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Decades of research have demonstrated that physical stress (PS) stimulates bone 
remodeling and affects bone structure and function through complex mechanotransduc-
tion mechanisms. Recent research has laid ground to the hypothesis that mental stress 
(MS) also influences bone biology, eventually leading to osteoporosis and increased bone 
fracture risk. These effects are likely exerted by modulation of hypothalamic–pituitary–
adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids 
and cytokines, as demonstrated in human and animal studies. Furthermore, molecular 
cross talk between mental and PS is thought to exist, with either synergistic or preventa-
tive effects on bone disease progression depending on the characteristics of the applied 
stressor. This mini review will explain the emerging concept of MS as an important player 
in bone adaptation and its potential cross talk with PS by summarizing the current state 
of knowledge, highlighting newly evolving notions (such as intergenerational transmission 
of stress and its epigenetic modifications affecting bone) and proposing new research 
directions.
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inTRODUCTiOn

Bones are an essential component of the musculoskeletal system, with their primary functions 
being protecting vital organs, supporting the body, assisting in movement, producing blood 
cells, and storing nutrients and minerals. To fulfill all this functions, bone mass and structure 
are regulated by a number of factors. Bone tissue is continuously remodeled and modeled to 
maintain a healthy matrix and to adapt to changing environmental factors. Disturbances in these 
mechanisms often result in reduced bone mass and an increased risk for fractures, with aging 
(especially in postmenopausal women), furthermore, impacting bone health. Natural aging leads 
to the accumulation of osteoporosis risk factors, including a gradual inability to cope with physical 

Abbreviations: ACTH, adrenocorticotropic hormone; AP-1, activator protein 1; BMD, bone mineral density; CRH, 
corticotropin-releasing hormone; CSE, chronic strenuous exercise; CT, computer tomography; GH, growth hormones; 
GHIH, growth hormone-inhibiting hormone; GHRH, growth hormone-releasing hormone; GR, glucocorticoid receptor; 
HPA, hypothalamic–pituitary–adrenal; HPG, hypothalamic–pituitary–gonadal; HPP, hypothalamic–pituitary–prolactin; 
HPS, hypothalamic–pituitary–somatotropic; HPT, hypothalamic–pituitary–thyroid; IGF-I, insulin-like growth factor-I; IL, 
interleukin; MS, mental stress; NF-κB, nuclear factor kappa B; PS, physical stress; PTH, parathyroid hormone; SAM, sympa-
thetic–adrenal–medullary system; SNS, sympathetic–nervous system; TNF-α, tumor necrosis factor alpha.
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and mental stressors (with consequences on bone adaptation) as 
well as biochemical alterations elucidated in more detail within 
this perspective.

PHYSiCAL STReSS (PS): A BRieF 
SUMMARY

Mechanical loading, also often termed as PS, is an important 
trigger inducing structural adaptation in bone. Multitudes of 
studies have investigated the effects of PS on bone, including 
the identification of loading regimes supporting healthy tissue 
homeostasis (or reversely degeneration-associated matrix loss), 
analysis of underlying mechanotransduction mechanisms, as 
well as elucidation of load-induced molecular responses (1–5). 
Nowadays, it is widely accepted that osteocytes are the main sen-
sors of mechanical forces and orchestrate the activity of osteoblasts 
(responsible for bone formation) and osteoclasts (responsible for 
bone resorption) by several signaling pathways (6).

MenTAL STReSS (MS): A BRieF 
SUMMARY

Recent publications provide compelling evidence that psycho-
social stress, defined here as MS, can disturb bone homeostasis. 
When studying signaling pathways and pathological conse-
quences of MS different stressor characteristics are distinguished. 
Till now it is well known that specific social stress situations (e.g., 
social evaluative or threat components) provoke the strongest 
physiological responses (7). However, individuals respond dif-
ferently to these situations depending on their interpretation, 
resources, and adaptation strategies, which refer also to their 
biographical time frames and the duration of the stress exposition 
(short term, such as acute or long term such as chronic, traumatic 
stress type). Thus, an understanding of physiological mechanisms 
behind the MS response is particularly complex (see Figure 1) (8). 
Biologically, both responses (short-/long-term MS) are driven by 
the autonomic nervous system and the hypothalamic–pituitary 
axis. Within the autonomic nervous system, the stress response 
proceeds to one of three peripheral catecholamine systems 
(sympathetic–nervous system, sympathetic–adrenal–medullary 
system, and dopamine systems), whereby their operation depends 
on stressor type and characteristic (9). In the anterior pituitary, the 
stress response is determined by hypothalamic nuclei interactions 
and neuroendocrine cell hormone regulation. It is influenced by 
the stressor characteristic, driven by synaptic input from different 
brain regions like the limbic system (hippocampus, amygdala), 
as well as the brainstem (locus coeruleus), and realized on five 
endocrine axes: hypothalamic–pituitary–adrenal (HPA), hypo-
thalamic–pituitary–thyroid (HPT), hypothalamic–pituitary–
gonadal (HPG), hypothalamic–pituitary–somatotropic (HPS), 
and hypothalamic–pituitary–prolactin (HPP).

While these systems promote adaptation and allostasis (i.e., 
active maintenance of homeostasis) for performance in chal-
lenging situations, recent research shows that their repeated 
activation accumulates allostatic load leading to allostatic 
overload. This results in long-term maladaptation, which is often 
described in an HPA hyper- or hypofunction which then invokes 

immune, cardiovascular, or metabolic system maladaptation. 
The development of allostatic load is based on neural, neu-
roendocrine, and neuroendocrine-immune mechanisms and 
associated with a long list of pathologies [HPA hyperfunction: 
e.g., depression, Cushing’s syndrome, and type II diabetes; HPA 
hypofunction: e.g., multiple sclerosis and rheumatoid arthritis 
(8, 10)].

MS: eFFeCTS On BOne STRUCTURe 
AnD FUnCTiOn

Although the exact mechanisms remain to be elucidated 
and potential confounders (e.g., comorbidities, pharmaco-
logical therapies, physical inactivity, and sex) to be excluded, 
depression and anxiety have more recently been identified 
as additional risk factors for disturbed bone homeostasis, 
osteoporosis, and fractures in humans (11–14). For example, 
postmenopausal women suffering from depression exhibited 
decreased lumbar vertebra and femur DEXA scores compared 
to non-depressed controls, indicating a possible relationship 
between MS and bone mineral density (BMD) (15). A negative 
association between depression and BMD has been found in 
the majority of studies for both sexes, although many studies 
have not clearly defined MS (11, 13). Unfortunately, results 
on MS and BMD are often obtained from studies focusing on 
other topics (e.g., obesity/diabetes) and, furthermore, do not 
provide information discerning between acute or traumatic 
episodic stress effects. Therefore, future research in humans 
should differentiate specific stressor types and characteristics 
and improve patient selection and confounder controlling 
(smoking, medication, and physical activity) in studies. A 
systematical evaluation of pathways and mechanism linking 
MS and bone health (structure/function) could help establish-
ing a conceptual framework to estimate whether stress-related 
effects will be naturally compensated for or can be blunted or 
even reversed naturally or therapeutically.

Compared to human studies, animal models allow for tighter 
control of experimental conditions, avoidance of confounders, 
and lower subject variability. A variety of methods exist to induce 
stress in animals, and these are often combined to complex 
regimes to prevent habituation effects: water deprivation, over-
night illumination, stroboscopic illumination, cage tilt, housing 
in soiled cages, or exposure to noise (16, 17). Traumatic stress 
can be simulated by application of electric (foot) shocks (18, 19), 
exposure to predators (20) or physical restraint (21), or by expo-
sure of pups to unpredictable maternal separation (22). Aside 
from selecting a suitable stress model to test the respective study 
hypothesis, choosing the most appropriate species is also crucial. 
Historically, a variety of animals have been used in bone research, 
but species differences, e.g., lack of a trabecular and Haversian 
remodeling in rodents, exaggerates the importance when choos-
ing the most appropriate model (23–27). In rats, MS promotes 
disintegration of periodontal bone tissue (28). In mice, exposure 
to chronic stress activates bone resorption and suppresses bone 
formation shown by reduced BMD, deteriorated microarchitec-
ture and/or altered biochemical markers (18, 29, 30). Further 
studies have investigated the role of stressor characteristics 
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FigURe 1 | Overview of main endocrine axes. Normal function: feedback loop stops activation on each axis. Maladaptation of feedback function leads to 
fluctuation (accumulation) in one axis (hyper- or hypofunction), which influences function of the others. ⇢ = inhibition; → = stimulation. Abbreviations: HPA, 
hypothalamic–pituitary–adrenal; HPT, hypothalamic–pituitary–thyroid; HPG, hypothalamic–pituitary–gonadal; HPS, hypothalamic–pituitary–somatotropic; HPP, 
hypothalamic–pituitary–prolactin; CRH, corticotropin-releasing hormone; TRH, thyrotropin-releasing hormone; GnRH, gonadotropin-releasing hormone; GHRH, 
growth hormone-releasing hormone; GHIH, growth hormone-inhibiting hormone; DOPA, dopamine; ACTH, adrenocorticotropic hormone; TSH, thyroid-stimulating 
hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone; GH, growth hormone.
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(social isolation/electroshock) on bone mass in mice, concluding 
that bone mass can be affected by different stressor characteristics 
(31). Future research would benefit from using newer techniques, 
such as in vivo micro-computer tomography imaging, to monitor 
changes in bone microarchitecture throughout an experiment 
(32, 33). Compelling evidence indicates early life stress has epige-
netic consequences in humans and animals with similar findings 
emerging for chronic stress and depression in adults (34–38). 
Therefore, focusing on animal models would be useful in study-
ing the consequences of intergenerational MS transmission on 
bone biology as well as the testing of therapeutic interventions, 
pharmaceutical as well as environmental (e.g., enriched living 
conditions) (39).

MS: MOLeCULAR MeCHAniSM LeADing 
TO BOne ADAPTATiOn

Currently, the key molecular mediators between MS and 
bone health are considered to be growth hormones (GH), 

glucocorticoids, and inflammatory cytokines (see Figure  1). 
Levels of GH are altered by MS through modulation of the HPA 
axis and consequent upregulation of growth hormone-releasing 
hormone and growth hormone-inhibiting hormone (40). Recent 
in vitro studies demonstrated that GH can directly induce osteo-
blast proliferation and differentiation (41–43). For example, in 
an embryonal rat tibiae model, GH not only increased alkaline 
phosphatase levels but also induced local production of insulin-
like growth factor-I (IGF-I) (41). In fact, numerous other studies 
have described the stimulatory effect of GH on IGF-I production 
and its role as an important growth factor in bone (44–48). Using 
IGF-I-overexpressing mice, Zhao et al. were able to demonstrate 
that IGF-I has anabolic effects by primarily promoting the activity 
of resident osteoblasts, but potentially also by prolonging the life 
span of osteocytes (46). Circulating IGF-I is then detected by the 
hypothalamus and pituitary gland, completing the negative feed-
back loop for gaining allostasis through suppressing GH secre-
tion. When this feedback system is desensitized through chronic 
stress, GH deficiency can develop leading to catabolic effects 
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on bone (49, 50). Mouse models of IGF-I and GH deficiencies 
present with (up to 87%) reduced postnatal bone mineral content 
(51), as well as (approximately 40%) reduced femoral length and 
bone size (52). Among other mechanisms, these outcomes are 
related to the fact that parathyroid hormone (PTH), which has 
well-known anabolic, bone-forming effects, is dependent on 
osteoblast-driven IGF-I production (53). Similarly, humans with 
GH deficiency acquired in adulthood show decreased BMD (54, 
55). Furthermore, aging diminishes GH/IGF-I secretion and 
response and causes gradual deterioration of both the immune 
and endocrine systems (56).

The HPA axis is, furthermore, responsible for the release of 
glucocorticoids (predominately cortisol) (40), which in turn 
influences the basal HPA activity and termination of the stress 
response by acting on other regulatory centers, such as the 
hippocampus, frontal cortex, hypothalamus, and the pituitary 
gland (40, 57). Although exact mechanisms are not completely 
understood, glucocorticoids are believed to have a multifaceted 
and dose-dependent role in bone formation and homeostasis. 
At physiological levels, glucocorticoids promote bone formation 
through induction of osteogenic differentiation of progenitor 
cells (58). In contrast, elevated levels of cortisol directly inhibit 
osteoblast proliferation, differentiation, and apoptosis in various 
species (59–62), which could substantially blunt the bone forma-
tion process leading to lower bone density. Importantly, aging 
causes greater activation of the HPA axis, which results in elevated 
production of glucocorticoids and stronger feelings of stress, 
anxiousness, and depression as well as an overall detrimental 
shift (63).

Aside from direct effects on bone cells, glucocorticoids also 
inhibit GH and gonadal steroid production, further reducing 
bone mass. The effects of high cortisol levels are seen in patients 
suffering from Cushing’s syndrome, which typically present with 
decreased bone mass and quality (64, 65) as well as in certain 
types of depression and chronic anxiety disorders (see Mental 
Stress (MS): A Brief Summary) (16, 66–68).

Glucocorticoids further influence the transport and function 
of leukocytes and thus inhibit the production of pro-inflammatory 
cytokines [e.g., tumor necrosis factor alpha (TNF-α), interleukin 
(IL)-1β, and IL-6], e.g., via glucocorticoid receptor (GR)-induced 
suppression of nuclear factor kappa B and activator protein 1 (69). 
While these findings suggest an overall anti-inflammatory effect 
of stress, in vivo mechanisms are more complex. Recent research 
demonstrates chronic stress can induce GR resistance leading to 
decreased sensitivity of immune cells to glucocorticoids and a 
resultant inability to downregulate inflammatory responses (50, 
70). GR resistance and impaired HPA responsiveness—relevant 
in numerous inflammatory diseases (e.g., rheumatoid arthri-
tis)—play supposedly a role in the development of osteoporosis 
(71). Interestingly, patients suffering from chronic inflammatory 
diseases have a higher prevalence of osteoporotic fractures, 
providing an additional indirect link between GR resistance and 
bone pathologies (72). Aside from GR resistance, corticotropin-
releasing hormone (CRH), also secreted during MS, induces the 
release of IL-6 (73–75). High levels of IL-6 and other cytokines, 
such as IL-1β and TNF-α, affect differentiation of mesenchymal 
stem cells, suppress osteoblast function, initiate osteoclastogenesis, 

and activate osteoclast function (76, 77). These findings indicate a 
delicate inflammatory balance exists to ensure appropriate bone 
formation in vivo.

Although the isolated pathways of these three mediators of 
bone mass are well evaluated, knowledge regarding their inter-
action and buffering effects due to environmental conditions 
in enriched living conditions is lacking. For this reason, future 
research should include genetically modified animals, such as 
conditional IGF-I knockout mice (78), opening the possibility 
for mechanistic investigations as well as environmental mediators 
like PS.

inTeRPLAY BeTween MS AnD PS

Despite no studies having been conducted to directly investi-
gate the interplay between PS and MS, indirect indications of 
potential cross talk exist. Studies examining the loading of bone 
cells under different biochemical conditions (MS conditions or 
normal culture conditions) and/or with subsequent analysis of 
MS biomarkers have provided useful data.

One molecule that may allow interplay between stress types is 
IGF-I (see MS: Effects on Bone Structure and Function). In osteo-
blasts and osteocytes, IGF-I signaling is also activated in response 
to PS, leading to enhanced IGF production, IGF responsiveness, 
and inhibition of TNF-α-induced apoptosis, whereas inhibition 
of IGF-I abolishes loading-induced osteoblast proliferation 
(79–83). In osteoblasts, IGF-I synthesis is positively controlled by 
PTH via a cAMP-dependent mechanism (84). Interestingly, PTH 
was shown to enhance the PS-induced osteogenic response to PS, 
although this effect was found to be age dependent, indicating the 
complex interplay between MS, PS, and aging (85).

While mice overexpressing IGF-I reveal greater bone forma-
tion in response to PS than wild-type mice, knockout mice present 
with less periosteal bone formation as well as less trabecular bone 
volume, thickness, and density (82, 86). Similarly, GH has been 
found to modulate the levels of loading required to induce bone 
formation (87).

Inflammatory environments as found in patients exposed 
to MS can restrict osteocyte responses to PS, altering mecha-
notransduction mechanisms in bone (88). On the other hand, 
physiological PS prevents cytokine-induced osteoclast activation 
and bone loss exerting a protective role during inflammatory 
conditions and possibly MS (88, 89). MS, i.e., an inflamma-
tory environment, could thus enhance osteocyte-to-osteoclast 
communication and osteoclastogenesis, whereas PS could be 
counteractive.

A further example is sustained physical conditioning that 
improves the performance of several allostatic mediators; for 
example, physically trained humans show a “trained HPA func-
tion” represented in a decreased HPA response under certain 
stress conditions (90–92). On the contrary, chronic strenuous 
exercise (CSE) can lead to overtraining, which is hallmarked by 
maladapted responses to excessive exercise without adequate rest, 
and perturbs multiple body systems (nervous, endocrine, and 
immune). CSE can increase basal glucocorticoid levels provoking 
mild hypercortisolism, diminishing the reactivity of adrenocor-
ticotropic hormone and cortisol to CRH comparable to that 
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of depressed persons. CSE also increases catecholamine levels, 
favoring a Th2 immunity profile, and inhibits long-term gonadal 
function (90, 93). To summarize, moderate PS provides health 
benefits, while CSE and overtraining can provoke biochemical 
and clinical abnormalities. This also influences bone quality, as 
already described in the “female athlete triad” (reproductive 
dysfunction, infertility, and osteoporosis) (90).

While current results point toward cross talk between PS 
and MS, further evidence for interaction, identification of 
dose–responses, and elucidation of molecular mechanisms is 
needed. Therefore, models of MS should initially be combined 
with existing animal models of PS, such as cyclic compression 
of caudal vertebrae, cyclic axial loading of the ulna or vibration 
platforms in rabbits, rats, or mice and later translated to human 
studies (94–98).

COnCLUSiOn

In addition to comprehensive mechanobiological concepts show-
ing the importance of PS in bone health and disease, compelling 
evidence has recently emerged that biochemical and psychoneu-
roendocrinological maladaptations caused by MS are not only 
also relevant for bone quality, but may furthermore considerably 

interact with PS. Furthermore, it is unclear how age-related risk 
factors interplay and/or whether they can synergistically impair 
bone health.

Based on the highlighted limitations of previous research as 
well as current gaps in our knowledge, we propose several new 
research avenues in humans and animals including (1) the inves-
tigation of different types of MS (traumatic/chronic/acute) as well 
as their molecular mechanisms and dose-dependent effects on 
bone deformation and structure, (2) the incorporation of physical 
activity in models of MS, (3) investigation of genetically modified 
animals for evaluation of mechanistic effects of PS in environ-
mental conditions, (4) epigenetics, and (5) the investigation of 
aging within the aforementioned studies.
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