Towards Reusable Aspects:
the Callback Mismatch Problem

Maarten Bynens, Dimitri Van Landuyt,
Eddy Truyen and Wouter Joosen

DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3001 Leuven, Belgium

{maarten.bynens,dimitri.vanlanduyt,
eddy.truyen,wouter.joosen } @cs.kuleuven.be

Abstract

Because software development is increasingly expensive and time-
consuming, software reuse gains importance. Aspect-oriented soft-
ware development modularizes crosscutting concerns which en-
ables their systematic reuse. Literature provides a number of AOP
patterns and best practices for developing reusable aspects based
on compelling examples for concerns like tracing, transactions and
persistence. However, such best practices are lacking for systemat-
ically reusing invasive aspects.

In this paper, we present the ‘callback mismatch problem’. This
problem arises in the context of abstraction mismatch, in which the
aspect is required to issue a callback to the base application. As a
consequence, the composition of invasive aspects is cumbersome
to implement, difficult to maintain and impossible to reuse.

We motivate this problem in a real-world example, show that
it persists in the current state-of-the-art, and outline the need for
advanced aspectual composition mechanisms to deal with this.

Categories and Subject Descriptors D.2.13 [Software Engi-
neering]: Reusable Software—Reusable libraries; D.2.11 [Soft-
ware Engineering]: Software architectures—Information hid-
ing,Languages,Patterns

General Terms Design, Documentation

Keywords reusable aspects, invasive aspects, aspect adapter

1. Introduction

Current AOP languages and approaches often result in aspects that
are tightly coupled to the base classes they act upon. For example,
it is a common technique to write advice code that involves join
point reflection to find out the necessary contextual information
[11]. Such advice code typically hard-codes assumptions about
the structure and behavior of the base classes. This has a number
of negative consequences: the aspect must be maintained together
with the base, which makes it difficult to develop aspects and
base in parallel, and leads to fragility of aspectual composition
(lack of robustness). Additionally, the resulting aspects and their
compositions are very specific to the scope of one application, and
thus not reusable, for example in an aspect library.

To address these problems, the current state-of-the-art provides
a number of techniques and patterns that involve introducing an
abstraction layer between the base and the aspect. Examples of
this are pointcut interfaces [6], annotations and marker interfaces.
Introducing an abstraction layer enables the design of reusable
aspects, in the sense that the required interface of the aspect (the

elements it needs from the base to perform its function) can be
specified uniquely in terms of abstractions that are relevant in
the scope of the aspect itself. For example, the required interface
of a reusable authentication aspect would be defined in terms of
aspect-specific abstractions such as the principal, credentials, etc.
To compose this authentication aspect to the base application,
the developer must implement and provide these abstractions, by
mapping elements of the base application (e.g. a customer in a web
shop) to the aspect abstractions (the principal). Because the aspect
is less tightly coupled to the base application, it can be reused more
easily across applications.

A common problem in the design of reusable aspects is that of
abstraction mismatch. This occurs when the elements of the base
are not fully compatible with the abstraction required by the aspect.
For example, the credentials abstraction may consist of a password
that is encoded in MD5 —meaning that the authentication aspect
expects passwords to be provided in MD5—, while the base offers
the password in plain text. The solution to this is to introduce
an adapter [5] that converts the base abstraction into the aspect
abstraction. In the example, the adapter would be responsible for
applying the MDS5 hash function to the password that is provided
by the base and providing the result to the aspect.

These techniques are sufficient to realize a loose coupling be-
tween aspect and base for both spectative and regulative aspects
[9]; i.e. aspects that respectively observe the base application with-
out affecting its functionality, or observe the base application and
redirect or block the thread of execution in some cases. However,
there is a lack of similar patterns or solutions for invasive aspects
that issue callbacks to the base application to change its state or its
behavior.

In this paper, we highlight this problem, which we call the call-
back mismatch problem. This problem arises (i) in the occurrence
of abstraction mismatch, and (ii) when the aspect is required to is-
sue a callback to the base application. As a consequence, the com-
position specification of such aspects becomes cumbersome to im-
plement, difficult to maintain and impossible to reuse.

The structure of this paper is as follows. First, we define and
illustrate the callback mismatch problem in a case study and we
show that this is a realistic problem in the context of parallel devel-
opment and reuse of aspectual modules. Then, we show that in the
current state-of-the-art in aspect-oriented programming (AOP) and
related techniques, patterns and notations, this problem persists and
there is a need for advanced aspectual composition mechanisms to
deal with this issue.

17

2. The callback mismatch problem
2.1 Problem definition

Pointcuts abstract not only from interesting join points in the base
program but also expose relevant context data available at these
join points. Abstraction mismatch is the problem where the repre-
sentation of these abstractions in the base program is not compati-
ble with the representation in the aspect. Dealing with abstraction
mismatches is easy by employing a binding aspect that extracts the
necessary information from the available base abstractions.

In the presence of callbacks however, specifying such a binding
aspect becomes problematic. Callbacks happen when the reusable
aspect uses the data and/or the behavior of the base application
exposed by a pointcut to intervene in the normal control flow.
As presented in Section 1, callbacks are mostly used to realize
invasive aspects. To bind the callback to the base program, the
binding aspect needs to include adapter functionality that routes the
callback to the same base object that triggered the reusable aspect
in the first place.

This problem is more complex to overcome than traditional
problems with object-oriented libraries and frameworks (e.g. API
mismatch). As the reusable aspect is never explicitly called from
the base program, the adapter (or in this case the binding aspect)
needs to adapt in both directions. It has to make sure that the
relevant join points are translated to the aspect abstractions and
that callbacks refer back to the original object. As a result, dealing
with the callback mismatch problem takes more than solving the
mismatch separately in both directions.

In summary, the callback mismatch problem leads to the follow-
ing:

Problem summary. In the current state-of-the art of AOP lan-
guages, patterns and best practices, the required composition logic
for dealing with both (1) abstraction mismatch and (2) callbacks is
cumbersome to implement, difficult to maintain and impossible to
reuse.

2.2 Motivating Example

To illustrate the problem outlined in this paper, we present a sim-
plified example from the car crash management system (CCMS)
[10, 16]. This is a large-scale and realistic distributed application
that helps the authorities dealing with car crashes more efficiently
by (i) centralizing all information related to a car crash, (ii) propos-
ing a suitable crash resolution strategy, (iii) dispatching resource
workers (e.g. first-aid workers) to the crash site, and (iv) reassess-
ing the strategy in real-time when new information comes in.

To avoid wasting resources on prank calls and witnesses as-
suming a false identity, the correct and efficient functioning of the
CCMS depends highly on witness identity validation, which is im-
plemented in the CCMS as an aspect. More specifically, as long as
the system has not successfully validated the identity of the wit-
ness, the CCMS will operate in limited mode, meaning that only
a restricted set of resources can be assigned to that particular car
crash.

Figure 1 presents this aspect in detail. The sequence starts when
a witness calls the crisis center to report a car crash. The coordi-
nator answering the call enters the name and phone number of the
witness into the CCMS.

In this example, Witness represents the base abstraction: it
provides the information needed by the aspect.

The witness identity validation aspect is provided in the form
of a reusable identity validation aspect IdentityValidation.
The required aspect abstractions in this example are Person and
ValidationReport.

This illustrates abstraction mismatch in this example: the pro-
vided abstraction of the base application is the Witness which en-

18

capsulates the name, the phone number, and the validity state of the
witness. On the other hand, the required interface of the aspect con-
sists of (1) the Person abstraction which encapsulates first and last
name and phone number, and (2) ValidationReport abstraction
which encapsulates the validity state.

As pointed out in Section 2.1, this issue can be resolved by
specifying a binding aspect with adapter functionality. In this ex-
ample, we have implemented a class adapter which adapts the
interface of the Witness object to match those of Person and
ValidationReport (message 2).

After this, the aspectual composition with the witness identity
validation aspect is realized. More specifically, the pointcut for this
aspect is specified in terms of the Person interface (message 3).
Both the Person and the ValidationReport are exposed through
these join points.

Finally, the IdentityValidation component contacts a third-
party telecom operator to check whether the presented person is in-
deed listed under the given phone number. The result of this verifi-
cation activity is set via the ValidationReport interface. Because
the Witness object has previously been adapted to this interface by
the adapter, the callback ends up at the witness (message 4).

Section 2.3 illustrates in further detail how the adapter code is
affected by the callback mismatch problem.

If the adapter is implemented incorrectly, the CCMS itself will
remain in limited mode, and thus addresses the car crash ineffi-
ciently, if at all. The fact that the correct functioning of the en-
tire application depends fully on the correct realization of the call-
back stresses the importance of writing an adapter that realizes the
desired behavior in a comprehensible, maintainable and reusable
manner.

2.3 Minimal solution in Aspect]

An example implementation of the scenario is included in
the appendix. The pointcut personIdNeedsChecking in aspect
IdentityValidation is defined in terms of types Person and
ValidationReport. Person contains the data that needs to be
checked and ValidationReport captures the result of the valida-
tion. Since these types are not directly supported by the base code,
an adapter needs to be written to bind the aspect to the application.
Listing 1 shows the adapter.

public aspect Adapter extends IdentityValidation{

declare parents: Witness implements
ValidationReport;
public void Witness. validation (boolean b){
validate (b);
}

declare parents: Witness implements Person;

public void Witness.setFirstName (String s){}

public void Witness.setLastName(String s){}

public String Witness. getFirstName (){
return getName().split(" ")[0];

public String Witness. getLastName () {
return getName().split(" ")[1];

void around(Person w): execution (*
Witness .setName (String)) && this (w){
proceed (w) ;
w.setFirstName (w. getFirstName ()) ;
w.setLastName (w. getLastName ()) ;

}

pointcut report(ValidationReport report):
this (report);

create(name,phoneNb) @ |
g I

witness @
<<ao>> adapt witness to 'Person' and
'ValidationReport' interfaces

<<ao>>

| idvaI:IdentityVaIidation| I X telcoTelecomOperator

T

validate(valid)

(Person)witness,

(ValidationReport)witness @ ——————— |

validation(valid)

[_valid=validCaller(person)

@

Figure 1. UML sequence diagram to illustrate the role of the adapter (in dark gray), and the witness identity validation aspect (in grey).

Listing 1. Example implementation of the adapter

In this scenario, the adapter has two responsibilities. Firstly, it
needs to make sure that the callbacks through ValidationReport
and Person are reified in the witness object. Therefore, the class
Witness is made to implement the types ValidationReport
(lines 3-6) and Person (lines 8-16) by means of declare par-
ents and inter-type declarations (methods setFirstName and
setLastName do not need an actual implementation because they
are not used as a callback). Secondly, it needs to propagate the rel-
evant join points on Witness as required join points on Person.
This is achieved by around advice that calls proceed and addition-
ally calls the appropriate methods (lines 17-21). Because there is
a mismatch in the sense that Person has separate concepts for first
name and last name, extra mapping functionality is required.

This example shows that even in this simple (almost trivial)
case, defining the adapter is already a cumbersome task. One that
needs to be repeated for every mismatch.

3. Approaches

This section gives an overview of existing AOP languages, tech-
niques and patterns that are related to the problem and briefly ar-
gues that none of them sufficiently addresses the callback mismatch
problem.

3.1 Explicit Pointcut Interfaces

Approaches like pointcut interface[6], XPI[15] and explicit join
points[8] do not help to define bidirectional adapters more easily.
The problem is that the aspect will always use a type description
to be able to issue callbacks. This type should then be mapped to a
concrete type in the base code. The approaches mentioned describe
join points and not types and thus cannot be used in this mapping.

In the simplified case, the aspect specifies an abstract pointcut
and the callback is issued on one of the exposed parameters. An
explicit pointcut interface can help with implementing this abstract
pointcut, but the mapping of the callback to the base code still needs
to be done. A standard unidirectional adapter is sufficient in this
case.

3.2 Type parameters

At first sight, type parameters seem to solve the callback mismatch
problem, since an instantiated type parameter will behave as an
alias for a concrete type of the base code. Unfortunately, for the
aspect to be able to issue callbacks, it needs to refer to an actual
type (and e.g. use it as a bound for the type parameter). As a result
we end up with the same problems as before.

3.3 Caesar

Caesar supports on-demand remodularization to integrate indepen-
dent components. Its model is object-based and uses virtual types,
mixin composition and the concept of wrapper recycling [12]. As
a result, Caesar provides a means to specify expressive, reusable
adapters. However, Caesar does not support remodularization of
aspect abstractions. In Caesar, the aspect composition is part of the
binding and requires manual object wrapping (assisted by dynamic
wrapper selection and wrapper recycling) [1, 13]. We can conclude
that Caesar doesn’t offer a solution to the callback mismatch prob-
lem as it not aims to bind abstract aspect compositions.

3.4 Subject-oriented programming

Subject-oriented programming [7] and its descendants Hyper/J
and Theme[4] (which all involve Multi-Dimensional Separation of
Concerns (MDSOC)) represent a more symmetrical approach to
AOSD, meaning that each concern is developed independently. One
of the key features of these approaches is declarative completeness,
meaning that each concern explicitly defines the structure and be-
havior of the classes it depends on. To assemble an application,
these concerns are composed using composition rules. Composi-
tion directives includes mechanisms for name-based merging of
classes and methods, and support for renaming, overriding, ...

Because these mechanisms are nondirectional, they are inher-
ently adequate for specifying callbacks. However, the composi-
tion mechanisms are not expressive enough to resolve sophisticated
abstraction mismatches that can only be resolved with complex
adapters involving more than renaming, overriding and merging
classes and methods. Therefore these approaches do not solve the
abstraction mismatch problem.

4. Conclusion

This paper introduces the callback mismatch problem. In essence,
this problem is triggered by two key elements: (i) abstraction mis-
match which is resolved by applying the Adapter design pattern [5],
and (ii) invasive aspects [9], i.e. aspects that issue a callback to the
base application to change its state or behavior. This situation leads
to composition logic that is cumbersome to implement, difficult to
maintain and impossible to reuse.

We have illustrated the problem in a minimal example from a
realistic case study. Additionally, we have presented a number of
factors that deteriorate this problem. Finally, we outline a number
of related approaches in which this problem persists.

From this, we conclude that the current state-of-the-art is cur-
rently is not capable of solving the callback mismatch problem ad-
equately. In our opinion, there are three distinct research directions

19

to be explored for a solution to this problem: (i) next-generation
language constructs that allow the described adapters to be defined
more elegantly and concisely (e.g. inspired by Caesar and SOP that
provide disjoint sets of constructs that solve the problem partly), (ii)
middleware-based solutions and framework-specific services that
are capable of hiding most of the described adapter complexity, or
(iii) AOP design patterns that provide reference solutions to this
problem.

Logging, tracing and authentication are aspects addressed per-
vasively throughout AOSD research. Based on the impact that these
aspects have on the base application, they are characterized as ei-
ther spectative or regulative [9]. The large body of research into
these particular aspects classes suggests that they are well-known,
and they can sufficiently be dealt with by current AOP techniques.
As AOP matures, it is our opinion that the research focus should
shift from spectative and regulative aspects towards more invasive
aspects, which represent the most challenging class of crosscutting
concerns. We believe that the problem brought to the forefront in
this paper is a key hurdle in the road towards advanced AO lan-
guages, middleware and patterns that deal with these types of as-
pects in an efficient, maintainable, and reusable manner.

Acknowledgments

This research is supported by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, by the Research
Fund K.U.Leuven.

References

[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
An overview of caesarj. [14], pages 135-173.

[2] Maarten Bynens and Wouter Joosen. Towards a pattern language for
aspect-based design. In PLATE ’09: Proceedings of the 1st workshop
on Linking aspect technology and evolution, pages 13—15, New York,
NY, USA, 2009. ACM.

Maarten Bynens, Bert Lagaisse, Eddy Truyen, and Wouter Joosen.
The elementary pointcut pattern. In BPAOSD’07: Proceedings of the
2nd workshop on Best practices in applying aspect-oriented software
development, pages 1-2, 2007.

3

=

[4

=

Siobhdn Clarke and Robert J. Walker. Generic aspect-oriented design
with Theme/UML. pages 425-458.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, illustrated edition edition, November
1994.

Stephan Gudmundson and Gregor Kiczales. Addressing practical
software development issues in aspectj with a pointcut interface. In
Advanced Separation of Concerns, 2001.

[6

=

[7] William H. Harrison and Harold Ossher. Subject-oriented program-
ming (a critique of pure objects). In OOPSLA, pages 411-428, 1993.

[8] Kevin Hoffman and Patrick Eugster. Bridging java and aspectj through
explicit join points. In PPPJ ’07: Proceedings of the 5th international
symposium on Principles and practice of programming in Java, pages
63-72, New York, NY, USA, 2007. ACM.

[9] Shmuel Katz. Aspect categories and classes of temporal properties.
[14], pages 106—134.

[10] Jorg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis manage-
ment systems: A case study for aspect-oriented modeling. Technical
Report SOCS-TR-2009-3, School of Computer Science, McGill Uni-
versity, 2009. http://www.cs.mcgill.ca/research/reports/
2009/socs-tr-2009-3.pdf.

[11] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Pro-
gramming. Manning Publications Co., Greenwich, CT, USA, 2003.

[12] Mira Mezini and Klaus Ostermann. Integrating independent compo-
nents with on-demand remodularization. In OOPSLA ’02: Proceed-

20

ings of the 17th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 52—-67, New
York, NY, USA, 2002. ACM.

[13] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar.
In AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 90-99, New York, NY,
USA, 2003. ACM.

[14] Awais Rashid and Mehmet Aksit, editors. Transactions on Aspect-
Oriented Software Development I, volume 3880 of Lecture Notes in
Computer Science. Springer, 2006.

[15] Kevin J. Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang
Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Information
hiding interfaces for aspect-oriented design. In ESEC/SIGSOFT FSE,
pages 166-175, 2005.

[16] Dimitri Van Landuyt, Eddy Truyen, and Wouter Joosen. Discovery of
stable domain abstractions for reusable pointcut interfaces: common
case study for ao modeling. Technical report, Department of Com-
puter Science, K.U.Leuven, 2009. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW560.abs.html.

A. Entire example

The full source code is available at http://www.cs.kuleuven.
be/~dimitri/callbackmismatch.zip.

public abstract aspect IdentityValidation {

pointcut personldNeedsChecking (Person
person, ValidationReport report):
(execution(new(..)) || execution(void
Person.set*(..))) && this(person) &&
report(report);
abstract pointcut report(ValidationReport
report);

Object around(Person person, ValidationReport
report):personldNeedsChecking (person, report){
Object res = proceed(person,report);
report.validation (TelecomOperator. validCaller (
person. getFirstName () + " " +
person . getLastName () ,
person . getPhone ()));
return res;
}
}

Listing 2. Identity Validation.aj

public interface Person {

public String getFirstName () ;

public String getLastName();

public String getPhone();

public void setFirstName (String fname);
public void setLastName(String lname);
public void setPhone(String phone);

Listing 3. Person.java

Views for Aspectualizing Component Models

Abdelhakim Hannousse * Gilles Ardourel Rémi Douence
Ascola Team, Ecole des Mines de Coloss Team, Université de Nantes, Lina Ascola Team, Ecole des Mines de
Nantes, Inria, Lina CNRS UMR62441 Nantes, Inria, Lina

abdel-hakim.hannousse@emn.fr

Abstract

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches. However, existing proposals for integrating aspects
into component models are direct transposition of object-oriented
AOSD techniques to components. In this article, we propose a
new approach based on views. Our proposal introduces crosscut-
ting components quite naturally and can be integrated into different
component models.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Languages

General Terms Aspect-Oriented Software Development, Com-
ponent Based Software Development.

Keywords Aspectualization, VIL, Views, Crosscutting wrappers

1. Introduction

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches: while CBSD focuses on the modularity and the
reusability of software systems by assembling components [10],
AOSD focuses on the modularity of crosscutting concerns [7].
However, existing proposals for integrating aspects into compo-
nent models are direct transposition of object-oriented AOSD tech-
niques to components. Moreover, current proposals consider only
specific component models and do not address the issue on its gen-
eral form. Furthermore, most of them are unable to handle both
integration and interaction of aspects. In this article, we contribute
by proposing a new approach based on views. A view is defined
as a reconfigured component architecture by introducing new com-
posites encapsulating some of its original components. These new
composites can then be wrapped to alter the behavior of their in-
ner components. Views can be integrated into different component
models. In this paper we show how views can be used for Fractal
component model [3]. We also introduce a language for views, we
call VIL, that makes integrating views and wrappers into a com-
ponent architecture more expressive. However, integrating aspects
following views consideration introduces crosscutting wrappers
(i.e. crosscutting aspects). In this paper we highlight crosscutting
wrappers issue and discuss the need of a formal specification of
both components and wrappers behavior in order to detect and
tackle their interaction issue.

The rest of this paper is organized as follows: section 2 describes
a motivating example that we use to demonstrate how views are
powerful enough to describe aspects. Section 3 introduces our lan-
guage for views VIL. Section 4 shows how VIL can be integrated
into Fractal component model. Section 5 discusses wrappers in-
teractions and how VIL could contribute for detecting conflicting

* Partially funded by the Miles Project

Gilles.Ardourel@univ-nantes.fr

Remi.Douence@emn.fr

views. Section 6 reviews related work and section 7 concludes and
discusses our key perspectives.

2. Motivating Example

In this section, we show with an example how views enable the
integration of aspects into component architectures. Our example
is a revised version of the one given in [2]. It describes a software
controller of a crane that can lift and carry containers from arriving
trucks to a buffer area or vice versa. The crane system is composed
of an engine that moves the crane left to the truck and right to the
buffer area, a mechanical arm that moves up and down and a mag-
net for latching and releasing containers by activating and deacti-
vating its magnetic field. The engine and the arm may run in two
different modes: slow and fast. Users interact with the crane using
a control board. The control board allows users to choose a running
mode for the crane and start crane loading or unloading containers.
Figure 1 and figure 2 depict, respectively, a schematic overview and
a possible component architecture of the crane system.

Arm

controlboard *
load unload Wagnet
e
Mode I
slow fast
= S Buffer area

A

1

Figure 1. A Schematic Overview of the Crane System

Crane

S [Ny

Figure 2. The Crane System Architecture

In Figure 2, components are depicted by rectangles and provided
and required interfaces are represented by input and output arrows,
respectively. Figure 2 models the crane system as a component ar-
chitecture with three main components: controller;, crane and mag-
net. The controller component provides an interface that permits to

21

set the running mode of the crane and start loading and unloading
containers. Upon receipt of user commands, the control component
transforms those commands into signals and requires the crane to
act following those signals through its required interface. The crane
component is a composite of the engine and the arm components.
The engine component provides an interface that permits to move
the crane left and right following a running mode and requires an
interface to call the arm to move up and down. The arm, in turn,
provides an interface for moving up and down following a running
mode and requires an interface to ask the magnet to latch or release
a container. Finally, the magnet component provides merely an in-
terface for latching and releasing containers.

::Control

setMode(mode) i

load() .

::Crane::Engine ::Crane::Arm ::Magnet
i

moveRight(mode)

moveDown(mode)

moveLeft(mode)

<~~~ === === -

In the following, we show how views can be used in order to
force the crane system to fulfill the above constraints.

In this article, we use the term view to refer to a component ar-
chitecture with additional composites encapsulating some its orig-
inal components. We also use the term wrapper to refer to each
entity that surrounds a component, intercepts calls on its provided
and required interfaces and may alter its behavior.

Views implementation differs from one component model to
another. As an example, a view in Fractal component model can
be implemented as a controller associated to a composite that acts
when calls are intercepted on its interfaces.

2.1.1 Fulfilling Performance Constraint

The crane system can be forced to fulfill the performance constraint
by adding a wrapper around the engine and the arm components.
The added wrapper intercepts calls on the provided interfaces of the
engine and required interfaces of the arm. The wrapper stores and
updates the state of the magnet whenever setOn and setOff oper-
ations are called. Thus, whenever the wrapper intercepts moveLeft
and moveRight calls, it first checks the stored state of the magnet;
if the state of the magnet is off it forces the engine to run in fast
mode by proceeding the intercepted call with fast as a value of its
parameter.

Performance

‘ Engine Arm Magnet

Figure 3. Loading Process for the Crane System

Figure 3 shows the UML sequence diagram of loading a single con-
tainer. The process of loading a container starts when the user sets
the running mode for the crane and presses the load button on the
control board. These two actions are transformed into calling sez-
Mode and load operations, respectively, on the provided interface
of the control component. When the control component receives a
load call, it requires the engine component to move right by call-
ing moveRight operation on its required interface. Upon receipt of
moveRight call, the engine does the action and requires the arm to
move down by calling moveDown operation. The arm accepts the
call, moves down and asks the magnet to latch a container from the
buffer area by calling serOn action on the arm. When the container
is latched, the engine calls the arm to move up throwing a moveUp
call. When all this done, the control requires the engine to move
left to the truck by calling moveLeft operation. The engine receives
the call, asks the arm to move down which in turn asks the magnet
to release the latched container by calling setOff action.

2.1 An Optimized Crane System

Now we want to enhance the functionality of the crane system by
forcing it to fulfill the following constraints:

C1 When the arm is not carrying a container, the crane should run
in fast mode.

C2 When the crane is loading a container on the truck, the arm
should move down slowly.

It is obvious that running the crane in fast mode when the arm is
not carrying a container enhances the performance of the crane.
Moreover, moving the arm slowly when it is carrying a container to
be released on the truck ensures the safety of the truck. We call the
above constraints performance and safety constraints, respectively.

22

Figure 4. Performance View

Since the engine and the arm already belong to the same composite,
the performance wrapper can be integrated at the crane composite
level, which gives the first view of the crane system as shown in
figure 4. This view is equivalent to the basic architecture with the
exception of adding a wrapper to a composite level. The wrapper
in figure 4 is presented as dashed border rectangle around the crane
component. The small dark squares in the figure indicate the in-
tercepted interfaces. We use the same notation for all the wrappers
described in this paper.

2.1.2 Fulfilling Truck Safety Constraint

Considering truck safety in the crane system can be made by inte-
grating a wrapper around the control and the engine components.
This way, the integrated wrapper will intercept calls on provided
interfaces of the control and required interfaces of the engine. The
wrapper stores and updates the state on which the control is under
loading or unloading a container. So that, whenever the second call
of moveDown is intercepted, on the required interface of the en-
gine, and the control is being loading a container it proceeds the
moveDown call in slow mode.

In this case, we need another view of the component architec-
ture of the crane where the control and the engine are encapsulated
in the same composite. Figure 5 shows this required view.

Views make it simple to fulfill either constraints C1 and C2
shown above. However, when we consider both constraints, wrap-
pers crosscut each other as shown in figure 6. It is obvious that the
structure of the component system must be transformed in order to
enable both wrappers at the same time. In the following, we intro-
duce a specialized language for views definitions and show how it
can be integrated with fractal in order to weave crosscutting wrap-
pers.

Truck-Safety

Controlled-Engine

Control Engine Arm

Magnet

h A

Figure 5. Truck Safety View

Truck-Safety port.
—_ erformance

‘ Engine Magnet

Figure 6. Wrappers Crosscut Phenomenon

3. VIL: Views Language

In this section we introduce a specialized language we call VIL
for managing views in component models. Views can be specified
using VIL to deal with the integration of wrappers into component
architectures. We start by reviewing FPath language [5], used in
VIL to access the required components which are going to be
integrated into the same view.

3.1 FPath Query Language

FPath is a query language developed to deal with the introspection
of the Fractal component architectures [5]. FPath uses declarative
path expressions to introspect Fractal elements: components, inter-
faces and attributes.

engPath = $root/child :: x[name(.) = crane]/child ::
x[name(.) = engine]

For example, engPath is an FPath expression that provides an
access to the engine component in the architecture given by figure
2. This expression is divided into three steps separated by ”/”.
The first step ”$root” indicates a value of an FPath variable to
denote the component representing the root of the crane system.
This later is considered as an input to the next step. The second step
”child :: x[name(.) = crane]” takes the root component, denoted
by the previous step, checks all its inner components “child :: *”
and selects the one who has the name crane ”[name(.) = crane]”.
The third step “child :: x[name(.) = engine]”, which is similar
to the second step, starts from the crane, denoted by the previous
step, and provides an access to the engine component by checking
all its inner components and selects the one who has the name
engine. Similarly, crnPath and ctr Path provide accesses to the
crane and the control components in the crane system architecture,
respectively.

crnPath = $root/child :: x[name(.) = crane]
ctrPath

$root/child :: x[name(.) = control]

3.2 VIL Language

Now we describe the views introduced in section 2.1 using VIL.
As described in section 2.1.1, performance view wraps the crane
component, intercepts all its provided and required interfaces. This

can be expressed in VIL as follows:
Vi = view crnPath

In VIL, the view keyword defines a view for a component architec-
ture by wrapping the component described by crnPath expression
and intercepts all its provided and required interfaces.

Besides view keyword, req and prov keywords are used
to define views by wrapping a component and intercept all its
required and provided interfaces, respectively. Moreover, a wrapper
may be interested to intercept calls on only some interfaces of a
component, in this case, we use the ”c except s” expression to
indicate that the corresponding wrapper intercepts all the interfaces
of the component ¢ except those defined in s where s is a set of
interface names.

In the case where the components that are going to be wrapped
do not belong originally to the same composite, different sub-views
should be defined each of which wraps one component and in-
tercepts only its concerned interfaces. For example, in the truck
safety case, the control and the engine components do not belong
to the same composite; so, we need to define two sub-views, one
to wrap the control and intercept all its provided interfaces and a
second to wrap the engine and intercept all its required interfaces.
These two sub-views can be defined in VIL as ”prov ctrPath”
and “req engPath” respectively. The complete view can be de-
fined by composing sub-views using predefined views composition
operators. For truck safety case, the two above sub-views can be
composed using the ”LI” (i.e. union) operator. The result view de-
scribes the act of introducing a composite that wraps all the com-
ponents defined by all its sub-views and intercepts all the interfaces
intercepted by all its sub-views. The following is the complete VIL
expression describing the truck safety view:

Vo = prov ctrPath Ll req engPath

Besides U operator, I’ and ”—"" operators are used to describe
intersection and difference operations on views. These three opera-
tors are used to extend the scope of wrappers, to determine conflicts
on wrappers and to separate the scope of one wrapper from another
in views, respectively. These operators are inspired by those defined
in set theory. The following is the complete syntax we propose for
the VIL language:

vE€View == viewe|reqe|prove|uv; excepts
‘ vluv2|vll‘lv2|v17v2

VIL is portable, declarative and robust language. VIL is portable
because it does not depend on a specific component model, it is an
independent language which can be integrated into different com-
ponent models. We will show later in the next section how VIL can
be integrated into Fractal component model. VIL inherits its declar-
ative property from the FPath language [5]. Moreover, views can
be composed using a set of declarative operators which enable pro-
grammers to define new abstractions (such as controlled-engine)
on component architectures. Finally, when a component architec-
ture is reconfigured, some views definitions may remain valid. For
example, adding a new component between the engine and the arm
components on the architecture depicted in figure 6 does not alter
neither the performance nor the truck-safety views. Of course, ar-
bitrary modifications of component architectures may also break
views.

4. VIL Mapping to Fractal

In this section, we show how VIL can be integrated into Fractal
Component Model [3]. We suppose here that the reader is familiar
with Julia implementation of Fractal and Fractal-ADL. Fractal uses
an Architecture Description Language (ADL) to describe compo-
nent architectures. It supports hierarchies, introspection and com-

23

ponent sharing. We distinguish two cases for views mapping: the
first case is when the components to be wrapped are directly re-
lated to each other and already belong to the same composite. Here
we need just to associate a controller to that composite in order to
intercept its interfaces and implement the wrapper behavior.

The second and more interesting case is when the components
to be wrapped do not belong to the same composite or their are not
directly related to each other. In this case view mapping is divided
into two steps. The first step consists in finding the closest common
parent of the components to be wrapped. This can be done using
FPath language: Consider ¢; and c2 two different components,
the following FPath expression provides a set of all their common
parents including the root component:

e = c1/ancestor :: x[in(cz /ancestor :: *)]

The ”c1 /ancestor :: ™ sub-expression returns the set of all the
ancestors of c; including the root component. With the predicate
”in” presented between square brackets, only the ancestors of c;
that belong to the set of ancestors of c> will be returned. The closest
parent c belongs to that set and has the following particularity:
descendant(c) N e = ¢ which means that the descendants of the
closest parent do not belong to the set returned by e.

The second step consists in adding a new composite as an
inner component of the common parent of ¢; and cz found by
the previous step. The new composite declares ¢; and c2 as its
inner components sharing them with their common parent. This
way, the original architecture is not affected by views integration.
Integrating a view means associating a controller to each shared
component. The added controller intercepts calls and route them
to the nesting composite. Figure 7 shows how the performance
and truck safety views are integrated into the Fractal component
architecture of the crane system. In this figure, the performance
view is integrated following the first case and truck safety view is
integrated following the second case. The component architecture
transformation becomes a tedious and error prone task when the
architecture grows. Our approach makes it possible to automatize
this task.

Truck-Safety

Figure 7. Views in Fractal Component Model

Figure 8 shows the equivalent Fractal-ADL code of the architecture
given in Figure 7. The underlined lines of code is the ones that can
be generated automatically as a result of analyzing the following
VIL expression that describes truck safety view:

Vs = prov ($root/control) U req ($root/child ::
crane/child :: engine)

5. Wrappers Interactions

We have shown how CI1 and C2 constraints can be satisfied by
introducing wrappers. We have also shown how both wrappers
implementing C1 and C2 can be introduced at the same time in an
automatically transformed architecture. In this case, the intercepted

24

<component name=root>
<component name=control>
<controller name=prov>
</component>
<component name=crane>
<component name=engine>

<controller name=req>
</component>

</component>
<binding >
<controller name = performance>

</component>

<component name=controlled-engine>
<component name=control definition=/control>
<component name=engine definition=/crane/engine>
<controller name=truck-safety>

</component>

<binding >

</component>

Figure 8. Views Integration into Fractal-ADL

interfaces by both wrappers are disjoint and they are not in conflict
with each other. However, this is not a general rule. So, we cannot
consider that two wrappers are not in conflict just because they
do not intercept common interfaces. As counterexample, let us
consider the following saving energy constraint:

C3 After carrying a thousand of containers in a day the arm
should run in slow mode.

Saving energy view requires the control and the engine components
to be in the same composite. This time, the wrapper intercepts the
provided interfaces of the control and the required interfaces of the
engine. When load and unload calls are intercepted, the wrapper
updates the number of carried containers. When the threshold is
reached, the wrapper forces all the subsequent calls of moving the
arm up and down to be in slow mode.

Consider the intercepted calls by the wrappers implementing C2
and C3, respectively. They are not disjoint, but when the wrappers
intercept common calls (i.e. moveUp and moveDown) they agree to
run them in slow mode. Indeed, C2 forces the arm to move down
slowly in some cases (i.e. when it is loading the truck) and C3
forces the arm to move up and down slowly in some cases (i.e. when
the threshold is reached). So, when the wrappers implementing C2
and C3 are applied at the same time, both constraints are once again
satisfied.

Now consider the case of C1 and C3. The intercepted calls
by their wrappers are disjoint. However, when both wrappers are
applied at the same time, both constraints are not satisfied. In fact,
both constraints can not be satisfied. Indeed, while the performance
view forces the crane (and the arm) to run in fast mode when the
arm is empty, the saving energy view forces the arm to run in slow
mode once the threshold number of carried containers is reached.
The exact behavior at run time depends on the implementation.
Possible outcomes are:

e only one constraint is satisfied, because the first wrapper to be
applied overrides the second one

e only one constraint is satisfied, because the second wrapper to
be applied overrides the first one

e or worse, none of the two constraints is satisfied, because the
implementation interleaves wrappers code.

Unsurprisingly, these conflicts are similar to aspect interactions.
We believe that a support for conflicts detection and resolution
is mandatory for aspectualizing component models. It is simple
in VIL to detect views intersections. But as we have seen, this
information is not sufficient in general to detect conflicts. Related
work on aspect interactions [12] is a good starting point for future
study. We also believe that component models offer properties
such as protocols or contracts that could help in conflict detection.
Finally, the notion of views could also help to specify what a
conflict is and how it can be solved. For instance if a wrapper
introduces transactions, we could specify that nested wrappers (i.e.
nested transactions) are not allowed, or we could also declare that
it is allowed to automatically extend the scope of a wrapper (i.e.
it wraps more components) in order to expand the corresponding
transaction.

6. Related Work

Many works are dedicated to aspectualize component models.
However, most of them are interested in a specific component
model and all of those works have failed to satisfy the two fol-
lowing requirements: (1) integrate aspects into component models
in a natural way and (2) handle aspects interactions. In our opinion,
their failure is due their lack of expressiveness as well as their lack
of a formal model to analyze and verify properties on the result
aspectualized architectures.

Some of the proposals to aspectualize component models (e.g.,
FAC [8], FRACTAL-AOP [6], SAFRAN [4]) propose to extend
component models with aspect-oriented concepts. Others (e.g.,
FuseJ [9] and Caesar]J [1]) introduce new component models. To
the best of our knowledge, all of them directly transpose object-
oriented AOP concepts into existing CBSE. In particular, they rely
on Aspect]-like pointcut expressions to define where aspects weave
components. Our approach relies on alternative views to get rid of
the tyranny of the primary decomposition and naturally introduces
crosscutting at the level of components.

In all models but JAsCo, aspects are components. Currently in
our proposal a wrapper is not always a component. When an aspect
is a component, this promotes aspects reuse and enable to consider
aspects of aspects. It should be studied how our approach can be
extended in order to consider aspects of aspects. In the other hand,
no aspectualized component model but JAsCo, proposes conflict
detection support (beyond Aspect]-like detection of overlapping
crosscut). JAsCo offers an API dedicated to compose aspects in
a programmatic way. Our approach introduces crosscutting at the
component level and could help to study interaction (e.g.; detect
when two wrappers intersect, or when a wrapper is nested into
another).

Unlike Aspect]-like pointcut expressions [7], VIL expressions
are declarative and Aspect] pointcuts are imperative. This can be
shown through the ability of VIL expressions to specify a pointcut
for different joinpoints without so much care about the actions to
be executed for each joinpoint. In the case of Aspect], pointcuts
and advices are strongly related. Moreover, VIL expressions are
not used only to specify joinpoints but also to reconfigure compo-
nent architectures in a way that wrappers can be integrated at the
right positions. Our proposal can also be compared with Composi-
tion Filter model (CF) [2, 11] in the sense that each wrapper can be
shown as an interface layer with input and output filters surround-
ing a component. However, views address more general concerns
than those specified as filters. Moreover, according to the CF model
presented in [11], filters can only be associated to only one compo-
nent where a wrapper may alter more than one component. Further-
more, even if filters can be generalized to wrap many components
it will be difficult to those filters to wrap components at different
levels of hierarchies and share states on those components.

7. Conclusion and Future Work

In this paper we proposed VIL. A specialized language for aspec-
tualizing component models. It relies on the concept of views that
alter the basic component architecture by introducing new com-
posite components. These extra composites can then be wrapped in
order to intercept their interfaces and alter their basic behaviors for
satisfy extra constraints. We have proposed a declarative language
to define views. Our language do not rely on a specific component
model. We have shown how to implement VIL in Fractal compo-
nent model. Finally, we have discussed views interactions. Indeed,
several views may share components and interact at common inter-
cepted interfaces. This may lead to a conflict between views and
violation of their satisfied constraints. However, views that do not
share components may also interact. As future work, we are inter-
ested in providing a mechanism for conflicts detection and resolu-
tion. For conflict detection, both components and views behaviors
should be considered. Each view should be associated with one or
more constrains, then the compatibility of constraints associated to
each pair of views should be checked to see whether or not they are
in conflict with each other. For conflict resolution many strategies
can be considered. We can mention as examples: associate priori-
ties to views and define rules for views applications (e.g. when v/
is applied v2 cannot be applied).

References

[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview
of Caesar]. In Transactions on Aspect-Oriented Software Development I
(TAOSD 1), vol. 3880 of LNCS, pages 135-173. Springer, 2006.

[2] L. Bergmans and M. Aksit. Composing synchronization and real-time
constraints. Journal of Parallel and Distributed Computing, 36(1):
32-52, 1996.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The
Fractal Component Model and its Support in Java. Software- Practice
and Experience, 36(11-12):1257-1284, 2006.

[4] P. C. David and T. Ledoux. Towards a Framework for self-adaptive
component-based applications. In Distributed Applications and
Interoperable Systems, vol. 2893 of LNCS, pages 1-14. Springer, 2003.

[5] P. C. David, T. Ledoux, M. Léger, and T. Coupaye. FPath and FScript:
Language support for navigation and reliable reconfiguration of Fractal
architectures. Annales des Télécommunications, 64(1-2):45-63, 2009.

[6] H. Fakih, N. Bouraqadi, and L. Duchien. Aspects and Software
Components: A case study of the Fractal Component Model. In
Proceedings of the International Workshop on Aspect-Oriented Software
Development (WAOSD 2004), 2004.

[7] G. Kiczales and M. Mezini. Aspect-Oriented Programming and
Modular Reasoning. In Proceedings of the 27th international conference
on Software engineering (ICSE’05), pages 49-58. ACM, 2005.

[8] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A
Component-based and Aspect-oriented model for software evolution. In-
ternational Journal of Computer Applications in Technology, 31(1/2):94-
105, 2008.

[9] D. Suvée, B. D. Fraine, and W. Vanderperren. A symmetric and unified
approach towards combining aspect-oriented and component-based
software development. In Component-Based Software Engineering
(CBSE), vol. 4063 of LNCS, pages 114-122. Springer, 2006.

[10] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond
Object-Oriented Programming. Component Software Series. ACM Press
and Addison-Wesley, 2nd edition, 2002.

[11] L. Bergmans and M. Aksit. Composing Crosscutting Concerns Using
Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp.
51-57, October 2001.

[12] R. Douence, P. Fradet, and M. Sudhot. A framework for the detection
and the resolution of aspect interaction. In GPCE’06: Proceedings of the
1st ACM SIGPLAN/SIGSOFT conference on Generative programming
and component engineering, pages 173-188, Springer-Verlag, 2002.

25

	Session 1: Adepts of Code and the Wizards of OS
	Towards Reusable Aspects: the Callback Mismatch Problem (Maarten Bynens, Dimitri Van Landuyt, Eddy Truyen, Wouter Joosen)
	Abstract
	1. Introduction
	2. The callback mismatch problem
	2.1 Problem definition
	2.2 Motivating Example
	2.3 Minimal solution in AspectJ

	3. Approaches
	3.1 Explicit Pointcut Interfaces
	3.2 Type parameters
	3.3 Caesar
	3.4 Subject-oriented programming

	4. Conclusion
	References
	Appendix
	A. Entire example

