 1. In the general case, if solutions exist they will be of the form

v(r) =

∞∑
j=1

〈g, hj〉G
µj

fj(r) + q, (1.1.6)

3
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where q ∈ ker(T ). Consider an element g ∈ im(T ) and use the expression 1.1.6 to obtain

g = Tv =

∞∑
j=1

µ−1
j 〈g, hj〉GTfj =

∞∑
j=1

〈g, hj〉Ghj = PH g, (1.1.7)

where P is a projection operator onto the space H = im(T ). Indeed, the terms 〈g, hj〉 are the ex-
pansion coefficients of the projection of g ∈ im(T ) through the hj basis functions. The convergence of∑∞
j=1〈g, hj〉Ghj to g ∈ im(T ) is assured if im(T ) is closed, see 1.3, ii. This is an important observation

which we will use later on to characterize the ill-posedness.
2. Consider a perturbed right hand side gε such that ‖g − gε‖ < ε, in particular set gε = g + chk

with 0 < c < ε. Then, using the orthonormality of the singular functions fj , hj (ii) and the fact that the
singular values decay to zero (i), we have

‖v − vε‖ =
c

µk
→∞, for k →∞, (1.1.8)

i.e. the solution blows up. This demonstrates the inherent instability of the inversion process and hints
that even a tiny perturbation ε could cause oscillations of the solution in huge amplitudes.

These remarks are inviting the next result, which sets ground for the least requirement for the
existence of a solution, namely that it should own a controllable (finite) norm.

Theorem 1.5 (Picard condition). Let T : V → G a compact operator and (µj , fj , hj)j∈N its singular

system. An element g ∈ im(T ) is an element of im(T ) exactly then, when

∞∑
j=1

(
|〈g, hj〉|
µj

)2

<∞. (1.1.9)

This lemma exposes the decisive role of the convergence rate of the singular values; there only exists
a solution if the terms |〈g, hj〉| decay faster in competition to the singular values. This brings us to a
characterization of the ill-posedness through the singular values.

Definition 1.1.3 (Degree of ill-posedness). Let M be a positive real number. Then the problem (T,V,G)

1. is mildly ill-posed if µj has a polynomial behaviour, i.e. µj = O(j−M ).

2. is severely ill-posed if µj has an exponential behaviour, i.e. µj = O(e−Mj).

Example 1.1.3. According to Def. 1.1.3 we can see how difficult it is to solve a specific ill-posed, and
thus and how sensitive it is to possible errors.

1. Recall the problem of the first derivative from Ex. 1.1.1. Observing that the adjoint operator of T

is expressed by T ∗v =
∫ 1

t
v(r) dr we can easily solve the eigenvalue problem of T ∗T using iii, and deduce

that the singular system is

µj = 1/((j − 1/2)π), fj =
√

2 cos ((j − 1/2)πr) , hj =
√

2 sin ((j − 1/2)πr) . (1.1.10)

Hence it is a mildly ill-posed problem.
2. Let V = G = L2([0, π]) and consider the heat transfer problem with Dirichlet boundary conditions

∂v

∂t
=
∂2v

∂x2
, t > 0, (1.1.11)

v(0, t) = v(π, t) = 0. (1.1.12)

Suppose that u(x) = v(x, 1) is measurable and known and we seek to find the initial (t = 0) temperature
g(x) = v(x, 0). The kernel function of the operator T : u 7→ g is not explicitly given but it can be found

by the general solution of 1.1.11 (separation of variables) to be K(x, y) =
∑∞
j=1

2
π e
−j2 sin(ix) sin(iy).

Noticing that T is self-adjoint and using iii, it is a mere observation that the singular system is

µj = e−j
2

, fj = hj =

√
2

π
sin(jx), (1.1.13)

4
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and therefore the problem is severely ill-posed.
Fig. 1.2 shows plots of the singular values µj (blue triangles) and the SVD-terms 〈g, hj〉 (green

squares) for the two examples discussed above. On the left panel (Ex. 1.1.3, 1.) we see the SVD-
terms decay faster than the singular values for j > 4 in a gradual step. The right panel (Ex. 1.1.3,
2.) shows a totally different situation: the singular values have predominantly rapid convergence and
become essentially zero for j > 25 (machine’s lowest value). We should note that introducing any error
in our examples could even result in (faster) divergence after a certain value of j, even if the problem has
a moderate ill-posedness. Searching for a threshold, above which the additional terms in the sum in Eq.
1.4 don’t do any good to the solution, is very important for practical purpose. This will be the topic of
a posterior section as soon as we introduce the discrete analog of SVD. More details on SVD regarding
its computation can be found e.g. in [53] and its mathematical formulation in [88].

Figure 1.2: Illustration of the Picard condition (see 1.1.9) for the problem of the first derivative (left)
and an inverse problem for the heat equation (right). In each panel, both the singular values µj (blue
triangles) and the SVD-terms 〈g, hj〉 (green squares) are shown. The y-axis is shown in logarithmic scale.

The ambiguity in the solution space is apparently undesired. It is possible to search for a unique
solution by replacing the problem with

T ∗Tv = T ∗g ⇐⇒ T ∗(Tv − g) = 0⇐⇒ Tv − g ∈ ker(T ∗) = im(T )⊥, (1.1.14)

which turns out to be equivalent to a least-squares problem. We will see now how this last observation
marries with the theory presented earlier.

Theorem 1.6. Let g ∈ G and T ∈ L (V,G) such that Tv = g and let PH ∈ L (G) be a projection
operator from G onto the subset H ⊂ G . The following are equivalent:

1. v satisfies the equation Tv = P
im(T )

g

2. v solves the normal equation T ∗Tv = T ∗g.

3. v minimizes the norm of the residual function, i.e. ‖Tv − g‖G = inf
f∈V
{‖Tf − g‖|f ∈ V }.

Lemma 1.7. For g ∈ im(T ) ⊕ im(T )⊥, the set of the solutions of the normal equation T ∗Tv = T ∗g is
non-empty, closed and convex. Moreover, there is a unique solution v† of minimal norm.

This property of the normal equation along with continuity of the norm, allows the existence of a
unique solution of minimal norm and strikes out uniqueness from Hadamard’s requirements. We shall
define this as a solution of Tv = g in generalized terms.

Definition 1.1.4 (Moore-Penrose Inverse). The operator T † : D(T †)→ V , with the domain D(T †) :=
im(T )⊕im(T )⊥, which assigns uniquely an element v† of minimal norm to any g ∈ D(T †) is called Moore-
Penrose inverse or generalized inverse of T ∈ L (V,G). The element v† = T †g is called minimum-norm
solution of Tv = g.
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1.2. Regularization with spectral filters (Mathematical apparatus)

We are now able to answer by what means and under which circumstances we can invert the equation
Tv = g.

Theorem 1.8. Let T ∈ L (V,G), then its generalized inverse T † has the following properties:

1. v† = T †g is the unique solution of the normal equation T ∗Tv = T ∗g in ker(T )⊥, for every g ∈
D(T †).

2. T † is linear.

3. im(T †) = ker(T )⊥.

4. T † is continuous if and only if im(T ) is closed. Then T † is defined in the whole G.

5. If T is compact, then it is continuous if im(T ) is finite.

As shown, im(T ) = im(T ) is indeed the key to assure the well-posedness of our problem. In fact, (4)
allows for another characterization of ill-posedness through the closedness of the range im(T ). Moreover,
5 tells us that we can find a smooth solution by making a finitedimensional projection of the problem,
which is actually what discretization does (see Sec. 1.4). A modern theoretical definition of ill-posedness
follows directly from 4.

Definition 1.1.5 (Ill-posedness by Nashed). The problem (T, V,G) is called ill-posed if im(T ) is not
closed. Otherwise is called well-posed.

1.2 Regularization with spectral filters

Evidently, the ill-posedness resides within the very inversion process. Regularization comes as a natural
antidote to suppress possible blow-ups of the solution. The decay rate of the singular values reflect the
difficulty of achieving stability and will be our guide and first source of intuition when defining ”filters” to
dismantle the noise factor. First, let us define regularization through a family of operators approximating
the desired (generalized) inverse, see e.g. [11, 88].

Definition 1.2.1 (Regularization scheme). The family of linear bounded operators {Rζ}ζ>0 from G into
V is called a regularization scheme or a regularizer for T if we have the following pointwise convergenge

lim
ζ→0

RζTv = v, for all v ∈ V. (1.2.1)

Let there be given noisy data with gδ, δ > 0, with ‖gδ − g‖ < δ and let {Rζ}ζ>0 be a regularization
scheme, where ζ = ζ(δ, gδ) > 0. If for all g ∈ im(T ) and all gδ ∈ G with ‖gδ − g‖ < δ we have

lim
δ→0

Rζg
δ = T †g, (1.2.2)

then the pair (Rζ , ζ) is called a regularization method for Tv = g. Furthermore, ζ is called a-priori
parameter choice rule (PCR) if it only depends on δ, otherwise is called a-posteriori parameter choice
rule.

Note that the regularization scheme cannot ”repair” a discontinuous operator T by itself by finding
a close continuous approximate. Indeed, Banach-Steinhaus theorem (or uniform boundedness principle,
see any book in functional analysis, e.g. [127]) prevents RζT from norm-converging to the identity for
an unbounded operator T . On the other hand, the convergence rate of any regularization method (R, ζ)
can be arbitrarily slow. The following result demonstrates this.

Theorem 1.9. Let T ∈ L (V,G), and let there be a regularization method (Rζ , ζ) for Tv = g with
Rζ0 = 0 for all ζ > 0, and a function ρ : [0,∞)→ [0,∞) with limδ→0 ρ(δ) = 0 such that

sup{‖Rζ(δ,gδ)gδ − T †g‖V : g ∈ im(T ), ‖g‖ ≤ 1, gδ ∈ G, ‖gδ − g‖G ≤ δ} ≤ ρ(δ), (1.2.3)

then T † is continuous.
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1.2. Regularization with spectral filters (Mathematical apparatus)

As it seems, the fate of the convergence rate is auspicious only as long as we assure the closedness
of the range of T . Additional conditions on the generalized solution v† may offer further results on
convergence rates, see [123].

Regularity and data fit are competing quantities, meaning that one cannot achieve simultaneously
the best of both. We can easily observe this by splitting the so-called total reconstruction error E into
the regularity term I = ‖Rζ‖ and the approximation error J = ‖RζTv − v‖

E = ‖v(ζ,δ) − v‖ ≤ ‖Rζgδ −Rζg‖+ ‖RζTv − v‖ ≤ δ‖Rζ‖+ ‖RζTv − v‖, (1.2.4)

where v(ζ,δ) = Rζg
δ, v is assumed to be the exact (unique) solution of Tv = g and gδ are perturbed

data with ‖gδ − g‖ ≤ δ. A value of ζ close to zero would result in an infinite regularity and leave the
solution uncontrollable, therefore ζ cannot be too small. Too large ζ would shade some of the solution
information resulting in a poor approximation. Hence this parameter has to be optimal preventing an
explosive solution and preserving most of data integrity which is exactly the aim of a parameter choice
rule.

In case of having a unique solution v† = T †g = (T ∗T )−1T ∗g, we can see that the troubling part,
regarding stability, is T ∗T . Moreover, recalling the singular system of T , (µj , fj , hj)j∈N and using Eq.
1.1.5, we have T † =

∑∞
j=1 µ

−1
j 〈·, hj〉fj(r) and therefore our filters need to target the singular values.

This motivates the candidate filter function b(ζ, µ) for the regularization scheme

Rζg
δ =

∞∑
j=1

b(ζ, µj)µ
−1
j 〈g

δ, hj〉fj(r). (1.2.5)

Getting to know this function is obviously a critical step since it describes the depth of the regularization
with respect to the parameter selection. An immediate question is what the properties are of such a
function in order to result in a regularization method.

Theorem 1.10 (Regularizing filters). Let T be an injective compact operator with singular system
(µj , fj , hj)j∈N. If the function b : (0,∞]× (0, ‖T‖]→ R, satisfies the following conditions:

1. b(ζ, µ) is bounded for all ζ > 0, µ ∈ (0, ‖T‖] and limζ→0 b(ζ, µ) = 1 for all µ ∈ (0, ‖T‖],

2. for all ζ > 0 there exists a positive constant d(ζ) such that for all µ ∈ (0, ‖T‖] holds either of the
following relations,

(i) |b(ζ, µ)| ≤ d(ζ)µ

(ii) |b(ζ, µ)| ≤ d(ζ)µ2

then Rζ is a regularization scheme defined as in 1.2.5 and v(δ,ζ) = Rζg
δ. Moreover, we have ‖Rζ‖ ≤ τ

and the reconstruction error estimate

‖v(δ,ζ) − v‖2 ≤ ‖v‖2 sup
µ∈(0,‖T‖]

|b(ζ, µ)− 1|2 + δ2τ2, (1.2.6)

where τ = d(ζ) in case of (i) or τ =
√
Cd(ζ) in case of (ii) with C denoting a bound on q. The function

b(ζ, µ) is then called a regularizing filter.

A proof can be found e.g. in [88]. The properties 1 and 2 are designed to keep ‖Rζ‖ contained and
take care of the convergence of 1.2.1. The quantity supµ∈(0,‖T‖] |b(ζ, µ)− 1|2 in 1.2.6 can usually take an
explicit form independent of ‖T‖. As examples for the filter function we will subsequently introduce all
the methods we are going to use in this thesis.

1.2.1 Truncated SVD

Singular values close to zero are the ones who are responsible for a wild enlargement of possible error-
related high frequencies; the steeper the decay rate the higher the degree of ill-posedness. Knowing this
alone, it would not take much of our intuition to suggest keeping only the most significant singular values
and dismiss the rest. A threshold ζ > 0 will be the cut-off (regularization) parameter below which no
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1.2. Regularization with spectral filters (Mathematical apparatus)

singular value makes it to the previously infinite sum in 1.1.5. We summarize this discussion to the
introduction of the reqularizing filter b of what we call the Truncated SVD (TSVD):

b(ζ, µ) =

{
1, µ ≥ ζ
0, otherwise

(1.2.7)

Setting the auxiliary α = µ/ζ we obtain |b(α)| ≤ α⇒ d(ζ) = 1/ζ and |1− b(ζ, µ)| ≤ ζ
µ for all (ζ, µ).

As shown, SVD is of great theoretical interest but there is a discrete analog of SVD, see [140], which
is of practical interest too. After all, everything finally reduces to matrices so that data can be handled
by a computer for every practical purpose.

Theorem 1.11 (Discrete SVD). For any matrix M ∈ Rm×n there exist orthogonal matrices U ∈ Rm×m
and V ∈ Rn×n and a matrix Σ = diag(σ1, σ2, . . . , σr) ∈ Rm×n where r = min{m,n} and σ1 ≥ σ2 ≥
· · · ≥ σp > σp+1 = · · · = σr = 0, so that M is decomposed to

M = UΣV T =

p∑
i=1

σiυiν
T
i , (1.2.8)

where υi, νi are the orthonormal columns of U and V and they are called left and right singular vectors
of M respectively. The σi-s are called singular values of M and the triple (σi, υi, νi) is called singular
system of M .

It can be shown that using the Galerkin discretization method, the discrete singular triple (σi, ui, vi)
can be arbitrarily close to (µj , fj , hj) (notation from Th. 1.3), see [57], and therefore we can study the
ill-posedness much easier. We should mention that all the properties of the discrete SVD are identical
to the ones in Th. 1.3 including the Picard condition 1.1.9 with just a change in notation M ↔ T and
(σi, υi, νi)↔ (µj , fj , hj) and a little less care about the range of M ; recall that from 5, in an application
M is the projected version of T in a finitedimensional space.

Perturbation theory, not only based on the right hand side but also on the matrix, gives many
insightful results regarding stability and the limits of TSVD. Of particular interest is that a TSVD
regularized solution vk keeping only k SVD terms of 1.2.8 (or removing the last n− k) is reliable to the
degree that the difference σk − σk+1 is well-determined, see [54].

Since the original grasp of the discrete SVD by both E. Beltrami [13] and C. Jordan in 1873-1874, and
the efficient implementation of G. Golub in 1965 [46], TSVD became a wide-spread technique. Among
the numerous applications of TSVD perhaps data compression and pattern recognition are the most
recognizable.

Note that for brevity, the terms ”SVD” and ”TSVD” might refer from now on to the discrete case
too depending on the context.

1.2.2 Tikhonov regularization

TSVD is a straightforward regularization tool which aims to identify and cut the most vulnerable part
of the solution. However, doing so it loses all the solution information associated with the disposed
part. Furthermore, in cases where there is a lot of noise, the ”ripping” nature of TSVD may result an
oversmoothed solution. Therefore it might be more prudent, instead of cutting some part, to give it a
shift by a parameter ζ2 (ζ > 0) to counteract its spectral weakness. This correcting procedure enabling
the search of an optimal balance (ζ) of the good against the troubling solution content is attributed to
A. N. Tikhonov [139]. The concept of Tikhonov regularization is described by the filter function b:

b(ζ, µ) =
µ2

µ2 + ζ2
. (1.2.9)

Using the inequality µ2 + ζ2 ≥ 2µζ it is easily verifiable that d(ζ) = 1
2ζ and |1− b(ζ, µ)| ≤ ζ

µ for all ζ, µ.
For large µj relative to ζ the filter 1.2.9 is close to 1, giving a pass to the SVD terms in 1.1.5, while

for µ� ζ we have b(ζ, µ) = µ2

ζ2 +O(µ
4

ζ4 ) which neutralizes the huge terms 〈g, hj〉/µj (with tiny µj) and
satisfies the Picard condition 1.1.9.

We introduced Tikhonov’s method from the point of view of the singular values following a possible
flaw of the behavior of SVD. There are, nevertheless, a few ways of defining this method basically
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1.2. Regularization with spectral filters (Mathematical apparatus)

through a minimization procedure. The idea of dampening the effect of small singular values just in
the degree that it does not mess the solution content is again actually a matter of seeking a balance
between regularity and approximation, see 1.2.4. As previously shown, inverting T ∗T is problematic for
an unbounded T , therefore by the same logic we can perturb it by λI, with a small λ > 0 to overcome
this deficiency. It turns outs that choosing λ = ζ2 is equivalent to the use of the filter 1.2.9.

Theorem 1.12 (Tikhonov regularization). Let T : V → G be a linear operator between Hilbert spaces
and let Q : DQ →W be a closed linear operator with DQ a dense subset of V and W be a Hilbert space.
Moreover, let there be noisy data gδ, ‖gδ − g‖ < δ with g ∈ D(T †) and δ > 0. Then, the following
statements are equivalent:

1. v(δ,ζ) = inf
v∈DQ

{‖Tv − gδ‖G + ζ2‖Qv‖W }.

2. v(δ,ζ) is the regularized solution of T ∗Tv = T ∗g with regularization scheme Rζ = (T ∗T+ζ2Q∗Q)−1T ∗.
Moreover, for Q = IV the filter function is given by 1.2.9.

The operator Q is often called the smoothness constraint emphasizing that the term ‖Qx‖ quantifies
the regularity, e.g. Q can be a differential operator. In case Q = IV , which we will use in this work, the
regularity is only the magnitude (norm) of the solution forced to stay small.

1.2.3 Iterative operators as regularizers

Showalter’s method

Previously, we established the fact that in order to find a unique solution (probably unstable) for Tv = g
we need to turn to the minimization of ‖Tv − g‖. Here we follow a version of the steepest descent
principle in which we achieve a monotonically decreasing functional F (v) = ‖Tv − g‖2 by setting

v̇(t) = −T ∗Tv(t) + T ∗g, t > 0, (1.2.10)

where we assume the initialization v(0) = v0. This is a method first published by D. W. Showalter,
see [134, 135]. In case T is a bounded linear operator and g ∈ D(T †), using basic theory on systems of
ordinary differential equations, we can have an explicit (unique) solution for 1.2.10 v(t) which is expected
to fulfil asymptotically the normal equation 2, i.e. limt→∞ v(t) = T †g, where

T † = lim
t→∞

(I − e−tT
∗T )(T ∗T )−1T ∗. (1.2.11)

Setting t = 1/ζ with 0 < ζ ≤ 1, the function

b(ζ, µ) = 1− e−
µ2

ζ , (1.2.12)

satisfies 1 trivially and 2 (ii) with d(ζ) = 1
ζ using the inequality 1 − e−x ≤ x, for all x > 0. Hence,

according to Th. 1.10, b(ζ, µ) qualifies for a regularizing filter. Moreover 1− b(ζ, µ) ≤ 1− µ2

ζ .

While it is fair to say that our intuition is built upon SVD, we should note that its calculation is
costly for large scale problems. In this context, iterative methods can be advantageous as regularization
methods producing a sequence of regularized solutions with increasingly better solution characteristics
(according to a PCR) without altering the initial operator. However, our problem does not need to
handle lots of data (in fact the opposite) and in our case iterative methods are, in fact, the most time
consuming.

We are interested to solve Eq. 1.2.10 iteratively. For this, we introduce the general iterative scheme

vζ = vζ−1 + sJ −1(T ∗g − T ∗Tvζ−1) = (I − sJ −1T ∗T )vζ−1 + sJ −1T ∗g, i = 1, 2, . . . , (1.2.13)

with a starting value v0 = sT ∗g. s is the relaxation parameter and J −1 is a preconditioner used to
accelerate the convergence rate, see e.g. [28].
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1.2. Regularization with spectral filters (Mathematical apparatus)

The special case of 1.2.13 with J = I, which actually predated Showalter’s method, was defined in
1951 by L. Landweber [90] and meets convergence for 0 < s < 2/‖T‖2. A few iterations of 1.2.13 and
the identity

[
1− (1− λ)n+1

]
/λ =

∑n
k=0(1− λ)k are only needed to derive the Landweber filter

b(ζ, µ) = 1− (1− sµ2)b
1
ζ c, (1.2.14)

for 0 < ζ ≤ 1. The latter is bounded with 0 ≤ b(ζ, µ) ≤ 1 for µ ∈ (0, ‖T‖], choosing s < 1
‖T‖2 .

Since ‖T‖2 ≥ µ1 ≥ µ > 0, we have −sµ2 > −1, hence according to Bernoulli’s inequality (1− sµ2)b
1
ζ c ≥

1−b 1
ζ csµ

2, we obtain b(ζ, µ) ≤ sb 1
ζ cµ

2. Moreover, limζ→0 b(ζ, µ) = 1 for all µ ∈ (0, ‖T‖] hence, according

to Th. 1.10, b(ζ, µ) is indeed a regularizing filter.
Nevertheless Landweber’s iteration is proved to have a slow pace towards convergence, which is why

it is a less preferable choice for an application. Padé-type methods were found suitable for expediting
the convergence behavior, see [15, 81]. Following the work done in [80, 123], we are going to define them
through the well-known Runge-Kutta methods, which will subsequently brake loose to a generalized
scheme.

Generalized Runge-Kutta regularizers

Runge-Kutta (RK) methods are born, when solving numerically an ordinary differential equation (ODE),
by allowing the polynomial collocation coefficients to unhook from quadrature rules (e.g. the trapezoidal
rule) and take on arbitrary values, fulfiling nonetheless the so-called consistency requirements for a
desired accuracy. Let the following be an initial value problem

v̇ = H(v, t), t > 0 (1.2.15)

v(t0) = v0.

Choosing a step size 0 < h = tj − tj−1, j = 1, 2, . . . , N . We seek an approximation vj = v(tj), given by
the formula:

vj = vj−1 + h

k∑
n=1

znrn, (1.2.16)

where

ri = H

(
t+ cih, v + h

k∑
s=1

misrs

)
, for i = 1, 2, . . . , k, (1.2.17)

is the i−th stage of the (generally implicit) Runge-Kutta method. Considering mij , cj , zj as the matrix
elements of Mk×k, ck×1, and zk×1 respectively, the formalism is lightened by the mnemonic device

c M
zT

called the Butcher’s tableau, developed in 1960 by J. C. Butcher [24]. There are further relations between
mij , cj , zj by imposing the local truncation error of the approximated solution of 1.2.15 to be of certain
order, which is then said to be the order of the Runge-Kutta method; they can virtually be found at any
book of numerical analysis about ODEs, see e.g. [25, 26, 89].

Since, in our case H(v) = −T ∗Tv + T ∗g, see Eq. 1.2.10 we will now appeal to the class of time
invariant (autonomous) linear ODEs, in which case there are well-known results about stability. Consider
the autonomous ODE system, v̇(t) = λv(t) + φ and combine it with Eq. 1.2.16 and 1.2.17 to derive

r =(I − hλM)−1(λvi−1 + φ)1, (1.2.18)

vj =S(hλ)vj−1 + hW (hλ)φ, (1.2.19)

where S(x) = 1 + xzT(I − xM)−11, known as the stability function, W (x) = [S(x)− 1] /x and 1 =
[1, . . . , 1]T ∈ Rk. Then it can be verified by induction that

vn = Snv0 − (1− Sn)λ−1φ, n = 1, 2, . . . (1.2.20)
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1.2. Regularization with spectral filters (Mathematical apparatus)

Setting λ = −T ∗T and φ = T ∗g, i.e. S = S(−hT ∗T ), to Eq. 1.2.20 it can be shown, that for an injective
compact linear operator T with singular system (µj , fj , hj)j∈N and |S| < 1

v† = lim
n→∞

vn = lim
n→∞

∞∑
j=1

(1− Sn)µ−1
j 〈g, hj〉fj(r), (1.2.21)

where v† is the minimum-norm solution (Moore-Penrose), see [80, 123]. This is as far as we can get with

the implied filter function (1 − Sb
1
ζ c, 0 < ζ ≤ 1) in Eq. 1.2.21 with no more assumptions about the

stability function. The requirements of Th. 1.10 can be met as follows.

Theorem 1.13 (Generalized Runge-Kutta iteration). Let 0 < ω < x̃
‖T‖ with x̃ ∈ R+ ∪ {∞}. If there is

a function S(x) fulfilling the following properties:

(i) |S(x)| < 1 for x ∈ (−x̃, 0),

(ii) there is a constant ξ > 0 such that S(x) ≥ 1 + ξx, for all x ∈ (−x̃, 0),

then the function b(ζ, µ) = 1− S(−ωµ)b
1
ζ c with µ ∈ (0, ‖T‖] defining the scheme

Rζg =

∞∑
j=1

(1− Sb
1
ζ c)µ−1

j 〈g, hj〉fj(r), (1.2.22)

is a regularizing filter. If S = p/q, where p and q be real coprime polynomials with p(0) = q(0) = 1, the
iterative scheme defined through b(ζ, µ) is called generalized Runge-Kutta iteration, and ω is called the
relaxation parameter.

Proof. For all µ ∈ (0, ‖T‖] and 0 < ω < x̃
‖T‖ , it holds ωµ < x̃, hence |S(−ωµ)| < 1, so that

lim
ζ→0

b(ζ, µ) = lim
n→∞

1− Sn = 1. (1.2.23)

We have S(−ωµ) ≥ 1− ξωµ ≥ 1− ξω‖T‖ and 1− S(−ωµ) ≤ ξωµ. We examine the sign of S.
S(−ωµ) ≥ 0 holds for ω < 1

ξ‖T‖ for all µ ∈ (0, ‖T‖] and b(ζ, µ) is bounded with 0 < b(ζ, µ) < 1. In this

case, applying Bernoulli’s inequality, tκ ≥ 1 + κ(t− 1) for t > 0 and κ > 1, we obtain

1− Sb
1
ζ c ≤ b1

ζ
c(1− S) ≤ b1

ζ
cξωµ.

Assume now there exists ω ∈ (0, x̃
‖T‖ ) such that S(−ωµ) < 0 for all µ ∈ (0, ‖T‖]. We have

|1− Sb
1
ζ c| ≤ 1 + |S|b

1
ζ c ≤ 2,

therefore b(ζ, µ) is bounded. If ζ > 1/2, then b 1
ζ c = 1 which leads to the trivial |1− Sb

1
ζ c| ≤ b 1

ζ c(1− S).

If ζ ≤ 1/2 then b 1
ζ c ≥ 2 and b 1

ζ c(1− S) ≥ 2.

Therefore for all ζ ∈ (0, 1] and all µ ∈ (0, ‖T‖] we have 1− Sb
1
ζ c ≤ b 1

ζ c(1− S) ≤ b 1
ζ cξωµ = d(ζ)µ, with

d(ζ) = ξωb 1
ζ c. The requirements 1 and 2 of Th. 1.10 are satisfied, hence b(ζ, µ) is a regularizing filter.

Stiff ODEs cannot be encountered by explicit RK methods, which is the main reason of the rise of
the implicit RK methods, for which S(x) is a rational function. This motivates the study of polynomial
quotients of variable degrees, known as Padé approximants, to approximate the exponential function,
which is what the stability function does by definition. In this sense the rational function S(x) may
disassociate from the Runge-Kutta method and instead follow the requirements of Th. 1.13 which will
ensure the regularizing effect of the method.

Definition 1.2.2 (Padé approximants). Consider the power series f(x) =
∑∞
i=1 aix

i and the polynomials

p(x) and q(x) with deg p = n and deg q = m. The rational function S(x) = p(x)
q(x) is called Padé

approximant of f(x) of order (m,n) if

f(x)− S(x) = O(xm+n+1). (1.2.24)
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1.3. Parameter choice rules (Mathematical apparatus)

The normalization q(0) = 1 is a usual additional constraint to overcome the undetermined system of
equations for the coefficients of p and q yielding from 1.2.24. Although the relation 1.2.24 was known
back in 1776 by J. L. Lagrange it was not after the thesis of H. Padé (inventor of the Padé table) in 1892
[116] that they were thoroughly studied, see more historical remarks in [72]. It can be shown [80] that a
Padé approximant of the exponential function can define a generalized Runge-Kutta method, which can
theoretically achieve arbitrarily high convergence rates [82] depending on the degrees of the polynomials
in the rational function.

Theorem 1.14 (Padé iterations). Let (m,n) ∈ N2 r {(0, 0)}. The iteration scheme defined by the
stability function Sm,n = pm,n/qm,n as a Padé approximant of f(x) = ex is a generalized Runge-Kutta
iteration. It is called the (m,n)-Padé iteration. Moreover, if ω is the relaxation parameter then we have
the following convergence behavior:

1. If m ≥ n, the (m,n)-Padé iteration converges for all ω ∈ R+.

2. If m < n, there exists a constant ω̄ ∈ R+ such that the (m,n)-Padé iteration converges for all ω < ω̄
and diverges otherwise.

3. If m ≤ n, there exists unique optimal relaxation parameter.

4. If m > n, there exists no optimal relaxation parameter, i.e. the convergence rate becomes higher with
growing ω.

1.3 Parameter choice rules

Regularization describes the way to reverse the noise effect and restore the ”natural” regularity of the
solution, but does not prescribe the depth of its act inherently. The use of parameter choice rules is
not an optional addition but necessary in order to make a regularization method successful, or in other
words, to minimize regularization errors in some sense.

We saw a glimpse of the latter through the relation 1.2.4, where a balance was sought between the
filtered noise I = δ‖Rζ‖ and the deviation of the expected value of the solution from the exact solution
J = ‖Rζgδ − Rζg‖; this summarizes the aim of a PCR. The SVD coefficients 〈g, hj〉 (Eq. 1.1.5) keep
decreasing in general (see Fig. 1.2) till they reach a point associated with the error level, at which they
level off. [57] shows that using the Picard condition on the exact data (g), one can mark this transition
point which leads to the desired balance between the two errors (I, J). However, this methodology is
often a dead end if we aim to select the parameter a-priori, since the actual decay rates are unpredictable
and highly depend on the error level.

In this section, we present the most widely used PCRs in bibliography, highlighting their assets
and drawbacks. A practical exploration of all the presented PCRs will be done later on through their
application to our problem in combination with a regularization method.

Before the PCR exposé we give a result of particular importance, known as the Bakushinskĭi’s veto
[8], highlighting the need of supplemental information in an application, e.g. the error level.

Theorem 1.15 (Bakushinskĭi’s veto). A purely data driven regularization method, in deterministic
context, is convergent if and only if the generalized inverse T † is continuous.

The extention of Bakushinskĭi’s veto for a statistical inverse problem, where the classic uniform con-
vergence is out of question is disproved by [12], since the noise may be unbounded. Note that despite
the validity of Th. 1.15, purely data-driven PCRs such as the L-curve and Generalized Cross Validation
keep appearing very successful in the bibliography.

Hereupon a few known practical results will be shown about the most widely used PCRs. For this,
the following sections assume a regularization method (Rζ , ζ) imposed to the discretized problem (see
Sec. 1.4) Tv = g and a perturbed right hand side ‖gδ − g‖ = δ, for δ > 0, where Tm×n, vn×1 and
gm×1 are real matrices with dimensions in accordance with the given projection space, and ‖ · ‖ is the
Euclidean norm (2-norm). Moreover, we denote with b(ζ, σi), i = 1, 2, . . . ,m the discrete filter functions
for a regularizer with regularization parameter ζ and the singular values σj of the discrete SVD.
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1.3.1 The discrepancy principle

Among all the parameter choice rules, the discrepancy principle is the most facile both conceptually and
computationally. It is based on the ”reasonable” demand that the data should be approximated with a
same-order accuracy as the actual data (e.g. measurement-) error. The obvious dependence on distorted-
data information (gδ) classifies this technique as an a-posteriori PCR. This technique is formalized as
follows.

Definition 1.3.1 (Morozov’s discrepancy principle). Let v(ζ,δ) be the regularized solution of Tv = g
produced by the regularization method (Rζ(δ,gδ), ζ) and let c > 1 be a constant. The regularization
parameter ζ∗ ≤ ζ is determined such that

‖Tv(ζ∗,δ) − gδ‖ ≤ cδ < ‖Tv(ζ,δ) − gδ‖. (1.3.1)

The constant c is often called safety factor and allows a somewhat safer approach preventing possible
oversmoothing. This constraint means that the data are allowed to be approximated with the data error
(δ) as a maximum possible accuracy.

The applicability of discrepancy principle (DP) is obviously limited when the knowledge on exact
measurement errors is absent. Moreover, estimation tolerance of the error level should be low enough
since the resulting solution is quite sensitive to its selection. It is demonstrated in [128] through a
simulation with a severely ill-posed test problem from [57] that even a small deviation (5-10%) of the
data discrepancy alters or destroys the reconstructed result. We should note though that in the off-
chance that we do know the error level, this method demonstrates a very good solution behavior as we
will witness later through its application in our problem.

1.3.2 The L-curve method

Despite the unique ease of the discrepancy principle, the insufficient knowledge on the error level often
strikes it out as an option. This is the basic motivation behind the development of PCRs solely based
on the available data. The idea of the L-curve method lies within the plot of the regularity term against
the residual error, first suggested by [91].

This way of displaying data appears to be quite informative regarding the regularization parameter
(ζ), i.e. the level of smoothness imposed to the solution, especially when the plot is shown in double-
logarithmic scale. Ideally, when plotting the residual error on x-axis and the regularity term (see Th.
1.12) on y-axis, an L-shaped curve is formed, see Fig. 1.3 where two separate territories are distinguished.
Moving along the vertical part of the ”L” from top to bottom, i.e. following a diminishing regularity term,
the regularization parameter becomes larger producing increasingly smoother solutions. On the other
hand moving along the horizontal part of the ”L” from right to left, the residual error is contained, which
means that the regularity ”loses” over the fit, hence the regularization parameter decreases. This leads us
to consider finding the optimal parameter ζ∗ at the corner of the L-curve. An appropriate magnitude for
locating the corner is the curvature function which needs to be maximized. This procedure is summarized
as follows.

Definition 1.3.2 (L-curve criterion). Let (J̃ , Ĩ) =
(
log ‖Tv(ζ,δ) − gδ‖, log ‖Qv(ζ,δ)‖

)
be the points con-

stituting the L-curve. The regularization parameter is determined by maximizing its curvature function
ω(ζ)

ω(ζ) =
J̃ ′Ĩ ′′ − J̃ ′′Ĩ ′

[(J̃ ′)2 + (Ĩ ′)2]3/2
.

For our purposes, we will use the L-curve criterion, combined either with the Tikhonov method with
Q = Im or with the Padé iteration. P. C. Hansen [56] showed that for the Tikhonov method with
Q = Im, and an error-free right hand side, the function I(J̃) is indeed decreasing and concave.

L-curve method ends elegantly the bargain between the competing error terms but there are some
liabilities to oversee. First, ignoring for a moment Th. 1.15, this methodology’s supporting arguments
are based entirely on heuristics. Second, the resulting graph for a noisy right hand side (gδ) is not
always either ”L-shaped” (missing the vertical or horizontal part, or having ”local” corners, or being
arbitrary shaped), or a curve in cases where the regularization parameter is discrete (e.g. the cut-off
level of TSVD), so that the inversion is incurred by interpolation. All the latter scenarios might result
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Figure 1.3: Illustration of the L-curve method. Moving along the direction pointed by the arrows leads
to an overestimation or underestimation of the regularization parameter. The optimal value is expected
to be found at the corner of the L-curve.

in occasional failure of the method. We note that in this work, for the combination Padé iteration -
L-curve, with the number of iterations being the regularization parameter, we ”fill in” the gaps of the
discrete L-curve with cubic spline interpolation.

L-curve method was mainly popularized by P. C. Hansen [55], but since then there are other variations
of the method, for instance [92] finds the corner point through a minimization of the product of the
abcissas and ordinates of the L-curve while [122] uses 1.3.2 in an L-shaped curve formed (proved for the
error-free case) by the points (ζ2, ‖vζ,δ‖2).

1.3.3 Generalized cross validation

Cross validation [137] is a well-known learning algorithm from the research area of statistics, which offers
another way out to the purely-data-driven regularization enterprize. A missing point from the previous
PCRs is that it is not taken into account how good a prediction would be with data that the procedure
hasn’t been ”trained” to deal with. The first step of this approach includes splitting the data in sets of
”trainer” and ”trainee”. Then the model equation (see Def. 1.1.1) ”learns” by being inverted for the

data in the trainer set and subsequently it uses the collected knowledge v
(ζ,δ)
− (”-” expresses the missing

data) to reproduce the data from the trainee set with forward calculations (Rζv
(ζ,δ)
− ). Finally, the mean

error from the predictions is used to evaluate the prediction.
Different ways to split the aforementioned sets introduce variations on the definition of the cross

validation (CV) method. In this work we will use the ”leave-one-out” partition, which removes only
one point every time from the data, trains the rest and goes back to predict the missing one. This is
repeated for every data point and the regularization parameter is chosen so that the mean prediction
error is minimized.

We will restrict now to the combination of CV with Tikhonov method (TCV), which is the one we will
use later on in our application (Ch. 4). In addition, an advancement of TCV is used, which is independent
of the particular ordering of the data (in the right hand side) called Generalized Cross Validation (GCV),
see [47, 147]. As computationally costly as it seems to perform the inversion-prediction pattern for every
point, it can be shown (for the Tikhonov method) that it all comes down to the minimization of a simple
function, [47, 57, 147].

Definition 1.3.3 (Generalized Cross Validation method). Let the Tikhonov regularizing filter b(ζ, σ) =
σ2

σ2+ζ2 and the associated regularization scheme Rζ shown in 2 with Q = Im. The regularization param-

eter is determined by minimizing the so-called GCV function ω(ζ)

ω(ζ) =
‖Tv(ζ,δ) − gδ‖2

(m−
∑n
i=1 b(ζ, σi))

2 . (1.3.2)
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GCV has also an expected shape-type with a horizontal and a skew part, and the regularization
parameter is ideally found near the transition of the one part to the other. If not, it produces overfitted
solutions in which case the point is shifted to the flat part of the GCV curve. More details on GCV
theory and the latter downside can be found in [147].

The arguments in favor of this data-driven method are, as in the case of L-curve method, heuristic
rather than compelling; a good prediction of the at-the-time unknown data points is an intuitive and
desirable asset, but not a guarantee of the optimality of the regularization parameter.

With all our regularization tools on board, the question is now which is the most suitable combination
of a regularization method with a parameter choice rule to solve our microphysical retrieval problem.
The answer enables even a bigger dilemma since one has to define first by what means will a method be
more suitable against another. Indeed early experiments with synthetic data revealed ample variations
in the behavior of the solution. Not only that, but the ”solution”, as defined in 1.1.1 is different than
the final regularization products we actually want to investigate, on which we expand in Ch. 3. Only
to complicate things more, the final (microphysical) parameters do not have the same sensitivity in the
error level, nor do the regularization methods have the capacity to filter different parameters with same
efficiency. Finally there is one more catch. The regularization theory, the way it was unfolded, is not
directly applicable to our problem in the sense that a more advanced algorithm has to be developed to
counteract measurement uncertainties, and physical and technical limitations which lead to ambiguity
in the solution space. This issue is resolved by using hybrid algorithms which exploit simultaneously
several mathematical constraints. These algorithms will be revisited in detail in Ch. 3.

1.4 Discretization

As every other equation in real-life applications, so does the underlying integral equation of our problem
need to be discretized in order to have a practical use. Although discretizing a problem can be seen as a
regularization with no explicit parameter as the regularization parameter, see [37], here we regard it as
a seperate step before the inversion. Projecting the problem to a finite space which we can subsequently
handle computationally is the first decisive step towards its solution. Such a space must reflect properties
of the real (solution) space, which we, at best, know little about. For this, it is useful to introduce a
special type of base functions (B-spline functions) which will carry out this task throughout this work.

1.4.1 B-spline functions

B-spline functions probably remain the most malleable tool regarding the local control of the curve
(control points), although somewhat complicated e.g. compared to its fraternal predecessor the Bézier
(or Bernstein) functions. The conceptual and practical upgrade of the latter to the B-spline functions
lies on the consideration of a special knot set, designed to offer this flexibility.

Definition 1.4.1 (B-spline curve). Let R be a set of t + 1 non-decreasing numbers, r0 ≤ r1 ≤ r2 ≤
. . . ≤ rt, called the knot set which is augmented to r−d = . . . = r−1 = r0 ≤ r1 ≤ r2 ≤ . . . ≤ rt ≤ rt+1 =
. . . = rn, where n = t+ d+ 1 is called the number of basis functions. Then the j−th B-spline of degree
d is defined by the De Boor-Cox recursion, [29]:

Sj,0(r) =

{
1, if rj ≤ r < rr+1

0, otherwise.
(1.4.1)

Sj,d+1(r) =ωj,d+1(r)Sj,d(r) + (1− ωj+1,d+1(r))Sj+1,d(r), d ≥ 1 (1.4.2)

where

ωj,d(r) =

{
r−rj

rj+d−rj , if rj+d 6= rj

0, otherwise.
(1.4.3)

Moreover, the curve defined by

v(r) =

n∑
j=1

pjSj,d(r) (1.4.4)

is called a B-spline curve and (pj)
n
j=1 its control points.
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A B-spline curve is a piecewise polynomial function which can be used to represent a function of one
variable in the projected space. A natural generalization of the B-spline curve in two dimensions by
products of b-spline curves is the following.

Definition 1.4.2 (B-spline surface). Consider the B-spline curve schemes

u(r) =

n∑
j=1

pjSj,d(r) with knot set (rj)
n+d+1
j=1 , and

w(a) =

l∑
k=1

qkSk,h(a) with knot set (ak)l+h+1
k=1

The tensor product

v(r, a) = u⊗ w =

n∑
j=1

l∑
k=1

pjqkSj,d(r)Sk,h(a) with knot set (rj)
n+d+1
j=1 × (ak)l+h+1

k=1 , (1.4.5)

is called a B-spline surface.

Note that the elements pjqk (matrix of control points) can be allowed to take arbitrary values leading
to a more general B-spline surface formula.

The apparent additional complexity of B-splines versus the usual spline functions is counterbalanced
by the computational relief due to their local support (at a given point r ∈ [rj , rj+1), only d+1 numbers
are non-zero) and the efficient representation of a yet unknown solution, shown later, as the crucial step
of the collocation method, see 1.4.3. The identity of a spline (spline number and degree), is in the core
of the present thesis since the algorithms we adopted, partly owe (the projected dimension is still under
debate) their robustness in this and at the same time provide the means to analyze the variability of the
solution space. Note that from now on whenever we refer to ”spline points” for a B-spline curve, the
knot set R (before the augmentation) is implied.

Let us now introduce two important special cases of projection methods, the collocation method and
Galerkin method, which we will use throughout this work. There is a rich bibliographic material for
these methods, see e.g. [7, 38, 87].

1.4.2 Collocation methods

As we will see in our application (microphysical retrieval problem), the measurement data gδ (lidar
inputs, see Introduction) are known in certain points, rather than continuously. Projection methods by
collocation exploit this very feature most appropriately.

Definition 1.4.3 (Collocation methods). Let G = C(W ), where W ⊂ R compact subset and let
T : V → G be an injective bounded linear operator, with V and G Hilbert spaces and Tv = g, with
v ∈ V and a given g ∈ G. Let the subspace sequences Vn ⊂ V , and Gm ⊂ G satisfy dimVn = n and
dimGm = m. Choose m points λ̃ = {λ1, λ2, . . . , λm} ∈W such that Gm is unisolvent with respect to λ̃,
i.e. any function from Gm that vanishes in λ̃ vanishes identically. Then the collocation method applied
to the equation Tv = g, gives an approximation of the solution (v), vn ∈ Vn, satisfying

(Tvn)(λi) = g(λi), i = 1, 2, . . . ,m. (1.4.6)

Let us see how this definition affects the formalization of our actual model equation, i.e. the Fredholm
integral model, see Eq. 1.1.2. Consider Vn = span(B), where B = {ψ1, ψ2, . . . , ψn} are B-spline
functions. Every solution approximation can now be expressed with respect to the basis B,

vn(r) =

n∑
j=1

pjψj(r), (1.4.7)
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where (pj)
n
j=1 are the expansion coefficients. Using the abbreviated notation gi = g(λi), and Kij =

K(λi, rj), the model equation 1.1.2 casts to the linear system

n∑
j=1

(∫ b

a

Kijψjdr

)
pj = gi, i = 1, . . . ,m. (1.4.8)

Choosing a quadrature rule for the calculation of the integrals in Eq. 1.4.8 concludes the transformation
of the model equation to a discrete (matrix-vector) problem. Obviously, the last step enables quadrature
errors which will be considered negligible for our further analysis. After solving the system 1.4.8 for the
coefficients pj (regularization), one has to go back to the expansion 1.4.7 to finally obtain vn.

Consider now the following generalization of Eq. 1.1.2

Tv(r, a) =

∫ b

a

∫ d

c

K(λ, r, a)v(r, a)drda = g(λ), with (r, a) ∈ [a, b]× [c, d]. (1.4.9)

The unknown function v acquires an additional dimension (a) but the right hand side (input data)
remains a function of a single variable, which is why we shall call Eq. 1.4.9 the quasi-two-dimensional
case (quasi-2D case). Assume now an expansion of the form 1.4.5 with basis functions {ψj(r)}nj=1 and

{χk(a)}lk=1 and set Kijk = K(λi, rj , ak) for brevity. Applying formally the collocation steps to Eq. 1.4.9
for each available data point {gi}mi=1, we have the scheme

n∑
j=1

l∑
k=1

(∫ b

a

∫ d

c

Kijkψjχkdrda

)
pjqk

?
= gi, i = 1, . . . ,m. (1.4.10)

The parenthesized term is now an element of a two-dimensional matrix (3rd order tensor) with i rows,
j columns and k layers, which makes the equation ambiguous. How to deal with such a scheme most
efficiently is a subject of current research on multilinear analysis, with its solvability being under question
in the first place. In order to overcome this difficulty we follow a concept from image processing (see [79])
where the indices (i, j) are ”compressed” to one index h with the bijective index reordering F : N2 → N

(j, k) 7→(k − 1)n+ j. (1.4.11)

Now the collocation process forms a matrix again with dimensions m× ln and vn is assumed to have a
(compatible to the matrix dimension) B-spline expansion vnl =

∑ln
h=1 zhφh, hence the problem is reduced

to the one-dimensional case 1.4.8. In contrast to the one-dimensional case, after inverting the discrete
equation, the resulting approximation vh has to be ”decompressed” again to obtain a (quasi-)2D solution

vnl =

nl∑
h=1

zF−1(h)φF−1(h). (1.4.12)

1.4.3 Galerkin methods

Another important discretization method, attributed to B. Galerkin [43] encounters the continuous op-
erator problem through the so-called weak formulation.

Definition 1.4.4 (Galerkin method). Let T : V → G be an injective bounded linear operator, between
the Hilbert spaces V and G and Tv = g, with v ∈ V and a given g ∈ G. Let the subspace sequences
Vn ⊂ V , and Gm ⊂ G satisfy dimVn = n and dimGm = m. Then the Galerkin method applied to
the equation Tv = g, gives an approximation of the solution (v), vn ∈ Vn, satisfying the (Galerkin)
orthogonality requirement

〈Tvn − g, f〉 = 0, f ∈ Gn. (1.4.13)

Consider now Vn = span{ψ1, ψ2, . . . , ψn}, and Gm = span{ξ1, ξ2, . . . , ξm}. Then we have the expan-
sions vn(r) =

∑n
j=1 pjψj(r) and g(λ) =

∑m
i=1 ηiξi(λ) and Eq. 1.4.13 becomes

n∑
j=1

〈Tψj , ξi〉pj = 〈g, ξi〉, i = 1, 2, . . . ,m. (1.4.14)
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The resulting m× n linear system can have a more explicit form if we specify the spaces V and G. For
V = L2[a, b] and G = L2[c, d] and switching to the Fredholm equation 1.1.2, the matrix elements will be

tij =
∫ b
a

∫ d
c
K(λ, r)ψj(r)ξi(λ) dλ dr and the right hand side ci =

∫ d
c
g(λ)ξi(λ)dλ.

A clear downside of the Galerkin method versus the collocation method is the computational load
especially for our case where double integrals are involved. Moreover, several numerical experiments
showed the Galerkin discretized equation is more likely to produce unstable solutions (huge condition
numbers of the Galerkin matrix). One more reason that this method is unattractive in our case is
that the input data have to be known continuously, which led us to use collocation throughout this
work. As discussed earlier, the Galerkin method can be exploited in order to ”transfer” efficiently the
ill-posedness (see Th. 1.11) from the continuous to the discrete problem for the one-dimensional case
(1.1.2). Regarding the ill-posedness of the generalized model 1.4.9, the quadruple integrals involved,
when using Galerkin method, are prohibitive for our analysis. Instead, possible instabilities will be
investigated by looking directly at the discretized problem and keeping track of the condition numbers
and simple non-linear fits of the singular values.
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Chapter 2

Physical apparatus

Foreword

We expose here some basic physical concepts, assumptions and results, from electromagnetism (EM) and
atmospheric physics upon which this work is based. We would need several chapters to describe the high
mathematical level behind these theories, but instead we will only touch it superficially, since the focus
here is mainly the physical motivation. Related literature should bridge the gaps of the occasional leaps
in theory. We start with describing the basic EM phenomena occuring in a general framework so that
we present important measurable quantities regarding the polarization state of the light. The real goal
is to highlight the scattering process by objects fulfilling single scattering criteria. This is a benchmark
from which all important scattering quantities pop out, with most important for the present work being
the optical cross sections linking to the kernel functions of our model equation. T-matrix theory sets the
ground for the practical calculation of the kernel functions. Finally, a short complementary background
from atmospheric physics is given for aerosol forcing and the optical properties measured by the laser
remote sensing (lidar) technique.

2.1 Electromagnetic field description of time-harmonic fields
with plane-wave solutions

Back in 1865, J. C. Maxwell demonstrated that unifying laws govern electricity, magnetism and light.
Perhaps the capstone among many important discoveries of his profound work, is the existence of electro-
magnetic waves. The flawlessly elegant Maxwell’s equations state the fundamentals of electromagnetism
and cover concisely all physical optics phenomena. Although much of the inherited physical insight
comes from the classical microscopic Maxwell’s equations, here we need to approach the problem from a
macroscopical standpoint, see e.g. [48, 66]:

∇ ·D = ρ (2.1.1)

∇×E = −∂B

∂t
(Faraday’s law) (2.1.2)

∇ ·B = 0 (2.1.3)

∇×H− ∂D

∂t
= J. (2.1.4)

All equations are expressed in SI units and every quantity is assumed to be both time- (t) and
spatially (r) dependent. E and B are the fundamental vector quantities, denoting the electric field and
magnetic induction field respectively, while D is the electric displacement, H is the magnetic field, ρ is
the (macroscopic) charge density and J is the (macroscopic) current density.

The generality of Maxwell’s equations needs to be confined in order to solve for a specific physical
problem. Unfolding the equations 2.1.1-2.1.4 to scalar equations, we have 8 equations (the ×-product
equations hide 3 scalar equations each) with 12 unknowns (one for every spatial dimension). The unique
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determination of the electromagnetic (EM) fields requires the so-called constitutive relations to further
connect J,D with E and B with H:

D = εE, J = σE (Ohm’s law), and B = µH, (2.1.5)

where ε is the electric permittivity and µ is the magnetic permeability, both of which are tensors of
order 2 and reduce to scalars in the case of linear isotropic media, and σ is the conductivity. Maxwell’s
equations in integral form involve closed surfaces and paths that might encompass a boundary separating
two different media; their validity strongly depends on a continuous variation of their properties locally.
The link between the two sides of the boundary lies within the boundary conditions. Drawing either a
Gaussian pillbox or an Amperian loop to exceed slightly the surface boundary in both sides and shrinking
their dimensions, the integral analogs of Eq. 2.1.1-2.1.4 lead to:

n̂ · (B2 −B1) = 0, or B⊥2 −B⊥1 = 0 (2.1.6)

n̂× (E2 −E1) = 0, or E
‖
2 −E

‖
1 = 0 (2.1.7)

n̂ · (D2 −D1) = κ, or D⊥2 −D⊥1 = κ, (2.1.8)

n̂× (H2 −H1) = K, or H
‖
2 −H

‖
1 = K× n̂ (2.1.9)

where n̂ is the unit vector to the surface, directed from medium 1 into medium 2, κ is the surface
charge density and K is the surface current density. These equations express either continuity of the
normal/tangential EM components (2.1.6, 2.1.7) or a discontinuity jump (2.1.7, 2.1.9). Finally, in the
case of finite conductivity (not perfect conductors), H has a continuous tangential component while
entering medium 2, similar to Eq. 2.1.7.

Combining Maxwell’s equations, one can easily derive the well-known EM wave equation, describing
the wave propagation in a homogeneous isotropic sourceless medium

∇2T − µε∂T
∂t

= 0, (2.1.10)

where T = E,H, ε is electric permittivity and µ the magnetic permeability of the medium. Eq. 2.1.10
accepts as a general solution the linear superposition of waves of the form f(k · r − ωt), where r is
the position (radius) vector, k is the wave vector, and ω is the angular frequency. Perhaps the most
common solutions are monochromatic plane waves, whose wavefronts are infinite parallel planes, k ·
r− ωt = const for any given time. Assume now time-harmonic (sinusoidal) fields of the form A(r, t) =
A0 exp(ik · r− iωt) where A0 is a constant complex vector, for an homogeneous, isotropic and sourceless
medium. Then Maxwell’s equations become

k ·E0 = 0, k ·H0 = 0, (2.1.11)

k×E0 = ωµH0, k×H0 = −ωεE0. (2.1.12)

Combining these equations and assuming homogeneous plane waves, i.e. Re(k)//Im(k), k = kn̂ with
k ∈ C, gives rise to two characteristic quantities of the medium,

m =
ck

ω
= c
√
εµ, v =

c

Re(m)
, (2.1.13)

where c is the speed of light for free space, m is called the refractive index (ε and µ are not restricted to
be real-valued) and v is called the phase velocity of the wave.

E(r, t) = E0 exp
(
−ω
c
Im(m)n̂ · r

)
exp

(
i
ω

c
Re(m)n̂ · r− iωt

)
. (2.1.14)

It is evident that a non-zero imaginary part results in an exponential decrease of the amplitude of the
travelling wave, serving as an indicator of the absorption level of the medium.

2.2 Polarization states

Polarization is an intrinsic property of the electric field of a plane wave. G. G. Stokes in 1852, came up
with a set of 4 values (S0, S1, S2, S3), known as the Stokes parameters (or Stokes vector), to describe any
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2.2. Polarization states (Physical apparatus)

polarization state of light waves either emitted, in a single direction (polarized light) in random -not all
light waves with the same- directions (unpolarized light) or a combination of the previous cases (partially
polarized light) in terms of its total intensity I (see [45]). The latter is a measurable quantity for optical
detectors, built almost a century later (!):

I
(
θ̃, φ̃
)

=
1

2

[
S0 + S1 cos

(
2θ̃
)

+ S2 cos
(
φ̃
)

sin
(

2θ̃
)

+ S3 sin
(
φ̃
)

sin
(

2θ̃
)]
, (2.2.1)

where θ̃ and φ̃ are polar and azimuth laboratory angles related to the so-called polarizer (E-component
filter) and retarder (E-phase control), respectively.

Most measurements with optical detectors can not bear the fast oscillating nature of the field vector,
e.g. for a wavelength λ = 1064 nm, the period of a monochromatic light beam is T ∼ 3 fs, therefore
instead of instantaneous values, time-averaging quantities are used,

〈Ei(t)Ej(t)〉 = lim
T→∞

1

T

∫ T

0

Ei(t)Ej(t) dt, (2.2.2)

where 〈·, ·〉 is denotes here exceptionally the time average. Consider incident monochromatic plane waves
E = E0 exp(ikn̂ · r− iωt) in a non-absorbing homogeneous medium travelling in the direction of the unit
vector n̂ = θ̂ × φ̂, where θ̂ resides in the plane defined by n̂ and z-axis, and φ̂ is perpendicular to this
plane. Then, the time-averaged Stokes parameters are defined in spherical coordinates with the help of
the electric field components Eθ, Eφ

S0 =〈EθE∗θ + EφE
∗
φ〉, (2.2.3)

S1 =〈EθE∗θ − EφE∗φ〉, (2.2.4)

S2 =2〈Re(EθE
∗
φ)〉, (2.2.5)

S3 =− 2〈Im(EθE
∗
φ)〉. (2.2.6)

Combining Eq. 2.2.3-2.2.6 we are a few algebraic operations away from the insightful formula

a2
φE

2
θ + (−2 cos δaθaφ)EθEφ + a2

θE
2
φ + a2

θa
2
φ sin2 δ = 0, (2.2.7)

where δ is the phase difference between the θ- and φ-components of the complex amplitude E0, and
aφ = |E0φ| and aθ = |E0θ|. The conic section in Eq. 2.2.7 is a tilted (at a derivable inclination
angle) ellipse, which is swept by the endpoint of the electric field vector. Elliptic polarization describes
the general form of polarized light, but it can degenerate to two other interesting cases, (i) the linear
polarization, for δ = 0 or δ = π and (ii) the circular polarization for δ = ±π2 .

The elliptical helix created by the endpoint of the electric vector is uniquely defined by the length
of its major and minor axis, the inclination angle and the orientation (clockwise or counter-clockwise)
is another explanation of the sufficiency of four parameters for a polarization state. The Stokes vector
might vary depending on the basis vectors, e.g. the one induced by the linear or circular polarization
and transform to any other through a similarity transformation. Finally, for partially polarized light it
can be shown that Stokes parameters depend on each other in the following sense

S2
1 + S2

2 + S2
3 ≤ S2

0 , (2.2.8)

where equality holds for the polarized light. Considering relative intensities (or a total intensity of
S0 = 1), a solid sphere of unit radius can be drawn, called Poincaré sphere (see Eq. 2.2.8), which
includes all possible polarization states (S1, S2, S3), see [155]. Fig. 2.1 illustrates several special cases

in the surface of Poincaré sphere, using the phase difference δ and the angle ψ = arctan
(
E0φ

E0θ

)
, with

0 < ψ < π
2 . Each point stands for a different polarization state. E.g. the two poles (0, 0, 1) and (0, 0,−1)

correspond to a left-handed circular (LHC) or right-handed circular- (RHC) polarization respectively,
while (1, 0, 0) and (−1, 0, 0) correspond to a horizontal or a vertical linear polarization respectively.
Non-equatorial points designate elliptical polarization.

The averaged Stokes parameters deal successfully with quasi-monochromatic light where the ampli-
tude of the electric field vector and the phase difference are allowed to change relatively slow with respect
to the detection time. Moreover, if the phases of a number of plane waves develop temporally in a com-
pletely random fashion (incoherence), the ”interference” intensities have a zero (time-) average and we

21



2.3. Interaction of a finite particle with light (Physical apparatus)

Figure 2.1: Illustration of Poincaré sphere. Figure credit: [155].

can just add up the total intensities of every single wave, and this extends to the rest components of the
Stokes vector. We take a step farther to realize that this convenience is also a weakness as it turns out
that no (usual) optical device can make out different light beams having the same Stokes parameters.

Stokes parameters own spectral radiance units, which is essentially energy flow passing over a dif-
ferential area element confined to a differential solid angle and normalized by the wavelength of the
monochromatic plane wave. Energy transfer is an equally important aspect of electrodynamics. Intu-
itively, in the absence of electric current, the rate of loss of the energy stored within the EM wave in a
volume must be attributed of EM energy flowing out through the surface of that volume. Accounting
for a continuous distribution of charge and current, the total work done per unit volume by an electro-
magnetic field is J ·E. A suitable manipulation of Maxwell’s equations along with some vector calculus
operations yield

∂U

∂t
+∇ · S = −J ·E, (2.2.9)

In the first term in the left hand side, U = 1
2 (E ·D∗+ B ·H∗) is the total energy density of the field and

S = E ×H∗ is the term, known as the Poynting vector, which balances the energy conservation shown
in the expression 2.2.9, representing the energy flux. For a plane wave propagating in a homogeneous
medium the time-averaged Poynting vector is

〈S(r)〉 =
1

2
Re(E×H∗) =

1

2
Re

(√
ε

µ

)
|E0|2e−αn̂·rn̂ (2.2.10)

where α = 2ω Im(m)
c is called the absorption coefficient. Eq. 2.2.10 demonstrates the energy outflow

along the direction of propagation.

2.3 Interaction of a finite particle with light

Light starts really getting interesting via its interaction with matter. Our rich visual perception is based
on the huge variability of possible outcomes due to three basic processes taking place, i.e. emission,
absorption and scattering of light. The nature of the obstacle (size, geometry, chemistry) standing in its
way has a key role. Scattering, being the redistribution of incoming light, can be thought as a process of
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2.4. Scattering (Physical apparatus)

Figure 2.2: Auxiliary diagram for the incident and scattering fields where the origin (O) of the coordinate
system coincides with the geometrical center of the scatterer. ”M” is the scattering observation point.
The bottom right part of the graph depicts a magnification of the scatterer placed in (O), to which we
drew an external sphere of smallest radius r> and an internal sphere of largest radius r< for the analysis
of the T-matrix method in Sec. 2.5.

absorption and re-emission of radiative energy with or without negligible energy conversion, all of which
happening due to the collision of photons with the atoms of the material. Therefore, observing the
scattered light could ideally (neglecting further interactions, e.g. multiple scattering) serve as particle
identification which is directly in the heart of remote sensing. In the following section we are going
to briefly show some results from scattering theory with the ulterior motive the relation between the
scattered and the incident field (T-matrix). In the meantime we will show how to calculate two important
scattering quantities regarding atmospheric attenuation and scattering in the backward direction, which
will allow us, later on, introduce the lidar equation as the link between the lidar systems and these
observable quantities. The marvelous contemporary work of [98] on scattering by small particles, is
strongly followed here.

2.4 Scattering

We would like to initially examine scattering in a general framework. Consider a single small finite
scattering object (still bulky enough so that Maxwell’s equations 2.1.1 apply) or a fixed aggregate with
an isotropic, linear and (generally) inhomogeneous material enclosed by the volume Vint, while the rest
of the space denoted by Vext (everything but Vint) in an infinite, homogeneous, isotropic medium and let
the subscripts 1 and 2 designate the regions associated with Vext and Vint respectively. Both the medium
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2.4. Scattering (Physical apparatus)

and the object are considered non-magnetic µ2(r) = µ1 = µ0, where µ0 is the free-space permeability.
Moreover, spherical coordinates are used (r, θ, φ), with θ ∈ [0, π] being the polar angle and φ ∈ [0, 2π)

the azimuthal angle and the field components are expressed in terms of the unit vector basis n̂, θ̂, φ̂,
where n̂ points to the direction of propagation of the incident or the scattering wave, θ̂ lies in the plane
defined by n̂ and z-axis and φ̂ is perpendicular to this plane, see Fig. 2.2. Maxwell’s equations, for the
total field E in the whole region r ∈ Vext ∪ Vint can take the condense form

∇×∇×E(r)− k2
1E(r) = j(r), r ∈ V, (2.4.1)

with the inhomogeneous term j(r) defined by,

j(r) =

{
0, r ∈ Vext

(k2
2(r)− k2

1)E(r), r ∈ Vint,
(2.4.2)

where k1 and k2(r) are the wave numbers of the exterior and interior regions respectively. This formalism
is actually convenient when searching for a solution despite the self-referential part of Eq. 2.4.1 (second
branch of j(r)). Indeed, the solution of 2.4.1 is split into a general solution of the associated homogeneous
problem which refers to the incident (superscript ”i”) field Ei (in the absence of the scatterer) and a
particular solution of 2.4.1 which can be attributed to the scattered (superscript ”s”) field Es. It should
further vanish in large distances far from the scatterer for it to be a physically consistent.

In general, in order to solve for Es one has to employ tensor calculus (dyadics) along with the free
space dyadic Green’s function to end up with the scalar inhomogeneous Helmholtz equation, see e.g.
[66, 125], leading finally to an expression depending on the internal field of the scatterer (unknown).
Here we are interested in solutions in the so-called far-field zone, i.e. k1r � 1 and r � r′ for any r′ ∈ V i,
which allows us to consider outgoing transverse (zero radial component r̂) spherical waves asymptotically
as solutions for the Es,

Es(r) =
eik1r

r
E (r̂), r̂ · E (r̂) = 0, (2.4.3)

where E (r̂) is the amplitude of the spherical wave. Assume additionally an incident plane electromagnetic

wave Ei(r) = Ei
0e
ik1n̂

i·r, with Ei
0 = Ei0θ θ̂

i + Ei0φφ̂
i and let the origin of the radius vectors O coincide

with the geometrical center of the scatterer, see Fig. 2.2. Then it can be shown that incident and
scattering field components depend on each other linearly. This can be expressed by a 2x2 matrix, called
the amplitude scattering matrix S:[

Es
θ(L)(rn̂

s)

Es
φ(L)(rn̂

s)

]
=
eik1r

r
S(L)(n̂s, n̂i; e)

[
Ei

0θ(L)

Ei
0φ(L)

]
, (2.4.4)

where Ei
θ,E

i
0φ and Es

θ,E
s
0φ are the θ- and φ-components of the incident and scattered field respectively

and e = (α, β, γ) is the Euler rotation-angle triple of the particle reference frame (P) with respect
to the common laboratory reference frame (L) in case they are not aligned. It is a common trick in
electromagnetism to work on (P) in order to exploit possible particle symmetries and avoid further
mathematical acrobatics.

The amplitude scattering matrix is a good theoretical tool carrying efficiently all the scattering
information in the far-field zone we need, but in practice, even if we know the scatterer’s internal and
external structure, we will still stumble upon the experimental complete determination (both phase and
amplitude) of the incident and scattered electric fields. On the other hand, energy-flux-related quantities
are easily measurable and this is where the Stokes parameters come in handy. The relation between the
Stokes vector B and scattering amplitude matrix is

Bs(rn̂s) =
1

r2
ZBi, with Z = D(S⊗R S∗)D−1, (2.4.5)

where S = S(n̂s, n̂i) and the standard basis of R2 ⊗R2 is implied and Z = Z(n̂s, n̂i) is called the Stokes
phase matrix while the matrix D is defined by

D =


1 0 0 1
1 0 0 −1
0 −1 −1 0
0 −i i 0

 . (2.4.6)
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The phase matrix for a single scatterer with fixed orientation is generally a full matrix (16 non-zero
elements) comprised by only 7 independent values, as an expanded version of the quadratic formula 2.4.5
would reveal. Later on we will see a reduced form of this matrix in the special but practically interesting
case of randomly oriented particles. Optical characteristics such as the scattering cross sections can
be expressed through the scattering phase matrix as well. We are going to postpone their appearance
until the presentation of the T-matrix method, which is the way these quantities are calculated in our
application.

2.5 Extended boundary condition method

In the pursuit of a good understanding of scattering phenomena one has to employ theoretical as much
as experimental techniques to quantify scattering and absorption. The cost of measurement equipment
and the lack of direct microphysical characterization makes exact methods still quite favorable in spite of
the questionable range of applicability that they might actually have for a real application. Attempts for
analytical solutions of the wave equation 2.4.1 under the ”separation of variables” prescription , see [101],
can handle a few cases e.g. spherical scatterers [97], infinite elliptical cylinders [78], but may become an
onerous computational burden for more complex shapes. In this section we will introduce the extended
boundary condition method, firstly developed by P. C. Waterman [152], and flourished particularly in
our days owing to its efficiency and systematic use in non-spherical-scatterer endeavors.

Once again, consider an incident plane wave scattered by an arbitrary-shaped object, and draw two
fictitious concentric spheres, one of smallest radius r> circumscribing the scatterer and another of largest
radius r< inscribed in the scatterer, whose geometrical center coincides with the origin of the laboratory
coordinate system. See Fig. 2.2 for a depiction of such a scenery. The incident and scattered field can
be expanded in spherical wave functions RgM,M,RgN and N, see App. A Eq. A.0.1-A.0.4

Ei(r) =

∞∑
n=1

n∑
m=−n

[amnRgMmn(k1r) + bmnRgNmn(k1r)] (2.5.1)

Es(r) =

∞∑
n=1

n∑
m=−n

[pmnMmn(k1r) + qmnNmn(k1r)] , r > r> (2.5.2)

where the expansion coefficients amn and bmn are explicitly related to Ei
0 and to basis functions (Legendre

polynomials or Wigner d-functions), see App. A, Eq. A.0.8-A.0.12. The linearity of Maxwell’s equation
allows a matrix-vector representation between the expansion coefficients of the incident and the scattered
field through the transition matrix, or T-matrix, T. This is succinctly expressed by[

p
q

]
= T

[
a
b

]
. (2.5.3)

In case the particle orientation differs from the laboratory reference frame, the transformation into (L)
is quite straightforward by employing the Euler angles (α, β, γ)

T
kl (L)
mnm′n′(α, β, γ) =

n∑
m1=−n

n′∑
m2=−n′

Dn
mm1

(α, β, γ)T
kl (P )
m1nm2n′

Dn′

m2m′(−γ,−β,−α), k, l = 1, 2 (2.5.4)

with Ds
bc(α, β, γ) = e−ibadsbc(β)e−ibγ , where dsbc are the Wigner d-functions, see App. A Eq. A.0.4.

This is the T-matrix method in a nutshell, but as neat as its formalization might seem, there is an
infinite system of equations to solve, whose matrix (T) coefficients are still unknown and, of course,
depend on physical (e.g. size, refractive index) and chemical characteristics of the scatterer (e.g. internal
fields).

A way out for the calculation of T-matrix is given by the extended boundary condition (EBC) method
or Null-field method, see [152], which is summarized as follows. Assuming an homogeneous, isotropic,
sourceless and non-absorbing medium (µ = µ0) and using Green’s identity we obtain

Es(r′) =

∫
S

dS
{
iωµ0 [n̂×H+(r)] ·

↔

G(r, r′) + [n̂×E+(r)] ·
[
∇×

↔

G(r, r′)
]}

, r′ ∈ Vext, (2.5.5)
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where
↔

G(r, r′) is the dyadic Green’s function for free space, and the ”-” and ”+” subscripts will stand
for the fields in the interior domain and exterior domain respectively. The key-assumption is that this
formula holds true for the interior region Vint too, where the total field is manufactured to be zero. The
latter is achieved using the surface equivalence theorem (see [132], Huygens’s principle), by replacing the
scatterer with appropriate electric and magnetic current densities in its surface, which fulfil the boundary
conditions and result in the radiation produced by the actual sources. Since E = Ei + Es, the EBC is
to force the assignment Ei(r′) = −Es(r′) for r′ ∈ Vint. The plan is now, knowing the incident field, to
calculate the E+ and H+ using the EBC condition, and use them to find the scattered field.

Denoting the surface current densities KE±(r) = n̂ × E±(r) and KH±(r) = n̂ ×H±(r), we obtain
KE− = KE+ and KH− = KH+ , due to the boundary conditions, for every surface point (r ∈ S).
Expressing the free space dyadic Green’s function in terms of vector spherical wave functions, see App.
A, Eq. A.0.13, the expansion coefficients of Ei(r′) for r′ < r< and Es(r′) for r′ > r>, see Eq. 2.5.1,
2.5.2, are

amn =k1(−1)m
∫
S

dS
{
ωµ0K

H+(r) ·M−mn(k1r, θ, φ)− ik1K
E+(r) ·N−mn(k1r, θ, φ)

}
, (2.5.6)

bmn =k1(−1)m
∫
S

dS
{
ωµ0K

H+(r) ·N−mn(k1r, θ, φ)− ik1K
E+(r) ·M−mn(k1r, θ, φ)

}
, (2.5.7)

pmn =k1(−1)m
∫
S

dS
{
ωµ0K

H+(r) · RgM−mn(k1r, θ, φ)− ik1K
E+(r) · RgN−mn(k1r, θ, φ)

}
, (2.5.8)

qmn =k1(−1)m
∫
S

dS
{
ωµ0K

H+(r) · RgN−mn(k1r, θ, φ)− ik1K
E+(r) · RgM−mn(k1r, θ, φ)

}
, (2.5.9)

The interior fields are further assumed to be able to be expanded in the regular spherical wave functions
RgM and RgN

E(r) =

∞∑
n′=1

n∑
m′=−n′

[cm′n′RgMm′n′(k2r) + dm′n′RgNm′n′(k2r)] , r ∈ Vint (2.5.10)

The combination of the EBC condition (see also 2.5.5), Eq. 2.5.6-2.5.9, the boundary condition re-
quirements, Eq. 2.5.10, and (the simplification of) 2.1.4, results in the T-matrix-alike linear relations,[

a
b

]
= Q

[
c
d

]
,

[
p
q

]
= −RgQ

[
c
d

]
, (2.5.11)

Eq. 2.5.11 and 2.5.3 combined lead to the simple relation T = −(RgQ)Q−1, referring to the particle
reference frame (see also Eq. 2.5.4). The matrix elements of Q and RgQ are given by

Q11
mnm′n′ = −ik1k2J

21
mnm′n′ − ik2

1J
12
mnm′n′ , (2.5.12)

Q12
mnm′n′ = −ik1k2J

11
mnm′n′ − ik2

1J
22
mnm′n′ , (2.5.13)

Q21
mnm′n′ = −ik1k2J

22
mnm′n′ − ik2

1J
11
mnm′n′ , (2.5.14)

Q22
mnm′n′ = −ik1k2J

12
mnm′n′ − ik2

1J
21
mnm′n′ , (2.5.15)

where 
J11
mnm′n′

J12
mnm′n′

J21
mnm′n′

J22
mnm′n′

 (−1)m
∫
S

dSn̂ ·


RgMm′n′(k2r, θ, φ)×M−m′n′(k1r, θ, φ)
RgMm′n′(k2r, θ, φ)×N−m′n′(k1r, θ, φ),
RgNm′n′(k2r, θ, φ)×M−m′n′(k1r, θ, φ),
RgNm′n′(k2r, θ, φ)×N−m′n′(k1r, θ, φ),

 (2.5.16)

and

RgQ11
mnm′n′ = −ik1k2RgJ21

mnm′n′ − ik2
1RgJ12

mnm′n′ , (2.5.17)

RgQ12
mnm′n′ = −ik1k2RgJ11

mnm′n′ − ik2
1RgJ22

mnm′n′ , (2.5.18)

RgQ21
mnm′n′ = −ik1k2RgJ22

mnm′n′ − ik2
1RgJ11

mnm′n′ , (2.5.19)

RgQ22
mnm′n′ = −ik1k2RgJ12

mnm′n′ − ik2
1RgJ21

mnm′n′ , (2.5.20)
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where
RgJ11

mnm′n′

RgJ12
mnm′n′

RgJ21
mnm′n′

RgJ22
mnm′n′

 = (−1)m
∫
S

dSn̂ ·


RgMm′n′(k2r, θ, φ)× RgM−m′n′(k1r, θ, φ)
RgMm′n′(k2r, θ, φ)× RgN−m′n′(k1r, θ, φ)
RgNm′n′(k2r, θ, φ)× RgM−m′n′(k1r, θ, φ)
RgNm′n′(k2r, θ, φ)× RgN−m′n′(k1r, θ, φ)

 . (2.5.21)

It is clear that the benefit of using T-matrix method (EBC) is its independence of incidence and
scattering directions, which means that its elements need only a single calculation for any direction-
or incident polarization candidate. Another noteworthy property of T-matrix is the scale invariance,
which transfers the dependency on ”sheer” values of particle typical dimension and refractive index to
relative values. For instance, a usual treatment of arbitrary shapes is to consider surface- or volume
equivalent spheres of radius κ. In this case, T-matrix elements depend on the parameter x = 2πκ/λ,
called the size parameter, where λ is the wavelength of the incident wave, and the relative refractive
index m = k1/k2 = m1/m2, where m1,m2 are the refractive indices of the exterior and interior particle
regions respectively, see an example in Sec. 2.6. Finally, symmetry relations result in simplified versions
of the T-matrix. We are going to see a demonstration of this efficiency through the case of randomly
oriented particles with a plane of symmetry in the following section.

2.6 Optical cross sections for randomly oriented objects

Eq. 2.1.14 and 2.2.10 trigger the interest on the quantification of absorption and scattering. A way to
achieve this is through the optical cross sections which measure the effective area, tantamount to the
probability of an event to take place. Moreover, cross sections multiplied by the intensity of incident light
yield the corresponding power loss. The quantity associated with the total power loss is called extinction
cross section Cext, and is defined as the sum of the scattering cross section Csca and the absorption cross
section Cabs. For many applications (in our case too), there is high interest in the percentage which
favors scattered light as opposed to absorbed light (or the converse), which stimulates the definition of
a parameter, important for radiative transfer, called the single scattering albedo

ς =
Csca

Cext
. (2.6.1)

Denoting by A the geometrical cross section of the particle (as ”seen” from the detector), we also define
the dimensionless so-called particle efficiencies

Qsca =
Csca

A
, Qabs =

Cabs

A
, and Qext =

Cext

A
. (2.6.2)

The generally arbitrary direction of the scattered radiation is behind the rationale of measuring the
distributed light over a solid angle Ω expressed by a quantity called the differential cross section denoted
by dCsca/dΩ.

A measure of the fraction of incident light being scattered in a specific direction is given by the
phase function p(Θ) (also an input parameter for radiative transfer equation), normalized over the entire
spherical surface

p(Θ) =
4π

Csca

dCsca

dΩ
,

1

4π

∫
S=4π

p(Θ)dΩ = 1 (2.6.3)

where Θ = ](r̂, n̂i), Θ ∈ [0, π] is the scattering angle with cos Θ = cos θs cos θi + sin θs sin θi cos
(
φs − φi

)
.

The average of the latter defines a direction index called the asymmetry parameter

g = 〈cos Θ〉 =
1

4π

∫
S=4π

p(Θ) cos ΘdΩ. (2.6.4)

When g is close to -1, or 1, scattering in Θ < π/2 (backward) or Θ > π/2 (forward) is strongly favored
respectively, while a zero g infers isotropic scattering.

In a little more realistic scenario than scattering by a single small object, we can treat a finite (small)
number ν of randomly oriented particles as a whole with minor effects in what is shown up to now. For
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this we have to assume the volume element enclosing the particles is sufficiently sparse so that we can
pretend that there are no interaction terms between the partial scattered electric fields from each particle
and so that the average interparticle space is larger than the wavelength of the incident light and the
mean particle size (avoid quantum interference). It is also vital that the randomness in particle position
is such that it provides negligible phase correlation of the observed scattered waves.

In this sense, we only need to solve the same problem for each particle separately (employing the
same far-field assumptions for each), ignoring momentarily the other ones. Subsequently, considering the
particles as one entity, the same way it is depicted in Fig. 2.2, and denoting with the subscript ν the quan-
tities associated with the ν-th particle, the total amplitude scattering matrix is S =

∑
ν eik1rν(n̂i−r̂)Sν .

By appealing to the aforementioned argument of the sufficient particle randomness, it can be shown that
the total cross section is a sum of the individual cross sections from each particle

Cj =
∑
ν

(Cj)ν = ν〈Cj〉, (2.6.5)

where 〈·〉 denotes the average cross section per particle and j={sca, abs, ext}. In this case, the geometrical
cross section in Eq. 2.6.2 makes now sense as the average area per particle 〈A〉.

The averaging introduced in the relation 2.6.5 is an essential feature. Indeed, atmospheric particles
differ in all possible ways (size, morphology, orientation, etc.), and therefore in practice it makes sense to
calculate averages over representative particle ensembles. Especially, randomly oriented particles with a
plane of symmetry or with equal amount of mirror-symmetric counterparts are of particular interest in
applications. A suitable, but otherwise cumbersome (regarding the previous sections’ analysis), reference
frame configuration for this purpose is to ovelap the incidence direction with z−axis and work on the
plane defined by the incident and scattered waves (xz half-plane, x ≥ 0) in which case, only the scattering
angle Θ matters. H. Van de Hulst showed in [142] that in this setting, and taking orientation averages
of particles with a plane of symmetry, the scattering matrix

F(Θ) = Z(θs = Θ, φs = 0, θi = 0; θi = 0, φi = 0) (2.6.6)

has a simple block-diagonal form with an upper-symmetric- and lower antisymmetric 2 × 2 block, i.e.
only six independent elements. The matrix element F11(Θ) is equal to the phase function 2.6.3 and
therefore it can be used to compute Csca.

In lidar applications the term ”backscatter cross section” is (improperly) reserved for the differential
cross section in the exact backward direction, Θ = π. We will keep this convention and denote the latter
quantity with Cbsca. It is obvious that Cbsca = F11(π)Csca/(4π).

The cross sections can be expressed in terms of the incident field amplitude Ei
0 and the scattered

field amplitude E (see Sec. 2.4 and Eq. 2.4.3) using the energy conservation law, but the averaged
cross sections turn out to be independent of the incident polarization and propagation direction, see
[20, 98]. Here we will focus on formulas for practical computations with the T-matrix method, which are
exceptionally efficient in the case of randomly oriented particles. Using the notation from Sec. 2.5, the
cross sections per particle for randomly oriented particles with a plane of symmetry can be calculated
by

〈Cext〉 =− 2π

k2
1

Re

∞∑
n=1

n∑
m=−n

(
T 11
mnmn + T 22

mnmn

)
, (2.6.7)

〈Csca〉 =
2π

k2
1

∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

2∑
k=1

2∑
l=1

∣∣T klmnm′n′ ∣∣2 (2.6.8)

These formulas stay intact for any choice of the reference frame since the orientation isotropy enables
this invariance. Physical knowledge of the particle (shape, size, refractive index) is sufficient for the
average cross section calculations. T-matrix theory is thoroughly studied and there is an abundance of
interesting formulas translating useful quantities (e.g. the scattering matrix) into T-matrix language,
see [98].

In the special and simplest case of homogeneous spherical scatterers, developed much earlier by L.
Lorenz and G. Mie (Lorenz-Mie theory,[97]) independently, T-matrix theory reduces to the exact same
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formulas derived by C. F. Bohren and D. R. Huffman, [20]

Cext =
2π

k2

∞∑
n=1

(2n+ 1)Re(an + bn), (2.6.9)

Csca =
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
, (2.6.10)

Cbsca =
π

k2

∣∣∣∣∣
∞∑
n=1

(2n+ 1)(−1)n(an − bn)

∣∣∣∣∣
2

, (2.6.11)

with

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
, (2.6.12)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
, (2.6.13)

where m = m1/m2 is the relative refractive index, x = 2πκ/λ is the size parameter, κ is the radius of

the sphere, ψn(t) = tjn(t), and ξn(t) = th
(1)
n (t) with jn denoting the Bessel functions of the first kind

and h
(1)
n the Hankel functions of the first kind.

In this special case of randomly oriented spherical particles, it is proved that the phase function
is simplified to an expression with the only two non-zero elements of the scattering amplitude matrix
(combine also 2.4.5, 2.6.3 and 2.6.6)

S11(Θ, 0; 0, 0)
S22(Θ, 0; 0, 0)

=
i

k1

∞∑
n=1

2n+ 1

n(n+ 1)

[anτn(Θ) + bnπn(Θ)]
[anπn(Θ) + bnτn(Θ)]

(2.6.14)

p(Θ) =
2π

Csca

[
|S11(Θ, 0; 0, 0)|2 + |S22(Θ, 0; 0, 0)|2

]
, (2.6.15)

where πn(Θ) =
√
n(n+ 1)

dn01(Θ)
sin Θ , τn(Θ) =

√
n(n+ 1) d

dΘd
n
01(Θ) and dn01 denote the Wigner d-functions,

see App. A, Eq. A.0.4.
A rather counter-intuitive asymptotic feature of spherical scatterers is that at the edge of very coarse

particles their optical cross section is twice as much the geometrical cross section [19], i.e.

lim
x→∞

Qext = 2. (2.6.16)

An attempt for a physical explanation is elaborated in [20].

In the previous sections we dilated on the raw foundation of the theory used for this work. Now we
would like to take a closer look at our application stepping deeper into the particle properties that will
constitute the input data in our algorithm. A great deal of climate variability and uncertainty originates
from aerosols, which will replace the idealized scattering object described before. Lidar systems have been
monitoring aerosols in routine over the past 30 years, measuring the optical aerosol properties through
the lidar equation, which introduces important parameters regarding the shape and size of aerosols.
Polarization efficiency in lidars offers an additional powerful feature related to particle non-sphericity.

2.7 Aerosol forcing

”Atmospheric aerosol particles” (aerosols) is an abbreviation for a system of colloidal solid or liquid
particles suspended in a gas (e.g. the air). Aerosols stand in the way of the solar radiation, almost
quarter of which does not make it to Earth’s surface. Their great variability in shape, size, chemical
composition, sources, age, and distribution spatially and temporally is underlined by the latest IPCC
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reports as being important uncertainties to invest on for a better climate understanding. Indeed, it is
known that the so-called aerosol microphysics pulls the strings of the shortwave and longwave radiation
give-and-take (owing to scattering and absorption), but they also have an indirect mechanism which alters
cloud radiative properties, see e.g. [93]. Besides weather- and climate influence, another straightforward
aspect of the aerosol effect is on air quality and thus human health, depending on aerosol size and type.

On the one hand, aerosols can have an originating source, in case they are released from Earth’s
surface mainly to the planetary boundary layer (lowest part of the atmosphere undergoing turbulence
corresponding to changes in surface forcing within an hour) and transported to the free atmosphere, e.g.
desert dust (minerals), sea salt, forest fires, combustion of fossil and biomass based fuels (human-made).
There are also aerosols reaching the upper troposphere or the stratosphere e.g. through volcanic eruption
events. On the other hand there are aerosols formed in the atmosphere from gaseous precursors, e.g. non-
sea-salt sulphate, nitrate and ammonium. Both instances of aerosols presence can be affected by natural
and anthropogenic involvement, resulting in an extreme range of physical properties and radiative effect,
for more details see [59, 64]. Additionally, aging process might involve aggregate formation (coagulation)
due to particle collisions or even result in swelling aerosols due to water vapor condensation in the event
of high relative humidity, all of which alter obviously the scattering behavior.

Mineral dust has a conspicuous position among aerosols due to its influence on the climate system,
mainly through deserts from all over the globe with a regional or a long-range scale. Australian dust
storms can be very severe and affect both east and west with occasional extreme events, see [77], the
latest being in 2009 across New South Wales and Queensland. Taklamakan and Gobi desert winds and
dust (also known as yellow sand) affects the central and east Asia and can reach even the United states,
see [61, 151]. Among dust events, Saharan desert and Sahel in North Africa are the main sources of long
range airborne dust transportation northwards to Europe and westwards to North and South America in
terms of freguency and dust load. This explains the vast documentation in scientific literature in Saharan
dust events, with perhaps the epicenter being the SAMUM I and II campaigns [4], where dust was inves-
tigated both in its source (Morocco, 2006) and through long-range transport (Cape Verde, 2011). The
measurements in Morocco [75] revealed (wide) size ranges of dust differing by an order of magnitude (nm
to µm) and identified the main non-spherical components with paricle diameters over 0.5 µm, as being
feldspars and clay minerals, quartz and carbonates. Coming discussions about non-spherical particles in
this work will largely refer to dust-like particles.

2.8 Aerosol optical properties and lidars

Aerosol forcing is directly related to the net scattering contributions by all aerosol particles. Assuming
nj single scattering objects of type j, each of which having extinction- and backscatter cross sections
(Cext)j and (Cbsca)j are called the extinction coefficient α and the backscatter coefficient β of the medium
respectively and are given by

α =
∑
j

nj(Cext)j , β =
∑
j

nj(Cbsca)j . (2.8.1)

These parameters are usually referred as the aerosol optical properties or optical parameters, as they
give vital information for aerosol profiling and the atmospheric state. Later on, these relations will be
expressed through a continuous model with the help of the Fredholm integral (see Eq. 1.1.2), resulting in
the basic working model for the present work. Fortunately, the optical parameters are nowadays directly
measurable on a routine basis by lidar systems.

As we saw in previous sections, scattering behavior acts as an identifier for a particle. This is the
very feature exploited by the working principle of lidar systems. An artificial beam of (linearly) polarized
and coherent light strikes the target aerosol particles and the backscattered radiation is collected by a
telescope and analyzed, see Fig. 2.3. Lidar equation provides a way to calculate the extinction and
backscatter coefficients, by making the link between physical characteristics of the machine itself, and
the receiving intensity I of the returned signal from a distance r from the target object

I (r) = I0f
O(r)

r2
β(r)e−2τ , τ =

∫ r

0

α(s) ds. (2.8.2)
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Figure 2.3: Illustration of the lidar principle and the overlap effect. We distinguish 3 regions during the
scattering process: the zero overlap (blind region), the partial overlap and the full overlap.

I0 is the average transmitted laser pulse intensity, f is the (optimized) system factor describing the
detection system and the optical efficiency through which the transmitted and scattered light pass. O(r)
is the overlap function, responsible for the geometric effects regarding the incident laser beam and the
field of view of the telescope (perception angle ∼ 1

r2 ). Fig. 2.3 shows an illustration of the overlap effect.
If the full overlap is achieved too far from the lidar the signal will already be too weak. The latter is a
well-known lidar defect directly affecting signal quality, which needs to be addressed and compensated
through overlap profiling on clear sky measurements, see [148]. The attenuation of the laser beam due
to the intervention of aerosols and molecules is expressed by the exponential term of Eq. 2.8.2 according
to Beer’s law [156], introducing another measure of particle extinction called the optical depth (τ). The
latter is also used in sun photometer measurements, and it’s dependency from the wavelength λ is often
empirically described by the power law τ ∼ λ−A , where A is called the Ångström exponent. Another
important intensive parameter is the aerosol extinction to backscatter ratio, called the lidar ratio. It
should be emphasized that lidar ratios and Ångström exponents (AE) are very useful characterization
tools labeling concisely the type and size of aerosol particles respectively, see [103, 149]. A small |AE|
is linked to large particles whereas a larger |AE| is linked smaller ones. For instance, a typical AE for
(Saharan) dust particles is ∼ 0.5 and for biomass burning aerosols AE can reach ∼ 2.

Generally, the parameters α and β in Eq. 2.8.2 pertain to the total scattering contribution from
molecules and aerosols. Meteorological feedback can be used for the molecular backscatter and extinc-
tion, therefore the primary concern is the derivation of the aerosol part. Elastic-backscatter lidars (EBL)
provide profiles of the extinction coefficient estimated using the assumption of a conditionally ”constant”
lidar ratio, a method developed by J. D. Klett [83] and F. G. Fernald [39]. The need for an estimation
of an otherwise strongly size- and morphology dependent lidar ratio is overcome by Raman-lidars by
additionally measuring the inelastic backscatter by nitrogen and/or oxygen molecules, see [5], and thus
retrieving α and β independently. Denoting with the subscript ”aer” and ”mol” the aerosol- and molec-
ular contributions, with ”i” and ”s” the incidence- and (shifted) backscatter-related quantities, and with
N the nitrogen / oxygen molecule number density, the inelastic lidar equation can be explicit solved with
respect to the αaer as follows

αaer(r, λi) =
d
dr ln Ns

r2λs
− αmol(r, λi)− αaer(r, λs)

1 +
(
λi
λs

)A (r)
, (2.8.3)

where the additional terms involved can be derived by meteorological (e.g. radiosoundings) or from
standard-atmosphere data. A multi-wavelength Raman-elastic lidar, e.g. the nowadays most popular
Nd:YAG-laser equipped lidar, transmits and collects at 355, 532 and 1064 nm (elastic channels) and
additionally detects Raman (inelastic) signals from nitrogen molecules at 387 nm (355 nm primary wave-
length - PM) and 607 nm (532 nm PM), and from water-vapor molecules at 660 nm (532 nm PM). This
revolutionaly method is not without its flaws. Raman scattering is relatively weak, raising the system
costs in demand for more powerful lasers and larger telescopes. Moreover, mathematically, the calcu-
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lation of the derivative in Eq. 2.8.3 can become unstable in the presence of fluctuations of the Raman
signal, so that special methods need to be used, see [121] for a treatment with regularization.

Atmospheric lidar applications have nowadays extended to monitor also the wind (Doppler lidar), and
detect atmospheric gases (Differential Absorption Lidar - DIAL). Lidar potential was greatly expanded
by employing polarization techniques which allows the distinction of the horizontally and vertically
polarized backscattered light from a transmitted linearly polarized beam. The ratio of the vertically-
β⊥ over the horizontally polarized backscatter coefficient β‖ is called linear particle (backscattering)
depolarization ratio δL and can be calculated via the scattering matrix F, see Sec. 2.6 and Eq. 2.6.6

δL =
F11(π)− F22(π)

F11(π) + F11(π)
. (2.8.4)

This parameter often plays a decisive role as an index of particle non-sphericity. For spherically modelled
particles this quantity vanishes. Linear depolarization ratio measurements have been used during the
Saharan Mineral Dust Experiment (SAMUM), [4, 42] but also to distinguish dry, liquid and the ice phase
of aerosols and clouds. Latest technological advancements on polarization lidars allow depolarization
ratio profiling at three wavelengths 355, 532 and 1054 nm, see [42].
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Chapter 3

Spheres and spheroids: models and
algorithms

Foreword

Up to now we have already seen the basic principles behind light scattering acting as an identifying
property of the material, which together with the exploitation of polarization by lidar systems can
bring us various information about the ongoing atmospheric scene. This chapter is the final theoretical
step before entering our application from a practical point of view. Here we meet the basic models
from literature regarding the particle size distribution and its relation to the optical properties, and
we introduce natural generalizations enabling the exploration of non-sphericity. Subsequently, we will
narrow down the particle non-sphericity and limit ourselves to spheroid-modelled particles, prompted
by theoretical and experimental evidence related to the phase function. The computational cost and
complexity for the purpose of the massive simulations performed later in this work leads to use of a
special program (Miescka) for the calculation of the scattering efficiencies and further to a creation of
a discretization database. We will further see the link between the mathematical and physical toolbox,
presented in the previous chapters, with all practical details about how to solve the microphysical retrieval
problem, which constitutes the core of the present work.

3.1 Modelling aerosol optical and microphysical properties

It becomes clear that the distribution of aerosols with respect to their size, i.e. the aerosol size dis-
tribution, is very important for aerosol typing. Logarithmic-normal (log-normal) distributions bear a
good -continuous- empirical fit to aerosol size distributions. Denoting the total number concentration of
particles by (Nt)j , the median radius by (rmed)j , the geometric standard deviation (mode width) by σj ,

Table 3.1: Notation and units of parameters and variables
Parameter / Variable Notation Units
number concentration Nt, nt µm−1cm−3

total volume concentration vt µm3cm−3

surface-area concentration at µm2cm−3

radius, median radius, effective radius r, rmed, reff µm
number distribution n(r) cm−3

volume size distribution v(r) µm3
µm−1cm−3

wavelength λ nm
extinction coefficient α(λ),Z (λ) m−1

backscatter coefficient β(λ),Z (λ) m−1sr−1

extinction cross section Cα(λ, r;m), Cα(λ, r, a;m) m2

backscatter cross section Cβ(λ, r;m), Cβ(λ, r, a;m) m2sr−1
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and the particle radius by r, the k-modal log-normal distribution n(r) is a probability density function,
defined by

n(r) =

k∑
j=1

(Nt)j√
2πr ln(σj)

e
−0.5

(
logσj r/rmed

)2

. (3.1.1)

The extinction- (α) and backscatter coefficients (β), both denoted with Z (λ) are traditionally re-
lated to the aerosol size distribution n(r) through the continuous collection of scattering cross sections
Cα/β (r, λ;m) from scatterers over all sizes. This can be expressed with the Fredholm integral of the first
kind

Z (λ) =

∫ rmax

rmin

Cα/β (r, λ;m)n(r)dr, (3.1.2)

where m is the refractive index (RI). The integral boundaries typically extend to [0,∞), but for practical
purposes we define the integral (Eq. 3.1.2) over a ”sensible” domain [rmin, rmax] and we consider the
rest a part of the total modelling error. The radius domain is part of the initial parameter setup when
solving for the microphysical problem, and is usually based on some very rough knowledge on particle
size. Details on how this affects the resulting size distributions can be found in [131].

The numerical performance is more stable by using the so-called volume size distribution defined by

v(r) =
4πr3

3
n(r). (3.1.3)

The log-normal distribution 3.1.1 can be rewritten to its ”volume” version using 3.1.3, i.e.

v(r) =

k∑
j=1

4
√
πr2(Nt)j

3
√

2 ln(σj)
e
−0.5

(
logσj r/rmed

)2

. (3.1.4)

Knowing the size distribution, we can calculate the following microphysical parameters.
The total volume concentration:

vt =

∫ rmax

rmin

v(r)dr, (3.1.5)

the number concentration

nt =

∫ rmax

rmin

n(r)dr =
3

4π

∫ rmax

rmin

v(r)

r3
dr, (3.1.6)

the surface-area concentration

at = 4π

∫ rmax

rmin

r2n(r)dr = 3

∫ rmax

rmin

v(r)

r
dr (3.1.7)

and the effective radius

reff = 3
vt
at
. (3.1.8)

The units for every quantity can be found in Tab. 3.1. Replacing n(r) with v(r) and the Cα/β with the
dimensionless optical efficiencies Qα/β (see Eq. 2.6.2), the spherical model Eq. 3.1.2 becomes

Z (λ) =

∫ rmax

rmin

3

4r
Qα/β (r, λ;m) v(r)dr. (3.1.9)

We will often refer to Eq. 3.1.2 and 3.1.9 as the LM-model, referring to the optical efficiencies being
calculated by the Lorenz-Mie theory, see Eq. 2.6.9-2.6.13.

This formula describes an inverse ill-posed problem that needs to be solved in order to retrieve the
size distribution, from which one can retrieve the microphysical parameters nt, vt, at and reff . A series of
results with regularized inversion of synthetic and real lidar data results has proved this model reliable
for particles approximated by spheres. Tikhonov regularization with the generalized cross validation is
used [106, 107, 108], while in [145] the same regularization method is combined with a modified version
of discrepancy principle. [86] suggest an evolved two dimensional regularization method in the sense of
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a correlation condition between successive height bins. [16] use Padé iteration to regularize the problem
and later an adaptive base point approach is added to the iteration by [113]. [14] introduces a data-
driven hybrid regularization method to simultaneously benefit from different mathematical features. The
problem of automatization of the inversion process for real-life lidar data without manual postprocessing
is discussed and methodologically addressed in [131] for pure and aged smoke with continental pollution.

3.2 The need for a non-spherical model over particle ensembles

Eq. 3.1.2 is undoubtedly the most often-used microphysical prescription at least in climate research and
even more spread across the lidar community, owing to it’s simplicity and the direct connection with
the lidar observables α and β. It’s range of applicability, the way the optical cross sections depend only
from r, λ and m, limits itself to spherically modelled particles, see Eq. 2.6.9-2.6.13. Additionally, it
is assumed that the spheres are homogeneous, so that they can be characterized by a single refractive
index. The series involved in the spherical cross sections have known convergence criteria which makes
them easy to compute and thus by far the most advantageous numerically. As discussed in Sec. 3.1, the
sphere-based model in conjunction with several regularization algorithms delivered a satisfying first order
approximation over the years. Evidently, spheres cannot be a representative shape for most atmospheric
particles, as a result of atmospheric state complexity and variability. Irregularities in particle shape and
internal structure bring generally all kinds of unpredictable scattering outcomes, but what matters in
a first step is the order of particle size relative to the incidence wavelength, which is where the size
parameter (x) comes in (Sec. 2.5). For a much smaller particle size than the incidence wavelength, in
the so-called Rayleigh regime, everything ”looks” quite spherical, and hence the LM-model is a good
approximation. However, for particle sizes comparable to- (resonance region) or much larger than the
wavelength (x � 1) the current consensus points to the insufficiency of the LM-model to reproduce
optical characteristics accurately.

Particle non-sphericity is a way too general term and in fact needs to be modelled and then investi-
gated for its sufficiency experimentally. In order to see in practice the spherical-non-spherical scattering
differences, let us introduce the spheroid-particle approximation. A spheroid is geometrically obtained
by the revolution of an ellipse about one of its principle axes. Denoting the semi-minor axis with a, the
semi-major axis with b, and their ratio with η = a/b, called the aspect ratio, we can distinguish the only
three possible shapes: the oblate spheroid with η < 1, the sphere with η = 1 and the prolate spheroid
with η > 1, see Fig. 3.1.

Figure 3.1: Spheroids: Oblate spheroid (left), sphere (middle) and prolate spheroid (right).

The scattering patterns can be investigated through instances of the phase function. In Fig. 3.2 and
3.3 we see examples of surface plots of the phase function with respect to the size parameter 0.02 ≤ s ≤ 40
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Figure 3.2: 2D-Plots of the phase function for spherical scatterers with respect to the size parameter
(x) and the scattering angle with increasing absorption (imaginary part of the refractive index) from
top to bottom. Smaller figures in the upper right corner of each plot, display the extreme cases for size
parameters 0.02 and 40.

and the scattering angle 0 ≤ Θ ≤ 180◦ for spheres and spheroids respectively. The panels in each figure
are ordered with increasing absorption level from top to bottom, i.e. imaginary part of refractive index
(IRI) Im(m) ∈ {0, 0.005, 0.05} and a fixed real part of refractive index (RRI) Re(m) = 1.5. Moreover,
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Figure 3.3: 2D-Plots of the phase function for prolate (η = 1.3) spheroidal scatterers with respect to the
size parameter (x) and the scattering angle with increasing absorption (imaginary part of the refractive
index) from top to bottom. Smaller figures in the right upper corner of each plot, display the extreme
cases for size parameters 0.02 and 40.

in the top right part of each figure there are one-dimensional subfigures containing the boundary cases
s = 0.02 and s = 40. Focusing on relatively small sizes in the vicinity of s = 0.02 we see that the scattered
light is almost equally distributed in forward- and backward directions regardless of the absorption level
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for both spheres and spheroids. Spherical particles have a strong oscillatory behavior for greater sizes
in the so-called resonance region (here s > 0.1). Looking at the top and middle panels of Fig. 3.2, we
observe a small portion of dominant sideward scattering (< 20◦) against backward scattering which is
compensated in a point, even for the absorbing case with Im(m) = 0.005 especially for large sizes, see
subfigures for s = 40. While we see only minute differences from Im(m) = 0 to Im(m) = 0.005 in the top
and middle panels of Fig. 3.2 and 3.3, stronger absorption (Im(m) = 0.05) seems to level off backward
scattering almost entirely both for spheres and spheroids, an effect mostly pronounced as we move away
from small particles.

The oscillatory pattern above and beyond the resonance region seems to be a trademark mostly of
spheres, since the panels of Fig. 3.3 show a much smoother phase function for spheroids, which appears
to match measurement cases. Moreover, comparing Fig. 3.2 and 3.3, we see that backward scattering
by spheroids is diminished relative to sideward scattering for larger particles as opposed to spheres, see
also [85, 111]. This is not an isolated feature but rather exhibited also for other refractive indices (real
parts), as it is confirmed by several one-dimensional versions of the phase function in Fig. 3.4 for x = 40,
Im(m) = 0.005 and different RRIs. In addition, an increasing real part of refractive index for larger
spheroids results in a upward right shift of the minimum located in 90◦ < Θ < 135◦ and also a gradual
enhancement of backscattering.

Attempts in literature to replicate the experimental phase function of particles are enlightening in
the discussion of spherical-versus-non-spherical shape. What is interesting and perhaps unexpected is

Figure 3.4: Plots of the phase function for spherical- (upper panel) and spheroidal scatterers (lower
panel) with size parameter x = 40 with respect to the scattering angle for increasing real part of the
refractive index.
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that phase functions of natural particle ensembles appear to be smooth. When simulating real-life
phase functions, it rarely makes sense to consider single size- and/or shape particle ensemble, but rather
a polydisperse one expressed by a distribution, over which the phase functions (or other properties)
are calculated. This is again a form of averaging which suppresses or even wipes out the resonances
for sufficiently large ensembles and can even produce a smoothed spherical phase function. Even so,
spheroids have a much better (in some cases perfect) agreement with the observed phase functions. Fig.
3.5 illustrates this with a comparison of experimental phase functions measured by [67] and synthetic
spherical and spheroidal phase functions. The dashed curve corresponds to a measured phase function
for natural wavelength-sized soil particles, while the normal- and dotted line corresponds to a calculated
phase function based on shape distribution of polydisperse, randomly oriented spheroids and surface-
equivalent spheres respectively. Other examples of such a comparison of sphere- and spheroid phase
function fit with a characteristically featureless experimental phase functions can be found in [109].

The selection of spheroids against spheres is generally supported in literature relying on the much
better performance at least for some scattering properties of soil and dust-like particles and by no means
on an accurate particle resemblance. Moreover, other reported large differences [99] of this simple non-
spherical approximation as compared to spheres, for instance in lidar ratio, hint to the insufficiency of
the spherical approximation, therefore the usual underlying assumption of a spherical geometry may lead
to wrong results. We note, however, that there are reported similarities in the behavior of spheres and
spheroids in other properties e.g. the asymmetry parameter and the single scattering albedo.

Nowadays’ consensus on non-spherical aerosol particles comes largely from the spheroid-particle ap-
proximation. This is a result of the relatively infant research stage regarding more complicated particle
approximations. Despite the lesser extent of experiments involving the latter, the discrepancies in optical
properties between sphericity and non-sphericity are still confirmed in general. An example of higher
particle complexity are the so-called Chebychef particles associated with small-scale surface roughness,
see e.g. [71, 102, 126]. However, the strong refractive index dependence of these shapes found in [71]
and the poor association of the tested particle morphologies (surface roughness) to simple patterns re-
garding scattering intensity and polarization add up to additional limitations with regard to involving
more complex shapes.

The spherical phase functions were calculated using Eq. 2.6.14-2.6.15 and a Matlab implementation
of Bohren and Huffman code [20], while for the spheroidal phase functions the software Miescka [125]
was used. The latter software was a vital companion for this work, providing the means (kernel function
database) to realize the coming microphysical retrievals with the spheroid-particle approximation. More

Figure 3.5: Comparison of experimental and synthetic spherical and spheroidal phase function. The
dashed curve corresponds to a measured phase function for natural wavelength-sized soil particles, while
the normal- and dotted line corresponds to a calculated phase function based on shape distribution of
polydisperse, randomly oriented spheroids and surface-equivalent spheres respectively. Plot credit: [67].
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details on assets and the limitations of Mieschka pertaining to this work will be given later on (Sec.
3.3). The size parameter resolution used for the plots is 0.2. We note that the use of the boundary
size parameter x = 40 in Fig. 3.2, 3.3 and 3.4 is quite conservative for large particles, e.g. for the lidar
wavelength λ =355 nm and a radius r =2 µm (coarse particle size) the size parameter is s = 35.4.

3.3 Generalization of the spherical model

The previous analysis indicated that the individual shape contributions are rather not sensed by the
experimental result. In particular, we saw that averages over shape and /or size distributions can be
used to fit phase functions of naturally formed particles (soil and dust). This brings the idea of a
generalization of the LM-model 3.1.2 evolving the particle distribution n(r) to a shape-size distribution
n(r, η), where η may be a set of parameters a1, a2, . . . , aN−1 describing the particle physically (geometry
& morphology). These parameters will also identify the non-spherical scattering cross sections. This
concept is an extension of the generalization first proposed by [18, 112] for N = 2, which we will also
follow here. More specifically, we will consider a spheroid-particle approximation, which needs only one
additional parameter, i.e. the aspect ratio η, to be fully defined. It is formalized as follows:

Z (λ) =

∫ ηmax

ηmin

∫ rmax

rmin

Cα/β (r, λ, η;m)n(r, η)drdη, (3.3.1)

where [ηmin, ηmax] is again a sensible and sufficiently wide aspect ratio range determined experimentally
as part of the initial parameters (as discussed in [131]) of a microphysical retrieval. The radius here
makes sense as the one of a sphere with equal volume to a spheroid. The latter is found by V = 4πa2b/3,

so that r =
3
√
a2b, where a and b are the semi-minor and semi-major axis respectively.

Regarding the particle distribution, we see that the case of spheroids defines a two-dimensional (2D)
generalization, but the optical parameters (Z ) still remain only wavelength-dependent, which is why
we shall consider this a quasi-2D model. Furthermore, the reduction to a quasi-ND case with N − 1
shape-related parameters (SRP) is easily being formed, extending the averaging and thus the integration
of Eq. 3.1.2 over the N − 1 parameters (in addition to the size averaging).

The microphysical parameters can be redefined in 2D analogously. Similarly to the 1D-case we set
n(r, η) = 3

4πr3 v(r, η), where v(r, η) is the volume shape-size distribution. Through the latter, we define
the number concentration

nt =

∫ ηmax

ηmin

∫ rmax

rmin

n(r, η)drdη, (3.3.2)

the total volume concentration

vt =

∫ ηmax

ηmin

∫ rmax

rmin

v(r, η)drdη, (3.3.3)

and the surface-area concentration

at =

∫ ηmax

ηmin

∫ rmax

rmin

3

πr3
G(r, η)v(r, η)drdη. (3.3.4)

The effective radius is still calculated by the same formula in Eq. 3.1.8, using Eq. 3.3.3 and 3.3.4 instead.
The function G(r, η) denotes here the spheroidal geometrical cross section of the particle, which can be
explicitly computed as follows

G(r, η) =


2π
[
a2 + b2

e tanh−1(e)
]
, where e =

√
1− b2/a2, if η < 1,

4πr2, if η = 1,

2π
[
a2 + ab

e sinh−1(e)
]
, where e =

√
1− a2/b2 if η > 1.

(3.3.5)

Furthermore some new parameters are introduced here in order to study the shape of the size distribution
in greater detail. We define the -volume-weighted- effective aspect ratio

µ(v)
η =

∫ ηmax

ηmin
η
∫ rmax

rmin
v(r, η)drdη

vt
, (3.3.6)
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and the aspect ratio width

σ(v)
η =

∫ ηmax

ηmin
(η − µ(v)

η )2
∫ rmax

rmin
v(r, η)drdη

vt
(3.3.7)

The parameters µ
(v)
η and σ

(v)
η give us an estimation and a direct look of a central tendency of the aspect

ratio and the spread of the values from this type of mean.
The following parameter specializes in identifying individual spherical-non-spherical contributions

(%) in the volume concentration. We define the non-spherical volume concentration fraction by

γ = 1− 1

vt

∫ 1+χ

1−χ

∫ rmax

rmin

v(r, η)drdη, (3.3.8)

where χ is a positive small, yet not negligible number called the shape-transition parameter. Similarly
we call 1− γ the spherical volume concentration fraction.

Several non-spherical-particle approximations are present in publications regarding optical parameter
investigations, while in microphysical-retrieval research, non-sphericity is dominated by spheroids. The
commonly cited microphysical-parameter database hosted by AErosol RObotic NETwork (AERONET)
is such an example (see Introduction). Aerosols are assumed by AERONET to have both a spherical and
a non-spherical component, where the former is modeled by an ensemble of polydisperse, homogeneous
spheres, and the latter considers a mixture of polydisperse, randomly-oriented homogeneous spheroids.
A customary assumption in non-spherical microphysical retrieval codes, adopted also by AERONET, is
that shape and size have negligible effect on each other, so that particle shape is independently described
by a separate aspect ratio distribution. It is worth noticing that by contrast no such restriction is being
followed in this work. In fact, it appears that there is a connection of aspect ratio distributions with
particle size, as it was found during the SAMUM campaign, see [75, 84].

3.4 Technical aspects of the generalized model: Getting ready
for the inversion

More often than not particle orientation is unknown and at the same time, as demonstrated in Ch. 2,
we can benefit in terms of formulas’ relative simplicity by considering averages over particle orientation.
The presented theory for randomly oriented non-spherical particles (here spheroids) is our basis for the
scattering cross sections calculations in Eq. 3.3.1. Replacing the latter with dimensionless efficiencies
Qα/β and the number- with volume distribution we can reformulate the generalized model Eq. 3.3.1 to
the one we used in practice for our application

Z (λ) =

∫ ηmax

ηmin

∫ rmax

rmin

3A

16πr3
Qα/β (r, λ, η;m) v(r, η)drdη, (3.4.1)

where A is the particle surface area. Here we used the fact that in a convex particle ensemble the average
area per particle is equal to A/4, see [142]. The formula 3.4.1 was also derived by [18, 112]. A noteworthy
technicality is that when actually solving this equation, the backscatter coefficients, measured in m−1sr−1,
have to be scaled by a factor of 4π (the solid angle of an entire sphere) in order to be compatible (have
the same units) with the extinction extinction (m−1), see Table 3.1.

As seen in Sec. 3.3 the primary objective of our microphysical retrieval is the shape-size distribution.
After its determination we get to know the rest of the parameters, and therefore we will focus on the
retrieval efficiency regarding this decisive function. The first stage in trying to solve Eq. 3.4.1 is, of
course, a discretization, which is done here with projection by quasi-2D collocation as proposed in Sec.
1.4.2. Formally discretizing the model equation is one thing, but there are two other important practical
implications here: (i) the determination of the refractive index (m) and (ii) the calculations of the kernel
functions (efficiencies).

The refractive index is actually unknown too, and looking even at the sphere-related formulas, one
realizes that it introduces a highly non-linear quest. In order to bypass this difficulty, we will redefine the
problem upon a predetermined RI grid (RIG) of viable choices and then solve it for all the combinations
of real parts and imaginary parts of RI. This is especially important when dealing with measurement
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data, where a non-automatized delicate job is required, as shown in [131], employing sensitivity analyses
and imposing physical constraints (if known), which will confine the solution space in an irredeemable
way. This is restrictive in a way and might seemingly underestimate the involvement of the RI, but at the
same time it empowers the RI as a physical property giving us the chance to clasify the solutions through
a (user-specified) post-inversion minimization process. This is a central concept used in our algorithms
which are yet to be introduced in Sec. 3.6. The clusters formed by the most-probable solution candidates,
see [131] will also become a measure of the efficiency of the algorithm in use. Obviously, a finer resolution
of a sensibly chosen RIG, has a bigger chance of revealing patterns and helping us discard numerical
artifacts or physically unacceptable (while mathematically probable) solutions. Unfortunately a grid
refinement in the case of spheroids is out of our league in the present work, since a fixed grid is part
of the limitations of our approach. Furthermore, the common assumption of a wavelength-independent
refractive index is followed here, see e.g. [16, 86, 114]. While there are some relevant investigations
in literature suggesting the opposite, especially for the imaginary part of the refractive index being a
function of wavelength in dust-like particles, e.g. one of the earliest being [120] and the latest [112, 144],
we can accept this oversimplification by considering the RI output as a spectral average. Moreover, it
appears that the wavelength-dependence has greater effects in very large particles over > 15 µm, which
is by far larger than our largest-particle considerations within this work. More advanced alternatives,
which still avoid spectral dependence, would require further experimental knowledge, e.g. [143] use the
ratio Im [RI(355 nm)] / Im [RI(532 nm)] from in situ measurements, which enables its own limitations.

The most time-consuming part of solving the model equation is the discretization due to the un-
precedented computational expense of the kernel-function calculations. The upgrade from spherical to
spheroidal shape raises stability- and convergence uncertainties of these quantities to an unpractical
point for an additional unstable process (microphysical inversion) to take place. In addition, since there
are no global settings for the truncation parameters of the series in the T-matrix formulas, a high level
of technical experience is required in order to expedite the process within reason. Instead, a precalcu-
lated database will be used, created by the software tool Mieschka, see [125]. Counting over 12 years of
existence and development, Miescka software is able to perform scattering-related T-matrix calculations
for spherical particles and rotationally symmetric non-spherical particles with a convergence strategy
based on [9, 154]. Additionally, it provides an extensive database of scattering quantities for spheroidal
geometries, currently also available through an interactive platform of the German Aerospace Center
(DLR). Mieschka’s look-up tables include scattering efficiencies for a 6× 7 (Re(m)× Im(m)) refractive
index grid (a total of 42 RI values), 7 different aspect ratios and a size parameter range [0.02, 40] with a
resolution of 0.2. While the maximum size parameter is reasonably large for other applications, its po-
tential cannot be fully exploited here in terms of the radius extent (all working formulas are with respect
to r), since the lidar wavelength at 355 nm restricts the maximum radius (rmax) to 2.26 µm. We used in
our calculations rmax = 1.2 and 2.2 µm, see Table. 3.2 for a parameter synopsis. The resolution gap in
the aspect ratio needed for the integrations is handled by interpolation to the nearest neighbor; other
interpolation techniques, e.g. cubic interpolation, show only tenuous differences in the discretization
outputs.

A single inversion (one dataset) of Eq. 3.4.1 requires solving for every refractive index within a
predefined grid that suits the problem. Every refractive index is injected in the scattering efficiency
function and subsequently the model equation is discretized. Although the calculation of the efficiencies
for a specific refractive index, size parameter and aspect ratio is already handled by the look-up tables
of Mieschka software, we are still left with the interpolation of these functions and double integration
of the discretization procedure, see Sec. 1.4.2. Even for the relatively coarse grid, shown in Table 3.2,
it not only very time consuming, but also extremely wasteful to recalculate the very same matrices
for another dataset. For reference, it takes about 32 minutes for a normal workstation PC to fulfil a
discretization with a 6× 7 grid, an 8-point dataset, 9 spline points for the radius, 7 spline points for the
aspect ratio, and a spline degree equal to 3 (for both). For this reason another database was created, this
time including the discretization matrices with number of spline points from 3 up to 20 combined with
spline degree from 2 up to 6. The spline points for the aspect ratio are fixed to 7, the actual number of
different aspect ratio values (Table 3.2). This large collection is overqualified for the needs of the present
work, covering lots of different discretization dimensions. The integrations involved a two-dimensional
Gaussian quadrature integration scheme with a relative tolerance 10−3.

The potential of the LM-model is greatly expanded with the new model (Eq. 3.3.1, 3.4.1) due to the
embedded non-sphericity. Not only the shape-size distribution carries wealthier information but we can
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Table 3.2: Parameters used from the database of Mieschka software [125]
Re(m) 1.33 1.4 1.5 1.6 1.7 1.8
Im(m) 0 0.001 0.005 0.01 0.03 0.05 0.1

aspect ratio 0.67 0.77 0.87 1 1.15 1.3 1.5

radius (µm) 0.01 1.2 2.2
size parameter 0.2 21.2 38.9

scattering
quantities

extinction
efficiency

backscatter
efficiency

Q
‖
β

backscatter
efficiency
Q⊥β

single
scattering
albedo

now also employ depolarization measurements (see Sec. 2.8) including more data points (Z (λ)). We
extend the traditional lidar setup ”3β + 2α” which consists of 3 backscatter coefficients at 355, 532 and
1054 nm and 2 extinction coefficients at 355 and 532 nm, to ”3β + 2α + d”, where ”d” shall stand for
vertically polarized backscatter coefficients (β⊥) at 532 nm (3β+2α+1d), or 355 and 532 nm (3β+2α+2d),
or 355, 532 and 1064 nm (3β + 2α + 3d). Three depolarization channels are an asset of only the most
advanced lidar machines and will be the default setup in our theoretical analysis, although we should
note that most of today’s depolarization lidars provide 3β + 2α + 1d optical datasets. The backscatter
coefficient (β) in the aforementioned 6-, 7- or 8-point datasets pertains now to the horizontally polarized
one (β‖), which in the case of spheres coincides with the total backscatter coefficient. For brevity we will
still use just ”β” when there is no risk of confusion.

The calculation of the degree of ill-posedness is not a practically viable choice for the non-spherical
case, the way it is done for the spherical case, e.g. in [114, 131]. The Galerkin discretization required by
the theory combined with our generalization of the Fredholm equation would require quadruple integral
calculations, which is not only time-prohibitive but finally too involved and dubious. On the other hand,
it is instructive to analyze the ”ill-posedness” of the equations derived by the collocation, which does not
directly link to the singular system (see Th. 1.3) of the integral operator but reflects the condition of the
linear system which is practically solved. We can still use the discrete form of the Picard condition and
also calculate the decay rate of the singular values of the linear system (see Def. 1.1.3) using a non-linear
fit. This alternative can sometimes be a more advanced and informative technique than using a static
condition number of the matrices, since it enables the use of the noisy dataset and thus allows to involve
more physical factors and further to understand better the noise effect. This is advantageous when we
study specific retrieval instances and seek an objective way to compare the effect of ill-posedness in them.
It should be noted that the ill-posedness at this stage is expected to be milder since the initial equation
will have already undergone some sort of regularization from the discretization.

3.5 Spheroidal scattering efficiencies

It is interesting to see how the associated efficiencies Q
‖
β , Q⊥β , Qα, and the backscatter depolarization

fraction Q⊥β /Q, where Q = Q
‖
β +Q⊥β , respond to the variation of the refractive index and shape. In Fig.

3.6 we restrict to prolate particles with an aspect ratio η = 1.3 and make multiple plots of scattering
efficiencies raising the real- and imaginary part of the RI separately (left and right panels respectively);
examples with oblate particles lead to similar results. One can easily infer from all plots that a lower RRI
or a larger IRI brings a smoother backscatter- (left panels) or extinction efficiency (right panels). Thus,
the refractive index effect is in agreement with what experience with spheres tells us to expect. The
smoothing effect, which comes also with a reduction in the efficiency’s magnitude is more pronounced
in the backscatter- than the extinction efficiencies and is handled differently by the RRI and IRI. The
upper pair of plots in Fig. 3.6 shows that an increasing absorption level results in a decrease of local
maxima on site, with ”silent” changes of the general shape of the graphs. This might eventually lead to
a complete suppression of the major oscillations, especially in the case of the backscatter efficiency. On
the other hand, a decreasing RRI resembles a wave-like pattern, shifting and spreading simultaneously
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Figure 3.6: Plots of scattering efficiencies for a fixed aspect ratio (1.3) and a variable refractive index.
Left panel: backscatter efficiency horizontally polarized (‖) with fixed Re(m) = 1.5 (top) and fixed
Im(m) = 0.005 (bottom). Right panel: extinction efficiency with fixed Re(m) = 1.5 (top) and fixed
Im(m) = 0.005 (bottom).

local maxima (and reducing their peaks), altering distinctly the function shape. Two plots in Fig. 3.7
with the same setting as the lower pair of plots in Fig. 3.6 demonstrate that this is a common behavior
also for spheres. Moreover, by comparing Fig. 3.6 and 3.7, we can confirm again, as in the case of phase
functions (Sec. 3.2), that spherical scattering efficiencies are in general more oscillatory. In addition,
the highest-resonance areas are observed mostly for medium-large shapes (size parameter 0 < x < 20)
and much less for larger shapes. The case of the spherical backscatter efficiency with m = 1.8 + 0.005i
in Fig. 3.7 seems to be an exception, but the function actually starts going down for x > 30 on average
and oscillates close to zero for x > 150 (not shown here).

It is quite clear from the previous analysis that shape is itself a smoothing factor too. In order to
watch closely the shape involvement we made two-dimensional plots of the scattering efficiencies with
respect to size parameter and the aspect ratio, see Fig. 3.8. The fixed refractive index 1.5 + 0.01i was
chosen as a kind of ”central” value from the available refractive index grid in Mieschka’s database, see

Table 3.2. The backscatter efficiency (Q
‖
β) suffers greater oscillations in the neighbourhood of η = 1,

but these are conspicuously reduced as we move to pure spheroidal geometries (oblate or prolate), see
top left plot of Fig. 3.8. On the other hand, the extinction efficiency (bottom right plot) while generally
smooth, it is neutral regarding the aspect ratio, showing a potential inability to give information about

shape. Especially for large size parameters Qα becomes entirely featureless, an effect also visible in Q
‖
β

in lesser degree. Interestingly, the vertically polarized backscatter efficiency, see top right plot in Fig.
3.8, shows more complicated shape-dependence. The capacity of prolate-spheroid depolarization (PSD)
seems larger and is more localized for medium-large sizes than oblate-spheroid depolarization (OSD), the
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Figure 3.7: Plots of scattering efficiencies for spheres with a fixed Re(m) = 1.5 and a variable IRI. Left:
backscatter efficiency. Right: extinction efficiency.

action field of which appears more spread out with respect to size. Again, a higher or extreme absorption
(not shown here) clears plenty of the resonances and has greater effects on OSD, leaving back only minute
traces (of OSD). This should not leave the impression of a generally insignificant OSD. Indeed, ”mild”
cases with small absorption (IRI) and large RRI, e.g. m = 1.8+0.001i, show a very distinct OSD of equal
or slightly larger strength than PSD but located in large sizes (not shown here), but these cases are more
rare in our physical scenery. Perhaps it is easier and more representative to watch OSD-PSD differences
from the relative perspective of the backscatter depolarization fraction Q⊥β /Q, see Fig. 3.8, bottom left

plot. The latter follows the general behavior of Q⊥β and we can see that slightly less than 40% of the total
backscatter efficiency is (vertically) depolarized by prolate spheroids for size parameters x < 10, which
then continue to be dominant for x < 20 but with smaller aspect ratios and for larger sizes both oblate
and prolate spheroids contribute about 20-30%. In addition, one can actually see the steep discontinuity
at η = 1 (characteristic r- or v-shaped surface in Fig. 3.8 bottom left plot), demonstrating by contrast
the wealth of information one gets by taking into account (non-spherical) particle depolarization.

The smoother the backscatter- and extinction efficiencies the more problematic the retrieval might
be, especially for very noisy data, since errors will be magnified during the inversion process, see Ch. 1,
Remark 2. Therefore, cases where there is hint of high absorption, or low RRI should be handled with
extra caution by non-purely data-driven regularization.

3.6 Retrieval algorithms

After discretizing the model Eq. 3.4.1 we solve the resulting linear system with regularization, which is
the first big step to counteract the ill-posedness of this inverse problem. Having usually no further infor-
mation about the data error, makes it difficult to choose an optimal regularization parameter which will
guarantee physical adequacy. This weakness can be dealt by imposing several mathematical constraints
and producing extended solution spaces. Ordering then the solutions with respect to refractive index
(as a physical constraint) based on forward-error calculations, gives the chance to watch closely their
variability and the clusters they potentially form. Therefore in the case of simulations, rerunning the
model in the forward direction, we can use the vicinity to the initial dataset as a guide (through mini-
mization) to decide for the quality of a solution. The latter will be an average from a candidate solution
cluster which passes the error-criteria. This way we are able to test a particular regularization technique
with respect to its accuracy and the ability to form ”good” solution clusters. By experimenting further
with several random distributions of a specific error level imposed in the dataset, and subsequently for
different error levels, we can test the stability and become accordingly confident about the method used.

The latter approach is particularly useful for another important reason too. Prior to the regulariza-
tion, the problem has to be projected in a space of finite dimension, to be able to be solved in the first
place. Finding a suitable dimension is the key as shown in [131] and it is often problematic to pick one
dimension as a global setting to handle datasets which correspond to very different atmospheric scenar-
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Figure 3.8: 2D-Plots of scattering efficiencies with respect to the size parameter and the aspect ratio
for a fixed refractive index 1.5+0.01i. Upper panel, left: backscatter efficiency horizontally polarized
(‖). Upper panel, right: backscatter efficiency vertically polarized (⊥). Lower panel, left: backscatter
efficiency fraction (Q⊥β /Q). Lower panel, right: extinction efficiency.

ios. Therefore, the mathematical constraint we will use in this work are the spline features (number of
spline points and spline degree) which are associated with the dimension of the produced linear system.
Previous work done with real-life data in [14, 114, 115, 131] in parallel with several early simulations for
this work, showed the benefit of such hybrid algorithms, the concept of which is the leading approach of
the present work as well.

We often encounter a situation where the actual solution coefficients are zero (or nearly zero), but
might, nevertheless, turn to negative values due the noise presence (e.g. measurement errors). This is
apparently an undesired eventuality from physical point of view, which we prevent by setting all strictly
negative coefficients to zero. This decision is a result of early numerical experiments for this work

46



3.6. Retrieval algorithms (Spheres and spheroids: models and algorithms)

leading to a superior algorithm performance. Especially for Padé iteration, we apply the non-negativity
constraint to the solution in each iteration.

We summarize the two basic algorithms which we will use for throughout this work, depending
on whether we know or not the refractive index as follows. The reader is reminded that the primary
unknowns of the resulting linear systems are the spline coefficients of the shape-size distribution (and
not the function itself) with respect to the specified projection space.

Solution algorithm 1 (SA1) with a fixed refractive index:

1. Specify the range of the number of spline points and the range of spline degrees.

2. Discretize for every number of spline points, every spline degree and the fixed refractive index.
(Use of database of precalculated discretization matrices (T))

3. Choose a regularization method and a parameter choice rule to solve the linear systems for a given
(error-) dataset (g) applying the non-negativity constraint.

4. For all sets of solution coefficients v, make the forward calculation g̃ = Tv and estimate the residual
error ‖g̃ − g‖.

5. Calculate the solutions (shape-size distributions) with respect to the corresponding projection
spaces.

6. Calculate the mean solution out of a few least-residual solutions.

Solution algorithm 2 (SA2) with unknown refractive index:

1. Specify the refractive index grid.

2. Specify the range of the number of spline points (s) and the range of spline degrees (d).

3. Discretize for every number of spline points, every spline degree and every refractive index. (Use
of database of precalculated discretization matrices (T))

4. Choose a regularization method and a parameter choice rule, fix a projected dimension n = s+d−1
and solve the linear systems for every refractive index and a given (error-) dataset (g) applying the
non-negativity constraint.

5. For all sets of solution coefficients v, make a forward calculation g̃ = Tv and estimate the residual
error ‖g̃ − g‖.

6. Pick the refractive index with the least residual.

7. Repeat 4 (with the same method) and 5 until all the combinations s× d are exhausted.

8. Calculate the solutions (shape-size distributions) with respect to the corresponding projection
spaces.

9. Calculate the mean solution out of a few least-residual solutions.

The most complete of the two algorithms is obviously SA2, which also predicts the refractive index in
addition to the shape-size distribution. In the trivial case where the grid in SA2 is inhabited by only one
refractive index, the minimization with respect to the refractive index is redundant and SA2 and SA1
coincide. It is essential to realize that the last step (9) in SA2 considers solutions which are (possibly)
different not only with respect to the spline-point number and degree (as in SA1, 6) but also with respect
to the refractive index.

The regularization methods and the parameter choice rules that both algorithms require to use, are
chosen among the following ones.

(i) Truncated singular value decomposition with the discrepancy principle (TSVD-DP),

(ii) Tikhonov regularization with the L-curve method (Tikh-LC),

(iii) Padé iteration with the discrepancy principle (Pade-DP),
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(iv) Tikhonov regularization with the generalized cross validation method (Tikh-GCV),

(v) Tikhonov regularization with the discrepancy principle (Tikh-DP), and

(vi) Padé iteration with the L-curve (Pade-LC).

The methods in i, ii, iv and v are well studied regularization methods and parameter choice rules which
have been widely used with the Lorenz-Mie model, e.g. [14, 107] and it is interesting to see their efficiency
for the new non-spherical model as well. Similarly we investigate the lesser known Padé iteration as a
regularization method, first used in the lidar-data inversion by [16], here combined with the discrepancy
principle (v), and for the first time with L-curve method (vi). The parameter choice rules are also
common in bibliography and while they operate very differently, the primary reason of their use here is
the presence (DP) or lack of a-priori error knowledge (LC, GCV).

TSVD-DP (i) is implemented using the theory directly from 1.2.1 and 1.3.1. We start by including
all the terms in the SVD-description of the solution (see also Eq. 1.2.8) and remove them one by one till
the discrepancy principle is fulfilled or we arrive at a single term. Apparently, the assumed discrepancy
(perhaps multiplied by a safety factor) cannot be smaller than the residual error with all the SVD-terms
included. In other words, we cannot demand a better approximation than the best we have.

The Padé approximants (see Eq. 1.2.24) for Padé iteration (iii, vi), were calculated using a routine
implemented by [80] which was integrated in the code. Pade-DP is implemented simply by fixing a
maximum number of iterations (MNI) and checking if the assumed discrepancy is interposed between
the corresponding residual terms of two successive iterations, see also 1.3.1. The iteration is stopped either
by the satisfaction of the DP or by reaching the MNI. For Pade-LC (vi) we use a discrete implementation
of L-curve with respect to the number of iterations the following way.

• Fix a maximum number of iterations (m) and run Padé iteration for each number 1, . . . ,m. (m
independent times in total)

• Store the residual error ‖g̃ − g‖2 and the regularity term ‖v‖2 for each number of iterations.

• Build the L-curve with cubic spline interpolation from the points (‖g̃ − g‖2, ‖v‖2).

• Locate the point of maximum curvature of the L-curve m?.

• Take as the solution the output of Padé iteration with m? iterations.

For Tikh-LC (ii), Tikh-GCV (iv) and Tikh-DP (v) we used modified versions of routines used in the
software package Regularization Tools by P. C. Hansen [57].

3.7 The method Padé-L-curve

Before proceeding to the simulations of the next chapter involving all the methods discussed, we will
demonstrate that Pade-LC does indeed produce regularized solutions practically out of the context of the
algorithms SA1 and SA2. For this purpose we conducted the following preliminary synthetic retrievals
for a variety of test problems and finally for the microphysical retrieval problem in the spherical setup
3β+ 2α. For all inversions we use the (2,1)-Padé iteration (see 1.2.24 for the notation) with a maximum
number of 100 iterations and the relaxation parameter set to 100. These values resulted from experience
with earlier simulations and they are also in accordance with findings in [112, 113]. The discretization
dimension is fixed to 11, considering 9 spline points and 3rd-degree splines. The initial- and retrieved size
distributions were derived using a 200-point resolution. The spherical kernel functions were calculated
through a Matlab implementation of Bohren and Huffman code [20].

The first examples involve the test-ill-posed problems ”shaw”, ”phillips”, ”gravity” and ”deriv2” from
Regularization Tools in [57]. Especially for the very ill-posed problem of gravity surveying (”gravity”),
two different exact solutions (”2” and ”3” from [57]) are used which we will denote ”gravity2” and
”gravity3”, see 3rd and 4th plot on Fig. 3.9 left. For each of these problems we consider 15 dataset-
instances with 10% input data error, which are subsequently inverted. The solutions are finally averaged
to get a single one (mean), for which we calculate the standard deviation to use it as an errorbar. The
left column of subplots in Fig. 3.9 shows the results of these inversions and the right column contains
individual (not mean) L-curve plots corresponding to a random but representative dataset from the test
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problem on its left. Additionally a circle marks the corner obtained by the L-curve algorithm as well
as the number of iterations as the regularization parameter corresponding to it, which is also given for
different parts of the L-curve. Each subplot in the left column shows also the exact solution of the
corresponding test problem. The discretization dimension used for all the test problems was 60. Note
that the non-negativity constraint was not applied for these examples since the problems pertain to
different physical quantities which are not analyzed here.

A general observation from Fig. 3.9 is that Pade-LC manages to reconstruct the exact solutions with
very good precision almost in every case, despite the relatively high error level. The most problematic
cases are gravity3 (4th plot, left column) where Pade-LC follows the general trend of the exact solution
but less accurately, and deriv2 (5th plot, left column), where we see a larger variation of the solutions
compared to the other test problems. Retrievals with 1% and 5% were performed in the same manner
as well (not shown here) revealing the same efficiency and even smaller (in some cases indistinguishable)
errorbars. The L-curve corners are correctly identified in a general sense and the iteration number does
not exceed 5, which is common for high error levels, as prior experience showed. In case of 5% errors
the algorithm reaches up to 15 iterations and for 1% errors we usually get more than 40. Obviously,
the lack of knowledge of the true error level is an important obstacle for a retrieval with real-life (non-
synthetic) data, but it is hypothetically avertable with a data-driven method like Pade-LC. Therefore
the ill-posedness is a more relevant issue, as we will see next in the problem of microphysics. The
whole numerical experiment was also repeated using Tikh-LC, but the outcome was almost identical to
Pade-LC, resulting in equivalence between them.

Now let us investigate briefly the efficiency of Pade-LC in the microphysical retrieval problem, but
for spherical particles, a case that is relatively easier than the non-spherical one, but still much harder
compared to the test problems presented before. The focus of the simulations here is the reconstruction of
the size distribution. We experiment with different atmospheric scenarios artificially produced with the
log-normal-distribution parameters and refractive indices shown in Table 3.3. Through these parameters
we create datasets with input white noise 1%, 5% and 10% and repeat the experiment 15 times with
different random distribution for each error level. In addition to Pade-LC, we solve also with Pade-DP
for comparison and present the results for the cases 1-5 in Fig. 3.10 and B.1. The title of each plot shows
also the mean reconstruction error and the median of the iteration numbers found in the (15) individual
retrievals.

First let us focus on the cases No 1-3 (Fig. 3.10) which involve monomodal log-normal distributions.
The uppermost set of plots (case No 1) pertains to particles of small median radius (0.1), which are
handled better by Pade-LC for small input error. This is achieved by choosing a much less conservative
iteration (9) number than Pade-DP (100) which is responsible for the large second-mode artifact in
the rightmost part of the plot Pade-DP, 1%. Pade-LC has also better response for larger errors (5%)
while even higher error levels result in large discrepancies from the exact solution for both methods.
The performance of Pade-LC is decent, but not perfect despite the relatively moderate absorption level
(1.4 + 0.005i), revealing a potential weakness for very small particles. For case No 2 with larger and
more absorbing particles (1.5 + 0.01i) we get a kind of the same pattern but both methods operate a lot
better managing to lower the reconstruction errors, especially for higher data errors. Pade-LC continues
to have milder artifacts than Pade-DP, obviously due to a better control of the iteration number. The
last monomodal-distribution case (3) pertaining to very absorbing particles (1.7 + 0.05i) is the most
successful for these methods. Indeed both of them deliver a equivalently precise reconstruction, with
Pade-DP being only marginally better for the case of 10% data-error. Moreover, compared to the cases
1 and 3, we see here the lowest reconstruction errors with respect to any error level. However, we should
note that smaller scale experiments (not included here) showed that for the particular size distribution
but higher absorption and/or smaller real part of the refractive index (i.e. theoretically more ill-posed
cases), Pade-DP appears superior mainly for low data errors.

The next part of numerical experiments involves the much harder task of reconstructing bimodal size
distributions. The plots are shown in App. B, Fig. B.1. Case No 4 involves a large coarse mode and a
more silent fine mode, and the results are really remarkable even in the case for 10% errors. The general
pattern of the exact bimodal distribution is achieved by both methods, while the coarse mode of the
Pade-DP solutions for larger errors is under higher oscillatory behavior. On the contrary, the last set
of plots in Fig. B.1 related to case No 5 depict a much bigger fine mode relative to the coarse mode.
The methods are struggling more here to retrieve especially the coarse mode, with Pade-LC prevailing
overall also in this example. Despite the evident noise for 5 or 10% data error, Pade-LC’s solutions are
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Figure 3.9: The test problems ”shaw”, ”phillips”, ”gravity” and ”deriv2” (top down) from [57] solved 15
times for 10% data error with Pade-LC. Each subplot on the left shows the exact solution (dash-dot line)
and the mean solution (red line) with respect to the discretization index (x-axis), and the errobars (blue)
obtained by the standard deviation of the solutions. The right column of subplots contains L-curve plots
in log-log scale in which we have marked with a circle the located corner as well as the regularization
parameter (number of iterations) corresponding to it. The latter plots are random but representative
individual instances corresponding to the test problem on their left.

still decent getting right the most part of the initial distribution.
Summarizing the results, we could conclude that Pade-LC provides in practice regularized solutions

to a variety of problems. Regarding the microphysical retrieval problem, it further works generally better
than Pade-DP in size distribution reconstructions and since both methods share the same regularization
standpoint (Padé iteration) and the same parameter configuration, the parameter choice rule (L-curve)
makes all the difference. Indeed we observe large differences in the median of iterations between LC- and
DP-solutions in the vast majority of the cases No 1-5, see e.g. case No 1, 2 and 5 with 1% errors. This
result is not taken for granted later on for the non-spherical case where these methods are re-tested in
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Figure 3.10: Reconstructions of monomodal size distributions. Every set of (6) plots corresponds to
Pade-DP solutions (top) and Pade-LC solutions (bottom) and to a specific case (1, 2, 3) from Table 3.3,
designated on the left side of the set. The title in each plot shows additionally the input error level, the
mean reconstruction error and the median of the iteration numbers (param.) used by the (15) individual
retrievals.
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Table 3.3: Simulation parameters for preliminary tests for spherical particles
Case No radius interval median radius mode width number concentration refractive index
1 [0.001, 2] 0.1 2 1 1.4 + 0.005i
2 [0.001, 2] 0.25 1.6 1 1.5 + 0.01i
3 [0.001, 1] 0.5 1.2 1 1.7 + 0.05i
4 [0.001, 2] [0.1, 0.7] [1.6, 1.3] [20, 1] 1.5 + 0.01i
5 [0.001, 1] [0.1, 1] [1.6, 1.3] [400, 1] 1.5 + 0.01i

a much larger scale and since the purpose of the examples here was mainly to demonstrate Pade-LC’s
reasonable regularization behavior. It should be finally noted that the extent of the radius range (rmax)
plays an important role to the retrievals as well, as it was underlined in [131]. In fact, a reconstruction
can be very vulnerable to either oversee a mode (mainly coarse) or create artifacts where the distribution
is essentially zero. This behavior is hinted e.g. in case No 1 or 5, Pade-DP 1% where an additional mode
is being built and then steeply forced to zero. However, the full potential of these methods was dormant
since we had a fixed discretization dimension which could ideally handle better these difficulties.

Regarding the computational time, Pade-LC has a clear downside as compared to the other methods
we are going to use here. In order for Pade-LC to build the L-curve, it runs the iteration the same amount
of times as the fixed number of iteration (here: 100). This is of no concern for ”every-day” microphysical
retrievals but it can be a real issue for massive synthetic retrievals and especially in conjunction with
algorithm SA2. It should be noted that the main reason for the proposal of this method is the great
potential in marrying a powerful iterative regularization method (successfully tested e.g. in [18, 82, 113])
with a parameter choice rule which does not presuppose error knowledge.
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Chapter 4

Synthetic microphysical retrievals
for non-spherical particles

Foreword

At this point we are equipped with all available tools to test the efficiency of our methods and algo-
rithms. In the following sections we perform numerical experiments with artificial data simulating several
atmospheric scenarios. These retrievals will give valuable feedback which will be used subsequently for
real-life data directly from lidar measurements in Ch. 5. Here, we are interested in answering theo-
retical questions about retrieval behaviors and patterns which will help us differentiate the suitability
of the methods used under certain circumstances. A crucial discussion, missing almost entirely to our
knowledge from this research field in a systematic way, is a minimum first stage evaluation of inversion
algorithms by means of different types of uncertainties regarding the retrieval accuracy, the variability
of a solution space and the confidence level of getting similar results when we repeat an experiment for
random error instances. These issues are addressed here, providing analyses in statistical terms for the
competing methods and more importantly a general framework under which we can test the efficiency
of any projection-type regularization method. Moreover, a more palpable aspect of our synthetic-data
retrievals is the investigation under the same methodology of the theoretical efficiency of current and
potential future lidar technology in terms of additional channels. A tremendous computational relief for
Ch. 4 and 5 was the use of the software tool SphInX (Spheroidal Inversion eXperiments), a graphical-
user-interface program designed by the author exclusively for this purpose. A detailed guide of the
current version can be found in App. D. In the simulations that follow, the data are analyzed using
tables and figures extensively. Only a relatively small portion of the latter is given within this chapter
and the rest of it is shown in App. B and C. Our investigations, analyses, and results were realized with
a Windows 10 workstation PC of 16 GB RAM and a 2.40 GHz quad-core processor.

4.1 General configuration with a fixed refractive index

Preliminary numerical experiments were conducted with synthetic two-dimensional distributions with
small input errors using the methods i-vi in conjunction with the algorithm SA1 (Sec. 3.6), i.e. consid-
ering a fixed refractive index. These tests indicated that all methods are almost equally successful in
reproducing the conventional microphysical parameters, number concentration, surface-area concentra-
tion, volume concentration and the effective radius (a-d) for relatively small particles with effective radius
0.05 < reff < 0.20 (µm) and oblate, prolate, or mixed sphere-spheroid particle ensembles. This method
”equivalence” was actually even more deceiving when we pushed the input error to higher levels or vary
the refractive index to create stronger or weaker ill-posedness, driven by the expected effect we meet in
the spherical-particle case. As we kept changing the physical picture, i.e. enabling various combinations
of size, shape, refraction and data error, certain behaviors and assets of methods individually became
more apparent, but the landscape became more fuzzy as to which method could generally have a leading
role as a total.
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It is very helpful to know which method suits specific atmospheric scenarios when additional informa-
tion is available, but it is often the case that we have a poor idea of what is going on in the atmosphere,
and thus an overall well-functioning method offers more flexibility. The motivation of this section is to
treat these aspects through a comparison over multiple atmospheric cases which constitute the general
configuration of our simulations. For this we will study the efficiency of a method in accuracy and sta-
bility as a total rather than examining single-parameter retrievals. In this sense, the initial task will be a
blind comparison of the methods which will lead to a better understanding of both the two-dimensional
microphysical problem and the methods’ operation.

Here we will use the solution algorithm 1 (SA1, Sec. 3.6) and thus assume exact knowledge of the
refractive index. The more complicated endeavor of seeking also the refractive index will take place
in the next section (4.2), when we will have narrowed down the method candidates based on these
section’s massive retrievals. The data for the simulation are generated by defining a volume shape-size
distribution and then running the model Eq. 3.4.1 in the forward direction to produce a dataset. Details
for every parameter for the simulation configuration and inversion, which we will discuss subsequently,
are provided in Table 4.1. Parameters below the labels ”Distribution data generated with”, ”Optical
data gererated with” and ”Optical data inverted with” are combined with each other to perform the
corresponding action.

We will consider 8-point synthetic datasets, i.e. 3β + 2α + 3d (see Sec. 3.4) associated with optical
products of the most advanced polarization lidars in the present time. The shape-size distribution v(r, η)
is formed by multiplying a log-normal distribution v(r) with an aspect ratio distribution a(η)

v(r, η) = v(r)a(η). (4.1.1)

The aspect ratio distribution a(η) is given by the simple model

a(η) =


p1, if η = η1,

p2, if η = η2,
...

...
...

pν , if η = ην ,

(4.1.2)

where 0 ≤ pj ≤ 1, j = 1, 2, . . . , ν and p1 + p2 + . . . + pν = 1. The selected aspect ratio distributions
cover the three most interesting cases: (i) oblate ensembles, (ii) sphere-spheroid mixtures and prolate
ensembles, see Table 4.1 for the specific used values. The associated case-aspect ratios (ηj , j = 1, 2, . . . , ν)
are selected from the exact available ones in Mieschka’s database, see Table 3.2. The intervals, either
for the distributions or for the integration are [0.01, 1.2] or [0.01, 2.2] for the radius and [0.67, 1.5] for the
aspect ratio. Fig. 4.1 shows some examples of shape-size distributions from Table 4.1.

The combination of the (four) log-normal distributions with the (three) aspect ratio distributions
from Table 4.1 yield an effective-radius range of 0.26 to 0.95 µm, calculated using Eq. 3.1.8, 3.3.3 and
3.3.4. The aforementioned sizes cover many interesting cases of aerosol particles and fall within the range
of fine and medium-coarse dust-like particles but do not span, of course, the whole physically occurring
range.

For the discretization of the model Eq. 3.4.1, the refractive index and the projected dimension
(splines) are necessary. The fixed refractive index for the scattering efficiencies takes the values 1.33 +
0.001i, 1.4 + 0.005i, 1.5 + 0.01i, 1.6 + 0.001i and 1.7 + 0.05i (one at a time). The number of spline points
and spline degrees take over values from the ranges 6 up to 14 and 2 up to 5 respectively, resulting in
projection dimensions from 7 up to 18. The lowest dimension (7) used here was found also in [131] to
be marginally sufficient, while a larger dimension than 18 might result in a systematic behavior in the
retrieval because the linear systems end up highly underdetermined. We should note that the spline-
ranges are not absolute in the general sense especially for measurement cases, meaning that a preliminary
sensitivity analysis is advised in order to avoid undesired systematic behaviors.

Once the optical dataset is created with a forward run of Eq. 3.4.1, we add to it gaussian white noise,
with relative error levels 1%, 5% and 10%. Every dataset is randomly generated 15 times for the same
error level. Finally, the produced linear systems are solved with the following (3) regularization methods
and (3) parameter choice rules:

1. Truncated singular value decomposition with the discrepancy principle (TSVD-DP),
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Figure 4.1: 2D-Plots of synthetic shape-size distributions produced by combinations of log-normal dis-
tributions and aspect ratio distributions from Table 4.1, see the corresponding title above each plot.

2. Tikhonov regularization with the L-curve method (Tikh-LC),

3. Padé iteration with the discrepancy principle (Pade-DP),

4. Tikhonov regularization with the generalized cross validation method (Tikh-GCV),

5. Tikhonov regularization with the discrepancy principle (Tikh-DP), and

6. Padé iteration with the L-curve (Pade-LC).

The discrepancy (δ) for TSVD-DP, Pade-DP and Tikh-DP is automatically computed for a simulation
from the known error level (ε) by δ = ε‖g‖, where g is the error-free dataset, and the safety factor is set to
be unit. The (m,n)-Padé iteration scheme used here is (2, 1), which was found suitable for regularization
in [16, 80, 113, 114]. The maximum number of iterations for Pade-DP/-LC (methods 3 and 6) is fixed to
100 and the relaxation parameter is fixed to 100. After the shape-size distribution is found, we compute
the following parameters:

(a) the number concentration (nt),

(b) the surface-area concentration (at),

(c) the volume concentration (vt),

(d) the effective radius (reff),

(e) the effective aspect ratio (aeff),

(f) the aspect ratio width (avar), and

(g) the spherical volume concentration fraction (svcf ).

55



4.1. General configuration with a fixed refractive index (Synthetic microphysical retrievals for
non-spherical particles)

The shape-transition parameter for svcf (g), see also Eq. 3.3.8, is assumed here χ = 0.1. The
calculation of the single scattering albedo is omitted here, since its quality is highly dependent on the
refractive index, which is fixed at this point.

The rationale behind the coming thorough analysis with an abundance of methods in the numerical
experiments that follow, is the pursuit of a method that behaves ”well” overall. More specifically all
methods (1-6) will compete in the following error-related quantities (ERQ), all of which are calculated
as a percentage (%) using the standard deviation.

1. Difference from exact value (Dif) . This is simply the proximity of the mean solution to the exact
synthetic values, or in other words Dif = 1− accuracy(%). This is probably the first percentage to
look at, but clearly it should be backed by other stability evidence to acquire statistical significance.
Throughout the thesis we will refer to this ERQ as ”accuracy” too, when there is no risk of
confusion.

2. Variability of the solution space (Var). The algorithms SA1 and SA2 are completed by ordering
the solutions with respect to increasing error level and choosing a few of the first ones (step 6
or 9). This uncertainty percentage (2) is the standard deviation of a sought parameter, which is
derived by the chosen best solutions, divided by the mean value of the parameter. It describes how
much a mean value of a parameter varies from all best solution solutions in the same solution space
i.e. for a specifier error level ε. In this regard there are two interpretations of such a statistical
measure, both of which have to do with potential solution clusters. We rely on these clusters to find
physically meaningful solutions, since previous experience with the sphere-particle approximation,
showed that most of the mathematically acceptable solutions do not qualify physically. Therefore,
on the one hand, the solution space should be variable enough in its full extent (all solutions), i.e.
to produce clusters of more physically probable solutions. On the other hand, there should be a
relative homogeneity for a small sample of ”best” solutions (small residual error), reflecting the
ability of the examined method to recognize such clusters. More details on clusters and patterns
in solutions spaces for real-data inversions can be found in [131]. For more than one datasets, Var
represents the mean variability of all produced solution spaces.

3. Randomness uncertainty (Unc). This is related to the stability of the examined method with respect
to several repetitions of a numerical experiment of the same simulated atmospheric scenario but
with different (random) instances of the same error level. By extension, this obviously characterizes
the capacity of the method to reproduce well a possibly accurate result (low ERQ 1 -Dif-). The
value of Unc is derived by first calculating the mean value of a parameter for every dataset of
different data error, and then divide the standard deviation of these values by their mean. In other
words, Unc is a form of Var with respect to the different-error datasets.

Each solution space here owns 36 solutions (9 splines-point numbers × 4 spline degrees), 5 of which
are selected as the least-residual error solutions and are involved in the variability percentage (2). This
amount of ”best” solutions came up as a reasonable choice, since, at least for the spherical case in [131],
less than 10% of the total amount of solutions are found to be useful. 15 mean values are calculated for
each microphysical parameter (a-g), which then become the input for the randomness uncertainty (3).
Combining every bit of the parameters in Table 4.1, we ended up with 60 different error-free datasets,
which turn to 2700 noisy ones, and are finally inverted to a huge total of 583.200 solutions and 4.082.400
parameter calculations. Regarding the shape-related parameters (SRP) e-g, especially for the case of
prolate ensembles (Table 4.1, η = 1.3 or 1.5), the initial svcf is zero, therefore we compute and compare
absolute differences instead of relative ones for the ERQ.

The uncertainty and variability percentages can also be used for the reconstructions of the shape-size
distribution to provide the respective levels of confidence we have for the retrieved distributions. The
relative difference (Dif), on the other hand, may not suit in our case as a measure to quantify precisely the
vicinity of the approximation to the initial distribution. This is due to the different resolution between the
initial and the retrieved shape-size distribution which will make an additional 2D-interpolation necessary
in order to compare them. Indeed the initial distribution is formed with only 7 points with respect to
the aspect ratio because of the limited values provided by the database of Mieschka program, while for
the retrieved one we use a symmetrical r × η grid of 30 × 30 points. However, we will use the absolute
difference to measure the distance (Dist) of the retrieved distribution from the initial in order only to
compare different retrieved distributions with one another.
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A complete retrieval consists here of the shape-size distribution and the set of (7) microphysical
parameters a-g. The criteria for a method to be more suitable than another in the following analysis
will be a generally better performance to retrieve the parameters a-d and the shape-related parameters
e-g separately, always with respect to the error-related quantities (ERQ) 1-3. More specifically, for every
complete retrieval the three ”best” methods, namely one for each of the ERQ, are distinguished for every
parameter, and the appearances of each method as ”best” are counted. In principle we prioritize the
frequency of appearances of a ”best” method in accuracy as long as the appearances for Unc and Var
are in a satisfying level too. We additionally investigate the overall performance of a method in each
complete retrieval, counting the frequency of appearances of a ”best” method in general indistinctly
(adding up the appearances for all the ERQ). The best-method rules are summarized as follows:

1. Smaller difference from the exact value in both parameter-subsets a-d, and e-g separately.

2. Lower randomness uncertainty of the parameters and/or lower variability of solutions.

The best method should satisfy both 1 and 2 with an ”and” in as many cases as possible. However, it
is hard to characterize a method as ”absolutely” best, i.e. to simultaneous satisfy of rules 1 and 2, in
every occasion and this is why we appeal to an abundance of simulated atmospheric scenarios to make
up our mind. What we seek here through the blind experiment that follows, is to identify (i) what are
the main assets and defects of the methods and (ii) to find out which of them have a better balance
between accuracy and stability and treat a wide spectrum of atmospheric setups reasonably enough. For
this we define the stability-to-accuracy ratio of appearances

UVDR =
Unc + Var

2Dif
, (4.1.3)

which measures the confidence in the efficiency of a specific method and should ideally be near the unit
(1). The reasoning behind this is that stability (Unc+Var) and accuracy should have a fair share (∼ 1/2).
A very small UVDR (� 1) means a higher level of uncertainty while a very large UVDR (� 1) means a
lower level of accuracy. Of course, since the discussion is about the best method in terms of appearances,
the latter rules tell us nothing about the actual Dif-, Var- and Unc-rates.

We will partly demonstrate this decision-making methodology with Fig. 4.2, which shows an example
from Table (4.1) of retrievals of the parameters a-d (upper panel) and e-g (lower panel). We use a shape-
size distribution synthesized by rmed = 0.05 and σ = 2.3 (log-normal) and a sphere-spheroid particle
mixture and a refractive index 1.33 + 0.001i. The datasets are produced 15 times with 10% error and
inverted with Pade-LC and Tikh-GCV, using the whole span of spline features from Table 4.1, and
as mentioned we pick 5 least-residual solutions in each complete retrieval. The plots depict errorbars
corresponding to the randomness uncertainty computed by (15) retrievals for every parameter shown
and every method, i.e. both panels host 30 complete retrievals (i.e. 15×2 methods). In addition, above
each parameter we mark the ”best” method with respect to Unc, Dif, and Var bottom up and compute
the associated values, and the title above each panel shows the number of method appearances for Unc,
Dif, Var and Unc+Dif+Var, which we will call Overall. For instance, focusing on the upper panel of
Fig. 4.2, we see that the parameter at is retrieved with better accuracy by Pade-LC with 88.53% (Dif:
11.47%), vs Tikh-GCV’s 72.6% (not shown) and better randomness uncertainty with 24.79%, but the
variability is better with Tikh-GCV with 5.67% vs Pade-LC’s 7.19% (not shown). A similar situation is
also observed for the parameter reff and while Pade-LC is better in accuracy for all parameters aeff , avar

and svcf (lower panel), Tikh-GCV appears nonetheless better in Unc and Var. Pade-LC appears ”best”
in accuracy 6 times in total, i.e. 3 times in the parameters a-d and 3 times in the parameters e-g, in
contrast to Tikh-GCV which appears only once and zero times respectively. Tikh-GCV checks off the
list the rule 2 appearing better at Unc and Var, but it is minor in accuracy (rule 1), which is reflected
by its UVDR: 5� 1. On the other hand, Pade-LC’s UVDR is 4/12 (≈ 0.33) therefore we conclude that
Pade-LC is more suitable for this particular example. Obviously the decision could vary if we change
what we look for, e.g. if we focus on specific parameters, but the significance of such a result (not for
this particular example) will make more sense for the larger-scale experiment we are about to perform.

4.1.1 Retrieval results with respect to particle size

In this experiment we will test and intercompare the overall performance of the methods 1-6, with
respect to all the different sizes, shapes, refractive indices (Table 4.1) and the retrieved parameters a-g.
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Table 4.1: Simulation- & inversion setup for retrievals with a fixed refractive index. Parameters below
the labels ”Distribution data generated with”, ”Optical data gererated with” and ”Optical data inverted
with” are combined with each other to perform the corresponding action.

Distribution data generated with

log-normal distribution

No 1 2 3 4
median radius (rmed) 0.05 0.25 0.5 0.8
mode width (σ) 2.3 1.6 1.2 1.3
radius range (µm) [0.01, 1.2] [0.01, 1.2] [0.01, 2.2] [0.01, 2.2]
number concentration (Nt) 1 1 1 1

aspect ratio distribution

(a) oblate (b) sphere-spheroid mixture (c) prolate

{
1/2, if η = 0.77,

1/2, if η = 0.87,


1/3, if η = 0.87,

1/3, if η = 1,

1/3, if η = 1.15,

{
1/2, if η = 1.3,

1/2, if η = 1.5,

Optical data generated with

refractive index (i) 1.33 + 0.001i, (ii) 1.4 + 0.005i, (iii) 1.5 + 0.01i,
(iv) 1.6 + 0.001i, (v) 1.7 + 0.05i

number of spline points 6, 7, 8, 9, 10, 11, 12, 13, 14
spline degree 2, 3, 4, 5
relative error level (×15 repetitions) 1%, 5%, 10%

Optical data inverted with

regularization methods & parameter choice rules

TSVD-DP Tikh-LC Pade-DP Tikh-GCV Tikh-DP Pade-LC

Since shape and size are variables of primary concern in literature we divided the retrieval to four parts
according to the (log-normal) size distributions from Table 4.1 and the only distinction for comparisons
among parameters will be the shape (parameters e-g) and the effects of the transition to higher error
levels. This means that we will not test the efficiency of a method to particular parameters, but the
argument for the most suitable ones will be based on collective performance as explained in Sec. 4.1.
The analysis will be based in retrieval results lying in Tables 4.2 and 4.3. The numbers represent the
appearances of a method as ”best” (least residual-error) with respect to an ERQ for a complete retrieval,
i.e. for all the parameters a-g. The columns ”R”, ”S” and ”T” separate the sum of appearances of the
parameters a-d (R-parameters), from those of e-g (S-parameters) and those of the sum of appearances of
R and S respectively. We will call RA, SA and TA the appearances (table entries) related to R, S and T
respectively. For every ERQ, there are 3 lines corresponding to the error levels 1%, 5% and 10% top down
and one more line (with a separator) showing the sum along the lines (of different error) of the respective
R, S and T columns. The sum of every single element in each column is also given, in the row designated
by the label ”In total”. Fixing an ERQ, a line and a method, a table entry counts the sum of appearances
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Figure 4.2: Errorbar plot of the microphysical parameters with respect to the randomness uncertainty
and illustration of the methodology of counting the appearances of a ”best” method with respect to all
error-related quantities. Above each parameter the ”best” method is marked with respect to Unc, Dif,
and Var bottom up with the associated percentage values. The title above each panel shows the method
with the largest number of appearances for Unc, Dif, Var and Overall (Unc+Dif+Var).

with no distinction in terms of the refractive index and the aspect ratio distribution used to produce
the retrieval products, or a particular parameter from a-g. Hence each entry is the contribution of a
”best” method from a total of 15 retrievals -derived by 3 aspect ratio distributions × 5 refractive indices-,
and thus RA and SA have a maximum of 60 and 45 respectively. Note that these (15) retrievals are
already averaged by means of Var and Unc, so there are actually 5(solutions)× 15(repetitions) retrievals
implied for each parameter and each method. The same applies for ”Overall”, which counts the sum of
RA and SA with no distinction in the ERQ but within a specific retrieval. If there are ties in method
appearances, e.g. say one method is simultaneously best at nt and at and another is best at vt and reff ,
then the additional point is added to both of them, in this case in the RA.

For instance, focus on the upper sub-table of Table 4.2 and particularly at the Uncertainty-rows
and the method (Tikh-LC). The numbers 5, 8 and 13 on the first line, associated with 1% data error,
correspond to the appearances of Tikh-LC as a ”best” method (among all six) with respect to Unc for the
parameters a-d, e-g, and their sum (5+8) respectively. The second line corresponding to 5% data error
shows a dramatic reduction with only one RA and zero SA, while the third line for 10% data error shows
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a tenuous raise of SA to 1. We emphasize that a rising or diminishing RA, SA, or TA when moving along
lines (different errors) does not translate necessarily into a raise or reduction of the associated ERQ; one
can only argue in favor or against a method, observing the related entries for the rest of the methods.
Let us now see in greater detail the response of all methods through the different atmospheric scenarios
being simulated in this numerical experiment. In what follows, the reference to a total UVDR means
that the number of appearances taking part to the ratio are the TA.

Size distribution No 1, upper sub-table in 4.2

This is the case of finest-size particles under examination. Arguably Pade-LC is the most accurate
method (total Dif: 47) and in fact about 74% better (more often met) than the second more accurate
Tikh-DP (total Dif: 27). However, Pade-LC has very poor performance in Unc and Var (also TSVD-DP
and Tikh-GCV), while Tikh-DP is multiple times superior in Unc (total Unc: 58) than any other method
and has satisfying performance in Var, as compared to TSVD-DP and Tikh-GCV, ranking third after
Pade-DP and Tikh-LC. The latter two methods have greater uncertainty than Tikh-DP judging by their
TA (Unc, Var): (16, 44) and (16, 38), especially in R-parameters (total). A caveat of Pade-DP and the
rest of the methods is the mere absence of appearances in accuracy of the SRP for higher errors 5%
and 10% (Dif: 0), where Pade-LC is exceptionally better. Looking at the overall appearances within a
complete retrieval, Tikh-DP with a total of 57 is twice as good as Pade-DP. Tikh-GCV is evidently the
least efficient method, along with TSVD-DP which actually demonstrates an equally good performance
in accuracy as Pade-DP but this asset is not supported by the much lower TA Unc: 1 and Var: 3. The
UVDR of Tikh-DP is 1.33, which is a more reasonable value than Pade-LC’s 2.14. Hence, an overall
better performance can be attributed to Tikh-DP.

Size distribution No 2, lower sub-table in 4.2

Tikh-DP does not handle equally well in terms of accuracy the larger (but still relatively fine) particles
described here. Indeed Tikh-DP, while being about as good as Pade-DP in Unc and Var, it downgrades to
the 4th place regarding total-accuracy appearances (TA Dif: 12). Tikh-DP is slightly better than Tikh-
LC looking at their individual performances in (TA) Unc, Dif, and Var and their UVDR: 2.625 and 3.35
respectively. The largest performance change is the one of Tikh-GCV, which appears to be enhanced,
relative to the size No 1, both in accuracy and stability. The latter is a little better in accuracy than
Tikh-DP and Tikh-LC, but much less efficient in Unc and Var, although it has a consistent (vicinal to 1)
total UVDR: 0.77. Pade-LC demonstrates again supremacy in accuracy, the highest rates coming from
SA, which also outweighs the rest of the methods. On the other hand, it performs only tenuously better
in Unc and Var than in the case of finer particles (size No 1), and still has much smaller contributions
comparing to Pade-DP and Tikh-DP, but similar to TSVD-DP. This results in a small total UVDR:
0.06 relative to the one of the second more accurate method, Pade-DP, with 0.87. Therefore Pade-DP is
acknowledged in this case as a more appropriate method.

Size distribution No 3, upper sub-table in 4.3

This sub-case pertains to medium-coarse particles. It is straightforward to realize that Tikh-LC ex-
hibits outstanding stability and is by far more dominant in this regard than any other method with
TA (Unc,Var): (65, 51). The second more stable is Tikh-DP with (27, 25) and Pade-DP follows with
only (9,11). Nevertheless, the best option for accuracy is Pade-DP, which appears 80% more frequently
than Tikh-LC (TA Dif: 45 vs 25), while Pade-LC is a little better than Tikh-LC with TA Dif: 30 and
25 respectively. Pade-LC does not show much of an improvement in TA (Unc, Var)=(6, 5) from the
previous simulation part (size No 2) and its accuracy, while it is the 2nd best method, is compromised as
well being only a little better than Tikh-LC (3rd best). Moreover Pade-DP and Pade-LC are better in
shape approximation than Tikh-LC, to which it has very little contribution, but they also share close but
rather small UVDRs (0.22, 0.18) compared to Tikh-LC’s 2.32. Tikh-LC is only the third most accurate
method, thus finally, we are inclined to favor Pade-DP as a more efficient method for this example.
In the final method evaluation we will provide a reason for Tikh-LC’s undesired behavior, namely the
high deviation between TA Dif and TA (Unc, Var), which is met also in the largest-particle size (No 4).
Finally, Tikh-GCV and especially TSVD-DP are in this example the least suitable methods in almost
all respects.
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Table 4.2: Evaluation and comparison regularization methods (RM) with respect to accuracy and sta-
bility for the size distributions with rmed = 0.05, σ = 2.3 (upper sub-table) and rmed = 0.25, σ = 1.6
(lower sub-table), see Table 4.1. The numbers represent the appearance of a method as ”best” (least
residual-error) with respect to an error-related quantity (ERQ) in the table for a complete retrieval, i.e.
for all the parameters a-g. The columns ”R”, ”S” and ”T” stand for the sum of appearances related to
the parameters a-d, e-g and the sum of appearances of R and S respectively. For every ERQ, there are 3
lines corresponding to the error levels 1%, 5% and 10% top down and one more line (with a separator)
showing the sum along the lines (of different error) of the respective R, S and T columns. In addition,
the sum of every single element in each column is given in the row-field ”In total”. Fixing an ERQ, a line
and a method, a number counts the sum of appearances with no distinction in terms of the refractive
index, the aspect ratio distribution or a particular parameter from a-g. The same applies for ”Overall”,
counting the sum of appearances of R- and S-parameters with no distinction in the ERQ but within a
specific complete retrieval.

ERQ/RM TSVD-DP Tikh-LC Pade-DP Tikh-GCV Tikh-DP Pade-LC

rmed = 0.05 σ = 2.3

Unc/ty

R S T
0 1 1
0 0 0
0 0 0
0 1 1

R S T
5 8 13
1 0 1
1 1 2
7 9 16

R S T
5 4 9
0 7 7
0 0 0
5 11 16

R S T
0 0 0
0 0 0
0 0 0
0 0 0

R S T
5 2 7
14 8 22
15 14 29
34 24 58

R S T
0 0 0
0 0 0
0 0 0
0 0 0

Dif/ce

3 5 8
1 1 2
4 2 6
8 8 16

2 1 3
2 1 3
5 1 6
9 3 12

4 1 5
4 0 4
5 0 5
13 1 14

2 1 3
0 2 2
2 3 5
4 6 10

4 2 6
8 2 10
9 2 11
21 6 27

3 9 12
5 13 18
2 15 17
10 37 47

Var/ty

2 1 3
0 0 0
0 0 0
2 1 3

7 8 15
6 6 12
7 4 11
20 18 38

1 3 4
12 9 21
8 11 19
21 23 44

1 3 4
0 1 1
0 1 1
1 5 6

5 4 9
2 1 3
1 1 2
8 6 14

0 0 0
0 0 0
0 0 0
0 0 0

Overall

0 3 3
0 0 0
0 0 0
0 3 3

6 7 13
0 2 2
2 2 4
8 11 19

4 4 8
2 9 11
3 6 9
9 19 28

0 0 0
0 0 0
0 0 0
0 0 0

7 3 10
14 7 21
14 12 26
35 22 57

1 2 3
0 2 2
0 4 4
1 8 9

In total 10 13 23 44 41 85 48 54 102 5 11 16 98 58 156 11 45 56

rmed = 0.25 σ = 1.6

Unc/ty

R S T
1 1 2
0 0 0
1 0 1
2 1 3

R S T
5 5 10
4 4 8
4 4 8
13 13 26

R S T
4 6 10
7 7 14
5 2 7
16 15 31

R S T
1 0 1
1 0 1
0 0 0
2 0 2

R S T
6 3 9
10 4 14
10 9 19
26 16 42

R S T
2 0 2
0 0 0
0 0 0
2 0 2

Dif/ce

1 5 6
1 3 4
0 1 1
2 9 11

1 0 1
3 0 3
5 1 6
9 1 10

6 4 10
12 1 13
10 1 11
28 6 34

0 2 2
4 3 7
3 3 6
7 8 15

0 0 0
4 3 7
3 2 5
7 5 12

8 10 18
7 11 18
5 13 18
20 34 54

Var/ty

0 0 0
0 0 0
1 0 1
1 0 1

7 6 13
6 7 13
9 6 15
22 19 41

4 3 7
7 4 11
3 7 10
14 14 28

4 8 12
0 4 4
1 4 5
5 16 21

7 3 10
4 2 6
5 0 5
16 5 21

2 1 3
1 0 1
0 0 0
3 1 4

Overall

0 1 1
0 1 1
0 0 0
0 2 2

3 5 8
4 5 9
6 4 10
13 14 27

4 5 9
6 8 14
3 4 7
13 17 30

0 3 3
0 3 3
0 3 3
0 9 9

4 3 7
6 2 8
8 9 17
18 14 32

6 0 6
1 0 1
0 4 4
7 4 11

In total 5 12 17 57 47 104 71 52 123 14 33 47 67 40 107 32 39 71

Size distribution No 4, lower sub-table in 4.3

This is the last and perhaps the most interesting sub-case, as it pertains to coarser particles which are
often met in lidar measurements for dust-like particles. The scenery is similar to the previous case (No
3), with Tikh-LC demonstrating mainly stability (Unc, Var) and Pade-LC and Pade-DP prevailing by
far in accuracy. The latter methods show some improvements in Unc, Var and Overall (TA) which are

61



4.1. General configuration with a fixed refractive index (Synthetic microphysical retrievals for
non-spherical particles)

still hardly comparable to the ranking of Tikh-LC with 57, 50 and 57 respectively. Furthermore Pade-LC
appears once more to suit better for the accuracy of shape-related parameters especially for higher error
levels and is better in general from Pade-DP with TA Dif: 54 vs 36. In terms of stability Pade-DP with
TA (Unc, Var): (13, 14) is a little better than Pade-LC with (9, 5). These observations are directly
reflected by Tikh-LC’s large total UVDR: 6.69 relative to the one of Pade-DP with 0.38 and Pade-LC
with 0.12, which promotes Pade-DP to be the most suitable method here.

Table 4.3: Evaluation and comparison of methods with respect to accuracy and stability for the size
distributions with rmed = 0.5, σ = 1.2 (upper sub-table) and rmed = 0.8, σ = 1.3 (lower sub-table), see
Table 4.1. The explanation of the numbers here follow the conventions of Table 4.2.

ERQ/RM TSVD-DP Tikh-LC Pade-DP Tikh-GCV Tikh-DP Pade-LC

rmed = 0.5 σ = 1.2

Unc/ty

R S T
0 0 0
0 0 0
1 0 1
1 0 1

R S T
10 13 23
11 11 22
9 11 20
30 35 65

R S T
3 0 3
4 0 4
2 0 2
9 0 9

R S T
0 0 0
1 0 1
0 0 0
1 0 1

R S T
2 2 4
7 4 11
8 4 12
17 10 27

R S T
2 0 2
3 0 3
1 0 1
6 0 6

Dif/ce

0 0 0
1 0 1
1 1 2
2 1 3

5 0 5
9 1 10
9 1 10
23 2 25

8 14 22
3 11 14
3 6 9
14 31 45

0 0 0
1 0 1
1 0 1
2 0 2

1 2 3
2 1 3
5 0 5
8 3 11

3 3 6
7 6 13
2 9 11
12 18 30

Var/ty

0 0 0
0 0 0
0 1 1
0 1 1

10 11 21
7 8 15
6 9 15
23 28 51

5 0 5
4 1 5
1 0 1
10 1 11

1 5 6
0 7 7
0 3 3
1 15 16

0 3 3
2 5 7
9 6 15
11 14 25

1 0 1
3 0 3
1 0 1
5 0 5

Overall

0 0 0
0 0 0
0 0 0
0 0 0

10 13 23
9 11 20
8 11 19
27 35 62

4 0 4
2 1 3
0 0 0
6 1 7

0 1 1
0 2 2
0 0 0
0 3 3

0 1 1
2 4 6
7 5 12
9 10 19

1 0 1
3 0 3
0 1 1
4 1 5

In total 3 2 5 103 100 203 39 33 72 4 18 22 45 37 82 27 19 46

rmed = 0.8 σ = 1.3

Unc/ty

R S T
0 0 0
0 0 0
1 2 3
1 2 3

R S T
13 13 26
6 10 16
6 9 15
25 32 57

R S T
1 0 1
4 1 5
6 1 7
11 2 13

R S T
2 1 3
0 0 0
0 0 0
2 1 3

R S T
1 1 2
5 4 9
8 5 13
14 10 24

R S T
1 0 1
4 0 4
4 0 4
9 0 9

Dif/ce

0 3 3
1 2 3
0 2 2
1 7 8

2 1 3
3 0 3
1 1 2
6 2 8

9 10 19
6 2 8
7 2 9
22 14 36

3 0 3
1 1 2
0 2 2
4 3 7

0 0 0
3 0 3
3 0 3
6 0 6

7 5 12
11 12 23
8 14 22
26 31 57

Var/ty

0 1 1
0 1 1
1 1 2
1 3 4

12 8 20
6 8 14
8 8 14
26 24 50

4 4 8
4 1 5
0 1 1
8 6 14

0 3 3
2 5 7
1 6 7
3 14 17

0 5 5
3 2 5
7 1 8
10 8 18

2 2 4
1 0 1
0 0 0
3 2 5

Overall

0 0 0
0 0 0
0 1 1
0 1 1

11 12 23
5 10 15
9 10 19
25 32 57

3 3 6
4 1 5
4 1 5
11 5 16

1 1 2
0 2 2
0 3 3
1 6 7

0 1 1
2 4 6
5 4 9
7 9 16

0 0 0
4 3 7
2 2 4
6 5 11

In total 3 13 16 82 90 172 52 27 79 10 24 34 37 27 64 44 38 82

Method stocktaking and conclusion

A straightforward observation from Tables 4.2 and 4.3 is that TSVD-DP and Tikh-GCV are the least
efficient methods and may be ruled out. The most probable cause of this behavior is the overestimation
or underestimation of the regularization parameter leading to oversmoothed or undersmoothed solutions.
We can see this by estimating the average regularization parameter for multiple retrievals, which is more
effective to demonstrate through the retrievals of TSVD-DP. It is easily noticed that the number of total
accuracy appearances of the latter undergo a reduction with increasing particle size (cases 1 → 4). As
an example, we focus on the simulation part with size distribution No 1 and 4 with error level 1%, which
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correspond to the upper- and lower panel of Fig. 4.3 respectively. Every plot shows the TSVD-DP
regularization parameter (cut-off level) with respect to the 5 least-residual solutions for each of the 15
error-retrievals. Along a row, the depicted plots correspond (for both panels) to a fixed aspect ratio
distribution combined with the 5 refractive indices (RI) from Table 4.1. The title above each plot shows
the median of all the regularization parameters involved. For size No 1, we see that the best TSVD-DP
solutions are produced with an average of 5 SVD-terms in the majority of cases (see upper panel of Fig.
4.3). On the other hand, size No 4 shows that most of these solutions basically remain unregularized,
keeping all 8 SVD-terms (see lower panel of Fig. 4.3). It could be argued that the small input error does
not contaminate much of the solution and therefore not much of the solution has to be cleared (either 1
or no SVD-terms). However, it is suspicious that this happens so frequently in size No 4 and not at all
in size No 1, therefore one has to look carefully at the degree of ill-posedness for the two cases.

As explained in Sec. 3.4, a potentially helpful approach for the of ill-posedness of our problem is
studying the singular value decomposition of the linear systems solved after the discretization of the
model equation. Fig. 4.4 shows representative instances of the so-called Picard-plot of several simulation
cases with 1% data error to illustrate the involvement of on the size-, shape- and refractive index by
fixing one of them at a time. The number of spline points and the spline degree, 14 and 3 respectively,
correspond to the best solution most frequently found, but the plot trends are similar with spline setups
of any of the 5 least-residual solutions. The plots depict the singular values of discretization matrix in
the same axes with the SVD-coefficients UT b, where U follows the notation of Th. 1.11 and b denotes the
noisy dataset. A common characteristic of these plots is that the smallest singular values are actually
conservatively low, which is a sign of the smoothing imposed by the discretization process. This is indeed
optimistic, but we are more concerned about the competition of the decay rates between the two depicted
quantities. Let us focus on the uppermost Picard-plots with variable size, i.e. cases No 1 (left) and 4
(right), a fixed prolate shape and a fixed refractive index equal to 1.5+0.01i. The small-particle case (left
plot) essentially proves that the Picard condition is satisfied, and in fact there is virtually no peril that
the inversion is severely compromised. The large-particle case (right plot), by contrast, shows that there
is actually very little hope that one might get a more meaningful solution by subtracting any number of
terms, i.e. applying the TSVD-algorithm. This shows that TSVD-DP is rather not sufficient for larger
particles as compared to methods which can modify the matrix spectra. Analogous analysis for cases No
2 and 3 shows that they are treated by TSVD-DP close to the cases No 1 and No 4 respectively. A hint
for this is given by the plots on the middle and bottom panels in Fig. 4.4 corresponding to examples
for size No 2 and No 3 respectively. Even though we examine different cases of shape and refraction
we see an indication of the decay rate of singular values gradually increasing for size No 3 vs 2. This
rather confirms the sense we had from Tables 4.2 and 4.3 about the efficiency discontinuation of this
method, marking the particle size 0.43 ≤ reff < 0.54 (sizes No 2 and 3) as a probable transition barrier
for TSVD-DP’s efficiency.

We witness a similar behavior with Tikh-GCV with a systematic underestimation of the Tikhonov
regularization parameter (TRP) as compared to Tikh-DP, which is a much better method in an overall
fashion. For instance, for size No 1, for 1% data errors Tikh-GCV has a mean TRP (calculated the
same way as the cut-off level median for TSVD-DP) which is 2 to 4 times smaller from the one derived
by Tikh-DP. The same pattern is observed for 10% error level, even though the mean TRP for both
methods grows 5-12 times. The third best alternative we have for size No 1, Tikh-LC, is close to Tikh-
DP’s standards for 1% errors but ends up with a parameter underestimation too (twice as small mean
TRP) for 10% errors. The most accurate method for size No 1, Pade-LC, has an average (median)
number of iterations of 89, 82 and 54 for 1%, 5% and 10% data error respectively, while Pade-DP differs
distinctly performing runs with only 4, 2, and 2 iterations, obviously producing oversmoothed solutions.
We should point out that the average regularization parameter used here does not constitute a quantity
bound with precision for a practical purpose, other than the rough statistical context through which we
can distinguish prominent differences between methods and insistent behaviors that are also supported
by other arguments.
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Figure 4.3: Illustration of the development of the average regularization parameter of TSVD-DP for an
increasing particle size: size No 1 (upper panel) and 4 (lower panel). Every plot shows the TSVD-DP
regularization parameter (cut-off level) with respect to the 5 least-residual solutions for each of the 15
error-retrievals. The depicted 15 plots (for each panel) correspond to the combination of the 5 RI with
the 3 aspect ratio distributions (oblate, mixture, prolate, one per row) from Table 4.1. The title above
each plot includes the median of all the regularization parameters involved, found first with respect to
the best solutions and subsequently with respect to the different datasets.
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Figure 4.4: Picard plots of several simulation cases with 1% data error focusing on the size-, shape-
and refractive index involvement. The plots on the upper panel plots have fixed shape (prolate) and RI
(1.5 + 0.01i) and variable size (No 1 and 4). The plots on the middle panel have fixed size (No 2) and
shape (sphere-spheroid mixture) and variable RI (1.6 + 0.001i and 1.7 + 0.05i). The plots on the lower
panel have fixed size (No 3) and RI (1.33 + 0.001i) and variable shape (oblate and prolate) The notation
”U” stems from Th. 1.11 and b denotes the noisy dataset. The fixed spline configuration (No points:
14, degree: 3) used for the discretization is the one corresponding to the best solution.
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4.1. General configuration with a fixed refractive index (Synthetic microphysical retrievals for
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From the split analysis in the previous subsections (size distributions No 1-4) we saw that Tikh-DP is
much more stable than accurate, Pade-LC is much more accurate than stable and Pade-DP seems to find
middle ground. We can get the same sense more emphatically by looking at Table 4.4, which contains
a raw synopsis of all methods’ performance for all cases No 1-4 obtained by summing RA, SA and TA
from Tables 4.2 and 4.3 for the respective sections Unc, Dif, Var, Overall and In total. Pade-LC is the
only true competitor in accuracy with a total of all TA Dif: 188 vs 129 of Pade-DP, a great deal of which
is attributed to the shape-related parameters as expected from the simulation parts analyzed previously.
In addition, it is interesting that Pade-LC’s SA contribution (120) is more than twice the one of Pade-
DP, while Pade-DP’s total RA contribution is only slightly larger. However, in turn Pade-LC is more
unpredictable in terms of stability especially in smaller-particle cases which shrinks its total UVDR
to 0.08 (Table 4.4). Pade-DP seems also to be relatively less advantageous for the smallest particles
simulated (size No 1, upper sub-table in Table 4.2), a problem already hinted through the preliminary
simulations in Sec. 3.7, but overall manages to be less uncertain than Pade-LC, with a UVDR: 0.64.

Besides TSVD-DP, a more obscure monotone behavior with respect to particle size is demonstrated by
Tikh-DP and conversely with respect to Unc and Var by Tikh-LC. These methods keep by far the highest
level of certainty of the solutions they produce among all methods. However, they are outweighed in
accuracy by Pade-DP and Pade-LC whose TA Dif are way over twice and three times larger respectively.
According to their total UVDR from Table 4.2, Tikh-DP with 2.05 appears less systematic than Tikh-
LC with 3.13. The two less effective methods, Tikh-GCV and TSVD-DP share very close number of
appearances with respect to accuracy and Unc but Tikh-GCV tends to produce solutions with lower
variability (TA Var: 60 vs 9) more often, and further it appears as ”best” more often within a specific
physical setup (TA Overall: 19 vs 6).

4.1.2 The retrieved microphysical parameters with a fixed refractive index

The blind numerical experiment of the previous section with respect to the specific parameters we
retrieved would give less credit to a method distinction, if despite the analysis over multiple criteria,
the accuracy differences between them are low and/or the uncertainties too high. Fortunately none of
these occasional occurrences are the rule here. We can demonstrate through specific examples that the
differences between the methods grow in significance with increasing particle size. As discussed in the
beginning of Sec. 4.1, for relatively small particles the differences between the methods are relatively
small. This is now further confirmed by looking at Tables 4.5 and 4.6 which show the microphysical
parameter retrievals for the size No 1 (smallest particles examined), with the refractive index 1.5+0.01i,
1% data error and either prolate or oblate particle ensembles respectively. The retrievals depicted here
show small differences for Table 4.5 and marginal for Table 4.6. Indeed, all parameters are retrieved by
all methods with very satisfying accuracy, variability and uncertainty levels. The error appearing in the
rightmost part of the tables is the mean relative residual error and one can see its extremely low levels.

Focusing on the number concentration nt in Table 4.5, best retrieved by Tikh-DP, we see that it is the
parameter of highest variability (and uncertainty) for all methods which still has a reasonable range of
8.06-33.50% (lowest by Tikh-LC). In fact, it has been shown plenty of times in literature that nt is one of
the most difficult parameters to retrieve, even for the spherical case, therefore we can not stress enough
how important this achievement is. This efficiency is repeated in the case of oblate spheroids, as we see
in Table 4.6, with better uncertainties and lesser accuracy, but still in very reasonable levels. These are
very limited but not isolated instances, more of which we will explore later, realizing that Padé iteration
actually carries the best chance among the other methods of predicting nt. The rest of the parameters are
retrieved with much lower uncertainties generally, with an exception in svcf by Pade-DP and Pade-LC
in Table 4.5, which are generally the most accurate methods for the shape-related parameters as shown
earlier. The accuracy standards for svcf are more loosely defined as the point which allows us to deduce
a tendency towards sphericity or non-sphericity matching the one of the original value. Therefore in this
particular case with an initial value of 0.0%, the lowest retrieved values, 7.44% and 9.72% retrieved by
Pade-LC and Pade-DP respectively, are largely a success as well. A fair reproduction of the initial svcf
(0.18) is also achieved in the case of oblate spheroids (Table 4.6) by all methods (about 0.34). Pade-
LC and Pade-DP are much closer to the initial effective aspect ratio than the rest of the methods -as
expected- for prolate particles, while all methods retrieve this parameter with very small uncertainties.
On the other hand, aeff is falsely predicted as being mostly spherical in the case of oblate spheroids
by all methods, which reflects a more general problem of our retrievals with purely oblate spheroidal
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shapes. The aspect ratio width (avar) is the parameter of smallest variation among the methods, but
it is actually quite problematic in our retrievals due to its high sensitivity in the noise level, e.g. here
it is retrieved 6 times larger than the original value. However, if the effective aspect ratio is accurately
found, the retrieved shape-size distribution often reveals the parts which underwent any artifacts and
enlarge avar. Fig. B.2 (App. B) shows the average shape-size distributions retrieved by all methods
against the initial shape-size distribution shown on the top left panel. The best retrieved distributions,
i.e. by Pade-LC and Pade-DP, make a quite clear distinction of the ”healthy” distribution parts and
its ”ill” counterparts which add up to a noisy avar. Moreover, we see that the differences between the
methods are more prominent when it comes to the distribution reconstructions. This is expected since
all parameter calculations involve shape-size distributions as integrands and thus the smoothing effect
conceals parts of the oscillations.

Now let us see what happens to the retrievals with larger particles through another example keeping
the same RI and data error and combining the size distribution No 3 with either prolate or sphere-spheroid
particle ensembles, shown in App. C, Tables C.1 and C.2 respectively. In this simulation scenario the
differences between methods are much more pronounced. First of all, the only viable options for the
number concentration for the prolate-particle case appear to be Pade-DP and Pade-LC. This is not the
case for the sphere-spheroid mixture where no method offers a reasonable approximation for nt, but the
high level of disagreement between the values of Pade-DP, Pade-LC and the rest of methods indicates
that the latter have a bigger problem handling the amplification of errors imposed by the ill-posedness.
Oddly enough the surface-area concentration and the volume concentration retrieved by TSVD-DP, Tikh-
GCV and Tikh-DP are deviating from the respective initial values in close proportions so that they are
cancelled out producing eventually good approximations of the effective-radius (∼ vt/at). Contrary to
the prolate-particle case, the sphere-spheroid mixture does not compensate the lost precision between at

and vt, so that reff is less accurate in this instance. Pade-DP has an astounding performance in the SRP,
it is followed by Pade-LC, and both have leading roles in this respect in the sphere-spheroid-particle
case too. Indeed the initial shape-size distribution, found in the top left plot of Fig. B.3 (App. B),
pertaining to the sphere-spheroid case, is reconstructed very well by the latter and much better than the
rest methods. It is noteworthy to observe that TSVD-DP and Tikh-LC retrieve the parameters svcf, aeff

and avar with almost the same efficiency (Table C.2) and yet they have distinct graphical differences in
the distribution reconstruction. Finally, the residual errors are essentially larger for both shapes (prolate
and sphere-spheroid mixture) than in the fine-particle case we analyzed before.

The variation of the retrieved data and the mathematical hint we briefly saw through the example
in Fig. 4.4, point to particle size as a plausible underlying cause for the lack of predictability of the
treatment of ill-posedness for larger particles. We should note though that this does not exclude the
involvement of other physical properties (e.g. shape, RI) as additional factors, since their correlation
with size in non-spherical particle geometries is not fully understood although known for its creative
scattering outcomes. These factors will be explored subsequently in greater detail, both theoretically
and statistically through the retrievals of Pade-DP.

4.1.3 A closer look at the retrievals of Padé iteration

Let us continue the parameter analysis with the most efficient method, Pade-DP, comparing with its
main antagonists Pade-LC and Tikh-DP in lesser extent. Since it is impossible to show the range of
efficiency for every single parameter, shape, size, refractive index and error level, we will restrict from
now on mainly to the smaller combination collection from Table 4.1, X1: (2)× (a, b, c)× (iii, iv, v), X2:
(3)×(a, b, c)×(i, iii, v) and X3: (4)×(a, b, c)×(ii, iii, v) with all error levels for every case. As mentioned in
the previous section (4.1.2), while the aspect ratio width (avar) provides a useful tool for the comparison
of different methods, it is approximated with more than 60% accuracy only in some of the cases associated
with the sphere-spheroid mixture. Other than these occasions, it is largely overestimated up to 8 times
the initial value in the majority of the retrievals for the oblate and prolate ensembles and will be omitted
from subsequent analyses. A detailed exposure of the results is found in App. C in Tables C.3, C.6 and
C.9 for Pade-DP and Tables C.12, C.15 and C.18 for Pade-LC. The tables correspond to the cases X1,
X2 and X3 and include the Difference, Variability and Uncertainty percentages for every parameter and
each error level shown vertically on the left side of each sub-table. Note that in this section we will use
the abbreviations Dif, Var and Unc to denote the actual rates % (not appearances) for the respective
ERQ. A synopsis of the retrieval ranges of at, vt, reff , svcf and aeff for all ERQ (except Dif for svcf ) is
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Table 4.5: Microphysical parameters retrieved with all methods for size distribution No 1, prolate par-
ticles, data error: 1% and RI: 1.5 + 0.01i. The rightmost indication ”error” corresponds to the mean
relative residual error found with a forward calculation.

Parameters nt at vt reff svcf aeff avar error
Synthetic 0.1690 0.0172 0.0015 0.2588 0.000 1.3592 0.0073 1.36e-04

T S V D - D P

Average
Var/ty
Unc/ty

0.2142
19.35%
24.42%

0.0188
4.46%
6.91%

0.0017
2.42%
5.38%

0.2788
2.69%
3.51%

0.1340
9.78%
13.94%

1.1958
0.31%
0.82%

0.0434
1.21%
1.77%

0.0041
9.98%
55.00%

T i k h - L C

Average
Var/ty
Unc/ty

0.1809
8.06%
5.61%

0.0163
1.45%
1.15%

0.0014
0.39%
0.91%

0.2560
1.09%
1.08%

0.2328
4.06%
2.50%

1.1290
0.30%
0.23%

0.0462
1.60%
0.62%

0.0345
2.04%
9.66%

P a d e - D P

Average
Var/ty
Unc/ty

0.1277
30.32%
17.47%

0.0158
4.34%
2.41%

0.0015
0.91%
1.37%

0.2780
3.30%
3.04%

0.0972
15.60%
36.13%

1.2334
0.96%
2.57%

0.0410
2.66%
8.14%

0.0098
0.56%
1.85%

T i k h - G C V

Average
Var/ty
Unc/ty

0.1664
13.79%
11.49%

0.0173
2.32%
2.23%

0.0016
0.75%
3.23%

0.2842
1.68%
3.06%

0.1187
2.56%
16.53%

1.1968
0.12%
0.89%

0.0440
0.50%
1.93%

0.0949
6.03%
22.91%

T i k h - D P

Average
Var/ty
Unc/ty

0.1668
16.09%
8.32%

0.0169
2.84%
1.63%

0.0016
0.96%
2.52%

0.2775
1.95%
2.39%

0.1351
1.76%
12.11%

1.1852
0.11%
0.80%

0.0453
0.33%
1.57%

0.0611
8.97%
26.35%

P a d e - L C

Average
Var/ty
Unc/ty

0.1269
33.50%
16.16%

0.0158
4.39%
2.86%

0.0015
0.90%
1.91%

0.2760
3.39%
2.46%

0.0744
20.30%
23.86%

1.2559
0.53%
1.20%

0.0387
2.06%
6.07%

0.0123
11.28%
30.22%

shown in Table 4.8 for Pade-DP and in Table 4.9 for Pade-LC. Moreover, in order to specify a case from
the tables we will refer to it in the compact form (size, shape, RI, error level, parameter, ERQ) using
the numbering from Table 4.1. For instance the case (2, a, iii, 5%, vt, Dif), focuses on the Dif % of the
volume concentration related to the combination, size distribution No 2 with an oblate ensemble (a), RI:
1.5 + 0.01i (iii) and 5% error level. Note, that more than one values of the same kind imply multiple
compact forms, e.g. (2, b, at, vt), expands to (2, b, at) and (2, b, vt) and, further, missing pieces of
information (if any) in this form from the total of 6 will be clearly mentioned separately. Exceptionally
for the parameter svcf, Dif is given by the absolute difference from the initial value, since the latter is
zero for the prolate spheroid ensemble (Table 4.1, c). A variation less than < 3% in the ERQ is generally
considered of minor significance taking into account all possible errors that are involved.

Retrieval of the R-parameters

The results show that Pade-DP retrieves the parameters at, vt and reff astonishingly well. The latter
are approximated with more than 85% accuracy on average, that is, for any shape, size, RI, and error
level, with very few exceptions. The important microphysical parameter reff is retrieved with Dif ranges
1.00 − 13.23%, 0.16 − 16.37% and 0.04 − 19.86% for X1, X2 and X3 respectively, which include every
possible combination of cases. The lowest and highest rates in each of these ranges correspond to 1%
and 10% error levels, reflecting the general trend of a less accurate retrieval with increasing error level.
Similarly, at is retrieved with Dif ranges 0.89 − 17.56%, 4.38 − 43.68% and 0.32 − 31.25%, and vt with
0.15 − 13.09%, 0.32 − 39.84% and 0.04 − 18.11%, see Table 4.8. The upper range bounds, i.e. 43.68%,
31.25% and 39.84%, are isolated cases, as one can see from the respective average values 14.74%, 10.53%
and 14.90% and correspond to the cases (3, iii, b, 10%, at), (4, ii, a, 10%, at) and (3, i, b, 10%, vt)
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Table 4.6: Microphysical parameters retrieved with all methods for size distribution No 1, oblate particles,
data error: 1% and RI: 1.5 + 0.01i. The rightmost indication ”error” corresponds to the mean relative
residual error found with a forward calculation.

Parameters nt at vt reff svcf aeff avar error
Synthetic 0.1321 0.0134 0.0012 0.2588 0.1802 0.8290 0.0050 1.08e-04

T S V D - D P

Average
Var/ty
Unc/ty

0.2024
9.59%
11.30%

0.0142
2.68%
2.56%

0.0012
1.78%
3.34%

0.2480
1.29%
3.80%

0.3626
1.97%
7.40%

1.0653
0.35%
1.44%

0.0386
2.82%
7.96%

0.0050
7.97%
38.22%

T i k h - L C

Average
Var/ty
Unc/ty

0.1962
6.19%
13.20%

0.0139
1.68%
3.15%

0.0011
0.30%
1.04%

0.2445
1.39%
3.14%

0.3353
1.15%
3.87%

1.0776
0.14%
0.65%

0.0402
1.29%
3.41%

0.0082
1.65%
36.10%

P a d e - D P

Average
Var/ty
Unc/ty

0.1870
7.08%
6.39%

0.0138
1.74%
1.62%

0.0011
0.26%
1.05%

0.2458
1.55%
1.99%

0.3243
1.46%
3.66%

1.0835
0.18%
0.59%

0.0408
1.12%
1.95%

0.0072
1.28%
22.62%

T i k h - G C V

Average
Var/ty
Unc/ty

0.1967
5.98%
14.76%

0.0139
1.56%
3.50%

0.0011
0.31%
1.37%

0.2466
1.41%
3.52%

0.3474
1.71%
8.80%

1.0705
0.18%
1.43%

0.0395
1.88%
7.27%

0.0092
6.00%
76.48%

T i k h - D P

Average
Var/ty
Unc/ty

0.1992
11.33%
5.97%

0.0139
2.81%
1.68%

0.0011
0.51%
1.06%

0.2444
2.31%
1.96%

0.3219
2.35%
5.59%

1.0833
0.21%
0.83%

0.0411
2.04%
3.50%

0.0100
0.00%
0.39%

P a d e - L C

Average
Var/ty
Unc/ty

0.1842
8.34%
14.37%

0.0136
1.93%
3.65%

0.0011
0.38%
2.17%

0.2468
1.57%
3.52%

0.3587
1.59%
8.10%

1.0686
0.20%
1.31%

0.0389
2.08%
7.08%

0.0029
11.24%
47.47%

(Tables C.6-C.9) respectively. The variability and the uncertainty are also vastly low, in almost all
cases for at, vt and reff . Taking again the effective radius as an example, combined with any other
instance (shape, RI, error level), we have Var: 0.52 − 3.45%, 0.42 − 6.32% and 0.53 − 5.65% and Unc:
1.04 − 12.94%, 0.71 − 14.56% and 0.83 − 21.70%, for X1, X2 and X3 respectively. Evidently Var has a
small variation (and much smaller than Unc), which shows the kind of desired homogeneity (solution
clusters) expected from a stable method in a deliberately small solution space. The case X2 (size no
3) constitutes a worst case scenario owning in general the largest values and variation of the ERQ with
respect to the different error levels.

Pade-LC is almost as good as Pade-DP in accuracy on average at the retrieval of the R-parameters,
as demonstrated by the blind experiment earlier (Tables 4.2, 4.3 and 4.4), but with a few more isolated
blow-up-incidences. For instance, reff is retrieved with Dif ranges 2.15 − 15.40%, 0.02 − 15.52% and
0.02−15.09% and vt with 0.13−16.72%, 0.16−39.44% and 0.23−19.15% for X1, X2 and X3 respectively,
see Table 4.9. The disagreement with Pade-DP on average is of order ∼ 1%, see reff and vt in Table 4.8. A
larger disagreement is found on at in X1 where Pade-LC has Dif: 0.08−36.05%, which is by 4.91% larger
on average than the one of Pade-DP. A similar situation is to be found for the uncertainties (Unc, Var)
of Pade-LC. Although the ranges are often larger (on the right side), the mean values have mostly less
than 1% discrepancy from the ones of Pade-DP. For instance, the Var-range of reff in X3, is 0.50−12.32%
with a mean: 2.63% which is 0.61% more than the one of Pade-DP, see Table 4.8, X3, reff . The main
counterexample is again the surface-area concentration in X1, where the Unc-range is highly expanded
from the side of Pade-LC with 0.43− 31.69% (mean: 8.48%), whereas Pade-DP has 0.38− 4.88% (mean:
2.71%). There are also more rare converse examples, where Pade-DP has larger ranges (in any of the
ERQ), yet its mean values are always close to Pade-LC (or lower); the most characteristic are X2, at,
Dif and X3, vt, Unc, see Table 4.8. To illustrate the comparison between Pade-LC and Pade-DP and the
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relative rarity of high ERQ in general, we show in Fig. 4.8 all (27) parameter retrievals of at, vt and reff

for X1, X2 and X3 with respect to their Dif (upper panel) and Var (lower panel). The numbers 1 − 27
on the x-axis correspond to the order of the results, as seen top down, in any of the Tables C.3-C.9 or
C.12-C.18 top down. All parameters of the same particle size (X1, X2, or X3) appear vertically (3 × 3
in total) on the plots with the same symbol and no further distinction. We see clearly that most of the
parameters are gathered below 15% Dif for both methods and there are only a few upward shifts from the
side of Pade-LC (right plot) to higher Dif levels mostly for X1 which do not change the overall picture.
Focusing now on the lower panel of Fig. 4.8 while we can see again that for both methods most of the
retrieved parameters accumulate to less than 5% Var, Pade-LC has shifted a fair amount of instances to
higher variability, with the most extreme discrepancies attributed to prolate-particle cases (No 18-27).
The differences for Unc (not shown graphically) occur in even more irregular basis and most of them
relate to the parameter at in X1.

The number concentration is a major struggle of the retrievals of Pade-DP showing high but mostly
reasonable uncertainties (Var, Unc) for error levels 1% and 5% and at the same time the greatest accuracy
losses. The best approximations of nt belong to size No 1, partly shown on Tables 4.5-4.6. For 1% error
level we have the ranges (Dif) 4.89 − 88.44% (mean: 41.43%), Var: 2.82 − 23.99% (mean: 12.68%),
and Unc: 6.35 − 21.99% (mean: 13.02%). Other than the cases for size No 1, there are limited cases
of accuracy &50%, namely (2, c, iii, 1%), (3, a, i, 1%, 5%), (3, b, i, 1%, 5%), (3, c, i, 1%). Some of
these are presented in Fig. 4.9 but have been excluded from the previous thorough parameter analysis,
since there are plenty of cases in which the retrieved value is hugely divergent (� 2×) leading to very
low confidence regarding its retrieval reliability. Moreover, in contrast to the other retrieved parameters,
the uncertainties for nt grow prohibitively (>50%) for a 10% error level. Pade-LC shows often greater
efforts in accuracy but does not really make it up, mainly due to its larger uncertainties. However,
Padé iteration is the only method from the ones available here that has a better chance of providing
even such approximations of nt. Fig. 4.9 illustrates this very situation, showing an intercomparison
between the Pade-DP, Pade-LC and Tikh-DP with respect to the accuracy and Unc (errorbars) of the
retrieved values for the parameters nt, at, reff , svcf and aeff through several examples. Evidently, the only
instances that Tikh-DP really competes Padé belong to size No 1 (top 2 plots), which is expected since
Tikh-DP is indeed the best method for this particle size, as shown earlier. However, there is mostly a
quite large accuracy gap in nt between Tikh-DP and Padé iteration (-DP / -LC) which greatly magnifies
for the case X3, see Fig. 4.9 example (4, b, iii, 1%). Secondly, we investigated separately the root of
the great instability that nt undergoes and found out that it is almost entirely a numerical issue. Even
tiny oscillations due to noise of any kind, come out as blow-ups in the calculation of nt because of the
function discontinuities that might occur with very small radii (see Eq. 3.1.3). Knowing this in advance,
it creates an unprecedented advantage and can save us from a completely meaningless retrieval of nt.
For this reason, we can make an additional check in the norm of the very first distribution elements
and exclude these contributions if they are above a point (by a measure of some norm) we gained from
experience. Doing so, the retrieval of nt goes back to ”normal”, e.g. (1) for Pade-DP in Table C.2,
the corrected nt is found 0.157 µm−1cm−3 with Var: 15.59% and Unc: 1.43%, (2) for Pade-LC case (4,
c, v, 10%), with no correction we would have Dif: 3737%, Var: 51.99% and Unc: 76.88%, and now
Dif: 32.22%, Var: 12.90% and Unc: 22.18%; these quite outstanding results were chosen completely
randomly. From now on, whenever nt is included in the retrieval (Ch. 5) we will consider this correction
when necessary. We note that a good indication of a potential blow-up of nt in synthetic or real data
is the pronounced difference in the order of magnitude with the surface-area concentration (at). The
latter is the second parameter of largest disagreement between Tikh-DP and Padé iteration with the
most significant differences observed in cases X2 and X3, see examples (3, c, iii, 1%) and (4, b, iii, 1%)
in Fig. 4.9.

Retrieval of the shape parameters and reconstructions of shape-size distribu-
tion

We have already seen quite a few examples of reconstructions of the shape-size distribution in the
context of inversion by all methods and now we are going to expand this a bit more. First of all, there is
a clear limitation on the expectation of this endeavor as compared to the retrieval of the microphysical
parameters. The latter are basically continuous averages weighted by the shape-size distribution, and
as such, they leave out a fair amount of the distribution detail with the process of smoothing. This is
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precious on the one hand since we can still get the non-shape parameters (nt, at, vt, reff) right within a
reasonable tolerance even if the distributions are less precise in shape, as we saw through the diversity of
distributions in Fig. B.2 and B.3 as compared to the well-retrieved data of all methods in Tables 4.5 and
C.2. On the other hand, a very precise reconstruction of this two-dimensional distribution, especially
in terms of shape, would require a much higher level of knowledge of the kernel functions with respect
to the aspect ratio and not limit to 7 discrete values (Mieschka’s database), which is the case here.
Nevertheless, the reconstructions are very decent even under these circumstances. We will explore more
cases of reconstructions of monomodal shape-size distributions and then we will show for the first time
in literature reconstructions of bimodal shape-size distributions. First let us continue the parameter
analysis of the previous section, turning to the shape-related parameters.

Regarding the shape parameters, the outcome is generally optimistic as well. The parameters svcf
and aeff are approximated most efficiently for sphere-spheroid mixed particles and then follow prolate
and oblate particles. Especially the ones related to the mixed ensemble are retrieved with near-perfect
precision, see e.g. the cases (4, b, 1%, 5%, 10%, svcf ) with 1.5 + 0.01i (or any RI) in Table C.9, which
have the range of accuracy 80.88 − 99.29% with respect to the error levels (1, 5, 10%). This is very
promising taking into account that a mixture, not with the given proportions necessarily, is often a more
realistic atmospheric scenario as opposed to pure non-spherical ensembles. The effective aspect ratio is
retrieved steadily for all cases within the range (Dif) 0.04−34.20%, which is the union of ranges in Table
4.8 for X1, X2 and X3 (Tables C.3-C.9). However, this range might be misleading since it basically
contains three extreme retrieval incidences whose Dif are not close on average, namely the range for
sphere-spheroid mixtures which is very low, the one for prolate particles which is reasonable and the
one for oblate particles which is only moderately good. On the one hand, for sphere-spheroid mixtures
aeff has the Dif-range 0.04 − 8.56% (mean: 2.64%), where the boundary values correspond to the cases
(2, iv, 1%) and (3, i, 10%), and for prolate particles it is retrieved within the range 2.41 − 18.64%
(mean: 11.17%), where the boundary values correspond to the cases (2, iv, 1%) and (4, ii, 10%). On
the other hand, for oblate particles we get 11.89 − 34.20% (mean: 26.85), where the boundary values
correspond to the cases (3, i, 10%) and (4, ii, 1%) in Table C.6 and C.9 respectively. Although the
ranges for oblate particles seem reasonable and are further associated with low uncertainties as well (see
Table 4.8), the relative difference (Dif) should be less than 20% for this initial effective aspect ratio
(∼ 0.82) otherwise the retrieved value exceeds the value 1 and therefore the ensemble is misinterpreted
as a spherical one. The parameter svcf has similar behavior, i.e. there are very good approximations
for the sphere-spheroid-mixed- and the prolate-particle case and mediocre ones with oblate spheroids.
However, even the case of more than a 100% overestimation, e.g. the case (4, iii, 1%), Table C.9, it
still conveys the message of a reduced sphericity chance (∼ 30%) and therefore it is useful in that sense.
In general, such deviations from the initial value end up being a defect since they are immediately felt
by the distribution reconstruction as we saw earlier in Fig. B.3. There are only small differences in
accuracy between Pade-DP and Pade-LC, mostly in favor of Pade-LC, in the shape parameters svcf,
aeff and in avar (not shown), which occasionally account to a better distribution reconstruction than the
one produced by Pade-DP. However, the parameter uncertainties (Var, Unc) are on average better with
Pade-DP especially in svcf, e.g. compare the svcf of X1 (most pronounced disagreement) in Tables 4.8,
4.9 and see also for instance the cases (1, c, v, 10%) and (2, a, iii, 1%) in Fig. 4.9. The differences
between Tikh-DP and Pade-DP/-LC in the shape parameters svcf and aeff are essentially milder than
those in at, vt and reff , but Tikh-DP is finally inferior in accuracy while having at the same time lower
uncertainties than Pade-LC.

The distribution reconstruction is not limited to shape influence, as we showed through Fig. B.2
in Sec. 4.1.2 but it is affected by both shape and size as well as the refractive index. The reconstruc-
tions follow the same pattern described up to now, i.e. a greater accuracy potential in Padé iteration
occasionally blocked by high uncertainties especially in the presence of large data errors. As mentioned
earlier in Sec. 4.1, a sense of the reconstruction accuracy is obtained here with Dist and similarly the
uncertainties are obtained with ratios of the same notion of Var and Unc used up to now. Fig. 4.5 and
B.4 (App. B) show the error-level evolution of the produced reconstruction by Pade-DP, Pade-LC and
Tikh-DP (left to right) for the cases (2, c, iii) and (4, a, ii) respectively for 1% (2nd row) and 10% (3rd
row) error level; the initial shape-size distribution is shown in the uppermost plots for both figures. In
addition, the triple (Unc, Dist, Var) is given in the title of each reconstruction. Pade-DP and Pade-LC
achieve a more accurate reconstruction than Tikh-DP in both cases (2, c, iii) and (4, a, ii) and both error
levels. Indeed, Padé iteration has less pronounced artifacts than Tikh-DP and preserves the location of
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the peak (see also colorbars) and its width better. For instance, the case (2, c, iii, 1%) in Fig. 4.5 Dist
is larger for Tikh-DP and the reconstruction has a stronger spread in the radius axis and more artifacts
in the bottom of the graph. Pade-LC achieves a much better reconstruction for the same case but 10%
error level, see lowermost panel of Fig. 4.5, but it has a dubious uncertainty (Unc) of 66.45%, which
is more than twice the ones of Pade-DP and Tikh-DP. The case (4, a, ii) in Fig. B.4 essentially recon-
firms the situation in another setting. The Tikh-DP reconstruction presents much stronger elongation
in the aspect-ratio axis as well as the radius axis, and there is also some otherwise negligible noise in
the beginning (leftmost) of the graph. However, in the case of 10% error level there is a reduced chance
of ∼ 50% (Unc) from the side of Pade-DP/-LC of reaching this accuracy, which is much more than the
one of Tikh-DP (23.50%), see lowermost panel of Fig. B.4. Furthermore, the variability is considerably
lower for Tikh-DP. However, a simple rough calculation for the worst-case scenario (high deviation from
the average accuracy) for Padé iteration accounting both Var and Unc shows that it is still better than
the one of Tikh-DP, which is the rule for many of the cases.

There is a milder but noteworthy competition between Pade-DP and Pade-LC in distribution recon-
structions mostly expressed for 5% or 10% error level. Fig. 4.6, shows several examples of reconstructions
for a comparison between Pade-DP and Pade-LC, through which we can also see noisy or less trustworthy
outcomes for both methods. For instance, focusing on the uppermost row of plots, i.e. the case (2, c,
i, 5%), Pade-LC demonstrates again better accuracy but much higher uncertainty (Unc: 51.54%) than
Pade-DP (Unc: 13.81%), which essentially fails to capture the shape of the initial distribution in greater
detail. We note that there are plenty of cases with very smooth and nice distribution results that are not
shown here, but instead the chosen cases cover mostly difficult encounters for Padé iteration, which may
be of practical interest in a real application. Evidently a high error level damages the reconstructions
very distinctly. The mildest effect is expressed through the aforementioned spread in radius- or aspect
ratio axis, while stronger noise involves additional ”modes” (artifacts), see e.g. the lowermost panel of
Fig. 4.5. However, it is important to realize that in an experimental case (real data) multimodality is
quite a probable scenario and our intuition about what is noise or a real extra mode has to be conformed
accordingly. As a general remark, the location of the peak in the radius axis is best reproduced, as
compared to the (radius) mode width, the aspect ratio width and the height of the peak, i.e. the volume
distribution (colorbar). Indeed even in cases of mistreatment of the shape (aspect ratio) the location of
peak in the radius axis is still obtained, see e.g. the uppermost or lowermost panel of Fig. 4.6. The plots
in Fig. B.4 for Padé iteration correspond to the best we can do for a case with oblate spheroids; most
often the distributions are falsely shifted upwards, resembling those of the sphere-spheroid mixture. The
refractive index, obviously plays a crucial role in the inversion even if the initial shape- and size settings
are the same, since the kernel functions impose different levels of smoothing depending on its value. We
can see this through the examples on the 2nd and 3rd row of plots in Fig. 4.6 referring to the cases (3,
c, iv, v, 10%). These instances show the reconstruction of same shape-size distribution for the extreme
cases of weakly absorbing particles (RI : 1.6 + 0.001i) and very absorbing particles (RI : 1.7 + 0.05i),
illustrating the infiltration of noise and the enhanced difficulty for an approximation associated with the
absorbing case.

Bimodal shape-size distributions

In this section we would like to show the potential of our approach in retrieving bimodal shape-size
distributions, restricting to reconstructions produced by Pade-DP. Multimodality in a two-dimensional
aerosol distribution has never been studied, as a result of the mere absence of a 2D-representation of
the distribution itself from contemporary bibliography for the sake of simplicity. Indeed, in order to
even build a shape-size distribution of desired modes (location, peak, etc), experience of some level is
required as compared to the case of a usual size distribution since there is no standard model and the
additional dimension (aspect ratio) expands significantly the possible outcomes. The construction of such
distributions is based here again on simple multiplication of independent log-normal size distributions
and aspect ratio distributions. The parameters used to create the synthetic data and distributions are
shown in Table 4.7 (BMD: 1-6). We will investigate shape-size distributions which have two distinct
modes either on the radius axis formed by a bimodal log-normal distribution (BMD: 1-4) or on the
aspect ratio axis (BMD: 5, 6) with greater emphasis on the latter.

The new inversion examples were ran 15 times for 1% error level, choosing as usual 5 best solutions
(out of 36) for each run and the reconstruction plots are shown in Fig. 4.7 and B.5 (App. B) containing
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Figure 4.5: Shape-size distribution reconstructions produced by Pade-DP, Pade-LC and Tikh-DP (left
to right) for the case (2, c, iii) respectively for 1% and 10% error level. The uppermost plot corresponds
to the initial shape-size distribution. The triple (Unc, Dist, Var) in the title of each plot refers to
error-related quantities of shape-size distribution described in Sec. 4.1.

also information about the involved uncertainties in their titles. The top first and second panels of
Fig. 4.7 depict examples of a fixed mixture of oblate and spherical particles combined with very diverse
bimodal log-normal distributions, each of which marrying fine (BMD 1) and very fine absorbing particles
(BMD2) with coarse ones, see Table 4.7. In both of these cases the reconstructions are remarkably good
at making out the different modes not only locating the peaks but also the transition between the modes.
This detail is especially pronounced in the BMD 2, see the smaller 3D plots within the main plots. The
radius-width and the aspect ratio width are reproduced with good accuracy as well, with BMD 1 allowing
more noise into the plot. The third plot from the top of Fig. 4.7 (BMD 3) relates to a case of prolate
particles where both modes pertain to coarse particles. The reconstruction faces greater difficulty but
all in all has similar characteristics, i.e. identifying two modes which overall resemble the initial trends.
The second mode (right), however, appears to be noisier and its peak is shifted on downward and right
and we further observe a height suppression of the peaks and some artifacts in the bottom of the graph.
The modes on the last plot (BMD 4) pertain to very coarse particles combined with the sphere-spheroid
mixture used extensively in the previous simulations. Here, in addition to the overall good response of
the method, we can see that the reconstruction senses also the small height difference between the mode
peaks. The second mode (again) suffers bigger errors but within a reasonable level.

Shape bimodality appears to be more problematic, probably as a result of the limited access we
have on kernel values with respect to the aspect ratio. Fig. B.5 shows our attempts to reproduce two
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Figure 4.6: Shape-size distribution reconstructions produced by Pade-DP, Pade-LC for several cases.
From left to right: initial shape-size distribution, Pade-DP-reconstructed distribution, Pade-LC-
reconstructed distribution. The triple (Unc, Dist, Var) in the title of each plot refers to error-related
quantities of shape-size distribution described in Sec. 4.1.

atmospheric settings (BMD 5, 6 in Table 4.7) of a fixed particle size combined with a mixed ensemble
consisting of oblate and prolate particles. The example BMD 5 (upper panel) shows correct identification
and detection of the two modes (location, radius width) but the strength of the modes (peak heights) is
reversed. The second example, BMD 6 (lower panel) pertains to weakly absorbing particles (in contrast
to BMD 5) with much larger radius width. The relative strength of modes and their separation is well felt
by the reconstruction, but the upper mode is noisy and the peak of the lower mode is shifted downward.
Bimodal distributions with vicinal shape modes, e.g. using a prolate ensemble with η = 1.15 and η = 1.5,
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are often misrepresented after the inversion, showing the two modes merged to a single wider one and
thus revealing a shortcoming in sensitivity. We should underline that the right choice of spline number
and degree by the algorithm (SA1) seems to be more delicate when the bimodality is on the aspect ratio
axis. In this case, further simulations showed that a smaller projection dimension is often needed, i.e. a
small number of spline points and/or degree, in order to better identify the two modes.

As demonstrated, the results are generally very optimistic also for the case of bimodalities. The re-
constructions of such shape-size distributions are quite obviously associated with more limitations than
the ones with a single mode. High error levels can have a devastating effect in the reconstruction, caus-
ing distinct (mode-like) artifacts, shifting, conflation or even disappearance of a mode. Similar effects
are to be observed for a higher absorption level, which further has a stronger impact as compared to
monomodal distributions. The results shown here are relatively limited as compared to the range of syn-
thetic possibilities that a two-dimensional distribution can offer. Furthermore it is unknown what is the
exact connection and implications regarding bimodal two-dimensional distributions and real atmospheric
scenarios involving aerosols and future field work is needed to explore this experimentally.

Table 4.7: Simulation setup for the reconstruction of bimodal shape-size distributions (BMD) with a
fixed refractive index and 1% error level. The following combinations were used: BMD 1: (1, a, iii) ,
BMD 2: (2, a, iii) , BMD 3: (3, e, ii) , BMD 4: (4, d, i) , BMD 5: (3, b, iii) , BMD 6: (4, c. i).

log-normal distribution

No 1 2 3 4 5 6
median radius [0.05, 1.4] [0.2, 1] [0.5, 1.6] [0.8, 1.7] 0.5 0.8
mode width [2.3, 1.2] [1.6, 1.4] [1.3, 1.2] [1.2, 1.2] 1.2 1.4
radius range (µm) [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2]
number concentration [600, 1] [30, 1] [12, 1] [6, 1] 1 1

aspect ratio distribution

(a)

{
1/2, if η = 0.87,

1/2, if η = 1,
(b)

{
1/3, if η = 0.77,

2/3, if η = 1.3,
(c)

{
1/3, if η = 0.87,

2/3, if η = 1.3,

(d)


1/3, if η = 0.87,

1/3, if η = 1,

1/3, if η = 1.15,

(e)

{
1/2, if η = 1.3,

1/2, if η = 1.5,

refractive index

(i) 1.33+0.001i (ii) 1.4+0.005i (iii) 1.5+0.01i

4.1.4 Collateral retrieval statistics

We can get some useful generalizations, by taking the mean of the ERQ over all parameters with respect
to the factor we want to examine (error, shape, size and RI). The parameter svcf is excluded from the
mean of Dif (%), but included in the mean of Var and Unc, and nt is entirely left out. We emphasize
that the mean is computed by the values in Tables C.3-C.9 and not as the mean of the mean values from
the synoptic Table 4.8. All the following analysis refers exclusively to Pade-DP.

On average the effective aspect ratio for oblate particles gets better approximations for larger sizes
reducing their Dif from 29.24% (size No 2) to 23.33% (size No 4), and prolate ones get worse approxima-
tions raising their Dif from 10.24% to 12.52%. The parameter svcf for prolate particles also gets worse
on average with absolute Dif range 0.9697 − 1.6290 for larger sizes but for oblate ones it increases and
then drops again with 0.1699, 0.2022, 0.1794 for the sizes No 2, 3 and 4 respectively. The uncertainties
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Figure 4.7: Reconstructions of bimodal shape-size distributions with two distinct radius-modes. Top
down, right: reconstructions corresponding to the BMD 1-4 from Table 4.7. Left: Initial shape-size
distributions for the reconstructions on the right. Smaller plots within the main plots show the shape-
size distribution in 3D.

for aeff belong on average within the Unc-range 1.39-4.05% for all sizes, with the prolate shapes in size
No 2 having slightly the largest values (Unc); the variability with less than 1% on average is considered
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Figure 4.8: All parameter retrievals of Pade-DP (left) and Pade-LC (right) for at, vt and reff for X1, X2
and X3 with respect to their Dif (upper panel) and Var (lower panel). The numbers 1− 27 on the x-axis
correspond to the order of the results as seen top down in any of the Tables C.3-C.9 or C.12-C.18

insignificant. On the other hand the uncertainties for svcf are much more significant on average, with
Unc: [7.11%, 6.46%, 34.18%] for X1, [15.82%, 15.05%, 39.15%] for X2 and [13.52%, 13.65%, 26.46%] for
X3, where every triple refers to oblate, sphere-spheroid-mixed and prolate particles respectively. We see
that Unc essentially doubles for larger sizes (size No 2→ 3, 4) between oblate and sphere-spheroid-mixed
particles, and prolate particles have by far the largest rates for all sizes. The variability also follows a
similar pattern but with much lower values, i.e. [2.22%, 2.18%, 15.18%] for X1, [5.78%, 7.25%, 17.74%]
for X2 and [4.01%, 3.43%, 11.08%] for X3.

Now, we would like to quantify the effect of the initial data noise to the retrieved values. The
transition to higher error levels for the parameters at, vt, reff and aeff costs on average less than 4%
increase in accuracy, while the mean range for all error levels and all cases is 5.69 − 16.48% (Dif). For
instance, in Table 4.8 we see that at is retrieved on average 8.17%, 14.74% and 10.53% for X1, X2
and X3 which fall within the aforementioned range. More specifically, using Tables C.3-C.9 we find
that its Dif for 1%, 5% and 10% error level is [4.59%, 7.45%, 12.46%] for X1, [10.30%, 14.16%, 19.75%]
for X2 and [4.00%, 11.21%, 16.38%] for X3. Notice that the greater accuracy losses occur for the cases
X2 and X3, which is a more general feature of larger particles, see Table 4.8. The average range for
Unc for all error levels and all parameters is 1.35 − 12.67% with an average of 4.27% and 5.15% for
the data-error transitions 1 − 5% and 5 − 10% respectively. For instance, vt is retrieved with mean
Dif [1.35%, 5.07%, 8.95%] for X1, [2.00%, 6.92%, 11.40%] for X2 and [1.38%, 5.57%, 12.67%], where the
triples refer to the transition 1%→ 5%→ 10% in sequence. The variability is very low, as we have seen
previously, and surprisingly the different error levels do not change this significantly so that we have an
average range of 1.78− 4.12% for every case.
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Figure 4.9: Comparison with respect to the accuracy and uncertainty of nt, reff , svcf and aeff between
Pade-DP, Pade-LC and Tikh-DP through several simulation examples. The title of each plot identifies
the specific example and it further reports the ”best” method found for these parameters in total with
respect to Unc, Dif, Var and Overall.
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Table 4.8: Synopsis of regularization results shown in Tables C.3-C.9 (Pade-DP). The parenthesized
terms show the mean value of the respective ERQ within the specified range.

Cases: (2, a-c, iii-v, 1%, 5%, 10%) (X1)

Parameters at vt reff svcf aeff

Difference 0.89−17.56%
(8.17%)

0.15−13.09%
(3.68%)

1.00−13.23%
(6.29%)

− 0.04−30.79%
(13.92%)

Variability 0.53 − 3.95%
(1.53%)

0.27 − 2.51%
(0.98%)

0.52 − 3.45%
(1.42%)

0.95−29.14%
(6.52%)

0.11 − 2.07%
(0.54%)

Uncertainty 0.38 − 4.88%
(2.71%)

0.75−13.51%
(5.13%)

1.04−12.94%
(5.29%)

3.20−61.48%
(15.92%)

0.48 − 5.90%
(1.77%)

Cases: (3, a-c, i, iii, v, 1%, 5%, 10%) (X2)

Difference 4.38−43.68%
(14.74%)

0.32−39.84%
(14.90%)

0.16−16.37%
(7.78%)

− 0.53−34.20%
(13.96%)

Variability 0.74 − 6.29%
(3.02%)

0.98 − 6.24%
(2.94%)

0.42 − 6.32%
(2.73%)

2.82−27.71%
(10.25%)

0.27 − 2.81%
(1.27%)

Uncertainty 0.73−15.88%
(4.91%)

0.75−14.47%
(6.78%)

0.71−14.56%
(6.15%)

2.44−84.41%
(23.34%)

0.32 − 8.21%
(2.97%)

Cases: (4, a-c, ii, iii, v, 1%, 5%, 10%) (X3)

Difference 0.32−31.25%
(10.53%)

0.04−18.11%
(6.79%)

0.04−19.86%
(8.69%)

− 0.65−31.50%
(12.79%)

Variability 0.17 − 3.43%
(1.44%)

0.17 − 6.98%
(1.64%)

0.53 − 5.65%
(2.02%)

1.22−25.08%
(6.17%)

0.15 − 1.64%
(0.66%)

Uncertainty 0.67−10.94%
(4.09%)

0.91−%28.50
(6.54%)

0.83−21.70%
(6.05%)

3.18−61.10%
(17.87%)

0.44 − 5.38%
(2.51%)

Dependency on shape, size, and refractive index

Looking back to the discussion started in Sec. 4.1.1 with the upper panels of Fig. 4.4 and also the analysis
from Tables 4.2-4.3, we have established that particle size makes an essential distinction regarding the
condition of the linear systems involved and the efficiency with which the parameters are retrieved.
Moreover, we have previously demonstrated in Sec. 3.5 the smoothing effect of shape and refractive
index via the scattering efficiencies, which ultimately translates to ill-posedness in the inversion. We
would like to explore further the strength of these factors relative to one another and with respect to
the retrieved data. The effects of ill-posedness on spherically modelled particles (3.1.9), most suitably
used to model small particles, are usually quite distinct following the general rule of increasing deficiency
with increasing imaginary part and/or decreasing real part of the RI and/or particle size. It is not
striking that the complexity of non-spherical geometries and the additional smoothing that is imposed
by the generalization of the Lorenz-Mie model (additional integration) will make it hard to make sense
of possible patterns. An SVD-analysis is an attempt for a theoretical answer.

The plots on the middle panel of Fig. 4.4 depict Picard-plots with variable refractive index, i.e.
1.6+0.001i (left) and 1.7+0.05i (right), and a fixed shape-size distribution formed by the sphere-spheroid
mixture in Table 4.1 and the size distribution No 2. The plots show that the decay of SVD-coefficients
is markedly disturbed for the much more absorbing case with 1.7 + 0.05i. However, the falling trend
remains in a safe position with respect to the singular values and does not seem to yield a much bigger
risk. Further examples show that oscillations in the decay rate of the SVD-coefficients, are a general
characteristic of additional ill-posedness, here imposed by absorption, and can be more aggressive than
the ones depicted. Shape alteration produces a similar effect to the refractive index, see the Picard-plots
in the lowermost panel of Fig. 4.4 for oblate (left) and prolate spheroids (right). Here we used the size
distribution No 3 and a refractive index fixed to 1.33+0.001i. In this particular example, prolate particles
are slightly more likely to compromise the retrieval. The differences of oblate vs prolate spheroids start
to grow large when we add more absorption (not shown), whereby we observe a more rapid change
from the side of prolate spheroids. The response to the case of sphere-spheroid mixture is much more
unpredictable in the general case, but in many cases follows the trend of the less oscillatory of the two
shapes (oblate or prolate).
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Investigating more examples leads to the realization that particle size has the most drastic signature,
as strongly indicated by the upper panel of Fig. 4.4. Indeed, varying the combinations of shape and
refractive index for a fixed size, does not alter in an essential manner the relation between the decay
rates of the singular values and the SVD-coefficients. Thus, particle size poses a greater risk in theory
in the presence of errors as opposed to shape and refractive index. The risk increases with increasing
particle size, and as we saw, particles with effective radius ∼ 0.95µm (X3) have already reached the
point where the Picard condition is not satisfied. We performed limited experiments (not shown) and
even larger particles with reff = 1.2 and 1.4 µm, in which we assured that this was not just a worst case
scenario, but the rule. These instances showed that the SVD-coefficients get overwhelmed by errors and
oscillate over the graph of the singular values regardless of the shape or the refractive index. This does
not mean that the method (Pade-DP) is most likely to fail but rather that when it fails, the solutions
will be more assailable to errors than they would be for smaller sizes. This might explain why the ranges
of the uncertainties are mainly spreading for the largest particles (No 2 and 3). For example, the volume
concentration has the Unc ranges 0.75 − 13.51%, 0.75 − 14.47% and 0.91 − 28.50% for X1, X2, and X3
respectively, see Table 4.8. We note though, that retrievals with size No 2 have smaller Unc only by
1.25% and 2.67% on average from the sizes No 4 and 3 respectively.

Yet, it remains inconclusive from the SVD-analysis, if any of the two other factors, namely shape
and refraction, or any combination of the latter with size, has greater effects, which suggests that
these parameters are too involved and span a greater range of non-trivial possibilities of response. The
theoretical hints are mainly applicable whenever the regularization effects are milder, and since Pade-DP
handles robustly most of the occasions, we do not expect to see clearly the aftermath of the effects
discussed. A number of examples indicates that shape restricts or suspends the effect of absorption in
favor of the retrieval. Let us consider cases with 1% error level to minimize the error involvement, e.g.
(2, a-c, reff) in Table C.3. Then, the order of Dif (min-to-max) is 1.6 + 0.001i . 1.5 + 0.01i < 1.7 + 0.05i
for oblate ensembles, 1.6 + 0.001i < 1.7 + 0.05i < 1.5 + 0.01i for sphere-spheroid mixed ensembles,
and 1.6 + 0.001i . 1.7 + 0.05i . 1.5 + 0.01i, for prolate ensembles; the differences in Var and Unc are
very subtle to analyze. The converse, i.e. fixing a refractive index and observing the oblate vs prolate
instances interchange in retrieval efficiency, is also encountered. For instance, the cases (3, at, vt, reff)
in Table C.9 are found to be more troublesome (higher Dif) for prolate than oblate spheroids for the
most absorbing case 1.7 + 0.05i, supporting the theoretical expectation we saw before (SVD). However,
for 1.33 + 0.001i we observe the opposite effect and for 1.5 + 0.01i we have equivalence.

The seemingly undirected ill-posedness between shape, size and refraction can be addressed again in
statistical terms in the retrievals of Pade-DP. The largest variation on average in accuracy occurs with
respect to the refractive index, having the Dif range 9.82− 15.64% and the order of increasing Dif is as
follows, 1.6 + 0.001i < 1.5 + 0.01i . 1.7 + 0.05i < 1.4 + 0.005i < 1.33 + 0.001i. The first thing to notice
is that, the less accurate case on average is the one with the smallest real part of RI (1.33) and not the
one with the largest imaginary part of RI (0.05). Moreover, this order conforms in the most part with
the one found on average by arranging (min-to-max) the examined refractive indices according to the
condition numbers of the discretization matrices using the best solutions of Pade-DP. The exception is
the interchange of 1.7+0.05i, 1.5+0.01i, which is a negligible discrepancy since they have vicinal condition
numbers. Shape and size are the next in order, and for all parameters we have Dif range 8.99−12.95% with
b . c < a, and 8.02− 12.85% with No 2 < No 4 < No 3, where we used the notation from Table 4.1. On
the other hand, the uncertainty (Unc) is varying more with respect to shape 5.10−10.85% on average and
a . b < c and then follow the RI with 6.52−9.40% and size with 6.16−8.83%; the order with respect to RI
and shape remain the same. The variability, as already shown, is more subtle and has the average range
2-4% for all ERQ and the RI-order 1.6 + 0.001i < 1.4 + 0.005i < 1.5 + 0.01i . 1.7 + 0.05i < 1.33 + 0.001i,
and the same order of shape and size with Unc.

Summarizing the previous analysis, we saw that retrievals with larger particle size appear to be
more susceptible to errors inherently, while in practice for Pade-DP the refractive index and shape are
associated with the largest losses in accuracy and higher uncertainties on average. The refractive index
1.33 + 0.001i and the size No 2 appear to be the most problematic on average. Prolate shapes raise the
level of uncertainties on average and oblate ones lower the level of accuracy. Evidently, size, shape and
RI are benchmarks for the retrieval efficiency and even partial knowledge allows to some extent a better
judgement of the difficulty and the odds of a successful retrieval.
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Table 4.9: Synopsis of regularization results shown in Tables C.12-C.18 (Pade-LC). The parenthesized
terms show the mean value of the respective ERQ within the specified range.

Cases: (2, a-c, iii-v, 1%, 5%, 10%) (X1)

Parameters at vt reff svcf aeff

Difference 0.08−36.05%
(12.08%)

0.13−16.72%
(4.98%)

2.15−15.40%
(6.09%)

− 0.33−33.10%
(12.51%)

Variability 0.67 − 5.44%
(2.19%)

0.25 − 2.54%
(1.07%)

0.48 − 4.14%
(1.86%)

0.61−35.38%
(10.34%)

0.18 − 1.59%
(0.78%)

Uncertainty 0.43−31.69%
(8.48%)

1.29−14.65%
(6.40%)

1.06−23.10%
(8.96%)

4.78−86.85%
(33.34%)

0.50 − 6.87%
(3.82%)

Cases: (3, a-c, i, iii, v, 1%, 5%, 10%) (X2)

Difference 5.64−36.29%
(15.66%)

0.16−39.44%
(15.81%)

0.02−15.52%
(8.45%)

− 0.10−31.56%
(14.02%)

Variability 1.57 − 6.53%
(3.59%)

0.85 − 8.11%
(3.63%)

0.72 − 7.04%
(3.28%)

2.93−43.69%
(15.70%)

0.48 − 4.10%
(1.85%)

Uncertainty 0.79−12.10%
(4.41%)

0.73−18.05%
(6.50%)

0.57−18.86%
(6.52%)

2.16−66.77%
(24.57%)

0.36 − 6.06%
(2.88%)

Cases: (4, a-c, ii, iii, v, 1%, 5%, 10%) (X3)

Difference 0.24−33.34%
(10.95%)

0.23−19.15%
(6.42%)

0.02−15.09%
(7.17%)

− 0.35−29.82%
(11.88%)

Variability 0.29 − 4.05%
(1.82%)

0.26−14.31%
(2.26%)

0.50−12.32%
(2.63%)

1.16−38.68%
(9.27%)

0.26 − 3.07%
(0.90%)

Uncertainty 0.58 − 9.85%
(4.07%)

0.84−20.78%
(5.95%)

0.75−18.85%
(6.32%)

2.69−70.74%
(22.26%)

0.42 − 6.51%
(2.71%)

4.1.5 The ideal lidar setup

There is a sort of ongoing debate nowadays between people in the lidar industry and researchers about
whether or not the optical products offered by lidars at the present moment are sufficient in order to carry
out the microphysical inversion. The lidar setup 3β+ 2α, with 3 backscatter coefficients in 355, 532 and
1064 nm and 2 extinction coefficients in 355, 532 is established to be the minimum requirement to study
at least spherically modelled particles, with a rather rich literature backing it, e.g. [14, 86, 107, 113, 131],
so that those 5 channels are part of virtually any Elastic lidar nowadays. Furthermore, recent research
studies confirmed that depolarization signals have to be incorporated in the usual 3β + 2α in order
to study non-spherically modelled particles, see [18, 112]. Lately this debate was reduced to how many
depolarization channels are sufficient, at least among the already existing ones in today’s lidar technology,
i.e. the 355, 532 and 1064 nm horizontally polarized backscatter. Although our investigations targeted
this very question in the beginning, soon it was updated to ”what is the ideal channel combination”, as
it was early realized that certain combinations might be detrimental or less advantageous. Moreover,
numerous results from campaigns (e.g. SAMUM) underline the necessity of the use of depolarization
information in order to differentiate between particle non-sphericity levels. This is why all Raman-Elastic
lidars are equipped currently with at least 1 depolarization channel (d), usually in 532 nm, and therefore
the setup 3β + 2α+ 1d is a minimum is our tests here.

The simulations are conducted with Pade-DP and cover the following lidar setups:

(1) 3β + 3α+ 3d (333),

(2) 3β + 3α+ 1d(532) (331),

(3) 3β + 2α+ 3d (323)

(4) 3β + 2α+ 2d(355, 532) (322),

(5) 3β + 2α+ 1d(355) (3211),

(6) 3β + 2α+ 1d(532) (3212),

where the parenthesized terms on the right are abbreviations of the given setup. Apart from the lack of
any coverage in literature of any such experiment for non-spherical particles, the novelty lies also within
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the first two setups with the indication ”3α”. The latter involve an additional extinction coefficient at
1064 nm, a technology not yet available but discussed in scientific circles as one of the next steps in lidar
advancement. Altering the lidar setup is nothing more than a regularized inversion varying the optical
data vector from 6 up to 9 data points (here) depending on the specified setup (1-6). From mathematics’s
perspective it should be beneficial in principle to add more data points, at least for stability, but due
to the ill-posedness and model limitations we cannot foresee if such a step is a real improvement. For
instance older experiments for spherical particles with the additional wavelengths in 400, 710 and 800 nm
(so-called 6β + 2α setup) in [14, 105, 107] did not give compelling reasons as opposed to the use of the
3β + 2α setup. Moreover, it is unknown if there is an essential difference in using the same amount of
data points but occupy different lidar channels, e.g. setups 331 − 322, and 3211 − 3212. It should be
noted that the profuse (mathematically) addition of 1-4 data points, requires a very high level of lidar
sophistication, from engineering and implementation point of view, in order for the extra channels to
provide whole extinction or polarization profiles in the aerosol layer under examination. Therefore such
theoretical analyses are really crucial for the future of lidars. The procedure followed here to compare
the different setups is the same as the one used for the comparison of the methods in Sec. 4.1, i.e.
we count appearances for the best setup among the ones under comparison in terms of Dif, Var and
Unc in every complete retrieval. A huge amount of synthetic retrievals took place also here, which is
constituted by the complete setting of the central particles sizes No 2 and 3, i.e. cases (2-3, i-v, a-c,
1%, 5%, 10%) in Table 4.1 reran for all (6) the aforementioned setups. Since Pade-DP is proved to be
generally accurate and stable in a variety of instances, this comparison is expected to be more delicate
than the one conducted with respect to the different methods.

A first aspect of this attempt involved comparing all the setups 1-6 at once, which further guided the
next steps. Fig. 4.10 summarizes the results for size No 2 (upper panel) and 3 (lower panel) through
pie charts, which are given from left to right with respect to Unc, Dif, and Var for all parameters (R-
and S-parameters). Each piece of a specified chart represents the percentage of occurrences that a setup
appeared as the one among the six of them with the lowest respective ERQ, for all parameters (R+S),
refractive indices (i-v), shapes (a-c) and error levels (1%, 5%, 10%). This means that the rates (%) are
calculated over a total of 180 (5×3×3×4) RA, plus 135 (5×3×3×3) SA, see the notation of Sec. 4.1.1.
A quick look at the distribution of percentages in the pie charts indicates conservative disagreements in
accuracy and more essential ones in uncertainties (Unc and Var). More specifically, for particle size No
2, the setup 333 is leading in (Unc, Var) with (38%, 29%) followed by 323 with (25%, 18%). Especially
for Unc, this trend is the result of a big gap found in R-parameters between 333 (43%), 323 (34%), and
the rest of the setups lying within only 3-9% of the total appearances (not shown here). Focusing on
accuracy, 323 comes first and 333 is only third but very close to the second in ranking, 3212. Again
looking at only the R-parameters (not shown here), there is virtually no distinction between the leading
setups (RA Dif: 18-22%), except that 3211 and oddly 333 find themselves as the very last in Dif RA
scale (13%, 7%). The differences in variability between the three leading setups, 3212, 331 and 333 are
marginal as well with RA Var: 21-22%. This is not the case for the shape parameters (not shown) where
323 is found more often most accurate (33%) than 333 (24%) and 3212 (17%). Moreover 333 prevails
in (SA) Var with 40% vs 21% of 323, and in lesser degree in Unc with 30% vs 27% of 3212. Regarding
the results on the larger particle size No 3 (Fig. 4.10, lower panel) we observe that, conversely, 323 now
gains the upper hand in Unc with 33% vs 333 with 25%, and 333 prevails in accuracy with 23% vs 323
with 16% but with very small difference from 331 with 21%. Furthermore, there are small differences in
variability between the setups in general e.g. the leading setups are 3212 with 23% and 333 with 20%.

We now got the sense that 323 and 333 have an overall greater potential in Unc and Var, but their
advantage in accuracy, especially 333, is somewhat controversial. Moreover 322 and 3211 appear as the
least competent and 331 and 3212 have rather dubious appearances. It is sensible enough to consider
323 and 333 as the safest options, and there is further no indication that any of these setups is disastrous
or far worse from the others. It is difficult, though, with this process to get closer to definite answers
to the topics discussed before, e.g. how many and which depolarization data are worth using. In order
to differentiate in greater detail the algorithm’s behavior and preferences in the different setups we
conducted the following one-to-one direct comparisons: 333 − 331, 333 − 323, 333 − 322, 333 − 3212,
331−322, 331−3211, 331−3212, 323−322, 323−3212, 322−3212 and 3211−3212. The results for sizes
No 2 and 3 are similar in great extent and only the ones for size No 3 are given here in Table 4.10. All
percentage rates (%) in this table count the number of appearances of a setup as best within a specified
pair (∗ − ∗) whose counterparts add up to 100% and correspond to the setup comparison on the left
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Table 4.10: Comparison of lidar setups for particle size No 3. A rate (%) counts the number of appear-
ances of a setup as best within a specified pair. A pair of rates corresponds to the setup comparison on
the left column and is given in the same order. Each triple of pairs within a specified ERQ (Unc, Dif,
Var) corresponds to the rate of appearances in the R-parameters (top), the S-parameters (middle) and
the total rate i.e. no distinction in R, S (bottom).

Setup comp./ERQ Uncertainty Difference Variability
(1) 333− 331 61%− 39%

63%− 37%
62%− 38%

49%− 51%
61%− 39%
54%− 46%

53%− 47%
53%− 47%
53%− 47%

(2) 333− 323 30%− 70%
55%− 45%
41%− 59%

46%− 54%
41%− 59%
43%− 57%

42%− 58%
50%− 50%
45%− 55%

(3) 333− 322 48%− 52%
61%− 39%
54%− 46%

47%− 53%
37%− 63%
43%− 57%

43%− 57%
54%− 46%
48%− 52%

(4) 333− 3212 53%− 47%
59%− 41%
56%− 44%

53%− 47%
55%− 45%
54%− 46%

39%− 61%
57%− 43%
47%− 53%

(5) 331− 322 36%− 64%
43%− 57%
39%− 61%

47%− 53%
33%− 67%
41%− 59%

42%− 58%
57%− 43%
49%− 51%

(6) 331− 3211 44%− 56%
46%− 54%
44%− 55%

54%− 46%
44%− 56%
50%− 50%

36%− 64%
50%− 50%
42%− 58%

(7) 331− 3212 40%− 60%
51%− 49%
45%− 55%

59%− 41%
39%− 61%
50%− 50%

44%− 56%
57%− 43%
50%− 50%

(8) 323− 322 83%− 17%
50%− 50%
69%− 31%

61%− 39%
47%− 53%
55%− 45%

59%− 41%
47%− 53%
54%− 46%

(9) 323− 3212 83%− 17%
40%− 60%
72%− 28%

56%− 44%
68%− 32%
63%− 37%

44%− 56%
78%− 22%
50%− 50%

(10) 322− 3212 59%− 41%
54%− 46%
57%− 43%

65%− 35%
58%− 42%
62%− 38%

42%− 58%
50%− 50%
46%− 54%

(11) 3211 − 3212 55%− 45%
37%− 63%
47%− 53%

42%− 58%
50%− 50%
45%− 55%

34%− 66%
41%− 59%
37%− 63%

column, given in the same order. Each triple of pairs within a specified ERQ (Unc, Dif, Var) corresponds
to the rate of appearances in the R-parameters (top), the S-parameters (middle) and the total rate, i.e.
no distinction in R, S (bottom). The interpretation of the results is based mostly on the total rate of
the competing setups, provided that it does not deviate greatly from the partial rates related to the R-
and S- parameters.

Focusing on the comparisons No 8-11 we can see that we have the order of setups from most to least
efficient is 323 > 322 > 3212 > 3211. The statement 3212 > 3211 suggests that depolarization at 532 nm
is more useful than at 355 nm from the point of view of the inversion. This is good news since most
Raman-lidars with a single depolarization channel use the setup 3212. The contribution of the channel
at 355 nm seems also to subvert the action of 322, which mainly overcomes it with an overall better
behavior vs 3212, see No 10, but it is perhaps the reason of its undermined performance in the pie charts
in Fig. 4.10. On the other hand the additional depolarization at 1064 nm is an overall improvement,
see No 8 and 9, which is reconfirmed by the setup comparison No 1, where we have 333 > 331. This
finding is in agreement with simulations carried out by [44] suggesting that the depolarization at 1064 nm
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Figure 4.10: Comparison of lidar setups for the particle sizes No 2 (upper panel) and 3 (lower panel),
through pie charts. Left to right: pie charts with respect to Unc, Dif, and Var for all parameters (R-
and S-parameters). Each piece of a specified chart represents the rate of times that a setup appeared
as the one with the lowest respective ERQ, for the specific group of parameters (R / S / T), for all
refractive indices (i-v), shapes (a-c) and error levels (1%, 5%, 10%). The designated piece marks the
highest percentage from which on the rest descend counter-clockwise.

offers an essential uncertainty reduction. In the case of size No 2 (not shown), 333 is much better in
Unc and Var (77% and 58%) than 331, but worse in accuracy (38%) in R-parameters and all in all
(R+S) they end up almost equivalent in Dif. Now, since 3212 > 331, see No 7, it seems that the
additional extinction coefficient at 1064 nm does not provide a solid improvement. This is also supported
by the comparison 333 − 323 (No 2) in which 333 is clearly an inferior option. In the case of size No
2, although 323 is even more frequently more accurate (Dif: 64%) than 333, and the latter has a clear
advantage in the uncertainties (Unc, Var): (66%, 56%). However, this actually enhances the argument
that we cannot rely on an additional extinction (at 1064 nm), since the results lack the consistency of
a general improvement. The notion, that coming up with the right combination of data points matters
more than blindly adding more data points, is proved numerous times throughout the comparisons. In
addition, from the comparison No 5 pertaining to setups having equal amount(7) of data-points, we
obtain 322 > 331 which suggests that the algorithm is more eager to go down the path of adding more
depolarization- rather than extinction information. The comparisons No 6 and 7 lend even more credence
to this argument, showing that even though 3211, 3212 use one data point less than 331, they are still
comparable or better than 331. Note, that for size No 2 they are more pronounced differences in favor
of 3211, 3212 and against 331.

Conclusively, we have now a solid basis in favor of 323 as more suitable and consistent setup for the
microphysical retrieval problem. 333 provides in many cases an improvement but it does not seem to
be a fulfilling answer to the coming lidar advancements. Finally, it remains an open question for future
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investigations if the wavelength 355 nm acts in a restraining or a supportive way, i.e. whether or not the
setup 3β + 2α+ 2d(532, 1064) has an overall advantage against 323.

4.2 Synthetic retrievals with unknown refractive index

4.2.1 Retrieval details in view of the fixed-kernel database

We proceed now to the second phase of simulations considering limited knowledge on the refractive index
(RI). As explained earlier, the RI cannot be fully unknown because of the vast raise in non-linearity of
the Fredholm integral equation and therefore one has to order a grid beforehand. In a measurement case,
it is often possible to have at least a very rough sense of the atmospheric scenario under consideration, to
an extent that this grid can be reasonably restricted and then refined to achieve a desired accuracy see
e.g. [113, 131]. The refinement of the grid is a crucial step as shown in [131], which is unfortunately not
available in our case and is a bottleneck in all current adaptations of aerosol microphysical retrieval using
a fixed kernel database. In all experiments that follow, we take as a grid all (42) possible combinations
of real- (RRI) and imaginary parts (IRI) of refractive index from Miescka’s database, see Table 3.2.

The solution algorithm SA2 (Sec. 3.6) followed here is basically an advanced version of the used for
simulations with fixed RI (SA1) reran over and over again for all possible RI in our grid. The final retrieval
products, which now include the refractive index too, are again the result of the same minimization
process based on least residuals. Obviously, running every single inversion 42 times increases considerably
the computational time of massive simulations. For instance, for Pade-DP, just by running for a fixed
shape-size distribution for all spline numbers (6-14) and degrees (2-5) used before we would need about
2.6 times more time for an inversion over the whole RI grid, leading to 27-35 minutes of run time. Pade-
LC is extremely slower than all the other methods, due to its vast memory needs for running the iteration
scheme multiple times (100 here) for every discretization matrix, which, in terms of the previous example,
results in several hours (> 3) of run time. Again, this computational hindrance for Pade-LC is only a
problem for the massive nature of our experiments in order to assure the statistical significance of our
results, which is not usually the case for a measurement. However, preliminary numerical experiments
with SA2 combined with Pade-LC and Pade-DP showed that the algorithm works better with the latter.
For these reasons we are going to continue the simulations from now on exclusively with the Pade-DP.

In these simulations we calculate the complex refractive index (RRI+IRIi) and the single scattering
albedo (SSA) at 355 nm (SSA355) and 532 nm (SSA532). We should stress that our endeavor to extract
the refractive index is much more challenging than the retrievals with fixed RI. Simulations in pursuit
of the RI have been proven over the years of the microphysical-retrieval history a handicap even in the
simplified case of the Lorenz-Mie-model (spherical particles) with the epicenter of difficulty being the
IRI. In addition to the usual ill-posedness caused by the RI, the main obstacle here is that there is
actually poor resolution in the grid (because of the use of a fixed-kernel database), which means that if
the minimization process fails to find the correct refractive index, e.g. 1.33+0.01i, then the next guesses,
here 1.33+0.005i, 1.33+0.03i, 1.4+0.005i, 1.4+0.01i, and 1.4+0.03i, will not be reasonably vicinal. On
the one hand, our hybrid algorithm is built in such a way to manage this very situation to some extent,
since it tries to distinguish the best solutions and therefore if it ”misses” the correct RI occasionally but
is successful to identify these guesses and circles around them, then it should be able to converge on
average to the initial refractive index. An effective way to illustrate this and represent graphically the
solution space is by drawing the real- (y-axis) and imaginary parts (x-axis) of the RI separately against
the solution error-levels found with forward calculations, so that the solution quality (least residuals) and
the physical characteristics (RI) are shown simultaneously. Fig. 4.11 shows such an example. There we
show 3 instances of a random dataset (out of 10) from a simulation of a sphere-spheroid mixed particle
ensemble with the size distribution No 1 (Table 4.1) and 1% data error, where the input refractive index
is 1.5 + 0.01i. Each of these plots corresponds to one of the 36 solutions, specified in the title in terms
of their spline point No and spline degree. The white circle marks the input RI and the black asterisk
the one retrieved. The colorbars on the right distinguish the calculated solution error-levels. In these
plots we see two successful attempts of the algorithm to find either the exact (middle plot) or the closest
not-exact (left plot) refractive index and one less successful attempt (right plot). The latter is not among
the 5 best solution picked by the algorithm. As a side-note, we observe that while the error levels are
pretty close to each other for the three instances, the algorithm can still make a distinction and correctly
avoid the faulty RI 30/36 times.
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It should be obvious though that this is a far greater struggle for the inversion than the fixed-RI
retrievals, especially for the imaginary part of the refractive index, where the resolution gap is much
larger than the one for the real part. For this reason, a retrieval with mean IRIs which belong to a
”similar class” of absorption with the initial one, will be considered successful. A less successful but
satisfying result in regard of these limitations is to accept the next best guess, e.g. an initial IRI = 0.01
with retrieved value 0.005 will be acceptable while 0.03 will not. In order to further support this, the
respective retrieved SSA, as a parameter strongly dependent on RI, should be close to the initial one
within 5% relative difference. A disagreement in the initial and retrieved RI will be fairly acceptable
if the corresponding difference in SSA is also small. Fig. 4.12 illustrates the sensitivity of SSA in the
RI with a plot where IRI ∈ [0, 0.1]. First we see the expected decreasing trend of SSA with respect to
the IRI, and further we observe that (here) deviations in the IRI of order 0.001-0.002, bring generally
small changes (0.7− 1.4%) in SSA and thus they can be assumed negligible. On the other hand, larger
deviations in the IRI alter the SSA immensely, e.g. see IRI equal to 0.01 and 0.03. This should not leave
the reader with the impression that a good accuracy in IRI is unimportant, but rather that because
of the limitations described, another priority is also to assure that the rest of the retrieved parameters
(a-g) are affected the least possible even if the RI is not strictly accurate. We deal with this issue in the
subsequent section 4.2.3. The calculations of the SSA in the previous example were done using Mieschka
software tool with RRI = 1.33, aspect ratio η = 1.3, volume-equivalent radius r = 2.2 µm and wavelength
λ = 2π µm. It should be noted that this example was an attempt to show the response of SSA to a
change in RI, but different sizes and shapes might change the SSA-sensitivity on the RI.

Unless the retrieval of the RI was flawless always, the rates Unc and Var for the IRI should be
encountered with much higher tolerance, because of the large resolution gap. Consider, for example, the
initial IRI = 0.001 and the not-worst-case scenario where the 5 best solutions consist of the values 0,
0.001, 0.001, 0.001, 0.005. This results in a Var of 60% and the little worse scenario where we replace
0 with 0.005 would raise Var to 120%. Moreover even if only one of the solutions for any initial IRI is
systematically wrong (for all datasets) but directly vicinal in the database, then it is easy to see that
Var will range from 8% to 20%. In this particular case, the median (m) instead of the mean value
could be a more suitable measure, but it requires a redefinition of the ERQ. We will use the median
as a supplementary tool in our explanations for the IRI as we go through the cases. For this, we need
to consider a form of deviation for medians as an analog of the standard deviation used by the ERQ,
which is done the following way. Assume si is an array of solutions for the i−th dataset with a median
ki = m(si), then the median deviation D is found by

D = D(ki) = m (|si − ki1|) . (4.2.1)

Simply put, D is the median absolute difference of the solutions from the computed median. Based

Figure 4.11: Illustration of the efficiency of the solution algorithm through several plots of solutions
spaces built upon the RI-grid by the inversion. This simulation corresponds to a sphere-spheroid mixed
particle ensemble, with the size distribution No 1, 1% data error and the input refractive index 1.5+0.01i.
Each of the three plots corresponds to one of the 36 solutions, specified in the title, for one (random)
dataset (out of 10). The white circle marks the input RI and the black asterisk the one retrieved which
is additionally given in the title. The colorbars on the right distinguish the solution error-levels.
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on this we can define the variability of a single (i−th) dataset as the ratio var
(m)
i = D/ki, the median

variability of all the datasets as Var(m) = m
(
var(m)

)
and the uncertainty Unc(m) = D(k)/m(k), where

k = [k1, . . . , kn] (here, n = 10). Moreover, if I is the initial value, then the median relative difference is

defined as Dif(m) = m (|si −I 1|) /I .

4.2.2 Simulation configuration and retrieval results

The simulations are ran here using the same scheme as with RI-free ones, with the mere exception that the
data are being regenerated 10 times (not 15) for a specified error level. The initial parameter configuration
for these retrievals remains the same with respect to the shape-size distributions we used before (see 1-4
and a-c in Table 4.1), and we further extend the list of RI to: (i) 1.33 + 0.001i, (ii) 1.4 + 0.005i, (iii)
1.5 + 0.01i, (iv) 1.6 + 0.001i, (v) 1.7 + 0.05i, (vi) 1.33, (vii) 1.33 + 0.01i, (viii) 1.33 + 0.03i, (ix) 1.4, (x)
1.4 + 0.001i, (xi), 1.4 + 0.1i, (xii), 1.6 + 0.005i, (xiii) 1.6 + 0.03i, and (xiv) 1.8 + 0.1i, see the updates in
Table 4.11. All the examined cases stem from combinations in this table. The resulting lidar ratios in
532 nm reach up to 80 sr. We also keep the form (size, shape, RI, error level, parameter, ERQ) and its
conventions in order to refer briefly to a case. The cases together with the retrieval results are found on
Tables 4.12 and in App. C in Table C.21 and C.24, the given Var/ty and Unc/ty refer to the usual ERQ
as defined in Sec. 4.1 through the mean and the usual standard deviation, and the Average refers to
the mean computed value from all datasets. Especially for the IRI we include the median version of the
ERQ defined through Eq. 4.2.1. For the RRI, we can safely consider that there is not much difference
between the mean- and the median-related ERQ. Note that the reference to a case in these tables may
correspond to a table continued in a subsequent page labeled by ”Table ∗∗ continuation”. Tables 4.12
and C.21 consist of retrieval results for size No 2 and 3 (the central sizes) respectively combined with all
the RI used in the fixed-RI retrievals (i-v), all the basic geometries (a-c) and all the error levels (1%, 5%,
10%). Table C.24 focuses on comparisons of different cases with 1% error level with respect to either size
(1-4) or shape (a-c) and also includes more cases under the label ”Other cases” (last sub-table). Unless
it is stated otherwise, ”variability” (Var), ”uncertainty” (Unc), and ”uncertainties” (Unc, Var) will refer
to the mean-related ERQ.

As a general remark, the real part of the refractive index is retrieved accurately with a few exceptions
and further with very low uncertainties in the vast majority of cases. Indeed we have a tiny variability
(< 5%) and a very small uncertainty (< 10%), remarkably for all error levels. There are mainly two
exceptions attributed to prolate particles, the case (3, c, v, 1%) in Table C.21 with initial RI = 1.7+0.05i
poorly approximated by 1.33+0.005i, which is a worst-case scenario, and the case (1, c, xiii, 1%) in Table

C.24 with initial RI = 1.6 + 0.03i retrieved as 1.412 + 0.0106i (m = 1.4 + 0.01i, Unc(m) = 0%), which is
another rare case. The latter and especially the former case show very pronounced differences between
the initial- and the retrieved SSA, e.g. at 355 nm we have 0.8044−0.8870, and the chasm 0.5820−0.8249

Figure 4.12: Single scattering albedo vs imaginary part of the refractive index with IRI ∈ [0, 0.1] and
RRI: 1.33. The calculations were done with Mieschka software tool using with RRI = 1.33 and aspect
ratio η = 1.3, volume-equivalent radius r = 2.2 µm and wavelength λ = 2π µm.
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respectively. This already predisposes us for large discrepancies in the rest of the parameter-retrievals as
well, which indeed holds as we will see in the following section (4.2.3). By contrast, the imaginary part is
much harder to retrieve and the associated uncertainties are in general much higher. However, as already
explained, the high Unc- and Var- rates for the IRI are to be expected in some degree, unless all the best
solutions are exactly spot on, which is the case for many of our results but not the rule. Moreover, the
median variability Var(m) was found 0% in every single case (Tables 4.12, and C.21-C.24), except (3, c,
ii, 1%) in Table C.21, which means that at very least 60% of the best solutions of every solution space is
closer to the retrieved median value. The same is obviously true whenever Unc(m) is zero. This gives a
good level of confidence for the retrieved solutions in case of a reasonable approximation by the criteria
discussed before.

Focusing now on results with 1% data error, see Table C.24 and the corresponding parts of Tables
4.12 and C.21 (for 1%), we see quite reasonable approximations of the IRI. Especially noteworthy are
the retrievals with high- (IRI: 0.01, 0.03) and extreme (IRI: 0.05, 0.1) absorption in which we get high
accuracy, a variability mostly below 20% and a reasonable uncertainty mostly below 50%, where at the
same time the Unc(m) is very often zero. Exceptions among the high-absorption cases with 1% (i.e. Var
or Unc larger than 50%) are the cases (1-2, c, viii, 1%) in Table C.24 and (2-3, c, iii, 1%) in Tables
4.12 and C.21. The former cases (RI = 1.33 + 0.03i) are actually accurate retrievals with very low

disagreement among the solutions since they have zero Unc(m) and Var(m) and further the respective
SSA are marginally distant from the initial values, all of which point to an algorithm convergence towards
the initial RI. On the other hand, this is not true for the other cases (RI = 1.5 + 0.01i) where we have
a prediction of weak absorption with IRI = 0.00116 for size No 2 and IRI = 0.000580 for size No 3
(m = 0.001 for both sizes No 1 and 2) and as a result the retrieved SSA differ considerably from the
initial ones. Now turning to lower-absorption cases, it appears that the largest discrepancies in IRI-
accuracy are found in 1.33 + 0.001i and secondarily in 1.4 + 0.005i, 1.4 + 0.001i and 1.4 + 0i. This
conforms with earlier findings in the fixed-RI simulations, where it was shown that 1.33 + 0.001i and
1.4+0.005i were related to lower accuracy levels for the R-, and the S-parameters see Sec. 4.1.4. What’s
interesting is that the retrieval quality especially of 1.4+0.001i and 1.4+0i seem to depend prominently
on particle size, see Table C.24. Intriguingly, the larger sizes No 3 and 4 have very good approximations
of the IRI, while the smaller sizes No 1, 2 do not. In order to test this hypothesis, we ran more examples
for all available sizes. Especially in the non-absorbing-particle case with an RI = 1.4 + 0i the retrievals
for sizes No 3 and 4 are almost flawless while sizes No 1 and 2 falsely predict IRI = 0.01 (median). Now
raising a little higher the IRI with an RI = 1.4 + 0.001i we see a similar situation, only now for sizes No
1 and 2 we get more accurate RI but with higher uncertainties and also retrievals with size No 3 start to
get noisy too. Involving higher absorption with RI = 1.4 + 0.005i, see Table C.24, we see that retrievals
for size No 1 get overall even better than before and for size No 2 slightly worse (see also the respective
SSA values) and further that retrievals with size No 4, despite being the best among the other sizes, they
became worse as compared to the case of RI = 1.4 + 0.001i. Finally, we observe that for very absorbing
particles with 1.33 + 0.03i the pattern starts to reverse again favoring the larger sizes. Therefore we
see that particle size definitely affects the retrieval in a way, where very weak or very strong absorption
levels combined with large particles have a better chance of a good RI-retrieval than with smaller ones.
This agrees with our physical intuition, since distinctions in optical properties are indeed expected to be
harder in smaller rather than in larger particle sizes.

Alongside we have to consider the rare cases of low accuracy at the RRI and IRI simulataneously,
i.e. the cases shown earlier (3, c, v, 1%) in Table C.21 and (1, c, xiii, 1%) in Table C.24, and further the
case (2, c, v, 1%) in Table 4.12, all of which we discuss individually later on (Sec. 4.2.3). For now, there
are two points to acknowledge. The first is that fixing the RRI to the correct one and rerunning these
cases, the IRI is precisely found with 100% certainty (not shown). This is indeed very hopeful, but it is
not so helpful in a global sense, since most of the cases already have a satisfactory the RRI-prediction.
It is interesting to observe though, that larger discrepancies from the initial RRI, may affect also the
IRI, while the converse does not seem to strongly follow from our retrieval record. Second, let us see
the effect of the common denominator of all previous problematic cases which appears to be the prolate
shape. Looking closely at all the aforementioned prolate-particle cases (see also previous paragraphs) and
examining the corresponding oblate- or sphere-spheroid-mixed-particle cases, i.e. the cases (2-3, a, b, iii,
1%), (3, a, b, v, 1%) in Tables 4.12 and C.21 and (1, a, b, xiii, 1%) in Table C.24, we observe that the
cases with a, b are overall superior in accuracy and/or the uncertainties. This is also visible in the cases
of extreme absorption (1, a-c, x, xi 1%) in Table C.24 with RI equal to 1.4+0.1i and 1.8+0.1i, where we
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otherwise have almost perfect retrievals for all shapes. In addition, going through the rest of the cases
from Tables 4.12, C.21 and C.24, suggests that mixed-particle cases are mostly better retrieved than
oblate- and prolate-particle cases, therefore there is an overall efficiency hierarchy following c < a < b
(least-to-most). The exceptional cases (3, a-c, ii, 1%) in Table C.21 with RI = 1.4 + 0.005i following the
efficiency-order a < c < b, and cases (2, 3, a-c, iv, 1%) in Tables 4.12 and C.21 with RI = 1.6 + 0.001i
following a ≈ b < c and a ≈ c < b for size No 2 and 3 respectively might suggest that the prolate-particle
defect is more correlated with stronger absorption.

Higher data errors do impose additional difficulty in the retrievals. The results for the RRI are very
satisfying for all error levels, and for the IRI can be tolerated up to 5% data error when RRI > 1.4. This
is most easily observed by looking at the median-related ERQ in conjunction with the retrieved SSA. The
accuracy of the IRI remains in general within the discussed standards although in some cases is greatly
diminished. 60% of the cases with 5% data error (Tables 4.12 and C.21) have Unc(m) = Var(m) = 0,

and 73% of the same cases have Unc(m) below or equal to 33.33%, which means that whenever the
mean-related variability and/or uncertainty increase as compared to the respective cases with 1% data
error, then it follows that mainly the good solutions remain good (and more numerous) and the bad
ones become worse. Thus the efficiency trend of the algorithm is not drastically altered. The reliability
of the IRI is questionable for cases with 10% data error, 47% of which have zero Unc(m) and Var(m). It
seems, nevertheless, that the refractive index is essentially a greater problem to deal with than the error
level since its smoothing effect is there even if we assure error-free data. This is perhaps the reason why
we found that strongly absorbing cases are the least affected by the error level, which is at the same
time a very relieving incidence. Of course this kind of comparison of the RI- vs the data-error effect is
possible for the relatively small errors used here (1-10%), and it is not difficult to conceive that much
larger (measurement) errors could have a devastating effect. The inefficiency of the algorithm in many
of cases with 1.33 + 0.001i and 1.4 + 0.005i for all error levels still remains physically inexplicable.

The SSA has a very good retrievability following conservatively the quality of the RI-approximation.
The SSA retrievals are very reasonable in accuracy in the vast majority of cases and with extremely low
uncertainties. The SSA is by definition a percentage rate for the amount of absorption from the total
attenuation of light. This allows for a good measure of the ”effective” absorption in order to compare
the effect of the RI in the retrievals. However, if the refractive index is the only thing one aims for, one
has to know exactly how sensitive the SSA is with respect to the variation of RI (the way it was shown
in Fig. 4.12), which has to do also with the involved shape-size distribution.

4.2.3 Influence of the variation of the refractive index

As we saw up to now, the retrieval of the refractive index faces many difficulties, with the imaginary
part raising the highest concerns. It is important to know what is the impact of the retrieved RI in
the prediction of the rest of the microphysical parameters we dealt in the previous sections. For this,
we calculate the parameters, surface-area concentrations (at), volume concentration (vt), effective radius
(reff), the effective aspect ratio (aeff), and the spherical volume concentration fraction (svcf ) for all
the cases from Tables 4.12 and C.21, i.e. (2, 3, a-c, i-iv, 1%, 5%, 10%). We will often refer to the
aforementioned parameters as the ”rest parameters” to distinguish them from the RI and SSA. The
results are given concisely in Table 4.15, where we show the ranges for each of the ERQ (except the
Dif for svcf for reasons explained in Sec. 4.1) and every error level. Moreover a collection of the most
characteristic and dubious cases encountered in Sec. 4.2.2 are shown in full in Table 4.16 in order to
demonstrate the highlights of these retrievals. In what follows, we considered the rates 35 − 40% to be
the highest acceptable for the ERQ.

The cases (3, c, v, 1%), and (1, c, xiii, 1%) with the high discrepancies for both the RRI and IRI,
discussed in the previous section (4.2.2), see Tables C.21 and C.24, are really troubling, see Table 4.16, F
and H, both showing very low accuracy in the volume concentration (vt) and surface-area concentration
(at). These are isolated instances of algorithm failure, as one can see e.g. in the respective retrievals
with 10% data error, which are reasonable. Furthermore, the similar case (2, c, v, 1%) in terms of faulty
RRI and IRI (Table 4.12) manages to have a much better prediction of vt (∼ 40%), see Table 4.16, D.
However, all the ERQ (Dif, Var, Unc) have considerably risen as compared to the extremely low ones of
the same case with fixed-RI shown in Table C.3. Now, turning to cases with 1.33 + 0.001i , 1.4 + 0.005i
which often had a divergent IRI (see e.g. C.21), we see by contrast reasonable retrievals which do not
reflect at all the high discrepancies in IRI, see Table 4.16 cases (2, b, i, 1%, 10%) (A), (2, a, ii, 1%,
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Table 4.11: Simulation setup for retrievals with unknown refractive index.

Distribution data generated with

log-normal distribution

No 1 2 3 4
median radius (rmed) 0.05 0.25 0.5 0.8
mode width (σ) 2.3 1.6 1.2 1.3
radius range (µm) [0.01, 1.2] [0.01, 1.2] [0.01, 2.2] [0.01, 2.2]
number concentration (Nt) 1 1 1 1

aspect ratio distribution

(a) oblate (b) sphere-spheroid mixture (c) prolate

{
1/2, if η = 0.77,

1/2, if η = 0.87,


1/3, if η = 0.87,

1/3, if η = 1,

1/3, if η = 1.15,

{
1/2, if η = 1.3,

1/2, if η = 1.5,

Optical data generated with

refractive index (i) 1.33+0.001i, (ii) 1.4+0.005i, (iii) 1.5+0.01i, (iv) 1.6+0.001i,
(v) 1.7 + 0.05i, (vi) 1.33, (vii) 1.33 + 0.01i, (viii) 1.33 + 0.03i,
(ix) 1.4, (x) 1.4 + 0.001i, (xi), 1.4 + 0.1i, (xii), 1.6 + 0.005i,
(xiii) 1.6 + 0.03i, (xiv) 1.8 + 0.1i

number of spline points 6, 7, 8, 9, 10, 11, 12, 13, 14
spline degree 2, 3, 4, 5
relative error level (×10 repetitions) 1%, 5%, 10%

10%) (B), (3, c, i, 1%, 10%) (E). Comparing the latter case (E) for 1% data error with the one with
fixed RI in Table C.15 we see that vt now increased by about 15% (12.97% vs 27.70%), reff increased by
about 12% (3.34% vs 15.20%) while at, svcf and aeff remain almost the same; for 10% data error the
differences are less pronounced but the vt is already too noisy (Dif: 45.89%) for the non-fixed-RI cases
(Table 4.16, E). Thus, it seems that the RI-discrepancies, however large, are not granted failures for the
retrieval of the rest parameters, meaning that there are more factors that decide for the outcome, e.g.
the shape-size distribution. In support of this, we see that the cases (1-4, b, ix, 1%) with 1.4 + 0i, which
had a very large disagreement in IRI for the sizes No 1 and 2 (m(IRI) = 0.01, see Table C.24), retrieve
the rest microphysical parameters very well, see Table 4.16 (G). On the other hand, the almost flawless
RI-retrievals for sizes No 3 and 4 (same case), appear to have reasonable but relatively less efficient
retrievals for the rest parameters (higher ERQ).

As discussed, it is very difficult to quantify by single experiments the extent of the RI-effect upon
small or large variations of its ERQ. Therefore we address this statistically by gathering all the results
for the cases (2, 3, a-c, i-v, 1%, 5%, 10%), see the synoptic Table 4.15. This table distinguishes only the
particle size (size No 2 upper table and size No 3 lower table) and contains the full range of the ERQ
for every microphysical parameter for every shape (a-c) and every RI (i-v) and further the mean value
of the range below each of the ERQ. First, we see that the ranges are greatly expanded as compared to
the ones with fixed-RI, see Table 4.8. However, the mean value of the ranges (shown parenthesized) are
admittedly much lower in most of the cases in Table 4.15. Second, we distinguish two levels of efficiency
between the retrievals with size No 2 and 3. As demonstrated many times in this work, cases with size
No 3 are the most difficult to retrieve in general, even from the larger-particle cases (size No 4, Table
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Table 4.12: Retrieval results of the refractive index and the single scattering albedo with Pade-DP for
the cases (2, a-c, i-v, 1%, 5%, 10%), see Table 4.11. The ”Average”, ”Var/ty” and ”Unc/ty” relate to
ERQ as defined in Sec. 4.1 through the mean and the usual standard deviation. Especially for the IRI
we include the median version of the ERQ defined through Eq. 4.2.1 on the right of the mean-related
ERQ and separated by a slash (/). The indications ”1%”, ”5%” and ”10%” on the left of a given part
of the table refer to retrievals with the respective input data error.

oblate (2, a, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9890 0.9922

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.000160/0.000000
36.05%/0.00%
202.42%/0.00%

0.9982
0.12%
0.37%

0.9987
0.08%
0.27%

Average
Var/ty
Unc/ty

1.400
0.35%
11.29%

0.015500/0.001000
60.69%/0.00%
208.85%/100%

0.9241
1.40%
13.77%

0.9361
1.13%
11.92%

Average
Var/ty
Unc/ty

1.413
0.28%
11.58%

0.017020/0.005000
4.26%/0.00%
193.35%/60%

0.9128
0.40%
14.51%

0.9287
0.37%
12.31%

Synthetic 1.400 0.005000 0.9439 0.9625

1%

5%

10%

Average
Var/ty
Unc/ty

1.386
0.00%
2.13%

0.002080/0.001000
33.58%/0.00%
93.36%/50%

0.9744
1.02%
2.25%

0.9833
0.52%
1.57%

Average
Var/ty
Unc/ty

1.444
2.90%
9.04%

0.014200/0.000000
78.01%/0.00%
139.92%/0.00%

0.9114
4.06%
12.06%

0.9320
3.03%
9.27%

Average
Var/ty
Unc/ty

1.482
0.00%
11.52%

0.020180/0.000000
59.53%/0.00%
127.20%/0.00%

0.8905
1.06%
15.40%

0.9120
0.38%
12.14%

Synthetic 1.500 0.010000 0.8839 0.9242

1%

5%

10%

Average
Var/ty
Unc/ty

1.548
1.93%
4.69%

0.014800/0.010000
16.35%/0.00%
49.01%/0.00%

0.8627
1.99%
4.45%

0.9081
2.61%
3.30%

Average
Var/ty
Unc/ty

1.604
3.43%
6.46%

0.022400/0.020000
22.65%/0.00%
64.60%/50%

0.8309
2.98%
9.80%

0.8847
2.85%
6.96%

Average
Var/ty
Unc/ty

1.631
2.53%
8.27%

0.024300/0.030000
36.82%/0.00%
59.79%/66.67%

0.8307
4.19%
9.78%

0.8777
2.44%
7.13%

Synthetic 1.600 0.001000 0.9836 0.9902

1%

5%

10%

Average
Var/ty
Unc/ty

1.608
0.89%
0.87%

0.004760/0.005000
22.12%/0.00%
26.04%/0.00%

0.9316
1.11%
1.67%

0.9578
0.64%
0.84%

Average
Var/ty
Unc/ty

1.650
1.40%
2.93%

0.006380/0.005000
26.81%/0.00%
39.86%/0.00%

0.9231
2.23%
2.26%

0.9475
2.03%
2.33%

Average
Var/ty
Unc/ty

1.686
2.29%
4.00%

0.005260/0.005000
47.27%/0.00%
61.60%/90.00%

0.9392
2.35%
3.92%

0.9626
1.34%
2.30%

Synthetic 1.700 0.050000 0.6354 0.7155

1%

5%

10%

Average
Var/ty
Unc/ty

1.700
0.00%
0.00%

0.050000/0.050000
0.00%/0.00%
0.00%/0.00%

0.6439
0.28%
0.53%

0.7336
1.95%
2.12%

Average
Var/ty
Unc/ty

1.702
0.78%
0.87%

0.049200/0.050000
3.89%/0.00%
3.43%/0.00%

0.6592
1.22%
2.63%

0.7268
2.78%
4.70%

Average
Var/ty
Unc/ty

1.724
2.75%
4.54%

0.044700/0.050000
10.46%/0.00%
17.77%/0.00%

0.6978
4.43%
4.21%

0.7609
3.17%
4.37%

4.11). As an overview of the results, we see that the vast majority of all the retrievals for the parameters
at, vt, and reff and aeff have a Dif, Var and Unc below 25%, 22% and 11% respectively for size No 2 and
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4.2. Synthetic retrievals with unknown refractive index (Synthetic microphysical retrievals for
non-spherical particles)

Table 4.13: Table 4.12 continuation (1)
sphere-spheroid mixture (2, b, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9890 0.9921

1%

5%

10%

Average
Var/ty
Unc/ty

1.347
1.06%
2.09%

0.003560/0.001000
80.62%/0.00%
106.98%/50.00%

0.9691
2.63%
3.04%

0.9771
1.97%
2.25%

Average
Var/ty
Unc/ty

1.454
2.00%
11.29%

0.026340/0.0075
52.01%/0.00%
121.55%/100.00%

0.8648
3.98%
14.44%

0.8909
3.20%
11.97%

Average
Var/ty
Unc/ty

1.465
0.00%
11.65%

0.027140/0.005500
13.69%/0.00%
124.56%/136.36%

0.8590
0.40%
16.18%

0.8848
0.54%
13.57%

Synthetic 1.400 0.005000 0.9437 0.9419

1%

5%

10%

Average
Var/ty
Unc/ty

1.436
2.08%
5.29%

0.009360/0.005000
51.03%/0.00%
126.82%/0.00%

0.9302
3.85%
6.40%

0.9498
2.81%
4.98%

Average
Var/ty
Unc/ty

1.496
1.95%
10.30%

0.022020/0.003000
60.69%/0.00%
109.94%/83.33%

0.8703
2.56%
15.17%

0.8985
1.84%
11.76%

Average
Var/ty
Unc/ty

1.494
0.82%
10.90%

0.022480/0.015000
44.77%/0.00%
109.83%/103.33%

0.8710
2.14%
15.65%

0.8983
1.37%
12.08%

Synthetic 1.500 0.010000 0.8811 0.9234

1%

5%

10%

Average
Var/ty
Unc/ty

1.576
2.63%
5.14%

0.017600/0.010000
22.43%/0.00%
46.02%/0.00%

0.8427
2.52%
5.06%

0.8919
2.48%
3.94%

Average
Var/ty
Unc/ty

1.634
4.15%
5.35%

0.023600/0.030000
31.51%/0.00%
47.07%/0.00%

0.8213
5.15%
8.44%

0.8720
3.93%
6.11%

Average
Var/ty
Unc/ty

1.647
3.79%
5.99%

0.023520/0.030000
27.48%/0.00%
40.17%/0.00%

0.8258
3.95%
6.11%

0.8759
2.09%
5.06%

Synthetic 1.600 0.001000 0.9838 0.9901

1%

5%

10%

Average
Var/ty
Unc/ty

1.668
0.27%
2.84%

0.003700/0.005000
9.85%/0.00%
52.05%/0.00%

0.9384
2.95%
3.61%

0.9698
1.49%
1.70%

Average
Var/ty
Unc/ty

1.680
2.39%
3.81%

0.003200/0.005000
59.81%/0.00%
70.53%/0.00%

0.9601
2.13%
2.89%

0.9722
1.88%
2.37%

Average
Var/ty
Unc/ty

1.720
1.99%
3.38%

0.002460/0.005000
93.51%/0.00%
106.08%/33.33%

0.9736
2.09%
2.55%

0.9822
1.06%
1.92%

Synthetic 1.700 0.050000 0.6359 0.7154

1%

5%

10%

Average
Var/ty
Unc/ty

1.700
0.00%
0.00%

0.050000/0.050000
0.00%/0.00%
0.00%/0.00%

0.6307
0.59%
0.36%

0.7099
0.12%
0.25%

Average
Var/ty
Unc/ty

1.736
2.30%
3.43%

0.046000/0.050000
10.07%/0.00%
12.96%/0.00%

0.6733
2.46%
3.64%

0.7450
1.65%
2.79%

Average
Var/ty
Unc/ty

1.736
2.16%
4.34%

0.042800/0.050000
12.03%/0.00%
18.59%/0.00%

0.6980
3.63%
4.97%

0.7644
2.64%
3.82%

33%, 17% and 16% for size No 3. This means that the ERQ here increase roughly by 3-20% on average
as compared to the fixed-RI retrievals, see Table 4.8. The variability of the chosen solutions is generally
less affected on average than the uncertainty (Unc) which shows 6-7% increase in the transition to higher
error levels for the parameters vt and reff .

The most-distinctly affected parameter in accuracy is indeed the volume concentration, as one can
immediately infer from the given ranges, especially for the size No 3. The effective radius has much
narrower ranges and ends up with a better average retrieval behavior than vt which is more prominent
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4.2. Synthetic retrievals with unknown refractive index (Synthetic microphysical retrievals for
non-spherical particles)

Table 4.14: Table 4.12 continuation (2)
prolate (2, c, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9890 0.9921

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.005700/0.005000
36.73%/0.00%
38.52%/0.00%

0.9359
2.38%
2.75%

0.9519
1.80%
2.11%

Average
Var/ty
Unc/ty

1.373
0.23%
8.48%

0.014800/0.005000
30.90%/0.00%
203.39%/90.00%

0.9119
0.92%
11.47%

0.9297
0.80%
10.61%

Average
Var/ty
Unc/ty

1.367
0.00%
8.56%

0.015100/0.007500
0.00%/0.00%
199.54%/33.33%

0.9054
0.27%
12.66%

0.9240
0.07%
11.15%

Synthetic 1.400 0.005000 0.9428 0.9626

1%

5%

10%

Average
Var/ty
Unc/ty

1.336
0.23%
1.33%

0.000980/0.001000
108.05%/0.00%
145.09%/0.00%

0.9878
1.16%
1.48%

0.9914
0.77%
1.04%

Average
Var/ty
Unc/ty

1.363
0.60%
2.77%

0.002960/0.001000
72.97%/0.00%
142.83%/50.00%

0.9676
1.71%
4.35%

0.9775
1.17%
3.04%

Average
Var/ty
Unc/ty

1.418
0.77%
9.67%

0.012700/0.003
9.32%/0.00%
177.16%/66.67%

0.9186
0.92%
12.88%

0.9381
0.80%
10.17%

Synthetic 1.500 0.010000 0.8763 0.9239

1%

5%

10%

Average
Var/ty
Unc/ty

1.400
0.00%
0.00%

0.001160/0.001000
48.98%/0.00%
94.36%/0.00%

0.9805
0.71%
1.89%

0.9877
0.45%
1.23%

Average
Var/ty
Unc/ty

1.395
0.66%
2.39%

0.003740/0.005000
35.21%/0.00%
45.66%/0.00%

0.9400
2.41%
2.61%

0.9620
1.59%
1.70%

Average
Var/ty
Unc/ty

1.401
1.20%
5.83%

0.005380/0.000500
54.86%/0.00%
177.89%/0.00%

0.9449
2.82%
7.90%

0.9615
2.37%
5.83%

Synthetic 1.600 0.001000 0.9837 0.9905

1%

5%

10%

Average
Var/ty
Unc/ty

1.500
0.00%
0.00%

0.000120/0.000000
72.11%/0.00%
140.55%/0.00%

0.9976
0.40%
0.34%

0.9985
0.25%
0.21%

Average
Var/ty
Unc/ty

1.500
0.00%
0.00%

0.000300/0.000000
136.68%/0.00%
95.58%/0.00%

0.9941
0.72%
0.57%

0.9965
0.43%
0.34%

Average
Var/ty
Unc/ty

1.492
0.89%
2.30%

0.000720/0.000000
119.93%/0.00%
155.05%/0.00%

0.9888
1.63%
1.68%

0.9937
0.91%
0.89%

Synthetic 1.700 0.050000 0.6344 0.7145

1%

5%

10%

Average
Var/ty
Unc/ty

1.560
3.26%
4.23%

0.036000/0.030000
12.65%/0.00%
18.33%/0.00%

0.6532
0.67%
0.66%

0.7342
1.07%
0.75%

Average
Var/ty
Unc/ty

1.546
1.50%
5.14%

0.036400/0.030000
9.40%/0.00%
34.05%/33.33%

0.6843
2.34%
9.52%

0.7565
2.60%
7.27%

Average
Var/ty
Unc/ty

1.559
1.81%
8.59%

0.035200/0.040000
16.49%/0.00%
51.97%/25.00%

0.7331
4.28%
13.75%

0.7955
3.14%
10.67%

for size No 3. The surface-area concentration is overall the least affected parameter. The ERQ for aeff still
allow for a characterization of the effective geometry, especially for prolate and sphere-spheroid mixed
particles. The parameter svcf has the widest uncertainty ranges (Var, Unc), and while most retrievals
lie within 10% Var and 17% Unc, the accuracy levels (not shown) are often prohibitive for a meaningful
shape-size ditribution reconstruction.

One reason behind an inaccurate RI-retrieval is the overestimation of the number of iterations. In our
simulations both with known an unknown RI, we fixed the maximum number of iterations (MNI) to 100
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4.2. Synthetic retrievals with unknown refractive index (Synthetic microphysical retrievals for
non-spherical particles)

Table 4.15: Retrieval of the parameters at, vt, reff , svcf and aeff with Pade-DP, corresponding to all the
cases from Tables 4.12 and C.21, i.e. (2, 3, a-c, i-iv, 1%, 5%, 10%). The indications ”1%”, ”5%” and
”10%” on the left of a given part of the table refer to retrievals with the respective input data error. The
parenthesized terms show the mean value of the respective ERQ within the range specified above it.

Cases: (2, a-c, i-iv, 1%, 5%, 10%)

Parameters at vt reff svcf aeff

1%

5%

10%

Difference

Variability

Uncertainty

0.62 − 16.70%
(9.16%)
0.60 − 5.54%
(2.82%)
0.54 − 12.15%
(4.04%)

0.25 − 40.26%
(13.51%)
0.36 − 13.00%
(4.00%)
1.26 − 20.27%
(7.72%)

3.01 − 25.28%
(13.37%)
0.43 − 10.06%
(3.56%)
1.24 − 10.35%
(5.74%)

−

1.36 − 56.47%
(11.40%)
1.41 − 41.01%
(17.10%)

0.98 − 31.97%
(15.79%)
0.19 − 3.40%
(1.17%)
0.16 − 4.65%
(2.27%)

Difference

Variability

Uncertainty

1.96 − 23.71%
(11.60%)
1.16 − 5.15%
(2.55%)
2.53 − 11.65%
(6.00%)

2.37 − 46.33%
(14.23%)
1.09 − 12.20%
(6.02%)
3.58 − 24.45%
(15.04%)

2.60 − 23.76%
(15.46%)
0.95 − 11.78%
(5.03%)
4.77 − 23.86%
(14.16%)

−

2.31 − 9.67%
(5.78%)
4.29 − 29.79%
(10.96%)

1.47 − 31.63%
(17.89%)
0.27 − 1.18%
(0.73%)
0.51 − 3.48%
(1.56%)

Difference

Variability

Uncertainty

4.11 − 26.35%
(13.74%)
1.22 − 3.96%
(2.07%)
3.04 − 14.65%
(7.65%)

0.40 − 45.19%
(15.00%)
0.58 − 13.43%
(5.38%)
12.11 − 32.31%
(22.35%)

3.40 − 24.63%
(16.61%)
1.07 − 12.37%
(4.81%)
9.08 − 31.78%
(21.34%)

−

2.78 − 9.96%
(5.49%)
5.99 − 23.14%
(11.38%)

2.87 − 31.66%
(18.46%)
0.28 − 1.45%
(0.69%)
0.72 − 2.95%
(1.70%)

Cases: (3, a-c, i-iv, 1%, 5%, 10%)

1%

5%

10%

Difference

Variability

Uncertainty

1.48 − 20.55%
(9.06%)
1.03 − 6.88%
(3.26%)
0.50 − 2.70%
(1.20%)

10.40−195.64%
(38.36%)
0.58 − 23.68%
(13.31%)
0.93 − 6.09%
(3.34%)

5.22 − 172.81%
(30.39%)
1.32 − 22.00%
(11.50%)
0.69 − 5.12%
(3.07%)

−

1.11 − 68.63%
(17.39%)
2.89 − 21.53%
(9.55%)

1.52 − 29.21%
(14.23%)
0.18 − 5.51%
(2.49%)
0.61 − 2.60%
(1.18%)

Difference

Variability

Uncertainty

2.56 − 23.59%
(11.16%)
1.43 − 6.64%
(3.23%)
1.95 − 10.20%
(4.43%)

9.54 − 48.24%
(33.48%)
2.32 − 17.57%
(9.95%)
4.00 − 27.55%
(10.66%)

1.65 − 43.25%
(23.50%)
1.65 − 15.91%
(8.41%)
2.58 − 23.69%
(10.45%)

−

3.77 − 57.39%
(15.17%)
7.29 − 73.32%
(26.31%)

1.44 − 29.24%
(15.33%)
0.44 − 4.10%
(2.06%)
0.80 − 4.80%
(3.38%)

Difference

Variability

Uncertainty

0.73 − 29.92%
(14.10%)
1.04 − 7.25%
(3.32%)
3.83 − 17.26%
(8.34%)

8.11 − 61.60%
(33.24%)
1.95 − 16.69%
(9.70%)
9.88 − 52.07%
(19.39%)

3.44 − 38.22%
(20.06%)
2.04 − 15.27%
(8.11%)
7.64 − 41.54%
(16.93%)

−

5.10 − 15.80%
(10.30%)
12.05 − 54.79%
(28.43%)

1.98 − 34.50%
(17.34%)
0.52 − 3.06%
(1.60%)
1.95 − 6.29%
(4.11%)

for the retrievals in order to automatize the retrievals and provide more general results. For retrievals
where the RI is known, the MNI plays a small role in the inversion outcome. However, in the case where
the RI is sought, the MNI can affect the retrieval in an essential manner. For the cases with the largest
disagreements in RI, the number of runs required before the iteration stopped, was most of the times
100, and this is not resolved by raising the MNI. In other words, the given discrepancy (relative error
level) is never met, and the iteration exhausts the MNI. Rerunning problematic cases e.g. (3, c, v, 1%),
(2, c, v, 1%) with MNI set to only 10 or less, we achieved 100% accuracy in the IRI, and also improved
cases with 10% error level. Hence, for severely ill-posed cases and/or very noisy data, a small MNI
(< 20 iterations) might generally be a good idea. The specification of a suitable MNI is often possible by
observing systematic behaviors with preliminary runs which are vital for physically meaningful solutions
in the case of real-life data.

Summarizing our findings for the retrievals, we saw that all in all, while the retrieval of the refractive
index is tricky for the IRI, it is indeed viable and a remarkable achievement accounting all the limitations
brought about by a fixed-kernel database and the inversion process. Except for minor cases where the
algorithm does not perform well, the retrieval can give an accurate prediction for the real part of the
refractive index and at least a sensible account for the level of absorption related to the imaginary part.
Discrepancies in the retrieval of the refractive index do not necessarily spoil equivalently the quality of
at, vt, reff , and aeff . However, the generally larger ERQ in the case of an unknown RI, may distort

95



4.2. Synthetic retrievals with unknown refractive index (Synthetic microphysical retrievals for
non-spherical particles)

Table 4.16: Retrieval results of the parameters at, vt, reff , svcf and aeff with unknown refractive index
with Pade-DP for a collection of challenging cases from Tables C.21-C.24. The letters A-I are used for
a prompt case recognition.

A: 1.33+0.001i, Cases: (2, b, i, 1%, 10%)

Parameters at vt reff svcf aeff

1%

10%

Difference
Variability
Uncertainty

16.70%
3.45%
4.09%

0.89%
5.63%
8.46%

15.19%
3.76%
6.16%

0.1673
4.89%
8.14%

6.09%
0.68%
1.02%

Difference
Variability
Uncertainty

22.74%
1.30%
9.54%

6.40%
0.68%
24.64%

22.78%
1.07%
28.66%

0.1877
3.66%
5.99%

6.66%
0.37%
0.76%

B: 1.4 + 0.005i, Cases: (2, a, ii, 1%, 10%)

1%

10%

Difference
Variability
Uncertainty

12.34%
2.90%
12.15%

3.95%
2.15%
20.27%

8.00%
2.28%
9.21%

0.1457
2.84%
12.48%

31.14%
0.56%
1.86%

Difference
Variability
Uncertainty

17.25%
1.22%
9.87%

2.31%
1.19%
28.66%

12.31%
1.18%
29.51%

0.1236
3.98%
8.00%

31.66%
0.40%
1.12%

C: 1.5 + 0.01i, Cases: (2, a, iii, 1%, 10%)

1%

10%

Difference
Variability
Uncertainty

2.30%
1.84%
1.82%

10.44%
5.29%
11.05%

12.59%
5.24%
9.98%

0.1296
15.25%
28.29%

31.30%
1.67%
4.40%

Difference
Variability
Uncertainty

7.18%
2.30%
3.04%

15.93%
9.33%
32.31%

21.70%
8.90%
31.78%

0.1242
5.97%
12.02%

31.60%
0.83%
1.78%

D: 1.7 + 0.05i, Cases: (2, c, v, 1%, 10%)

1%

10%

Difference
Variability
Uncertainty

11.39%
5.54%
5.52%

40.26%
13.00%
13.62%

25.07%
10.06%
10.35%

0.1626
56.47%
41.01%

12.78%
3.40%
3.90%

Difference
Variability
Uncertainty

6.15%
2.22%
5.42%

17.08%
5.17%
27.99%

9.95%
4.23%
26.02%

0.2990
7.59%
21.33%

19.27%
0.77%
2.77%

E: 1.33 + 0.001i, Cases: (3, c, i, 1%, 10%)

1%

10%

Difference
Variability
Uncertainty

10.50%
4.90%
0.68%

27.70%
13.38%
4.35%

15.20%
9.26%
3.84%

0.1373
27.34%
20.33%

13.81%
5.51%
2.60%

Difference
Variability
Uncertainty

20.93%
3.55%
3.83%

45.89%
9.45%
10.91%

20.27%
6.76%
8.05%

0.2776
12.45%
29.72%

17.53%
1.76%
3.07%

F: 1.7 + 0.05i, Cases: (3, c, v, 1%, 10%)

1%

10%

Difference
Variability
Uncertainty

8.40%
1.23%
1.13%

195.64%
0.58%
0.93%

172.81%
1.59%
1.75%

0.3617
1.11%
4.47%

21.90%
0.18%
0.85%

Difference
Variability
Uncertainty

9.08%
1.04%
5.81%

15.04%
1.95%
11.45%

5.57%
2.04%
11.11%

0.2783
5.10%
15.93%

17.95%
0.52%
2.04%

significantly the solution reconstruction. We note that even though we did not include the whole body
of cases used in our analyses, all the rest fall very well within the ranges in Table 4.15. We should
stress that the two different efficiency levels between size No 2 and No 3 should not be treated equally.
As pointed out throughout this work, the retrievals with size No 3 pose indeed greater difficulties as
compared to the other particle sizes and, as such, it seems that the behavior of the retrievals related to
size No 2 is more frequently encountered vs size No 3.
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4.2. Synthetic retrievals with unknown refractive index (Synthetic microphysical retrievals for
non-spherical particles)

Table 4.17: Table 4.16 continuation
G: 1.4 + 0i, Cases: (1-4, b, ix, 1%)

Parameters at vt reff svcf aeff

size No 1

size No 2

size No 3

size No 4

Difference
Variability
Uncertainty

5.59%
2.74%
4.01%

20.29%
2.89%
11.89%

15.74%
3.82%
8.64%

0.2288
3.83%
12.57%

8.42%
0.58%
1.53%

Difference
Variability
Uncertainty

1.61%
2.23%
4.10%

18.11%
3.55%
11.60%

19.66%
2.93%
7.57%

0.2276
9.38%
26.49%

8.93%
1.26%
3.30%

Difference
Variability
Uncertainty

10.72%
3.63%
1.16%

37.67%
25.14%
4.44%

23.59%
21.86%
3.54%

0.0002
7.79%
3.80%

0.76%
1.00%
0.78%

Difference
Variability
Uncertainty

5.94%
1.93%
1.75%

31.48%
20.11%
21.41%

35.29%
21.40%
20.68%

0.2675
36.39%
37.83%

6.17%
4.53%
4.35%

H: 1.6 + 0.03i, Cases: (1, a, c, xiii, 1%)

oblate

prolate

Difference
Variability
Uncertainty

9.45%
1.33%
4.36%

8.26%
1.18%
4.63%

15.85%
2.22%
8.98%

0.1693
2.81%
7.47%

29.41%
0.37%
1.15%

Difference
Variability
Uncertainty

18.80%
4.21%
6.29%

61.20%
5.59%
7.23%

35.31%
3.91%
3.27%

0.2763
15.03%
9.51%

18.65%
1.81%
1.92%

I: 1.4 + 0.1i, Cases: (1, a, c, xi, 1%)

oblate

prolate

Difference
Variability
Uncertainty

6.63%
0.84%
3.35%

4.89%
0.43%
6.99%

1.65%
0.77%
5.75%

0.1136
4.92%
3.18%

32.48%
0.51%
0.32%

Difference
Variability
Uncertainty

8.26%
1.11%
3.31%

5.70%
0.53%
7.81%

2.40%
0.91%
6.21%

0.2912
5.06%
3.75%

19.14%
0.52%
0.37%
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Chapter 5

Microphysical retrieval from
measurement cases

Foreword

After thoroughly testing our methods and algorithms we will finally apply our approach to real-life lidar
data. Here, we use the algorithm SA2 (Sec. 3.6) with the (2,1) Padé iterative regularization method
to a collection of measurement cases captured by different lidar stations and extract the microphysical
properties from lidar data. Every lidar system involved in the measurement cases here is capable of
supporting the 3β + 2α setup which consists of 3 backscatter coefficients at the wavelengths 355, 532
1064 nm and 2 extinction coefficients at 355 and 532 nm and additionally providing the cross-polarized
signal at least at 532 nm. The optical data profiles retrieved by these systems become then the input for
our inversions, after they are averaged to produce a dataset, which is done by specifying certain layers
of interest. Throughout our retrievals the spheroid-particle approximation is considered, confined in the
aspect-ratio range [0.67, 1.5] preset by the Mieschka fixed-kernel database.

We will either make an assumption of data error and use the discrepancy principle as parameter
choice rule (Pade-DP) or restrict the iteration to a specific number of iterations, based on preliminary
numerical tests and experience with our software so far. Since there is no equivalent in the literature of
a two-dimensional particle distribution, we introduce the reduced volume size distribution va(r), defined
as the volume shape-size distribution v(r, a) integrated over the aspect-ratio domain, i.e.

va(r) =

∫ amax

amin

v(r, a) da, (5.0.1)

where r is volume-equivalent particle radius and a is the aspect ratio. All parameter notations and units
are found in Table 5.1. The function va(r) is able to provide the collective trend of all contributing particle
geometries in the particle distribution. However, we note that this limited (in terms of information as
compared to v(r, a)) particle distribution is not directly comparable with the usual size distribution used
in literature, but it can be used in order to have a general sense qualitatively.

Furthermore, in our analyses we use data derived by inversions of sun-photometer measurements pro-
vided by the Aerosol Robotic Network’s (AERONET) database, [60]. The algorithm used by AERONET
postulates that aerosols have both a spherical and a non-spherical component, where the former is mod-
eled by an ensemble of polydisperse, homogeneous spheres, and the latter considers a mixture of poly-
disperse, randomly-oriented homogeneous spheroids. These advanced machines offer a series of inversion
products including the effective radius, the volume concentration, the complex refractive index, the sin-
gle scattering albedo and the aerosol optical depth, which can be available in two quality levels, namely
1.5 and 2.0, for cloud screened and quality assured data respectively. In our studies, level 2.0 data
were used whenever they were available. Sun-photometers are passive remote sensing instruments with
different operation principles from lidars by definition and using different inversion techniques based on
the theory of optimal estimation, see [34, 36]. Although we will not expand on the latter, we will point
out some incompatibilities with our approach, which are essential to recognize for our subsequent mi-
crophysical analyses. The first and most important difference is that AERONET retrievals relate to the
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(Microphysical retrieval from measurement cases)

Table 5.1: Notation and units of aerosol parameters. The dash indicates dimensionless quantities.
Parameter Notation Units

Ångström exponent 532/355 α− / β− related AEα/β 355/532, AEβ 532/1064 −
aspect ratio a −
aspect ratio width avar −
backscatter coefficient (total) at 355, 532, 1064 nm β355, β532, β1064 Mm−1sr−1

effective aspect ratio aeff −
effective radius reff µm
extinction coefficient at 355, 532 nm α355, α532 Mm−1

lidar ratio at 355, 532 nm LR355, LR532 sr−1

number concentration nt µm−1cm−3

particle depolarization ratio at 355, 532, 1064 nm δ355, δ532, δ1064 −
refractive index (real and imaginary part) RRI+IRIi −
single scattering albedo (SSA) at 355, 532 nm SSA355, SSA532 −
spherical volume concentration fraction svcf −
surface-area concentration at µm2cm−3

volume concentration (total, AERONET) ut µm3
µm−2

volume concentration (total, lidar) vt µm3cm−3

volume concentration size distribution (AERONET) VCSD µm3
µm−2

volume concentration size distribution (reduced) VCSD (reduced) µm3
µm−2km−1

volume shape-size distribution v(r, a) µm3
µm−1cm−3

volume size distribution (reduced) va(r) µm3
µm−1cm−3

wavelength λ nm

whole atmospheric column while lidar data target specific layers and therefore the comparison cannot
be quantitative. Moreover, the size distribution of the particle volume u(r) retrieved by AERONET
is defined as the derivative du/d ln r with the associated total volume concentration ut, both given in
µm3

µm−2. From Eq. 3.1.5 following the LM-model, the volume size distribution (for lidars) is found by
v(r) = dvt/dr and measured in µm3

µm−1cm−3 = µm3
µm−2m−2. In order to make sense of these two

different measures and have some kind of comparison we turn to the quantity ṽ(ln r) = dvt/d ln r = rv(r),
which indicates that the difference in units with du/d ln r lies within a multiple of the meter. Here we
apply the same concept also for our generalized model just by replacing v(r) with va(r). In practice, we
often multiply ṽ(ln r) with the aerosol layer thickness (usually several kilometers), see [114, 131], which is
the motivation behind the units given in Table 5.1 for the so-called (reduced) volume concentration size
distribution (VCSD), following the terminology from [131]. We will use these functions as a lidar-analog
for a common basis to discuss the retrieval efficiency. Obviously, a converted reduced size distribution
to a VCSD is an even more involved quantity, but it should indicate to some extent the main features
of a size distribution. AERONET’s VCSD is retrieved in 22 logarithmically equidistant bins between
0.05 and 15µm. For the shape-size distribution we use a 30 × 30 (r × a) grid points with the radius
range either [0.01, 1.2] (µm) or [0.01, 2.2] (µm) and the aspect ratio range [0.67, 1.5]. For clarity we note
that whenever we show here an one-dimensional size distribution or VCSD associated with the lidar, it
is always implied that the shape-size distribution is first converted to a reduced size distribution.

Second, many of AERONET’s inversion products are given as a function of wavelength at least at the
spectral bands of 442, 675, 872, 1020 nm where the four almucantar scans take place, in which category
fall also the parameters aerosol (extinction) optical depth, the refractive index (RI) and single scattering
albedo (SSA). Especially for the RI and the SSA we will consider a spectral average of these values in
order to compare with the respective parameters from our retrievals. The ranges of the real (RRI) and
imaginary part (IRI) of the refractive refractive index, 1.33 ≤ RRI ≤ 1.6 and 0.0005 ≤ IRI ≤ 0.5 form
the predefined grid necessary for AERONET’s inversion.

Following AERONET’s mode distinction in the inversion products we calculate in some cases in
addition to the total effective radius (whole radius range), the one for the fine mode and coarse mode.
This is done by looking for the minimum of the shape-size distribution between 0.5 and 1µm and setting
it as the higher and the lower integration boundary for the fine and coarse mode respectively.

99



5.1. Data from National Institute for Optoelectronics, Bucharest (Microphysical retrieval from
measurement cases)

Table 5.2: Case studies used for the microphysical retrievals from data captured by INOE’s lidar in
Romania. The table shows the date and time interval for the measurements, the lidar ratio (LR532) and
Ångström exponents (AEα/β 532/355) and particle depolarization ratio δ532, as well as the layer used
for the inversion here and also in [131].

Case
No.

Date
(dd.mm.yy.)

Time interval Layer (km) LR532
(sr)

AEα

532/355
AEβ

532/355
δ532
(%)

1 14.06.2012 17 : 52− 18 : 52 1.57− 1.88 35±3 2.2±0.1 1.7±0.1 7±3
2 24.06.2012 19 : 26− 20 : 26 1.39− 1.57 55±5 1.7±0.2 1.0±0.2 7±2
3 27.06.2012 19 : 30− 20 : 30 1.59− 1.89 41±4 1.8±0.1 0.9±0.1 5±2
4 09.07.2012 19 : 01− 20 : 01 1.57− 2.31 49±4 1.4±0.1 1.1±0.1 7±2
5 11.07.2012 23 : 01− 00 : 01 2.55− 2.77 42±4 1.5±0.1 2.0±0.2 5±2

5.1 Data from National Institute for Optoelectronics, Bucharest

As a first example for the interaction of our algorithm with real data we will consider cases with relatively
low depolarization. Low particle depolarization ratio (PDR) is often considered a strong indication of
particle sphericity, but it is only the converse proposition, i.e. that high PDR is a hint of particle non-
sphericity, that can be used with confidence. This is because different particle distributions, can have
a strong smoothing effect as to the point that it can result a miniscule PDR even for aspect ratios far
from a = 1, as demonstrated in [112]. Therefore this example is of more general interest also from the
point of view of non-spherical particles.

Here, we will investigate the 5 main cases (different days of measurements) presented in [131] which
pertain to biomass burning aerosols mixed with urban aerosols of variable age and growth. Smoke
particles are usually modelled as spheres, because of their relatively small size. In this publication, the
lidar data were collected from a multi-wavelength depolarization Raman lidar, located in the National
Institute for Optoelectronics (INOE) in Magurele, Romania (44.35◦ N, 26.03 E◦). This lidar system is
part of EARLINET [110] since November 2005 and uses a Nd-YAG laser emitting at 1064, 532 and 355
nm and a receiver collecting at 1064, 355, 607, 387 and 408 nm and additionally owns separate horizontal-
and cross polarized channels at 532 nm. In other words, it is capable of providing the optical data setup
3β + 2α plus depolarization profiling at 532 nm. The date and time interval for the measurements used
here along with the optical properties, lidar ratio at 532 nm, Ångström exponent (AEα/β 532/355) and
particle depolarization ratio δ532 are given in Table 5.2. The layer used for the inversions in [131] and
here are also found in this table. These altitude ranges, were selected by first identifying the aerosol
layer by looking at the range-corrected signal in the given time intervals and further focusing on layer
sections where the intensive parameters lidar ratio and Ångström exponent are almost constant. More
details on this methodology, examples of the optical data profiles and the raw lidar signal, and the origin
of the biomass burning aerosols detected by this lidar system can be found in the aforementioned paper.

The microphysical properties retrieved in [131] are based on a hybrid algorithm applied in truncated
singular value decomposition (HTSVD) using the Lorenz-Mie model for the calculation of the scattering
efficiencies. Here, we retrieved the parameters reff , RI, and SSA532 and compare with the HTSVD-
retrieved ones and further with the inversion products of the collocated sun-photometer (INOE). The
sun-photometer measurements, considered most relevant in [131], were the ones early in the morning
after the respective lidar measurements and will be used here as well. In addition, we retrieved the
parameters nt, at, aeff , avar and svcf. All results are found in Table 5.3. As we can see from Table
5.2, the extinction-related Ångström exponents range from 1.2 − 2.3, suggesting quite small particles,
i.e. a predominant fine mode, which is expected for this aerosol type. With this indication and some
preliminary tests we established the upper radius bound rmax = 1.2µm in our generalized (Fredholm)
integral model. We set the refractive index grid to RRI× IRI = [1.33, 1.4, 1.5, 1.6]× [0, 0.001, 0.005, 0.01],
the spline points to 6 − 14, the spline degree to 2 − 5, the maximum number of iterations to 30, and
the amount of least residual solutions to 5. These settings were based on preliminary tests performed in
[131] and on further tests with our software.

As we see in Table 5.3 the effective radii predicted by our algorithm (about 0.25 µm) are a little
above the mean value between the HTSVD- and the AERONET-retrieved values, and they are normal
values for fine particles. The refractive index was found 1.33(±0.0) + 0.004(±0.0055)i in case No. 1
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5.2. Data from SALTRACE campaign, Barbados island country (Microphysical retrieval from
measurement cases)

Figure 5.1: Left (main plot): the retrieved shape-size distribution shown in 3D and in the ar-plane (small
plot on top). Right: the volume size distribution (reduced) for the case study No. 2 in Bucharest, see
Table 5.2.

and 1.33(±0.0) + 0.001(±0.0)i in cases No. 2-5. The RRI is closer to the retrieved value of HTSVD
(about 1.36) than the one of AERONET (about 1.44). By contrast, the IRI retrieved by Padé iteration
is much larger indicating quite absorbing particles while the other approaches (especially AERONET)
show very weakly absorbing particles in the IRI-range 0.0005 − 0.0024. Nevertheless, a high level of
absorption is indeed more physically explicable for smoke particles. The retrieved single scattering
albedos follow these findings, i.e. the Padé-retrieved (0.931-0.971) are lower than the HTSVD- (0.983-
0.995) and the AERONET-retrieved (0.991-0.995). It is noteworthy though that although there is a
distinct disagreement in the IRI among these approaches, the SSA has rather conservative variation,
reconfirming its dependence also in the particle distribution.

Now looking at the additional parameters we retrieved for these cases in the lower sub-table of Table
5.3 we have the following concentration ranges nt : 191.30− 611.29 cm−3, at : 115.62− 397.18 µm2cm−3

and vt : 9.30− 33.19 µm3cm−3, all of which are retrieved with very low solution variability (< 4%), see
the standard deviations. The effective aspect ratio is about 1.10 with avar = 0.048, which lies within
the close neighborhood of a = 1 (spheres) but suggest also other non-spherical contributions. This
is also reflected in the spherical volume concentration fraction which is about 27% on average for all
cases. In Fig. 5.1 we show one example (case No. 2) of the retrieved two-dimensional volume shape-size
distribution (left) and the reduced volume size distribution (right), which is characteristic for all cases.
Focusing on the shape-size distribution, we can see the spread along the aspect ratio axis, enabling the
aforementioned non-sphericity, with a peak at about a = 1.1, r = 0.3 µm. The reduced size distribution
gives a synoptic view of all the aspect ratio contributions, highlighting again the presence of a single
particle (fine) mode. However, it is more likely that there is also a coarse mode, probably much smaller,
which cannot be revealed perhaps because of the pronounced difference with the fine mode. This is
an occasional numerical encounter, as explained in [131] which is resolved sometimes by extending the
radius range up to 4µm. The only possibility here is rerunning the inversion with rmax = 2.2 µm which
changes virtually nothing in the distribution data or the microphysical parameters. On the other hand,
this feature could be an additional sign of stability in the optical data and our algorithm.

Finally, we note that we could possibly achieve better parameter approximations if we look each case
individually rather than fixing identical projection-dimension ranges (spline features) for all cases. This
was done primarily in order to demonstrate that for carefully chosen cases in terms of quality and good
knowledge on aerosol type, wider dimension ranges (like the ones we used) can still provide acceptable
solutions. Strongly non-spherical particles, mixed and/or aged aerosols, and/or too noisy data are always
factors that require more delicate selection for the input parameters (splines, RIG, etc.).

5.2 Data from SALTRACE campaign, Barbados island country
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é
IR

I-
A

S
S

A
5
3
2
-

H
T

S
V

D
S

S
A

5
3
2
-

P
a
d

é
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5.2. Data from SALTRACE campaign, Barbados island country (Microphysical retrieval from
measurement cases)

Figure 5.2: Time series of lidar range-corrected signal at 1064 nm collected by Barbados’s lidar system
BERTHA. An intense dust layer is detected in 0.3-4 km a.g.l.

We are going to investigate a case captured by one of the most advanced lidar systems to date,
located at Barbados island east of the Caribbean sea, 13.15◦ N, 59.62◦ N. More specifically the mea-
surements were carried out on 20 June 2014 between 23:10-02:10 UTC, by the lidar system of Leibniz
Institute for Tropospheric Research (TROPOS) called BERTHA. This system is able to provide de-
polarization ratio profiles at 355, 532 and 1064 nm, see [51] in addition to the usual 3β + 2α dataset.
These measurements took place within the framework of the Saharan Aerosol Long-Range Transport and
Aerosol-Cloud-Interaction Experiment (SALTRACE) (http://www.pa.op.dlr.de/saltrace/index.html) in
2013-2014, with the aim to characterize optical and microphysical properties of dust after transport
across the Atlantic Ocean.

Let us have a look at the color plot of the range-corrected signal at 1064 nm for our case from 20 June
2014, see Fig. 5.2. We can distinguish a well defined intense aerosol layer between 0.5 and 4 km. Looking
now at the optical profiles in Fig. 5.3, the linear particle depolarization ratio at all available wavelengths
is well over 20% above 1.5 km and reaches up to 32% (δ532) at about 3.7 km, a clear indication of non-
sphericity. The full overlap of this system is not reached before 1 km. Furthermore, the linear particle
depolarization ratio at all available wavelengths in Fig. 5.3 has a steady raise in the region 0.5-1.5 km (not
shown) from 8% to 20%. This is a clear signature of turbulence which differentiates the dust- (>1.5 km)
from the mixing layer according to [49] as found in the similar experimental situation during SALTRACE
campaign in summer 2013. This is why we are mostly interested in altitudes over 1.5 km. Focusing on the
lidar ratio profiles at 355 and 532 nm in Fig. 5.3 in the altitude range 1.5-4 km we have values with small
variation, about 50± 9 sr, typical of dust presence see e.g. [3, 49, 58]. Therefore the aerosol type seems
to be reasonably confined, but looking at AEα 532/1064 in Fig. 5.3, particle size is rather influenced
significantly with height, mainly above the 3rd km where we see also contributions of smaller particles
(larger AE). The values of AEα 355/532 (0.027±0.425) and AEβ 532/1064 (0.486±0.062) are also quite
characteristic of Saharan dust particles, as it was found in the lidar-ratio-based climatology derived
statistically from observations and put together by [103]. Moreover, the depolarization values and the
lidar ratios at 355 and 532 nm fall within the ranges of aged Saharan dust found during SALTRACE
campaign in 2013 in the dust layer (not the boundary or mixing layer), see [49].
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5.2. Data from SALTRACE campaign, Barbados island country (Microphysical retrieval from
measurement cases)

Figure 5.3: Optical properties retrieved by Barbados’s lidar station. From left to right, the following
profiles are shown: total backscatter coefficient at 355, 532 and 1064 nm, extinction coefficient at 355
and 532 nm, linear particle depolarization ratio at 355, 532 and 1064 nm, lidar ratio at 355 and 532 nm,
the extinction- and backscatter-related Ångström exponents AEα 355/532, AEβ 532/1064, see also the
notation in Table 5.1.

In order to find out the probable origins of the particles examined here, we ran the NOAA HYSPLIT
model ([32], http://ready.arl.noaa.gov/HYSPLIT.php), see Fig. 5.4. The produced backward trajectories
suggest dusty air masses travelling above the African coastline (Western Sahara and Mauritania) and
Mali, 8 days before arriving above Barbados. The intensity of this dust event is quite high with an
aerosol optical depth (AOD) ranging between 0.36-0.52 found with direct sun measurements performed
by the sun/sky radiometer in Barbados in Ragged Point (13.17◦ N, 59.43◦ W) 20 km far from the lidar
site. Fig. 5.5 shows the daily evolution of the AOD in several wavelengths, and we see that during the
last available measurement (18:44 UTC), about 4 1

2 hours before the lidar measurement, the AOD has
reached its highest value (e.g. 0.5 for 500 nm).

A reasonable layer selection where both lidar ratio and the Ångström exponent are relatively constant,
the aerosol properties are more representative of the total behavior and where the optical profiles (α and
β) are still intense is the one in 2-2.75 km, see the average values and standard deviation of these
properties tabularized in Table 5.4. However it is most interesting to investigate in addition, what is
the microphysical parameter variability with respect to different altitudes as we move upwards in the
atmospheric column, which will further give us feedback on the stability and layer sensitivity of our
algorithm. For this purpose, we retrieve the parameters at, vt, reff (total, fine, coarse), aeff , avar, svcf,
RI, and SSA532 for the whole altitude range 1.5-4 km with a step of 250 m. For the inversion we used
100 iterations of Padé regularization, 9-14 spline points and spline degree within the range 2-5. Less
spline points (e.g. 6) were cut off because the did not behave well with the strong tendency towards
(radius-) bimodality, which was indicated as most probable by preliminary tests, e.g. by making unclear
or eliminating the separation plane between the modes. The refractive index grid (RIG) was first defined
in the broad form of RRI× IRI = [1.4, 1.5, 1.6, 1.7, 1.8]× [0, 0.001, 0.005, 0.01, 0.05] (RIG 1). The upper
integration boundary of the Fredholm equation was set to the (maximum available) rmax = 2.2 µm.

The results reveal a pattern which allows to categorize them in three altitude ranges, namely 1.5-
2.75 km, 2.75-3.25 km and 3.25-4 km, only by observing the largest parameter variation, see Table 5.5.
In this table, the variability (Var %) plays, as usual, the role of the variability of the 5 best solutions for
a single dataset corresponding to a specific altitude range, and the mean variability when more than one
datasets are involved. The uncertainty (Unc %) of the mean parameter value, found for every altitude
range, is also given, and it is calculated the same way it was done throughout this thesis, with the
sole qualitative difference that the input-datasets correspond now to different altitude ranges instead
of random distributions of synthetic noise. Especially for the complex refractive index and the single
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5.2. Data from SALTRACE campaign, Barbados island country (Microphysical retrieval from
measurement cases)

Figure 5.4: Air mass back-trajectories produced by HYSPLIT model for the case study captured by
Barbados’s lidar station.

Figure 5.5: Daily evolution of the aerosol optical depth with spectral dependence derived by the sun-
photometer in Ragged Point, 13.17◦ N, 59.43◦ W for the case study on 20.06.2014 in Barbados.

scattering albedo retrieved by AERONET, the given values represent spectral mean values in the four
almucantar wavelengths. Hence, Var (%) corresponds to a mean spectral variability, and the given Unc
(%) corresponds to the uncertainty of the mean retrieved parameters (spectrally) between the consecutive
measurements.

We can see clearly from Table 5.5 that our algorithm demonstrates very good stability. There is
virtually no difference in the microphysical retrieval between considering the whole range 2 − 2.75 km
and splitting the even larger range 1.5 − 2.75 km to 5 smaller ranges of 250 m. The uncertainty of all
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Table 5.4: Optical and intensive properties derived by Barbados’s lidar station, averaged in the dust
layer in 2-2.75 km see Fig. 5.3.

Optical properties

α355
(Mm−1)

β355||/⊥

(Mm−1sr−1)
α532
(Mm−1)

β532||/⊥

(Mm−1sr−1)
β1064||/⊥

(Mm−1sr−1)
98.50 1.69 / 0.41 92.51 1.56 / 0.45 1.17 / 0.27

Intensive properties

δ355/532/1064 (%) LR355 (sr) LR532 (sr) AEα 355/532 AEβ 532/1064
24±0.0 / 29±0.0 / 23±0.0 47.71± 5.2 46.34± 2.94 0.16± 0.09 0.48± 0.02

parameters is very low and thus we could consider any of these height ranges to arrive to the same
result. We should note that this convenience could be largely the result of good quality data and the fact
that we use the maximum number of depolarization data available at the present time. Our algorithm
predicts large particles, as expected for an intense dust event, with a total effective radius of 0.71 µm
(1.5 − 2.75 km) which is constituted by fully separated modes (as we will see later on), i.e. with reff

fine 0.35 µm and reff coarse 1.45 µm. Now focusing on the altitude range 2.75 − 3.25 km, we see that
the total effective radius diminishes to 0.55 µm and also that the fine mode (0.21 µm) consists now of
distinctly smaller particles. This is exactly as expected, from the higher values of the extinction-related
Ångström exponent in these heights, we highlighted earlier, and it is a remarkable sensitivity feature of
our algorithm. Moreover, going to even higher altitudes, i.e. (3.25− 4 km), where AEα 355/532 is close
to the previous smaller values we saw in 1.5− 2.75 km (or even tinier), the effective radii (total, fine or
coarse) are also ”restored” or a little bit enhanced, following again the expected ”resizing”. Another
notable characteristic is that the effective radius in (3.25−4 km) is still well-retrieved despite the dramatic
attenuation of signal in these heights. The attenuation is already visible above 2.75 km, see Fig. 5.3, and
in terms of the microphysical retrieval it is translated into a diminished surface-area- and total volume
concentration see Table 5.5, as it was intuitively expected.

The effective shape behavior is attributed to prolate particle ensembles with aeff = 1.10 and aeff =
0.046. The sphericity rate 0.20% (Var: 17.18%) predicted by AERONET (lowest sub-table in Table 5.5)
shows no involvement of spherical and (to some extent) fine particles. By comparison, the spherical
volume concentration fraction (lidar) svcf, found 0.31 (Var: 3.79%, Unc: 1.33) in 1.5 − 2.75 km, shows
that there could be spherical-particle contributions. We note that AERONET’s sphericity parameter
refers to the percentage of the spherical- vs the non-spherical component (assumed by AERONET’s
forward model), and thus there is only a rough correspondence of this quantity with svcf. We get a more
detailed visual of our retrieval by looking at the (mean) retrieved shape-size distribution for the altitude
range 1.5 − 2.75 km in Fig. 5.6, upper panel. There we see two very well separated modes, namely
a narrower fine-to-medium-coarse mode and a much broader coarse mode, with volume concentration
peaks about 58 and 48µm3cm−3 at about 0.43 and 1.45 µm respectively. There are contributions of
all kinds of spheroidal particle geometries (also spherical), and for higher aspect-ratios (a ≥ 1.20) the
fine-coarse peak difference fades, so that both modes’s maxima equalize at about 30µm3cm−3. The
lower panel of this figure shows also the reduced volume concentration size distribution (left, blue line)
and the volume concentration size distribution retrieved by AERONET (right). The latter shows merely
a very prominent coarse mode predicting very large particles. The complete absence of a fine mode
is often a mathematical artifact when one of the expected modes is much more dominant than the
other, and the smoothing process suppresses or eliminates the smaller one. Although the lidar-based
(reduced) VCSD is not directly comparable quantitatively to the latter, as mentioned earlier, we can see
that the volume concentration is of the same order in both figures by specifying the altitude. In this
sense and by considering the thickness of the whole dust layer about 3.5 km, the estimated maximum
lidar-retrieved concentration is about 0.14 µm3

µm−2 which is comparable with AERONET’s maximum
of about 0.24 µm3

µm−2. Since the volume concentration is obviously not constant along the aerosol layer
and also the sampled volume is different in the two cases, this calculation has no practical purpose other
than the order comparison. This kind of comparison is also used and explained in detail in [131].

The refractive index is found 1.4 + 0.05i through all layers (1.5 − 4 km) and with 0% uncertainties
(Var, Unc), and SSA532 = 0.684 (Var: 3.20%, Unc: 1.11%) which points to highly absorbing particles.
Experimental findings have shown that such a high absorption can mainly be found near the sources
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of dust events. For instance, a soil sample from Burkina Faso (rich in hematite and kaolinite) was
found in [146] using also a spheroid-particle-based inversion scheme to have IRI = 0.0495 ± 0.0206 at
305 nm. Moreover, [73] found that the IRI increases a lot (up to 0.03) with decreasing particle size
(< 0.5 µm), again due to the predominant hematite / soot component in smaller particles. AERONET’s
retrieval suggests, on the contrary, a refractive index with RRI = 1.52 (Var: 1.02%, Unc: 1.54%) and
IRI = 0.0017 (Var: 21.13%, Unc: 64.24%), and SSA = 0.963 (Var: 0.77%, Unc: 2.27%), i.e. weakly
absorbing particles. However, this IRI is even lower than the usual values considered for Saharan dust
particles, see e.g. [133]. The latter study also finds a dramatic increase in IRI (up to five times higher
at 637 nm) when the dust concentration is lower so that a soot-type absorber prevails.

Rerunning the inversion for all the sub-layers in 1.50 − 2.75 km with a narrower refractive index
grid where IRI = [0, 0.001, 0.005] (RIG 2), the retrieved values are RRI = 1.4 (Var, Unc: 0.0%) and
IRI = 0.004 (Var: 55.90%, Unc: 0.0%) and SSA = 0.964 (Var: 2.75%, Unc: 1.14%). Looking at the
recalculated parameters in Table 5.5, it is noteworthy that even with a retrieved IRI, which is an order
of magnitude lower than the one previously retrieved, the differences are tolerable. The effective radius
for the fine and the coarse mode remain almost intact, despite the essential degradation of the total reff

to 0.32 µm, vt is 22% higher and at is 32% lower. However the shape parameters svcf and avar undergo
a larger deviation from the previous values. The new values suggest that the spherical contribution is
significantly decreased, which is now in better agreement with AERONET, and further the effective width
in the aspect ratio domain is increased. These features make a qualitative difference indeed, leading to
much different distributions. The new reduced VCSD (RIG 2) is also given in the lower left panel of Fig.
5.6 (red line) and shows an enhanced and broader fine-medium coarse mode and a narrower and smaller
coarse mode. However, this pattern seems less likely for this kind of particles. Although, as it turns out
both solutions (RIG 1, 2) may explain some part of the problem better than the other, we are inclined
to accept the first solution (RIG 1) as more probable in a general sense to describe this case.

5.3 Data from ChArMEx campaign 2013, Granada

This is a case study from 16th, June, 2013 under the framework of the project Chemistry-Aerosol
Mediterranean Experiment (ChArMEx) which took place from 11 June to 5 July 2013. This campaign’s
goal is to assess the current and future atmospheric state of the Mediterranean basin in chemical terms
targeting gaseous reactive species and aerosol particles, and further to bridge the notion gap in the
regional chemistry-climate system in Mediterranean in view of anthropogenic and climatic pressures. A
detailed presentation of the motives and overview of this field work can be found in [96] and the site
https://charmex.lsce.ipsl.fr/. We will investigate one of the several cases of mineral dust plumes observed
in the period between 16 June and 3 July, over the western and central Mediterranean basins.

The measurements were performed by the Atmospheric Physics Group (GFAT), at the University
of Granada, southeast of Spain using the lidar system MULHACEN, LR331-D400, located at 37.16◦N,
3.61◦W. This Raman multi-wavelength lidar is able to emit and detect the elastic signals at the wave-
lengths 355, 532 and 1064 nm, and the N2 Raman-shifted signals at 387 and 607 nm, and thus it provides
the 3β+ 2α setup. This is part of the EARLINET network and is fully described in [50]. A vital process
to enhance the calibration accuracy of polarization lidars proposed by [42], known as the ±45◦ calibra-
tion method, was applied in Granada’s lidar system in 2010 so that it recently acquired an operational
depolarization channel at 532 nm, see [22].

The sun-photometer data used here were taken from measurements of the GFAT with a Cimel de-
ployed at Granada’s station (680 m a.s.l.) a few hours later from the lidar measurements. The lidar
range-corrected signal (RCS), see Fig. 5.7, was used to infer the aerosol layer between 2 and 3 km above
sea level (a.s.l.), where there is an almost uniform particle spread in the atmospheric column above
Granada, as shown in this color gradient plot. Fig. 5.8 depicts the profiles of the backscatter coefficients
at 355, 532, and 1064 nm, the extinction coefficients at 355 and 532 nm, the lidar ratios at 355 and 532 nm
and the Ångström exponent, see the notation in Table 5.1. The layer at 2.65− 3.10 km was selected for
the inversion accounting for a small variation of the intensive properties LR355, LR532, AEα 355/532,
AEβ 355/532 and also for intense optical properties. From the point of view of depolarization, this layer
choice might be seemingly uncharacteristic of the aerosols we investigate, because it gradually increases
at this point. For one, the increase is less than 5% which is physically unimportant, since δ532 already
exceeds 20%. Moreover, numerical experiments showed that the smoothing process suppresses these
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Table 5.5: Retrieved microphysical parameters for the dust-case from 20.06.2014 captured by Barbados’s
lidar station. The variability (Var %) is calculated as it is defined in Sec. 4.1 from the chosen (5)
least-residual solutions for the lidar-based inversion, and from the retrieved values in the consecutive
measurements (AERONET) in the evening for the sun-photometer-based inversion. The uncertainty
(Unc %) corresponds to the parameter uncertainty with respect to the different layer bins (250 m) within
the specified altitude range in the associated sub-table. Especially for the complex refractive index and
the single scattering albedo retrieved by AERONET, the given values represent spectral mean values in
the four almucantar wavelengths, so that Var (%) is a mean spectral variability, and Unc (%) corresponds
to the uncertainty of the mean retrieved parameters (spectrally) between the consecutive measurements.
The parameter notation is given in Table 5.1.

Lidar-based inversion

RIG 1, RRI = 1.4 (Var, Unc: 0.0%), IRI = 0.05 (Var, Unc: 0.0%)

2− 2.75 km / SSA532 = 0.685 (Var: 1.40%)

Parameter at vt reff (total/fine/coarse) svcf aeff avar

Unit µm2cm−3
µm3cm−3

µm − − −
Average 160.68 36.44 0.68 / 0.29 / 1.45 0.31 1.10 0.046
Variability 3.71% 5.36% 4.62% / 3.09% / 1.54% 4.01% 0.38% 3.72%

1.5−2.75 km, step: 250 m / SSA532 = 0.684 (Var: 3.20%, Unc: 1.11%)

Average 163.07 38.63 0.71 / 0.35 / 1.45 0.31 1.10 0.046
Variability 2.88% 7.00% 5.54% / 4.67% / 1.68% 3.79% 0.53% 2.87%
Uncertainty 2.84% 6.75% 5.00% / 27.17% / 0.58% 1.33% 0.21% 1.55%

2.75−3.25 km, step: 250 m / SSA532 = 0.683 (Var: 1.90%, Unc: 1.78%)

Average 121.37 22.63 0.55 / 0.21 / 1.50 0.29 1.11 0.047
Variability 6.59% 7.75% 5.10% / 5.96% / 1.04% 3.71% 0.39% 2.66%
Uncertainty 21.68% 42.14% 21.52% / 13.67% / 3.07% 2.06% 0.16% 0.16%

3.25− 4 km, step: 250 m / SSA532 = 0.677 (Var: 2.44%, Unc: 0.81%)

Average 65.24 16.28 0.753 / 0.398 / 1.46 0.32 1.10 0.046
Variability 2.65% 8.04% 6.71% / 7.26% / 1.36% 3.75% 0.54% 2.89%
Uncertainty 10.05% 3.22% 10.12% / 32.83% / 0.37% 3.89% 0.57% 2.42%

RIG 2, RRI = 1.4 (Var, Unc: 0.0%), IRI = 0.004 (Var: 55.90%, Unc: 0.0%)
SSA = 0.964 (Var: 2.75%, Unc: 1.14%)

1.5−2.75 km, step: 250 m

Average 199.42 26.44 0.32 / 0.40 / 1.63 0.19 1.18 0.084
Variability 2.88% 7.00% 5.33% / 4.08% / 4.60% 21.94% 4.55% 8.53%
Uncertainty 2.84% 6.75% 7.88% / 9.78% / 0.41% 28.38% 1.32% 7.10%

Sun-photometer-based inversion

Parameter ut reff (total/fine/coarse) sphericity RRI IRI SSA
Unit µm3

µm−2
µm (%) − − −

Average 0.40 1.30 / 0.16 / 1.87 0.20 1.52 0.0017 0.963
Variability 6.21 7.25% / 6.35% / 7.27% 17.18% 1.02% 21.13% 0.77%
Uncertainty − − − 1.54% 64.24% 2.27%

small differences in depolarization. At the same time the attenuated signal in a layer above or below the
chosen one, affects the particle concentrations (as shown also in the Barbados case), and therefore the
chosen layer seems to be a prudent choice.

The average values of the optical and intensive parameters used for the inversion are given in Table 5.6.
Within the selected aerosol layer, the mean values of the lidar ratio at 532 nm 61.14±8.15, the extinction-
related Ångström exponent 0.34± 0.19 and the particle depolarization ratio at 532 nm 25.87± 1.24, fall
within the ranges for Saharan-dust particles from a lidar-ratio-based climatology shown in [103]. In
fact, our case was attested in multiple ways (HYSPLIT backward trajectories, SIVIRI satellite products
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Figure 5.6: The retrieved shape-size distribution shown in 3D (upper panel, main plot) and in the ar-
plane (small plot on top), the lidar-(reduced) VCSD for RIG 1 (lower panel, blue line), and RIG 2 (lower
panel, red line), and AERONET’s VCSD (lower panel, right) for the case study from 20.06.2014 in
Barbados. The lidar-based distributions correspond to mean values for the altitude range 1.50−2.75 km.
The sun-photometer-based distribution corresponds to the mean retrieved distribution from consecutive
measurements in the evening (AERONET).

and aircraft in situ measurements) during ChArMEx campaign to be only one case among many of a
long-range transport of mineral dust mixed with urban/industrial pollution from Africa (in our case
southwestern Algeria) travelling over the western Mediterranean basin, and it is documented in [31]. We
give an example of a backward trajectory produced by the HYSPLIT model from 2 days before being
detected by Granada’s lidar in Fig. 5.9, where we clearly see the air masses originating from Algeria
arriving in Granada at the altitudes 2.2 and 3 km. The sun-photometer measurements of direct solar
irradiance, showed a small fluctuation of the aerosol optical depth at 500 nm from its daily average 0.21,
also an indication of ”dusty” conditions and large-particle predominance. In-situ aircraft measurements
(French aircraft ATR-42, http://www.safire.fr) were performed in conjunction with the ground-based
measurements. The flight temporally closest to our case was performed on June 16, 11:58-14:40 (UTC)
with route Minorca-Granada, see [31]. The retrieval range of particle size of the mounted instruments
reaches 20µm, which is far beyond the observational potential of lidars and therefore a size comparison
is not relevant here.
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Figure 5.7: Time series of lidar range-corrected signal at 532 nm collected by Granada’s lidar system
MULHACEN, LR331-D400. A uniformly distributed dust layer is detected in 2 − 3 km above ground
level (a.g.l). The ground level in this case is 680 m (elevation) above sea level. The colorbar is given in
arbitrary units (a.u.).

Table 5.6: Optical data and intensive properties derived by Granada’s lidar station, averaged in the dust
layer (2.65− 3.10 km), see also Fig. 5.8.

Optical data

α355
(Mm−1)

β355
(Mm−1sr−1)

α532
(Mm−1)

β532||/⊥

(Mm−1sr−1)
β1064
(Mm−1sr−1)

115.60 1.56 100.88 1.33 / 0.34 1.62

Intensive properties

δ532 (%) LR355 (sr) LR532 (sr) AEα 355/532 AEβ 355/532
25.87± 1.24 74.32± 1.88 61.14± 8.15 0.34± 0.19 −0.17± 0.11

The extinction-related Ångström exponent (AEα 355/532) ranges generally in small values with a
mean of 0.34 (see Table 5.6) in the chosen aerosol layer, which indicates quite large particles. This hint
along with a few preliminary tests with our algorithm, led us to use the upper integration boundary of
the Fredholm equation rmax = 2.2 µm. The inversion took place within the predefined refractive index
grid RRI × IRI = [1.4, 1.5, 1.6, 1.7, 1.8] × [0, 0.001, 0.005]. The confinement of the imaginary part of the
refractive index to these values was also based on preliminary sensitivity tests for systematic algorithm
behaviors. These tests also revealed a strong tendency of shape-bimodality, which led us to consider
6 − 8 spline points and the spline degrees 2 − 3, following the hint of a smaller projection dimension
from Sec. 4.1.3. We assumed 5% and 10% data discrepancy leading to almost identical results, based
on uncertainties given by the GFAT which were calculated through a standard procedure (Monte Carlo)
used by EARLINET for the extinction- and backscatter coefficients, see [119].

All lidar-based inversion products are the mean values of the 5 best (least-residual) solutions, the
standard deviation of which was used to compute the solution variability Var (%). For AERONET
retrievals, Var (%) makes sense as a variability of the retrieved parameters from the concecutive evening
measurements. The maximum number of iterations for Padé regularization was set to 30, in order to
avoid overfit in case there are more than 10% actual errors in the data, even though preliminary runs
with a maximum over 30 iterations did not show essential differences. We calculated the parameters RI,
at, reff (total, fine, coarse), SSA532, svcf, aeff and avar. The results are found in Table 5.7, along with
AERONET inversion products.
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Figure 5.8: Optical properties retrieved by Granada’s lidar station. From left to right, the following
profiles are shown: total backscatter coefficient at 355, 532 and 1064 nm, extinction coefficient at 355
and 532 nm, particle depolarization ratio at 532 nm, lidar ratio at 355 and 532 nm, the extinction- and
backscatter-related Ångström exponent 532/355 measured on 16.06.2013, between 22:00-22:30 UTC. The
mean values used for the inversion are shown in Table 5.6.

The lidar-retrieved refractive index with RRI = 1.4 (±0.0%) and IRI = 0.0042 (±43%) is close enough
to the experimental approximate value 1.52 + 0.003i observed for Saharan dust in the source region, see
[133]. The retrieved RI-values are also not far (especially for the IRI) from the ones of AERONET, which
predicts RRI = 1.57 (Var: 0.72%, Unc: 0.15%) and especially from the IRI = 0.0035 (Var: 47.75%, Unc:
0.86%). The lidar-based SSA at 532 nm (0.961 ± 1.77%) is a little higher than the computed spectral
mean of AERONET’s SSA in the almucantar wavelengths (0.935 ± 3.50%). On the other hand, our
result agrees with the SSA estimated from chemical measurements (0.96) based on bulk aerosol samples
collected during the aircraft flight on June 16, see [31] Table 5. The surface-area concentration was
found 137.57 µm2cm−3 (±5.31%) and the total effective radius 0.57 µm (±8.32%) , which is lower than
AERONET’s reff = 0.786 µm (±2.25%). The lidar-based coarse mode is also found lower and the fine
mode higher than the AERONET-retrieved.

The parameter svcf was found 0.336 (± 37.71%) indicating that there could be a considerable con-
tribution of spherical particles to the volume concentration, and disagrees with AERONET’s retrieved
sphericity rate 0.0047 (±8.74%). Moreover, the effective aspect ratio (1.19 ± 7.67%) predicts a prolate
particle-ensemble with avar = 0.057 (±16.28%). The aforementioned shape observations based on the
lidar are visualized through the two-dimensional shape-size distribution reconstruction in greater detail,
see Fig. 5.10, where also its projection in the ar-plane is shown in a smaller plot above the main plot.
This plot suggests that the expected coarse mode of the dust particles is merely a contribution of pro-
late particles. Smaller particles also appear quite dominantly in the spherical neighborhood (a = 1)
and maybe there are oblate fine particles in lesser extent. The spherical contribution is perhaps a sign
of presence of marine aerosols (sea salt) mixing with mineral dust during its transport in the marine
boundary layer, see e.g. [74] where such mixtures where found for particles larger than 0.7 µm in the
Caribbean aerosol (SALTRACE). It should be noted though that the sphericity of such particles depends
on relative humidity, see [27, 70].

The right panel of Fig. 5.10 shows the volume concentration size distribution retrieved by AERONET.
A comparison of the order of magnitude can be done, as in the case in Barbados, considering the thickness
of the whole dust layer about 3 km. Then the estimated maximum lidar-retrieved concentration is about
0.06 µm3

µm−2 which is comparable with AERONET’s maximum of about 0.082 µm3
µm−2. AERONET’s

size distribution shows a small fine mode and a very prominent coarse mode predicting very large particles.
This conforms with measurements of the campaign where the effective diameter during the period 16.06-
03.07 was found as high as 3.8− 14.2µm, see [31]. Evidently, so large particles cannot even be observed
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Figure 5.9: Air mass back-trajectories produced by HYSPLIT model for the case study captured by
Granada’s lidar station.

by lidar systems, and therefore our algorithm cannot have a complete picture of such coarse modes.
Moreover, by converting the reduced size distribution to the lidar-analog for AERONET’s du/d ln r (not
shown) we observe that the reduced VCSD seems to have a forced steep ending towards its right end,
which might also indicate the information gap. Nevertheless this lidar-based inversion is able to describe
the physical phenomenon to a satisfying extent despite the algorithm-instrument limitations.

About the credibility of such a reconstruction as opposed to disregard of its multimodality as noise
we have done a series of numerical theoretical experiments to verify that at least such distributions can
be reconstructed, some of which were already shown in Sec. 4.1.3. We also designed a similar simulation
tailored to this example (bimodal in shape without coarse mode) which reconfirmed this possibility.
Furthermore, when multiple modes appear in simulations because of errors they are generally ”messier”
and they are often mixed, which is not the case here. In addition, the tests showed that the coarse mode
can appear as a very mild artifact near the edge of the aspect ratio axis but not as prominent as in our
case. Therefore we are confident enough to accept this result as a possible outcome both numerically
and physically.

5.4 Data from Potenza’s lidar station

The present case concerns another dust event from the record of the CNR-IMAA atmospheric observatory
(CIAO), operated by the Institute of Methodologies for Environmental Analysis (Istituto di Metodologie
per l’Analisi Ambientale - IMAA) of the National research council of Italy (Consiglio Nazionale delle
Ricerche - CNR), also an EARLINET member since 2000. We are specifically interested in the multi-
wavelength Raman Lidar MUSA (Multi-wavelength System for Aerosol), see [94], capable of retrieving
the 3β+2α optical properties and additionally differentiating parallel and vertical depolarization signals
at 532 nm based on [42], and the CIMEL sun-photometer, both parts of CIAO located at Tito Scalo,
Potenza, Italy (40.60◦ N, 15.72◦ E, 760 m a.s.l.). The aforementioned lidar system collected the optical
data we are going to investigate on 04.09.2011 between 23:26-1:09 UTC.

The lidar range-corrected signal (RCS) in Fig. 5.11 shows an intense aerosol layer between 2 and
5 km above sea level (a.s.l.). Altitudes below 2 km where turbulence takes place (boundary layer) were
not taken into account here. In Fig. 5.12 we show the back-trajectories created by HYSPLIT model
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Table 5.7: Retrieved microphysical parameters for a dust-case captured by Granada’s lidar station. The
variability (Var %) is calculated as it is defined in Sec. 4.1 from the chosen (5) least-residual solutions for
the lidar-based inversion, and from the retrieved values in the consecutive measurements (AERONET) in
the evening for the sun-photometer-based inversion. Especially for the complex refractive index and the
single scattering albedo retrieved by AERONET, the given values represent spectral mean values in the
four almucantar wavelengths, so that Var (%) is a mean spectral variability, and Unc (%) corresponds
to the uncertainty of the mean retrieved parameter (spectrally) between the consecutive measurements.
The parameter notation is given in Table 5.1. The lidar-based SSA is calculated at 532 nm. The optical
data used for the inversion are depicted in Fig. 5.8 and shown in Table 5.6.

Parameters Average
(Lidar)

Var (%) Average
(AERONET)

Var (%) / Unc (%)

at (µm3
µm−2) 137.57 5.31% − −

reff , fine (µm) 0.46 3.28% 0.125 1.70%
reff , coarse (µm) 1.51 7.89% 1.866 0.91%
reff , total (µm) 0.57 8.32% 0.786 2.25%
RRI 1.4 0.0% 1.57 0.72% / 0.15%
IRI 0.0042 43% 0.0035 47.75% / 0.86%
SSA 0.961 1.77% 0.935 3.50% / 0.05%
svcf 0.336 37.71% − −
sphericity − − 0.0047 8.74%
aeff 1.19 7.67% − −
avar 0.057 16.28% − −

Figure 5.10: The retrieved shape-size distribution shown in 3D (left, main plot) and in the ar-plane (left,
small plot on top), and AERONET’s VCSD (right) for the case study from 16.06.2013 in Granada.

5 days before the air masses arrive above Potenza’s lidar station. Here we observe clear contributions
from African deserts and maybe from the industrialization of Morocco, which could result in a long
range transport of dust particles mixed with pollution. At that time, the MODIS (Moderate Resolution
Imaging Spectroradiometer) active fire product indicates areas around the lidar site and southwest of
Italy where there could be fire events and thus there could be mixing of biomass burning aerosols with
the polluted dust. However the significance of such contributions is unknown since the retrieved optical
properties do not directly reflect this.

The optical profiles in Fig. 5.13 in 1.5 − 4.3 km, show a very distinct aerosol layer with β532 =
1.5± 0.3 Mm−1sr−1 and α532 = 62.2± 11.4 Mm−1 and we further see the intensive properties LR355 =
58.6±8.8 sr, LR532 = 43.4±5.5 sr, AEα = 0.45±0.16, and δ532 = 26.2±2.0, which are typical values for
dust particles. The relatively small variation of these properties is an ideal situation to test the stability
of our algorithm by resolving the whole layer in smaller sub-layers and performing inversions to see
variation of the microphysical parameters and the size distribution. For this, we divide the altitude range
2.45 − 3.95 km with a step of 250 m and perform the microphysical retrieval of the properties nt, at, vt,
reff (total, fine, coarse), svcf, aeff and avar for the whole layer and all the sub-layers. The apparent choice
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Figure 5.11: Time series of lidar range-corrected signal at 1064 nm collected by Potenza’s lidar system
MUSA. An intense aerosol layer is detected in 2− 5 km a.s.l.

Figure 5.12: Air mass back-trajectories produced by HYSPLIT model for the case study captured by
Potenza’s lidar station. This plot was created by combining the HYSPLIT output trajectories with
Google Earth tool. The colored distances mark the height of the air masses from the starting point
(31.08.2011) to the finishing point (05.09.2011) a.g.l.

for the upper integration bound of the radius in the model equation was rmax = 2.2 µm, but we also
observed in preliminary tests that rmax = 1.2 µm restricts the distribution potential. With these tests we
were also able to set the refractive index grid to RRI× IRI = [1.4, 1.5, 1.6, 1.7, 1.8]× [0, 0.001, 0.005, 0.01],
e.g. the option IRI = 1.33 was left out due to its vast mode suppression. Moreover, we used 6−14 spline
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points and 2− 5 degree splines, we set the maximum number of Padé iterations to 100, and the amount
of least residual solutions to 5.

Table 5.8 shows the inversion results for the altitude range 2.45 − 3.95 km with step 250 m and as
a whole, and also for 2.45 − 2.7 km separately, as the most intense layer with low variation of the lidar
ratio and the Ångström exponent. In this table we also include AERONET inversion products from
measurements of the sun-photometer early in the morning after the lidar measurements. As we can
see there is a tiny difference in the retrieved values between 2.45 − 3.95 km devided in smaller layers
and as a whole which demonstrates stability. As compared to the Barbados’s case in the regions where
the variation of the intensive parameters is small (e.g. 1.5 − 2.75 km, Table 5.5), here we have larger
parameter uncertainties (Unc) as we reach higher altitudes, which are still very tolerable. Moreover,
what is also different here is that the solution spaces have larger variability especially for the shape
parameters svcf, aeff and avar. These features were expected since the inversion is less balanced here, i.e.
with less depolarization data points than in the case of Barbados. However, it could also suggest that
there are indeed particles with greater variation in shape.

Figure 5.13: Optical properties retrieved by Potenza’s lidar station. From left to right, the following
profiles are shown: total backscatter coefficient at 532 nm, extinction coefficient at 355 and 532 nm,
particle depolarization ratio at 532 nm, lidar ratio at 355 and 532 nm, the extinction- and backscatter-
related Ångström exponents AEα/β 355/532 and AEβ 532/1064 measured on 04.09.2011 between 23:26-
1:09 UTC.

On the other hand, here we see very small variation of the volume concentration vt = 17.77 µm3cm−3

(±8.39%) between the successive sub-layers reflecting the relatively small variation of the signal intensity
throughout the whole layer, which also shows stability. Although we have a total effective radius reff =
0.39 µm (±4.93%) suggestive of medium-coarse particles, there is also a coarse mode of 1.70 µm (±1.23%)
in 2.45−3.95 km, see Table 5.8. AERONET also finds a coarse mode of 1.80 µm (±2.72%) and a very small
fine mode of 0.12 µm (±5.59%), see lowest sub-table in Table 5.8. With our approach the contributions of
the fine (medium-coarse) and coarse particles are attributed almost entirely to different shapes, namely to
nearly spherical and prolate spheroidal particles respectively, as one can see through the mean retrieved
shape-size distribution in Fig. 5.14 left panel. The finding of a quite enhanced fine mode, shown in this
figure, backs the potential scenario of contributions by smoke particles. There is also a very small fine
mode (much like AERONET’s) of prolate particles with a peak at about 23 µm3

µm−1cm−3, but this
could as well be an artifact. Performing a rough calculation as in the previous cases we can see that the
volume concentration peak in AERONET’s VCSD (not shown) of about 0.12 µm3

µm−2 is consistent in
the order of magnitude with the peak of the reduced VCSD of about 0.05 µm3

µm−2, see Fig. 5.14 (right)
2.45 − 3.95 km (average), considering a dust layer thickness of about 3 km. The temporal variability
of the measurements and the difference in the sampled volume between the lidar and sun-photometer
measurements might account for the difference in magnitude, but in the case of lidar this calculation has
only qualitative value anyway.
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Table 5.8: Retrieved microphysical parameters for the dust-case from 04.09.2011 captured by Potenza’s
lidar station. The variability (Var %) and uncertainty (Unc %) are calculated the same way as in Table
5.5. The parameter notation is given in Table 5.1.

Lidar-based inversion

2.45− 2.70 km

RRI = 1.4 (Var: 0.0%), IRI = 0.008 (Var: 55.90%)
SSA532 = 0.943 (Var: 3.34%)

Parameter nt at vt reff (total/fine/coarse) svcf aeff avar

Unit µm−1cm−3
µm2cm−3

µm3cm−3
µm − − −

Average 203.19 130.93 16.18 0.37 / 0.28 / 1.7224 0.30 1.11 0.063
Variability 9.52% 2.52% 12.14% 10.31% / 6.22% / 0.82% 15.74% 1.94 28.49

2.45− 3.95 km, (whole)

RRI = 1.4 (Var: 0.0%), IRI = 0.008 (Var: 55.90%)
SSA532 = 0.934 (Var: 3.37%)

Average 198.57 137.85 17.77 0.39 / 0.30 / 1.68 0.31 1.07 0.074
Variability 12.07% 2.89% 12.36% 9.89% / 5.54% / 5.60% 17.35% 9.17% 47.70%

2.45− 3.95 km, step: 250 m

RRI = 1.4 (Var, Unc: 0.0%), IRI = 0.008 (Var: 55.90%, Unc: 0.0%)
SSA532 = 0.944 (Var: 3.35%, Unc: 0.02%)

Average 198.00 138.05 17.81 0.39 / 0.30 / 1.70 0.31 1.11 0.063
Variability 7.30% 2.22% 10.60% 8.98% / 5.60% / 3.65% 12.47% 2.60% 27.02%
Uncertainty 8.94% 5.14% 8.39% 4.93% / 5.88% / 1.23% 4.50% 0.24% 0.41

Sun-photometer-based inversion

Parameter ut reff (total/fine/coarse) sphericity RRI IRI SSA
Unit µm3

µm−2
µm (%) − − −

Average 0.22 0.76 / 0.12 / 1.80 0.7331 1.53 0.0032 0.939
Variability 4.66% 6.96% / 5.59% / 2.72% 36.06% 0.76% 21.13% 2.17%
Uncertainty − − − 1.41% 64.24% 1.11%

Figure 5.14: Left: mean retrieved shape-size distribution for the case study from 04.09.2011 in Potenza
for the altitude range 2.45 − 3.95 km with step: 250 m. Right: (reduced) volume concentration size
distribution for several layers. The mean VCSD corresponding to the mean shape-size distribution (left)
is labeled as ”2.45 − 3.95 km (average)”, and the errorbars correspond to the standard deviation of the
mean distribution computed for every sub-layer.
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Looking closer in Fig. 5.14 (right), we observe that the (reduced) VCSD for the layer 2.45− 3.95 km
considered as a whole is almost coincident with the mean VCSD computed from all the sub-layers of 250 m
with a distribution uncertainty Unc = 16.39%. The latter is found through the standard deviation of the
mean distribution calculated for a every sub-layer from the 5 best solutions. We also show the resulting
distributions for the inversion in the two major backscatter peaks in 2.45− 2.70 km and 3.70− 3.95 km.
Their distribution trends are very similar and the differences focus mainly on the peaks of the two modes
where the largest variation among the sub-layers is found. However, their microphysical properties vary
only a little as we can attest from Table 5.8 (2.45− 3.95 km, step: 250 m).
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Summary, conclusions and future
work

In this final part, we would like to summarize our findings, come up with some answers to our topic and
elaborate further on several theoretical and practical issues which might extend and improve the present
work.

In this work we addressed the problem of retrieving the microphysical properties of aerosol particles
from multi-wavelength lidar data, which mathematically comes down to solving an inverse ill-posed
problem. The theoretical requirement to approximate the latter with a well-posed problem, i.e. to have
a unique stable solution, is the closure of the linear operator of the underlying model equation. The
insightful approach of the theory is greatly attributed to the use of the singular value decomposition, as
a means to decompose the operator in its building elements. The latter helped us define as a measure
of the instability, namely the degree of ill-posedness, and introduce the regularization methods (RM)
the very essence of which is to counteract the inherent instability of our problem. The amount of
regularization imposed to an ill-posed problem is decisive to the usefulness of the inversion outcome,
since too much of it can eliminate, along with the undesired noise, vital solution information as well,
as the Riemann-Lebesgue Lemma illustrates. This brought us to the introduction of special techniques
called parameter choice rules (PCR) to control the intensity of the regularization filter we force upon our
solutions. A great effort was made here to include most of the RM and PCR widely used in literature
for spherical particles and evaluate their performance with the non-spherical model in a first stage.
These RM were, the truncated singular value decomposition (TSVD), Tikhonov’s method (Tikh) and
additionally Padé iteration (Pade), and the PCR, discrepancy principle (DP), L-curve method (LC) and
generalized cross validation (GCV). The combinations RM-PCR used here were TSVD-DP, Tikh-LC,
Pade-DP, Tikh-GCV, Tikh-DP and for the first time Pade-LC.

Exposing the general theory is very instructive in order to have a solid foundation and exploit our
options in the best way but it is only one side of the coin. In order to have some insight in the real-life
problem we are trying to solve it was necessary to explore it from the physical point of view. The input
data to our inversion are the so-called optical properties retrieved by the radiation backscattered by the
targeted atmospheric particles (aerosols) once they are struck by the emitted signal of a lidar system.
Maxwell’s equations of electromagnetism are the key to describe the scattering and absorption processes.
Indeed, under certain assumptions (e.g. single scattering, isolated small finite scattering objects, etc.) we
can get a full description of the physical scenery taking place through analyzing the interaction of matter
with light, using time-harmonic fields and solving the famous wave equation. The missing link which
connects these phenomena with lidar observations, i.e. the intensity of the backscattered signal, is the
intrinsic quantity of light called polarization. It turns out that the full knowledge on this property consists
only of four easily observable quantities, namely the Stokes parameters, every possible combination of
which can be found in the so-called Poincaré sphere. Still, the relation between the incident field assumed
to be known, the internal particle field, and the scattering field we are attempting to find out requires a
enormous amount of thorough physical and mathematical ingenuity. The extended boundary condition
method is perhaps the most favorable answer to this problem, which suggests that the formalization for
the scattering field is extended also for the internal field. This way the scattering field can be calculated
by the elements of the transition matrix (T-matrix) which finally depend exclusively on the incident field.
The optical cross sections or the dimensionless optical efficiencies, associated with the kernel functions
of the model equation, can further be translated to T-matrix language, which was the main goal for us
here.
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Directly after exposing the mathematical and physical toolbox we introduced the model equation,
i.e. the Lorenz-Mie model (LMM), which simply states the intuitive proposition that the aerosol extinc-
tion and backscatter coefficients measured by lidars are equal to the associated optical cross efficiencies
integrated by the rule of an aerosol size distribution over all radii. The LMM served many years the
microphysical purpose as a reasonable choice for particles that can be assumed close to spherical, but for
arbitrarily-shaped particles was proved insufficient to predict accurately the optical properties. Using
a spheroid-particle approximation we have shown that theoretical calculations of the phase function,
as a measure of the scattering proportion of the incident light in a specific direction, over polydisperse
spheroid particle ensembles match the experimental ones in a higher level than surface-equivalent spheri-
cal ensembles. Motivated by this, we then follow a natural generalization of the LMM in two dimensions
(GLMM) considering spheroidal optical efficiencies. The latter depend additionally on the aspect ratio,
over whose domain the integration is extended. This brings a series of advancements and limitations
which we would like to further discuss. The major issues here were (a) the computational demanding and
highly unstable calculations of the optical efficiencies by T-matrix theory, and (b) the two-dimensional
integrations required for the discretization which is also prohibitively costly for large-scale simulations.
These problems were circumvented by employing a precalculated kernel database (Mieschka tool) and
further by creating a discretized kernel database for a wide range of projection spaces. However, Mi-
escka’s database having precalculated optical efficiencies at the coarse refractive index grid of 6 real parts
and 7 imaginary parts, and at only 7 aspect ratios, is for sure the greatest limitation of our approach.

Next, the new model promotes the traditional size distribution to a shape-size distribution (radius
and aspect-ratio dependent), not following the usual assumption in literature where size and shape are
independent, which may only occasionally be true. This offers a much wealthier particle distribution
which in measurement cases allowed us to be able to discuss about potential properties of the observed
particles like never before. Indeed it enabled the identification of contributions of different particle shapes
and sizes within the same particle ensemble, and the exploration of the most dominant behaviors. Even
if we accept that the discussion on those topics reflects only an ”effective particle behavior” rather than
what actually took place with the targeted particles, it still expands our physical notion and sets new
grounds. For the sake of simplicity in our simulations we considered simple products of log-normal
and aspect ratio distributions to model the shape-size distribution. It could be argued that this simple
synthetic-data construction does not follow any realistic well established model. For one, there is not any
standard model to our knowledge which fits our 2D particle distribution. Furthermore it was the only
way to investigate explicitly a large diversity of particle shapes and sizes combining different particle sizes
and different radius variances with basic shape distributions, i.e. oblate, prolate, and sphere-spheroid
mixed ensembles. It is true, however, that at least for the aspect-ratio distribution, a more realistic
model could be used based on a modification of the log-normal distribution to fit experimental data
coming from very recent research results of [75]. Nevertheless the use of such an advanced model would
only make sense in case the aspect ratio range was larger, and more importantly if there actually was a
satisfying resolution for the aspect ratio in our disposal. It sure is a valid option for the future though,
in view of a possible extension of the kernel database.

We should also point out that although for the sake of the microphysical-retrieval study we were
occupied with the inversion of the GLMM, a careful study for the forward problem (with real data)
is interesting for the future as well. In principle, the new forward model should work at least with
the same efficiency as the 1D model, but since nowadays we have additional information coming from
depolarization signals, one could see how this affects the reproduction of the latter thereby learning more
about the efficiency of this model to represent physical reality.

The very first task in order to solve the model equation is the discretization (also a regularizing force)
which requires some creativity as well. As we discussed the most appropriate method here is collocation,
because the input data are given as single values, i.e. 5-8 points depending on the amount of lidar depo-
larization channels. However, there is no established collocation technique for a two-dimensional variable
(shape-size distribution), where at the same time the input data still depend on a single variable, which is
why we called this a quasi-2D generalization. Here, we adopt an approach of reducing the two dimensions
to one augmented dimension with a bijective index reordering, where the ”hidden” dimension is unfolded
back with a simple inverse linear operator after the spline basis coefficients (solutions of the discretized
problem) are found. Now, although this technique causes further unnecessary underdetermination of
the linear system, it seems that there is actually no alternative to really use the full potential of the
discretized matrix as a 3rd-order tensor. In fact, this is an open research problem in multilinear analysis
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which can be solved under certain assumptions that are not met here. For instance, one of the latest
published works on matrix-tensor relations [23], proves that only even-order tensors with a rectangular
form can be inverted by a specific linear transformation described in that study. This article and also
[30] are also enlightening about tensor decompositions, especially for multilinear SVD, which might be
useful once we come up with other possible models that can accommodate such a tensor inversion.

Another tricky part of the discretization is the decision of the dimension to project our problem.
The core of our hybrid algorithm is to identify the ”best” projection spaces through the minimization
of the residual error. The first round of our simulations was devoted to compare all the aforementioned
regularization techniques (RM-PCR). This task is not an easy one at all, since the desired inversion
outcome includes many microphysical parameters and a shape-size distribution, and one has to predefine
what exactly one is interested in. Our preference here was an overall good behavior which made sense
as we wanted them to be tested in a large sample of cases covering not only sufficient physical diversity
but perhaps also in fictional cases (not necessarily observed experimentally) which might challenge the
process mathematically. This is the second reason for the development of this type of algorithms used
here as to allow such a comparison by keeping track of the variability of least residual solutions. This
statistical approach offers a powerful first-stage evaluation of the methods missing from today’s literature
in such an extensive level. In this regard, we demonstrated a methodology to find out which method has
a better balance of good accuracy (1-Dif%) and low uncertainties in terms of mean solution variability
(Var %) of all solution spaces and randomness uncertainty (Unc %) associated with the imposed data
errors.

The method fulfilling most of our criteria was found to be Pade-DP. Pade-LC fell short in the
uncertainties as compared with most of the other methods, but was kept in our consideration, as it
was found to be superior in the accuracy of the shape parameters and further because of its advantage
of being a purely data-driven regularization method. In a detailed presentation of the microphysical
parameter results with a fixed refractive index (RI) we found that Pade-DP retrieves the surface-area
concentration at, the total volume concentration vt and the effective radius reff (R-parameters - RP)
exceptionally well, with more than 85% accuracy and the uncertainties (Var, Unc) are vastly below (5%,
15%) on average, for any shape, size, RI, and data-error level tested. Pade-LC is almost as good as Pade-
DP in accuracy but owns a higher risk of isolated blow-up-incidences. Their largest disagreement is found
on at where Pade-DP has on average less than 5% Dif and 6% Unc lower than Pade-LC, and Pade-LC
appears to handle less effectively prolate particle ensembles (larger Var %). Moreover, Pade-DP also
proved to be the best bet for the retrieval of number concentration, a parameter extremely vulnerable
to noise which, as we discussed, can be manually corrected to provide very decent approximations.

Regarding the shape parameters (S-parameters - SP), spherical volume concentration fraction (svcf )
and effective aspect ratio (aeff), we have very good retrievals for prolate and sphere-spheroid mixed
particle ensembles and less efficient retrievals for oblate ensembles, which is directly reflected in the
reconstructions of the shape-size distribution we saw later on. A large collection of synthetic shape-size
distributions are very well reconstructed with Padé iteration, taking into account the level of restriction
we are dealing with for such a small aspect ratio resolution we have access to through the kernel database.
Generally, among all the distribution features we can be most confident about the peak location which is
another hint that the effective radius can be well reproduced. Especially good reconstruction performance
is shown by Pade-LC which justifies the preliminary findings for its overall better accuracy in the shape
parameters even if the differences (in SP) with Pade-DP are seemingly marginal. We went one step
further to conceptualize, construct and quite successfully reconstruct limited cases of bimodal shape-size
distributions, a quite impressive result, which intuitively applies to real-life atmospheric scenarios as
shown later on. However, 10% data errors (the largest used) seems to be quite a strict barrier as large
errors may have a destructive effect in the reconstructions.

Further statistical analysis showed that for larger particle sizes the accuracy of aeff is enhanced for
oblate ensembles by about 6% and marginally diminished for prolate ensembles by about 2%. The
parameter svcf shows less predictive behavior with respect to increasing particle size, although it seems
to be more accurate for smaller sizes. Moreover, it has the most alarming uncertainties (Unc), thereby
doubling the rates (%) for larger sizes for oblate and sphere-spheroid-mixed particles, while svcf -retrievals
with prolate particles mark by far the largest rates for all sizes; Var (%) also follows a similar pattern but
with significantly lower rates. Particle size has the most direct effect in the degree of ill-posedness and
thus the retrieval behavior. A higher susceptibility to noise was attested multiple times (shown also with
SVD-analyses) to be correlated to larger particles. However statistically, most related to lower accuracy
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and larger uncertainties (mostly Unc) on average are the particle shape and even more the RI; oddly,
among the database values we used, most problematic were the ones with lower real part and not the
ones with larger imaginary part. Finally, the data-error transition from lower to higher levels (1%-5%,
5%-10%) for the parameters at, vt, reff and aeff affects mainly, Dif (%) and Unc (%) by about 4% and
5% on average respectively.

A greater effort is required for synthetic microphysical retrievals where the refractive index is consid-
ered unknown. Despite the significant additional computational cost of this endeavor, the simulations
were massive here too including 14 different RIs, combined with various particle sizes and the three basic
particle ensembles. Our interest here was twofold, namely (1) the retrievability of the RI and the single
scattering albedo (SSA) with our algorithm (SA2) and Pade-DP and (2) find out to what extent a diver-
gent RI affects the rest of the parameters (RP, SP). Regarding (1), we saw that predefining an RI grid
for the inversion with absolutely no hint about the true refractive index, i.e. using all the options from
the database, the RI can be retrieved in a good level. Since there is practically poor RI-resolution in the
database, a ”good level” means to additionally accept the nearest RI-neighbors in Mieschka’s database
which at the same time lead to small variations of the SSA. It is shown that the major concern is the
imaginary part of the RI (IRI) since the real part of the RI (RRI) is vastly retrieved with astounding
accuracy and small uncertainties for all tested error levels. For cases with 1% data-error and high or ex-
treme absorption (IRI ∈ [0.01, 0.1]), the IRI is retrieved with high accuracy, (median - m) Var(m) . 20%

and (median) Unc(m) . 50%, except for minor instances. Weak-absorption cases with small RRI seem
to be more challenging for our algorithm, often severely overestimating the IRI. A collateral result is
that the odds of a successful IRI-retrieval for very weak or very strong absorption levels are enhanced
with large particles rather than with smaller ones. This essentially indicates that the echo of the optical
properties of smaller sizes through the inversion process could be significantly diminished. Regarding
the shape involvement, prolate particle ensembles are harder to retrieve and sphere-spheroid mixtures
are the most safe. Higher data errors impose additional difficulty in the retrievals of the IRI, affecting
both accuracy and the uncertainties, in many cases to an unreliable level. Regarding (2), a synopsis of
our results revealed that the error-related quantities (Dif, Var, Unc - ERQ) increase roughly by 3-20%
on average as compared to the corresponding fixed-RI retrievals for the parameters at, vt, and reff and
aeff . The effect on the variability of the chosen solutions is generally minor on average showing stability
in the solution spaces while the uncertainty (Unc) shows 6-7% increase in the transition to higher error
levels for reff . This parameter is mostly influenced by the retrievals of vt, which is the most distinctly
affected parameter in accuracy (average Dif range 14-38%). Therefore the results for the rest of the
parameters are tolerable even in view of severe IRI-discrepancies. Even more encouraging is that, as
we saw, a wise selection (preliminary tests) of the maximum number of iterations for Padé iteration
reversed inaccuracies in many of the highly divergent cases. Finally, the synthetic SSA retrievals at 355
and 532 nm follow in a much milder level the quality with which the refractive index is reproduced, and
thus they are almost always very good.

A novel investigation of this work, was the comparison among different lidar setups in which we varied
the amount of depolarization points (1d, 2d, 3d) and/or the extinction points (2α, 3α) at the wavelengths
355, 532, 1064 nm, using a similar methodology to the method comparison. Incidentally, the setup used
throughout all our experiments, 3β + 2α + 3d (323), was shown to be the best choice, accounting both
for accuracy and stability. Several independent setup comparisons showed that the additional extinction
coefficient at 1064 nm was not always beneficial, although it leads many times to reduced the uncertainties
when it is combined with 3d. A rather intriguing outcome regarding depolarization data at 355 nm is
that it is also theoretically dubious to which degree it is helpful for the retrieval, which suggests that the
overall advantage of 323 might lie greatly within the depolarization data at 1064 nm.

Regarding the model equation there are some suggestions for future investigations. A possible short-
coming of the spherical model passed also in our generalization (GLMM) could be the mistreatment
of the optical data information. By this is meant that although the optical properties are given in
profiles, we only take into consideration their mean values in a specified layer. In other words we use
single data points for the inversion, which might be restrictive from physical point of view. Instead, the
model equation could be modified to exploit the whole layer information by using integrated extinction-
and backscatter coefficients over the given altitude range. On the other hand, this might cause further
undesired smoothing and therefore this approach requires a whole new investigation from scratch to
assure the benefit of such a modification. Second, following the concept of the AERONET, we can take
the generalized model one step further and assume that aerosol particles have separate spherical and
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non-spherical (spheroidal) parts the proportion of which is decided by an additional unknown asphericity
parameter. Some preliminary tests showed that this kind of advancement can lead occasionally to su-
perior results in the microphysical parameter accuracy and/or the shape-size distribution reconstruction
quality if we assume a convex combination of the involved aerosol parts. Despite the sincerest efforts
of the author, a unified stable model of this kind could not be found mainly because of the lack of a
simple (linear) way to derive the new parameter. However, this line of thought is encouraged for the
future model developments. Finally it remains unknown if more complicated particle symmetries, could
be the answer to occasional failure of the spheroidal approximation and this should also be one of the
next steps under consideration in aerosol microphysics. Nevertheless this is still a long-term plan since
the more involved nature of such particles would result in an even higher computational challenge for
the optical efficiencies, for which the research stage is newly born but very promising, see [71, 102, 126].

The final attempt of this work was the application of our algorithm with Padé iteration using lidar
data from measurement cases. Simulations, with all the limitations discussed by now, seem nearly
ideal in the sight of real-data retrievals where additional uncertainties of which we have no control,
e.g. measurement errors, multiple aerosol types etc., take over leading to a microphysical adventure.
The intention here was to discuss the physical phenomena of the various cases through the retrieval
from our algorithm and explore further the potential of our approach. At this point it is crucial to
stress the lack of a well-established consensus on aerosol microphysics (even more when we include non-
sphericity to the mix), primarily on modelling the optical properties and on the inversion methods. This
problem in conjunction with the gap in physical knowledge give an extremely hard time in finding out
how appropriate is an approach to follow. Currently the world’s most used software to derive columnar
aerosol microphysical properties is provided by the Aerosol Robotic Network (AERONET) of NASA,
which despite its extensive usage, it is still an experimental tool operated massively in the absence of
any other user-friendly alternatives. The purpose of using AERONET data here, was merely in order to
have a widely used reference point and in an effort to understand deeper the differences and limitations
of both approaches. The bigger point here is that the we need to be very cautious about any inversion
results when it comes to real-life data.

Our first encounter with measurement data was with 5 cases of biomass burning aerosols mixed with
urban pollution from the record of Bucharest’s lidar (INOE), which uses the 3β + 2α + 1d(532) setup,
and the goal was to observe the response of the algorithm to data with low depolarization. As compared
to a hybrid regularization method (HTSVD) and AERONET’s retrieval, our approach (Pade-GLMM)
delivered an equally reasonable retrieval mostly focused on the fine mode, which is the most dominant
for this particle type. The most pronounced difference with HTSVD and AERONET was found in the
refractive index, where we found stronger absorption, which is a consistent outcome for smoke particles.
Furthermore we get a reasonable result for the fine mode through the shape-size distribution, and we
were able to identify non-spherical contributions as well. However, the inversion process seems to wipe
out any sign of coarse mode, which might be ascribed to the limited radius extent (fixed kernel database).

The next examined case was captured by one of the most advanced lidar systems located in Barbados
islands and operated by the group of TROPOS in Leipzig. In addition to the usual lidar setup 3β + 2α,
this lidar system is capable of emitting and collecting depolarization signal at 355, 532 and 1064 nm. The
optical properties lidar ratio (LR), Ångström exponent (AE), and aerosol optical depth (AOD) showed
characteristic values of an intense dust event, which was further indicated by the back-trajectories from
HYSPLIT model pointing to Africa. The relatively small variation of the intensive properties gave
us the opportunity in this case to test the stability of the algorithm and its sensitivity to changes in
different layers. Performing retrievals to subsequent layers within the whole dust layer we got the very
interesting proposition that the algorithm is able to sense the difference in particle size as expressed by
the variation of AE. We also saw that as long as the optical properties (LR, AE) are relatively constant,
the microphysical properties within a layer or smaller sub-layers have only small differences, which is
very convenient provided that we have good quality data. Moreover, we found that lower signal intensity
is associated with a decrease in the calculated concentrations but in principle it delivers similar effective
radii. The shape-size distribution reveals two distinct modes both with spherical and non-spherical
contributions. As seen from the point of view of the reduced volume concentration size distribution
(VCSD), the coarse mode is prevailing as expected for dust-like particles. The retrieved IRI predicts
a very high value (0.05), which seems that can happen under less usual circumstances we superficially
explored. Finally we saw that in the extreme case where the IRI is an order of magnitude smaller,
the change in microphysical properties is relatively conservative but with pronounced differences in the
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reduced VCSD.
The next case was yet another dust case captured by Granada’s lidar station with a 3β+2α+1d(532)

setup during the ChArMEx campaign in 2013. The optical properties and multiple indications from
HYSPLIT and the literature showed clearly air masses originating from the African desert. Our retrievals
for the RI, SSA, reff (total and coarse) and the order of magnitude of the total volume concentration
in the dust layer are comparable to AERONET, while there are more essential differences in reff of
the fine mode which is almost absent for AERONET. Here, the shape-size distribution attributes the
contribution of coarser particles to prolate particles and the fine mode to both spherical and non-spherical
ensembles. A clear downside for this particular case is the limited particle size extent of our approach
but also of the lidar system itself in view of the extremely large particle sizes measured in situ during
measurement-flights performed during the campaign.

The last case pertained to dust particles with potential contribution from biomass burning and
was captured by the Raman lidar of the CNR-IMAA atmospheric observatory in Potenza, Italy which
collected the optical data with the 3β + 2α+ 1d(532) setup. The relatively stable optical data gave also
here the opportunity to test the performance of our algorithm in the same way as in the Barbados case.
The results showed a stable response of our approach for the microphysical parameters but also for the
retrieved (reduced) VCSD. There are, however, higher uncertainties as compared to the Barbados case,
especially in the shape parameters. This might be due to the lack of more depolarization information
which deeply relates to shape sensitivity, but can on the other hand point to different shape contributions
as we further explored.

In this work we saw that there is a real benefit using lidar data in being able to produce height
resolved information about the optical properties and thus perform investigations in greater detail. It is
often the case, though, that part of the information is missing due to the lack of spectral or multi-angle
scattering resolution (e.g. for the RI). Multispectral measurements, (e.g. sun photometer) are capable
of a higher sensitivity in the polarization of light and can thus provide such complementary information.
Furthermore orbital (spaceborne) remote sensing instruments have the advantage of covering large areas.
Therefore it seems highly promising that the next step forward will occur in synergetic terms where we
will be able to effectively combine observations from different instruments.

As frequently demonstrated, there is almost no aspect of the microphysical inversion that is not
challenging either computationally or physically. Nonetheless, we saw a successful first attempt to
address this problem for non-spherical particles through the prism of regularization in a statistically
significant number of cases. Thus, we may conclude this work with optimism and the hope that it will
stimulate further advancements in this field.
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Appendix A

Spherical wave functions

For a linear, isotropic (scalar permittivity) and homogeneous medium the electric field E is divergence-
free so that from Eq. 2.4.1 we obtain the vector Helmholtz equation ∇2E(r) + k2E(r) = 0. The latter
is satisfied by the following two function sets (written compactly):

Mmn(kr, θ, φ)
RgMmn(kr, θ, φ)

=

[
(2n+ 1)(n−m)!

4πn(n+ 1)(n+m)!

]1/2

∇×
(
r

ψmn(kr, θ, φ)
Rgψmn(kr, θ, φ)

)
(A.0.1)

and

Nmn(kr, θ, φ)
RgNmn(kr, θ, φ)

=
1

k
∇× Mmn(kr, θ, φ)

RgMmn(kr, θ, φ)
(A.0.2)

where

ψmn(kr, θ, φ)
Rgψmn(kr, θ, φ)

=
h

(1)
n (kr)
jn(kr)

(−1)n

√
(n+m)!

(n−m)!
dn0m(θ)eimφ. (A.0.3)

jn(kr) denotes the Bessel functions of the first kind and h
(1)
n (kr) the Hankel functions of the first kind,

both of which solve the scalar Helmholtz equation (∇+k2)ψmn(kr, θ, φ) = 0 with separation of variables
in spherical (or cylindrical) coordinates. dn0m(θ) denote the so-called Wigner d-functions defined by

dsbc =
√

(s+ b)!(s− b)!(s+ c)!(s− c)!
∑
l

(−1)l
(cos 1

2θ)
2s−2l+b−c(sin 1

2θ)
2l−b+c

l!(s+ b− l)!(s− b− l)!(c− b+ l)!
, (A.0.4)

where b, c and s denote integers, 0 ≤ θ ≤ π and the summation should exclude all l leading to negative
factorials. The functions Rgψmn are finite (regular) in the origin due to the relation

lim
kr→0

jn(kr) =
(kr)n

(2n+ 1)!!
, (A.0.5)

unlike the functions ψmn since

lim
kr→0

h(1)
n (kr) =

(kr)n

(2n+ 1)!!
− i(2n− 1)!!(kr)−n−1 and lim

kr→∞
kr�n2

h(1)
n (kr) =

(−i)n+1eikr

kr
. (A.0.6)

which indicates a behavior of outgoing scalar spherical waves at infinity and divergent at the origin.
The same applies for the vector spherical wave functions RgM,RgM as regular functions in the origin
and M,N as outgoing transverse vector spherical waves; this is known as the (Silver-Müller) radiation
condition, see e.g. [124].

The expansion of a plane electromagnetic wave E(r) = E0eikr̂
′·r, propagating in the direction of r′,

in vector spherical wave functions is

E(r) =

∞∑
n=1

n∑
m=−n

[amnRgMmn(k1r) + bmnRgNmn(k1r)] , (A.0.7)
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where the expansion coefficients are calculated by

amn =4π(−1)minγnE0 ·C∗mn(θ′)e−imφ
′
, (A.0.8)

bmn =4π(−1)min−1γnE0 ·B∗mn(θ′)e−imφ
′
, (A.0.9)

Bmn(θ′) =θ̂
d

dθ
dn0m(θ) + φ̂

im

sin(θ)
dn0m(θ), (A.0.10)

Cmn(θ′) =θ̂
im

sin(θ)
dn0m(θ)− φ̂ d

dθ
dn0m(θ), (A.0.11)

γn =

[
2n+ 1

4πn(n+ 1)

]1/2

. (A.0.12)

The free space dyadic Green’s function can be expanded in vector spherical wave functions as well

↔

G(r, r′) = ik

∞∑
n=1

n∑
m=−n

(−1)m


M−mn(kr, θ, φ)⊗ RgMmn(kr′, θ′, φ′)

+N−mn(kr, θ, φ)⊗ RgNmn(kr′, θ′, φ′) r > r′

RgM−mn(kr, θ, φ)⊗Mmn(kr′, θ′, φ′)

+RgN−mn(kr, θ, φ)⊗Nmn(kr′, θ′, φ′) r < r′,

(A.0.13)

where r 6= r′, see [141]. Further relations and a more detailed presentation of the spherical wave functions
see e.g. [100, 138].
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B.1. Reconstructions of bimodal size distributions with Pade-DP and Pade-LC for spherical particles
(Figures)

B.1 Reconstructions of bimodal size distributions with Pade-
DP and Pade-LC for spherical particles

Figure B.1: Reconstructions of bimodal size distributions with Pade-DP and Pade-LC, corresponding to
the cases 4 and 5 from Table 3.3. The plots follow the structure of Fig. 3.10.
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B.2. Reconstructions of monomodal shape-size distributions with all methods (Figures)

B.2 Reconstructions of monomodal shape-size distributions with
all methods

Figure B.2: Retrieved shape-size distributions from synthetic data produced with RI: 1.5 + 0.01i, 1%
data error, the size distribution No 1 and prolate particle ensembles. The uppermost plot corresponds
to the initial shape-size distribution.
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B.2. Reconstructions of monomodal shape-size distributions with all methods (Figures)

Figure B.3: Retrieved shape-size distributions from synthetic data produced with RI: 1.5 + 0.01i, 1%
data error, the size distributions No 3 and sphere-spheroid particle ensembles. The uppermost plot
corresponds to the initial shape-size distribution.
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B.3. Reconstructions of monomodal shape-size distributions with Pade-DP, Pade-LC and Tikh-DP
(Figures)

B.3 Reconstructions of monomodal shape-size distributions with
Pade-DP, Pade-LC and Tikh-DP

Figure B.4: Shape-size distribution reconstructions produced by Pade-DP, Pade-LC and Tikh-DP (left
to right) for the case (4, a, ii) respectively for 1% and 10% error level. The uppermost plot corresponds
to the initial shape-size distribution. The triple (Unc, Dist, Var) in the title of each plot refers to
residual-error quantities of shape-size distribution described in Sec. 4.1.
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B.4. Reconstructions of bimodal shape-size distributions with Pade-DP (Figures)

B.4 Reconstructions of bimodal shape-size distributions with
Pade-DP

Figure B.5: Reconstructions of bimodal shape-size distributions with two distinct aspect-ratio modes.
Right: reconstructions corresponding to the cases 5 (top) and 6 (bottom) from Table 4.7. Left: Initial
shape-size distributions for the reconstructions on the right.
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Appendix C

Tables

C.1 Synthetic retrievals with a fixed refractive index

Table C.1: Microphysical parameters retrieved with all methods for size distribution No 3, prolate
particles, data error: 1% and RI: 1.5 + 0.01i. The rightmost indication ”error” corresponds to the mean
relative residual error found with a forward calculation.

Parameters nt at vt reff svcf aeff avar error
Synthetic 0.1387 0.4624 0.0836 0.5426 0.000 1.3590 0.0072 4.70e-03

T S V D - D P

Average
Var/ty
Unc/ty

1.0989
45.82%
22.67%

0.7496
12.01%
6.24%

0.1501
13.36%
7.52%

0.5997
2.22%
2.49%

0.0870
32.89%
20.02%

1.2164
0.68%
0.47%

0.0383
2.92%
1.34%

0.0000
18.00%
17.70%

T i k h - L C

Average
Var/ty
Unc/ty

0.8682
16.22%
4.74%

0.4534
1.43%
0.54%

0.0804
0.39%
0.91%

0.5321
1.15%
0.87%

0.2558
7.15%
1.24%

1.1112
0.48%
0.08%

0.0433
2.39%
0.44%

0.1155
1.01%
3.43%

P a d e - D P

Average
Var/ty
Unc/ty

0.2476
16.83%
7.10%

0.4897
1.45%
1.23%

0.0882
1.27%
1.33%

0.5405
0.53%
0.71%

0.0203
16.64%
12.90%

1.3105
0.27%
0.32%

0.0141
10.34%
9.06%

0.0614
23.63%
12.95%

T i k h - G C V

Average
Var/ty
Unc/ty

0.8730
16.53%
8.64%

0.6273
3.03%
2.35%

0.1147
3.01%
2.20%

0.5486
1.19%
1.03%

0.0470
28.32%
15.18%

1.22
0.22%
0.20%

0.0398
1.82%
0.64%

0.3715
11.02%
8.88%

T i k h - D P

Average
Var/ty
Unc/ty

0.8260
19.90%
12.17%

0.6367
2.91%
2.55%

0.1184
2.79%
2.76%

0.5579
1.44%
1.61%

0.0459
28.80%
14.79%

1.2256
0.26%
0.20%

0.0395
0.67%
1.01%

0.3894
10.32%
9.41%

P a d e - L C

Average
Var/ty
Unc/ty

0.2922
36.34%
8.38%

0.4929
1.89%
0.79%

0.0892
1.51%
0.81%

0.5427
0.72%
0.57%

0.0291
37.79%
31.07%

1.29
1.68%
0.63%

0.0192
32.38%
9.77%

0.0962
22.18%
8.64%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.2: Microphysical parameters retrieved with all methods for size distribution No 3, sphere-
spheroid particle mixture, data error: 1% and RI: 1.5 + 0.01i. The rightmost indication ”error” corre-
sponds to the mean relative residual error found with a forward calculation.

Parameters nt at vt reff svcf aeff avar error
Synthetic 0.1361 0.4537 0.0821 0.5426 0.4940 1.0238 0.0151 5.02e-03

T S V D - D P

Average
Var/ty
Unc/ty

10.5715
28.43%
8.42%

1.1472
14.28%
6.54%

0.1733
19.71%
7.40%

0.4517
9.12%
1.39%

0.3303
10.13%
5.75%

1.0413
0.49%
0.73%

0.0341
6.63%
4.18%

0.0002
54.45%
207.40%

T i k h - L C

Average
Var/ty
Unc/ty

3.3729
4.50%
1.08%

0.4783
1.24%
0.64%

0.0738
2.19%
0.85%

0.4630
1.09%
0.48%

0.3373
0.94%
0.09%

1.0719
0.13%
0.02%

0.0383
0.37%
0.09%

0.2664
0.24%
1.59%

P a d e - D P

Average
Var/ty
Unc/ty

2.2687
46.28%
18.38%

0.5384
4.93%
1.47%

0.0890
1.18%
0.75%

0.4969
3.87%
1.75%

0.4892
3.43%
3.28%

1.0004
0.46%
0.69%

0.0212
4.07%
6.08%

0.0712
22.16%
6.88%

T i k h - G C V

Average
Var/ty
Unc/ty

6.2466
17.98%
4.50%

0.7639
4.54%
1.81%

0.1121
2.20%
1.17%

0.4408
3.65%
1.43%

0.4089
0.83%
2.27%

1.0180
0.36%
0.33%

0.0284
1.29%
3.15%

0.4079
7.04%
5.69%

T i k h - D P

Average
Var/ty
Unc/ty

6.0223
16.86%
4.68%

0.7542
4.07%
1.90%

0.1111
1.98%
1.60%

0.4425
3.53%
1.41%

0.4106
0.62%
2.31%

1.0179
0.32%
0.39%

0.0283
1.23%
3.42%

0.3975
6.45%
5.82%

P a d e - L C

Average
Var/ty
Unc/ty

2.5871
38.19%
18.72%

0.5524
4.56%
2.14%

0.0903
1.20%
0.73%

0.4913
4.12%
2.09%

0.4804
4.33%
2.16%

1.0005
0.70%
0.51%

0.0220
6.06%
4.14%

0.1114
21.61%
7.08%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.3: Retrieval results with Pade-DP for the combinations (2)× (a, b, c)× (iii, iv, v) from Table 4.1.
oblate, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1303 0.0185 0.4257 0.1802 0.8290

1%

5%

10%

Difference
Variability
Uncertainty

0.89%
0.94%
0.84%

6.00%
0.60%
1.11%

6.82%
0.91%
1.11%

0.2005
1.38%
4.03%

27.57%
0.73%
1.00%

Difference
Variability
Uncertainty

6.74%
1.30%
2.52%

2.19%
0.51%
2.93%

8.32%
1.07%
3.41%

0.1944
0.95%
6.09%

28.21%
0.18%
1.05%

Difference
Variability
Uncertainty

11.69%
1.59%
4.69%

0.64%
0.55%
5.49%

10.87%
1.29%
6.85%

0.1946
1.20%
11.75%

28.17%
0.19%
2.05%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.08%
1.36%
1.38%

2.30%
1.91%
2.20%

5.19%
2.53%
2.73%

0.1637
3.57%
3.51%

28.78%
2.07%
1.90%

Difference
Variability
Uncertainty

6.99%
0.78%
2.48%

1.91%
0.66%
4.06%

4.72%
0.99%
4.05%

0.1477
2.61%
6.89%

30.79%
1.10%
1.27%

Difference
Variability
Uncertainty

11.85%
1.16%
4.59%

3.43%
0.51%
7.88%

7.37%
1.00%
8.60%

0.1441
2.65%
11.87%

30.44%
0.20%
1.81%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.02%
0.53%
0.57%

3.24%
0.56%
1.35%

4.21%
0.54%
1.17%

0.1719
1.98%
3.84%

28.96%
0.32%
1.06%

Difference
Variability
Uncertainty

3.85%
1.10%
1.72%

5.51%
1.37%
6.53%

9.04%
1.04%
5.80%

0.1583
3.16%
6.29%

30.02%
0.40%
0.97%

Difference
Variability
Uncertainty

8.49%
1.23%
3.28%

5.11%
1.61%
10.31%

12.58%
1.20%
9.34%

0.1537
2.48%
9.68%

30.28%
0.31%
1.43%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.4: Table C.3 continuation (1)
sphere-spheroid mixture, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1636 0.0232 0.4257 0.4938 1.0238

1%

5%

10%

Difference
Variability
Uncertainty

6.09%
1.34%
1.37%

3.03%
0.27%
0.75%

2.85%
1.31%
1.43%

0.0279
1.13%
3.20%

0.04%
0.18%
0.61%

Difference
Variability
Uncertainty

11.43%
0.96%
2.58%

9.67%
0.91%
3.05%

1.56%
0.98%
2.82%

0.0554
1.69%
5.47%

1.15%
0.23%
1.11%

Difference
Variability
Uncertainty

17.56%
1.06%
4.72%

13.09%
0.58%
4.83%

3.59%
1.05%
6.64%

0.0619
1.07%
9.28%

1.52%
0.14%
1.83%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

13.33%
3.95%
2.42%

2.79%
0.50%
0.89%

9.14%
3.45%
2.78%

0.0671
1.01%
5.05%

0.08%
0.20%
0.99%

Difference
Variability
Uncertainty

10.98%
1.28%
3.40%

9.52%
0.57%
4.08%

1.21%
1.20%
4.96%

0.1373
2.02%
7.08%

3.97%
0.28%
1.26%

Difference
Variability
Uncertainty

15.84%
1.62%
4.85%

11.80%
0.76%
7.61%

3.28%
1.59%
8.48%

0.1473
1.81%
10.66%

4.38%
0.25%
1.73%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

10.25%
1.99%
2.79%

4.03%
0.63%
1.19%

5.56%
1.46%
2.77%

0.0606
3.44%
4.79%

1.19%
0.51%
0.89%

Difference
Variability
Uncertainty

8.18%
1.39%
3.39%

0.15%
1.57%
6.71%

7.41%
1.64%
5.84%

0.1172
4.53%
4.63%

3.62%
1.26%
1.28%

Difference
Variability
Uncertainty

10.93%
1.56%
3.29%

1.03%
1.69%
11.12%

10.85%
1.78%
9.82%

0.1366
2.89%
8.00%

4.57%
0.60%
1.26%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.5: Table C.3 continuation (2)
prolate, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1668 0.0237 0.4257 0.0 1.3592

1%

5%

10%

Difference
Variability
Uncertainty

2.88%
1.20%
1.08%

0.16%
0.41%
1.57%

2.64%
0.93%
1.04%

0.0099
11.16%
14.25%

2.41%
0.18%
0.64%

Difference
Variability
Uncertainty

7.25%
1.37%
2.79%

3.61%
0.79%
5.72%

3.40%
1.03%
4.72%

0.0374
14.10%
56.78%

5.82%
0.56%
2.93%

Difference
Variability
Uncertainty

15.35%
3.39%
3.53%

1.93%
1.29%
13.51%

11.55%
3.02%
12.94%

0.1109
12.77%
61.48%

10.44%
0.60%
5.86%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

2.66%
0.96%
0.78%

1.62%
0.31%
1.31%

1.00%
0.77%
1.31%

0.3862
15.45%
14.89%

6.52%
0.11%
0.48%

Difference
Variability
Uncertainty

6.15%
2.20%
2.82%

0.15%
1.29%
4.93%

5.86%
1.80%
5.42%

1.9374
11.06%
25.05%

15.09%
0.79%
2.69%

Difference
Variability
Uncertainty

10.04%
1.88%
4.88%

0.45%
0.96%
8.26%

9.40%
1.70%
8.42%

2.3073
6.05%
15.10%

16.75%
0.50%
1.95%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.13%
0.95%
0.38%

0.45%
0.74%
1.81%

1.56%
0.52%
1.70%

0.2629
27.12%
40.22%

5.41%
0.48%
1.25%

Difference
Variability
Uncertainty

5.73%
1.85%
1.80%

1.34%
2.51%
7.63%

6.70%
1.40%
7.31%

1.4793
29.14%
58.62%

12.70%
1.45%
5.90%

Difference
Variability
Uncertainty

10.41%
2.28%
4.13%

4.26%
2.51%
11.55%

13.23%
2.20%
11.49%

2.3381
9.75%
21.24%

17.02%
0.73%
2.46%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.6: Retrieval results with Pade-DP for the combinations (3)× (a, b, c)× (i, iii, v) from Table 4.1.
oblate, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.3675 0.0653 0.5334 0.1802 0.8290

1%

5%

10%

Difference
Variability
Uncertainty

4.38%
2.62%
0.85%

7.79%
2.80%
1.45%

3.26%
0.42%
0.78%

0.1697
4.48%
7.50%

31.49%
1.42%
1.19%

Difference
Variability
Uncertainty

10.61%
1.83%
2.24%

21.26%
2.57%
6.68%

9.56%
1.35%
5.22%

0.1658
7.86%
29.45%

32.24%
1.74%
3.90%

Difference
Variability
Uncertainty

19.51%
2.97%
4.09%

37.52%
2.94%
11.38%

14.92%
2.01%
8.78%

0.1356
9.62%
37.72%

34.20%
1.47%
4.19%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

10.76%
6.29%
2.53%

1.75%
0.98%
1.57%

10.97%
6.32%
1.87%

0.2350
3.32%
4.25%

22.73%
0.81%
0.63%

Difference
Variability
Uncertainty

16.67%
3.97%
7.92%

3.48%
1.57%
5.03%

10.75%
3.95%
8.11%

0.2405
3.38%
15.29%

23.74%
0.91%
2.76%

Difference
Variability
Uncertainty

20.11%
2.90%
13.53%

10.64%
1.80%
9.65%

6.72%
2.65%
12.59%

0.2310
4.74%
24.28%

25.08%
0.95%
3.40%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

6.17%
3.51%
1.27%

0.32%
6.08%
2.19%

5.46%
6.20%
2.12%

0.2296
5.56%
3.04%

26.59%
0.77%
0.65%

Difference
Variability
Uncertainty

8.27%
3.12%
4.65%

1.24%
3.43%
5.66%

6.38%
4.31%
5.40%

0.2210
8.32%
10.25%

27.31%
1.26%
1.72%

Difference
Variability
Uncertainty

6.70%
2.19%
5.68%

5.18%
2.72%
10.33%

11.06%
2.43%
9.29%

0.1912
4.71%
10.62%

28.36%
0.66%
1.61%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.7: Table C.6 continuation (1)
sphere-spheroid mixture, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.4524 0.0820 0.5438 0.4944 1.0224

1%

5%

10%

Difference
Variability
Uncertainty

7.84%
4.41%
0.73%

8.77%
4.52%
1.79%

0.86%
0.83%
1.62%

0.0910
5.03%
7.03%

6.35%
2.41%
1.37%

Difference
Variability
Uncertainty

13.67%
3.22%
2.95%

23.99%
4.17%
8.70%

8.94%
1.91%
6.34%

0.0970
9.24%
24.24%

6.98%
2.81%
4.52%

Difference
Variability
Uncertainty

23.19%
3.48%
4.75%

39.84%
3.44%
13.09%

13.33%
1.84%
10.23%

0.1372
12.56%
38.22%

8.56%
1.89%
4.65%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

19.01%
4.93%
1.47%

8.55%
1.18%
0.75%

8.62%
3.87%
1.75%

0.0050
3.43%
3.28%

2.16%
0.46%
0.69%

Difference
Variability
Uncertainty

25.85%
4.46%
7.98%

13.99%
1.06%
4.18%

8.80%
4.11%
7.79%

0.0060
2.82%
14.16%

1.30%
0.79%
2.45%

Difference
Variability
Uncertainty

43.68%
4.05%
15.88%

26.26%
1.55%
7.44%

10.27%
4.25%
14.56%

0.0287
4.17%
20.04%

0.58%
1.19%
4.20%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

18.36%
4.19%
1.49%

8.02%
2.86%
0.90%

8.67%
2.01%
1.20%

0.0004
6.47%
2.44%

0.59%
1.16%
0.55%

Difference
Variability
Uncertainty

20.86%
3.10%
5.70%

10.88%
3.39%
4.66%

8.08%
2.58%
5.46%

0.0179
10.93%
8.15%

0.53%
2.32%
2.71%

Difference
Variability
Uncertainty

20.85%
3.35%
10.89%

9.94%
3.67%
12.08%

8.88%
2.39%
8.23%

0.0205
10.59%
17.90%

1.34%
1.63%
2.48%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.8: Table C.6 continuation (2)
prolate, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.4623 0.0840 0.5453 0.0 1.3525

1%

5%

10%

Difference
Variability
Uncertainty

7.69%
2.96%
1.11%

10.24%
3.41%
3.47%

2.34%
1.17%
2.66%

0.1173
27.71%
18.54%

8.71%
1.98%
1.52%

Difference
Variability
Uncertainty

13.57%
2.72%
2.72%

22.59%
3.47%
8.48%

7.82%
1.32%
6.31%

0.2084
18.47%
42.93%

12.44%
1.98%
4.55%

Difference
Variability
Uncertainty

22.42%
3.21%
4.14%

38.52%
3.38%
13.12%

12.91%
1.84%
10.09%

0.2526
13.94%
42.60%

14.81%
1.55%
5.14%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

5.93%
1.45%
1.23%

4.99%
1.27%
1.33%

0.88%
0.53%
0.71%

0.01933
16.64%
12.89%

3.11%
0.27%
0.32%

Difference
Variability
Uncertainty

7.64%
1.42%
4.12%

7.81%
1.07%
5.26%

0.16%
0.93%
3.07%

0.07087
25.44%
84.41%

6.99%
1.37%
4.96%

Difference
Variability
Uncertainty

11.24%
1.98%
7.21%

13.47%
1.55%
11.06%

1.88%
1.07%
6.55%

0.1718
17.15%
66.34%

12.73%
0.72%
8.21%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

12.54%
0.74%
1.37%

30.96%
4.41%
4.56%

16.37%
4.31%
4.67%

0.9784
18.95%
12.29%

7.90%
0.56%
0.81%

Difference
Variability
Uncertainty

10.30%
1.18%
7.40%

23.23%
6.24%
13.67%

11.54%
5.73%
10.33%

1.9546
11.63%
43.23%

13.59%
0.51%
6.16%

Difference
Variability
Uncertainty

10.03%
1.31%
8.70%

10.99%
3.81%
14.47%

0.78%
3.51%
10.32%

2.4564
9.72%
29.14%

16.62%
0.57%
4.81%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.9: Retrieval results with Pade-DP for the combinations (4)× (a, b, c)× (ii, iii, v) from Table 4.1.
oblate, 1.4 + 0.005i

Parameters at vt reff svcf aeff

Synthetic 0.9930 0.3141 0.9488 0.1802 0.8285

1%

5%

10%

Difference
Variability
Uncertainty

11.88%
3.27%
0.84%

5.67%
0.35%
0.91%

5.47%
3.21%
0.83%

0.1686
1.99%
4.26%

11.89%
0.59%
0.76%

Difference
Variability
Uncertainty

19.90%
3.17%
4.06%

8.26%
0.43%
3.81%

9.50%
3.19%
5.31%

0.1643
2.87%
21.76%

13.57%
0.68%
3.03%

Difference
Variability
Uncertainty

31.25%
3.43%
8.05%

11.34%
1.86%
9.57%

14.85%
3.20%
9.90%

0.1774
7.59%
24.47%

18.89%
1.64%
5.21%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.57%
0.69%
0.75%

4.57%
0.34%
1.21%

7.86%
0.60%
0.87%

0.2079
1.54%
5.66%

23.92%
0.59%
0.81%

Difference
Variability
Uncertainty

9.29%
0.83%
5.36%

2.79%
0.88%
4.46%

10.93%
1.19%
4.33%

0.1974
3.32%
12.44%

26.16%
0.64%
1.57%

Difference
Variability
Uncertainty

18.06%
2.14%
6.55%

0.71%
1.22%
8.30%

14.48%
2.31%
8.33%

0.1820
5.57%
22.61%

27.32%
1.21%
3.41%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.62%
0.29%
0.67%

1.67%
1.81%
1.78%

0.04%
1.57%
1.51%

0.1850
3.00%
4.10%

28.27%
0.47%
0.92%

Difference
Variability
Uncertainty

9.75%
0.69%
2.67%

10.07%
2.03%
5.85%

0.28%
1.67%
4.98%

0.1901
3.81%
12.03%

28.50%
0.61%
2.59%

Difference
Variability
Uncertainty

10.81%
2.30%
5.38%

7.25%
6.98%
14.36%

16.66%
5.65%
9.81%

0.1419
6.39%
14.34%

31.50%
0.92%
2.90%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.10: Table C.9 continuation (1)
sphere-spheroid mixture, 1.4 + 0.005i

Parameters at vt reff svcf aeff

Synthetic 1.2462 0.3941 0.9488 0.4937 1.0240

1%

5%

10%

Difference
Variability
Uncertainty

6.38%
1.18%
2.15%

0.04%
0.49%
1.42%

5.91%
1.14%
2.63%

0.0927
2.38%
3.27%

4.98%
0.60%
1.01%

Difference
Variability
Uncertainty

20.96%
2.36%
6.06%

3.30%
1.00%
4.00%

14.14%
1.94%
9.34%

0.1338
4.81%
13.83%

2.53%
1.16%
3.01%

Difference
Variability
Uncertainty

27.01%
3.37%
9.69%

6.24%
1.87%
9.92%

15.56%
2.75%
14.08%

0.1145
4.96%
32.54%

1.35%
0.95%
3.92%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.64%
0.43%
0.67%

7.07%
0.78%
0.97%

3.31%
0.90%
0.88%

0.0035
1.22%
3.73%

2.13%
0.35%
0.48%

Difference
Variability
Uncertainty

12.36%
1.01%
3.19%

12.34%
1.01%
3.36%

0.10%
1.68%
4.50%

0.0506
2.93%
16.90%

0.72%
0.57%
2.48%

Difference
Variability
Uncertainty

17.16%
1.78%
10.94%

10.22%
1.16%
6.87%

5.32%
2.09%
7.12%

0.0944
5.04%
19.93%

3.51%
0.73%
2.31%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.54%
0.17%
0.84%

4.82%
1.09%
1.93%

6.27%
1.02%
1.96%

0.0469
1.59%
3.18%

0.65%
0.21%
0.74%

Difference
Variability
Uncertainty

10.56%
0.56%
2.55%

1.10%
2.06%
4.71%

8.53%
2.16%
4.58%

0.0684
3.72%
11.14%

2.01%
0.52%
2.59%

Difference
Variability
Uncertainty

16.01%
1.09%
5.82%

2.26%
2.89%
12.67%

12.04%
2.45%
8.99%

0.1241
4.20%
18.34%

4.59%
0.63%
3.51%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.11: Table C.9 continuation (2)
prolate, 1.4 + 0.005i

Parameters at vt reff svcf aeff

Synthetic 1.2696 0.4014 0.9485 0.0 1.3598

1%

5%

10%

Difference
Variability
Uncertainty

0.32%
1.16%
1.33%

0.65%
0.17%
1.47%

0.32%
1.10%
1.29%

0.0840
6.87%
14.34%

7.71%
0.31%
1.00%

Difference
Variability
Uncertainty

0.69%
1.15%
3.90%

8.48%
0.80%
8.50%

9.11%
1.38%
7.05%

0.2274
5.66%
23.18%

16.90%
0.36%
3.74%

Difference
Variability
Uncertainty

4.32%
1.03%
5.25%

16.36%
1.44%
12.76%

19.86%
1.63%
10.86%

0.2617
4.32%
16.40%

18.64%
0.37%
2.46%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.35%
0.46%
1.03%

10.51%
0.42%
0.97%

6.94%
0.53%
1.16%

0.0357
25.08%
18.39%

5.24%
0.15%
0.44%

Difference
Variability
Uncertainty

7.11%
1.25%
3.98%

6.59%
1.18%
6.99%

0.49%
1.18%
5.56%

0.1306
18.07%
61.10%

10.17%
1.04%
5.38%

Difference
Variability
Uncertainty

9.33%
1.62%
7.49%

3.10%
2.01%
11.12%

11.42%
1.68%
7.72%

0.2310
10.80%
24.35%

15.66%
0.95%
3.72%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

3.68%
0.42%
0.84%

17.65%
1.44%
1.72%

13.46%
1.11%
1.17%

0.1210
7.17%
7.97%

10.71%
0.26%
0.61%

Difference
Variability
Uncertainty

10.31%
1.33%
2.77%

18.11%
3.03%
8.43%

7.00%
2.67%
6.88%

0.1610
9.60%
37.34%

12.23%
0.61%
3.87%

Difference
Variability
Uncertainty

13.51%
1.77%
7.49%

2.16%
5.42%
28.50%

14.90%
4.64%
21.70%

0.2207
12.17%
35.07%

15.46%
0.83%
5.34%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.12: Retrieval results with Pade-LC for the combinations (2) × (a, b, c) × (iii, iv, v) from Table
4.1.

oblate, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1303 0.0185 0.4257 0.1802 0.8290

1%

5%

10%

Difference
Variability
Uncertainty

0.08%
1.41%
1.20%

6.77%
0.41%
2.02%

6.67%
1.31%
1.81%

0.2289
0.92%
5.65%

25.88%
0.22%
1.25%

Difference
Variability
Uncertainty

3.12%
1.68%
3.95%

2.33%
0.55%
6.90%

5.23%
1.57%
6.19%

0.2326
1.34%
23.12%

28.86%
0.59%
4.96%

Difference
Variability
Uncertainty

13.98%
1.78%
19.93%

0.34%
1.31%
9.23%

10.19%
1.53%
12.65%

0.1957
3.38%
29.31%

30.34%
0.89%
6.68%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

2.15%
1.31%
2.18%

3.67%
0.27%
1.59%

5.66%
1.14%
1.84%

0.2192
1.76%
8.12%

26.67%
0.75%
1.78%

Difference
Variability
Uncertainty

17.59%
2.30%
12.66%

0.28%
0.44%
6.41%

13.49%
1.99%
13.28%

0.2100
1.86%
27.99%

30.26%
0.35%
4.77%

Difference
Variability
Uncertainty

36.05%
5.44%
23.24%

9.82%
1.99%
8.78%

15.40%
4.14%
21.75%

0.2240
4.62%
34.25%

30.71%
1.14%
6.86%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

0.75%
0.67%
0.43%

1.95%
0.63%
1.90%

2.68%
0.48%
1.78%

0.1769
2.29%
6.56%

27.33%
0.65%
1.53%

Difference
Variability
Uncertainty

6.44%
1.42%
5.12%

1.87%
1.14%
7.58%

4.12%
1.36%
8.44%

0.1658
4.18%
29.66%

29.85%
0.87%
5.86%

Difference
Variability
Uncertainty

12.44%
2.53%
17.15%

0.43%
2.00%
13.22%

9.34%
2.20%
15.43%

0.1285
5.41%
28.55%

33.10%
1.59%
4.97%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.13: Table C.12 continuation (1)
sphere-spheroid mixture, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1636 0.0232 0.4257 0.4938 1.0238

1%

5%

10%

Difference
Variability
Uncertainty

4.85%
1.26%
2.19%

2.03%
0.25%
1.66%

2.64%
1.18%
2.42%

0.0102
0.61%
4.78%

0.87%
0.18%
1.27%

Difference
Variability
Uncertainty

11.64%
1.63%
6.50%

7.66%
1.52%
6.01%

3.21%
2.29%
8.56%

0.0141
4.08%
17.01%

1.55%
1.28%
3.79%

Difference
Variability
Uncertainty

27.82%
2.56%
16.74%

16.72%
1.59%
8.73%

6.76%
2.15%
15.85%

0.0231
3.37%
27.82%

3.50%
1.04%
6.45%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

12.15%
3.97%
3.56%

2.95%
0.49%
1.41%

8.01%
3.52%
3.16%

0.0106
1.00%
6.25%

1.48%
0.18%
1.20%

Difference
Variability
Uncertainty

30.04%
3.32%
16.45%

9.55%
0.69%
4.86%

13.72%
2.84%
15.33%

0.0301
3.05%
20.02%

2.40%
0.60%
4.42%

Difference
Variability
Uncertainty

33.71%
4.00%
31.69%

10.58%
1.19%
11.95%

11.98%
3.21%
23.10%

0.0780
4.88%
34.29%

3.96%
0.81%
6.87%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

6.60%
2.07%
2.95%

3.49%
0.59%
1.64%

2.83%
1.58%
2.58%

0.0229
2.56%
6.36%

0.33%
0.20%
1.29%

Difference
Variability
Uncertainty

14.55%
1.89%
8.97%

7.35%
1.01%
6.19%

5.63%
1.72%
10.15%

0.0493
3.84%
21.35%

2.01%
0.82%
4.54%

Difference
Variability
Uncertainty

26.01%
3.36%
15.22%

12.27%
2.54%
9.41%

8.98%
2.43%
17.09%

0.0693
6.57%
32.47%

3.94%
1.48%
6.78%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.14: Table C.12 continuation (2)
prolate, 1.6 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.1668 0.0237 0.4257 0.0010 1.3592

1%

5%

10%

Difference
Variability
Uncertainty

5.20%
1.86%
1.36%

2.26%
1.02%
1.29%

2.77%
1.04%
1.06%

0.0069
34.54%
27.24%

3.09%
0.70%
0.50%

Difference
Variability
Uncertainty

6.48%
1.60%
6.09%

3.53%
0.94%
4.67%

2.55%
1.06%
5.34%

0.0186
16.08%
70.82%

3.66%
0.44%
2.01%

Difference
Variability
Uncertainty

14.34%
3.02%
6.71%

7.82%
1.44%
10.79%

5.40%
2.46%
11.05%

0.0717
18.21%
72.83%

6.43%
0.95%
4.69%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

2.72%
1.22%
0.81%

0.50%
0.41%
1.46%

2.15%
0.95%
1.23%

0.0166
22.59%
40.26%

4.22%
0.36%
0.71%

Difference
Variability
Uncertainty

5.81%
2.01%
5.12%

2.63%
0.59%
8.21%

2.93%
1.53%
7.08%

0.0517
19.61%
65.04%

6.15%
0.90%
2.83%

Difference
Variability
Uncertainty

15.04%
2.82%
11.71%

8.68%
1.40%
14.65%

4.98%
2.73%
13.40%

0.1001
23.93%
63.65%

8.38%
1.14%
4.91%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

2.46%
1.16%
0.71%

0.13%
1.02%
1.74%

2.27%
0.75%
1.65%

0.0253
35.38%
38.36%

5.77%
0.97%
1.05%

Difference
Variability
Uncertainty

4.51%
1.26%
1.77%

1.77%
1.06%
7.83%

2.59%
1.13%
7.83%

0.0691
20.28%
86.85%

7.26%
0.62%
4.47%

Difference
Variability
Uncertainty

9.73%
1.59%
4.57%

7.13%
2.40%
12.71%

2.36%
1.94%
12.00%

0.1258
32.87%
71.68%

9.85%
1.45%
6.71%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.15: Retrieval results by Pade-LC for the combinations (3)× (a, b, c)× (i, iii, v) from Table 4.1.
oblate, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.3614 0.0654 0.5426 0.1802 0.8291

1%

5%

10%

Difference
Variability
Uncertainty

7.42%
2.35%
0.82%

9.51%
2.98%
1.17%

1.93%
0.91%
0.57%

0.2031
4.27%
6.54%

31.46%
0.79%
0.94%

Difference
Variability
Uncertainty

11.05%
2.16%
2.28%

19.44%
1.96%
6.71%

7.52%
0.99%
5.35%

0.1843
7.19%
27.16%

31.16%
1.52%
4.08%

Difference
Variability
Uncertainty

19.36%
3.16%
4.44%

35.87%
3.02%
11.83%

13.73%
1.93%
9.63%

0.2029
10.22%
38.60%

31.56%
1.65%
5.85%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

11.98%
5.45%
2.05%

2.11%
0.85%
1.26%

12.35%
5.62%
1.60%

0.2371
2.93%
3.59%

22.73%
0.48%
0.54%

Difference
Variability
Uncertainty

18.09%
4.08%
7.35%

2.45%
1.13%
5.42%

12.75%
4.46%
7.97%

0.2506
3.18%
17.07%

23.85%
0.69%
2.82%

Difference
Variability
Uncertainty

29.25%
5.46%
12.10%

11.32%
1.83%
9.46%

12.59%
4.93%
13.88%

0.2623
4.32%
27.02%

26.82%
2.44%
6.06%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

5.64%
3.77%
1.25%

0.16%
5.73%
1.95%

5.50%
3.93%
2.20%

0.2089
7.58%
3.88%

27.36%
1.11%
0.68%

Difference
Variability
Uncertainty

9.69%
2.75%
3.92%

1.97%
4.48%
6.20%

6.89%
3.96%
7.56%

0.2280
9.03%
13.92%

27.12%
1.30%
2.59%

Difference
Variability
Uncertainty

16.24%
3.66%
5.62%

7.38%
6.73%
10.62%

7.41%
4.44%
12.07%

0.2286
11.91%
20.94%

28.13%
1.76%
4.22%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.16: Table C.15 continuation (1)
sphere-spheroid mixture, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.4537 0.0821 0.5426 0.4940 1.0238

1%

5%

10%

Difference
Variability
Uncertainty

9.33%
3.38%
1.15%

12.27%
3.89%
1.68%

2.68%
1.22%
1.01%

0.1369
12.88%
5.21%

6.99%
1.63%
0.78%

Difference
Variability
Uncertainty

12.99%
3.14%
3.60%

22.44%
3.09%
7.44%

8.30%
1.30%
5.22%

0.0932
8.51%
24.54%

5.90%
1.86%
3.93%

Difference
Variability
Uncertainty

20.64%
3.73%
4.67%

39.44%
3.75%
12.80%

15.39%
1.98%
9.86%

0.0781
11.37%
33.49%

6.78%
2.72%
5.68%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

21.75%
4.56%
2.14%

10.02%
1.20%
0.73%

9.46%
4.12%
2.09%

0.0136
4.33%
2.16%

2.28%
0.70%
0.51%

Difference
Variability
Uncertainty

26.99%
5.25%
8.14%

13.83%
1.41%
3.82%

9.66%
4.70%
8.12%

0.0001
3.57%
13.42%

1.57%
0.83%
1.88%

Difference
Variability
Uncertainty

36.29%
6.53%
10.93%

22.54%
1.88%
7.86%

8.88%
6.35%
11.80%

0.0046
4.99%
22.22%

0.10%
1.32%
3.56%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

14.58%
5.28%
3.14%

6.01%
4.71%
2.86%

7.44%
2.23%
1.25%

0.0653
9.72%
2.90%

1.83%
1.43%
0.36%

Difference
Variability
Uncertainty

16.64%
5.53%
6.07%

7.46%
5.86%
5.39%

7.72%
2.54%
4.77%

0.0456
16.24%
6.25%

1.49%
2.24%
1.07%

Difference
Variability
Uncertainty

24.49%
5.37%
7.15%

13.36%
6.23%
7.23%

8.66%
3.72%
7.99%

0.0287
14.38%
14.03%

1.52%
2.35%
2.78%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.17: Table C.15 continuation (2)
prolate, 1.33 + 0.001i

Parameters at vt reff svcf aeff

Synthetic 0.4624 0.0836 0.5426 0.0010 1.3590

1%

5%

10%

Difference
Variability
Uncertainty

9.29%
3.42%
1.17%

12.97%
4.22%
2.25%

3.34%
1.51%
1.51%

0.1718
26.45%
11.57%

12.15%
3.43%
0.98%

Difference
Variability
Uncertainty

12.02%
2.34%
3.17%

21.43%
2.95%
8.73%

8.28%
1.59%
6.34%

0.2168
23.65%
38.18%

14.08%
2.47%
3.70%

Difference
Variability
Uncertainty

19.34%
2.82%
4.35%

36.61%
2.98%
12.40%

14.26%
2.25%
9.52%

0.2701
20.09%
52.25%

15.59%
2.40%
5.86%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

6.60%
1.89%
0.79%

6.61%
1.51%
0.81%

0.02%
0.72%
0.57%

0.0282
37.79%
31.07%

5.11%
1.68%
0.63%

Difference
Variability
Uncertainty

8.39%
2.14%
3.26%

8.50%
1.12%
4.79%

0.12%
1.56%
3.29%

0.0577
43.69%
66.77%

7.18%
2.12%
2.57%

Difference
Variability
Uncertainty

15.85%
3.05%
5.53%

16.02%
1.93%
8.98%

0.29%
2.51%
7.87%

0.1054
30.92%
66.17%

9.72%
2.40%
4.34%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

10.31%
2.33%
1.55%

27.26%
8.11%
4.76%

15.22%
6.16%
3.72%

0.1658
38.20%
13.40%

12.81%
4.10%
1.53%

Difference
Variability
Uncertainty

12.47%
1.57%
5.14%

29.72%
6.46%
10.28%

15.52%
6.01%
11.39%

0.1436
27.55%
43.83%

11.42%
2.35%
4.08%

Difference
Variability
Uncertainty

16.16%
1.77%
7.40%

30.23%
7.99%
18.05%

12.31%
7.04%
18.66%

0.1647
28.90%
57.22%

11.87%
2.09%
5.73%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.18: Retrieval results with Pade-LC for the combinations (4)× (a, b, c)× (ii, iii, v) from Table 4.1.
oblate, 1.4 + 0.005i

Parameters at vt reff svcf aeff

Synthetic 0.9930 0.3141 0.9488 0.1802 0.8285

1%

5%

10%

Difference
Variability
Uncertainty

17.51%
3.73%
1.94%

6.48%
0.48%
0.95%

9.25%
3.73%
2.08%

0.1738
2.60%
4.18%

12.91%
0.66%
0.61%

Difference
Variability
Uncertainty

21.98%
3.91%
4.33%

8.63%
0.61%
3.75%

10.68%
3.74%
5.52%

0.1694
2.96%
20.59%

14.01%
0.66%
2.87%

Difference
Variability
Uncertainty

33.34%
4.05%
8.43%

12.45%
2.22%
6.56%

15.07%
3.94%
10.16%

0.1683
7.87%
32.30%

17.61%
1.55%
5.38%

oblate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.68%
0.71%
0.83%

4.24%
0.67%
1.23%

7.63%
0.76%
0.82%

0.2107
1.16%
5.07%

23.93%
0.51%
0.80%

Difference
Variability
Uncertainty

9.72%
1.44%
4.23%

1.98%
0.73%
5.55%

10.60%
1.49%
4.85%

0.2141
3.43%
21.34%

25.06%
0.58%
3.16%

Difference
Variability
Uncertainty

19.39%
2.67%
7.50%

0.97%
1.63%
9.21%

15.09%
1.92%
10.26%

0.2278
8.12%
31.75%

26.97%
1.12%
4.69%

oblate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.10%
0.29%
0.81%

1.86%
1.55%
1.71%

0.75%
1.30%
1.72%

0.1955
2.10%
5.64%

27.59%
0.33%
1.00%

Difference
Variability
Uncertainty

6.94%
0.82%
3.96%

6.17%
3.29%
9.85%

0.75%
2.93%
8.75%

0.1891
4.85%
7.75%

28.21%
0.81%
1.48%

Difference
Variability
Uncertainty

12.66%
2.33%
4.18%

0.55%
6.59%
13.89%

11.96%
5.16%
11.51%

0.1810
6.64%
22.81%

29.82%
1.20%
3.70%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.19: Table C.18 continuation (1)
sphere-spheroid mixture, 1.4 + 0.005i

Parameters at vt reff svcf aeff

Synthetic 1.2462 0.3941 0.9488 0.4937 1.0240

1%

5%

10%

Difference
Variability
Uncertainty

8.28%
2.20%
2.25%

1.00%
0.60%
1.06%

6.63%
2.10%
2.88%

0.0800
1.91%
4.04%

5.46%
0.31%
0.97%

Difference
Variability
Uncertainty

8.62%
1.92%
6.88%

0.51%
0.40%
6.40%

8.15%
1.86%
7.04%

0.1065
2.37%
15.55%

3.02%
0.45%
4.45%

Difference
Variability
Uncertainty

26.66%
3.12%
9.85%

7.19%
1.45%
7.41%

14.44%
3.39%
13.37%

0.1177
6.90%
35.48%

1.47%
0.93%
5.94%

sphere-spheroid mixture, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.67%
0.31%
0.58%

7.53%
0.78%
0.84%

3.72%
0.75%
0.75%

0.0053
1.44%
3.64%

2.08%
0.26%
0.52%

Difference
Variability
Uncertainty

10.19%
0.88%
3.90%

10.61%
0.92%
4.58%

0.47%
1.34%
5.04%

0.0157
2.33%
16.83%

0.35%
0.39%
2.55%

Difference
Variability
Uncertainty

19.11%
2.20%
5.67%

14.40%
1.73%
8.20%

3.72%
2.20%
8.98%

0.0457
6.88%
26.59%

1.97%
0.96%
4.05%

sphere-spheroid mixture, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

1.88%
0.47%
0.91%

3.84%
1.60%
0.99%

5.61%
1.37%
0.76%

0.0461
2.15%
2.69%

0.59%
0.27%
0.61%

Difference
Variability
Uncertainty

9.07%
0.83%
3.07%

0.44%
2.10%
4.64%

8.68%
2.10%
4.65%

0.0513
3.42%
11.77%

1.41%
0.52%
2.63%

Difference
Variability
Uncertainty

16.75%
1.45%
4.42%

3.24%
3.65%
10.71%

11.63%
3.52%
8.96%

0.0836
8.02%
19.25%

3.13%
1.31%
3.47%
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C.1. Synthetic retrievals with a fixed refractive index (Tables)

Table C.20: Table C.18 continuation (2)
prolate, 1.4 + 0.005i

Parameter at vt reff svcf aeff

Synthetic 1.2696 0.4014 0.9485 0.0010 1.3598

1%

5%

10%

Difference
Variability
Uncertainty

0.24%
1.24%
0.92%

0.23%
0.26%
1.30%

0.02%
1.10%
1.30%

0.9262
11.07%
11.14%

8.28%
0.49%
0.80%

Difference
Variability
Uncertainty

3.40%
1.60%
3.32%

2.17%
0.51%
4.80%

1.06%
1.61%
6.07%

1.3035
14.70%
54.85%

11.05%
0.88%
3.87%

Difference
Variability
Uncertainty

10.31%
2.44%
6.14%

6.51%
1.23%
8.24%

3.09%
2.27%
10.13%

1.8293
18.04%
61.08%

13.99%
0.94%
6.51%

prolate, 1.5 + 0.01i

1%

5%

10%

Difference
Variability
Uncertainty

3.41%
0.58%
1.15%

10.34%
0.49%
0.96%

6.72%
0.50%
1.29%

0.4325
19.43%
14.35%

5.77%
0.57%
0.42%

Difference
Variability
Uncertainty

6.99%
1.67%
2.99%

9.24%
3.31%
6.89%

2.12%
2.31%
7.40%

0.8600
32.27%
70.74%

7.58%
2.10%
3.44%

Difference
Variability
Uncertainty

14.25%
2.82%
9.42%

10.03%
5.28%
10.39%

3.40%
3.66%
10.02%

1.1888
38.68%
48.90%

9.35%
3.07%
3.55%

prolate, 1.7 + 0.05i

1%

5%

10%

Difference
Variability
Uncertainty

3.90%
0.36%
0.94%

19.12%
1.08%
1.63%

14.64%
0.87%
1.10%

1.3705
9.95%
9.43%

11.43%
0.55%
0.64%

Difference
Variability
Uncertainty

9.00%
1.19%
3.12%

19.15%
3.57%
8.13%

9.17%
2.89%
6.28%

1.5079
17.20%
24.28%

12.16%
1.35%
2.56%

Difference
Variability
Uncertainty

13.47%
3.85%
8.05%

4.46%
14.31%
20.78%

8.42%
12.32%
18.85%

2.1847
13.83%
19.03%

15.59%
1.57%
2.53%
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C.2. Synthetic retrievals with unknown refractive index (Tables)

C.2 Synthetic retrievals with unknown refractive index

Table C.21: Retrieval results of the refractive index and the single scattering albedo with Pade-DP for
the cases (3, a-c, i-v, 1%, 5%, 10%), see Table 4.11. The ”Average”, ”Var/ty” and ”Unc/ty” relate to
ERQ as defined in Sec. 4.1 through the mean and the usual standard deviation. Especially for the IRI we
include the median version of the ERQ (see Eq. 4.2.1) on the right of the mean-related ERQ separated
by a slash (/). The indications ”1%”, ”5%” and ”10%” on the left of a given part of the table refer to
retrievals with the respective input data error.

oblate (3, a, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9843 0.9923

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.005960/0.005000
40.82%/0.00%
20.25%/0.00%

0.8974
4.76%
2.37%

0.9455
2.70%
1.31%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.006640/0.0075
48.67%/0.00%
43.20%/33.33%

0.8755
6.61%
6.99%

0.9356
2.54%
2.92%

Average
Var/ty
Unc/ty

1.336
0.84%
0.98%

0.009120/0.010000
45.16%/0.00%
57.53%/0.00%

0.8602
6.07%
6.43%

0.9162
3.64%
4.11%

Synthetic 1.400 0.005000 0.9083 0.9572

1%

5%

10%

Average
Var/ty
Unc/ty

1.348
1.91%
0.50%

0.000160/0.000000
178.89%/0.00%
52.70%/0.00%

0.9975
0.56%
0.22%

0.9980
0.46%
0.11%

Average
Var/ty
Unc/ty

1.341
1.26%
1.08%

0.000400/0.000000
141.03%/0.00%
23.57%/0.00%

0.9852
2.66%
1.74%

0.9951
0.66%
0.12%

Average
Var/ty
Unc/ty

1.338
1.03%
0.88%

0.000800/0.001000
130.49%/0.00%
74.54%/0.00%

0.9810
2.41%
1.41%

0.9909
1.18%
0.69%

Synthetic 1.500 0.010000 0.8373 0.8908

1%

5%

10%

Average
Var/ty
Unc/ty

1.506
0.88%
0.64%

0.005300/0.005000
11.18%/0.00%
9.11%/0.00%

0.9179
1.00%
0.69%

0.9493
0.44%
0.32%

Average
Var/ty
Unc/ty

1.532
2.14%
3.60%

0.005820/0.003000
73.24%/0.00%
96.73%/66.67%

0.9302
4.49%
4.92%

0.9535
2.94%
3.40%

Average
Var/ty
Unc/ty

1.517
2.18%
9.13%

0.007380/0.003000
40.95%/0.00%
139.83%/100.00%

0.9264
2.41%
8.77%

0.9483
1.75%
6.40%

Synthetic 1.600 0.001000 0.9772 0.9837

1%

5%

10%

Average
Var/ty
Unc/ty

1.648
3.89%
0.85%

0.000500/0.001000
114.11%/0.00%
21.08%/0.00%

0.9907
1.03%
0.22%

0.9935
0.72%
0.15%

Average
Var/ty
Unc/ty

1.672
2.81%
2.77%

0.001620/0.000500
112.17%/0.00%
102.21%/100.00%

0.9754
2.12%
2.55%

0.9824
1.46%
1.78%

Average
Var/ty
Unc/ty

1.704
2.32%
3.53%

0.001200/0.001000
111.38%/0.00%
134.94%/50.00%

0.9849
1.56%
2.90%

0.9868
0.83%
1.78%

Synthetic 1.700 0.050000 0.5761 0.6021

1%

5%

10%

Average
Var/ty
Unc/ty

1.664
3.67%
1.24%

0.041600/0.050000
25.58%/0.00%
7.09%/0.00%

0.6234
5.27%
1.68%

0.6533
5.32%
1.35%

Average
Var/ty
Unc/ty

1.692
2.71%
1.78%

0.046400/0.050000
13.27%/0.00%
8.57%/0.00%

0.6135
3.61%
2.63%

0.6482
3.57%
2.04%

Average
Var/ty
Unc/ty

1.690
2.70%
4.51%

0.040800/0.050000
14.62%/0.00%
18.52%/0.00%

0.6511
2.77%
3.81%

0.6952
2.59%
3.53%
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C.2. Synthetic retrievals with unknown refractive index (Tables)

Table C.22: Table C.21 continuation (1)
sphere-spheroid mixture (3, b, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9839 0.9923

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.007580/0.010000
42.85%/0.00%
11.96%/0.00%

0.8713
6.24%
1.80%

0.9307
3.36%
0.83%

Average
Var/ty
Unc/ty

1.331
0.23%
0.33%

0.007720/0.010000
42.38%/0.00%
18.65%/0.00%

0.8681
6.14%
2.36%

0.9284
3.26%
1.24%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.007140/0.010000
47.48%/0.00%
44.05%/0.00%

0.8730
4.66%
6.10%

0.9275
2.56%
3.33%

Synthetic 1.400 0.005000 0.9067 0.9570

1%

5%

10%

Average
Var/ty
Unc/ty

1.358
2.82%
0.00%

0.001180/0.001000
92.41%/0.00%
37.86%/0.00%

0.9697
2.72%
1.40%

0.9815
2.62%
2.36%

Average
Var/ty
Unc/ty

1.350
2.11%
1.00%

0.000800/0.001000
123.50%/0.00%
60.09%/0.00%

0.9780
2.61%
1.26%

0.9909
1.09%
0.51%

Average
Var/ty
Unc/ty

1.343
1.31%
1.15%

0.000740/0.001000
137.20%/0.00%
69.84%/50.00%

0.9806
2.46%
1.71%

0.9911
1.35%
0.78%

Synthetic 1.500 0.010000 0.8253 0.8873

1%

5%

10%

Average
Var/ty
Unc/ty

1.552
3.34%
1.24%

0.007600/0.007500
34.61%/0.00%
12.71%/33.33%

0.8984
1.98%
0.81%

0.9327
1.48%
0.58%

Average
Var/ty
Unc/ty

1.560
1.96%
2.90%

0.007620/0.007500
42.80%/0.00%
41.42%/33.33%

0.9086
4.07%
2.92%

0.9345
2.06%
2.22%

Average
Var/ty
Unc/ty

1.582
1.38%
3.55%

0.009500/0.010000
50.68%/0.00%
71.35%/0.00%

0.8904
4.27%
6.97%

0.9253
2.24%
4.89%

Synthetic 1.600 0.001000 0.9778 0.9834

1%

5%

10%

Average
Var/ty
Unc/ty

1.650
3.26%
0.86%

0.000240/0.000000
206.27%/0.00%
35.14%/0.00%

0.9954
0.91%
0.16%

0.9969
0.61%
0.11%

Average
Var/ty
Unc/ty

1.708
2.57%
1.26%

0.000800/0.001000
108.85%/0.00%
114.87%/0.00%

0.9854
1.53%
1.58%

0.9900
1.05%
1.10%

Average
Var/ty
Unc/ty

1.714
2.31%
1.83%

0.001160/0.000500
87.43%/0.00%
135.47%/100.00%

0.9807
1.39%
2.56%

0.9870
0.91%
1.76%

Synthetic 1.700 0.050000 0.5825 0.6021

1%

5%

10%

Average
Var/ty
Unc/ty

1.636
3.22%
0.52%

0.037200/0.030000
28.32%/0.00%
4.53%/0.00%

0.6267
4.81%
1.04%

0.6588
4.64%
0.80%

Average
Var/ty
Unc/ty

1.630
3.40%
1.19%

0.034400/0.030000
21.80%/0.00%
8.58%/0.00%

0.6379
3.16%
3.06%

0.6708
2.96%
2.33%

Average
Var/ty
Unc/ty

1.662
3.49%
3.33%

0.037600/0.030000
17.11%/0.00%
17.69%/0.00%

0.6467
4.01%
4.65%

0.6805
2.51%
3.45%
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C.2. Synthetic retrievals with unknown refractive index (Tables)

Table C.23: Table C.21 continuation (2)
prolate (3, c, i-v, 1%, 5%, 10%)

Parameters RRI IRI (mean/median) SSA355 SSA532
Synthetic 1.330 0.001000 0.9843 0.9923

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.007400/0.010000
54.96%/0.00%
8.55%/0.00%

0.8779
7.80%
1.62%

0.9311
4.18%
0.73%

Average
Var/ty
Unc/ty

1.331
0.23%
0.33%

0.008360/0.010000
29.99%/0.00%
15.45%/0.00%

0.8604
4.62%
2.35%

0.9185
2.68%
1.30%

Average
Var/ty
Unc/ty

1.336
0.93%
0.54%

0.006740/0.007500
58.66%/0.00%
35.69%/33.33%

0.9018
7.02%
5.01%

0.9375
3.38%
2.93%

Synthetic 1.400 0.005000 0.9087 0.9636

1%

5%

10%

Average
Var/ty
Unc/ty

1.350
2.53%
0.54%

0.001780/0.001000
130.74%/100.00%
27.75%/0.00%

0.9679
3.94%
0.76%

0.9948
4.23%
3.98%

Average
Var/ty
Unc/ty

1.347
1.59%
1.28%

0.000980/0.001000
123.58%/0.00%
45.58%/0.00%

0.9803
2.51%
0.81%

0.9895
1.29%
0.38%

Average
Var/ty
Unc/ty

1.359
1.59%
1.64%

0.001160/0.001000
132.18%/0.00%
78.30%/0.00%

0.9759
2.90%
1.94%

0.9869
1.54%
1.03%

Synthetic 1.500 0.010000 0.8260 0.8906

1%

5%

10%

Average
Var/ty
Unc/ty

1.400
0.00%
0.00%

0.000580/0.001000
96.88%/0.00%
19.57%/0.00%

0.9841
1.86%
0.87%

0.9915
0.95%
0.17%

Average
Var/ty
Unc/ty

1.400
0.00%
0.00%

0.000420/0.000000
117.75%/0.00%
65.25%/0.00%

0.9888
1.12%
0.73%

0.9931
0.68%
0.45%

Average
Var/ty
Unc/ty

1.439
2.84%
4.18%

0.002480/0.00
105.26%/0.00%
160.04%/100.00%

0.9625
3.34%
4.41%

0.9727
2.62%
3.23%

Synthetic 1.600 0.001000 0.9770 0.9839

1%

5%

10%

Average
Var/ty
Unc/ty

1.550
3.47%
0.91%

0.000500/0.001000
118.21%/0.00%
28.28%/0.00%

0.9890
1.20%
0.32%

0.9924
0.82%
0.22%

Average
Var/ty
Unc/ty

1.550
1.57%
2.30%

0.000240/0.000000
100.62%/0.00%
129.10%/0.00%

0.9946
0.62%
0.68%

0.9962
0.43%
0.48%

Average
Var/ty
Unc/ty

1.542
0.00%
3.08%

0.000100/0.000000
53.85%/0.00%
194.37%/0.00%

0.9977
0.34%
0.41%

0.9984
0.23%
0.30%

Synthetic 1.700 0.050000 0.5820 0.5984

1%

5%

10%

Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.005000/0.005000
0.00%/0.00%
0.00%/0.00%

0.8249
0.10%
0.23%

0.8638
0.17%
0.22%

Average
Var/ty
Unc/ty

1.543
1.62%
8.01%

0.033100/0.030000
15.04%/0.00%
44.69%/33.33%

0.6764
2.69%
11.30%

0.7164
2.65%
9.84%

Average
Var/ty
Unc/ty

1.583
0.00%
8.93%

0.034580/0.040000
5.59%/0.00%
55.10%/25.00%

0.7229
0.47%
17.48%

0.7524
1.16%
15.52%
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C.2. Synthetic retrievals with unknown refractive index (Tables)

Table C.24: Retrieval results of the refractive index and the single scattering albedo by Pade-DP for the
cases (1-4, b, ix, 1%), (1-4, c, x, 1%), (1-4, c, ii, 1%), (1-4, c, viii, 1%), (1, a-c, xiii, 1%), (1, a-c, xi, 1%),
(1, a-c, xiv, 1%), (4, a, xii, 1%), (2, c, vii, 1%) see Table 4.11. The ”Average”, ”Var/ty” and ”Unc/ty”
relate to the ERQ as defined in Sec. 4.1 through the mean and the usual standard deviation. Especially
for the IRI we include the median version of the ERQ (see Eq. 4.2.1) on the right of the mean-related
ERQ separated by a slash (/). The indications ”size No 1-4” and further ”oblate”, ”sphere-spheroid
mix” and ”prolate” on the left of a given part of the table refer to retrievals with the respective size and
shape.

Cases: (1-4, b, ix, 1%)

size No 1

size No 2

size No 3

size No 4

Parameters RRI IRI (mean/median) SSA355 SSA532

Synthetic 1.400 0.000000 1.0000 1.0000
Average
Var/ty
Unc/ty

1.480
0.62%
2.55%

0.008000/0.010000
27.95%/0.00%
47.14%/0.00%

0.9425
0.91%
2.89%

0.9526
0.55%
2.35%

Synthetic 1.400 0.000000 1.0000 1.0000
Average
Var/ty
Unc/ty

1.480
0.76%
2.38%

0.008060/0.010000
43.14%/0.00%
42.53%/0.00%

0.9304
2.20%
3.24%

0.9519
0.69%
2.12%

Synthetic 1.400 0.000000 1.0000 1.0000
Average
Var/ty
Unc/ty

1.368
0.00%
0.00%

0.000000/0.000000
0.00%/0.00%
0.00%/0.00%

1.0000
0.00%
0.00%

1.0000
0.00%
0.00%

Synthetic 1.400 0.000000 1.0000 1.0000
Average
Var/ty
Unc/ty

1.470
0.00%
0.00%

0.000000/0.000000
0.00%/0.00%
0.00%/0.00%

1.0000
0.00%
0.00%

1.0000
0.00%
0.00%

Cases: (1-4, c, x, 1%)

size No 1

size No 2

size No 3

size No 4

Synthetic 1.400 0.001000 0.9905 0.9921
Average
Var/ty
Unc/ty

1.348
0.52%
2.14%

0.003600/0.005000
20.74%/0.00%
51.85%/0.00%

0.9567
0.72%
2.58%

0.9626
0.60%
2.23%

Synthetic 1.400 0.001000 0.9879 0.9922
Average
Var/ty
Unc/ty

1.350
0.56%
2.14%

0.001640/0.0005
100.40%/0.00%
118.21%/100.00%

0.9789
1.10%
2.36%

0.9858
0.71%
1.59%

Synthetic 1.400 0.001000 0.9800 0.9911
Average
Var/ty
Unc/ty

1.373
2.74%
0.32%

0.000580/0.000000
95.85%/0.00%
10.90%/0.00%

0.9875
1.23%
0.17%

0.9939
0.60%
0.09%

Synthetic 1.400 0.001000 0.9665 0.9773
Average
Var/ty
Unc/ty

1.400
0.00%
0.00%

0.001000/0.001000
0.00%/0.00%
0.00%/0.00%

0.9688
0.02%
0.04%

0.9797
0.31%
0.43%

Cases: (1-4, c, ii, 1%)

size No 1

size No 2

size No 3

size No 4

Synthetic 1.400 0.005000 0.9553 0.9620
Average
Var/ty
Unc/ty

1.334
0.52%
0.71%

0.003680/0.003000
57.99%/0.00%
93.48%/66.67%

0.9562
1.94%
4.41%

0.9613
1.72%
3.93%

Synthetic 1.400 0.005000 0.9428 0.9626
Average
Var/ty
Unc/ty

1.336
0.23%
1.33%

0.000980/0.001000
108.05%/0.00%
145.09%/0.00%

0.9878
1.16%
1.48%

0.9914
0.77%
1.04%

Synthetic 1.400 0.005000 0.9087 0.9636
Average
Var/ty
Unc/ty

1.350
2.53%
0.54%

0.001780/0.001000
130.74%/100.00%
27.75%/0.00%

0.9679
3.94%
0.76%

0.9948
4.23%
3.98%

Synthetic 1.400 0.005000 0.8619 0.8989
Average
Var/ty
Unc/ty

1.394
0.23%
1.27%

0.004680/0.005000
9.94%/0.00%
21.62%/0.00%

0.8767
0.56%
2.57%

0.9117
1.34%
2.29%
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C.2. Synthetic retrievals with unknown refractive index (Tables)

Table C.25: Table C.24 continuation (1)
Cases: (1-4, c, viii, 1%)

size No 1

size No 2

size No 3

size No 4

Parameters RRI IRI (mean/median) SSA355 SSA532

Synthetic 1.330 0.030000 0.7891 0.7979
Average
Var/ty
Unc/ty

1.347
0.00%
3.99%

0.037000/0.030000
0.00%/0.00%
59.83%/0.00%

0.7746
0.11%
6.67%

0.7820
0.45%
7.00%

Synthetic 1.330 0.030000 0.7751 0.8202
Average
Var/ty
Unc/ty

1.347
0.00%
3.99%

0.037000/0.030000
0.00%/0.00
59.83%/0.00%

0.7481
0.12%
7.21%

0.7875
0.17%
7.29%

Synthetic 1.330 0.030000 0.7061 0.8178
Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.030000/0.030000
0.00%/0.00
0.00%/0.00%

0.6634
1.72%
0.86%

0.7774
1.00%
0.59%

Synthetic 1.330 0.030000 0.5886 0.6676
Average
Var/ty
Unc/ty

1.333
0.28%
0.66%

0.030800/0.030000
2.88%/0.00
8.21%/0.00%

0.6273
1.81%
1.72%

0.6963
1.29%
1.61%

Cases: (1, a-c, xiii, 1%)

oblate

sphere-
spheroid
mix

prolate

Parameters RRI IRI (mean/median) SSA355 SSA532

Synthetic 1.600 0.030000 0.8029 0.8305
Average
Var/ty
Unc/ty

1.672
0.60%
2.53%

0.044400/0.050000
4.83%/0.00%
19.09%/0.00%

0.7591
1.61%
3.58%

0.7928
0.77%
3.29%

Synthetic 1.600 0.030000 0.8017 0.8294
Average
Var/ty
Unc/ty

1.780
0.00%
2.37%

0.050000/0.050000
0.00%/0.00%
0.00%/0.00%

0.7448
0.27%
1.11%

0.7837
0.06%
1.13%

Synthetic 1.600 0.030000 0.8044 0.8319
Average
Var/ty
Unc/ty

1.412
1.36%
1.91%

0.010600/0.010000
13.58%/0.00%
30.55%/0.00%

0.8870
1.09%
2.56%

0.9085
1.04%
2.16%

Cases: (1, a-c, xi, 1%)

oblate

sphere-
spheroid
mix

prolate

Synthetic 1.400 0.100000 0.5971 0.5967
Average
Var/ty
Unc/ty

1.386
0.00%
2.13%

0.095000/0.100000
0.00%/0.00%
16.64%/0.00%

0.5998
0.14%
5.51%

0.6053
0.35%
6.28%

Synthetic 1.400 0.100000 0.5965 0.5965
Average
Var/ty
Unc/ty

1.386
0.00%
2.13%

0.095000/0.100000
0.00%/0.00%
16.64%/0.00%

0.5991
0.18%
5.54%

0.6045
0.20%
6.37%

Synthetic 1.400 0.100000 0.5971 0.5967
Average
Var/ty
Unc/ty

1.379
0.00%
2.45%

0.090000/0.100000
0.00%/0.00%
23.42%/0.00%

0.6094
0.20%
7.25%

0.6142
0.63%
7.81%

Cases: (1, a-c, xiv, 1%)

oblate

sphere-
spheroid
mix

prolate

Synthetic 1.800 0.100000 0.6292 0.6631
Average
Var/ty
Unc/ty

1.800
0.00%
0.00%

0.100000/0.100000
0.00%/0.00%
0.00%/0.00%

0.6245
0.27%
0.63%

0.6600
0.27%
0.73%

Synthetic 1.800 0.100000 0.6285 0.6628
Average
Var/ty
Unc/ty

1.800
0.00%
0.00%

0.100000/0.100000
0.00%/0.00%
0.00%/0.00%

0.6223
0.35%
0.57%

0.6582
0.21%
0.66%

Synthetic 1.800 0.100000 0.6290 0.6625
Average
Var/ty
Unc/ty

1.734
0.77%
7.19%

0.088600/0.100000
3.64%/0.00%
23.48%/0.00%

0.6367
1.86%
2.31%

0.6663
3.10%
3.28%
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Table C.26: Table C.24 continuation (2)
Other cases

Case: (4, a, xii, 1%)

Parameters RRI IRI (mean/median) SSA355 SSA532

Synthetic 1.600 0.005000 0.8525 0.8894
Average
Var/ty
Unc/ty

1.600
0.00%
0.00%

0.005000/0.005000
0.00%/0.00%
0.00%/0.00%

0.8680
0.04%
0.26%

0.9045
0.70%
0.71%

Case: (2, c, vii, 1%)

Synthetic 1.330 0.010000 0.9043 0.9276
Average
Var/ty
Unc/ty

1.330
0.00%
0.00%

0.010000/0.010000
0.00%/0.00%
0.00%/0.00%

0.9040
0.03%
0.23%

0.9270
0.21%
0.32%
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Appendix D

The software tool SphInX

D.1 Understanding & running SphInX

D.1.1 Installing SphInX

Unzip SphInX.zip into C:\. The extracted SphInX folder should consist of four folders: Work, DB, temp
and SphInX source and the pdf file SphInX user’s guide. Copy SphInX source to Matlab folder.
Run compile in Matlab’s command line. The software is ready to use.

D.1.2 About SphInX and its main interfaces

SphInX (Spheroidal Inversion eXperiments) was created by Stefanos Samaras as an auxiliary tool for
his Ph.D. work, conducted in the University of Potsdam in the framework of the European Union’s
Seventh Framework Programme for research, technological development and demonstration under grant
agreement No 289923 - ”ITaRS” (Initial Training for atmospheric Remote Sensing) during 2013-2015.
This software provides a fully automated process to carry out microphysical retrievals from synthetic and
real lidar data inputs and further to completely evaluate statistically the inversion outcomes. SphInX
software was created to handle non-spherical particles using a generalized Mie model and considering
a spheroid-particle particle approximation. The sphere-particle approach was much later added in the
software for completeness and is now fully functional (version ≥ 10.5). It is created almost entirely in
Matlab script language, version R2013a. Some files were initially created in Octave and C language
but reimplemented and compiled in Matlab. The software package consists of 3 (main) graphical user
interfaces (gui), serving different purposes:

1. The SphInX Configurator , where all calculation parameters for the inversion are set. E.g. size
distribution characteristics (for simulation mode), loading a netcdf/text file with the optical pa-
rameters (for measurement cases), lidar setup, mathematical parameter settings (methods, splines,
interval partitions), etc.

2. The SphInX Main , where the inversion takes place. This gui is responsible for the resulting
microphysical parameters, including quick looks on size distribution. Here one can perform simul-
taneous runs and observe promptly “ if everything works well”, so that one can either cancel the
procedure and go back to SphInX Configurator and change the settings, or save the work and
proceed to microphysical parameter analysis using SphInX MPP.

3. The SphInX MPP , where all microphysical parameters are stored in tables with error analysis,
regarding accuracy, variability and randomness uncertainty. The user can either load the results,
right after SphInX main finishes the inversion, or load previously saved work. While there is no
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D.1. Understanding & running SphInX (The software tool SphInX)

inversion-related calculation here, this gui is very suitable in performing error analysis, distribution
comparisons and possibly search for solution patterns.

The guis 1, 2, 3 open by executing in Matlab command line SphInX configurator, SphInX main
and SphInX mpp respectively. While the “ normal” running sequence is 1-2-3, all the guis can perform
autonomously as well (2 and 3, however, need appropriate file loading).

This software is a unique tool for lidar-based aerosol microphysics for the following multitude of
reasons.

• It is a fully automated software with a graphical user interface using both Mie- and T-matrix code,
i.e. handling both spherical and non-spherical particles.

• It has a user-friendly interface and can be used both for theoretical (mathematical) and practical
(physical) research answering to various levels of expertise and sophistication.

• It makes use of discretization databases minimizing essentially the time factor for massive retrievals
either for simulations or multiple measurement cases. The databases are expandable and such an
expansion can be used thereafter on demand.

• It has a unique presentation of the inversion products in moving sequences, thereby allowing for
identification of possible systematic algorithm behaviors and a better understanding of the physical
scenery.

• It makes use of the most widely used regularization methods in contemporary literature. The most
recent software versions allow for an expansion also in terms of other user-made methods (alpha
version).

• It is the only software providing a methodology to characterize regularization methods in terms of
accuracy and stability and a full set of uncertainties vital for any practical purpose.

D.1.3 Theory & practice

SphInX is mainly based on a 2-Dimensional generalization on the Mie model, firstly presented in [129], for
all available lidar setups except ‘3b + 2a’. The discretization of the integral equation is done with spline
collocation. For the spherical case (‘3b + 2a’) we can achieve a stable discretization for the Fredholm
integral equation in relatively little time using the well understood Mie kernel functions. On the other
hand, the underline (and dominating) theory for the calculation non-spherical kernel function, called
T-matrix theory, has overwhelming computational cost even if we reduce the non-sphericity to “ simple”
spheroids.
Indeed, a spheroid-particle approximation is accompanied with such a complexity regarding the conver-
gence the infinite sums involved that a real-time inversion is technologically not in our reach yet. This
is the reason SphInX operates with precalculated look-up tables instead of real-time calculations. This
involves a discretized-kernel (optical effieciencies) database for several projection spaces, which was built
using interpolation and collocation on kernel values produced by the software tool Mieschka [124]. This
discretized-database is used for all lidar setups except for 3b + 2a (spheres). Discretization in projection
spaces missing from the database can also be achieved expanding the database (real calculations), see
following sections for the limits of the look-up tables.
Finally, more advanced generalizations are proposed and implemented in this software treating the par-
ticle as a sphere-spheroid mixture through an additional non-sphericity parameter (asphericity), initially
presented in [130]. The use of these models being part of ongoing research is not covered by this guide.
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D.2 SphInX configurator

D.2.1 Modes

Before setting any parameter for the inversion one has to choose between two possible modes which are
a click away in “ Mode” tab:

1. Simulation, and

2. Measurement.

There is one more option, named Tutorial for inverse problems, which is a separate software tool
(Tute) developed for educational purposes, as a companion for introductory lectures in inverse ill-posed
problems, based on [57]. For more information about Tute software, please contact Stefanos Samaras
(samaras@math.uni-potsdam.de).
The scenery in modes (i), (ii) is almost the same with the following tabs:

1. Optical Data, where the optical parameters (extinction- and backscatter coefficients) are loaded.

2. Parameters, where all the calculations settings take place, and

3. Methods, where a specific regularization technique with a parameter choice rule is to be chosen.

D.2.2 Optical Data tab.

The only difference in options between simulation- and measurement modes lies within this very tab. At
first one needs to enter the lidar setup from the popup menu Setup; the default being 3b + 2a + 3d. All
the available are:
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3b + 2a + 3d, 3b + 2a + 2d, 3b + 2a + 1d (355), 3b + 2a + 1d (532), 3b + 1a + 1d (355), 3b + 1a +
1d (532), 3b + 3d, 3b + 2d, 3b + 1d (355), 3b + 1d (532), 3b + 3a + 3d, 3b + 3a + 2d, 3b + 3a + 1d
(355), 3b + 3a + 1d (532), 3b + 2a (2D), 3b + 2a,
where b denotes the backscatter coefficient, a the extinction coefficient and d the depolarization. When-
ever the wavelength is not specified, the depolarization is meant in the wavelength order 532, 355, 1064
nm. E.g. ”3d” contains depolarization in all three wavelengths, while ”2d” corresponds to 532 and 355
nm. Finally the 3b + 2a (2D) (with capital D) is the case of spherical particles but from the point of
view of the 2-Dimensional generalization of the Mie-model used in the present software. Moreover the
setup 3b + 2a (2D) makes use of he kernel database of the MIESCHKA software, while “ 3b + 2a”
runs Mie-model in real time. In addition, note that whenever a given setup misses the depolarization in
one of the wavelengths, e.g. 3b +2a +2d misses the depolarization in 1064 nm, the direct (horizontal)
polarization plays (should play) the role of the total optical property. For instance, in a measurement
case with the setup 3b +2a +2d, one should fill in the field Backscatter direct-polarization at 1064 nm
with value of the total backscatter in 1064 nm and leave the Backscatter cross-polarization blank. For a
simulation scenario, this process is handled automatically by the software.

Simulation scenario

Generate optical data
For a simulation scenario one has to set complimentary a set of values, one wants to experiment with.
These values pop up in the separate window Simulation configurator once one presses Simulation con-
figuration.

163



D.2. SphInX configurator (The software tool SphInX)

In the general case the settings refer to a 2-dimensional distribution which is constructed by multiplication
of two separate parts.

1. The radius-related part, where one can choose between log-normal, gamma and normal distributions
with the corresponding settings for each of them, e.g. total number concentration, median radius,
mode width, and specify the radius range and basepoints No in case of the lidar setup ‘3b + 2a’
(spheres). For every other setup the radius range can either be [0.01, 1.2] (default) or [0.01, 2.2]
and the basepoints No is fixed to the default value 1000. Any other value in both fields is ignored
and goes back to the default values.

2. The aspect-ratio related part, where one can set a distribution in terms of a probability function
according to the desired spheroid-particle ensemble (oblate, prolate, sphere-spheroid), e.g. the
default values describe a prolate particle ensemble with aspect ratios 1.15, 1.3 with probability of
occurrence 1/4 and 3/4 respectively. Note that the kernel functions in the database are only known
exactly in the following aspect ratios 0.67, 0.77, 0.87, 1, 1.15, 1.3, and 1.5.

Moreover, the noise levels for the optical parameter set, being under construction, are specified in terms
of the relative residual error ‖Ax − b‖2/‖b‖2 (%), where A is the discretization matrix, b is the optical
dataset and x is the solution vector (distribution coefficients). One can further choose between Gaussian
and Poisson error type. The true refractive index has to be set also in this window.
Once everything is set we press OK and then the generate button to produce datasets, the number of
which is specified by the edit box on the left hand side below the table. By the time SphInX finishes the
calculation of the optical dataset(s), it shows by default the synthetic size distribution corresponding to
the simulation settings. This can be deactivated by unchecking the check-box plot distribution below the
optical data table.

164



D.2. SphInX configurator (The software tool SphInX)

Keeping older settings
By pressing OK the software saves one’s settings for the next time this window reopens and CANCEL
keeps the previous setting while X erases them and Simulation configurator returns to the default ones.
This gui’s state information is stored in C:\SphInX\temp, as sim state.mat.

Measurement case
Choosing to perform an inversion with real-life data comes with two options. Either one manually writes
the entries in the table or one loads them from a netcdf (recommended) or an ascii file. Note that in
any case in the measurement mode the lidar setup needs to be specified by the user (Setup popup menu)
either before or after the entries are loaded in the table.

Optical profiles gui
Optical Data < Load netcdf / ascii file option opens a window-gui Optical Profiles, where the optical
profiles can be manipulated once they are chosen by clicking Open profiles button. This tool can also
be used independently by calling it from Matlab command line with optical profiles gui. Once the files
are chosen they are plotted in the specified Altitude range and the mean/median value is automatically
calculated. One can plot not only every the optical profile but also several other intensive and extensive
properties (e.g. lidar ratio, Ångström exponent) using the list box Plot profiles. The list box notation ”||”
and ”L” in the specification of backscatter (bsca) is an abbreviation for parallel and vertical polarization
respectively; whenever none of these two symbols are provided, the total value is meant. The profiles
are plotted in real time when the Altitude range is changed. The average profiles values are saved and
displayed in the optical data table in the configurator gui by pressing OK (Cancel or X provide no
change).
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Regarding the file type two options are available: netcdf and ascii.

1. In the case of netcdf files, all the files needed for the inversion (e.g. .e355, .e532 and .b1064) must
be loaded simultaneously. Single files can also be loaded for profile inspection but they overwrite
any previously loaded profile.

2. Loading optical data from an ascii file comes with two basic rules that the files should take on:

(a) all profiles should be given as columns in a single file,

(b) above the columns there should be equal amount of identifiers (labels) of the columns, which
should at least contain the following non-case-sensitive string characters: “alt”, “ext”, “alpha”,
“bsca”, “beta”, “depol” and , “355”, “532”, “1064”. “alt” stands for the altitude range, “ ext”
and “ alpha” refer to extinction coefficients, “ bsca” and “ beta” refer to backscatter coefficients
and “ depol” refers to depolarization. The order of the columns can be arbitrarily chosen. Here
is a sample file structure:

The units for altitude must be given in km and all the rest in SI units.
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D.2.3 Parameters

This tab contains all the parameters needed mainly for the discretization and the regularization. These
involve:

1. The Refractive index (RI) grid, which should be given in separate real and imaginary parts. Note
that MIESCHKA kernel database allows only for the following values:

Real part of RI: 1.33, 1.4, 1.5, 1.6, 1.7 and 1.8 and the Imaginary part of RI: 0, 0.001, 0.005, 0.01, 0.03,
0.05 and 0.1, which are also the default values.
For the spherical case, the user is free to choose a finer RI grid specifying the steps, in which case the
fields real part and imaginary part should admit a range, e.g. [1.33, 1.8], [0, 0.1]. If the steps edit-boxes
remain empty the software considers only the values used in the fields real part and imaginary part. If
steps edit-box is filled and any of the fields real part and imaginary part have more than two values (not
a range), then the software chooses automatically the minimum and maximum parts of the refractive
index as the range.
Furthermore, note that the field true refractive index, does not have to be filled when in Simulation
mode, as it is automatically updated once generate button is triggered.

The Radius panel. The radius range should given in µm. The field number of basepoints and the
popup-menu interval partition are available to the user only in the spherical case (lidar setup ‘3b + 2a’).
In this case, there are four choices for the node grid:

1. equidistant,

2. Chebyshef [-1,0],

3. Chebyshef [-1,1], and

4. Chebyshef [0,1].

The options 2,3, and 4 refer to a non-equidistant partition with Chebyshef polynomial roots as the nodes
in the designated range.
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Note that the radius range and the number of basepoints do not need to be filled for Simulation mode
since they are automatically updated by the generate button; at the same time there should be an
agreement between these fields and ones in simulation configurator.

1. The Calculation parameters panel. The discretized kernel database (spheroids) has the following
ranges: number of knots: 3 up to 20 and spline degree: 2 up to 6. Here, the number of knots (s),
the spline degree (d) and the spline number (n) fulfil the relation n=s+d-1.

If the software reads a value beyond the extent of the precalculated database (e.g. s=21 ) it performs
the discretization of the new projected space on site and saves the work also for future calls. In the
spherical case the whole regularization is performed in real time and there is no software limitation for
these parameters.
*** There are two more options in this panel:

1. The predefined aspect ratio values for which the discretization is performed, is only included for
possible future use. At this point it is out of reach for two reasons. First, the kernel database is
not available beyond the aforementioned values and second, even if it was, one needs to recreate
the discretized kernel database from scratch for any new aspect ratio value.

2. aphericity percentage option. This is an experimental feature refering to a preferred separation of
spherical and non-spherical part of the size distribution or the optical data. As part of ongoing
research, this feature exceeds the scope of the present guide.

D.2.4 Methods

The user can choose from the popup-menu among the following regularization methods combined with
a parameter choice rule:

1. Truncated Singular Value Decomposition & Discrepancy Principle (TSVD-DP),

2. Tikhonov method& L-Curve method (Tikh-LC),

3. Padé iteration & Discrepancy principle (Pade-DP),

4. Tikhonov method & Generalized Cross Validation (Tikh-GCV),

5. Tikhonov method & Discrepancy Principle (Tikh-DP),

6. Padé iteration & L-Curve method (Pade-LC),
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and fill in the fields associated with each one accordingly. Especially for methods 3. and 6. another
window gui (Pade iteration) pops up with more options about Padé iteration; previous settings are saved
the same way as in Simulation configurator.

D.2.5 Proceed to the inversion

SphInX configurator admits all the configuration settings given in all three tabs (Optical Data, Param-
eters, and Methods) with OK button which automatically opens regularization gui SphInX main to
perform the inversion.
The configuration data can be saved as a .mat file with File < Save data (after the OK button is hit)
which opens a modal dialogue box asking the user for a name for the file. As we will see later on, there
is a more complete option for this action in SphInX main, see the corresponding section for detailed
description. Therefore the latter option is only useful when one intends to save the configuration for
later use. Such configuration files (identified as config data files) and also later on the files associated
with the solution grid (identified as sol grid files) and the final regularization products (identified as
reg data files) can be loaded in SphInX configurator.

D.3 SphInX main

D.3.1 Split inversion & checkpoints

By “full inversion” is meant here the final retrieval outcome (microphysical parameters) using the least
residual reconstructed size distributions.
One of the efficiencies of SphInX main is the ability to separate the inversion in two stages:

1. Calculation of the solution, which is really the coefficients of the approximation of the solution
from the spline collocation.

2. Calculation of the size distribution and the microphysical parameters.
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By default the inversion is not split, but rather the software performs (1) and then (2). On demand
the inversion can be stopped, saved and used another time from the point it was left using File < Split
inversion. This feature is possible only for multiple error-runs.
Generally, the inversion process (triggered by the Solution Grid button) can be stopped at any time.
Keep in mind that this action might take some time for huge runs (many different numbers of spline
points and spline degrees).

Plot settings

This panel allows the user to choose plot style either as a 2D projection or a contour plot of the refractive
index grid with respect to either the absolute error or the relative error.
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Delay

This feature controls how fast will be the change between figures of the solution grid and/or the size
distributions and the table-data. Since SphInX main specializes in investigating closely the solution
space and seeking patterns and the visual data change might occasionally be too rapid for inspection,
Delay option given in seconds can offer a pause between subsequent datasets.

D.3.2 Save data

Saving data in SphInX main has two aspects:

The option File < save data < Solution grid & configuration data
This option has a double use.

(i) If there exists a checkmark, once the Solution Grid button is pressed, the configuration settings
(from SphInX configurator) along with the produced solution space are automatically saved and
stored after each error-run (different datasets) in a folder within the Work folder. The inverted data
include only the solution grid (not the final regularization products), i.e. all the spline coefficients
(numbers related to the spline basis) for the whole refractive index grid, all the numbers of spline
points and spline degrees and all error-runs (in case of a simulation). The automatically generated
folder contains a .mat file with the solution grid data and an ascii file of the same name with
the configuration used to produce the latter. The folder and the files in it are named after some
minimum quickly-recognizable details.

For the Simulation mode

Folder name:

‘method’ ’median radius’ ’mode width’ ’radius’ ’error level’ ’lidar

171



D.3. SphInX main (The software tool SphInX)

setup’ ’leftmost aspect ratio value’, e.g. TSVD-DP 0.5 1.2 rad.1.2 3% 3b + 2a 1.15.

For the Measurement mode

Folder name:

method’ ’radius’ ’lidar setup’ ’asphericity’, e.g. Pade-LC rad.1.2 3b + 2a asph.100.

For both modes the .mat and ascii files appear with same name according to the scheme:

date: DD-MM-YY-HH-MM-SS’ sol grid ’method datasetNo”,

e.g. 07-Feb-2015-15-41-32 sol.grid TSVD-DP 2 (the number 2 means that there are at least two
datasets). For instance, for 3 error-runs, the generated folder should have 3 .mat + 3 ascii files. As
long as there is no folder named exactly like this, a new folder is created, otherwise the saved files
are appended to the existent folder.

(ii) The user can always save the configuration data before or after the inversion for later use.

This action opens a modal dialog box and the user is asked to give a name for the configuration
files (.mat and ascii) that will be saved. Apart from the fact that there are no solutions involved
here, the difference with (i) is that the configuration files concern the run as a whole, as it was
ordered by SphInX configurator while in (ii) the run is separated in partial runs for individual use
if desired.

The option File < save data < Checkpoints / regularization products
This option has a double use.

(i) If an inversion for multiple datasets is initiated and stopped by the user pressing the same button
(Solution Grid), SphInX main creates automatically a checkpoint. If the window remains open, the
inversion will continue from where it was left by pressing Solution Grid. If not, one can still save
the work before closing SphInX main with File < save data < Checkpoints / regularization products
and run the rest when reopened. Moreover if a run has already been made, by pressing Solution
grid again, the button’s name turns to “inverted” and the software display again the solution grid
plot(s) without recalculating. Nevertheless, if desired, one can reproduce the run by clearing the
workspace with File < Clear workspace. The different dataset-runs do not have to be done in a
row (default), but rather specified by the user through the dataset No edit-box, e.g. for 5 datasets
one can run only 1, 4 and 5. The checkpoint-logic still applies here for the rest datasets of the
incomplete run (2 and 3 in the previous example). In addition, if an incomplete run is loaded, the
software informs the user about the datasets which are not inverted yet in the edit-box dataset No.

(ii) It opens a modal dialog box (similar to previous option) and saves the size distributions and the
final regularization products, i.e. the microphysical parameters. This option is perhaps the most
important in SphInX because it saves everything that the inversion produced. In addition, it
includes the configuration and the solution grid.

Save gui figures
File < Save figure has three options:

1. Save solution grid figures with File < Save figure < Solution grid,

2. Save (size) distribution figures with F ile < Save figure < Size distribution and

3. Save a snapshot of the window with File < Save figure < Window figure.

The options (i) and (ii), once activated, they save all instances of the solution grid and the size distri-
bution that are currently being plotted as .png figures. The user is asked to give a name for the folder
where the figure is to be saved and the with the following name format:
’refractive index’ ’asphericity’ ’error’ ’splinepoint No’ ’spline degree’,
e.g. 1.5+0.01i 100 0.080782 9 2.
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The plot is saved with a title with similar name for a quick identification.
Note that these options (i, ii) are complementary, meaning that once a folder is chosen for one of them,
any figure in SphInX main will be saved in the same folder if not respecified. E.g. if one ordered
distribution figures in a folder named “Folder 1” then any plot of the solution grid will also be saved in
Folder 1 without further notice (unless one chooses too).
***This feature is deactivated either by resetting SphInX main or by using File < clear workspace (both
of which erase the solution grid and regularization products).
The option (iii) saves a snapshot of the current workspace window as a .png figure to the user-specified
folder.

D.3.3 The microphysical retrieval

Specify retrieval data
If the user does not change the default setting of not splitting the inversion, the software proceeds in
calculating (and ploting) the size distributions and the microphysical parameters of the least residual
solutions for each dataset and each spline setup which are shown one by one as a movie. Retrieval data
that refer to a random solution (not least residual) are not automatically calculated, but can be shown
on demand too, see the following section (specify solution plot button) for more details. The retrieved
microphysical parameters, either for least-residual- or random solutions, are shown in the parameter table
under the column Retrieved, once the associated size distribution is plotted. In addition, if running a
simulation scenario, the column Synthetic is updated too, corresponding to the microphysical parameters
calculated using the initial distribution for comparison.

Perform a preliminary analysis
After at least a split inversion has been fulfilled one can perform a first data analysis by pressing specify
solution plot button. This can be done in two ways:

1. Smallest residual solutions. If the edit-box pick refractive index is filled with smallest residual or
sr then one can see single solutions or several solutions in a motion updating the microphysical
parameter table accordingly. The specification of the displayed solutions is done either through
the boxes

• number of spline points / spline degree, where the user specifies a range of the associated field,
e.g. 9:14, 2:5, or

• through the box number of least residual solutions, where the associated number of “best”
solutions are plotted for each datasets.

2. Random solutions. In this case the user has to specify for which refractive index, the software
should calculate the microphysical parameters and plot the size distribution. This can be done in
two ways:

• as an entry in the pick refractive index edit-box, inserted manually by the user or

• by leaving empty the edit-box pick refractive index and selecting (with the mouse) the desired
refractive index directly from the solution-grid plot. User’s selection will appear in the edit-box
pick refractive index.

In case the given refractive index is not part of the solution grid (specified by the user in SphInX
configurator) the software returns the solution for the closest existing one.
The initial distribution can be shown at any time in the size-distribution axis with Settings < View
initial distribution. In case the axis is already occupied by a retrieved size distribution, the axis is held
for comparison.
A thorough analysis including errors can be done using the SphInX MPP gui which is activated by Show
details button.
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D.3.4 Save size distributions

The size distributions can be saved in an ascii file with File < Save data < Size distribution. Once
activated the distribution data continue to be saved and appended to same ascii file until it is deactivated
the same way. A modal dialogue box asks the user for a folder name, which will be placed in Work
folder and in which the size distribution is going to be saved in an automatically generated folder size
distributions with the following name format:
‘date’ ’size dist’ ’method’, e.g. 23-Feb-2015-12-20-15 size dist. TSVD-DP.
The distribution data, which are to be saved, are ordered in the same way we specify the solutions and
they are finally saved once we hit specify solution plot.
The ascii files contain:

1. information as to which size distribution is picked for saving with a header including refractive
index, spline points No, spline degree, dataset No, and error, e.g.

% size distribution ||refractive index: 1.5+0.1i ||spline points No.: 9 ||spline degree: 3 ||dataset No.: 1
||error: 0.0031733

1. (a) two column vectors next to each other, for the spherical case, the first being the radius range
r and the second being the size distribution v(r).

(b) two column vectors and a matrix next to each other, for the non-spherical case, corresponding to the
radius range r, the aspect ratio range a and the size distribution v(r,a) respectively.
New distribution data are appended to the same file below older ones, unless the user chooses a different
folder name.

D.4 SphInX MPP

D.4.1 General overview

SphInX MPP is a gui responsible for a detailed presentation and a statistical analysis of the solutions.
This guigroups solutions and calculates averages to test the credibility of the results, but does not make
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any microphysical calculations. This gui operates with a single button Retrieve parameters once the
user-specified fields (Solution Controller panel) and preferences are set. There are two ways to load data
in SphInX MPP :

1. open SphInX MPP with the button Show details right after completing an inversion with SphInX
main (or after loading data to SphInX main), or

2. directly load regularization data to SphInX MPP with File < Load results

Solution Controller is a panel similar to the one in SphInX main (containing specify solution plot) but
wealthier in possibilities; the user controls which results to be shown, both regarding the size distribution
and the microphysical parameters. The user specifies the exact dataset (dataset No), the discretization
space (spline points No / spline degree) and the refractive index for the size distribution (right graph)
and the microphysical parameters (tables below) to be shown. The refractive index edit-box should in
principle contain the retrieved refractive index from the minimization procedure, i.e. the entry should be
either smallest residual or sr, or the correspondig least-residual complex numeric value. If random (non-
least-residual) solutions were calculted in using SphInX main gui then user can use the corresponding
refractive indices too.
Once Retrieve parameters is pressedthe requested microphysical parameters appear in detail in the lower
table and the size distribution are plotted in the right axis. In case of a simulation the initial microphysical
parameters (upper table) and the initial size distribution (left) are shown for comparison. The minimum
error-related quantity is the relative difference between the retrieved and the initial values, represents a
measure of accuracy and goes by the name Difference (%) in the upper table.
If more than one entry is given in dataset No and / or spline points No / spline degree SphInX MPP
responds with averages discussed in following sections. Averages appears in two flavors using Settings <
Average type either as the mean or the median value.

In case of the mean the Deviation parameter appearing in the upper table is the usual standard deviation,
while in the case of the median, Deviation is the median absolute deviation of the values from the median
value. Generally, the upper table contains the statistics, while the lower table includes details about the
solution involved.

D.4.2 Single dataset & multiple discretization spaces

This section concerns the case where we have a single dataset and multiple entries in either of the spline
points No / spline degree edit-boxes. If so, the lower table shows all the ordered solutions, e.g. if we have
5 entries for the spline points number and 3 for the spline degree, 20 solutions should be shown in total.
The upper table shows additionally the average value and the deviation of the parameters from the lower
table. Moreover the Variability (%) of the solutions is shown as the quotient of the deviation to the
average value. In the case of a simulation scenario Difference (%) is the relative difference between the
average and the initial values. The retrieved size distribution shown corresponds to the average (mean
or median) value of the size distributions involved.
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D.4.3 Multiple datasets

For simulation scenarios, this section makes sense for the use of different datasets produced by random
error generator (e.g. gaussian) with the same error level. For a measurement case, the datasets could be
different in any possible way physically (e.g. different time, place, altitude of measurements etc.) but
they all have to correspond to the same lidar setup. This section further refers to the case of multiple
datasets with or without multiple entries in spline points No / spline degree edit-boxes; the user specifies
the indices of the desired datasets, e.g. 3, 5, 10. A hit in the button Retrieve parameters calculates the
average values and the associated Deviation, Variability (%) and Difference (%) for each dataset and the
subsequently finds the averages among these values to calculate the Uncertainty (%) among the different
datasets. Since the epicenter here is the averages between the datesets, the lower table contains as many
sets of microphysical values (table rows) as the amount of datasets (in our example 3) i.e. the average
values for each dataset, while the displayed Average values, Deviation, Variability (%) and Difference
(%) refer to the average of the latter values among all the involved datasets. Finally, the additional
parameter Uncertainty (%) is found by taking the quotient of the deviation to the average value (similar
to Variability (%) but applied to the average values from each dataset).
The values Variability (%), Difference (%) and Uncertainty (%), are summarized by default (it can be
deactivated) in a graph popping up right after the calculations in a separate window, where the x-axis
contains the microphysical parameter names and the y-axis contains their values. There are also errorbars
in this graph depicting the Uncertainty (%). This option will be explored further in the following section
in the case of multiple files where it becomes a necessity.

D.4.4 Multiple files

This section excausts the operation range of SphInX MPP and makes full exploitation of its capability.
Note that this section makes sense only for simulation scenarios with multiple datasets.

Loading files
SphInX MPP allows the user to load multiple files for a comparison between different methods or error
levels. All the files have to be loaded at once using File < Load results. SphInX MPP detects and
shows in the info-panel below the panel Solution Controller which are the methods involved and reveals
the sequence in which the files are loaded (file index) so that one can restrict only to some of them if
desired using the edit-box loaded file index. For instance, loading 6 files (which currently the maximum
amount of different methods), if the method edit-box reveals the following method sequence TSVD-DP,
Tikh-GCV, Tikh-DP, Pade-DP, Tikh-LC, Pade-LC, then by entering 2, 6 in the edit box loaded file
index, we pick only 2 of the files and specifically those with Tikh-GCV and Pade-LC. We can get back
to choosing all files (default) or any other sequence of indices without reloading the files. The edit-box
loaded file index is set to 1 in case we load only one file.
Giving only single entries in the edit-box loaded file index has the same use as discussed in the previous
sections with multiple discretization spaces and / or multiple datasets, only now we specify the method
too through the file index.
Solution Controller has a similar but wealthier functionality than than Distributions panel in SphInX
main regarding the ways to handles “best” (least-residual) solutions. The desired number of “best”
solutions is entered through the field best solution No. If the latter is non-empty, then the corresponding
amount of solutions are shown in the lower table with ascending-error order from top to bottom with
respect to the error-type specified by the popupmenu error type. The user can also order a maximum
error tolerance above which the solutions are inadmissible, by editting the field less / equal again with
respect to the error type. All previous options are also available in the case of multiple files and / or
multiple datasets and / or multiple projection spaces (spline points number and spline degree). In case
the amount of best solutions specified is larger than the one of the solutions existing (given or not an
error tolerance) the software returns the maximum number of solutions fulfilling the setting if it is more
than zero, otherwise one should keep loosen up the error constraint.

D.4.5 Errorbar settings

Multiple entries in the edit-box loaded file index combined with multiple dataset entries results in a
graph in a separate window, where the x-axis contains the microphysical parameter names and the
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y-axis contains their values and where each dashed line represents a different method (explained by
a legend). Each point in this graph has also an errobar representing Uncertainty (%). The values
Variability (%), Difference (%) and Uncertainty (%) (abbrev. VDU % ) are shown from top to bottom
after being calculated for each file. The methods and the error levels which make it to the graph near
these values are the one with the lowest (%) values. E.g. t let us focus on the values above the parameter
vt in the figure below:
Pade-DP, 0.68%
Pade-DP, 5.24%
Tikh-LC, 0.79%,
This means that among the 3 methods in the legend of this graph, Pade-DP has the smallest Variability
with 0.68%, the smallest Difference with5.24 % and Tikh-LC has the smallest Uncertainty with 0.79%
regarding the parameter vt (prolate volume concentration fraction). Furthermore, the title of this graph
informs the user which is the best method regarding accuracy (1-Difference) and overall (VDU %) count-
ing the freqeuncy of appearance of every method for all displayed parameters.

There are a few settings regarding the parameters displayed and the appearance of the graph which are
available under File < Errorbar. This action opens Errorbar display gui with the following options:
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1. Show errorbars. The graph described before is shown only if this check-box is checked (default).
If unchecked, the option Show shape errorbars turns to unchecked too.

2. Show shape errorbars. Although any of the parameters from the table, number concentration (nt),
surface-area concetration (at), volume concentration (vt), oblate volume concentration fraction
(ovcf), spherical volume concentration fraction (svcf), prolate volume concentration fraction (pvcf),
effective radius (reff), effective aspect ratio (aeff), aspect ratio width (avar), refractive index (ri),
single scaterring albedo 355 / 532 (ssa) and non-sphericity can be displayed one can check this box
in order to create a separate graph for the shape-related parameters ovcf, svcf, pvcf, aeff and avar.
This option does not apply obvioulsy for the spherical setup ‘3b + 2a’.

3. Identification number (idNo). This refers to the position of the parameter in the lower table. E.g.
the idNo of the volume concentration is 3 since it is the 3rd parameter. The following conventions
has to be taken into account.

• For the setup ‘3b + 2a’ the shape-related columns ovcf, svcf, pvcf, aeff and avar are ignored.
E.g. reff has in this case idNo 4, while in every other setup is 7.

• ri counts for two entries with indices 10, 11, for the real part and imaginary part respectively.
For the setup ‘3b + 2a’ the idNo is 5 and 6.

• ssa counts for two entries with indices 12, 13, for 355 nm and 532 nm respectively. For the
setup ‘3b + 2a’ the idNo is 7 and 8.

4. Parameter names. These are user-specified names of the parameters displayed in the graph.

The button OK saves the settings for a reopenning of the gui, CANCEL has no effect, while X returns
the default settings. This gui’s state information is stored in C:\SphInX\temp, as param sel state.mat.

D.4.6 Save size distributions

The size distributions can be saved in an ascii file with File < Save size distribution. This option has
the same use as File < Save data < Size distribution in SphInX main, see the corresponding passage for
details.
The essential difference is that now not only the distributions specified by the Solution Controller set-
tings are saved but also the corresponding average size distribution in case of multiple projection spaces.
The position of the latter in the ascii file is below the last of the distributions being averaged. Moreover
in the case of multiple datasets, the average distribution of different dataset is placed (in the same ascii
file) below the average distribution of the last dataset involved. The header above each size distribution
data contains now all the information (discussed in the case of SphInX main) but also additional one
regarding the dataset No and the regularization method used (since in SphInX MPP the user can load
multiple files with different methods). The following example exposes the structure of the file in case 2
datasets with splinepoints No = [9, 10] and spline degree = [2, 3] with TSVD-DP method (the distribu-
tion data follow the same column-conventions as is SphInX main and are missing from this example for
brevity):

% size distribution ||refractive index: 1.33+0.03i ||spline points No.: 9 ||spline degree: 2 ||dataset No.: 1
||error: 2.4825e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.6+0.03i ||spline points No.: 9 ||spline degree: 3 ||dataset No.: 1
||error: 2.0955e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.33+0.01i ||spline points No.: 10 ||spline degree: 2 ||dataset No.:
1 ||error: 2.0955e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.4+0.001i ||spline points No.: 10 ||spline degree: 3 ||dataset No.:
1 ||error: 1.6653e-16 ||method: TSVD / Discrep. principle
[distr. data]
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% average distribution (same dataset) ||mean refractive index: 1.415+0.01775i ||dataset No.: 1 ||error:
2.0847e-16 ||method: TSVD / Discrep. principle
[average distr. data]
% size distribution ||refractive index: 1.8+0.005i ||spline points No.: 9 ||spline degree: 2 ||dataset No.: 2
||error: 2.2377e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.5+0.01i ||spline points No.: 9 ||spline degree: 3 ||dataset No.: 2
||error: 1.4947e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.4+0.03i ||spline points No.: 10 ||spline degree: 2 ||dataset No.: 2
||error: 2.2377e-16 ||method: TSVD / Discrep. principle
[distr. data]
% size distribution ||refractive index: 1.7+0.03i ||spline points No.: 10 ||spline degree: 3 ||dataset No.: 2
||error: 2.8441e-16 ||method: TSVD / Discrep. principle
[distr. data]
% average distribution (same dataset) ||mean refractive index: 1.6+0.01875i ||dataset No.: 2 ||error:
2.2036e-16 ||method: TSVD / Discrep. principle
[average distr. data]
% average distribution (different datasets) ||mean refractive index: 1.5075+0.01825i ||Up to dataset No.:
2 ||error: 2.1441e-16
[average distr. data]

For as long as File < Save size distribution stays checked the size distributions keep getting saved once
the Retrieve parameters button is pressed and appended to the same txt file.

D.4.7 Latex tool

The results of both tables can be converted to latex to be used further in a document. This is achieved
the follwing way.

1. Activate the option under File < Texify (checkmark should be on)

2. Display the data you desire (i.e. set Solution Controller panel as you please and hit Retrieve
parameters button)

For as long as the Texify option stays activated (checked) the latex-tables are saved in ascii files in Work
folder with the following conventions:

1. Every hit of the Retrieve parameters button saves 2 files for each file involved, one for each table.
The lower table has a vertical alignment in latex, meaning that the rows of the table become
columns in the latex file, while the upper table keeps its horizontal alignment.

2. The files are named after ‘date’ ’method’ ’identifier’, where identifier is latex table all for the file
with the lower table and latex table ave for the file with the upper table,

e.g. 11-Mar-2015-01-24-25 Tikh-LC latex table ave.

D.4.8 Additional figure options

The option Settings < External Figures opens external matlab figures instead of occupying the axes of
SphInX MPP. Note that choosing this option results in the plots of all the size distributions for every
single parameter (file index, dataset, spline points number, spline degree) and all the associated average
distributions; generally it is advised to use this option for single dataset- and spline entries, since with
multiple-entries it is easy to lose track of which graph correspond to which set of parameters. Multiple
entries in combination with this option are proposed in order to get the average size distributions, which
is always the last graph appearing.
In case of the setup 3b + 2a, it is possible to merge the graph of the initial and the retrieved size
distribution to a single plot with File < Single graph for 1D plots. The latter can be combined with the
external-figure option too.
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D.5 Miscellaneous actions

• The working folder (Work) can be accessed promptly by any of the main guis from File < Open
work folder.

• Almost every action has a shortcut key, which is shown near the corresponding option e.g. choosing
Simulation mode is achieved with ctrl-1. Especially in SphInX main, the inversion process can be
interrupted (after being triggered by the button Solution Grid, or specific solution plot) by the
shortcut ctrl-P which stands for File < save data < Regularization products. This is useful e.g.
when one performs multiple runs and wants to save the work already been ran without stopping
it. Moreover there are more “invisible” shortcuts which take place with keyboard buttons:

(i) SphInX configurator: “o”, “p” and “m”, for theOptical Data, the Parameters and the Methods
tab respectively, “d” to edit the number of datasets field, “F5” + “space” for the OK button,

(ii) SphInX main: “F5” + “space” for the Solution Grid button, “F9” + “space” for the specific
solution plot button, “o”to edit the field dataset No, “s” or “d” to edit the fields numberof
spline degree, and “b” to edit the field number of least residual solutions,

(iii) SphInX MPP: “F5” for the Retrieve parameters button, “o” to edit the field dataset No, “s”
or “d” to edit the fields numberof spline points No / spline degree, and “b” to edit the field
best solution No.

(iv) Simulation configurator : “F5” + “space” for the OK button,

(v) Optical Profiles: “F5” + “space” for the OK button, “o” to trigger Open profiles button, “a”
to edit the field Altitude range,

(vi) Errobar gui : “F5” + “space” for the OK button, “o” to trigger Open profiles button.

(vii) Pade iteration: “F5” + “space” for the OK button.

• The option File < Clear workspace clear the regularization products but keeps the configuration
settings.

• Resetting SphInX configurator exits both SphInX main and SphInX MPP ; this will clear the
workspace entirely. Resetting SphInX main / SphInX MPP, the user is able to choose through
a modal dialogue box if SphInX configurator stays open (if it was) or resets too. If SphInX
configurator stays open the regularization products are cleared but the configuration settings remain
and passed to SphInX main / SphInX MPP. Resetting SphInX configurator close all guis and figures
and clears the workspace entirely.

• When OK is pressed in SphInX configurator while there was a previous run in SphInX main the
results of this run are cleared (lost). This is done on purpose so that the data structures involved
in a new calculation do not include a previous calculation when we save them. SphInX main is well
suit for multiple experiments in the search for a final configuration, e.g. in order to run a bigger
experiment. Nevertheless, by when going back and forth between the two guis and/or stopping the
inversion and/or interchangeably use the button Solution Grid and specific solution plot one has to
be cautious when saving the work. A good practice is to use often File < Clear workspace and to
reset SphInX main before running an experiment, the results of which one intends to finally save.

• SphInX configurator and SphInX main can be saved as a Matlab .fig file with File < Save figure con-
figuration which can retrieved by opening a saved .fig file (e.g. command line open(nameOfFigFile.fig)),
the previous state of the gui visually (and only visually, workspace structure is cleared), but it is
generally ill-advised to work with such files.

• The previous states of the guis Simulation configurator, Pade iteration and Errorbar settings are
save under C:\SphInX\temp as discussed in the relevant sections. Each new gui-state overwrites
the previous. If one wishes to save more than one state, it can be done manually by renaming the
associated .mat file, e.g. for the case of Simulation configurator, before hitting OK (which saves
the gui state every time)change the default file name sim state of the previous configuration to
sim state old. Change the latter back to sim state in order to load the older settings.
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small-scale surface roughness: Comparison of four classes of model geometries. Journal of Quanti-
tative Spectroscopy and Radiative Transfer, 113(18):2356 – 2367, 2012. Electromagnetic and Light
Scattering by non-spherical particles {XIII}.

[72] J. Kallrath. Rational function techniques and Padé approximants, in: Hagel, j. (ed.), nonlinear
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M. Fiebig, M. Wendisch, A. Stohl, et al. Optical and microphysical characterization of biomass-
burning and industrial-pollution aerosols from-multiwavelength lidar and aircraft measurements.
Journal of Geophysical Research: Atmospheres (1984–2012), 107(D21):LAC–7, 2002.

189



References

[151] T. T. Warner. Desert Meteorology. Cambridge University Press, 2004. Cambridge Books Online.

[152] P. C. Waterman. Matrix formulation of electromagnetic scattering. Proceedings of the IEEE,
53(8):805–812, 1965.

[153] C. Weitkamp. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer Series
in Optical Sciences. Springer, 2005.

[154] W. J. Wiscombe and A. Mugnai. Scattering from nonspherical chebyshev particles: A compendium
of calculations. NASA Reference Publications 1157, 1986.

[155] A. Yariv and P. Yeh. Photonics: Optical Electronics in Modern Communications. The Oxford
series in electrical and computer engineering. Oxford University Press, 2007.

[156] V. Zuev. Laser beams in the atmosphere. Consultants Bureau, 1982.

190
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