Malleability, Obliviousness and Aspects for Broadcast Service
Attachment

William Harrison

Department of Computer Science
Trinity College
Dublin 2, Ireland*
(+353) 1-896 8556

Bill.Harrison@cs.tcd.ie

Abstract

An important characteristic of Service-Oriented Architectures is
that clients do not depend on the service implementation’s internal
assignment of methods to objects. It is perhaps the most important
technical characteristic that differentiates them from more com-
mon object-oriented solutions. This characteristic makes clients
and services malleable, allowing them to be rearranged at run-time
as circumstances change. That improvement in malleability is
impaired by requiring clients to direct service requests to particular
services. Ideally, the clients are totally oblivious to the service
structure, as they are to aspect structure in aspect-oriented soft-
ware. Removing knowledge of a method implementation’s loca-
tion, whether in object or service, requires re-defining the bound-
ary line between programming language and middleware, making
clearer specification of dependence on protocols, and bringing the
transaction-like concept of failure scopes into language semantics
as well. This paper explores consequences and advantages of a
transition from object-request brokering to service-request broker-
ing, including the potential to improve our ability to write more
parallel software.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages|: Language Constructs and Features — abstract data types,
concurrent programming structures. D.2.11 [Software Engineer-
ing]: Software Architectures — data abstraction, languages.

General Terms Design, Languages.

Keywords Service-Oriented, Aspect-Oriented, Programming Lan-
guage, Middleware, Concurrency.

1. Introduction

With current approaches to software design and implementation,
software artifacts, like classes or methods, embody many decisions
made at they time they are designed and implemented. In more
fluid environments, including distributed, autonomic, grid, and
service-oriented, that are emerging today, we need more of these
choices to be deferred until run-time. For example, today the client
of a method specifies where to find its implementation, whether in
an object or in a service. In common usage, malleability is the
ability of an article to be molded or shaped to fit for changing cir-
cumstances, and we have applied the term to software artifacts [5].
Enhancing malleability requires us to re-think the boundary be-
tween programming languages and middleware and introduce a
point at which intelligent choice can be injected into the otherwise
rigid semantic specification. But introducing a locus for such an
intelligence allows us to better address the need for greater paral-
lelism that we confront in the multi-core future.

To address the need for greater malleability, we advocate the
use of a programming model, called the broadcast service model,
with several novel characteristics:

= There is a modularizing construct, called service, that contains a
coherent collection of classes and has a run-time instantiation.
Services may be responsible for handling method calls made by
a client or may be attached obliviously, as aspects. They may be
bound within a process or located remotely, and they hold the
state for various aspects of objects.

There is an interface-like construct, called face, that character-
izes a set of methods that can be called safely, but does not indi-
cate which object or service implements them.

Clients may use a single reference to an object even when its
state is distributed across several services. The services are re-
sponsible for resolving references, so that an object’s methods
can access its state.

Method invocations do not indicate a particular target object or
service. Instead, invocation is broadcast, with the intelligence
guiding the delivery of a method call to one or more implemen-
tations being provided by a middleware-defined dispatcher,
caller a service request broker.

All execution takes place within a transaction, which serves to
circumscribe behavior on failure.

To explore this model, we are developing a programming lan-
guage, Continuum [14], which embodies this structure and intro-
duces constructs that enhance malleability. In the next section of
this paper, we use a small example to illustrate the underlying
issues of malleability and obliviousness, point-to-point service
provision, aspect attachment, and broadcast service provision. In
the third section we then outline some of the technical challenges
that must be met to realize those advantages. The fourth section
then describes advantages to be achieved by combining the differ-
ent kinds of obliviousness provided by aspect-oriented and by
service-oriented technologies. These advantages include not only
increased malleability, but also a basis for describing statically
enforced future processing commitments. These commitments can
be used to merge process-flow and call/return paradigms and natu-
rally express latent parallelism, to better exploit multi-core proces-
SOrs.

2. Underlying Issues
2.1 Malleability

Malleability is much like reusability, except that instead of
characterizing how an artifact can be reused during the develop-
ment of new artifacts, malleability characterizes how flexibly it
can be used at deployment-time or run-time. For example, using
Java’s ability to describe the type of a parameter with an interface
rather than with a class makes methods both more reusable and
more malleable. But unlike Java, ADA and Modula-3 can identify
a parameter’s purpose by name. The order in which these names

* This work was made possible by a grant from the Science Founda-
tion Ireland

41

are used by a method’s caller can differ from the order in which
the implementer listed them. This improves the malleability of
both. But it does not improved their reusability because the order
used by the selected implementation is evident at development
time in any case. The information needed to reorder parameters
can be provided without undue burden on the developer by refer-
ring methods and parameters defined in interfaces to a glossary
that, like JavaDoc, provides extra-lingual information about mean-
ings.

Generally speaking, malleability cannot be achieved by adding
one or another language feature to address it, although features that
increase the specification content of software over its algorithmic
content add to software’s malleability. It is instead easier to enu-
merate characteristics of software that inhibit malleability, and
propose their removal or the substitution of equivalent characteris-
tics in different form. We mentioned sensitivity to parameter order
as one example, above, but there are many other ways that two
implementations of the same function can differ. A trivial example
is tolerance for name variations to be used for methods or types,
which can be resolved through the use of the same glossary men-
tioned above. A more subtle inhibitor to malleability is the as-
signment of the implementation to a particular “target” object,
which is otherwise just one among the several parameters. We
have called the ability to ignore such differences “structural ab-
straction” [8] and defined a Java-compatible programming lan-
guage called Continuum that permits the objects responsible for
method implementations to be imagined differently by clients and
services [9],[14].

2.2 Obliviousness

Obliviousness is an important way to achieve malleability. That
is one of the reasons it is so important in separating concerns. Us-
ing structural abstraction, the service-oriented model for software
provides a way to make clients oblivious to the issue of where a
method is implemented within a service. But it does so by intro-
ducing a new structural dependence. By modeling services as ob-
jects, it replaces dependence on the assignment of methods to ob-
jects with dependence on the assignment of methods to services.
As with traditional target-directed object calls, service requests and
responses are point-to-point, forcing the client to rigidly reflect the
realization of function by services.

On the other hand obliviousness [1] is one of the hallmarks of
aspect-oriented technologies, which hide service attachments from
clients. The concept of obliviousness recognizes that the flow of
logic within software is not sensitive to independently described
aspects that may each carry part of its state. Aspects can be used
for attachment of systemic function like management of transac-

tions, or for composition of component functionality like editing,
display and validation of the elements of a development environ-
ment. No matter which, the fact that the combined aspects’ code is
oblivious to the manner of their combination is a major contributor
to the software’s malleability. However, today’s exploitation of
aspect-oriented concepts is only applied where clients do not con-
trol or direct the aspect code. It is not appropriate for modeling
service attachment to clients because, after all, the conventional
model of method call forces the client to know the method’s im-
plementer.

In [9], we observed that structural abstraction can be achieved
by changing the nature of method call from point-to-point to
broadcast. This is a deep change conventional object-oriented se-
mantics in which method calls are always directed to a target ob-
ject in a point-to-point fashion Rather than statically binding
methods to classes, the face merely indicates that the methods’
implementations have been demonstrated to be available. The
same flexibility can be used to organize services in a manner mak-
ing clients are oblivious to their structure.

2.3 Using Broadcast Method Call for Malleability

We will use a family of related examples shown in Figure 1 to
illustrate several points related to use of structural abstraction and
broadcast for method call. The problem being addressed is
motivated by the commonly seen phenomenon of mobile phones’
ability to optionally display a clock on the phone’s window.
Presuming a method “display” that a client can use to put the clock
in the display — one can ask how to write the method call that
invokes it. The lower part of Figure 1 shows such a client. To
focus on structural abstraction, we ignore the grey-shaded
material. The upper part of Figure 1 shows several possible server
implementations. In (a), “display” is implemented in the window
object, while in (b) it is implemented in the clock. In the interest of
malleability, we wish the client to use either service supplier,
where in this case we might presume that the “service” is local and
in the clients classpath. The use of both interface and face declara-
tions in the client is intended to highlight the fact that a legacy
client may have expected the implementation to be in “Window”.
Treating interfaces as a “sugar” allows use of the legacy style.

The syntax in these examples is familiar in form, but has subtly
different meanings from what may be expected. Full description of
the type model supporting structural must be left elsewhere [3], as
it would consume the space allotment for this paper. In brief, there
is a classification hierarchy for objects in which a classifier can
have more than one super-classifier. Classes, as distinct from clas-
sifiers, define the state and method implementations for objects,
and are attached as leaves to the classification “tree”. Classifiers

HalfServer1 HalfServer2

class Window {} class Window {}

class Clock class Clock
{display(Window w) {setColor(int k)
{...code ...} } {...code ...};}

HomeServer WorkServer
class Window class Window {}
{display(Clock c) class Clock {
{...code ...} } display(Window w)
class Clock { {...code ...};
setColor(int k) setColor(int k)
{...code...};} {...code ...}; }

ClientSetup(Window w,Clock c)
{w.display(c); c.setColor(2); }

interface Window {display(Clock c);}
face Clock { setColor(Clock c, int k); }

Figure 1 — Examples of Different Server Combinations for a Client

42

are not statically tied to sets of methods, which are called “faces”.
Instead, the declaration of a reference variable indicates a classi-
fier, a face, and whether the reference value may be null. If the
reference is not null, the methods in the face are assured to be ac-
cessible by the dispatcher. The set of assured methods can grow
over time, and any one declaration need mention only a subset of
the assured methods. The methods’ implementations need not lie
in the object referenced by the reference. They may be in any of
the required parameters, or even statically available. The client
need not know the service provider’s class structure at all, which
characteristic we call structural abstraction. We treat declaration
of an interface as a syntactic shorthand for a face in which all of
the methods have an additional parameter with the appropriate
defaulted classifier. The net effect of this type model is that the
client in Figure 1 is type-compatible with any of the servers.

Broadcasting method calls increases the malleability of soft-
ware artifacts. It can do this because it replaces the concept of an
interface that indicates methods available from an object with the
concept of the face that indicates methods available somewhere in
the environment. In the usual model, methods in an interface are
available only if the associated reference is not null. As with con-
ventional point-point interfaces, for broadcast the methods in a
face are also only assured to be available if the associated refer-
ence is not null.

Interfaces are quite useful as vehicles for labeling the known
contents of objects as they come from their implementer. But from
the point-of-view of a function’s consumer, what is of interest are
the behaviors themselves, not which behavior is implemented by
which object. So the “face” concept that replaces it identifies a set
of methods on a variety of objects that must be available in the
computing environment — in the “cloud”, so to speak. A method
call is not directed to an object, but is broadcast through the cloud
to an implementation. The implementation has been proven,
through the type system’s interaction with the dispatcher, to be
available somewhere. The difference is illustrated in the transition
from Figure la to Figure 1b. When connected to the HomeServer
(a), “display” has an implementation in the Window, as the client
seems to expect. But the client can equally use the WorkServer (b).
The client’s use of a “target” in the call, as in the example’s call to
“w.display(c)” does not imply that the message is delivered to the
target. In the example, since both window and clock are required
(i.e. may not be null), it may lie in either. The actual target of the
call is not defined by the language but by an extended dispatcher,
the service-request broker, which finds the target’s service as well
as the class implementing the method, as described in the next
section.

2.4 Using Broadcast Method Call for Obliviousness

Broadcasting method calls combines structural abstraction’s
obliviousness to object structure with aspect-oriented software’s
obliviousness to service structure. Doing so increases the malle-
ability of software artifacts further above either structural abstrac-
tion or service-oriented approaches. The service request broker
tracks the availability of services and routes called methods to the
appropriate object in the appropriate service, freeing clients from
the knowledge of the object or service that implements them. The
grey-shaded material in Figure 1 focuses our attention on oblivi-
ousness to service structure. The services can be local to the cli-
ent’s classpath, or distributed elsewhere. The figure illustrates a
composition of two services (c) that supplies the same needs as did
(a) or (b) as single services. It shows a situation in which the dis-
played clock has settable state information to control its color,
made available as a “setColor” method.

To completely separate client from the implementation’s struc-
ture, we do not allow a client to name classes (implementations) at
all. This carries the use of interfaces for characterizing object types

to an extreme. Unless employing a factory pattern, the most com-
mon practice today is for a developer to instantiate a class whose
characteristics are known to meet the functional needs, rather than
to leave that selection to be made at run-time. This, again, implies
knowledge of the class structure of the anticipated provider of
services. To completely decouple the client from the service struc-
ture, we instead simply specify the classification (how the class
must relate to its subclasses) and the face (which methods that are
needed). In some cases, the provided set of methods may need to
result from the composition of several available services, carried
out behind-the-scenes from the client that creates the object.

In better separating client from object structure, the broadcast
model’s face also better separates clients from service structure.
The fact that service boundaries are transparent allows the service
model to be used at fine granularity. While we want to allow ser-
vices to be distributed and mobile, for services to be composed
locally, within a single process, and it is important that a two-level
dispatch be avoided. The client does not target the method to a
specific service provider, but allows the service-request broker to
find and direct the call appropriately. If we include the grey-
shaded material in examining Figure 1, we note that when sup-
ported by the composite server (HalfServerl and HalfServer2), the
client’s apparent call to a the “display” method in Windows is
actually implemented in HalfServerl’s Clock, while the call to
setColor, made with no specified target is implemented in Half-
Server2’s Clock.

3. Broadcast Service Model Challenges

We can foresee several challenges in trying to move from the cur-
rent target-directed models for objects or services to the kind of
broadcast service model that would provide the advantages de-
scribed, including: compatibility, state maintenance, service visi-
bility management, general service management, and commitment
satisfaction tracking.

3.1 Compatibility

Any shift in programming paradigm will fail if it can not ac-
commodate previously-written software. Even the successful shift
from procedural to object-oriented was enabled by fact that C++
by definition included all of C, and the ongoing transition to ser-
vice-oriented architectures is facilitated by treating services as
objects within the object-oriented paradigm. It is therefore no ac-
cident that the broadcast service model for method call can include
the conventional object-oriented model as a syntactic and semantic
subset, though it is challenging to do so when eliminating the con-
cept of target. As sketched in Section2.3, it preserves the concepts
of a type hierarchy of classes (classifiers), of the association be-
tween classifiers and sets of methods, and of the fact that non-null
references are required to assure the safety of method calls. But it
permits parameters to be reordered and does not require the
method implementation to reside in the target of the method call
made by the client. Existing class implementations all function
properly when interpreted as broadcast method calls rather than
point-to-point calls.

3.2 State Maintenance

Many object-oriented systems maintain consistency using the
simple premise that an object holds all its state and sees all of the
method calls that make changes to the state. While simple, the
premise is also frequently invalid in its over-simplistic view of the
nature of state. For example, objects may indirectly access and
return state maintained in other objects, in which case they will not
see when the value changes by a call on the other object. In fact, as
discussed in [4], the idea that an object has an objectively-
definable state is itself limiting. Using an object’s identity, other

43

objects may maintain additional data, whether in hash-tables or in
aspects to which an application is oblivious.

Most object models rely on the idea that specifications about
method dependence need not be included in a class specification
because the object is guaranteed to have “seen” all methods called
on it since its creation, in the order they are called. However, con-
current call and dynamic attachment of oblivious aspects violate
this principle. On one hand, a dynamically attached aspect does
not “see” methods called prior to its attachment. But on another
hand, an object’s state is not an opaque totality, but is the product
of state contributions made by the independent aspects.

Because an object’s state can be distributed among several ser-
vices, a service that becomes newly available may not have an
accurate picture of the object’s state with respect to a client’s prior
calls within a transaction. To prevent inappropriate action, descrip-
tions of the faces provided by services must include declarations
that identify dependencies between method calls. Such dependen-
cies are generically called choreography, and are recognized as
important for service composition[16]. In Continuum[14], these
constraints are expressed by indicating that a particular method is
available only if all prior calls to specified other methods have
been seen by the same service.

3.3 Service Management

Protocol constraints make it possible to determine that some
services should not be visible to certain clients, but there can be
other reasons, like cost, service-levels, or business arrangements
that play as well. Current service-oriented systems generally man-
age visibility in a rather static fashion in which clients initiate a
service-finding operation and then access the found service
through a proxy. But this approach only works because the clients
are dependent on the structure of the services, and would inhibit
the kind of flexibility implied by the grey-shaded material in Fig-
ure 1. To free clients from this concern, the matching of clients to
services is performed by the service broker, which can perform
necessary bookkeeping with respect to the transaction, identified
on each call.

But this does not serve the needs of dynamic, mobile environ-
ments well. If a service being used moves out of range, an alterna-
tive one visible for the client needs to be used instead. The service
request broker is responsible for receiving communication from
services joining the bus, and for managing their exit. In addition,
the service broker must recognize that some services have a mutual
awareness — they may be substitutable, as would be the local entry
ports for commercial enterprises, or they may be incompatible or
have other contractual relationships

In addition, the service request broker may perform ad-hoc
composition of services needed to satisfy a client. If a client ex-
pects a face providing services for managing both air and hotel
bookings and the available services provide one or the other, the
broker can compose the services into a larger structure automati-
cally, rather than requiring that the aggregated service be imple-
mented particularly to perform both functions or coordinate both
services.

While today’s service-brokers could be imagined to provide an
appropriate place for managing these functions, the fact that clients
must specifically recognize distinct services as objects as discussed
in Section 2.2 makes extending their capabilities cause changes to
the clients. However, use of a broadcast service architecture allows
the capabilities to be provided to clients transparently, without
disrupting their operation.

3.4 Static Tracking of Commitment Satisfaction

There is a traditional gulf between object-oriented program-
ming languages and work-flow architectures. In object-oriented

44

languages, the client determines the target of a call, and waits for
its completion. This is a powerful inhibitor to greater use of paral-
lelism. In work-flow architectures on the other hand, the sender
does not wait for its completion but target of the message is speci-
fied by the flow-designer. This provides many opportunities for
parallelism, but the use of two architecturally disparate elements
seems too cumbersome for use in algorithm description. This may
be the reason the combination has not been adopted as a conven-
tional programming language. The broadcast service model’s use
of a service request broker provides a novel way to integrate the
concerns of programming language and work-flow architecture.

To exploit this capability, two additions are made to conven-
tional programming language constructs: 1) the method call and
message send constructs are unified, and 2) the concept of a stati-
cally declared “commitment to call” is introduced. A method may
be declared to guarantee the future call of another method, as illus-
trated with the “sends” keyword in the face definition:

face X {void f1(A a, B b) sends f3(A a));}

This declaration defines a face, X, that declares support for a
method f1 of two parameters. Method fl1 commits to the eventual
calling or sending of another method, f3, using the value provided
by f1’s first parameter.

Unlike conventional call’s semantics, the static commitment to
eventually call f3 need not be satisfied before the method carrying
the declaration returns, but must be satisfied by the end of the out-
ermost transaction in which the commitment is required. Thus, the
commitment can be satisfied by the method itself during its execu-
tion or by the execution of methods it calls, or by a method to
which a message is sent, perhaps much later than the client’s com-
pletion.

A method’s declaration may include a list of such static com-
mitments. The method declaration can only be satisfied by an im-
plementation that itself declares the satisfaction of the commit-
ment. To enforce the behavior, the commitment must be satisfied
on all paths from the entry of the method, either directly, or by call
or by send.

Presuming this, another method, {2, which is also committed to
send f3 can be implemented as:

void f2 (A u) sends (f3(A u)) {
// other computation
send fl1(u, new B()); }

This implementation is valid because f2 sends fl which is
committed to send {3, thus satisfying f2°s commitment. But if calls
to 2 are made in a loop, only the “other computation” is serialized
in the loop. The execution of the resulting f1’s can all occur in
parallel with the loop’s execution.

As described in [6], dynamic failure to satisfy a commitment,
whether by thrown exception or by reduction in resources can be
handled locally, or it causes the transaction to abort.

Where appropriate, the use of static commitments also enables
a call that would occur inside a loop to be transformed into a send.
The service request broker can enable these activities to occur in
parallel. Because the committed action is not guaranteed to take
place immediately, the original caller can employ this mechanism
only if further computation in that caller does not need to use the
results. However, it is possible to define commitments in a way
that enables subsequent gathering and processing of the results.

This alternative view of computation is made possible because
unlike a conventional target-directed call, the use of a broadcast
model allows the request broker to act in a store-and-forward ca-
pacity for parallel messaging in addition to the immediate-
invocation-and-return capacity for conventional dispatchers.

4. Broadcast Service Model Advantages

The broadcast model enhances malleability by changing the pro-
gramming language model to employ broadcast rather than point-
to-point semantics for its call and to make clients oblivious to the
structure of services. In doing so, it eliminates the need for a syn-
tactically special target object on call. This is perhaps fortuitous,
because instead of passing an implicit target, the language can
instead reflect the concurrent structure of the software by passing a
transactional context for bounding the action to be taken on fail-
ure.. The failure recovery points must be indicated directly within
the code that engenders possible failures to permit us to write
software with more latent concurrency than present.

4.1 Enhanced Malleability

The increased software malleability made possible by changing
the programming model from the point-to-point model used by
both classical object-oriented programming and popular service-
oriented architectures to the broadcast model provides several
malleability advantages:

Greater tolerance for different implementation structures.
The un-shaded material in Figure 1 illustrates how a client needs
no change to tolerate a different service provider that moves the
display method either to different classes (since the implementing
class need not be mentioned in the call) or to different services
(since the service also need not be mentioned in the call).

Accommodation of dynamic service composition. The grey-
shaded material in Figure 1 further illustrates how the client needs
no change to tolerate a change to a different service provider struc-
ture altogether, since the service is not mentioned in the call. Since
neither target objects and services are not mentioned in the call
statements, combinations of services used to satisfy a client’s
needs can be fluidly composed by the service request broker.

Scalable component composition. Component structures like
those employed in service-oriented software architectures suffer
from severe performance problems when used at finer granularity
in an attempt to obtain improved the software structure it offers
[11].The use of transparent services, with a broadcast model of
method call like that illustrated in Figure 1 enables the implemen-
tation to move the task of message and data format transformation
out of the client and into the service request broker. This enables
the associated overheads to be avoided when component structures
are tightly bound within a process.

Avoidance of proxy management. In the usual division of
concern between programming language and middleware, the pro-
gramming language specifies the complete semantics of method
call, including the rules for determining how to find the implemen-
tation corresponding to any particular method call. In architectures
for distributed, autonomic, grid, and service-oriented systems, the
linguistic specification is ultimately quite incorrect. The interven-
tion of middleware takes the “call” out of the realm of language
specification and makes non-linguistically specified choices. In
fact, modern Object Request Brokers allow the client and service
to be realized in different programming languages, making the
specification of the dispatch process as a linguistic characteristic
impossible. But the task of interfacing this flexibility with the lan-
guage specification is forced upon the client in the form of “prox-
ies” — local objects that intercept the linguistic specification and
inject alternative mechanisms. Much greater flexibility can be
derived if the client and the service provider left such intervention
to the underlying implementation of the dispatch process — the
request broker provided by middleware. Then the overheads asso-
ciated with preparing for potential mismatches [11] could be omit-
ted if the targets are near and have similar or identical signatures.

Reflecting middleware’s flexibility in language’s typing. To-
day’s programming language specifications over-specify the inter-

pretation of method-call, to the detriment of the software commu-
nity in general. In systems that rely heavily on redirection via
proxies, it would be more accurate for the programming language
to specify only the semantics of the behavior occurring between
entry and call, leaving the definition of a call’s resolution to mid-
dleware. Language specification today is caught in a bind — to
keep dispatch specification simple, the type systems generally
require too much knowledge of the implementation structure to
which a call is directed. Flexibility can be gained if they instead
focused on accepting an indication from middleware about the
safety of calling a method and propagating that information
throughout the client. If the language specification simply carries
forward a decision about the existence of implementation rather
than trying to specify the matching rules, more flexible typing
systems can be accommodated than those that require knowledge
of the details of class implementations prior to run-time. The dis-
patch middleware then has flexibility in inserting conversions and
rearrangements of the parameters, and even of employing different
name-matching rules. What is required is a formal statement of the
middleware’s constraints, perhaps similar to the rule we propose:
“the set of methods available to a client in a transaction is static or
grows monotonically or the transaction fails.”

Run-time selection of object classes. This same locus of intel-
ligence applies when objects must be created. In traditional soft-
ware, the implementing class of a new object is selected at the time
a client is developed, generally after the developer inspects speci-
fications for alternative implementations. With a service request
broker, the client indicates what kind of object is needed and what
methods must be made available for this kind of object. The “kind”
is indicated by its classifier, with locally-defined meaning that
allows individual services to describe subtyping relationships
among different kinds of objects. Kinds of objects that support the
same methods may still fall into different classifications because
they attach different meanings to them. The focus is on character-
izing the kind of object and the methods needed instead of on the
implementing class. This allows the actual implementation class to
be selected contextually, at run-time, by the service broker using
new or local alternatives that may not have been known or avail-
able to the client’s developer. It is also possible to augment the set
of methods needed after objects have been created. This augmenta-
tion is known as service-finding and extends the idea of “down
casting” in more familiar languages. When successful, the type
system treats the knowledge that the methods are safe to call as if
they were known to be available from creation.

Accommodation of service-substitution protocols. In mobile
computing, and even in dynamically evolving system structures, it
can be necessary to determine when one provider of services can
be dynamically substituted for another. A contact for banking or
travel information services may, for example, change in crossing
regional boundaries. Or, some service providers may be more re-
liably reachable within one local region than another. The intro-
duction of an intelligent service bus allows these issues to be ad-
dressed in a more organized and more easily maintained fashion
than do proxies. Service providers interact with the service request
broker when they are attached, and may provide information that
helps determine their dynamic interchangeability.

4.2 Parallelism and Multi-core Support
4.2.1 Expressing Transactional Needs

If programming language design is to confront the issue of in-
creased exploitation of parallel architectures, whether in distrib-
uted services or in multi-core machines, the ability to clearly de-
lineate the transactional boundaries of failure of a concurrent ele-
ment within must be provided. This is in addition to making provi-
sion for tracking the interferences of concurrent access to shared

45

data. While threads and transactions model the concurrency itself
they have a natural intersection for the handling of errors. But
programming languages generally have neither constructs to estab-
lish the boundaries of transactions within the execution nor a defi-
nition of their relationship. As with dispatch, the line between
transaction model and transaction denotation needs to allow the
detailed meaning and the implementation of transactions to be left
to the middleware, but still permit the assignment of work to trans-
actions to be expressed syntactically by the developer in a clear
and direct manner. All execution takes place within a transaction.
For convenience sake, the transaction in which an interpretation is
taking place is best passed implicitly from caller to called method,
as the thread is in familiar languages. But the language needs to
allow for it to be explicitly specified on occasion. Explicit provi-
sion may be in the form of the creation of a new transaction or of
the resumption of an existing one. While not proposing that the
broadcast service model specify or restrict the transaction model
unduly, it would be in line with many common specifications of
transaction semantics for the transaction to be passed as an implicit
parameter from client to service as method calls are made. Some
provision must be made for changing the transactional context at
the point of call. One possibility is to allow explicit change in the
transaction context by using no-longer necessary syntactic position
of the target object at the point of method call.

4.2.2 Static Enforcement of Task Commitments

One of the obstacles to greater exploitation of parallel struc-
tures is the fact that programming languages maintain commitment
and failure response in a dynamic manner, using run-time interpre-
tation to respond by waiting for the service to return. In addition to
inhibiting parallelism, dynamic tracking is resource-intensive.
Avoiding the need to hold resources has led to the exploitation of
so-called “stateless services” in service-oriented architectures. But
stateless services have no expression of flow dependencies be-
tween them. Since each service is finished before the next service
acts, there is no way to express dependency on success or failure
of later services, or to indicate back-out and recovery mechanisms.
One common alternative is to combine them with separate process-
flow specifications. While process-flow specification may be suit-
able for the niche in which service-oriented architectures operate,
trying to use it to address the need for the widespread exploitation
of parallelism called for by multi-core proponents is unlikely to
succeed because it splits the specification into two language para-
digms. At a coarse grain this may be acceptable, but at fine granu-
larity it imposes too much intellectual and bookkeeping burden on
the programmer. The service broker allows us to integrate process-
flow more tightly into the usual programming language structures,
in a way that allows a single program developer to exploit it easily.

5. Related Work
5.1 Broadcast Models

We are advocating the use of a broadcast model for method call
to substantially improve the malleability of software. Broadcast
models for processing have a long history of their own. One family
of broadcast models center on a shared data-store. In that context,
emphasis has been put on the use of coordination languages, like
Linda [2]. Linda and subsequent tuple-space coordination systems
provide primitives for controlling access by concurrent processes
to a shaped data space of tuples. The point of intersection with
message processing is that the database reading operations can
wait for the appearance of a tuple matching an abstract tem-
plate[13]. The effect of being able to wait for the appearance of a
tuple matching an abstract template is much the same as the effect
of a concurrent multiple dispatch, but the emphasis in Linda-based
systems is in applications like data-mining, supported by a persis-

46

tent tuple-store. We seek a replacement for the method call mecha-
nism to remove layers of bookkeeping from clients and encourage
malleability of software. The use of a separate coordination lan-
guage or framework on top of the native language in a client
scarcely makes it clearer or more malleable. In view of the per-
formance overhead associated with Linda’s point-of-view[13],
other broadcast systems focus more on the delivery of ephemeral
messages rather than a replacement for method call.

Non-storage-based systems, often called message brokers, play
an important role in commercial systems, supported by products
like IBM WebSphere MQ[17]. The primary advantage of such
publish/subscribe systems is that the clients and servers need not
be modified when message routing specifications change. Message
frameworks like Java’s JMS[15] have also been specified, but
generally require the client to make static advance decisions about
routing by specifying a class of object, like Topic, that manages
where messages are sent. With these systems, the client typically
uses a cumbersome framework that often involves data format
conversions. This interferes with the transparency and malleability
which is our goal. Academic interest in message brokers is thin,
except when viewed as multi-methods.

5.2 Multi-methods

Methods that may be dispatched on the basis of the types of
more than one argument are generally called multi-methods and
are an area of significant and long interest. Although it is an ob-
ject-oriented language, the invocation construct provided by CLOS
[7] provides for structural abstraction to shield the client from the
structure of choice-making in the implementation. But CLOS does
not provide static typing, and its use was limited to the LISP com-
munity for many years. An excellent recap of work on multi-
methods is given in [10]. It is important to note that most of this
work is directed at achieving multiple-dispatch in languages that
permit declarative typing, and not at hiding the dispatch criteria
and implementation structure from clients, and they generally sac-
rifice either conditional safety or structural abstraction to do so.

Programming language research generally exploits multi-
methods to specialize the behavior of methods for various argu-
ment types. This has led to thorough investigation of issues of
ambiguity. In the absence of a modularizing structure larger than
classes (like OSGI’s “bundles”), restrictions that reduce the malle-
ability of software have been used to introduce modular type-
checking[10]. Pursuing malleability, we have exploited the con-
cept of a language-defined service to bound the scope of possible
ambiguity in addition to providing a separate container for service
state.

5.3 Aspects

In addition to providing a malleable component construct, ser-
vices can serve as aspects as well. Symmetric approaches to as-
pect-oriented software separate the materialization of the aspects,
which contain state and method definitions that extend the seman-
tics of objects from the expression of the pointcut specifications
that indicate when they should be employed. FuseJ[12] provides a
unified aspect/component model with these capabilities. With
symmetric aspects, the pointcut or aspect interaction language is
separated from the programming language and, in our case, ex-
pressed when services are introduced to the service request broker.

6. Summary

To improve the malleability of software, we have employed a
model of method call in which a method’s caller can safely declare
and call methods without knowledge of which object(s) or ser-
vice(s) implement the method. We exploit component model in
which services form coherent collections of classes and manage

their supporting state. Method call is treated as a broadcast in
which a call can be dispatched to multiple services through the
operation of a service-request broker. Services can be composed
locally or they can be mobile or distributed. The structure of the
services used by a client is fluid and transparent, and the overhead
of conversion or marshalling takes place in the broker and is
avoided when components are locally supplied. The state associ-
ated with an object can be distributed across several services,
much as it can be distributed across several aspects, enabling the
services to be used as symmetric aspects. In addition to increasing
the malleability of software, the service-broker construct permits
the integration of the concept of transaction into method call se-
mantics. Expressing transaction boundaries in the programming
language permits an extension of the concept of responsibilities for
future action. It is possible to use the static type system of a pro-
gramming language to enforce the future execution of a method
after the return from a method which commits to that future execu-
tion. This facility can be used to provide greater parallelism when
such methods are called in loops.

Acknowledgements

I would like to thank the reviewers and especially Eric Eide for
suggestions that have substantially improved this presentation.

References

[1] Filman, R.E. and D.P. Friedman: Aspect-Oriented Programming is
Quantification and Obliviousness. In: Position paper for the Ad-
vanced Separation of Concerns Workshop at the Conference on Ob-
Ject-Oriented Programming Systems, Languages, and Applications,
Minneapolis, MN, October 2000

[2] Gelerntner, D., Carriero, N, Coordination Languages and their Sgnifi-
cance, Communications of the ACM, 35,2, (February, 1992), pp. 97-
107

[3] Harrison, W., Lievens, D., Walsh, T.., Achieving Recombinance to
Improve Modularity. Software Structures Group Report 102, October,
2006, available from https://www.cs.tcd.ie/research_groups/ssg

[4] Harrison, W. and Ossher, H., Subject-Oriented Programming - A
Critique of Pure Objects, In Proceedings of 1993 Conference on Ob-
Jject-Oriented Programming Systems, Languages, and Applications,
September 1993

[5] Harrison, W., Ossher, H., and Tarr, P., Software Engineering Tools
and Environments: A Roadmap, in Future of Software Engineering,
Anthony Finkelstein (Ed.), ACM Press, June 2000

[6] Harrison, W.. De-constructing and Re-constructing Aspect-
Orientation, /n Proceedings of the Seventh Annual Workshop on
Foundations of Aspect Languages, Brussels, Belgium, 1 April, 2008,
edited by Gary T. Leavens , ACM Digital Library, 2008, pp. 43-50

[7] Keene S., Object-Oriented Programming in Common Lisp, Addison-
Wesley, 1989

[8] Lievens, D., Harrison, W.. Symmetric encapsulated multi-methods to
abstract over application structure, In Proceedings of the 24th Annual
ACM Symposium on Applied Computing, Symposium on Applied
Computing, Honolulu, HI, March 8-12, 2009, ACM, 2009, pp. 1873 -
1880

[9] Lievens, D., Walsh, T., Dahlem,, D. Harrison, W.. Promoting Evolu-
tion Through Abstraction Over Implementation Structure, /n Proceed-
ings Companion of the 31st International Conference on Software
Engineering, Vancouver, Canada, May 16-19, 2009.

[10] Millstein, T., and Chambers, C. Modular Statically Typed Multimeth-
ods. in Proceedings of the 13th European Conference on Object-
Oriented Programming (ECOOP 99), Lisbon, Portugal, June 14-18,
1999

[11] Mitchell, N., Sevitsky, G., and Srinivasan, H., Modeling Runtime
Behavior in Framework-Based Applications, in Proceedings of the
20th European Conference on Object-Oriented Programming
(ECOOP 06), Nantes, France

[12] Suvee, D., De Fraine,B., and Vanderperren, W., A Symmetric and
Unified Approach Towards Combining Aspect-Oriented and Compo-
nent-Based Software Development, in Component-Based Software
Engineering, LNCS 4063, Springer, Berlin / Heidelberg, 2006

[13] Wells, G., Coordination Languages: Back to the Future with Linda,
Proceedings of the Second International Workshop on Coordination
and Adaption Techniques for Software Entities (WCATOS), pp. 87-
98, 2005.

[14] Continuum Language Specification, available from
https://www.cs.tcd.ie/research_groups/ssg

[15] Sun Java Message Service (JMS), http://java.sun.com/products/jms/,
retrieved 24 Jan 2010

[16] Web Services Choreography Description Language,
http://www.w3.0rg/TR/2005/CR-ws-cdl-10-20051109/, retrieved 24
Jan 2010

[17] WebSphere Message Broker Technical Overview,
http://publib.boulder.ibm.con/infocenter/wmbhelp/v6r1 m0/topic/com
.ibm.etools.mft.doc/ab20551 .htm, retrieved 24 Jan 2010.

47

	Session 3: Fantastic Frameworks and Infamous Infrastructures
	Malleability, Obliviousness and Aspects for Broadcast Service Attachment (William Harrison)
	Abstract
	1. Introduction
	2. Underlying Issues
	2.1 Malleability
	2.2 Obliviousness
	2.3 Using Broadcast Method Call for Malleability
	2.4 Using Broadcast Method Call for Obliviousness

	3. Broadcast Service Model Challenges
	3.1 Comaptibility
	3.2 State Maintenance
	3.3 Service Mangement
	3.4 Static Tracking of Commitment Satisfaction

	4. Broadcast Service Model Advantages
	4.1 Enhanced Malleability
	4.2 Parallelism and Multi-core Support
	4.2.1 Expressing Transactional Needs
	4.2.2 Static Enforcement of Task Commitments

	5. Related Work
	5.1 Broadcast Models
	5.2 Multi-methods
	5.3 Aspects

	6. Summary
	References

