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Abstract. A constraint programming system combines two essential
components: a constraint solver and a search engine. The constraint
solver reasons about satisfiability of conjunctions of constraints, and the
search engine controls the search for solutions by iteratively exploring a
disjunctive search tree defined by the constraint program.

The Monadic Constraint Programming framework gives a monadic defi-
nition of constraint programming where the solver is defined as a monad
threaded through the monadic search tree. Search and search strategies
can then be defined as firstclass objects that can themselves be built or
extended by composable search transformers. Search transformers give a
powerful and unifying approach to viewing search in constraint program-
ming, and the resulting constraint programming system is first class and
extremely flexible.

1 Introduction

A constraint programming (CP) [11] system combines two essential components:
a constraint solver and a search engine. The constraint solver reasons about
conjunctions of constraints and its principal job it to determine unsatisfiability
of a conjunction. The search engine controls the search for solutions by iteratively
exploring an OR search tree defined by the program. Whenever the conjunction
of constraints in one path defined by the search tree is unsatisfiable, search
changes to explore another part of the search tree.

Constraint programming is a declarative programming formalism, where the
constraints are defined declaratively, but the underlying constraint solvers are
highly stateful, and indeed to specify complex search CP programs rely on reflect-
ing state information from the solver. So in that sense constraint programming
is not so declarative after all.

In the Monadic Constraint Programming (MCP) framework we give a monadic
definition of constraint programming where the solver is defined as a monad
threaded through a monadic search tree. We are then able to define search and
search strategies as first class objects that can themselves be built or extended
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by composable search transformers. Search transformers give a powerful and
unifying approach to viewing search in constraint programming. The resulting
CP system is first class and extremely flexible.

Our work can be viewed as encapsulating the functional abstractions previ-
ously used in constraint programming in a functional programming language,
and using the power of functional programming to take a further step in the
increasingly abstract view of search and constraint programming. The contribu-
tions of the MCP framework are:

— We show how monads provide a powerful tool for implementing constraint
programming abstractions, which allows us to build a highly generic frame-
work for constraint programming.

— We define search strategy transformers which are composable transformers
of search, and show how we can understand existing search strategies as
constructed from more fundamental transformers.

— We open up a huge space of exploration for search transformers.

— The code is available at http://www.cs.kuleuven.be/~toms/Haskell/.

The remainder of the paper is organized as follows. Section 2 provides a
motivating example of the MCP framework. For those unfamiliar with Haskell
type classes and monads, Section 3 introduces them briefly. Then in Sections 4,
5 & 6 the core parts of the MCP framework are presented, respectively the
modeling language, the solving process and search strategies. An overview of
related work is given in Section 7. Finally, Section 8 concludes.

2 DMotivating Example

The n queens problem requires the placing of n queens on an n X n chessboard,
so that no queen can capture another. Since queens can move vertically, hori-
zontally, and diagonally this means that

1. No two queens share the same column.
2. No two queens share the same row.
3. No two queens share the same diagonal.

A standard model of the n queens problem is as follows. Since we have n
queens to place in n different columns, we are sure that there is exactly one queen
in each column. We can thus denote the row position of the queen in column i
by the integer variable ¢;. These variables are constrained to take values in the
range 1..n. This model automatically ensures the column constraint is satisfied.
We can then express the row constraint as

Vi<i<j<n:g #gqj
and the diagonal constraint as

Vi<i<j<n:¢#q¢G+G—1i) N ¢ #a+(G—1)



since queens 7 and j, with ¢ < j, are on the same descending diagonal iff ¢; = ¢; +
(j—1), and similarly they are on the same ascending diagonal iff ¢; = ¢; + (j —1).

A solution to the 8 queens problem is shown in Figure 1. The solution il-
lustrated has q = 8a q2 = 4; q3 = 17 q4 = 35 45 = 67 d6 = 27 qr = 77 g8 = 5.
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Fig. 1. A solution to the 8 queens problem

The first role of a constraint programming language is to be able to succinctly
model problems. We will define constraint programming in Haskell which allows
the model of the n queens problem shown in Figure 2. Note how similar it is to
the mathematical model.

nqueens n = exist n $§ \queens -> model queens n

model queens n = queens ‘allin‘ (1,n) /\
alldifferent queens /\
diagonals queens

allin queens range = conj [q ‘in_domain‘ range | q <- queens ]
alldifferent queens = conj [ gqi @\= qj | gi:qjs <- tails queens,
qj <- qjs ]

diagonals queens = conj [ qi @\== (qj @+ d) /\ qj @\== (qi @+ d)
| qi:qjs <- tails queens, (qj,d) <- zip qjs [1..]]

Fig. 2. Haskell code for modelling n queens.




The next important part of a constraint programming solution is to be able
to program the search. We will construct a language for search that allows us to
express complex search strategies succinctly, and in a composable manner.

Search is separated into components: specifying the search tree, the basic or-
der for visiting the search tree, and then the search transformers which transform
the search tree or the way it is visited. Examples of search orders are depth-first
search (dfs), breadth-first search (bfs) or best-first search. Examples of search
transformers are depth bounded search (db n never visits nodes at depth be-
low n), node bounded search (nb n visits at most n nodes), limited discrepancy
search (1d n visits only nodes requiring at most n right branches), or branch-
and-bound optimization (bb f applies a tree transformation f for eliminating
non-optimal solutions). These search transformers are composable, so we can
apply multiple transformations in order.

For example, using our search framework we can succinctly define complex
search strategies. The following calls show how to solve 8 queens with:

— depth first search, first applying a node bound of 100, then a depth bound
of 25, then using newBound branch and bound

— breadth first search, first applying a depth bound of 25, then a node bound
of 100, then using newBound branch and bound

— breadth first search, first limited discrepancy of 10, then a node bound of
100, then using newBound branch and bound

can be expressed in our framework as:

> solve dfs (nb 100 :- db 25 :- bb newBound) $ nqueens 8
> solve bfs (db 25 :- nb 100 :- bb newBound) $ nqueens 8
> solve bfs (1d 10 :- nb 100 :- bb newBound) $ nqueens 8

Clearly exploring different search strategies is very straightforward.

3 Haskell Background

The MCP framework relies heavily on Haskell’s type system and abstraction
mechanism for providing a flexible component-based system.

We assume that the reader is already familiar with the basics of Haskell,
such as algebraic data types and (higher-order) functions, but provide a brief
introduction to two of the more advanced features, type classes and monads,
that MCP heavily relies on.

3.1 Type Classes

Type classes [22] are Haskell’s systematic solution to adhoc overloading. Con-
ceptually, a type class C is an n-ary predicate over types that states whether
an implementation of the overloaded methods associated to the type class is
available for a particular combination of types.

For instance, Eq is a unary type class with associated method (==) for equal-

ity:



class Eq a where
(==) :: a -> a -> Bool

The type class constraint Eq 7 holds if type 7 provides an implementation for
the method (==). Implementations are provided through type class instances.
For instance,

instance Eq Bool where

True == True = True
False == False = True
== = False

provides an implementation of equality for booleans. The function (==) has
type Ya.Eq a = a — a — Bool. This signature expresses that (==) applies to
argument of any type a that is an instance of the Eq type class. This suggests a
sequential composition of computations.

Type class constraints propagate from the signature of type class methods to
functions that are defined in terms of them. For instance, the function allEqual
that checks whether all elements of a list are equal inherits the type class con-
straint from its use of (==):

allEqual :: Eq a => [a] -> Bool
allEqual (x:y:zs) = x ==y && allEqual (y:zs)
allEqual _ = True

3.2 Monads

Monads [21] are an abstraction used in functional programming languages to
represent effectful computations. A monad computation m is parametrized in the
type of the computed result a. So m a denotes a monadic computation of type
m that produces a value of type a. Monads are captured in the type class:

class Monad m where
return :: a -> m a
(>>=) ::ma->(@a->mb) -=>mbd

The return function creates a pure computation that simply returns a given
value without any actual effects. The bind operator (>>=) composes two monadic
computations: the first computation produces a value of type a that is consumed
by the second computation to produce a value of type b. Note that the arrow
>>= corresponds to the data flow: the left operand produces data, the right one
consumes it.



Not captured in Haskell code, but also part of the monad specification, are
the monad laws:

returnx >>=f = fuzx
m >>=return = m
(m>=f)>>=g = m>=(\z.f z>=yg)

Any instance of the Monad type class should satisfy these laws, although they
are not enforced by the Haskell language.
Haskell provides syntactic sugar of an imperative style for monads, the do

notation. 4
<- — -
o %2 mi = my >>=\x ->my

do m = =\ -
ms = mp >>=\_->mo

There is a wide range of literature and Haskell libraries related to monad
instances, and generic monad infrastructure.

4 Constraint Models

The MCP framework represents constraint models at the core by a separate data
type, called Tree. This has obvious advantages for manipulating and inspecting
the model. On top of this core data type, MCP provides convenient syntac-
tic sugar for expressing models in a higher-level form, closer to mathematical
formulas.

4.1 The Model Tree

The core data type for representing constraint models is defined as follows:

data Tree solver a
= Return a
| NewVar (Term solver -> Tree solver a)
| Add (Constraint solver) (Tree solver a)
| Try (Tree solver a) (Tree solver a)
| Fail
| Dynamic (solver (Tree solver a))

It is parametric in two types: 1) the constraint solver and its associated con-
straint domain, and 2) a computed value of type a. The former makes most
of the constraint model infrastructure independent of the particular constraint
domain, and hence reusable in many settings. The latter makes Tree solver a
monad, and allows Haskell’s monad infrastructure to be reused.

The different constructors of Tree solver a have the following meaning.
Return a is a trivially satisfiable model that returns a value a, while Fail is an



inconsistent model. Acc ¢ m extends a model t with an additional constraint c
at the front. NewVar f represents a model £ with an existentially bound (new)
constraint variable. Try t1 t2 represents a disjunctive model with the alterna-

tives t1 and t2.

Finally, Dynamic m allows the dynamic creation of the model

as a computation in the solver (see later).
Now we can make Tree solver a monad instance:

instance Monad (Tree solver) where

return = Return

(Return x) >>=f =f x

(NewVar g) >>=f = NewVar (\v -> g x >>= f)

(Add c t) >>= f = Add ¢ (t >>= f)

(Try t1 t2) >>=f = Try (t1 >>= f) (t2 >>= f)

Fail >>= f = Fail

Dynamic m >>= f = Dynamic (do { t <~ m ; return (t >>= £)})

By straightforward equational reasoning, we can establish that the monad laws
hold for this monad instance. For example, the first monad law holds as follows:

return x >>= f
(definition of return)
Return x >>= f
(definition of (>>=))
fx

4.2 Syntactic Sugar

On top of the core data type, MCP adds various convenient abstractions:

true = Return ()
false = Fail
t1 /\ t2 = t1 >>= \_ -> t2
t1 \/ t2 = Try tl1 t2
conj = foldr (/\) true
disj = foldr (\/) false
exists = NewVar
exist n £ = aux n []

where aux 0 vs = f $ reverse vs

aux n vs = exists $ \v -> aux (n-1) (v:vs)

Note that conj and exist are two domain-independent model combinators we
have used in the n-queens model.



5 Constraint Solving

The constraint model presented in the previous section is a data type. In order
to actually compute solutions for the model, it must be “fed” to a constraint
solver. However, MCP refrains from directly exposing the original model to a
constraint solver directly. Instead, MCP translates the model into a set of core
primitives understood by the solver.

There are several important reasons for this approach:

— It reduces the solver implementor’s burden, who must only provide core
functionality for his solver.

— The MCP framework retains control over the translation process and exposes
it to the framework user.

— Much of the translation logic can be reused for different constraint solvers.

5.1 The Solver Interface

The interface that constraint solvers must support is captured in the Solver
type class:

class Monad solver => Solver solver where
type Constraint solver :: *
type Term solver X
newvar :: solver (Term solver)
add :: Constraint solver -> solver Bool
run :: solver a -> a
type Label solver :: *
mark :: solver (Label solver)
goto :: Label solver -> solver ()

First line states that a solver must be a monad. Indeed, in general we assume that
the solver encapsulates a stateful computation, where the state consists of the
solver’s constraint store. Two associated types of the solver define its constraint
domain: Constraint solver is the type of constraints supported by the solver,
and Term solver is the type of terms that the constraints range over.

The two methods newvar and add are the respective counterparts of the
NewVar and Add constructors of the model tree. The former returns a new con-
straint variable as a solver computation. The latter adds a constraint to the
solver state and returns a boolean indicating whether the constraint store is
still consistent (True) as far as the solver can tell or has become definitely in-
consistent (False). The run method allows extracting the values from a solver
computation.

Finally, the remaining three members of the Solver class are related to dis-
junctions. The solver interface for disjunction is much more primitive than the
high-level Try constructor of the model. The Label solver type represents a la-
bel for a solver state; the label for the current solver state can be requested with



the mark operation. The goto operation restores the solver state of a given label.
On top of these two operations various search strategies can be programmed.

From the side of the solver, different strategies can be used to implement the
primitive operations. In a state copying approach, the labels are simply copies
of the state and the operations obvious. In the case of recomputation, a label is
a trace of the operations that led up to the solver state, and goto replays the
trace. Backtracking involves a more intricate strategy.

5.2 A Simple Finite Domain Solver

To illustrate the solver interface, we present a simple instantiation, without going
into the implementation details.
Our solver type is called FD and its instance of the Solver class is:

instance Solver FD where
type Constraint FD = FDConstraint
type Term FD = FDTerm
newvar = newvarFD

The FDTerm type is abstract, and of course the details of the member func-
tions are not exposed. All the programmer needs to know are the details of the
FDConstraint type. Our small FD solver only supports three constraints:

data FDConstraint = FDIn FDTerm (Int,Int)
| FDEQ FDTerm Int
|

FDNE FDTerm FDTerm Int

Formally, the semantics can be expressed as:

[FDIn t (,w] =[] €{l,..., u}
[FDEQ ¢ d] =[t] =4
[FDNE s t i] = [s] # [t] +
We use Overton’s FD solver [13] for the concrete implementation.

On top of this interface, convenient syntactic sugar such as that used in the
n-queens model, is easily defined.

x @\=y = Add (FDNE x y 0) true

5.3 From Models to Solver Computations

The eval function turns a model into a solver computation.

eval :: Solver solver => Tree solver a -> solver [a]
eval model = eval’ model []



do xs <- continue wl
return (x:xs)
do b <- add c¢
if b then eval’ t wl
else continue wl

eval’ (Return x) wl

eval’ (Add c t) wl

eval’ (NewVar f) wl = do v <- newvar

eval’ (f v) wl
eval’ (Try 1 r) wl = do now <- mark

eval’ 1 ((now,r):wl)
eval’ Fail wl = continue wl

return []
do goto past
eval’ t wl

continue []
continue ((past,t):wl)

The eval’ function is the main workhorse, that has a worklist of labels as an
additional parameter. When a disjunction (Try) is encountered, the label of the
current solver state is pushed onto the worklist together with the right branch for
later processing, while the left branch is processed immediately. The continue
function is invoked whenever the end of a branch is reached, or an inconsistency
is detected by the solver. Then a deferred branch is popped from the worklist,
its state is restored and processing continues until the worklist is empty.

Putting everything together, the list of solutions is extracted from the eval-
uated model with the solver’s run method:

solve :: Solver solver => Tree solver a -> [a]
solve = run . eval
6 Search

MCP makes search much more flexible in a number of ways, summarized in this
section.

6.1 Dynamic Variable Enumeration

Often search is used to complete incomplete propagation strategies of constraint
solvers. In particular, for finite domain (FD) solvers, the possible assignments
for variables are enumerated in disjunctions. For instance, the following code
augments the n-queens model with such enumeration.

nqueens n = exist n $ \queens -> model queens n /\
enumerate queens [1..n]

enumerate gs values = conj [ enum q values | q <- gs ]

enum var values = disj [ var ©@= value | value <- values ]

10



Note however, that this enumeration is based on the variable’s static domain.
The generated search tree can be much more compact, if the dynamic domain
of variables, reduced by the solver’s propagation, is used.

If the FD solver exposes a function domain :: Term FD -> FD [Int] to
query a variable’s dynamic domain, the Dynamic model constructor allows gen-
erating the enumeration part of the search tree dynamically.

nqueens n = exist n $ \queens -> model queens n /\
enumerate queens

enumerate = Dynamic . label
label [] = return ()
label (v:vs) = do d <- domain v

return $ enum v d /\ enumerate vs

Many other dynamic enumeration strategies can be captured in a similar way.

6.2 Queueing Strategies

The eval function above implements depth-first search using a stack as the
worklist. The MCP framework generalizes this by means of a Queue type class,
which allows other queue-like data structures to be used to implement strategies
like breadth-first search and best-first search.

class Queue q where
type Elem q :: *

emptyQ 1t q > q

isEmptyQ :: g -> Bool

popQ :: q > (Elem q,q)
pushQ :: Elemq -> q > g

6.3 Search Transformers

Advanced search strategies can be implemented on top of the eval loop and
queueing strategy. For this purpose, MCP introduces the concept of search trans-
formers. Examples of search transformers are various forms of pruning (node-
bounded, depth-bounded, limited discrepancy), randomly flipping branches of
the search tree, iterative deepening, restart optimization and branch-and-bound.
MCP employs the technique of functional mixins to open the recursion of the
eval loop and to allow a search transformer to intercept each recursive call.

In addition to basic search transformers, MCP also provides search trans-
former combinators for building advanced transformers from basic ones. The
most important such combinator is the composition operator (:-), which se-
quentially composes two transformers. For instance, the sequential composition
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of a node-bounded and a depth-bounded pruner explores the seach tree up to a
certain depth and up to a certain number of nodes. Another example of a com-
binator is an iterative restarting combinator, which generalizes both iterative
deepening and restart optimization.

7 Related Work

Since our approach combines constraint and functional programming there is a
broad spectrum of related work.

Constraint Programming Constraint logic programming languages allow pro-
grammable search using the builtin search of the paradigm. Each system pro-
vides predicates to define search, analogous to the Dynamic nodes in the model
tree. For instancen, ECLIPSE [23] provides a search library which allows: user
programmable variable and value selection as well as different search transform-
ers including depth bounded search, node bounded search, limited discrepancy
search, and others. One transformation cannot be applied to another, although
one can change strategy for example when the depth bound finishes to another
strategy. The user cannot define their own search transformers in the library,
though they could be programmed from scratch.

The Oz [16] language was the first language to truly separate the definition
of the disjunctive constraint model from the search strategy used to explore
it [14]. Here computation spaces capture the solver state, as well as possible
choices (effectively the Dynamic nodes). Search strategies such as DFS, BFS,
LDS, Branch and Bound and Best first search are constructed by copying the
computation space and committing to one of the choices in the space. Search
strategies themselves are monolithic, there is no notion of search transformers.

The closest work to this paper is the search language [19] of Comet [18].
Search trees are specified using try and tryall constructs (analogous to Try
and Dynamic nodes), but the actual exploration is delegated to a search controller
which defines what to do when starting or ending a search, failing or adding a
new choice. The representation of choices is by continuations rather than the
more explicit tree representation we use. The SearchController class of Comet
is roughly equivalent to the Transformer class. Complex search hybrids can
be constructed by building search controllers. The Comet approach shares the
same core idea as our monadic approach, to allow a threading of state through a
complex traversal of the underlying search tree using functional abstractions, and
using that state to control the traversal. The Comet approach does not support
a notion of composable search transformers. Interestingly the Comet approach
to search can also be implemented in C++ using macros and continuations [12].

Functional (Constraint) Logic Programming Several programming languages
have been devoted to the integration of Functional Programming and (Con-
straint) Logic Programming. On the one hand, we have CLP languages with
support for a functional notation of predicates, such as MERCURY [17] and C1AO
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[4]. MERCURY allows the user to program search strategies by using the underly-
ing depth-first search, much like any CLP language. C1AO offers two alternative
search strategies, breadth-first search and iterative deepening, in terms of depth-
first search by means of program transformation.

On the other hand, we have functional programming languages extended
with logic programming features (non-determinism, logical variables). The most
prominent of these is the CURRY language, or language family. The PACS CURRY
compiler is implemented on top of SICSTUS PROLOG and naturally offers access
to its constraint solver libraries; it has a fixed search strategy. However, the KiCS
CURRY system, implemented in HASKELL, does not offer any constraint solvers;
vet, it does provide reflective access to the program’s search tree [3], allowing
programmed or encapsulated search. As far as we can tell, their implementation
technique prevents this programmed search from being combined with constraint
solving.

Embedding Logic Programming in Functional Programming As far as we know,
Constraint Programming has gotten very little attention from mainstream Func-
tional Programming researchers. Most effort has gone towards the study of the
related domain of Logic Programming, whose built-in unification can be seen as
an equality constraint solver for Herbrand terms.

There are two aspects to Logic Programming, which can and have been
studied either together or separately: logical variables and unification on the one
hand and (backtracking) search on the other hand.

The former matter can be seen as providing an instance of a Herbrand term
equality constraint solver for our Solver type class. However, it remains an open
issue how to fit the works of Claessen and Ljunglof [5] and Jansson and Jeuring
[9] for adding additional type safety to solver terms into our solver-independent
framework.

Logic Programming and Prolog have also inspired work on search strategies
in Functional Programming. That is to say, work on Prolog’s dedicated search
strategy: depth-first search with backtracking. Most notable is the list-based
backtracking monad—which Wadler pioneered before the introduction of monads
[20]—upon which various improvements have been made, e.g. breadth-first search
[15], Prolog’s pruning operator cut [8], and fair interleaving [10].

The Alma-0 [1] has a similar objective in an imperative setting: it adds
Prolog-like depth-first search and pruning features to Modula-2.

FaCiLe is a finite domain constraint library for OCaml, developed as part of
the Ph.D. thesis of Nicolas Barnier [2]. FaCiLe’s fixed search stratgy is depth-first
search; on top of this, optimization is possible by means of both the branch-and-
bound and restart strategies. The implementation relies on mutable state.

8 Conclusion and Future Work

We have given a monadic specification of constraint programming in terms of a
monadic constraint solver threaded through a monadic search tree. We show how
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the tree can be dynamically constructed through so called labelling methods,
and the order in which the nodes are visited controlled by a search strategy.
The base search strategy can be transformed by search transformers, and indeed
these can be constructed as composable transformations. Our framework allows
the simple specification of complex search strategies, and illustrates how complex
search strategies, like branch-and-bound, or iterative deepening can be built from
smaller components. It also gives great freedom to explore new search strategies
and transformers, for example the optimistic branch-and-bound search.

Overall by trying to be as generic and modular as possible in defining monadic
constraint programming we have a powerful tool for experimentation and un-
derstanding of search in constraint programming.

8.1 Future Work:

There are many challenges ahead of the MCP framework. To name just a few
important ones: 1) to generalize our search framework to arbitrary search prob-
lems, 2) to integrate a Haskell implementation of Constraint Handling Rules [6]
with the framework to provide the combination of programmable search and
programmable solving, and 3) to explore the performance characteristics of the
framework. Currently, we are integrating the Gecode solver [7] in MCP [24].
Moreover, we think it is an important challenge for Prolog implementations
to offer more flexible, programmed search strategies. The stack freezing func-
tionality available in tabulated Prolog systems seems promising to implement
the label and goto methods of the MCP framework and make this possible.
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