
Technische Berichte Nr. 33

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the

9th Workshop on

Aspects, Components,

and Patterns for

Infrastructure Software

(ACP4IS '10)

hrsg. von
Bram Adams, Michael Haupt, Daniel Lohmann

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 33

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns

for Infrastructure Software
(ACP4IS '10)

herausgegeben von

Bram Adams
Michael Haupt

Daniel Lohmann

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

Universitätsverlag Potsdam 2010
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2010/4122/
URN urn:nbn:de:kobv:517-opus-41221
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41221

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-043-4

9th Workshop on
Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS ’10)

co-located with the 9th International Conference on
Aspect-Oriented Software Development (AOSD)
March 16, 2010, Rennes, France

Workshop Home Page: http://aosd.net/workshops/acp4is/2010/

Aspect oriented programming, component models, and design patterns are modern and
actively evolving techniques for improving the modularization of complex software. In
particular, these techniques hold great promise for the development of “systems infras-
tructure” software, e. g., application servers, middleware, virtual machines, compilers,
operating systems, and other software that provides general services for higher-level ap-
plications. The developers of infrastructure software are faced with increasing demands
from application programmers needing higher-level support for application development.
Meeting these demands requires careful use of software modularization techniques, since
infrastructural concerns are notoriously hard to modularize.

Aspects, components, and patterns provide very different means to deal with infras-
tructure software, but despite their differences, they have much in common. For instance,
component models try to free the developer from the need to deal directly with services
like security or transactions. These are primary examples of crosscutting concerns, and
modularizing such concerns are the main target of aspect-oriented languages. Simi-
larly, design patterns like Visitor and Interceptor facilitate the clean modularization of
otherwise tangled concerns.

Building on the ACP4IS meetings at AOSD 2002–2009, ACP4IS ’10 aims to provide
a highly interactive forum for researchers and developers to discuss the application of
and relationships between aspects, components, and patterns within modern infrastruc-
ture software. The goal is to put aspects, components, and patterns into a common
reference frame and to build connections between the software engineering and systems
communities.

Scope of the Workshop

The importance of “systems infrastructure” software—including application servers, vir-
tual machines, middleware, compilers, and operating systems—is increasing as applica-
tion programmers demand better and higher-level support for software development.
Vendors that provide superior support for application development have a competitive
advantage. The software industry as a whole benefits from an increased base level of
abstraction, decreasing the need for application programmers to continually “reinvent
the wheel”.

These trends, however, mean that the demands on infrastructure software are in-
creasing. More and more features and requirements are being “pushed down” into the

1

infrastructure, and the developers of systems software need better tools and techniques
for handling these increased demands. The design and implementation of systems-level
software presents unique opportunities and challenges for AOSD techniques. These chal-
lenges include the need to address the inherent complexity of infrastructure software,
the need for strong assurances of correct and predictable behavior, the need for maxi-
mum run-time performance, and the necessity of dealing with the large body of existing
systems software components.

This workshop aims to provide a highly interactive forum for researchers and devel-
opers to discuss the application of and relationships between aspects, components, and
patterns within modern infrastructure software. The goal is to put aspects, compo-
nents, and patterns into a common reference frame and to build connections between
the software engineering and systems communities.

This year’s workshop puts special focus on the challenges in system’s programming
introduced by multi-core platforms. As hardware-supported parallelization becomes
mainstream, there is an increasing pressure on systems infrastructure to exploit this
new parallelism to its fullest. However, the non-modular nature of parallel execution,
and the numerous levels at which parallelism can be achieved (application, systems
infrastructure, hardware or even a combination thereof) make it hard to come up with
an intuitive, yet efficient parallel architecture. We solicited novel ideas and experience
reports on this emerging research area.

Other topics in the scope of the workshop include, but are not restricted to:

• Approaches that combine or relate component-, pattern-, and aspect-based tech-
niques

• Dimensions of infrastructure software quality including comprehensibility, config-
urability (by implementers), customizability (by users), reliability, evolvability,
scalability, and run-time characteristics such as performance and code size

• Merits and downsides of container-, ORB-, and system-based separation of con-
cerns

• Architectural techniques for particular system concerns, e.g., security, static and
dynamic optimization, and real-time behaviour

• Design patterns for systems software

• Component, pattern, and aspect “mining” within systems code

• Application- or domain-specific optimization of systems

• Reasoning and optimization across architectural layers

• Quantitative and qualitative evaluations

The workshop is structured to encourage fruitful discussions and build connections
between workshop participants. To this end, approximately half of the workshop time

2

will be devoted to short presentations of accepted papers, with the remaining half devoted
to semi-structured discussion groups. Participants will be expected to have read the
accepted papers prior to the workshop, to help ensure focused discussions.

A novelty at ACP4IS ’10 is that we will invite workshop attendees to give “sponta-
neous” short presentations on their work if they see a relation to topics being presented
and discussed at the workshop. These presentations will be limited to about ten minutes,
and are intended to provide additional structured input to discussions. Spontaneous pre-
sentations will be asked for during the workshop; no paper needs to be submitted, and
no publication is associated with them. There will be a session dedicated to them, just
prior to discussion.

3

Organizers

Bram Adams is a post-doctoral fellow in the Software Analysis and
Intelligence Lab at Queen’s University (Canada), and is also affiliated
with the SOFT lab at the Vrije Universiteit Brussel (Belgium). He
obtained his PhD at the GH-SEL lab at Ghent University (Belgium).
Bram has a wide range of research interests, ranging from software
evolution in general, to the co-evolution of source code and the build
system, and advanced separation of concerns. In his PhD, Bram
developed a powerful aspect language for C (Aspicere), which he

applied to large legacy C systems for reverse-engineering their behavior, re-engineering
exception handling idioms and refactoring conditional compilation. Bram served in the
program committees of WCRE, IWPSE and ACP4IS, and co-organized the first Practices
of Linking Aspect Technology and Evolution workshop (associated with AOSD 2009).
Bram is a member of the IEEE.

Michael Haupt is a post-doctoral researcher and lecturer in the
Software Architecture Group at Hasso-Plattner-Institut in Potsdam.
His research interests are in improving the modularity of complex
software system architectures as well as in implementing program-
ming languages, in which latter area his main focus is on faithfully
regarding programming paradigms’ core mechanisms as primary sub-
jects of language implementation effort. Michael holds a doctoral
degree from Technische Universität Darmstadt, where he has worked

on the Steamloom virtual machine to provide run-time support for AOP languages.
Michael has served as PC member for ECOOP 2008, as reviewer for TAOSD and IEEE
TSE, and has been supporting reviewer for the AOSD, ECOOP, ICSE, FSE, MODELS,
and VEE conference series. He has co-organized the Dynamic Aspects Workshop series
in conjunction with the AOSD conferences, and the Virtual Machines and Intermediate
Languages workshop series in conjunction with the AOSD and OOPSLA conferences.
Michael is a member of the ACM.

Daniel Lohmann is an assistant professor at the Distributed Sys-
tems and Operating Systems group at Friedrich-Alexander University
Erlangen-Nuremberg. He has been conducting research in the do-
main of (embedded) operating systems, software product lines, and
aspect oriented programming since 2003. Daniel holds a doctoral de-
gree from Friedrich-Alexander University; in his PhD he developed
CiAO, the first purely aspect-oriented operating system. His current

research activities are focused on applying AOP ideas for the fine-grained configuration
of nonfunctional properties in system software and the new challenges of the many-
core area. Daniel co-organized the MMB 2006 workshop on Nonfunctional Properties
of Embedded Systems and the ACP4IS 2008 and 2009 workshops. Before joining the
PhD programme at Friedrich-Alexander University he worked as a software developer,
consultant and IT trainer. Daniel is a member of the ACM, GI, and EUROSYS.

4

Organization

Program Committee

Mehmet Aksit University of Twente
Shigeru Chiba Tokyo Institute of Technology
Eric Eide University of Utah
Michael Engel Technische Universität Dortmund
Franz Hauck Ulm University
Julia Lawall DIKU
Hidehiko Masuhara University of Tokyo
Hridesh Rajan Iowa State University
Doug Simon Sun Microsystems Laboratories
Olaf Spinczyk University of Dortmund
Eric Wohlstadter University of British Columbia
Roel Wuyts IMEC and K.U. Leuven

Steering Committee

Eric Eide University of Utah
Olaf Spinczyk University of Dortmund
Yvonne Coady University of Victoria
David Lorenz University of Virginia

Sponsor

The publication of this proceedings volume was sponsored by the AOSD-Europe Network
of Excellence, http://www.aosd-europe.net/.

5

Table of Contents

Session 1: Adepts of Code and the Wizards of OS

Nicolas Palix, Julia L. Lawall, Gaël Thomas, Gilles Muller,

How Often Do Experts Make Mistakes? . 9

Maarten Bynens, Dimitri Van Landuyt, Eddy Truyen, Wouter Joosen,

Towards Reusable Aspects: the Callback Mismatch Problem . 17

Session 2: Scanners and Sensors for Components and Code

Abdelhakim Hannousse, Gilles Ardourel, Rémi Douence,

Views for Aspectualizing Component Models . 21

Fan Yang, Hidehiko Masuhara, Tomoyuki Aotani, Flemming Nielson,

Hanne Riis Nielson,

AspectKE*: Security Aspects with Program Analysis for Distributed Systems 27

Session 3: Fantastic Frameworks and Infamous Infrastructures

Bholanathsingh Surajbali, Paul Grace, Geoff Coulson,

Preserving Dynamic Reconfiguration Consistency in Aspect Oriented Middleware . . . 33

William Harrison,

Malleability, Obliviousness and Aspects for Broadcast Service Attachment 41

7

How Often do Experts Make Mistakes?

Nicolas Palix

DIKU-APL
University of Copenhagen

Denmark

Julia L. Lawall

INRIA Regal/LIP6
University of Copenhagen

France/Denmark

Gaël Thomas Gilles Muller

INRIA Regal/LIP6
France

Abstract

Large open-source software projects involve developers with a
wide variety of backgrounds and expertise. Such software projects
furthermore include many internal APIs that developers must un-
derstand and use properly. According to the intended purpose of
these APIs, they are more or less frequently used, and used by de-
velopers with more or less expertise. In this paper, we study the
impact of usage patterns and developer expertise on the rate of
defects occurring in the use of internal APIs. For this preliminary
study, we focus on memory management APIs in the Linux ker-
nel, as the use of these has been shown to be highly error prone
in previous work. We study defect rates and developer expertise,
to consider e.g., whether widely used APIs are more defect prone
because they are used by less experienced developers, or whether
defects in widely used APIs are more likely to be fixed.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Process metrics, Product metrics; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Patterns

General Terms Measurement, Languages, Reliability

Keywords History of pattern occurrences, bug tracking, Herodotos,
Coccinelle

1. Introduction

To ease development, large-scale software projects are often decom-
posed into multiple interdependent and coordinated modules. Soft-
ware developers working on one module must then be aware of,
and use properly, functions from the APIs of other modules. When
a usage protocol is associated with these API functions, it must be
carefully followed to ensure the reliability of the system. Large-
scale software projects typically also impose coding conventions
that should be followed throughout the software project and are
not specific to any given API. These conventions ease code under-
standing, facilitate code review, and ease the maintenance process
when many developers are involved in a particular piece of code
and when new developers begin to work on the software project.

In this paper, we investigate the degree to which developers at
different levels of expertise respect API usage protocols and cod-
ing conventions. We focus on the Linux operating system, which
as an open source system makes its complete development history
available. Furthermore, we focus on memory management APIs, as
their use has been found to be highly error prone [3]. The Linux ker-
nel indeed provides both a general-purpose memory management
API and highly specialized variants. Thus, it is possible to com-
pare defect rates in APIs that have a related functionality but that
require different degrees of expertise to use correctly. We specifi-
cally assess the following hypotheses that may be considered to be
generally relevant to open-source software:

1. Defects are introduced by less experienced developers.

2. Frequently used APIs are used by developers at all levels of
experience, and thus have a high rate of defect occurrences.
Nevertheless, these defects are likely to be fixed.

3. Rarely used APIs are used by only highly experienced develop-
ers, and thus have a low rate of defect occurrences. Neverthe-
less, these defects are less likely to be fixed.

4. Coding style conventions are well known to experienced devel-
opers.

5. The frequency of a defect varies inversely with its visible im-
pact, i.e., defects causing crashes or hangs occur less often,
while defects that have a delayed or cumulative effect such as
memory leaks occur more frequently.

To assess these hypotheses, several challenges must be ad-
dressed. First, we need to mine the Linux code base to find the
occurrences of defective code across the history of the different
versions of the software project. Next, we need to identify the de-
veloper who introduced each defect. Finally, we need a means to
evaluate the level of expertise of the developer at the time the de-
fect was introduced. To address these issues, we use the Coccinelle
source code matching tool to detect defects in the uses of memory
management functions, focusing specifically on code that violates
the usage protocol of the memory management API, code that
does not satisfy the global Linux kernel coding style, and code that
uses memory management functions inefficiently. We then use the
Herodotos tool [7] to correlate the defect occurrences across the
different versions. Finally, we use the git [4] source code manager
used by Linux kernel developers for version control in order to
extract information about developer expertise.

2. Linux Memory Management APIs

In user-level code, the most common memory management func-
tions are and . These functions are, however, not avail-
able at the kernel level. Instead, the kernel provides a variety of
memory management APIs, some generic and others more special-
purpose. We first describe the commonalities in these APIs and then
present four Linux kernel memory management APIs in detail.

2.1 Common behavior and potential defects

All of the memory management APIs defined in the Linux kernel
impose essentially the same usage protocol, as shown in Figure 1
and illustrated by the following code:

x alloc size flag

if x return −ENOMEM

free x

9

choose flag

free resulttest result

choose size

construct call

Figure 1. Usage protocol for Linux kernel memory management
functions

Name Description Potential Impact

sizeof Size argument expressed as the size of a
type rather than the result of dereferencing
the destination location.

coding style

noderef Size argument expressed as the size of a
pointer, rather than the pointed type.

buffer overflow

flag Flag that allows locking when a lock is
already held.

hang

cast Cast on the result of an allocation function. coding style
null test Missing NULL test on the result of an allo-

cation function (inverted when NULL test
is not required).

crash

free Missing deallocation of a pointer that is
only accessible locally.

memory leak

memset Explicit zeroing of the allocated memory
rather than allocating using a zeroing allo-
cation function.

inefficient

array alloc Allocation of an array without using a dedi-
cated array-allocating function.

buffer overflow

Table 1. Defect kinds studied

In this usage protocol, the allocation function takes two arguments:
a size indicating the number of bytes to allocate and a flag indicat-
ing how the allocation may be carried out. The allocation function
then returns either a pointer to the allocated region of memory or

, indicating that some failure has occurred. This result must
thus be tested for before using the allocated memory. Finally,
the allocated memory should be freed when it is not useful any
more, using the corresponding deallocation function.

Each step in this usage protocol introduces possibilities for
defects. These defects may be violations of the Linux kernel coding
style, that at best only have an impact on the maintainability of the
code, or they may induce runtime errors, such as buffer overflows,
hangs, crashes, or memory leaks. These defects are summarized in
Table 1 and are described in detail below, for each step of the usage
protocol:

Choose size The size argument to a memory allocation function
is typically determined by the type of the location that stores the
result of the call. One possibility is to express the size explicitly in
terms of the type of this location (defect “sizeof”):

x kmalloc sizeof struct foo

The Linux kernel coding style, however, suggests to express the
size as the size of the result of dereferencing the location itself:

x kmalloc sizeof x

This strategy makes the size computation robust to changes in the
type of .

The approach preferred by the Linux kernel coding style, how-
ever, introduces the possibility of another kind of defect, in which
the size is computed in terms of the pointer itself, instead of what
it references, e.g.:

x kmalloc sizeof x

In this case, only a few bytes are allocated, leading to a likely
subsequent buffer overflow (defect “noderef”).

Pattern
Memory Management API

Standard Node Cache Bootmem

basic 4 240 52 264 105
array 363 N/A N/A N/A
zeroing 5 125 25 96 N/A

TOTAL 9 728 77 360 105

Table 2. Number of occurrences of the memory allocation func-
tions in Linux 2.6.32 (released December 2009)

Choose flag The flag argument indicates some constraints on the
memory allocation process. The most common values are

, indicating that the memory allocation process may sleep
if adequate memory is not immediately available, and ,
indicating that such sleeping is not allowed, typically because the
function is called in a context in which interrupts are turned off.
Using where could be used can cause
the memory allocation to fail unnecessarily, while using

where is required can hang the kernel (defect
“flag”).

Construct call The Linux kernel memory allocation functions
have return type , while the location that stores the result
typically has some other type, such as that of a pointer to some
structure. Some programmers thus cast the result of the memory
allocation to the destination type. Such a cast is, however, not
required by the C standard and is against the Linux kernel coding
style (defect “cast”).

Test result If the pointer resulting from a call to an allocation func-
tion is not immediately tested for being NULL, then the first deref-
erence of a NULL result will normally crash the kernel (defect
“null test”). This dereference may be far from the allocation site,
making the problem difficult to diagnose.

Free result In Linux kernel code, a common pattern is for one
function to allocate multiple resources. Each of these allocations
may fail, in which case all of the previously allocated resources
must be freed. Neglecting to free allocated memory in the case of
such a failure causes a memory leak (defect “free”).

2.2 The specific APIs

The Linux kernel provides a number of different memory manage-
ment APIs for different purposes. These differ in when they can be
invoked and the features they provide. The APIs we consider are
described below. Table 2 summarizes the usage frequency of their
allocation functions.

Standard is the standard memory allocation function
in the Linux kernel, comparable to at the user level. Two
variants have recently been introduced. was introduced
in Linux 2.6.9 (October 2004) for allocating arrays. This function
takes the number of elements and the size of each element as sep-
arate arguments, and protects against the case where their product
overflows the size of an integer. The elements of the array are also
initialized to 0. was introduced in Linux 2.6.14 (October
2005) for allocating a region of memory in which all elements are
initialized to 0 but that is not an array. Memory allocated with all
of these functions is freed using .

Node targets NUMA architectures, where mem-
ory may be local to a processor or shared between a subset of the
processors, and access to non-local memory is very expensive. This
function thus takes an extra argument that specifies the node that
should be associated with the allocated memory.
is ’s zeroing counterpart. Memory allocated with
both of these functions is freed using . Some other variants

10

of these functions exist that aid in debugging, but these are rarely
used and we do not consider them further.

Cache allocates memory from a previously
allocated memory cache. is its zeroing coun-
terpart. Memory allocated with both of these functions is freed us-
ing .

Boot These functions must be used to allocate memory during
the booting process. They are analogous to in that the
memory is already zeroed. They furthermore always return a valid
pointer, never ; in the case of an allocation error, the kernel
panics. These functions do not take a flag argument. We consider
only the allocation functions ,

, , and .
Memory allocated with all of these functions is freed using

.

In addition to the defect types outlined in Section 2.1, the dif-
ferent features of the memory management functions within each
API introduce the possibility of using one of these functions in the
wrong situation. In terms of defects, we consider cases where the
zeroing and array allocating variants, if available, are not used and
the corresponding code is inlined into the call site (defects “mem-
set” and “array alloc”, respectively). For the func-
tions, which do zero the memory and do not return , we con-
sider code that performs unnecessary zeroing and test opera-
tions. These mistakes essentially only impact the efficiency of the
code, but may also impact readability, and thus subsequent code
maintenance.

3. Tools

To carry out our study, we use the following tools: 1) Coccinelle to
find occurrences of defects in recent versions of the Linux source
tree, 2) Herodotos to correlate these occurrences across multiple
versions, and 3) git to identify the developer responsible for intro-
ducing each defect occurrence and to obtain information about the
other patches submitted by this developer. Coccinelle is applicable
to any software implemented in C. Herodotos is applicable to any
software at all, as it is language-independent. Git can also be used
to access developer information for any software, as long as it or
some compatible tool has been used as the version control manager
during the software’s development.

3.1 Coccinelle

Coccinelle is a tool for performing control-flow based pattern
searches and transformations in C code [2, 6]. It provides a lan-
guage, SmPL, for specifying searches and transformations and an
engine for performing them. In this work, we use SmPL to cre-
ate patterns representing defects and then use Coccinelle to search
for these patterns across different versions of the Linux source
tree. Patterns are expressed using a notation close to source code,
but may contain metavariables to represent arbitrary sub-terms. A
metavariable may occur multiple times, in which case all occur-
rences must match the same term. SmPL furthermore provides the
operator “ ”, which connects separate patterns that should be
matched within a single control-flow path. This feature allows, for
example, matching an execution path in which there is first a call
to a memory allocation function and then a return with no interven-
ing save or free of the allocated data, amounting to a memory leak.
More details about Coccinelle, including numerous examples, are
found in previous work [2, 5, 6].

3.2 Herodotos

To understand how defects have been introduced in the Linux ker-
nel, we have to correlate the defect occurrences found by Coc-

Pattern
Memory Management API

Standard Node Cache Bootmem

sizeof 30.64% 28.57% N/A 16.19%
noderef 0 0 N/A 0.95%
flag 0.01% 0 N/A N/A
cast 0.79% 2.60% 6.39% 29.52%
null test 1.04% 6.49% 3.06% 8.57%
free 0.10% 0 0.56% 0
memset 2.92% 1.92% 3.03% 1.90%
array alloc 3.32% 2.60% 0.28% 0.95%

Table 3. Comparison for Linux 2.6.32

cinelle across multiple versions. Indeed, the position of a defect
may change across versions due to the addition or removal of other
code in the same file. To correlate defect occurrences, we use the
Herodotos tool [7]. Herodotos uses Unix diff to identify the differ-
ences in each affected file from one version to the next and thereby
predicts the change in position of a defect. If a defect of the same
type is reported in the predicted position in the next version, they
are considered to be the same defect. Otherwise, the defect is con-
sidered to have been corrected. Herodotos also can be configured
to produce a wide variety of graphs and statistics representing the
defect history.

3.3 Git

Since version 2.6.12 (June 2005) Linux has used the version
control system [4]. Git maintains a graph representing the project
history, including commits, forks and merges. Each of these oper-
ations is referenced by a SHA1 hash code. This hash code gives
access to the changes in the repository and some related meta-
information. For instance, Git registers the name and the email of
the author and the committer of a change, short and long descrip-
tions of the change, and the date on which the change was commit-
ted.

Git includes various options for browsing the commit history.
In this work, we use git to trace the contributions of each developer.
Starting from the earliest version in which Coccinelle finds a given
defect, we use the blame option to find the name of the developer
who has most recently edited the defective line in a prior commit.
To evaluate the level of expertise of this developer, we then count
the number of patches from this developer that were accepted prior
to the one introducing the defect and the number of days between
the developer’s first accepted patch and the defective one. We
consider the level of expertise of the developer to be the product
of these two quantities.

4. Assessment

We now assess the hypotheses presented in Section 1 for the mem-
ory management APIs. To support our assessment, we have col-
lected various statistics. Table 3 presents the percentage of defect
occurrences as compared to all occurrences of each kind of mem-
ory allocation function for Linux 2.6.32, which is the most recent
version. Figure 2 presents the same information, but for all ver-
sions since Linux 2.6.12. The defect Flag is omitted, because its
frequency is very close to 0. Figure 3 presents the average lifespan
of these defects. Finally, Figure 4 presents the number of develop-
ers introducing each kind of defect (on the X axis) and their average
level of expertise, calculated as described in Section 3.3.

Our assessment of each of the five hypotheses is as follows:

Defects are introduced by less experienced developers Figure 4
shows that in most cases, the expertise of the developers who
introduce defects is indeed low, i.e., they have participated in kernel
development for only a short time and have submitted only a few
patches. But for two defect types for the Node API and for one

11

2006
2007

2008
2009

2010

0

10

20

30

40

d
ef

ec
t

%

(a) Bad sizeof

2006
2007

2008
2009

2010

0

10

20

30

40

d
ef

ec
t

%

(b) Unneeded cast of void pointer

2006
2007

2008
2009

2010

0

5

10

15

d
ef

ec
t

%

(c) Missing/unneeded NULL test

2006
2007

2008
2009

2010

0

1

2

d
ef

ec
t

%

(d) Missing free

2006
2007

2008
2009

2010

0

5

10

15

20

25

d
ef

ec
t

%

Standard
Node
Cache
Boot

(e) Unneeded memset

2006
2007

2008
2009

2010

0

1

2

3

d
ef

ec
t

%

Standard array
Standard missing deref.
Boot missing deref.

(f) Other defects

Figure 2. Defect ratio per uses for each defect kind

Sizeof

N
o deref.

Flag
Cast

N
U

LL test

Free
M

em
set

A
rray

0

1

2

3

Y
ea

rs

Standard

Node

Cache

Boot

Figure 3. Average defect lifespan

0

5

10

15

L
ev

el
 o

f
ex

p
er

ti
se Standard

Node
Cache
Boot

N
/A

N
o
 d

at
a

N
/A

N
o
 d

at
a

N
/A

N
/A

N
/A

N
/A

N
/A

5
9
1
1

2
9

5
3

 3

 3

 2

 5
9
7

 2

5
1

8
1

 2
0
3

 5

 4

4
9

5
4

 1

 1

 2

1
4
5
4

1
4

5
0

1
0

 4
6
1

Sizeof

N
o deref.

Flag
Cast

N
U

LL test

Free
M

em
set

A
rray

Figure 4. Developer expertise per allocator kind. No data means
no defects of the given type. N/A means the defect type is irrelevant
to the given API.

defect type for the Boot API, the average level of expertise is
relatively high. We conjecture that these APIs are mostly used
by experienced developers, and thus only experienced developers
introduce the defects. For Node, at least, the number of developers
in these cases is also very small.

Frequently used APIs have a high rate of defects, but these defects
are quickly fixed The Standard API is used much more frequently
than the others, and in some cases, notably sizeof and array, it has
a higher defect frequency as well. But it also has a lower defect
frequency for the remaining defect kinds. Some defect kinds show
a slight or substantial decrease in their frequency for the Standard
API, notably the use of rather than the zeroing function

. Such defects have an average lifespan of around one year,
while the lifespan of the comparable defect for the Boot API is two
years. Other defect kinds essentially remain steady, notably the non-

use of the array allocation function , which has an average
lifespan of two years. The frequency of this defect, however, is
consistently very low.

Rarely used APIs have a low rate of defects, but these defects are
rarely fixed The data in Figure 2 does not support the hypothesis
of a low rate of defects, as it is often the rarely used APIs Node,
Cache, and Boot that have the highest frequency of defects. For
example, Boot has the highest rate of improper NULL tests. In
this case, the API has the special property that a NULL test is
not needed, and thus the results show that developers are not fully
familiar with the features of this API. The defect rates are relatively
stable, without the substantial drops over time seen in the case of
the much more frequently used Standard. Defects also have a long
lifespan, notably of typically two years or more for Boot.

Coding style conventions are well known to experienced develop-
ers This hypothesis is also not supported by Figure 2. The coding
style defects Sizeof and Cast indeed have the highest frequency of
all of the considered defects, and the frequencies are highest for
Node and Boot, respectively. These are are highly specialized APIs
and thus are only likely to be used by experienced developers. It
may be that such developers have a more specialized focus, and are
thus not aware of these conventions. Or these APIs may be consid-
ered less often when doing coding style cleanups.

The frequency of a defect varies inversely with its impact Noderef
is likely to lead to a kernel crash, as much less memory is allocated
than intended. Flag can cause a kernel hang. A missing free can
cause a memory leak. All of these defect kinds do indeed occur
very infrequently, as shown by Table 3. Missing NULL tests, how-
ever, are relatively frequent, found in up to 10% of all occurrences
for the Node API. We conjecture that the memory allocation func-
tions do not return very often, and thus the impact of the
defect is not seen very often in practice.

5. Related work

The closest work to this one is our paper at AOSD 2010 [7], which
presents Herodotos. The experiments in that paper have a larger
scope, as they consider four open source projects and a wider range
of defects. In this paper, on the other hand, we consider in more
depth the defects in the use of a single type of API, in one software
project. We have also added the assessment of developer expertise
to the collected statistics. In future work, we will apply the analyses
presented here to the wider set of examples considered in the AOSD
paper.

12

Zhou and Davis assess the appropriateness of statistical models
for describing the patterns of bug reports for eight open source
projects [9]. They do not, however, distinguish between different
defect types, nor do they study the level expertise of the developers
who introduce the bugs. Chou et al. [3] do consider specific bug
types in earlier versions of Linux, but do not study developer
expertise.

Anvik and Murphy [1], and Schuler and Zimmermann [8] pro-
pose approaches to determine implementation expertise based on
mining bug reports and code repositories. However, they determine
who has expertise on a particular piece of code while we want to in-
vestigate the expertise of a developer who commits code containing
a particular defect.

6. Conclusion

In this paper, we have studied the history of a set of defect types
affecting a range of memory management APIs in the Linux kernel
code, considering both the percentage of defects as compared to
the total number of occurrences of each considered function and
the expertise of developers that introduced these defects. Based
on this information, we have assessed a collection of hypotheses,
differentiating between widely used APIs and more specialized
ones. The hypotheses that the developers who introduce defects
have less experience, that defects in the use of widely used APIs
are fixed quickly, and that defects in the use of rarely used APIs
tend to linger are largely substantiated. On the other hand, the
percentage of defect occurrences does not appear to be correlated
to the frequency of use of the API, expert developers do not seem to
be more aware of coding conventions than less expert ones, and the
frequency of a defect is not always inversely related to its potential
impact. More work will be required to assess these hypotheses in
the context of Linux and the memory management APIs, as well as
other software projects and APIs.

Availability
The data used in this paper are available at

.

References
[1] J. Anvik and G. C. Murphy. Determining implementation expertise

from bug reports. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, Minneapolis, USA, May
2007. IEEE Computer Society.

[2] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. Muller. A founda-
tion for flow-based program matching using temporal logic and model
checking. In The 36th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 114–126, Savannah, GA,
USA, Jan. 2009.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In Proceedings of the 18th ACM Sym-
posium on Operating System Principles, pages 73–88, Banff, Canada,
Oct. 2001.

[4] Git: The fast version control system. .

[5] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller, and N. Palix.
WYSIWIB: A declarative approach to finding protocols and bugs in
Linux code. In The 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, (DSN 2009), pages 43–52, Esto-
ril, Portugal, June 2009.

[6] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys
2008, pages 247–260, Glasgow, Scotland, Mar. 2008.

[7] N. Palix, J. Lawall, and G. Muller. Tracking code patterns over
multiple software versions with Herodotos. In Proc. of the ACM
International Conference on Aspect-Oriented Software Development,
AOSD’10, Rennes and Saint Malo, France, Mar. 2010. To appear.

[8] D. Schuler and T. Zimmermann. Mining usage expertise from version
archives. In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 121–124, Leipzig,
Germany, May 2008.

[9] Y. Zhou and J. Davis. Open source software reliability model: an
empirical approach. In 5-WOSSE: Proceedings of the fifth workshop
on Open source software engineering, pages 1–6, St. Louis, MO, USA,
2005. ACM.

A. SmPL files

A.1 alloc_size

r disable sizeof type expr

T T1

T x

n

p

x p T1 \ \| \ < T >

|
x p T1 n < T >

p << r p

x << r x

xtype << r T

msg x xtype

p msg

False

A.2 alloc_noderef

r

x

n

p

\ \| \ < p x >

|
n < p x >

bad deref

r p

e

c

\ p e \| p c \

bad deref

p << r p

x << r x

msg x

p msg

False

13

A.3 gfp_kernel

r

E1

p

|

|

|

|

|

|

E1

when E1

when any

\ \| \| \ < GFP KERNEL p >

p << r p

msg p file p line

p msg

False

A.4 cast_alloc

patch

patch disable drop cast

T

− T

\ \| \| \

r patch disable drop cast

T

p

T p \ \| \| \

p << r p

t << r T

msg t

p msg

False

A.5 alloc_nulltest

r

T

x

f

char C

p1 p2

x p1 T \ \| \| \
when x

when x

when x | |

x

|
f C x

|
f p2 x

|
x−>f p2

x << r x

p1 << r p1

p2 << r p2

msg x

p1 msg

p2

False

A.6 kmalloc

r exists

T

x

S

E

f l

p1 p2 p3

ptr

x p1 T \ \| \| \ S

|
x p1 T \ \| \| \

x S

< when x

when < x >

goto p3 l

|
x−>f E

>

\ \|< x >\|ptr\
|

p2

x << r x

p1 << r p1

p2 << r p2

p1 x

p in p2

p

False

14

A.7 kzalloc

Options −no includes −include headers

r

T

x

E1 E2

p1 p2

S

I

x T p1 E1 E2

when x

x | |
when x

when S

when S

when I S

p2 x

s exists

r p1 r p2

when p1

p2

s

p1 << r p1

x << r x

msg x

p1 msg

False

A.8 kcalloc

Options −no includes −include headers

r exists

E1 E2 E3

p

C1 C2

C1 C2 E3

|
C1 C2 E3

|
p E1 E2 E3

|
p E1 E2 E3

p << r p

E1 << r E1

E2 << r E2

msg E1 E2

p msg

False

B. Excerpt of the HCL file

15

Towards Reusable Aspects:
the Callback Mismatch Problem

Maarten Bynens, Dimitri Van Landuyt,
Eddy Truyen and Wouter Joosen

DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200A

B-3001 Leuven, Belgium
{maarten.bynens,dimitri.vanlanduyt,

eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract
Because software development is increasingly expensive and time-
consuming, software reuse gains importance. Aspect-oriented soft-
ware development modularizes crosscutting concerns which en-
ables their systematic reuse. Literature provides a number of AOP
patterns and best practices for developing reusable aspects based
on compelling examples for concerns like tracing, transactions and
persistence. However, such best practices are lacking for systemat-
ically reusing invasive aspects.

In this paper, we present the ‘callback mismatch problem’. This
problem arises in the context of abstraction mismatch, in which the
aspect is required to issue a callback to the base application. As a
consequence, the composition of invasive aspects is cumbersome
to implement, difficult to maintain and impossible to reuse.

We motivate this problem in a real-world example, show that
it persists in the current state-of-the-art, and outline the need for
advanced aspectual composition mechanisms to deal with this.

Categories and Subject Descriptors D.2.13 [Software Engi-

neering]: Reusable Software—Reusable libraries; D.2.11 [Soft-

ware Engineering]: Software architectures—Information hid-
ing,Languages,Patterns

General Terms Design, Documentation

Keywords reusable aspects, invasive aspects, aspect adapter

1. Introduction
Current AOP languages and approaches often result in aspects that
are tightly coupled to the base classes they act upon. For example,
it is a common technique to write advice code that involves join
point reflection to find out the necessary contextual information
[11]. Such advice code typically hard-codes assumptions about
the structure and behavior of the base classes. This has a number
of negative consequences: the aspect must be maintained together
with the base, which makes it difficult to develop aspects and
base in parallel, and leads to fragility of aspectual composition
(lack of robustness). Additionally, the resulting aspects and their
compositions are very specific to the scope of one application, and
thus not reusable, for example in an aspect library.

To address these problems, the current state-of-the-art provides
a number of techniques and patterns that involve introducing an
abstraction layer between the base and the aspect. Examples of
this are pointcut interfaces [6], annotations and marker interfaces.
Introducing an abstraction layer enables the design of reusable
aspects, in the sense that the required interface of the aspect (the

elements it needs from the base to perform its function) can be
specified uniquely in terms of abstractions that are relevant in
the scope of the aspect itself. For example, the required interface
of a reusable authentication aspect would be defined in terms of
aspect-specific abstractions such as the principal, credentials, etc.
To compose this authentication aspect to the base application,
the developer must implement and provide these abstractions, by
mapping elements of the base application (e.g. a customer in a web
shop) to the aspect abstractions (the principal). Because the aspect
is less tightly coupled to the base application, it can be reused more
easily across applications.

A common problem in the design of reusable aspects is that of
abstraction mismatch. This occurs when the elements of the base
are not fully compatible with the abstraction required by the aspect.
For example, the credentials abstraction may consist of a password
that is encoded in MD5 —meaning that the authentication aspect
expects passwords to be provided in MD5—, while the base offers
the password in plain text. The solution to this is to introduce
an adapter [5] that converts the base abstraction into the aspect
abstraction. In the example, the adapter would be responsible for
applying the MD5 hash function to the password that is provided
by the base and providing the result to the aspect.

These techniques are sufficient to realize a loose coupling be-
tween aspect and base for both spectative and regulative aspects
[9]; i.e. aspects that respectively observe the base application with-
out affecting its functionality, or observe the base application and
redirect or block the thread of execution in some cases. However,
there is a lack of similar patterns or solutions for invasive aspects

that issue callbacks to the base application to change its state or its
behavior.

In this paper, we highlight this problem, which we call the call-

back mismatch problem. This problem arises (i) in the occurrence
of abstraction mismatch, and (ii) when the aspect is required to is-
sue a callback to the base application. As a consequence, the com-
position specification of such aspects becomes cumbersome to im-
plement, difficult to maintain and impossible to reuse.

The structure of this paper is as follows. First, we define and
illustrate the callback mismatch problem in a case study and we
show that this is a realistic problem in the context of parallel devel-
opment and reuse of aspectual modules. Then, we show that in the
current state-of-the-art in aspect-oriented programming (AOP) and
related techniques, patterns and notations, this problem persists and
there is a need for advanced aspectual composition mechanisms to
deal with this issue.

17

2. The callback mismatch problem
2.1 Problem definition
Pointcuts abstract not only from interesting join points in the base
program but also expose relevant context data available at these
join points. Abstraction mismatch is the problem where the repre-
sentation of these abstractions in the base program is not compati-
ble with the representation in the aspect. Dealing with abstraction
mismatches is easy by employing a binding aspect that extracts the
necessary information from the available base abstractions.

In the presence of callbacks however, specifying such a binding
aspect becomes problematic. Callbacks happen when the reusable
aspect uses the data and/or the behavior of the base application
exposed by a pointcut to intervene in the normal control flow.
As presented in Section 1, callbacks are mostly used to realize
invasive aspects. To bind the callback to the base program, the
binding aspect needs to include adapter functionality that routes the
callback to the same base object that triggered the reusable aspect
in the first place.

This problem is more complex to overcome than traditional
problems with object-oriented libraries and frameworks (e.g. API
mismatch). As the reusable aspect is never explicitly called from
the base program, the adapter (or in this case the binding aspect)
needs to adapt in both directions. It has to make sure that the
relevant join points are translated to the aspect abstractions and
that callbacks refer back to the original object. As a result, dealing
with the callback mismatch problem takes more than solving the
mismatch separately in both directions.

In summary, the callback mismatch problem leads to the follow-
ing:

Problem summary. In the current state-of-the art of AOP lan-
guages, patterns and best practices, the required composition logic
for dealing with both (1) abstraction mismatch and (2) callbacks is
cumbersome to implement, difficult to maintain and impossible to
reuse.

2.2 Motivating Example
To illustrate the problem outlined in this paper, we present a sim-
plified example from the car crash management system (CCMS)
[10, 16]. This is a large-scale and realistic distributed application
that helps the authorities dealing with car crashes more efficiently
by (i) centralizing all information related to a car crash, (ii) propos-
ing a suitable crash resolution strategy, (iii) dispatching resource
workers (e.g. first-aid workers) to the crash site, and (iv) reassess-
ing the strategy in real-time when new information comes in.

To avoid wasting resources on prank calls and witnesses as-
suming a false identity, the correct and efficient functioning of the
CCMS depends highly on witness identity validation, which is im-
plemented in the CCMS as an aspect. More specifically, as long as
the system has not successfully validated the identity of the wit-
ness, the CCMS will operate in limited mode, meaning that only
a restricted set of resources can be assigned to that particular car
crash.

Figure 1 presents this aspect in detail. The sequence starts when
a witness calls the crisis center to report a car crash. The coordi-
nator answering the call enters the name and phone number of the
witness into the CCMS.

In this example, Witness represents the base abstraction: it
provides the information needed by the aspect.

The witness identity validation aspect is provided in the form
of a reusable identity validation aspect IdentityValidation.
The required aspect abstractions in this example are Person and
ValidationReport.

This illustrates abstraction mismatch in this example: the pro-
vided abstraction of the base application is the Witness which en-

capsulates the name, the phone number, and the validity state of the
witness. On the other hand, the required interface of the aspect con-
sists of (1) the Person abstraction which encapsulates first and last
name and phone number, and (2) ValidationReport abstraction
which encapsulates the validity state.

As pointed out in Section 2.1, this issue can be resolved by
specifying a binding aspect with adapter functionality. In this ex-
ample, we have implemented a class adapter which adapts the
interface of the Witness object to match those of Person and
ValidationReport (message 2).

After this, the aspectual composition with the witness identity

validation aspect is realized. More specifically, the pointcut for this
aspect is specified in terms of the Person interface (message 3).
Both the Person and the ValidationReport are exposed through
these join points.

Finally, the IdentityValidation component contacts a third-
party telecom operator to check whether the presented person is in-
deed listed under the given phone number. The result of this verifi-
cation activity is set via the ValidationReport interface. Because
the Witness object has previously been adapted to this interface by
the adapter, the callback ends up at the witness (message 4).

Section 2.3 illustrates in further detail how the adapter code is
affected by the callback mismatch problem.

If the adapter is implemented incorrectly, the CCMS itself will
remain in limited mode, and thus addresses the car crash ineffi-
ciently, if at all. The fact that the correct functioning of the en-
tire application depends fully on the correct realization of the call-
back stresses the importance of writing an adapter that realizes the
desired behavior in a comprehensible, maintainable and reusable
manner.

2.3 Minimal solution in AspectJ
An example implementation of the scenario is included in
the appendix. The pointcut personIdNeedsChecking in aspect
IdentityValidation is defined in terms of types Person and
ValidationReport. Person contains the data that needs to be
checked and ValidationReport captures the result of the valida-
tion. Since these types are not directly supported by the base code,
an adapter needs to be written to bind the aspect to the application.
Listing 1 shows the adapter.

1p u b l i c a s p e c t Adap te r ex tends I d e n t i t y V a l i d a t i o n {
2
3d e c l a r e parent s : Wi tnes s implements

V a l i d a t i o n R e p o r t ;
4p u b l i c vo id Witnes s . v a l i d a t i o n (boolean b) {
5v a l i d a t e (b) ;
6}
7
8d e c l a r e parent s : Wi tnes s implements Pe r s on ;
9p u b l i c vo id Witnes s . s e t F i r s t N a m e (S t r i n g s) {}
10p u b l i c vo id Witnes s . se tLas tName (S t r i n g s) {}
11p u b l i c S t r i n g Wi tnes s . g e t F i r s t N a m e () {
12re turn getName () . s p l i t (" ") [0] ;
13}
14p u b l i c S t r i n g Wi tnes s . ge tLas tName () {
15re turn getName () . s p l i t (" ") [1] ;
16}
17void around (Pe r s on w) : e x e c u t i o n (∗

Witnes s . setName (S t r i n g)) && t h i s (w) {
18p r o c e e d (w) ;
19w. s e t F i r s t N a m e (w. g e t F i r s t N a m e ()) ;
20w. se tLas tName (w. getLas tName ()) ;
21}
22
23p o i n t c u t r e p o r t (V a l i d a t i o n R e p o r t r e p o r t) :

t h i s (r e p o r t) ;
24}

18

������ � �

�

�

Figure 1. UML sequence diagram to illustrate the role of the adapter (in dark gray), and the witness identity validation aspect (in grey).

Listing 1. Example implementation of the adapter

In this scenario, the adapter has two responsibilities. Firstly, it
needs to make sure that the callbacks through ValidationReport
and Person are reified in the witness object. Therefore, the class
Witness is made to implement the types ValidationReport
(lines 3–6) and Person (lines 8–16) by means of declare par-
ents and inter-type declarations (methods setFirstName and
setLastName do not need an actual implementation because they
are not used as a callback). Secondly, it needs to propagate the rel-
evant join points on Witness as required join points on Person.
This is achieved by around advice that calls proceed and addition-
ally calls the appropriate methods (lines 17–21). Because there is
a mismatch in the sense that Person has separate concepts for first
name and last name, extra mapping functionality is required.

This example shows that even in this simple (almost trivial)
case, defining the adapter is already a cumbersome task. One that
needs to be repeated for every mismatch.

3. Approaches
This section gives an overview of existing AOP languages, tech-
niques and patterns that are related to the problem and briefly ar-
gues that none of them sufficiently addresses the callback mismatch
problem.

3.1 Explicit Pointcut Interfaces
Approaches like pointcut interface[6], XPI[15] and explicit join
points[8] do not help to define bidirectional adapters more easily.
The problem is that the aspect will always use a type description
to be able to issue callbacks. This type should then be mapped to a
concrete type in the base code. The approaches mentioned describe
join points and not types and thus cannot be used in this mapping.

In the simplified case, the aspect specifies an abstract pointcut
and the callback is issued on one of the exposed parameters. An
explicit pointcut interface can help with implementing this abstract
pointcut, but the mapping of the callback to the base code still needs
to be done. A standard unidirectional adapter is sufficient in this
case.

3.2 Type parameters
At first sight, type parameters seem to solve the callback mismatch
problem, since an instantiated type parameter will behave as an
alias for a concrete type of the base code. Unfortunately, for the
aspect to be able to issue callbacks, it needs to refer to an actual
type (and e.g. use it as a bound for the type parameter). As a result
we end up with the same problems as before.

3.3 Caesar
Caesar supports on-demand remodularization to integrate indepen-
dent components. Its model is object-based and uses virtual types,
mixin composition and the concept of wrapper recycling [12]. As
a result, Caesar provides a means to specify expressive, reusable
adapters. However, Caesar does not support remodularization of
aspect abstractions. In Caesar, the aspect composition is part of the
binding and requires manual object wrapping (assisted by dynamic
wrapper selection and wrapper recycling) [1, 13]. We can conclude
that Caesar doesn’t offer a solution to the callback mismatch prob-
lem as it not aims to bind abstract aspect compositions.

3.4 Subject-oriented programming
Subject-oriented programming [7] and its descendants Hyper/J
and Theme[4] (which all involve Multi-Dimensional Separation of
Concerns (MDSOC)) represent a more symmetrical approach to
AOSD, meaning that each concern is developed independently. One
of the key features of these approaches is declarative completeness,
meaning that each concern explicitly defines the structure and be-
havior of the classes it depends on. To assemble an application,
these concerns are composed using composition rules. Composi-
tion directives includes mechanisms for name-based merging of
classes and methods, and support for renaming, overriding, . . .

Because these mechanisms are nondirectional, they are inher-
ently adequate for specifying callbacks. However, the composi-
tion mechanisms are not expressive enough to resolve sophisticated
abstraction mismatches that can only be resolved with complex
adapters involving more than renaming, overriding and merging
classes and methods. Therefore these approaches do not solve the
abstraction mismatch problem.

4. Conclusion
This paper introduces the callback mismatch problem. In essence,
this problem is triggered by two key elements: (i) abstraction mis-
match which is resolved by applying the Adapter design pattern [5],
and (ii) invasive aspects [9], i.e. aspects that issue a callback to the
base application to change its state or behavior. This situation leads
to composition logic that is cumbersome to implement, difficult to
maintain and impossible to reuse.

We have illustrated the problem in a minimal example from a
realistic case study. Additionally, we have presented a number of
factors that deteriorate this problem. Finally, we outline a number
of related approaches in which this problem persists.

From this, we conclude that the current state-of-the-art is cur-
rently is not capable of solving the callback mismatch problem ad-
equately. In our opinion, there are three distinct research directions

19

to be explored for a solution to this problem: (i) next-generation
language constructs that allow the described adapters to be defined
more elegantly and concisely (e.g. inspired by Caesar and SOP that
provide disjoint sets of constructs that solve the problem partly), (ii)
middleware-based solutions and framework-specific services that
are capable of hiding most of the described adapter complexity, or
(iii) AOP design patterns that provide reference solutions to this
problem.

Logging, tracing and authentication are aspects addressed per-
vasively throughout AOSD research. Based on the impact that these
aspects have on the base application, they are characterized as ei-
ther spectative or regulative [9]. The large body of research into
these particular aspects classes suggests that they are well-known,
and they can sufficiently be dealt with by current AOP techniques.
As AOP matures, it is our opinion that the research focus should
shift from spectative and regulative aspects towards more invasive

aspects, which represent the most challenging class of crosscutting
concerns. We believe that the problem brought to the forefront in
this paper is a key hurdle in the road towards advanced AO lan-
guages, middleware and patterns that deal with these types of as-
pects in an efficient, maintainable, and reusable manner.

Acknowledgments
This research is supported by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, by the Research
Fund K.U.Leuven.

References
[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.

An overview of caesarj. [14], pages 135–173.
[2] Maarten Bynens and Wouter Joosen. Towards a pattern language for

aspect-based design. In PLATE ’09: Proceedings of the 1st workshop

on Linking aspect technology and evolution, pages 13–15, New York,
NY, USA, 2009. ACM.

[3] Maarten Bynens, Bert Lagaisse, Eddy Truyen, and Wouter Joosen.
The elementary pointcut pattern. In BPAOSD’07: Proceedings of the

2nd workshop on Best practices in applying aspect-oriented software

development, pages 1–2, 2007.
[4] Siobhán Clarke and Robert J. Walker. Generic aspect-oriented design

with Theme/UML. pages 425–458.
[5] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, illustrated edition edition, November
1994.

[6] Stephan Gudmundson and Gregor Kiczales. Addressing practical
software development issues in aspectj with a pointcut interface. In
Advanced Separation of Concerns, 2001.

[7] William H. Harrison and Harold Ossher. Subject-oriented program-
ming (a critique of pure objects). In OOPSLA, pages 411–428, 1993.

[8] Kevin Hoffman and Patrick Eugster. Bridging java and aspectj through
explicit join points. In PPPJ ’07: Proceedings of the 5th international

symposium on Principles and practice of programming in Java, pages
63–72, New York, NY, USA, 2007. ACM.

[9] Shmuel Katz. Aspect categories and classes of temporal properties.
[14], pages 106–134.

[10] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis manage-
ment systems: A case study for aspect-oriented modeling. Technical
Report SOCS-TR-2009-3, School of Computer Science, McGill Uni-
versity, 2009. http://www.cs.mcgill.ca/research/reports/
2009/socs-tr-2009-3.pdf.

[11] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Pro-

gramming. Manning Publications Co., Greenwich, CT, USA, 2003.
[12] Mira Mezini and Klaus Ostermann. Integrating independent compo-

nents with on-demand remodularization. In OOPSLA ’02: Proceed-

ings of the 17th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, pages 52–67, New
York, NY, USA, 2002. ACM.

[13] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar.
In AOSD ’03: Proceedings of the 2nd international conference on

Aspect-oriented software development, pages 90–99, New York, NY,
USA, 2003. ACM.

[14] Awais Rashid and Mehmet Aksit, editors. Transactions on Aspect-

Oriented Software Development I, volume 3880 of Lecture Notes in

Computer Science. Springer, 2006.
[15] Kevin J. Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang

Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Information
hiding interfaces for aspect-oriented design. In ESEC/SIGSOFT FSE,
pages 166–175, 2005.

[16] Dimitri Van Landuyt, Eddy Truyen, and Wouter Joosen. Discovery of
stable domain abstractions for reusable pointcut interfaces: common
case study for ao modeling. Technical report, Department of Com-
puter Science, K.U.Leuven, 2009. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW560.abs.html.

A. Entire example

The full source code is available at http://www.cs.kuleuven.
be/~dimitri/callbackmismatch.zip.

p u b l i c a b s t r a c t a s p e c t I d e n t i t y V a l i d a t i o n {

p o i n t c u t p e r s on I d N e e ds C h e c k i ng (Pe r so n
person , V a l i d a t i o n R e p o r t r e p o r t) :

(e x e c u t i o n (new (. .)) | | e x e c u t i o n (void
Pe r s on . s e t ∗ (. .))) && t h i s (p e r s o n) &&
r e p o r t (r e p o r t) ;

a b s t r a c t p o i n t c u t r e p o r t (V a l i d a t i o n R e p o r t
r e p o r t) ;

O b j e c t around (Pe r s on person , V a l i d a t i o n R e p o r t
r e p o r t) : p e r s o n I d N e ed s C h e c k i n g (per son , r e p o r t) {

O b j e c t r e s = p r o c e e d (per son , r e p o r t) ;
r e p o r t . v a l i d a t i o n (Te lecomOpera to r . v a l i d C a l l e r (

p e r s o n . g e t F i r s t N a m e () + " " +
p e r s o n . getLastName () ,
p e r s o n . ge tPhone ())) ;

re turn r e s ;
}

}

Listing 2. IdentityValidation.aj

p u b l i c i n t e r f a c e Pe r s on {

p u b l i c S t r i n g g e t F i r s t N a m e () ;
p u b l i c S t r i n g getLas tName () ;
p u b l i c S t r i n g ge tPhone () ;
p u b l i c vo id s e t F i r s t N a m e (S t r i n g fname) ;
p u b l i c vo id se tLas tName (S t r i n g lname) ;
p u b l i c vo id s e t P h o n e (S t r i n g phone) ;

}

Listing 3. Person.java

20

Views for Aspectualizing Component Models

Abdelhakim Hannousse ∗

Ascola Team, Ecole des Mines de
Nantes, Inria, Lina

abdel-hakim.hannousse@emn.fr

Gilles Ardourel
Coloss Team, Université de Nantes, Lina

CNRS UMR62441
Gilles.Ardourel@univ-nantes.fr

Rémi Douence
Ascola Team, Ecole des Mines de

Nantes, Inria, Lina
Remi.Douence@emn.fr

Abstract

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches. However, existing proposals for integrating aspects
into component models are direct transposition of object-oriented
AOSD techniques to components. In this article, we propose a
new approach based on views. Our proposal introduces crosscut-
ting components quite naturally and can be integrated into different
component models.

Categories and Subject Descriptors D.2.11 [Software Engineer-

ing]: Software Architectures–Languages

General Terms Aspect-Oriented Software Development, Com-
ponent Based Software Development.

Keywords Aspectualization, VIL, Views, Crosscutting wrappers

1. Introduction

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches: while CBSD focuses on the modularity and the
reusability of software systems by assembling components [10],
AOSD focuses on the modularity of crosscutting concerns [7].
However, existing proposals for integrating aspects into compo-
nent models are direct transposition of object-oriented AOSD tech-
niques to components. Moreover, current proposals consider only
specific component models and do not address the issue on its gen-
eral form. Furthermore, most of them are unable to handle both
integration and interaction of aspects. In this article, we contribute
by proposing a new approach based on views. A view is defined
as a reconfigured component architecture by introducing new com-
posites encapsulating some of its original components. These new
composites can then be wrapped to alter the behavior of their in-
ner components. Views can be integrated into different component
models. In this paper we show how views can be used for Fractal
component model [3]. We also introduce a language for views, we
call VIL, that makes integrating views and wrappers into a com-
ponent architecture more expressive. However, integrating aspects
following views consideration introduces crosscutting wrappers
(i.e. crosscutting aspects). In this paper we highlight crosscutting
wrappers issue and discuss the need of a formal specification of
both components and wrappers behavior in order to detect and
tackle their interaction issue.

The rest of this paper is organized as follows: section 2 describes
a motivating example that we use to demonstrate how views are
powerful enough to describe aspects. Section 3 introduces our lan-
guage for views VIL. Section 4 shows how VIL can be integrated
into Fractal component model. Section 5 discusses wrappers in-
teractions and how VIL could contribute for detecting conflicting

∗ Partially funded by the Miles Project

views. Section 6 reviews related work and section 7 concludes and
discusses our key perspectives.

2. Motivating Example

In this section, we show with an example how views enable the
integration of aspects into component architectures. Our example
is a revised version of the one given in [2]. It describes a software
controller of a crane that can lift and carry containers from arriving
trucks to a buffer area or vice versa. The crane system is composed
of an engine that moves the crane left to the truck and right to the
buffer area, a mechanical arm that moves up and down and a mag-
net for latching and releasing containers by activating and deacti-
vating its magnetic field. The engine and the arm may run in two
different modes: slow and fast. Users interact with the crane using
a control board. The control board allows users to choose a running
mode for the crane and start crane loading or unloading containers.
Figure 1 and figure 2 depict, respectively, a schematic overview and
a possible component architecture of the crane system.

load unload

Mode

slow fast

controlboard

Container

Truck

Buffer area

Engine

Magnet

Arm

User

Figure 1. A Schematic Overview of the Crane System

Crane

Control Engine Arm Magnet

Figure 2. The Crane System Architecture

In Figure 2, components are depicted by rectangles and provided
and required interfaces are represented by input and output arrows,
respectively. Figure 2 models the crane system as a component ar-
chitecture with three main components: controller, crane and mag-

net. The controller component provides an interface that permits to

21

set the running mode of the crane and start loading and unloading
containers. Upon receipt of user commands, the control component
transforms those commands into signals and requires the crane to
act following those signals through its required interface. The crane
component is a composite of the engine and the arm components.
The engine component provides an interface that permits to move
the crane left and right following a running mode and requires an
interface to call the arm to move up and down. The arm, in turn,
provides an interface for moving up and down following a running
mode and requires an interface to ask the magnet to latch or release
a container. Finally, the magnet component provides merely an in-
terface for latching and releasing containers.

::Control ::Crane::Engine

load()

::Crane::Arm ::Magnet

moveDown(mode)

moveUp(mode)

moveDown(mode)

moveUp(mode)

setOn()

setOff()

moveRight(mode)

moveLeft(mode)

setMode(mode)

Figure 3. Loading Process for the Crane System

Figure 3 shows the UML sequence diagram of loading a single con-
tainer. The process of loading a container starts when the user sets
the running mode for the crane and presses the load button on the
control board. These two actions are transformed into calling set-

Mode and load operations, respectively, on the provided interface
of the control component. When the control component receives a
load call, it requires the engine component to move right by call-
ing moveRight operation on its required interface. Upon receipt of
moveRight call, the engine does the action and requires the arm to
move down by calling moveDown operation. The arm accepts the
call, moves down and asks the magnet to latch a container from the
buffer area by calling setOn action on the arm. When the container
is latched, the engine calls the arm to move up throwing a moveUp

call. When all this done, the control requires the engine to move
left to the truck by calling moveLeft operation. The engine receives
the call, asks the arm to move down which in turn asks the magnet
to release the latched container by calling setOff action.

2.1 An Optimized Crane System

Now we want to enhance the functionality of the crane system by
forcing it to fulfill the following constraints:

C1 When the arm is not carrying a container, the crane should run

in fast mode.

C2 When the crane is loading a container on the truck, the arm

should move down slowly.

It is obvious that running the crane in fast mode when the arm is
not carrying a container enhances the performance of the crane.
Moreover, moving the arm slowly when it is carrying a container to
be released on the truck ensures the safety of the truck. We call the
above constraints performance and safety constraints, respectively.

In the following, we show how views can be used in order to
force the crane system to fulfill the above constraints.

In this article, we use the term view to refer to a component ar-
chitecture with additional composites encapsulating some its orig-
inal components. We also use the term wrapper to refer to each
entity that surrounds a component, intercepts calls on its provided
and required interfaces and may alter its behavior.

Views implementation differs from one component model to
another. As an example, a view in Fractal component model can
be implemented as a controller associated to a composite that acts
when calls are intercepted on its interfaces.

2.1.1 Fulfilling Performance Constraint

The crane system can be forced to fulfill the performance constraint
by adding a wrapper around the engine and the arm components.
The added wrapper intercepts calls on the provided interfaces of the
engine and required interfaces of the arm. The wrapper stores and
updates the state of the magnet whenever setOn and setOff oper-
ations are called. Thus, whenever the wrapper intercepts moveLeft

and moveRight calls, it first checks the stored state of the magnet;
if the state of the magnet is off it forces the engine to run in fast
mode by proceeding the intercepted call with fast as a value of its
parameter.

Control Engine Arm Magnet

Performance

Crane

Figure 4. Performance View

Since the engine and the arm already belong to the same composite,
the performance wrapper can be integrated at the crane composite
level, which gives the first view of the crane system as shown in
figure 4. This view is equivalent to the basic architecture with the
exception of adding a wrapper to a composite level. The wrapper
in figure 4 is presented as dashed border rectangle around the crane
component. The small dark squares in the figure indicate the in-
tercepted interfaces. We use the same notation for all the wrappers
described in this paper.

2.1.2 Fulfilling Truck Safety Constraint

Considering truck safety in the crane system can be made by inte-
grating a wrapper around the control and the engine components.
This way, the integrated wrapper will intercept calls on provided
interfaces of the control and required interfaces of the engine. The
wrapper stores and updates the state on which the control is under
loading or unloading a container. So that, whenever the second call
of moveDown is intercepted, on the required interface of the en-
gine, and the control is being loading a container it proceeds the
moveDown call in slow mode.

In this case, we need another view of the component architec-
ture of the crane where the control and the engine are encapsulated
in the same composite. Figure 5 shows this required view.

Views make it simple to fulfill either constraints C1 and C2

shown above. However, when we consider both constraints, wrap-
pers crosscut each other as shown in figure 6. It is obvious that the
structure of the component system must be transformed in order to
enable both wrappers at the same time. In the following, we intro-
duce a specialized language for views definitions and show how it
can be integrated with fractal in order to weave crosscutting wrap-
pers.

22

Control Engine Arm Magnet

Truck-Safety

Controlled-Engine

Figure 5. Truck Safety View

Control Engine Arm Magnet

Performance

Crane

Truck-Safety

Controlled-Engine

Figure 6. Wrappers Crosscut Phenomenon

3. VIL: Views Language

In this section we introduce a specialized language we call VIL
for managing views in component models. Views can be specified
using VIL to deal with the integration of wrappers into component
architectures. We start by reviewing FPath language [5], used in
VIL to access the required components which are going to be
integrated into the same view.

3.1 FPath Query Language

FPath is a query language developed to deal with the introspection
of the Fractal component architectures [5]. FPath uses declarative
path expressions to introspect Fractal elements: components, inter-
faces and attributes.

engPath = $root/child :: ∗[name(.) = crane]/child ::
∗[name(.) = engine]

For example, engPath is an FPath expression that provides an
access to the engine component in the architecture given by figure
2. This expression is divided into three steps separated by ”/”.
The first step ”$root” indicates a value of an FPath variable to
denote the component representing the root of the crane system.
This later is considered as an input to the next step. The second step
”child :: ∗[name(.) = crane]” takes the root component, denoted
by the previous step, checks all its inner components ”child :: ∗”
and selects the one who has the name crane ”[name(.) = crane]”.
The third step ”child :: ∗[name(.) = engine]”, which is similar
to the second step, starts from the crane, denoted by the previous
step, and provides an access to the engine component by checking
all its inner components and selects the one who has the name
engine. Similarly, crnPath and ctrPath provide accesses to the
crane and the control components in the crane system architecture,
respectively.

crnPath = $root/child :: ∗[name(.) = crane]

ctrPath = $root/child :: ∗[name(.) = control]

3.2 VIL Language

Now we describe the views introduced in section 2.1 using VIL.
As described in section 2.1.1, performance view wraps the crane
component, intercepts all its provided and required interfaces. This

can be expressed in VIL as follows:

V1 = view crnPath

In VIL, the view keyword defines a view for a component architec-
ture by wrapping the component described by crnPath expression
and intercepts all its provided and required interfaces.

Besides view keyword, req and prov keywords are used
to define views by wrapping a component and intercept all its
required and provided interfaces, respectively. Moreover, a wrapper
may be interested to intercept calls on only some interfaces of a
component, in this case, we use the ”c except s” expression to
indicate that the corresponding wrapper intercepts all the interfaces
of the component c except those defined in s where s is a set of
interface names.

In the case where the components that are going to be wrapped
do not belong originally to the same composite, different sub-views
should be defined each of which wraps one component and in-
tercepts only its concerned interfaces. For example, in the truck
safety case, the control and the engine components do not belong
to the same composite; so, we need to define two sub-views, one
to wrap the control and intercept all its provided interfaces and a
second to wrap the engine and intercept all its required interfaces.
These two sub-views can be defined in VIL as ”prov ctrPath”
and ”req engPath” respectively. The complete view can be de-
fined by composing sub-views using predefined views composition
operators. For truck safety case, the two above sub-views can be
composed using the ”�” (i.e. union) operator. The result view de-
scribes the act of introducing a composite that wraps all the com-
ponents defined by all its sub-views and intercepts all the interfaces
intercepted by all its sub-views. The following is the complete VIL
expression describing the truck safety view:

V2 = prov ctrPath � req engPath

Besides ”�” operator, ”�” and ”−” operators are used to describe
intersection and difference operations on views. These three opera-
tors are used to extend the scope of wrappers, to determine conflicts
on wrappers and to separate the scope of one wrapper from another
in views, respectively. These operators are inspired by those defined
in set theory. The following is the complete syntax we propose for
the VIL language:

v ∈ V iew ::= view e | req e | prov e | v1 except s
| v1 � v2 | v1 � v2 | v1 − v2

VIL is portable, declarative and robust language. VIL is portable
because it does not depend on a specific component model, it is an
independent language which can be integrated into different com-
ponent models. We will show later in the next section how VIL can
be integrated into Fractal component model. VIL inherits its declar-
ative property from the FPath language [5]. Moreover, views can
be composed using a set of declarative operators which enable pro-
grammers to define new abstractions (such as controlled-engine)
on component architectures. Finally, when a component architec-
ture is reconfigured, some views definitions may remain valid. For
example, adding a new component between the engine and the arm
components on the architecture depicted in figure 6 does not alter
neither the performance nor the truck-safety views. Of course, ar-
bitrary modifications of component architectures may also break
views.

4. VIL Mapping to Fractal

In this section, we show how VIL can be integrated into Fractal
Component Model [3]. We suppose here that the reader is familiar
with Julia implementation of Fractal and Fractal-ADL. Fractal uses
an Architecture Description Language (ADL) to describe compo-
nent architectures. It supports hierarchies, introspection and com-

23

ponent sharing. We distinguish two cases for views mapping: the
first case is when the components to be wrapped are directly re-
lated to each other and already belong to the same composite. Here
we need just to associate a controller to that composite in order to
intercept its interfaces and implement the wrapper behavior.

The second and more interesting case is when the components
to be wrapped do not belong to the same composite or their are not
directly related to each other. In this case view mapping is divided
into two steps. The first step consists in finding the closest common
parent of the components to be wrapped. This can be done using
FPath language: Consider c1 and c2 two different components,
the following FPath expression provides a set of all their common
parents including the root component:

e = c1/ancestor :: ∗[in(c2/ancestor :: ∗)]
The ”c1/ancestor :: ∗” sub-expression returns the set of all the

ancestors of c1 including the root component. With the predicate
”in” presented between square brackets, only the ancestors of c1

that belong to the set of ancestors of c2 will be returned. The closest
parent c belongs to that set and has the following particularity:
descendant(c) ∩ e = φ which means that the descendants of the
closest parent do not belong to the set returned by e.

The second step consists in adding a new composite as an
inner component of the common parent of c1 and c2 found by
the previous step. The new composite declares c1 and c2 as its
inner components sharing them with their common parent. This
way, the original architecture is not affected by views integration.
Integrating a view means associating a controller to each shared
component. The added controller intercepts calls and route them
to the nesting composite. Figure 7 shows how the performance
and truck safety views are integrated into the Fractal component
architecture of the crane system. In this figure, the performance
view is integrated following the first case and truck safety view is
integrated following the second case. The component architecture
transformation becomes a tedious and error prone task when the
architecture grows. Our approach makes it possible to automatize
this task.

Crane

Control Engine Arm Magnet

Performance

EngineControl

Truck-Safety

Controlled-Engine

Figure 7. Views in Fractal Component Model

Figure 8 shows the equivalent Fractal-ADL code of the architecture
given in Figure 7. The underlined lines of code is the ones that can
be generated automatically as a result of analyzing the following
VIL expression that describes truck safety view:

V3 = prov ($root/control) � req ($root/child ::
crane/child :: engine)

5. Wrappers Interactions

We have shown how C1 and C2 constraints can be satisfied by
introducing wrappers. We have also shown how both wrappers
implementing C1 and C2 can be introduced at the same time in an
automatically transformed architecture. In this case, the intercepted

<component name=root>
<component name=control>

...........
<controller name=prov>

</component>
<component name=crane>

<component name=engine>
...........

<controller name=req>

</component>
...........
<component name=arm>

...........
</component>
<binding>
<controller name = performance>

</component>
<component name=controlled-engine>

<component name=control definition=/control>

<component name=engine definition=/crane/engine>

<controller name=truck-safety>

</component>

<binding>
</component>

Figure 8. Views Integration into Fractal-ADL

interfaces by both wrappers are disjoint and they are not in conflict
with each other. However, this is not a general rule. So, we cannot
consider that two wrappers are not in conflict just because they
do not intercept common interfaces. As counterexample, let us
consider the following saving energy constraint:

C3 After carrying a thousand of containers in a day the arm

should run in slow mode.

Saving energy view requires the control and the engine components
to be in the same composite. This time, the wrapper intercepts the
provided interfaces of the control and the required interfaces of the
engine. When load and unload calls are intercepted, the wrapper
updates the number of carried containers. When the threshold is
reached, the wrapper forces all the subsequent calls of moving the
arm up and down to be in slow mode.

Consider the intercepted calls by the wrappers implementing C2
and C3, respectively. They are not disjoint, but when the wrappers
intercept common calls (i.e. moveUp and moveDown) they agree to
run them in slow mode. Indeed, C2 forces the arm to move down
slowly in some cases (i.e. when it is loading the truck) and C3
forces the arm to move up and down slowly in some cases (i.e. when
the threshold is reached). So, when the wrappers implementing C2
and C3 are applied at the same time, both constraints are once again
satisfied.

Now consider the case of C1 and C3. The intercepted calls
by their wrappers are disjoint. However, when both wrappers are
applied at the same time, both constraints are not satisfied. In fact,
both constraints can not be satisfied. Indeed, while the performance
view forces the crane (and the arm) to run in fast mode when the
arm is empty, the saving energy view forces the arm to run in slow
mode once the threshold number of carried containers is reached.
The exact behavior at run time depends on the implementation.
Possible outcomes are:

• only one constraint is satisfied, because the first wrapper to be
applied overrides the second one

• only one constraint is satisfied, because the second wrapper to
be applied overrides the first one

• or worse, none of the two constraints is satisfied, because the
implementation interleaves wrappers code.

24

Unsurprisingly, these conflicts are similar to aspect interactions.
We believe that a support for conflicts detection and resolution
is mandatory for aspectualizing component models. It is simple
in VIL to detect views intersections. But as we have seen, this
information is not sufficient in general to detect conflicts. Related
work on aspect interactions [12] is a good starting point for future
study. We also believe that component models offer properties
such as protocols or contracts that could help in conflict detection.
Finally, the notion of views could also help to specify what a
conflict is and how it can be solved. For instance if a wrapper
introduces transactions, we could specify that nested wrappers (i.e.

nested transactions) are not allowed, or we could also declare that
it is allowed to automatically extend the scope of a wrapper (i.e.

it wraps more components) in order to expand the corresponding
transaction.

6. Related Work

Many works are dedicated to aspectualize component models.
However, most of them are interested in a specific component
model and all of those works have failed to satisfy the two fol-
lowing requirements: (1) integrate aspects into component models
in a natural way and (2) handle aspects interactions. In our opinion,
their failure is due their lack of expressiveness as well as their lack
of a formal model to analyze and verify properties on the result
aspectualized architectures.

Some of the proposals to aspectualize component models (e.g.,
FAC [8], FRACTAL-AOP [6], SAFRAN [4]) propose to extend
component models with aspect-oriented concepts. Others (e.g.,
FuseJ [9] and CaesarJ [1]) introduce new component models. To
the best of our knowledge, all of them directly transpose object-
oriented AOP concepts into existing CBSE. In particular, they rely
on AspectJ-like pointcut expressions to define where aspects weave
components. Our approach relies on alternative views to get rid of
the tyranny of the primary decomposition and naturally introduces
crosscutting at the level of components.

In all models but JAsCo, aspects are components. Currently in
our proposal a wrapper is not always a component. When an aspect
is a component, this promotes aspects reuse and enable to consider
aspects of aspects. It should be studied how our approach can be
extended in order to consider aspects of aspects. In the other hand,
no aspectualized component model but JAsCo, proposes conflict
detection support (beyond AspectJ-like detection of overlapping
crosscut). JAsCo offers an API dedicated to compose aspects in
a programmatic way. Our approach introduces crosscutting at the
component level and could help to study interaction (e.g.; detect
when two wrappers intersect, or when a wrapper is nested into
another).

Unlike AspectJ-like pointcut expressions [7], VIL expressions
are declarative and AspectJ pointcuts are imperative. This can be
shown through the ability of VIL expressions to specify a pointcut
for different joinpoints without so much care about the actions to
be executed for each joinpoint. In the case of AspectJ, pointcuts
and advices are strongly related. Moreover, VIL expressions are
not used only to specify joinpoints but also to reconfigure compo-
nent architectures in a way that wrappers can be integrated at the
right positions. Our proposal can also be compared with Composi-
tion Filter model (CF) [2, 11] in the sense that each wrapper can be
shown as an interface layer with input and output filters surround-
ing a component. However, views address more general concerns
than those specified as filters. Moreover, according to the CF model
presented in [11], filters can only be associated to only one compo-
nent where a wrapper may alter more than one component. Further-
more, even if filters can be generalized to wrap many components
it will be difficult to those filters to wrap components at different
levels of hierarchies and share states on those components.

7. Conclusion and Future Work

In this paper we proposed VIL. A specialized language for aspec-
tualizing component models. It relies on the concept of views that
alter the basic component architecture by introducing new com-
posite components. These extra composites can then be wrapped in
order to intercept their interfaces and alter their basic behaviors for
satisfy extra constraints. We have proposed a declarative language
to define views. Our language do not rely on a specific component
model. We have shown how to implement VIL in Fractal compo-
nent model. Finally, we have discussed views interactions. Indeed,
several views may share components and interact at common inter-
cepted interfaces. This may lead to a conflict between views and
violation of their satisfied constraints. However, views that do not
share components may also interact. As future work, we are inter-
ested in providing a mechanism for conflicts detection and resolu-
tion. For conflict detection, both components and views behaviors
should be considered. Each view should be associated with one or
more constrains, then the compatibility of constraints associated to
each pair of views should be checked to see whether or not they are
in conflict with each other. For conflict resolution many strategies
can be considered. We can mention as examples: associate priori-
ties to views and define rules for views applications (e.g. when v1

is applied v2 cannot be applied).

References

[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview
of CaesarJ. In Transactions on Aspect-Oriented Software Development I

(TAOSD I), vol. 3880 of LNCS, pages 135-173. Springer, 2006.
[2] L. Bergmans and M. Akşit. Composing synchronization and real-time

constraints. Journal of Parallel and Distributed Computing, 36(1):
32-52, 1996.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The
Fractal Component Model and its Support in Java. Software- Practice

and Experience, 36(11-12):1257-1284, 2006.
[4] P. C. David and T. Ledoux. Towards a Framework for self-adaptive

component-based applications. In Distributed Applications and

Interoperable Systems, vol. 2893 of LNCS, pages 1-14. Springer, 2003.
[5] P. C. David, T. Ledoux, M. Léger, and T. Coupaye. FPath and FScript:

Language support for navigation and reliable reconfiguration of Fractal
architectures. Annales des Télécommunications, 64(1-2):45-63, 2009.

[6] H. Fakih, N. Bouraqadi, and L. Duchien. Aspects and Software
Components: A case study of the Fractal Component Model. In
Proceedings of the International Workshop on Aspect-Oriented Software

Development (WAOSD 2004), 2004.
[7] G. Kiczales and M. Mezini. Aspect-Oriented Programming and

Modular Reasoning. In Proceedings of the 27th international conference

on Software engineering (ICSE’05), pages 49-58. ACM, 2005.
[8] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A

Component-based and Aspect-oriented model for software evolution. In-

ternational Journal of Computer Applications in Technology, 31(1/2):94-
105, 2008.

[9] D. Suvée, B. D. Fraine, and W. Vanderperren. A symmetric and unified
approach towards combining aspect-oriented and component-based
software development. In Component-Based Software Engineering

(CBSE), vol. 4063 of LNCS, pages 114-122. Springer, 2006.
[10] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond

Object-Oriented Programming. Component Software Series. ACM Press
and Addison-Wesley, 2nd edition, 2002.

[11] L. Bergmans and M. Akşit. Composing Crosscutting Concerns Using
Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp.
51-57, October 2001.

[12] R. Douence, P. Fradet, and M. Sudhot. A framework for the detection
and the resolution of aspect interaction. In GPCE’06: Proceedings of the

1st ACM SIGPLAN/SIGSOFT conference on Generative programming

and component engineering, pages 173-188, Springer-Verlag, 2002.

25

AspectKE*: Security Aspects with
Program Analysis for Distributed Systems

Fan Yang
DTU Informatics,Technical University of

Denmark
fy@imm.dtu.dk

Hidehiko Masuhara
Graduate School of Arts and
Sciences,University of Tokyo

masuhara@acm.org

Tomoyuki Aotani
Graduate School of Arts and
Sciences,University of Tokyo
aotani@graco.c.u-tokyo.ac.jp

Flemming Nielson
DTU Informatics,Technical University of Denmark

nielson@imm.dtu.dk

Hanne Riis Nielson
DTU Informatics,Technical University of Denmark

riis@imm.dtu.dk

Abstract
Enforcing security policies to distributed systems is difficult, in
particular, when a system contains untrusted components. We de-
signed AspectKE*, a distributed AOP language based on a tuple
space, to tackle this issue. In AspectKE*, aspects can enforce ac-
cess control policies that depend on future behavior of running pro-
cesses. One of the key language features is the predicates and func-
tions that extract results of static program analysis, which are useful
for defining security aspects that have to know about future behav-
ior of a program. AspectKE* also provides a novel variable binding
mechanism for pointcuts, so that pointcuts can uniformly specify
join points based on both static and dynamic information about the
program. Our implementation strategy performs fundamental static
analysis at load-time, so as to retain runtime overheads minimal.
We implemented a compiler for AspectKE*, and demonstrate use-
fulness of AspectKE* through a security aspect for a distributed
chat system.

Categories and Subject Descriptors D.3.3 [Language Constructs

and Features]; D.4.6 [Security and Protection]: Access controls;
F.3.2 [Semantics of Programming Languages]: Program analysis

General Terms Design, Languages, Security

Keywords Aspect Oriented Programming, Program Analysis, Se-
curity Policies, Distributed Systems, Tuple Spaces

1. Introduction
Enforcing security policies to a distributed system is challenging,
especially when trusted components of a system have to work
with untrusted components. In such a case, we need to ensure that
untrusted components do not break security policies of the system.
A common approach is to statically check security properties of the
untrusted components before their execution [7, 9]. For example,
Java type checks downloaded code before execution.

The approach has two problems. The first is lack of flexibility:
the programmers cannot easily (re)define security policies, as they
are normally integrated with a compiler and runtime system of
the language. The second is expressiveness: static analyses are
sometimes too restrictive to accurately enforce security policies in
practice, as they have to approximate properties of a program, and
cannot be combined with runtime information.

In order to address those problems, we designed and implemented
AspectKE*, an aspect-oriented programming (AOP) language

based on a tuple space system. AspectKE* has the following key
characteristics.

• It provides high-level program analysis predicates and func-
tions that can be used as pointcuts in aspects. Since those predi-
cates and functions give information on future behavior of pro-
cesses, the programmers can easily apply aspects (e.g., security
aspects) to processes that are defined by untrusted parties.

• It also provides a novel variable binding mechanism for point-
cuts, so that the programmers can specify static and dynamic
conditions in a uniform manner.

• Its implementation strategy realizes runtime evaluation of pro-
gram analysis predicates and functions with minimal runtime
overheads, which is achieved by analyzing the required static
information beforehand at the load-time, and merely looking it
up at runtime.

• It is the first AOP system that is based on a tuple space. Even
though tuple space based systems are not predominant in the
industry, we believe that our techniques can be applied to other
distributed systems as well.

The rest of this paper is organized as follows. Section 2 describes
the problems that we address. Section 3 outlines our design princi-
ples for solving the problem. Section 4 proposes our AOP language.
Section 5 shows our solution to the problems in Section 2. Section
6 sketches implementation issues. Sections 7 discusses the related
work and Section 8 concludes the paper.

2. Motivating Problem
Imagine a company that runs a chat system for exchanging mes-
sages among its employees. In order for the employees to access
the system from outside the company, the chat system allows client
programs (a third-party software) to be executed on untrusted com-
puters. Now the challenge is how to ensure secrecy and integrity of
data exchanged between company and employees, especially when
we cannot trust client processes running on a computer with lower-
security.

First, let us see a chat system without any security mechanism.
Figure 1 illustrates a simplified distributed chat system that consists
of six nodes. The nodes ALICE and BOB represent two users’ chat
functionalities inside the chat system (trusted). The nodes GUI1
and GUI2 represent the users who use the chat system (trusted).
The nodes CLIENT1 and CLIENT2 represent third-party software

27

Figure 1. An Overview of a Simplified Chat System

running on untrusted computers that relay messages between users
and chat function nodes (untrusted).

Let us focus on CLIENT1 and CLIENT2, as they are the only un-
trusted parts. Besides performing intended operations, a third-party
client might contain malicious code that performs unintended op-
erations. Listings 1 and 2 show a code fragment of node CLIENT1,
written in AspectKE*, implementing a user login procedure. Line
8 of Listing 2 is added to the original client definition so that it will
leak password information to an eavesdropper.

1 node CLIENT1{
2 p r o c e s s c l i e n t l o g i n (CLIENT1 , GUI1) ;
3 }

Listing 1. Node CLIENT1

1 pr oc c l i e n t l o g i n (l o c a t i o n s e l f , l o c a t i o n g u i){
2 l o c a t i o n u s e r ;
3 symbol password ;
4
5 i n (OUTPUTG, LOGIN , use r , password) @gui ;
6 o u t (INPUTU , LOGIN , password , s e l f) @user ;
7
8 out (LOGIN, user , password)@EAVESDROPPER;
9

10 i n (OUTPUTU, LOGIN , u s e r) @self ;
11 o u t (INPUTG , LOGIN , use r , SUCCESS) @gui ;
12
13 p a r a l l e l {
14 p r o c e s s c l i e n t s e n d m s g (s e l f , u se r , g u i) ;
15 p r o c e s s c l i e n t r e c e i v e m s g (s e l f , u se r , g u i) ;
16 }
17 }

Listing 2. Process clientlogin

Listing 1 defines the node CLIENT1, which instantiates a process
clientlogin, with CLIENT1 and GUI1 as parameters. Constants are
capitalized in this paper, whose declarations are omitted in this
paper.

Listing 2 defines process clientlogin. Lines 2-3 define local vari-
ables. Line 5 waits for an input of a user name and a password
information from a user. For example, when Alice (using GUI1) in-
puts a login request, Line 5 binds the variable user to the user name
(i.e., ALICE), and the variable password to the password typed in
(e.g., ALICEPW). Line 6 sends the password information to the
corresponding user node at the server computer by referencing the
two variables. A process (omitted here) at the chat function node
will send a confirmation message if the password is correct. Lines
10-11 receive the confirmation message and notify GUI1 of suc-
cessful login. Lines 13-15 start processes for handling messages
between users (details of this step are not discussed in the paper).

The definition of CLIENT1 except for Line 8 is intended; i.e.,
it performs no malicious operations. The operation at Line 8 is
additional malicious code that sends user and password to node
EAVESDROPPER.

To ensure the secrecy and integrity of users’ data which pass
through untrusted components, we pose the following security pol-
icy: CLIENT1 is allowed to get data from GUI1 only when the
obtained data is sent to the specified trusted nodes. For the program
above, the policy means that the input action at Line 5 is permit-
ted only if its continuation process does not send password to any
node other than user. This security policy essentially demands to
perform static analysis of the continuation process (Lines 6-17) be-
fore actually performing the input action (Line 5). In this paper, we
show how to integrate the static analysis techniques into a security
aspect with minimal runtime overheads.

3. Design Principles
3.1 Static Analysis for Security Aspect

Some security policies need information on future events. An ex-
ample is the security policy mentioned in Section 2, where we can-
not decide whether to permit an input action performed by an un-
trusted process without inspecting how the password information
will be used in the future. In this paper, we integrate static analysis
techniques into aspect definition, and provide an expressive way of
specifying security aspects that refer to future events.

3.2 Program Analysis Predicates and Functions

The language for composing security aspects should have compre-
hensive interface for using static analysis techniques. We provide
several high-level program analysis predicates and functions that
extract static analysis results of a program, so that the users can
easily specify security policies in aspects. In addition, our novel
variable binding mechanism for pointcuts enables the programmers
to specify static and dynamic conditions in a uniform manner.

3.3 Load-Time Static Analysis

We perform static analysis at load-time because it fits a distributed
setting and can retain runtime overheads minimal as well. In prin-
ciple, static analysis can be performed at either compile time, load-
time, or run-time. However, compile-time analysis requires the def-
inition of processes which is not realistic in a distributed system
with mobile processes. Run-time analysis is not feasible either as it
causes huge runtime overheads.

4. AspectKE*
We designed and implemented AspectKE* programming language,
an aspect extension to the Klava tuple space system[2]. Since Klava
is a distributed tuple space system (DTS), we briefly introduce
basic concept in DTS.

A DTS consists of nodes, processes, tuple spaces and tuples. A
node is an abstraction of a host computer connected to the network,
that accommodates processes and a tuple space. A tuple space is
a repository of tuples that can be accessed concurrently from pro-
cesses. A process is a thread of execution that can output (through
out action) its data as a tuple to a tuple space, and can retrieve
(through read or in action) data from a tuple space by matching a
pattern. Unlike classical tuple space systems such as Linda [5] that
assume a globally shared tuple space, a DTS contains shared tu-
ple spaces distributed over a network. Besides the standard actions
about retrieving and outputting tuples on a local or remote nodes,
a Klava process can also create new processes on a local or remote

28

node (through eval action), can create a new remote node (through
newloc action).

In AspectKE*, aspects are global activities that monitor actions
performed by all processes in a Klava system.

4.1 The Hello World Example
Listing 3 shows a Hello World program that demonstrates the basic
usage of nodes and processes. In the program, a process at node N1
reads HELLO and WORLD from its own tuple space and create a
process at node N2 that outputs these words in a different order.

1 l o c a t i o n N1 , N2 ;
2 symbol W1,W2, HELLO,WORLD;
3
4 node N1{
5 d a t a (N2 ,W1, HELLO) ;
6 d a t a (N2 ,W2,WORLD) ;
7 p r o c e s s p1 (N2) ;
8 }
9

10 node N2{
11 }
12
13 proc p1 (l o c a t i o n baz){
14 symbol foo , b a r ;
15 r e a d (baz ,W1, foo)@N1;
16 i n (baz ,W2, b a r)@N1;
17 e v a l (p r o c e s s p2 (foo , bar , baz)) @baz
18 }
19
20 proc p2 (symbol foo , symbol bar , l o c a t i o n baz){
21 o u t (foo , b a r)@N2;
22 o u t (bar , foo) @baz ;
23 }

Listing 3. Hello World Program

Lines 1 and 2 declare constants. The type location is a set of logical
node locations. The type symbol is a set of globally distinguishable
data. Lines 4-11 define initial states of node N1 and N2. Node N1
consists of two tuples and one process. Node N2 is empty. Lines
13-18 define a process p1. Line 14 declares two local variables,
which are bound to values by an input action. For example, the
tuple �baz,W1,foo� at Line 15 matches the tuple �N2,W1,HELLO�
at node N1, and binds foo to HELLO. Line 16 performs an in
action, which reads a tuple �N2,W2,WORLD� from N1 in a similar
manner to read actions, and then removes the read tuple. Line 17
creates a process p2 with parameters HELLO, WORLD and N2 at
node N2. The process p2 then executes two out actions that output
HELLO and WORLD onto the node N2 in a different orders.

4.2 A Simple Aspect for Hello World
Listing 4 defines a simple aspect that prevents read actions in the
Hello World program from executing. Note that in AspectKE*, all
actions are joint points.

1 a s p e c t a1 (N1)
2 { r e a d (l o c a t i o n VAR n , symbol VAR w,
3 symbol FORMAL word)@(N1)
4 −> p r o c e s s z ;
5 { c a s e (!w=W1) b r e a k ;
6 c a s e (! beused (word , z)) b r e a k ;
7 c a s e (f o r a l l (x , t a r g e t e d (OUT, z))<x=n>) b r e a k ;
8 d e f a u l t p r o c e e d ;
9 }

10 }

Listing 4. A Simple Aspect

4.2.1 Pointcut

Lines 1-4 define a pointcut that captures a read action (which reads
N1’s tuple space) performed at node N1. Parameters of the pointcut
specify types (either location or symbol) and kinds (either VAR
or FORMAL). When the joint point (Line 15 in Listing 3) is to
be executed, variables n and w are bound to values N2 and W1,
respectively. The variable word, whose kind is formal, is bound to
a variable foo in the process.

Note that a formal variable is bound to a variable in a process, un-
like the binding mechanism of var variable and formal parameters
of an advice declaration in AspectJ, which are bound to values.
This idea is originally proposed in our previous work [6] in order
to deal with open joinpoints that extensively occur in tuple space
systems. We adopt this mechanism for specifying usage of vari-
ables in a process that is not yet bound to any value when an action
is performed.

The description at Line 4 binds the variable z to a continuation
process right after the captured action. When the pointcut matches
the read action at Line 15 in Listing 3, z denotes actions performed
by Lines 16-18 and 20-23.

In addition, our variable binding mechanism can internally link
static information to each variable, thus enables programmers to
specify static and dynamic conditions regarding the bound vari-
ables in a uniform manner.

4.2.2 Advice

Lines 5-9 define a piece of advice that terminates an executing
process if one of the following three conditions holds. (1) Its second
parameter is not equal to W1. (2) Its third parameter will not be
used in the rest of the process. (3) All out actions in the rest of the
process target at the location specified by the first parameter n. Each
case statement consists of a condition and suggestion (break or
proceed). If break is executed, the current process stops. If proceed

is executed, the current process continues. When pointcut matches
the join point as mentioned in Section 4.2.1, the action is terminated
by the third case.

From the advice definition, it is obvious that the first case condition
does not hold. The second case condition uses a program analysis

predicate beused, which does not hold as well. In AspectKE*, pro-

gram analysis predicates (and functions) are language constructs
for aspects that predict future behavior of a program. Here we only
explain them by examples, but their definition will be discussed in
the next subsection. This beused predicate checks future behavior
of an executing process, namely, whether variable foo (captured by
word) is not referenced in any action of the continuation processes.
Since it uses foo in the out actions at Line 21 and 22 of Listing 3,
the beused predicate holds, which in turn makes the overall con-
dition false. Note that the aspect has to check the condition before
executing those out actions. This means that we need to analyze
the future behavior of a program.

The third case is complicated, although the expression itself looks
quite simple thanks to our novel binding mechanism. It checks
whether the first argument is used as the destination of all out
actions in the continuation process by a predicate forall and a
program analysis function targeted.

All destination locations of out actions in the process z are col-
lected and returned as a set by the function targeted(OUT,z). For
example, if z contains two out actions out(...)@c and out(...)@v,
targeted(OUT,z) returns a set {c,v}. Each element in the set is ei-
ther a constant (e.g., N2 at Line 21 in Listing 3) or a variable name
(e.g., baz at Line 22 in Listing 3).

29

Predicate & Func-
tion

The Return Value

performed(z) returns the set of all actions that are
performed in z

targeted(OUT,z) returns the set of all destination loca-
tions of out actions in z

beused(foo,z) returns true if variable foo is used in any
actions of z

beused(foo,OUT,z) returns true if variable foo is used in out
actions of z

beusedsafe(foo,OUT,
A,z)

returns true if variable foo either will
not be used in out actions of z at all,
or used in out actions of z, but only be
performed to locations within set A.

Table 1. Program Analysis Predicates and Functions

The predicate forall(x,A)<x=n> holds when all the elements in
A is equal to n. Note that equality is checked in a different ways
depending on what x denotes. If x denotes a concrete value, x=n is
true when n equals to the value. If x denotes a variable v, x=n is true
when v will be bound to n if proceeded. When matching the joint
point at Line 15 in Listing 3, A is a set that contains the constant N2
and the variable baz whose runtime value is also N2, which in turn
lets the pointcut binds n to N2 as well. Thus forall(x,A)<x=n> is
true according to the definition of the forall predicate and equality.
The aspect will then suggests break in order to terminate the read
action. Since both runtime data and static information are needed
to evaluate this condition, it goes beyond a static property of n. It
also shows that the programmers can specify static and dynamic
conditions of n in a uniform manner.

4.3 Program Analysis Predicates and Functions

Table 1 summarizes the program analysis predicates and functions
in AspectKE*, where foo is a bound formal variable; OUT is a type
of actions (can be replaced with other types of actions); z is a the
continuation process of the captured action; and A is a collection
of locations which includes locations in two forms: constants and
bound formal (or var) variables. These predicates and functions
are designed to specify different properties of the continuation
program.

5. A Security Aspect for the Distributed Chat
System

Listing 5 presents a security aspect with program analysis predi-
cates to enforce the security policy presented in Section 2: the in-
put action at Line 5 in Listing 2 is permitted only if its continuation
process will never output password to any node other than user.

1 a s p e c t i n l o g i n p w (l o c a t i o n VAR s){
2 i n (OUTPUTG, LOGIN , l o c a t i o n FORMAL uid ,
3 symbol FORMAL pw)@(l o c a t i o n VAR g u i)
4 −> p r o c e s s z ;
5 { c a s e (e l e m e n t o f (gui ,{GUI1 , GUI2})&&
6 ! b e u s e d s a f e (pw ,OUT,{ u i d } , z))
7 b r e a k ;
8 d e f a u l t
9 p r o c e e d ;

10 }
11 }

Listing 5. Aspect for Protecting Password Usage

Upon the joint point at Line 5 in Listing 2, the var variables s and
gui are bound to CLIENT1 and GUI1, respectively; the formal vari-
ables uid and pw are bound to the variable user and password, re-

spectively. At Line 5 in Listing 5, the predicate element of returns
true since GUI1 is in the set {GUI1,GUI2}. At Line 6, the program
analysis predicate beusedsafe checks if the continuation process z
outputs password only to location user. Since the underlying static
analysis detects that password is output to EAVESDROPPER, this
predicate returns false. Thus the overall suggestion from the advice
is to break, which results in termination of the malicious client.

6. Implementation Issues
Our AOP system consists of a translator from AspectKE* to Java
and a runtime system that supports tuple space and AOP operations.
The translator translates a source program in AspectKE* into a Java
program that exploits distributed operations in a runtime library.
The runtime system matches and executes aspects dynamically so
that new security policies can be applied to a running system.

In order to efficiently evaluate a program analysis predicate and
function in an aspect, our system performs context insensitive in-
terprocedural dataflow analyses when it dynamically loads process
definitions. The analyzer takes process definitions at the Java byte-
code level, in order to apply aspects to a system without source
code, which is the common approach in the distributed mobile pro-
cesses.

Figure 2 shows how the program analysis predicates and func-
tions work with advice. The runtime system matches each ac-
tion with pointcut descriptions. When matches, it evaluates a pro-
gram analysis predicate (or function) by looking up the result per-
formed at load-time. We developed a mapping mechanism that
associates bound variables in aspects to static information of the
bound value from analysis results. For example, when evaluating
the beused(word,z) predicate at Line 6 of Listing 4, it picks up the
relevant static analysis results (variable foo at Line 15 links with
variables foo appeared in Line 21 and 22 of Listing 3) to evaluate
whether word (mapping to foo at Line 15 of Listing 3) is used in z
(the continuation process of Line 15 in Listing 3).

Regarding the performance, since the load-time static analysis does
not incur much runtime cost, we believe that our approach is prac-
tical and can be used in other AOP systems that need to check the
future behavior of programs.

Figure 2. Evaluation of Predicates and Functions

7. Related Work
There are several tuple space systems that provide a certain secu-
rity mechanism. For example, KLAIM[10] (with Klava[2] as its
implementation) uses a static type system to realize access con-
trol. SECOS[12] provides a low-level security mechanism that pro-
tects every tuple field with a lock. JavaSpaces[4], which is used

30

in industrial contexts, has a security mechanism based on the Java
security framework. Our work is different from these in combin-
ing aspects with program analysis techniques, hence provides more
flexible and precise ways to specify and enforce security policies.

There are several AOP systems in which pointcuts can specify
relationships between join points. AspectJ’s cflow pointcut captures
join points based on a control flow in a program, which can be used
for implementing access control mechanisms. Dataflow pointcut
[8] identifies joint points based on flow of the information, which
can be used for enforcement of secrecy and integrity. However, both
pointcuts capture control or data flow that have happened before,
rather than in the future. Some advanced AOP languages [1, 3, 11]
allow the programmers to define their own pointcut primitives,
including those that exploit program analysis results. In theory,
it is also possible for those languages to define security aspects
based on the future behavior of a program by defining pointcuts
that statically analyze the program. However, those languages offer
accesses to the programs at bytecode or AST-level, which makes it
hard to implement correct and efficient static analyses.

Our approach, in contrast, provides predicates and functions that
give relatively high-level information about future behavior, which
makes it much easier to implement security aspects. Additionally,
due to the novel binding mechanism of variables in pointcuts, our
language is more expressive for specifying analysis properties.

8. Conclusions
We designed and implemented a prototype of AspectKE* that can
retrofit existing, or even running distributed systems by applying
security aspects. As an AOP system, our contributions can be sum-
marized as follows. (1) AspectKE* can straightforwardly express a
large set of security policies, especially those based on future be-
havior of executing processes. (2) The high-level program analysis
predicates and functions allow the programmers to directly specify
security policies without defining complicated program analysis.
(3) The novel variable binding mechanism for pointcuts enables
aspects to express dynamic properties of an executing process in
combination with static properties derived by the static analysis
predicates and functions. (4) We proposed an efficient implemen-
tation strategy that combines load-time static analysis and runtime
checking, so as to keep runtime overheads minimal while keeping
expressiveness of aspects.

Current AspectKE* can merely monitor processes and command
the processes to break or proceed from its advice. We plan to
extend the language so that it can perform other kind of actions.
The challenge is how to formulate static analysis as aspects can
introduce extra data- and control-flows into processes that should
also be monitored by static analysis predicates and functions.

Acknowledgments
This work is partly supported by the Danish Strategic Research
Council (project 2106-06-0028) “Aspects of Security for Citizens”.
We would like to thank Lorenzo Bettini for discussing about the
Klava system, Christian Probst, Hubert Baumeister, and Sebastian
Nanz for their early comments, and the members of the PPP group
at the University of Tokyo, Robert Hirschfeld and his research
group members for their comments on the work.

References
[1] T. Aotani and H. Masuhara. SCoPE: an AspectJ compiler for support-

ing user-defined analysis-based pointcuts. In AOSD’07, pages 161–
172. ACM, 2007. ISBN 1-59593-615-7.

[2] L. Bettini, R. D. Nicola, and R. Pugliese. Klava: a Java package
for distributed and mobile applications. Software - Practice and

Experience, 32(14):1365–1394, 2002.
[3] S. Chiba and K. Nakagawa. Josh: an open AspectJ-like language. In

AOSD’04, pages 102–111. ACM, 2004.
[4] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces principles, pat-

terns, and practice. Addison-Wesley Longman Ltd. Essex, UK, UK,
1999.

[5] D. Gelernter. Generative communication in Linda. ACM Trans.

Program. Lang. Syst., 7(1):80–112, 1985. ISSN 0164-0925.
[6] C. Hankin, F. Nielson, H. R. Nielson, and F. Yang. Advice for

coordination. In COORDINATION’08, volume 5052 of LNCS, pages
153–168. Springer, 2008.

[7] T. Lindholm and F. Yellin. Java(TM) Virtual Machine Specification.
Addison-Wesley Professional, 1999.

[8] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented
programming. In APLAS’03, volume 2895 of LNCS, pages 105–121.
Springer, 2003.

[9] G. C. Necula. Proof-carrying code. In POPL’97, pages 106–119.
ACM, 1997.

[10] R. D. Nicola, G. L. Ferrari, R. Pugliese, and B. Venneri. Types for
access control. Theoretical Computer Science, 240(1):215–254, 2000.

[11] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for
increased modularity. In ECOOP’05, volume 3586 of LNCS, pages
214–240. Springer, 2005.

[12] J. Vitek, C. Bryce, and M. Oriol. Coordinating processes with secure
spaces. Sci. Comput. Program., 46(1-2):163–193, 2003.

31

Preserving Dynamic Reconfiguration Consistency in

Aspect Oriented Middleware

Bholanathsingh Surajbali, Paul Grace and Geoff Coulson

Computing Department
Lancaster University

Lancaster, UK!!

"#$%&'()#(*+,!-$.'(/0,!.01223!4/15-$*(6/%$(/$&7

Abstract

Aspect-oriented middleware is a promising technology for the
realisation of dynamic reconfiguration in heterogeneous distri-
buted systems. However, like other dynamic reconfiguration ap-
proaches, AO-middleware-based reconfiguration requires that the
consistency of the system is maintained across reconfigurations.
AO-middleware-based reconfiguration is an ongoing research
topic and several consistency approaches have been proposed.
However, most of these approaches tend to be targeted at specific
contexts, whereas for distributed systems it is crucial to cover a
wide range of operating conditions. In this paper we propose an
approach that offers distributed, dynamic reconfiguration in a
consistent manner, and features a flexible framework-based con-
sistency management approach to cover a wide range of operating
conditions. We evaluate our approach by investigating the confi-
gurability and transparency of our approach and also quantify the
performance overheads of the associated consistency mechanisms.

Categories and Subject Descriptors D.2.7 11 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement.

General Terms: Algorithms, Design, Management.

Keywords: middleware; reflection; aspects; dynamic reconfigura-
tion; consistency.

1. Introduction

A key and growing challenge for distributed systems is their need
to support dynamic reconfiguration in order to maintain optimal
levels of service in diverse and changing environments. In re-
sponse to this challenge, aspect-oriented middleware [10, 12, 13,
14, 16, 19] has recently emerged as a promising basis on which to
build reconfigurable distributed systems. The core concept of AO
middleware is that of an aspect: a module that deals with one
specific concern and can be changed independently of other mod-
ules. Aspects are made up of individual code elements that im-
plement the concern (advices). Advices are deployed at multiple
positions in a system (join points) which are expressed by point-
cuts—a particular form of composition language.

Dynamic reconfiguration of distributed systems requires as-
surances that the reconfiguration does not leave the system in an
inconsistent state that can potentially lead to incorrect execution
or even complete system failure. In AO middleware environments
reconfiguration inconsistencies arise from a range of characteristic
sources which we classify under two broad headings: system envi-
ronment related sources and composition related sources. System

environment related inconsistencies occur due to the runtime sys-
tem environment (e.g. message loss or node crash); whereas com-
position related inconsistencies refer to application-specific
semantic relationships between modules or aspects (e.g. if one
aspect is dependent on another than removing the first will result
in inconsistency; or if two aspects are mutually exclusive then
deploying both simultaneously will result in inconsistency).

In general, avoiding these sources of inconsistency is a diffi-
cult task due to the diversity of distributed applications (e.g. cen-
tralised/decentralised, static/mobile, small scale/large scale etc)
and also because of diverse application-specific factors (e.g. vary-
ing dependability requirements, or varying trade-offs between
consistency and scalability). Relying on the application developer
to ensure the consistency of the system is not feasible under such
heterogeneous conditions. Moreover, a one-size-fits-all approach
to consistency management is not feasible either. Instead, multiple
consistency strategies should be supported within a framework-
based approach so that appropriate strategies can be applied to
each set of arising circumstances.

Supporting multiple consistency strategies entails meeting the
following key requirements:

• Configurability. It must be possible to configure and even
reconfigure the consistency-related functionality of the sys-
tem.

• Transparency. Managing reconfiguration across each node is
a complex and error prone task for the application program-
mer. Achieving consistency must therefore involve minimum
programmer effort.

To address the above issues and requirements we propose in this
paper a distributed consistency framework that ensures consistent
AO-based dynamic reconfiguration while being tailorable to spe-
cific conditions and environments.

The rest of the paper is organised as follows. Section 2 pro-
vides a detailed discussion of the various threats to consistency to
which distributed applications are prone. In Section 3 we present
necessary background on the AO composition technology on
which we base our proposal (i.e. our AO-OpenCom platform).
Section 4 then presents our distributed consistency framework,
which is then evaluated in Section 5. Finally, Section 6 discusses
related work, and we offer our conclusions in Section 7.

2. Threats to Consistency

To illustrate threats to consistency under dynamic reconfiguration
in distributed systems we now present a simple case-study (see

33

figure 1) which comprises a multimedia peer to peer network in
which heterogeneous peers share data files and interact among
themselves. The peers (laptops, PCs, and PDAs) can also operate
in different network domains (Internet, Wi-Fi, ad-hoc wireless
networks, etc.). Given this environment a wide range of dynamic
reconfiguration scenario are feasible. For example:

(i) when a new video codec become available we may want to
encapsulate it as encoder and decoder aspects and dynami-
cally deploy it on all nodes with video capabilities;

(ii) when nodes move from a fixed to a wireless network envi-
ronment we may want to deploy fragmentation and reassem-
bly of the video and audio media frames;

(iii) when application performance degrades at a given node we
want to deploy a cache aspect while ensuring that cache con-
sistency is maintained across nodes.

We now present important threats to the consistency of such re-
configuration scenarios. While we do not claim this to be an ex-
haustive list, we believe it to be strongly indicative of the
challenges that must be addressed.

Figure 1. Multimedia application case study scenario

2.1 System environment threats

These relate to reconfiguration inconsistencies that occur due to
the instability of the underlying distributed environment in which
the reconfiguration takes place. The inherently unstable characte-
ristics of the networks and nodes employed in the scenario in-
crease the chances that a reconfiguration will be compromised.
These threat include:

Protocol message disruptions. If reconfiguration-related messag-
es are lost, re-ordered, duplicated or delayed, the consistency of
the reconfiguration is clearly compromised. For example, as mes-
sages get lost, the initiating node (referred as the coordinator) of
the reconfiguration can be mislead into waiting for the reconfigu-
ration to complete.

Local node disruptions. The reconfiguration requests (i) to (iii)
sent by the initiator of the reconfiguration may not reach some of
the peer nodes. Even if the messaging is unproblematic, individual
nodes may still fail to apply a requested reconfiguration. For ex-
ample:

• the node may be overloaded or may crash;

• a aspect composition request may fail because of resource
scarcity on the target node or because the node’s local policy
forbids it to make the requested change;

• modules or aspects may still be performing computations
when an attempt is made to remove or recompose them.

Again, such factors can lead to parts of the intended reconfigura-
tion not being carried out, and consequent inconsistency.

Infrastructure service failures. Aspects to be reconfigured into
the system are typically stored in repositories which may get con-
gested with requests, or crash, meaning that aspects may not be
available to be deployed (or may perhaps be only deployable in
parts of the system). Additionally, different repository instances
may have different versions of the aspects: e.g. different versions
of the encryption aspects may be produced over time, so that dif-
ferent nodes configure different codec versions and be inconsis-
tent with one another.

Simultaneous reconfigurations. Different reconfiguration re-
quests may arise simultaneously so that reconfiguration-related
messages relating to distinct requests may be interleaved and po-
tentially be received in different orders at different nodes. For
example, one request might ask for a fragmentation aspect to be
replaced, while another asks for it to be removed. There will
clearly be different outcomes depending on the execution order of
these two requests—and furthermore the outcomes might be dif-
ferent at different nodes.

Unauthorised nodes initiating reconfiguration. Reconfiguration
messages may be spoofed by malicious nodes in an attempt to
directly and deliberately compromise consistency.

2.2 Compositional threats

These relate to faulty interactions, following reconfiguration,
between the newly-reconfigured entities and prior non-
reconfigured entities. The associated threats typically involve
conflicts and dependencies: conflicts are threats causing negative
interactions between system entities; while a dependency threat
relates to a ‘required’ relationship that needs to be associated with
the reconfiguration for the system to operate correctly. The differ-
ent compositional threats are:

Unsynchronised weaving of dependent aspects. Some aspects are
inherently dependent on each other; for example, decryption is
dependent on encryption, and a cache may be dependent on a
remote cache manager. Therefore the order in which aspects are
woven is crucial: e.g., we must ensure that an assembler aspect is
put in place before its associated fragmenter, otherwise frag-
mented messages may be received which cannot be handled.

Unsynchronised binding of distributed aspects. Some distributed
aspect systems employ ‘remote aspects’ which are used by several
distributed client nodes. If such an aspect, e.g. a cache manager is
removed without the consent or even the awareness of its client
nodes, errors can arise when clients attempt to communicate with
the aspect.

Mutual exclusion of aspects. Behavioural conflicts can occur as
new aspects are woven. For example adding a logging aspect into
our scenario at the same join points as an encryption aspect can
result in behavioural conflicts, because the system is open to read
the logged, decrypted messages.

34

3. The AO-OpenCom Framework

Before discussing our proposed distributed consistency frame-
work, we briefly introduce the software composition technology
that underlies our work. AO-OpenCom is an extension of the
OpenCom component model [5] and provides a distributed AO
composition service while allowing aspectual compositions to be
dynamically reconfigured. An earlier version of AO-OpenCom
was the subject of a prior workshop paper [16]. We revisit it here
because the current version differs significantly from the earlier
one in key areas.

3.1 Aspects and Aspect Composition.

Aspect composition in AO-OpenCom employs components to
play the role of aspects—i.e. an aspect is simply an OpenCom
component (hereafter we use the term aspect-component when
referring to an OpenCom component that is playing the role of an
aspect). Aspects are composed using so-called AO-connectors.
These are specialised connectors that support the run-time inser-
tion of aspect-components.
 Internally, an instance of AO-OpenCom is structured as a set
of per-node local instances, as illustrated in figure 2, which are
combined into a multi-node AO-OpenCom distributed system.
The Distribution Framework is a plug-in for the AO-OpenCom
communication service that sends reconfiguration and manage-
ment messages to every node in the system; the ISend interface
provides a send() operation, while its INotify interface delivers
received messages to the AO-OpenCom Configurator.

Turning now to the constituent components, the Configurator
is responsible for accepting and handling reconfiguration requests
from applications. It interacts with the Pointcut Evaluator and
Advice Handler components on either the local node or other
nodes to actually carry out the requested reconfiguration in terms
of AO (re)compositions. The Aspect Repository holds a set of
instantiable aspect-components. This is composed of a front-end
proxy gateway component and a back-end database component.
Finally, the Pointcut Evaluator evaluates pointcuts and returns a
list of matching join points within the framework; and the Aspect
Handler weaves advices at these join points in the framework.

Figure 2. An AO-OpenCom per node instance

3.2 Reconfiguration in AO-OpenCom

The main API provided by an AO-OpenCom for dynamic recon-
figuration takes the form of a single operation on the Configurator
component:

Configurator.reconfigure(target_dcf, pc, command, aspect, scope,
locus).

The target_dcf argument specifies which distributed system the
reconfiguration should be applied to. The pc argument specifies a
pointcut that picks out the join points at which the desired recon-
figuration should occur. The command argument offers options—
either ‘add’, ‘remove’, or ‘replace’ an aspect—for the action to be
taken at the indentified join points. The aspect argument can be a
direct reference to a local aspect-component, or an indirect refer-
ence to an aspect stored in an Aspect Repository, or a reference to
an already-instantiated remotely-accessible singleton aspect. The
scope argument can be either per-instance or per-distributed sys-
tem. The former weaves a distinct aspect-component instance at
each specified join point; the latter instantiates a single per-system
instance that is connected, potentially remotely, with each speci-
fied join point. Finally, the locus argument describes how advices
should be applied at a selected join point in terms of either before,
after or around.

Furthermore, the Configurator is also responsible for the man-
agement of quiescence (i.e. it ensures that the weaving/unweaving
of aspects is not carried out while affected component/aspect-
components/connectors are actively processing calls). To support
this, the Configurator ensures that the weaving of aspects is not
carried out while the relevant connectors or other components are
actively passing or processing messages or calls. To do this, it
requires that all connectors and components support a basic
‘quiescence’ interface as follows:

status = quiesce(timeout);

status = resume();

Because of the strictly stylised composition supported by AO
composition, achieving quiescence is a relatively straightforward
task compared to non-AO composition (e.g. [8]). The quiesce()
operation simply freezes the start of the chain of aspects attached
to the AO Connector (i.e. the AO-Connectors that correspond to
the advices of the woven aspects) to prevent new threads entering,
and then waits for any currently executing threads to drain from
the aspect chain.

To execute Configurator.reconfigure() the following distri-
buted protocol is performed:

1. Configurator.reconfigure() is called on one of the AO-
OpenCom nodes; we will refer to this node as the ‘initiator’.

2. The initiator determines how the aspect is to be applied. In the
case of a per-distributed system scope, it instantiates the as-
pect at a suitable node and sends a remote reference to this to
the nodes where it is to be woven. Otherwise, the initiator de-
cides if it has the specified aspect available locally (or can get
it from an Aspect Repository) and wants to send it ‘by value’
to the nodes where it is to be woven, or if it wants to send the
aspect ‘by name’ and implicitly instruct the other members to
obtain the aspect from an Aspect Repository.

3. The initiator sends a ‘reconfigure’ message to all the other
AO-OpenCom nodes. This contains the parameters originally
passed to Configurator.reconfigure().

4. Upon receiving a ‘reconfigure’ message, each node’s Pointcut
Evaluator locates the target join points within its scope.

5. Each node’s Aspect Handler then actions the ‘add’, ‘remove’
or ‘replace’ command as appropriate. For ‘add’ or ‘replace’,
this may involve obtaining the aspect from an Aspect Reposi-
tory. It will also involve weaving the aspect according to the
specified scope and locus.

35

6. Each node replies to the initiator that it has completed the
reconfiguration locally.

7. When all nodes have reported completion the initiator node
returns control to the caller of reconfigure().

An example of the use of Configurator.reconfigure() is given in
Section 5.2.

4. The Consistency Framework

In this section we discuss our approach to the support of consis-
tent dynamic reconfiguration. This is independent of the basic
AO-OpenCom reconfiguration architecture discussed in the above
section which handles only the basic mechanics of dynamic aspect
(un)deployment. The Consistency Framework (COF) illustrated in
Figure 3 consists of: a System Consistency Framework, a Compo-
sitional Consistency Framework and a set of ‘threat aspects’
which are responsible for guarding against consistency threats
such as those identified in Section 2; these threat aspects are wo-
ven into the lower-level frameworks using the usual AO-
OpenCom facilities.

The fundamental strategy of the COF is to guard against con-
sistency threats by deploying ‘threat aspects’ at appropriate join
points within AO-OpenCom itself. The benefit of this strategy is
that threats can be handled in an incremental, selective and ex-
tensible manner where specific threat aspects can be deployed to
guard against specific consistency threats. Crucially, we are using
the same approach to guard against consistency as we are for ‘or-
dinary’ application-level dynamic reconfiguration: i.e. using as-
pect composition.

Turning now to the detail, the Consistency Configurator is re-
sponsible for managing these threat aspects and for deploying
them at appropriate join points within the AO-OpenCom-based
distributed system (see below).

Figure 3. Applying Consistency Framework to AO-OpenCom

We now turn to a discussion of how the Consistency Configurator
resolves each of the threats discussed in Section 2 by deploying
appropriate threat aspects. When discussing the weaving of threat
aspects, the following paragraphs refer to the numbered join
points, 1-7, within the AO-OpenCom framework that are illu-
strated in Figure 3.

4.1 Addressing System Environment Threats

The Consistency Configurator uses the System Consistency
Framework to instantiate the appropriate system environment
threat aspects based on the reconfiguration needs as described in
this section.

Protocol Message Disruption. To ensure that reconfiguration
messages are not lost, the System Consistency Framework uses a
reliability threat aspect and this aspect is woven at join points 4
and 5. The reliability threat aspect implements a reliability proto-
col atop the Distribution Framework to ensure that all messages
are reliably received by each member. Because it is implemented
as an aspect, this behaviour can be realised using various underly-
ing mechanisms and can therefore be made straightforwardly
applicable to a variety of implementation environments. This
point is an important one and also applies to all the other threat
resolution aspects to be discussed below.

In more detail, our currently-implemented reliability threat
aspect is composed of an aspect with two advices and a ‘message
store’. The first advice is woven ‘before’ join point 5, and has the
task of piggybacking reliability information to the message before
it is sent via the ISend interface. The second advice is woven as a
‘before’ advice at join point 4 (i.e. before the message is delivered
to the Configurator via INotify); this monitors incoming messages
(and caches them in the message store), detects any losses within
the transmission sequence, and requests retransmission of lost
messages.

To weave the reliability threat aspect in a consistent manner
(this again applies also to all the other threat resolution aspects to
be discussed below) the quiesce() operation is first called on the
connectors at join points 4 and 5 by the Consistency Configurator.
Upon successfully achieving quiescence, the reliability threat
aspect is woven at the front of the advice chain list (for brevity,
we discuss this weaving process only for join point 5; see Figure
4); hence, it is invoked before method calls go to the Distribution
Framework. Once the reliability threat aspect have been success-
fully woven at both join points, the resume() operation is called by
the Consistency Configurator.

Figure 4. Weaving the reliability threat aspect at join point 5

Local Node Disruption Threat. To guard against this threat, the
System Consistency Framework instantiates a consensus threat
aspect and this aspect is woven at join points 4 and 5 to ensure
that local node failures or disruptions do not compromise the con-
sistency of the system. This aspect is ‘flexible’ in that it can im-
plement any one of a range transaction protocols [7] depending on
the specific requirements and deployment environment. To illus-
trate the operation of the advices we briefly describe our two-
phase commit implementation. In this implementation, a ‘before’
advice woven at join point 5 takes messages before they are sent
and converts them into the required sequence of messages for
two-phase commit. Correspondingly, the ‘around’ advice at join

36

point 4 receives these transaction protocol messages and sends
phase acknowledgements; it also communicates with the AO-
OpenCom Configurator to enact or undo the local reconfiguration
as appropriate.

Infrastructure Service Failures Threat. To guarantee the liveness
of the infrastructure services (e.g. the Aspect Repository), the
System Consistency Framework uses a replication aspect. This
aspect is woven at join point 6 as an ‘around’ advice. Based on
application requirements, a number of replication algorithms
could be used to ensure maximum aspect availability and consis-
tency during updates—e.g. the Coda [15] or Bayou [6] algorithms.
More advanced algorithms which consider specific application
and context requirements could also be used: e.g. Beloued [2].

Further, the System Consistency Framework uses a load ba-
lancer aspect to manage the load across the infrastructure services
and this aspect is woven at join point 6 as a ‘before’ advice. Our
current load balancer algorithm implements both the push and pull
migration approaches [11]. The detailed functionality of the load
balancing algorithm is beyond the scope of the paper; but, in brief,
with push migration, periodic checks are made on the load of
particular replicated repository loads, and as imbalances are found
the load is evenly distributed from overloaded to less busy reposi-
tories. And the pull technique arranges that an idle replicated re-
pository can transparently take tasks from a busy repository.

To prevent version conflicts in the Aspect Repository, the
System Consistency Framework uses a concurrency management
aspect. This aspect is woven as a ‘before’ advice at join point 7.
The concurrency mechanism uses an optimistic read/write locking
mechanism with priority for readers. Calls to update an aspect
instance/version in the repository access the lock as a writer such
that a writer can access the lock when there are no readers, while
calls to retrieve aspect instances access the lock as a reader.

Simultaneous Reconfiguration Threat. To ensure that simultane-
ous reconfiguration requests do not interfere with one another, the
System Consistency Framework uses a distributed read/write
concurrency aspect and is woven at join point 1. This is an
‘around’ advice, the ‘before’ part being activated before the Con-
figurator.reconfigure() is called. The advice then attempts to
access the framework’s lock set by the concurrency aspect, and
blocks the call until this is obtained, at which point the reconfigu-
ration can proceed. At this point, any reconfiguration attempts by
other nodes are blocked until the present reconfiguration is com-
plete, at which point the Configurator returns the reconfigure()
call, and the ‘after’ part of the ‘around’ advice releases the lock.

Unauthorised Reconfiguration Threat. To prevent unauthorised
nodes initiating reconfiguration, the System Consistency frame-
work uses a series of security aspects, which are subsequently
woven at join points 4 and 5. These comprise aspects that each
addresses a different flavour of security threat: e.g. access control,
integrity or confidentiality. The weaving order of these aspects is
crucial: of the three mentioned the order would be authentication,
confidentiality and then integrity.

Currently, an authentication aspect is woven as a ‘before’ ad-
vice at join point 5 such that it is called before the Distribution
Framework and performs access control before allowing continua-
tion. Then a confidentiality aspect encrypts the arguments of
method calls as they are passed through the Distribution Frame-
work. This is achieved by weaving an encryption advice as a ‘be-
fore’ advice at join point 5 and a decryption advice at join point 4,
also as a ‘before’ advice. Finally the System Consistency Frame-
work implements an integrity aspect in terms of an SSL layer
between reconfigured nodes.

4.2 Addressing Compositional Threat

The Consistency Configurator uses the Compositional Consisten-
cy Framework to instantiate the appropriate compositional threat
aspects based on the reconfiguration needs as described below.

Unsynchronised Weaving of dependent aspect Threat. The
Compositional Consistency Framework uses a transaction man-
agement concurrency protocol or coordination protocol to pre-
serve compositional dependencies. Each of the protocols is
encapsulated as an aspect and is woven as a ‘before’ advice at join
points 4 and 5. This process is equivalent to that used for threat 2.
Here, the Saga transaction model [7] allows dependent aspects to
be divided into a sequence of sub-transactional aspects, each of
which manages an associated compensating sub-transaction that
can be triggered to undo the effects of the committed sub-
transaction aspect in case one fails.

With respect to the coordination protocol, protocol the Com-
positional Consistency Framework uses the NeCoMan [9] proto-
col which is encapsulated as an aspect and woven to provide
synchronisation between the reconfigured entities.

Unsynchronised binding of distributed remote aspects. To pre-
vent race conditions in which remote connectors attempt to com-
municate with remote aspects that have previously been removed,
a ‘before’ advice is woven at join point 3. This detects when a
‘remove’ command is passed to the Aspect Handler, and in re-
sponse weaves a proxy caretaker aspect this is woven in front of
proxies for the removed application aspect. Then, when a remote
client (connector) attempts to invoke this removed aspect, the
proxy caretaker aspect is invoked instead which redirects and
informs the remote connector that the referenced aspect has been
removed. To avoid the connector from invoking the aspect in the
future, it removes the remote aspect reference from its aspect
chain when it receives the ‘remove reference’ message.

Mutual exclusion of Aspect(s) Threat. To ensure that conflicting
aspects are not composed, the Compositional Consistency
Framework uses a semantic reasoning and resolution aspect (e.g.
[17]) and is applied at join points 1 and 4. This aspect holds appli-
cation-specific rules about which mutual exclusive behaviours are
allowed and not allowed when reconfiguration (both addition and
removal of aspects) is performed. Using reflection, it identifies
aspect(s) woven at the join point and determines if adding or re-
moving the aspect will cause any inconsistencies. For detected
conflicts an exception is raised and the reconfiguration is aborted.

4.3 Ordering of Threat Aspects

Although the threats discussed above are essentially orthogonal to
one another, the order in which the corresponding aspects are
composed is still important. For example, when the consensus
aspect is woven at join points 4 and 5, the reconfiguration can
proceed in either of the following ways: (i) if no threat aspects are
deployed then the consensus aspect is then woven as a ‘before’
advice; or (ii) in the case where the threat 1 aspect has already
been woven, the consensus aspect is woven as a ‘before’ advice
with position 2. The decision is determined from priority ordering
information attached as attributes to the individual aspects. Weav-
ing the reliability aspect first ensures that a reliable consensus
protocol is selected.

The order in which aspects woven at the same join point are
invoked affects the reconfiguration semantics. This is particularly
true for join points 4 and 5 at which numerous aspects are woven.
Aspects being executed in the wrong order could lead to situations
in which a message needing to be processed by a particular aspect
has already been consumed by another.

37

To guard against such eventualities, the COF mandates a par-
ticular order for the weaving of the threat aspects. These are illu-
strated in Figures 6(a) and 6(b) which respectively illustrate the
required ordering at join points 4 and 5.

Figure 6(a). List of threat aspects woven at join point 4

Figure 6(b). List of threat aspects woven at join point 5

5. Evaluation

We focus on two dimensions of evaluation: (i) the extent to which
AO-OpenCom/COF achieves our stated goals of configurability
and transparency; and (ii) the overhead of AO-OpenCom/COF in
‘typical’ usage scenarios.

5.1 Configurability
In Section 4.1 we have already demonstrated the configurability
of AO-OpenCom/COF in addressing a wide range of consistency
threats. Our general approach to dealing with such threats—i.e. by
selectively applying threat aspects to join points in AO-OpenCom
itself—is inherently highly configurable and can be changed or
extended simply by applying different threat aspects. However,
two potential vulnerabilities of our approach might become evi-
dent if new threat aspects are added to the set we have already
identified: (i) it could become harder to keep track of the threat
aspect ordering constraints discussed in Section 4.2; and (ii) there
could be an increased possibility of undesirable interactions be-
tween the behaviour of the different threat aspects. The extent to
which these vulnerabilities become problematic will become
clearer with experience. However, we believe that the set of threat
aspects we have identified is already quite comprehensive, and
that many cases can be covered with the current set alone. Under-
lying this belief is our experience that most threats seem to reduce
to a tractable number of common underlying patterns.

5.2 Transparency
Turning now to the issue of transparency, AO-OpenCom/COF
naturally supports a selectively transparent approach. At one ex-
treme, an appropriate set of threat aspects can be pre-configured at
application start-up time so that the application programmer who
wishes to initiate a run-time reconfiguration needs only to make
the appropriate call to Configurator.reconfigure(). This achieves
complete transparency of consistency-related mechanisms. At the
other extreme, the programmer can be explicit about which threat

aspects should be put in place for each reconfiguration. In this
case, COF will apply the requested threat aspects on-the-fly (if
they are not already present) before proceeding to perform the
requested reconfiguration. Note that this extreme is still partially
transparent as the programmer is protected by the Consistency
Configurator from the low level details of actually weaving the
threat aspects.

To illustrate the partially transparent case consider a reconfi-
guration scenario relating to the case study in Section 2. Assume
that the application programmer wants to add an MPEG4 video
codec aspect to all nodes in domains 1 and 2 which already have
video-codec components with an IMPEG interface. Further as-
sume that domains 1 and 2 offer reliable TCP-based communica-
tions. The programmer would specify the reconfiguration request
by writing code along the lines of Figure 7 (the code is simplified
for presentational purposes).

Note that the required threat aspects are specified as part of
the aspect specification. In this case no compositional threats are
applicable, and the protocol message disruptions threat (T1) is not
applicable either because of the availability of TCP. This leaves
only the remainder of the ‘system environment’ threats: i.e.
threats T2-T5. The Configurator.reconfigure() call takes the given
pointcut and aspect specifications and also specifies that the speci-
fied aspect should be added, that the scope of the reconfiguration
should be the entire DCF and that the weaving locus should be
before.

Pointcut pc = new Pointcut(“domain1* && domain2*”, “video-
codec*”, “IMPEG”, “video-player*”);

Aspect aspectVideo = new Aspect(MPEG4VideoCodec, “T2 T3
T4 T5”);

Configurator.reconfigure(multimedia_app, pc, add, aspectVideo,
perDCF, before);

Figure 7. Reconfiguration specification

5.3 COF Overhead
The following experiment was performed on two Core Duo 2, 1.8
GHZ PCs’ with 2GB RAM running Windows, and using the Java-
based version of AO-OpenCom. Each measurement was repeated
ten times and mean values taken to discount anomalous results.
The purpose of the experiment was to evaluate the performance
overhead of dynamic reconfiguration operations using AO-
OpenCom and COF, We approached this by instrumenting an
implementation of the application scenario described in Section
5.2, while using different threat aspect configurations from the
consistency framework.

The results are shown in Figure 8 which shows the measured
overhead of the following 4 cases: (i) reconfiguration without
COF; (ii) reconfiguration using COF with the system consistency
framework threat aspects only; (iii) COF with the compositional
consistency framework threat aspects only; and (iv) COF with
both the system and compositional consistency framework threat
aspects.
We can see a linear increase in overhead when applying COF for
compositional threat aspect while a non-linear increase of over-
head for System Consistency Threat aspect used as the number of
reconfigured nodes is increased. This is explained by:
• the fact that the initiator node is a bottleneck (this could in

principle be alleviated by configuring AO-OpenCom with
slave Configurators to increase parallelism);

• weaving of dependent aspects are treated as sub-transactions
over a mixed set of nodes. The set of affected nodes having
dependent causes affected nodes to dependent on each other,
causing the overhead to be higher.

38

Overall, based on our experiments, we can conclude that the run-
time overhead of COF is acceptable; with each threat aspect capa-
ble of being independently woven each threat aspect can be
individually deployed based on the required reconfiguration con-
text, thus significantly reducing the overhead compared to all
threat aspects being deployed.

Figure 8. Overhead of reconfiguration using COF in AO-

OpenCom

6. Related Work

Few AO middleware platforms have addressed the challenges of
performing consistent dynamic reconfiguration. DyMac [10], and
CAM/DAOP [14] are prominent examples of distributed AOP
platforms that have no support for dynamic reconfiguration. Other
prominent platforms such as Spring AOP [1] and FAC [13] do
support reconfiguration, but do not support distribution; these
systems have not needed to consider strong consistency mechan-
isms as reconfiguration is considerably simpler when confined to
a single node.

JAC [12] is an early example of a distributed platform that
supports dynamic reconfiguration. However, this support involves
only the reconfiguration of advices at individual join points and
provides no support for distributed consistency management.

AWED [3] supports dynamic weaving of aspects using the
DJAsCo [20] distributed AOP architecture. It supports the weav-
ing of stateful distributed aspects, and through the use of a consis-
tency protocol ensures that whenever an aspect is woven at a
specific host, mirrors are also woven at other involved hosts.
However, AWED do not consider any other consistency threats as
discussed in the our proposed solution.

ReflexD [18] also supports dynamic weaving/unweaving of
mirrored aspects, and uses a framework to provide system-wide
consistency. However, as in AWED ReflexD aspects exist only as
mirrored aspects although unlike AWED, ReflexD ensures that
whenever an aspect is changed the corresponding remote copies
are synchronised. But again, the consistency mechanisms pro-
vided do not generalise to the extent of our proposal.

Finally, DyReS [19] is an AO middleware framework devel-
oped on top of JBOSS dynamic AOP [4] and Spring AOP [1] that
provides consistent dynamic reconfiguration in a more sophisti-
cated manner than the systems reviewed above. More specifically,
DyReS uses a coordination protocol that allows aspects to be dy-
namically added and removed in a consistent manner by achieving

quiescence. The protocol is based on two synchronisation primi-
tives: wait blocks the ongoing reconfiguration process until it gets
a notify message from a specified node; and notify sends a syn-
chronisation message to a specified node. Although this approach
supports a degree of generality (i.e. it is portable over multiple
underlying platforms), it again does not generalise to a wider set
of consistency threats. For example, when deployed in a wireless
network environment there is no way to address the possibility of
lost or reordered synchronisation messages or other system envi-
roment threats as in our approach. Furthermore, compositional
threats are not addressed in DyReS. Our approach is more flexi-
ble, allowing different consensus and consistency protocols to be
chosen based on the required reconfiguration, the current envi-
ronment, and the wide range of threats that are posed.

7. Conclusion and Future Work

In this paper we have identified a number of important threats to
maintaining the consistency of distributed reconfiguration opera-
tions in AO middleware environments. We believe these threats to
be representative of the type of threats that should be considered
by all dynamic AOP platforms. More specifically, we have pre-
sented the AO-OpenCom platform which supports the composi-
tion and reconfiguration of distributed aspects, and an associated
distributed consistency framework called COF that ensures that all
of the identified threats are handled in a transparent manner. COF
has the following important benefits. First, it is simple and elegant
in that it uses aspect composition to deploy these consistency
mechanisms. Second, it is flexible and configurable in that appro-
priate threat aspects can be dynamically woven and unwoven
according to the types of threat and environmental conditions
currently pertaining. Third, it is inherently extensible in that new
threat aspects can be developed and woven into the system at
appropriate join points as and when new threats are identified.
Fourth, it achieves the maintenance of consistency with a reason-
able overhead compared to unsafe reconfiguration.

There are several research directions that we would like to in-
vestigate in the future. First, we are currently working on perfor-
mance optimisations to reduce reconfiguration overheads through
the use of multiple (slave) Configurators in cases where a reconfi-
guration needs to be carried out on a large number of nodes. This
should reduce the overheads identified in Section 5 to something
closer to constant time. Second, we will investigate the potential
for embedding our approach in a self-managing, autonomic envi-
ronment. Finally, we plan to integrate our framework with appro-
priate modelling tools which can support the developer in
designing, evaluating and validating complex aspect reconfigura-
tions before they are deployed into a distributed system.

References

[1] Spring website. http://www.springframework.org/.

[2] Beloued, A., Gilliot, J.M., Segarra, M.T., Andre, F. “Dynamic data
replication and consistency in mobile environments”, In Proceeding
of the 2nd doctoral symposium on Middleware, ACM, NY, 2005.

[3] Benavides, L., Sudholt, M., Vanderperren, W., et al., “Explicitly
distributed AOP using AWED”, In Proceeding 5th International Pro-
ceeding Conference on Aspect Oriented Software Development,
Bonn, Germany, March 2006.

[4] Burke, B., “JBoss AOP Tutorial”, 3rd Conference on Aspect Ori-
ented Software Development, Lancaster UK, 2004.

[5] Coulson, G. Blair, G., Grace, P, Taiani, F., Joolia, A., Lee, L.,
Ueyama, J., Sivaharan, T., “A Generic Component Model for Build-
ing Systems Software”, ACM Transactions on Computer Systems,
TOCS, 2008.

39

[6] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M.,
Welch, B., “The bayou architecture: Support for data sharing among
mobile users.” In Proceedings IEEE Workshop on Mobile Comput-
ing, pages 2-7, 1994.

[7] Garcia, H., Salem, K., “Sagas”, ACM Conference on Management
of Data, 1987.

[8] Grace, P., Coulson, G., Blair, G., Porter, B., “A Distributed Archi-
tecture Meta Model for Self-Managed Middleware”, In Proceeding
5th Workshop on Adaptive & Reflective Middleware, 2006.

[9] Janssens, N., Joosen, W., Verbaeten, P., “NeCoMan: middleware for
safe distributed-service adaptation in programmable networks”, In
IEEE Distributed Systems Online, 2005.

[10] Lagaisse, B., Joosen W., “True and Transparent Distributed Compo-
sition of Aspect-Components”, In Proceeding Middleware Confer-
ence, LNCS 4290, Melbourne, 2006.

[11] Minson, R., Theodoropoulos, G., “Adaptive Support of Range Que-
ries via Push-Pull Algorithms”, 21st Workshop on Principles of Ad-
vanced and Distributed Simulation, 2007.

[12] Pawlak, R., Senturier, L., Duchien, L., Florin G., “JAC: A Flexible
Solution for AOP in Java”. In Proceeding 3rd International Confer-
ence on Metalevel Architectures and Seperation of Crosscutting
Concerns, 2001.

[13] Pessemier, N., Seinturier, L., Duchien L., Coupaye, T., “A compo-
nent-based and aspect-oriented model for software evolution”, Inter-
national Journal of Computer Applications in Technology, Volume
31, Number 1-2, 2008.

[14] Pinto, M., Fuentes, L., Troya, J.M., “A Component And Aspect
based Dynamic Platform”. The Computer Journal, 2005.

[15] Satyanarayanan, M., “Coda: A highly available system for a distrib-
uted workstation environment.” IEEE Trans. Computing, 39(4) pg.
447-459, 1990.

[16] Surajbali, B., Coulson, C., Greenwood, P., and Grace, P. “Augment-
ing reflective middleware with an aspect orientation support layer.
In Proceeding 6th Workshop Adaptive and Reflective Middleware,
2007.

[17] Surajbali, B., Grace, P. and Coulson, G. 2009. A Semantic Composi-
tion Model to Preserve (Re)Configuration Consistency in Aspect
Oriented Middleware. In Proc. 8th Workshop on Adaptive and Ref-
lective Middleware. 2009.

[18] Tanter, E., Toledo, R., “A Versatile Kernel for Distributed AOP”. In
Proceeding International Conference on Distributed Applications and
Interoperable Systems, June 2006.

[19] Truyen, E., Janssens N., Sanen, F., Joosen, W., “Support for distrib-
uted adaptations in aspect-oriented middleware”. In Proceeding of
the 7th International Conference on Aspect Oriented Software De-
velopment, April 2008.

[20] Vanderperren, W., Suvee, D, Wydaeghe, B., Jonckers, V., “Paco-
Suite and JAsCo: A visual component composition environment with
advanced aspect separation features”, Conference on Fundamental
Approaches to Software Engineering Poland, 2003.

40

!"##$"%&#&'()*+%#&,&-./0$//*"01*2/3$4'/*5-6*76-"14"/'*8$6,&4$*
2''"49:$0'*

! !"##"$%&'$((")*+&
,-.$(/%-+/&*0&1*%.2/-(&34"-+4-&

5("+"/6&1*##-7-&
,28#"+&9:&;(-#$+<=&
>?@A@B&CDEFG&EAAG&

!"##$%&''"()*+,($-,.$"/0

!
!

2%/'6"4'&
H+& "%.*(/$+/& 4I$($4/-(")/"4& *0& 3-(J"4-DK("-+/-<& H(4I"/-4/2(-)& ")&
/I$/&4#"-+/)&<*&+*/&<-.-+<&*+&/I-&)-(J"4-&"%.#-%-+/$/"*+L)&"+/-(+$#&
$))"7+%-+/&*0&%-/I*<)&/*&*8M-4/)N&;/&")&.-(I$.)&/I-&%*)/&"%.*(/$+/&
/-4I+"4$#& 4I$($4/-(")/"4& /I$/& <"00-(-+/"$/-)& /I-%& 0(*%& %*(-& 4*%D
%*+& *8M-4/D*("-+/-<&)*#2/"*+)N& 5I")& 4I$($4/-(")/"4& %$O-)& 4#"-+/)&
$+<&)-(J"4-)&%$##-$8#-:&$##*P"+7&/I-%&/*&8-&(-$(($+7-<&$/&(2+D/"%-&
$)& 4"(42%)/$+4-)& 4I$+7-N& 5I$/& "%.(*J-%-+/& "+& %$##-$8"#"/6& ")&
"%.$"(-<&86&(-Q2"("+7&4#"-+/)&/*&<"(-4/&)-(J"4-&(-Q2-)/)&/*&.$(/"42#$(&
)-(J"4-)N& ;<-$##6:& /I-& 4#"-+/)& $(-& /*/$##6& *8#"J"*2)& /*& /I-&)-(J"4-&
)/(24/2(-:& $)& /I-6& $(-& /*& $).-4/&)/(24/2(-& "+& $).-4/D*("-+/-<&)*0/D
P$(-N& R-%*J"+7& O+*P#-<7-& *0& $& %-/I*<& "%.#-%-+/$/"*+L)& #*4$D
/"*+:&PI-/I-(& "+&*8M-4/&*(&)-(J"4-:&(-Q2"(-)&(-D<-0"+"+7&/I-&8*2+<D
$(6& #"+-&8-/P--+&.(*7($%%"+7&#$+72$7-&$+<&%"<<#-P$(-:&%$O"+7&
4#-$(-(&).-4"0"4$/"*+&*0&<-.-+<-+4-&*+&.(*/*4*#):&$+<&8("+7"+7&/I-&
/($+)$4/"*+D#"O-&4*+4-./&*0&0$"#2(-&)4*.-)& "+/*& #$+72$7-&)-%$+/"4)&
$)& P-##N& 5I")& .$.-(& -S.#*(-)& 4*+)-Q2-+4-)& $+<& $<J$+/$7-)& *0& $&
/($+)"/"*+&0(*%&*8M-4/D(-Q2-)/&8(*O-("+7&/*&)-(J"4-D(-Q2-)/&8(*O-(D
"+7:& "+4#2<"+7& /I-& .*/-+/"$#& /*& "%.(*J-& *2(& $8"#"/6& /*&P("/-&%*(-&
.$($##-#&)*0/P$(-N&

!"#$%&'($)* "+,* -./0$1#* 2$)1'(3#&')*,N@N@& T;6-<6"::&0<* ="0>
<."<$/UV&W$+72$7-&1*+)/(24/)&$+<&X-$/2(-)&Y&!"#$%!&$'(!$!'$)*+#,'
&-.&/%%+.$'*%-0%!112.0'#$%/&$/%+#3',N9NCC&T8-5'?"6$*@0<&0$$6>
&0<UV&3*0/P$(-&H(4I"/-4/2(-)&Y&(!$!'!"#$%!&$2-.,'4!.0/!0+#3'

4$+$'"5*6$'7)**,-)"7+:&W$+72$7-)N&

8$9:&',)* 3-(J"4-DK("-+/-<:& H).-4/DK("-+/-<:& Z(*7($%%"+7& W$+D
72$7-:&["<<#-P$(-:&1*+42((-+46N&

AB! C0'6-1.4'&-0*
!"/I& 42((-+/& $..(*$4I-)& /*&)*0/P$(-& <-)"7+& $+<& "%.#-%-+/$/"*+:&
)*0/P$(-&$(/"0$4/):&#"O-&4#$))-)&*(&%-/I*<):&-%8*<6&%$+6&<-4")"*+)&
%$<-& $/& /I-6& /"%-& /I-6& $(-& <-)"7+-<& $+<& "%.#-%-+/-<N& ;+& %*(-&
0#2"<& -+J"(*+%-+/):& "+4#2<"+7& <")/("82/-<:& $2/*+*%"4:& 7("<:& $+<&
)-(J"4-D*("-+/-<:& /I$/& $(-& -%-(7"+7& /*<$6:&P-&+--<&%*(-&*0& /I-)-&
4I*"4-)&/*&8-&<-0-((-<&2+/"#&(2+D/"%-N&X*(&-S$%.#-:&/*<$6&/I-&4#"-+/&
0&$&%-/I<&).-4"0"-)&PI-(-&/*&0"+<&"/)&"%.#-%-+/$/"*+:&PI-/I-(&"+&
$+& *8M-4/& *(& "+& $&)-(J"4-N& ;+& 4*%%*+& 2)$7-:& %$##-$8"#"/6& ")& /I-&
$8"#"/6&*0&$+&$(/"4#-&/*&8-&%*#<-<&*(&)I$.-<&/*&0"/&0*(&4I$+7"+7&4"(D
42%)/$+4-):&$+<&P-&I$J-&$..#"-<&/I-&/-(%&/*&)*0/P$(-&$(/"0$4/)&TAUN&
\+I$+4"+7& %$##-$8"#"/6& (-Q2"(-)& 2)& /*& (-D/I"+O& /I-& 8*2+<$(6& 8-D
/P--+& .(*7($%%"+7& #$+72$7-)& $+<& %"<<#-P$(-& $+<& "+/(*<24-& $&
.*"+/&$/&PI"4I&"+/-##"7-+/&4I*"4-&4$+&8-&"+M-4/-<&"+/*&/I-&*/I-(P")-&
("7"<&)-%$+/"4&).-4"0"4$/"*+N&]2/& "+/(*<24"+7& $& #*42)& 0*(&)24I& $+&
"+/-##"7-+4-&$##*P)&2)&/*&8-//-(&$<<(-))&/I-&+--<&0*(&7(-$/-(&.$($#D
#-#")%&/I$/&P-&4*+0(*+/&"+&/I-&%2#/"D4*(-&02/2(-N&
5*& $<<(-))& /I-& +--<& 0*(& 7(-$/-(&%$##-$8"#"/6:&P-& $<J*4$/-& /I-&

2)-&*0&$&.(*7($%%"+7&%*<-#:&4$##-<&/I-&"%-!(&!#$'#+%52&+'1-(+4:&
P"/I&)-J-($#&+*J-#&4I$($4/-(")/"4)V&

!5I-(-&")&$&%*<2#$("^"+7&4*+)/(24/:&4$##-<&#+%52&+:&/I$/&4*+/$"+)&$&
4*I-(-+/& 4*##-4/"*+& *0& 4#$))-)& $+<& I$)& $& (2+D/"%-& "+)/$+/"$/"*+N&
3-(J"4-)&%$6&8-&(-).*+)"8#-&0*(&I$+<#"+7&%-/I*<&4$##)&%$<-&86&
$&4#"-+/&*(&%$6&8-&$//$4I-<&*8#"J"*2)#6:&$)&$).-4/)N&5I-6&%$6&8-&
8*2+<&P"/I"+& $& .(*4-))& *(& #*4$/-<& (-%*/-#6:& $+<& /I-6& I*#<& /I-&
)/$/-&0*(&J$("*2)&$).-4/)&*0&*8M-4/)N&
!5I-(-& ")& $+& "+/-(0$4-D#"O-& 4*+)/(24/:& 4$##-<& 6!&+:& /I$/& 4I$($4/-(D
"^-)&$&)-/&*0&%-/I*<)&/I$/&4$+&8-&4$##-<&)$0-#6:&82/&<*-)&+*/&"+<"D
4$/-&PI"4I&*8M-4/&*(&)-(J"4-&"%.#-%-+/)&/I-%N&
!1#"-+/)& %$6& 2)-& $&)"+7#-& (-0-(-+4-& /*& $+& *8M-4/& -J-+& PI-+& "/)&
)/$/-& ")& <")/("82/-<& $4(*))&)-J-($#&)-(J"4-)N& 5I-&)-(J"4-)& $(-& (-D
).*+)"8#-& 0*(& (-)*#J"+7& (-0-(-+4-):&)*& /I$/& $+& *8M-4/L)&%-/I*<)&
4$+&$44-))&"/)&)/$/-N&
![-/I*<& "+J*4$/"*+)&<*&+*/& "+<"4$/-&$&.$(/"42#$(& /$(7-/&*8M-4/&*(&
)-(J"4-N& ;+)/-$<:& "+J*4$/"*+& ")& 8(*<4)/:& P"/I& /I-& "+/-##"7-+4-&
72"<"+7&/I-&<-#"J-(6&*0&$&%-/I*<&4$##&/*&*+-&*(&%*(-&"%.#-%-+D
/$/"*+)& 8-"+7& .(*J"<-<& 86& $& %"<<#-P$(-D<-0"+-<& <").$/4I-(:&
4$##-(&$&#+%52&+'%+7/+#$'"%-8+%N&
!H##& -S-42/"*+& /$O-)& .#$4-&P"/I"+& $& /($+)$4/"*+:&PI"4I&)-(J-)& /*&
4"(42%)4("8-&8-I$J"*(&*+&0$"#2(-N&
5*&-S.#*(-& /I")&%*<-#:&P-&$(-&<-J-#*."+7&$&.(*7($%%"+7&#$+D

72$7-:&1*+/"+22%& TC_U:&PI"4I& -%8*<"-)& /I")&)/(24/2(-& $+<& "+/(*D
<24-)& 4*+)/(24/)& /I$/& -+I$+4-&%$##-$8"#"/6N& ;+& /I-&+-S/&)-4/"*+&*0&
/I")& .$.-(:& P-& 2)-& $&)%$##& -S$%.#-& /*& "##2)/($/-& /I-& 2+<-(#6"+7&
"))2-)& *0& %$##-$8"#"/6& $+<& *8#"J"*2)+-)):& .*"+/D/*D.*"+/&)-(J"4-&
.(*J")"*+:& $).-4/& $//$4I%-+/:& $+<& 8(*$<4$)/&)-(J"4-& .(*J")"*+N& ;+&
/I-&/I"(<&)-4/"*+&P-&/I-+&*2/#"+-&)*%-&*0&/I-&/-4I+"4$#&4I$##-+7-)&
/I$/&%2)/& 8-&%-/& /*& (-$#"^-& /I*)-& $<J$+/$7-)N& 5I-& 0*2(/I&)-4/"*+&
/I-+&<-)4("8-)&$<J$+/$7-)&/*&8-&$4I"-J-<&86&4*%8"+"+7&/I-&<"00-(D
-+/& O"+<)& *0& *8#"J"*2)+-))& .(*J"<-<& 86& $).-4/D*("-+/-<& $+<& 86&
)-(J"4-D*("-+/-<& /-4I+*#*7"-)N& 5I-)-& $<J$+/$7-)& "+4#2<-& +*/& *+#6&
"+4(-$)-<& %$##-$8"#"/6:& 82/& $#)*& $& 8$)")& 0*(& <-)4("8"+7&)/$/"4$##6&
-+0*(4-<&02/2(-&.(*4-))"+7&4*%%"/%-+/)N&5I-)-&4*%%"/%-+/)&4$+&
8-&2)-<&/*&%-(7-&.(*4-))D0#*P&$+<&4$##`(-/2(+&.$($<"7%)&$+<&+$/2D
($##6&-S.(-))&#$/-+/&.$($##-#")%:&/*&8-//-(&-S.#*"/&%2#/"D4*(-&.(*4-)D
)*()N&&

DB! E01$6#(&0<*C//.$/*
DBA! !"##$"%&#&'(*
[$##-$8"#"/6& ")& %24I& #"O-& (-2)$8"#"/6:& -S4-./& /I$/& "+)/-$<& *0&

4I$($4/-("^"+7& I*P& $+& $(/"0$4/& 4$+& 8-& (-2)-<& <2("+7& /I-& <-J-#*.D
%-+/& *0& +-P& $(/"0$4/):& %$##-$8"#"/6& 4I$($4/-("^-)& I*P& 0#-S"8#6& "/&
4$+& 8-& 2)-<& $/& <-.#*6%-+/D/"%-& *(& (2+D/"%-N& X*(& -S$%.#-:& 2)"+7&
aJL)&$8"#"/6&/*&<-)4("8-&/I-&/6.-&*0&$&.$($%-/-(&P"/I&$+&"+/-(0$4-&
($/I-(& /I$+& P"/I& $& 4#$))& %$O-)& %-/I*<)& 8*/I& %*(-& (-2)$8#-& $+<&
%*(-&%$##-$8#-N&]2/&2+#"O-&aJ:&H,H&$+<&[*<2#$D@&4$+&"<-+/"06&
$& .$($%-/-(L)& .2(.*)-&86&+$%-N&5I-&*(<-(& "+&PI"4I& /I-)-&+$%-)&

=&5I")&P*(O&P$)&%$<-&.*))"8#-&86&$&7($+/&0(*%&/I-&34"-+4-&X*2+<$D
/"*+&;(-#$+<&

41

$(-&2)-<&86& $&%-/I*<L)& 4$##-(& 4$+&<"00-(& 0(*%& /I-&*(<-(& "+&PI"4I&
/I-& "%.#-%-+/-(& #")/-<& /I-%N& 5I")& "%.(*J-)& /I-& %$##-$8"#"/6& *0&
8*/IN&]2/& "/&<*-)&+*/& "%.(*J-<& /I-"(&(-2)$8"#"/6&8-4$2)-&/I-&*(<-(&
2)-<& 86& /I-&)-#-4/-<& "%.#-%-+/$/"*+& ")& -J"<-+/& $/& <-J-#*.%-+/&
/"%-& "+& $+6& 4$)-N& 5I-& "+0*(%$/"*+& +--<-<& /*& (-*(<-(& .$($%-/-()&
4$+&8-&.(*J"<-<&P"/I*2/&2+<2-&82(<-+&*+&/I-&<-J-#*.-(&86&(-0-(D
("+7& %-/I*<)& $+<& .$($%-/-()& <-0"+-<& "+& "+/-(0$4-)& /*& $& 7#*))$(6&
/I$/:&#"O-&a$J$,*4:&.(*J"<-)&-S/($D#"+72$#&"+0*(%$/"*+&$8*2/&%-$+D
"+7)N&
b-+-($##6&).-$O"+7:&%$##-$8"#"/6&4$++*/&8-&$4I"-J-<&86&$<<"+7&

+-&(&$+*/I-(&#$+72$7-&0-$/2(-&/*&$<<(-))&"/:&$#/I*27I&0-$/2(-)&/I$/&
"+4(-$)-& /I-&).-4"0"4$/"*+&4*+/-+/&*0&)*0/P$(-&*J-(& "/)&$#7*("/I%"4&
4*+/-+/&$<<& /*&)*0/P$(-L)&%$##-$8"#"/6N& ;/& ")& "+)/-$<&-$)"-(& /*&-+2D
%-($/-& 4I$($4/-(")/"4)& *0&)*0/P$(-& /I$/& "+I"8"/& %$##-$8"#"/6:& $+<&
.(*.*)-&/I-"(&(-%*J$#&*(&/I-&)28)/"/2/"*+&*0&-Q2"J$#-+/&4I$($4/-(")D
/"4)&"+&<"00-(-+/&0*(%N&!-&%-+/"*+-<&)-+)"/"J"/6&/*&.$($%-/-(&*(<-(&
$)& *+-& -S$%.#-:& $8*J-:& 82/& /I-(-& $(-&%$+6& */I-(& P$6)& /I$/& /P*&
"%.#-%-+/$/"*+)&*0&/I-&)$%-&02+4/"*+&4$+&<"00-(N&H&/("J"$#&-S$%.#-&
")& /*#-($+4-& 0*(& +$%-&J$("$/"*+)& /*&8-&2)-<& 0*(&%-/I*<)&*(& /6.-):&
PI"4I&4$+&8-&(-)*#J-<&/I(*27I&/I-&2)-&*0&/I-&)$%-&7#*))$(6&%-+D
/"*+-<& $8*J-N& H& %*(-&)28/#-& "+I"8"/*(& /*& %$##-$8"#"/6& ")& /I-& $)D
)"7+%-+/& *0& /I-& "%.#-%-+/$/"*+& /*& $& .$(/"42#$(& c/$(7-/d& *8M-4/:&
PI"4I& ")& */I-(P")-& M2)/& *+-& $%*+7& /I-&)-J-($#& .$($%-/-()N& !-&
I$J-& 4$##-<& /I-& $8"#"/6& /*& "7+*(-&)24I& <"00-(-+4-)& c)/(24/2($#& $8D
)/($4/"*+d& TEU& $+<& <-0"+-<& $& a$J$D4*%.$/"8#-& .(*7($%%"+7& #$+D
72$7-& 4$##-<& 1*+/"+22%& /I$/& .-(%"/)& /I-& *8M-4/)& (-).*+)"8#-& 0*(&
%-/I*<&"%.#-%-+/$/"*+)&/*&8-&"%$7"+-<&<"00-(-+/#6&86&4#"-+/)&$+<&
)-(J"4-)&TFU:TC_UN&&

DBD! +%#&,&-./0$//*
K8#"J"*2)+-))&")&$+&"%.*(/$+/&P$6&/*&$4I"-J-&%$##-$8"#"/6N&5I$/&

")&*+-&*0&/I-&(-$)*+)&"/&")&)*&"%.*(/$+/&"+&)-.$($/"+7&4*+4-(+)N&e)D
"+7&)/(24/2($#&$8)/($4/"*+:& /I-&)-(J"4-D*("-+/-<&%*<-#& 0*(&)*0/P$(-&
.(*J"<-)& $&P$6& /*&%$O-&4#"-+/)&*8#"J"*2)& /*& /I-& "))2-&*0&PI-(-&$&
%-/I*<& ")& "%.#-%-+/-<&P"/I"+& $&)-(J"4-N&]2/& "/& <*-)&)*&86& "+/(*D
<24"+7&$&+-P&)/(24/2($#&<-.-+<-+4-N&]6&%*<-#"+7&)-(J"4-)&$)&*8D
M-4/):&"/&(-.#$4-)&<-.-+<-+4-&*+&/I-&$))"7+%-+/&*0&%-/I*<)&/*&*8D
M-4/)&P"/I& <-.-+<-+4-& *+& /I-& $))"7+%-+/& *0&%-/I*<)& /*&)-(J"4-)N&
H)&P"/I&/($<"/"*+$#&/$(7-/D<"(-4/-<&*8M-4/&4$##):&)-(J"4-&(-Q2-)/)&$+<&
(-).*+)-)&$(-&*-2.$9$-9*-2.$:&0*(4"+7&/I-&4#"-+/&/*&("7"<#6&(-0#-4/&/I-&
(-$#"^$/"*+&*0&02+4/"*+&86&)-(J"4-)N&&
&K+&/I-&*/I-(&I$+<&-"4252-/#.+##&TCU&")&*+-&*0&/I-&I$##%$(O)&*0&

$).-4/D*("-+/-<&/-4I+*#*7"-):&PI"4I&I"<-&)-(J"4-&$//$4I%-+/)&0(*%&
4#"-+/)N& 5I-& 4*+4-./& *0& *8#"J"*2)+-))& (-4*7+"^-)& /I$/& /I-& 0#*P& *0&
#*7"4&P"/I"+&)*0/P$(-& ")& +*/&)-+)"/"J-& /*& "+<-.-+<-+/#6& <-)4("8-<&
$).-4/)& /I$/&%$6&-$4I&4$((6&.$(/&*0& "/)&)/$/-N&H).-4/)&4$+&8-&2)-<&
0*(& $//$4I%-+/& *0&)6)/-%"4& 02+4/"*+& #"O-&%$+$7-%-+/& *0& /($+)$4D

/"*+):&*(& 0*(& 4*%.*)"/"*+&*0& 4*%.*+-+/& 02+4/"*+$#"/6& #"O-&-<"/"+7:&
<").#$6&$+<&J$#"<$/"*+&*0& /I-&-#-%-+/)&*0&$&<-J-#*.%-+/&-+J"(*+D
%-+/N&f*&%$//-(&PI"4I:&/I-&0$4/&/I$/&/I-&4*%8"+-<&$).-4/)L&4*<-&")&
*8#"J"*2)&/*&/I-&%$++-(&*0&/I-"(&4*%8"+$/"*+&")&$&%$M*(&4*+/("82/*(&
/*& /I-&)*0/P$(-L)& %$##-$8"#"/6N& '*P-J-(:& /*<$6L)& -S.#*"/$/"*+& *0&
$).-4/D*("-+/-<&4*+4-./)&")&*+#6&$..#"-<&PI-(-&4#"-+/)&<*&+*/&4*+D
/(*#& *(& <"(-4/& /I-& $).-4/& 4*<-N& ;/& ")& +*/& $..(*.("$/-& 0*(& %*<-#"+7&
)-(J"4-& $//$4I%-+/& /*& 4#"-+/)& 8-4$2)-:& $0/-(& $##:& /I-& 4*+J-+/"*+$#&
%*<-#&*0&%-/I*<&4$##& 0*(4-)& /I-&4#"-+/& /*&O+*P& /I-&%-/I*<L)& "%D
.#-%-+/-(N&&
;+&TFU:&P-&*8)-(J-<&/I$/&)/(24/2($#&$8)/($4/"*+&4$+&8-&$4I"-J-<&

86& 4I$+7"+7& /I-& +$/2(-& *0& %-/I*<& 4$##& 0(*%& .*"+/D/*D.*"+/& /*&
8(*<4)/N&5I")& ")&$&<--.&4I$+7-&4*+J-+/"*+$#&*8M-4/D*("-+/-<&)-D
%$+/"4)& "+&PI"4I&%-/I*<&4$##)&$(-&$#P$6)&<"(-4/-<&/*&$& /$(7-/&*8D
M-4/& "+& $& .*"+/D/*D.*"+/& 0$)I"*+& R$/I-(& /I$+&)/$/"4$##6& 8"+<"+7&
%-/I*<)& /*& 4#$))-):& /I-& 0$4-& %-(-#6& "+<"4$/-)& /I$/& /I-& %-/I*<)L&
"%.#-%-+/$/"*+)& I$J-& 8--+& <-%*+)/($/-<& /*& 8-& J"#$8#-N& 5I-&
)$%-&0#-S"8"#"/6&4$+&8-&2)-<&/*&*(7$+"^-&)-(J"4-)&"+&$&%$++-(&%$OD
"+7&4#"-+/)&$(-&*8#"J"*2)&/*&/I-"(&)/(24/2(-N&

DBF! E/&0<*76-"14"/'*!$'9-1*G"##*5-6*!"##$"%&#&'(*
!-&P"##&2)-&$&0$%"#6&*0&(-#$/-<&-S$%.#-)&)I*P+&"+&X"72(-&C&/*&

"##2)/($/-&)-J-($#&.*"+/)&(-#$/-<&/*&2)-&*0&)/(24/2($#&$8)/($4/"*+&$+<&
8(*<4)/& 0*(& %-/I*<& 4$##N& 5I-& .(*8#-%& 8-"+7& $<<(-))-<& ")&
%*/"J$/-<&86& /I-&4*%%*+#6&)--+&.I-+*%-+*+&*0&%*8"#-&.I*+-)L&
$8"#"/6& /*& *./"*+$##6& <").#$6& $& 4#*4O& *+& /I-& .I*+-L)& P"+<*PN&
Z(-)2%"+7&$&%-/I*<&c<").#$6d&/I$/&$&4#"-+/&4$+&2)-&/*&.2/&/I-&4#*4O&
"+& /I-& <").#$6& Y& *+-& 4$+& $)O& I*P& /*& P("/-& /I-& %-/I*<& 4$##& /I$/&
"+J*O-)& "/N& 5I-& #*P-(& .$(/& *0& X"72(-& C&)I*P)&)24I& $& 4#"-+/N& 5*&
0*42)& *+&)/(24/2($#& $8)/($4/"*+:& P-& "7+*(-& /I-& 7(-6D)I$<-<&
%$/-("$#N&5I-&2..-(&.$(/&*0&X"72(-&C&)I*P)&)-J-($#&.*))"8#-&)-(J-(&
"%.#-%-+/$/"*+)N& ;+& >$B:& c<").#$6d& ")& "%.#-%-+/-<& "+& /I-&P"+<*P&
*8M-4/:&PI"#-&"+&>8B&"/&")&"%.#-%-+/-<&"+&/I-&4#*4ON&;+&/I-&"+/-(-)/&*0&
%$##-$8"#"/6:& P-& P")I& /I-& 4#"-+/& /*& 2)-& -"/I-(&)-(J"4-&)2..#"-(:&
PI-(-&"+&/I")&4$)-&P-&%"7I/&.(-)2%-&/I$/&/I-&c)-(J"4-d&")&#*4$#&$+<&
"+&/I-&4#"-+/)&4#$)).$/IN&5I-&2)-&*0&8*/I&"+/-(0$4-&$+<&0$4-&<-4#$($D
/"*+)& "+& /I-& 4#"-+/& ")& "+/-+<-<& /*& I"7I#"7I/& /I-& 0$4/& /I$/& $& #-7$46&
4#"-+/&%$6&I$J-&-S.-4/-<&/I-&"%.#-%-+/$/"*+&/*&8-&"+&c!"+<*PdN&
5(-$/"+7&"+/-(0$4-)&$)&$&c)27$(d&$##*P)&2)-&*0&/I-&#-7$46&)/6#-N&
5I-&)6+/$S&"+&/I-)-&-S$%.#-)&")&0$%"#"$(&"+&0*(%:&82/&I$)&)28/#6&

<"00-(-+/&%-$+"+7)&0(*%&PI$/&%$6&8-&-S.-4/-<N&X2##&<-)4("./"*+&*0&
/I-&/6.-&%*<-#&)2..*(/"+7&)/(24/2($#&%2)/&8-&#-0/&-#)-PI-(-&T@U:&$)&
"/&P*2#<&4*+)2%-&/I-&).$4-&$##*/%-+/&0*(&/I")&.$.-(N&;+&8("-0:&/I-(-&
")& $& 4#$))"0"4$/"*+& I"-($(4I6& 0*(& *8M-4/)& "+& PI"4I& $& 4#$))"0"-(& 4$+&
I$J-&%*(-&/I$+&*+-&)2.-(D4#$))"0"-(N&1#$))-):&$)&<")/"+4/&0(*%&4#$)D
)"0"-():& <-0"+-& /I-&)/$/-& $+<&%-/I*<& "%.#-%-+/$/"*+)& 0*(& *8M-4/):&
$+<& $(-& $//$4I-<& $)& #-$J-)& /*& /I-& 4#$))"0"4$/"*+& c/(--dN&1#$))"0"-()&

"#$%&'()%!*"#+,-!!.+"/01(2341,)5)678
'()%!41,)5!.!/%$4,1,&341,)5)9!"#$ 567!8
41"%#$:%$;03*"#+,- -941,)5)6
.-<+"/01(23)67!)</%$4,1,&3=67!8

)1(//!*"#+,-
.+"/01(2341,)5)6
.>),+%!>8!!8

)1(//!41,)5!.
/%$4,1,&3"#$ 56
.>),+%!>87!8

"#$%&%'(%'

)1(//!*"#+,-!!.!8
)1(//!41,)5
./%$4,1,&3"#$ 56
.>),+%!>87!8

")*+&%'(%',

3)63(6

)1(//!*"#+,-!!.!8
)1(//!41,)5!.
+"/01(23*"#+,- -6
.>),+%!>87

/%$4,1,&3"#$ 56
.>),+%!>87!8

-#'.&%'(%'

)1(//!*"#+,-!!.!8
)1(//!41,)5
.+"/01(23*"#+,- -6
.>),+%!>8!!8

")*+&%'(%'/

3?6

H&<.6$*A*I @J":3#$/*-5*K&55$6$0'*8$6,$6*G-:%&0"'&-0/*5-6*"*G#&$0'

42

$(-&+*/&)/$/"4$##6&/"-<&/*&)-/)&*0&%-/I*<):&PI"4I&$(-&4$##-<&c0$4-)dN&
;+)/-$<:& /I-& <-4#$($/"*+&*0& $& (-0-(-+4-&J$("$8#-& "+<"4$/-)& $& 4#$))"D
0"-(:& $& 0$4-:& $+<&PI-/I-(& /I-& (-0-(-+4-& J$#2-&%$6& 8-& +2##N& ;0& /I-&
(-0-(-+4-&")&+*/&+2##:&/I-&%-/I*<)&"+&/I-&0$4-&$(-&$))2(-<&/*&8-&$4D
4-))"8#-& 86& /I-& <").$/4I-(N& 5I-&)-/& *0& $))2(-<&%-/I*<)& 4$+& 7(*P&
J-(&/"%-:&$+<&$+6&+-&<-4#$($/"*+&+--<&%-+/"*+&*+#6&$&)28)-/&*0&
/I-& $))2(-<&%-/I*<)N&5I-&%-/I*<)L& "%.#-%-+/$/"*+)& +--<&+*/& #"-&
"+& /I-&*8M-4/& (-0-(-+4-<&86& /I-& (-0-(-+4-N&5I-6&%$6&8-& "+&$+6&*0&
/I-& (-Q2"(-<& .$($%-/-():& *(& -J-+&)/$/"4$##6& J"#$8#-N& 5I-& 4#"-+/&
+--<&+*/&O+*P& /I-&)-(J"4-&.(*J"<-(L)&4#$))&)/(24/2(-&$/&$##:&PI"4I&
4I$($4/-(")/"4& P-& 4$##& #$%/&$/%!4' $8)/($4/"*+N&!-& /(-$/& <-4#$($/"*+&
0&$+& "+/-(0$4-&$)&$&)6+/$4/"4&)I(/I$+<&0*(&$& 0$4-& "+&PI"4I&$##&*0&
/I-& %-/I*<)& I$J-& $+& $<<"/"*+$#& .$($%-/-(& P"/I& /I-& $..(*.("$/-&
<-0$2#/-<& 4#$))"0"-(N& 5I-& +-/& -00-4/& *0& /I")& /6.-&%*<-#& ")& /I$/& /I-&
4#"-+/&"+&X"72(-&C&")&/6.-D4*%.$/"8#-&P"/I&$+6&*0&/I-&)-(J-()N&
](*<4)/"+7& %-/I*<& 4$##)& "+4(-$)-)& /I-& %$##-$8"#"/6& *0&)*0/D

P$(-&$(/"0$4/)N&;/&4$+&<*&/I")&8-4$2)-&"/&(-.#$4-)&/I-&4*+4-./&*0&$+&
"+/-(0$4-& /I$/& "+<"4$/-)&%-/I*<)&$J$"#$8#-&0(*%&$+&*8M-4/&P"/I&/I-&
4*+4-./&*0&/I-&6!&+&/I$/&"+<"4$/-)&%-/I*<)&J"#$8#-&)*%-PI-(-&"+&
/I-& -+J"(*+%-+/N& ;+& /I-&2)2$#&%*<-#:&%-/I*<)& "+& $+& "+/-(0$4-&$(-&
J"#$8#-&*+#6&"0&/I-&$))*4"$/-<&(-0-(-+4-&")&+*/&+2##N&H)&P"/I&4*+D
J-+/"*+$#& .*"+/D.*"+/& "+/-(0$4-):& 0*(& 8(*<4)/& /I-& %-/I*<)& "+& $&
0$4-& $(-& $#)*& *+#6& $))2(-<& /*& 8-& J"#$8#-& "0& /I-& $))*4"$/-<& (-0-(D
-+4-&")&+*/&+2##N&
;+/-(0$4-)& $(-& Q2"/-& 2)-02#& $)& J-I"4#-)& 0*(& #$8-#"+7& /I-& O+*P+&

4*+/-+/)&*0&*8M-4/)&$)&/I-6&4*%-&0(*%&/I-"(&"%.#-%-+/-(N&]2/&0(*%&
/I-&.*"+/D*0DJ"-P&*0&$&02+4/"*+L)&4*+)2%-(:&PI$/&")&*0&"+/-(-)/&$(-&
/I-& 8-I$J"*()& /I-%)-#J-):& +*/&PI"4I& 8-I$J"*(& ")& "%.#-%-+/-<& 86&
PI"4I&*8M-4/N&3*&/I-&c0$4-d&4*+4-./&/I$/&(-.#$4-)&"/&"<-+/"0"-)&$&)-/&
0&%-/I<)& *+& $& J$("-/6& *0& *8M-4/)& /I$/&%2)/& 8-& J"#$8#-& "+& /I-&
4*%.2/"+7& -+J"(*+%-+/& Y& "+& /I-& c4#*2<d:&)*& /*&).-$ON&H&%-/I*<&
4$##&")&+*/&<"(-4/-<&/*&$+&*8M-4/:&82/&")&8(*<4)/&/I(*27I&/I-&4#*2<&
/*& $+& "%.#-%-+/$/"*+N& 5I-& "%.#-%-+/$/"*+& I$)& 8--+& .(*J-+:&
/I(*27I& /I-& /6.-&)6)/-%L)& "+/-($4/"*+& P"/I& /I-& <").$/4I-(:& /*& 8-&
J"#$8#-&)*%-PI-(-N&5I-&<"00-(-+4-&")&"##2)/($/-<&"+&/I-&/($+)"/"*+&
0(*%&X"72(-&C$&/*&X"72(-&C8N&!I-+&4*++-4/-<&/*&/I-&'*%-3-(J-(&
>$B:&c<").#$6d&I$)&$+&"%.#-%-+/$/"*+&"+&/I-&!"+<*P:&$)&/I-&4#"-+/&
)--%)&/*&-S.-4/N&]2/&/I-&4#"-+/&4$+&-Q2$##6&2)-&/I-&!*(O3-(J-(&>8BN&
5I-&4#"-+/L)&2)-&*0&$&c/$(7-/d&"+&/I-&4$##:&$)&"+&/I-&-S$%.#-L)&4$##&/*&
cPN<").#$6>4Bd&<*-)&+*/&"%.#6&/I$/&/I-&%-))$7-&")&<-#"J-(-<&/*&/I-&
/$(7-/N& ;+& /I-&-S$%.#-:&)"+4-&8*/I&P"+<*P&$+<&4#*4O&$(-& (-Q2"(-<&
>"N-N&%$6&+*/&8-&+2##B:&"/&%$6&#"-&"+&-"/I-(N&5I-&$4/2$#&/$(7-/&*0&/I-&
4$##&")&+*/&<-0"+-<&86&/I-&#$+72$7-&82/&86&$+&-S/-+<-<&<").$/4I-(:&
/I-&)-(J"4-D(-Q2-)/&8(*O-(:&PI"4I&0"+<)&/I-&/$(7-/L)&)-(J"4-&$)&P-##&
$)& /I-& 4#$))& "%.#-%-+/"+7& /I-& %-/I*<:& $)& <-)4("8-<& "+& /I-& +-S/&
)-4/"*+N&

DBL! E/&0<*76-"14"/'*!$'9-1*G"##*5-6*+%#&,&-./0$//**
](*<4)/"+7& %-/I*<& 4$##)& 4*%8"+-)&)/(24/2($#& $8)/($4/"*+L)&

*8#"J"*2)+-))& /*& *8M-4/&)/(24/2(-& P"/I& $).-4/D*("-+/-<&)*0/P$(-L)&
*8#"J"*2)+-))& /*&)-(J"4-&)/(24/2(-N& ,*"+7&)*& "+4(-$)-)& /I-&%$##-D
$8"#"/6&*0&)*0/P$(-&$(/"0$4/)&02(/I-(&$8*J-&-"/I-(&)/(24/2($#&$8)/($4D
/"*+& *(&)-(J"4-D*("-+/-<& $..(*$4I-)N& 5I-&)-(J"4-& (-Q2-)/& 8(*O-(&
/($4O)&/I-&$J$"#$8"#"/6&*0&)-(J"4-)&$+<&(*2/-)&4$##-<&%-/I*<)&/*&/I-&
$..(*.("$/-& *8M-4/& "+& /I-&$..(*.("$/-&)-(J"4-:& 0(--"+7&4#"-+/)& 0(*%&
/I-&O+*P#-<7-&*0&/I-&*8M-4/&*(&)-(J"4-&/I$/&"%.#-%-+/)&/I-%N&5I-&
7(-6D)I$<-<&%$/-("$#& "+&X"72(-& C& 0*42)-)& *2(& $//-+/"*+& *+& *8#"J"D
2)+-))& /&)-(J"4-&)/(24/2(-N&5I-&)-(J"4-)& 4$+&8-& #*4$#& /*& /I-& 4#"D
-+/L)& 4#$)).$/I:& *(& <")/("82/-<& -#)-PI-(-N& 5I-& 0"72(-& "##2)/($/-)& $&
4*%.*)"/"*+&*0&/P*&)-(J"4-)&>4B&/I$/&)2..#"-)&/I-&)$%-&+--<)&$)&<"<&
>$B&*(&>8B&$)&)"+7#-&)-(J"4-)N&;/&)I*P)&$&)"/2$/"*+&"+&PI"4I&/I-&<")D
.#$6-<& 4#*4O& I$)&)-//$8#-&)/$/-& "+0*(%$/"*+& /*& 4*+/(*#& "/)& 4*#*(:&
%$<-&$J$"#$8#-&$)&$&c)-/1*#*(d&%-/I*<N&&
5*&4*%.#-/-#6&)-.$($/-&4#"-+/&0(*%&/I-&"%.#-%-+/$/"*+L)&)/(24D

/2(-:&P-&<*&+*/&$##*P&$&4#"-+/&/*&+$%-&4#$))-)&>"%.#-%-+/$/"*+)B&$/&
$##N&5I")&4$(("-)&/I-&2)-&*0&"+/-(0$4-)&0*(&4I$($4/-("^"+7&*8M-4/&/6.-)&

/*&$+&-S/(-%-N&e+#-))&-%.#*6"+7&$&0$4/*(6&.$//-(+:&/I-&%*)/&4*%D
%*+&.($4/"4-&/*<$6&")&0*(&$&<-J-#*.-(&/*&"+)/$+/"$/-&$&4#$))&PI*)-&
4I$($4/-(")/"4)&$(-&O+*P+&/*&%--/&/I-&02+4/"*+$#&+--<):&($/I-(&/I$+&
/*&#-$J-&/I$/&)-#-4/"*+&/*&8-&%$<-&$/&(2+D/"%-N&5I"):&7"+:&"%.#"-)&
O+*P#-<7-& *0& /I-& 4#$))&)/(24/2(-& *0& /I-& $+/"4".$/-<& .(*J"<-(& *0&
)-(J"4-)N&5*&4*%.#-/-#6&<-4*2.#-&/I-&4#"-+/&0(*%&/I-&)-(J"4-&)/(24D
/2(-:& P-& "+)/-$<&)"%.#6&).-4"06& /I-& 4#$))"0"4$/"*+& >I*P& /I-& 4#$))&
%2)/&(-#$/-&/*&"/)&)284#$))-)B&$+<&/I-&0$4-&>PI"4I&%-/I*<)&/I$/&$(-&
+--<-<BN& ;+&)*%-&4$)-):& /I-&.(*J"<-<&)-/&*0&%-/I*<)&%$6&+--<&/*&
(-)2#/& 0(*%& /I-& 4*%.*)"/"*+& *0&)-J-($#& J"#$8#-&)-(J"4-):& 4$(("-<&
2/&8-I"+<D/I-D)4-+-)&0(%&/I-&4#"-+/&/I$/&4(-$/-)&/I-&*8M-4/N&
;+& 8-//-(&)-.$($/"+7& 4#"-+/& 0(*%&*8M-4/&)/(24/2(-:& /I-&8(*<4)/&

%*<-#L)& 6!&+& $#)*& 8-//-(&)-.$($/-)& 4#"-+/)& 0(*%&)-(J"4-&)/(24/2(-N&
5I-&0$4/&/I$/&)-(J"4-&8*2+<$("-)&$(-&/($+).$(-+/&$##*P)&/I-&)-(J"4-&
%*<-#&/*&8-&2)-<&$/&0"+-&7($+2#$("/6N&!I"#-&P-&P$+/&/*&$##*P&)-(D
J"4-)& /*& 8-& <")/("82/-<& $+<&%*8"#-:& & 0*(&)-(J"4-)& /*& 8-& 4*%.*)-<&
#*4$##6:&P"/I"+&$&)"+7#-&.(*4-)):&$+<&"/&")&"%.*(/$+/&/I$/&$&/P*D#-J-#&
<").$/4I& 8-& $J*"<-<N& 5I-& 4#"-+/& <*-)& +*/& /$(7-/& /I-& %-/I*<& /*& $&
).-4"0"4&)-(J"4-&.(*J"<-(:&82/&$##*P)& /I-&)-(J"4-D(-Q2-)/&8(*O-(& /*&
0"+<& $+<& <"(-4/& /I-& 4$##& $..(*.("$/-#6N& ;0& P-& "+4#2<-& /I-& 7(-6D
)I$<-<& %$/-("$#& "+& -S$%"+"+7& X"72(-& C:& P-& +*/-& /I$/& PI-+&)2.D
.*(/-<&86&/I-&4*%.*)"/-&)-(J-(&>'$#03-(J-(C&$+<&'$#03-(J-(9B:&/I-&
4#"-+/L)& $..$(-+/& 4$##& /*& $& /I-& c<").#$6d& %-/I*<& "+& !"+<*P)& ")&
$4/2$##6& "%.#-%-+/-<& "+& '$#03-(J-(CL)& 1#*4O:& PI"#-& /I-& 4$##& /*&
)-/1*#*(:& %$<-& P"/I& +*&).-4"0"-<& /$(7-/& ")& "%.#-%-+/-<& "+& '$#0D
3-(J-(9L)&1#*4ON&&

FB! 76-"14"/'*8$6,&4$*!-1$#*G9"##$0<$/*
!-&4$+&0*(-)--&)-J-($#&4I$##-+7-)&"+&/(6"+7&/*&%*J-&0(*%&/I-&42(D
(-+/& /$(7-/D<"(-4/-<&%*<-#)& 0*(& *8M-4/)& *(&)-(J"4-)& /*& /I-& O"+<& *0&
8(*<4)/&)-(J"4-& %*<-#& /I$/& P*2#<& .(*J"<-& /I-& $<J$+/$7-)& <-D
)4("8-<:& "+4#2<"+7V& 4*%.$/"8"#"/6:&)/$/-&%$"+/-+$+4-:&)-(J"4-& J")"D
8"#"/6&%$+$7-%-+/:&7-+-($#&)-(J"4-&%$+$7-%-+/:&$+<&4*%%"/%-+/&
)$/")0$4/"*+&/($4O"+7N&&

FBA! G-:3"'&%&#&'(*
H+6&)I"0/& "+& .(*7($%%"+7& .$($<"7%&P"##& 0$"#& "0& "/& 4$+& +*/& $4D

4*%%*<$/-&.(-J"*2)#6DP("//-+&)*0/P$(-N&\J-+& /I-&)244-))02#&)I"0/&
0(*%&.(*4-<2($#& /*& *8M-4/D*("-+/-<&P$)& -+$8#-<& 86& 0$4/& /I$/&1??&
86&<-0"+"/"*+& "+4#2<-<&$##&*0&1:&$+<& /I-&*+7*"+7& /($+)"/"*+& /*&)-(D
J"4-D*("-+/-<& $(4I"/-4/2(-)& ")& 0$4"#"/$/-<& 86& /(-$/"+7&)-(J"4-)& $)&
*8M-4/)&P"/I"+& /I-&*8M-4/D*("-+/-<&.$($<"7%N& ;/& ")& /I-(-0*(-&+*&$4D
4"<-+/&/I$/&/I-&8(*$<4$)/&)-(J"4-&%*<-#&0*(&%-/I*<&4$##&4$+&"+4#2<-&
/I-&4*+J-+/"*+$#&*8M-4/D*("-+/-<&%*<-#&$)&$&)6+/$4/"4&$+<&)-%$+/"4&
)28)-/:&/I*27I&"/&")&4I$##-+7"+7&/*&<*&)*&PI-+&-#"%"+$/"+7&/I-&4*+D
4-./&*0&/$(7-/N&H)&)O-/4I-<&"+&3-4/"*+9N@:&"/&.(-)-(J-)&/I-&4*+4-./)&
*0& $& /6.-& I"-($(4I6& *0& 4#$))-)& >4#$))"0"-()B:& *0& /I-& $))*4"$/"*+& 8-D
/P--+&4#$))"0"-()&$+<&)-/)&*0&%-/I*<):&$+<&*0&/I-&0$4/&/I$/&+*+D+2##&
(-0-(-+4-)&$(-&(-Q2"(-<&/*&$))2(-&/I-&)$0-/6&*0&%-/I*<&4$##)N&]2/&"/&
.-(%"/)& .$($%-/-()& /*& 8-& (-*(<-(-<& $+<& <*-)& +*/& (-Q2"(-& /I-&
%-/I*<& "%.#-%-+/$/"*+& /*& (-)"<-& "+& /I-& /$(7-/& *0& /I-&%-/I*<& 4$##&
%$<-& 86& /I-& 4#"-+/N& \S")/"+7& 4#$))& "%.#-%-+/$/"*+)& $##& 02+4/"*+&
.(*.-(#6& PI-+& "+/-(.(-/-<& $)& 8(*$<4$)/& %-/I*<& 4$##)& ($/I-(& /I$+&
.*"+/D/*D.*"+/&4$##)N&&

FBD! 8'"'$*!"&0'$0"04$*
[$+6& *8M-4/D*("-+/-<&)6)/-%)&%$"+/$"+& 4*+)")/-+46& 2)"+7& /I-&

)"%.#-&.(-%")-&/I$/&$+&*8M-4/&I*#<)&$##&"/)&)/$/-&$+<&)--)&$##&*0&/I-&
%-/I*<& 4$##)& /I$/& %$O-& 4I$+7-)& /*& /I-&)/$/-N& !I"#-&)"%.#-:& /I-&
.(-%")-&")&$#)*&0(-Q2-+/#6&"+J$#"<&"+&"/)&*J-(D)"%.#")/"4&J"-P&*0&/I-&
+$/2(-& *0&)/$/-N& X*(& -S$%.#-:& *8M-4/)& %$6& "+<"(-4/#6& $44-))& $+<&
(-/2(+&)/$/-&%$"+/$"+-<&"+&*/I-(&*8M-4/):&"+&PI"4I&4$)-&/I-6&P"##&+*/&
)--&PI-+&/I-&J$#2-&4I$+7-)&86&$&4$##&*+&/I-&*/I-(&*8M-4/N&;+&0$4/:&$)&
<")42))-<& "+& T_U:& /I-& "<-$& /I$/& $+& *8M-4/& I$)& $+& *8M-4/"J-#6D
<-0"+$8#-&)/$/-& ")& "/)-#0& #"%"/"+7N&e)"+7& $+& *8M-4/L)& "<-+/"/6:& */I-(&

43

8M-4/)&%$6&%$"+/$"+&$<<"/"+$#&<$/$:&PI-/I-(&"+&I$)ID/$8#-)&*(&"+&
$).-4/)&/*&PI"4I&$+&$..#"4$/"*+&")&*8#"J"*2)N&&
[*)/& *8M-4/&%*<-#)& (-#6& *+& /I-& "<-$& /I$/&).-4"0"4$/"*+)& $8*2/&

%-/I*<&<-.-+<-+4-& +--<& +*/& 8-& "+4#2<-<& "+& $& 4#$))&).-4"0"4$/"*+&
8-4$2)-&/I-&*8M-4/&")&72$($+/--<&/*&I$J-&c)--+d&$##&%-/I*<)&4$##-<&
+&"/&)"+4-&"/)&4(-$/"+:&"+&/I-&*(<-(&/I-6&$(-&4$##-<N&&'*P-J-(:&4*+D
42((-+/& 4$##& $+<& <6+$%"4& $//$4I%-+/& *0& *8#"J"*2)& $).-4/)& J"*#$/-&
/I")& .("+4".#-N& K+& *+-& I$+<:& $& <6+$%"4$##6& $//$4I-<& $).-4/& <*-)&
+*/& c)--d&%-/I*<)& 4$##-<& .("*(& /*& "/)& $//$4I%-+/N&]2/& *+& $+*/I-(&
I$+<:&$+&*8M-4/L)&)/$/-&")&+*/&$+&*.$Q2-&/*/$#"/6:&82/&")&/I-&.(*<24/&
0&)/$/-&4+/("82/"*+)&%$<-&86&/I-&"+<-.-+<-+/&$).-4/)N&&
]-4$2)-&$+&*8M-4/L)&)/$/-&4$+&8-&<")/("82/-<&$%*+7&)-J-($#&)-(D

J"4-):& $&)-(J"4-& /I$/& 8-4*%-)& +-P#6& J"#$8#-& %$6& +*/& I$J-& $+&
$442($/-&."4/2(-&*0&/I-&*8M-4/L)&)/$/-&P"/I&(-).-4/&/*&$&4#"-+/L)&.("*(&
4$##)&P"/I"+&$&/($+)$4/"*+N&5*&.(-J-+/&"+$..(*.("$/-&$4/"*+:&<-)4(".D
/"*+)& *0& /I-& 0$4-)& .(*J"<-<& 86&)-(J"4-)&%2)/& "+4#2<-& <-4#$($/"*+)&
/I$/& "<-+/"06&<-.-+<-+4"-)&8-/P--+&%-/I*<&4$##)N&324I&<-.-+<-+D
4"-)& $(-& 7-+-("4$##6& 4$##-<& &:-%+-0%!*:):& $+<& $(-& (-4*7+"^-<& $)&
"%.*(/$+/& 0*(&)-(J"4-& 4*%.*)"/"*+TCGUN& ;+& 1*+/"+22%TC_U:& /I-)-&
4*+)/($"+/)&$(-&-S.(-))-<&86&"+<"4$/"+7&/I$/&$&.$(/"42#$(&%-/I*<&")&
J"#$8#-& *+#6& "0& $##& .("*(& 4$##)& /*&).-4"0"-<& */I-(& %-/I*<)& I$J-&
8--+&)--+&86&/I-&)$%-&)-(J"4-N&&

FBF! 8$6,&4$*!"0"<$:$0'*
Z(*/*4*#& 4*+)/($"+/)& %$O-& "/& .*))"8#-& /*& <-/-(%"+-& /I$/&)*%-&

)-(J"4-)&)I*2#<& +*/& 8-& J")"8#-& /*& 4-(/$"+& 4#"-+/):& 82/& /I-(-& 4$+& 8-&
/I-(& (-$)+):& #"O-& 4*)/:&)-(J"4-D#-J-#):& *(& 82)"+-))& $(($+7-%-+/)&
/I$/&.#$6&$)&P-##N&&12((-+/&)-(J"4-D*("-+/-<&)6)/-%)&7-+-($##6&%$+D
$7-& J")"8"#"/6& "+& $& ($/I-(&)/$/"4& 0$)I"*+& "+&PI"4I& 4#"-+/)& "+"/"$/-& $&
)-(J"4-D0"+<"+7& *.-($/"*+& $+<& /I-+& $44-))& /I-& 0*2+<&)-(J"4-&
/I(*27I&$&.(*S6N&]2/&/I")&$..(*$4I&*+#6&P*(O)&8-4$2)-&/I-&4#"-+/)&
$(-& <-.-+<-+/& *+& /I-&)/(24/2(-& *0& /I-&)-(J"4-):& $+<&P*2#<& "+I"8"/&
/I-&O"+<&*0&0#-S"8"#"/6&"%.#"-<&86&/I-&7(-6D)I$<-<&%$/-("$#&"+&X"7D
2(-&CN&5*&0(--&4#"-+/)&0(*%&/I")&4*+4-(+:&/I-&%$/4I"+7&*0&4#"-+/)&/*&
)-(J"4-)& ")& .-(0*(%-<& 86& /I-&)-(J"4-& 8(*O-(:& PI"4I& 4$+& .-(0*(%&
+-4-))$(6& 8**OO--."+7&P"/I& (-).-4/& /*& /I-& /($+)$4/"*+:& "<-+/"0"-<&
*+&-$4I&4$##N&
]2/& /I")&<*-)&+*/&)-(J-&/I-&+--<)&*0&<6+$%"4:&%*8"#-&-+J"(*+D

%-+/)&P-##N&;0&$&)-(J"4-&8-"+7&2)-<&%*J-)&*2/&*0&($+7-:&$+&$#/-(+$D
/"J-&*+-&J")"8#-&0*(&/I-&4#"-+/&+--<)&/*&8-&2)-<&"+)/-$<N&5I-&)-(J"4-&
(-Q2-)/& 8(*O-(& ")& (-).*+)"8#-& 0*(& (-4-"J"+7& 4*%%2+"4$/"*+& 0(*%&
)-(J"4-)& M*"+"+7& /I-&82):&$+<&0*(&%$+$7"+7& /I-"(&-S"/N& ;+&$<<"/"*+:&
/I-&)-(J"4-&8(*O-(&%2)/&(-4*7+"^-&/I$/&)*%-&)-(J"4-)&I$J-&$&%2/2$#&
P(-+-))&Y&/I-6&%$6&8-&)28)/"/2/$8#-:&$)&P*2#<&8-&/I-&#*4$#&-+/(6&
.*(/)& 0*(&4*%%-(4"$#&-+/-(.(")-):&*(& /I-6&%$6&8-& "+4*%.$/"8#-&*(&
I$J-&*/I-(&4*+/($4/2$#&(-#$/"*+)I".)&
;+& $<<"/"*+:& /I-&)-(J"4-& (-Q2-)/& 8(*O-(& %$6& .-(0*(%& !(9:-&&

4*%.*)"/"*+& *0&)-(J"4-)& +--<-<& /*&)$/")06& $& 4#"-+/N& ;0& $& 4#"-+/& -SD
.-4/)& $& 0$4-& .(*J"<"+7&)-(J"4-)& 0*(& %$+$7"+7& 8*/I& $"(& $+<& I*/-#&
8**O"+7)& $+<& /I-& J"#$8#-&)-(J"4-)&.(*J"<-&*+-&*(& /I-&*/I-(:& /I-&
8(*O-(& 4$+& 4*%.*)-& /I-&)-(J"4-)& "+/*&$& #$(7-(&)/(24/2(-& $2/*%$/"D
4$##6:& ($/I-(& /I$+& (-Q2"("+7& /I$/& /I-& $77(-7$/-<&)-(J"4-& 8-& "%.#-D
%-+/-<& .$(/"42#$(#6& /*& .-(0*(%&8*/I& 02+4/"*+)& *(& 4**(<"+$/-& 8*/I&
)-(J"4-)N&
!I"#-&/*<$6L)&)-(J"4-D8(*O-()&4*2#<&8-&"%$7"+-<&/*&.(*J"<-&$+&

$..(*.("$/-&.#$4-&0*(&%$+$7"+7&/I-)-&02+4/"*+):&/I-&0$4/&/I$/&4#"-+/)&
%2)/&).-4"0"4$##6&(-4*7+"^-&<")/"+4/&)-(J"4-)&$)&*8M-4/)&$)&<")42))-<&
"+&3-4/"*+&9N9&%$O-)&-S/-+<"+7&/I-"(&4$.$8"#"/"-)&4$2)-&4I$+7-)&/*&
/I-&4#"-+/)N&'*P-J-(:&2)-&*0&$&8(*$<4$)/&)-(J"4-&$(4I"/-4/2(-&$##*P)&
/I-& 4$.$8"#"/"-)& /*& 8-& .(*J"<-<& /*& 4#"-+/)& /($+).$(-+/#6:& P"/I*2/&
<")(2./"+7&/I-"(&*.-($/"*+N&

FBL! 8'"'&4*M6"4N&0<*-5*G-::&':$0'*8"'&/5"4'&-0*
5I-(-& ")& $& /($<"/"*+$#& 72#0& 8-/P--+& *8M-4/D*("-+/-<& .(*7($%D

%"+7& #$+72$7-)& $+<& P*(OD0#*P& $(4I"/-4/2(-)N& ;+& *8M-4/D*("-+/-<&

#$+72$7-):& /I-&4#"-+/&<-/-(%"+-)&/I-&/$(7-/&*0&$&4$##:&$+<&P$"/)&0*(&
"/)&4*%.#-/"*+N&5I")&")&$&.*P-(02#&"+I"8"/*(&/*&7(-$/-(&2)-&*0&.$($#D
#-#")%N& ;+& P*(OD0#*P& $(4I"/-4/2(-)& *+& /I-& */I-(& I$+<:& /I-&)-+<-(&
<*-)&+*/&P$"/&0*(&"/)&4*%.#-/"*+&82/&/$(7-/&*0&/I-&%-))$7-&")&).-4"D
0"-<& 86& /I-& 0#*PD<-)"7+-(N& 5I")& .(*J"<-)& %$+6& *..*(/2+"/"-)& 0*(&
.$($##-#")%:& 82/& /I-& 2)-& *0& /P*& $(4I"/-4/2($##6& <").$($/-& -#-%-+/)&
)--%)&/**&42%8-()*%-&0*(&2)-&"+&$#7*("/I%&<-)4("./"*+N&5I")&%$6&
8-& /I-&(-$)*+& /I-&4*%8"+$/"*+&I$)&+*/&8--+&$<*./-<&$)&$&4*+J-+D
/"*+$#& .(*7($%%"+7& #$+72$7-N&5I-&8(*<4)/&)-(J"4-&%*<-#L)& 2)-&
*0& $&)-(J"4-& (-Q2-)/& 8(*O-(&.(*J"<-)& $& +*J-#&P$6& /*& "+/-7($/-& /I-&
4*+4-(+)&*0&.(*7($%%"+7&#$+72$7-&$+<&P*(OD0#*P&$(4I"/-4/2(-N&
5*& -S.#*"/& /I")& 4$.$8"#"/6:& /P*& $<<"/"*+)& $(-&%$<-& /*& 4*+J-+D

/"*+$#& .(*7($%%"+7& #$+72$7-& 4*+)/(24/)V& CB& /I-& %-/I*<& 4$##& $+<&
%-))$7-&)-+<&4*+)/(24/)&$(-&2+"0"-<:&$+<&9B&/I-&4*+4-./&*0&$&)/$/"D
4$##6&<-4#$(-<&c4*%%"/%-+/&/*&4$##d&")&"+/(*<24-<N&H&%-/I*<&%$6&
8-&<-4#$(-<&/*&72$($+/--&/I-&02/2(-&4$##&*0&$+*/I-(&%-/I*<:&$)&"##2)D
/($/-<&P"/I&/I-&c!"#$!d&O-6P*(<&"+&/I-&%&'"&<-0"+"/"*+V&
&%&'"()(*+,-$(%./0(&1(2(34(!"#$!(%5/0(&4467(
5I")& <-4#$($/"*+& <-0"+-)& $& 0$4-:&g:& /I$/& <-4#$(-)&)2..*(/& 0*(& $&

%-/I*<&0C&*0& /P*&.$($%-/-()N&[-/I*<&0C&4*%%"/)& /*&/I-&-J-+/2$#&
4$##"+7&*(&)-+<"+7&*0&$+*/I-(&%-/I*<:&0@:&2)"+7&/I-&J$#2-&.(*J"<-<&
86&0CL)&0"()/&.$($%-/-(N&
e+#"O-&4*+J-+/"*+$#&4$##L)&)-%$+/"4):&/I-&)/$/"4&4*%%"/%-+/&/*&

-J-+/2$##6&4$##&0@&+--<&+*/&8-&)$/")0"-<&8-0*(-&/I-&%-/I*<&4$((6"+7&
/I-&<-4#$($/"*+&(-/2(+):&82/&%2)/&8-&)$/")0"-<&86&/I-&-+<&*0&/I-&*2/D
-(%*)/&/($+)$4/"*+&"+&PI"4I&/I-&4*%%"/%-+/&")&(-Q2"(-<N&5I2):&/I-&
4*%%"/%-+/&4$+&8-&)$/")0"-<&86&/I-&%-/I*<&"/)-#0&<2("+7&"/)&-S-42D
/"*+& *(& 86& /I-& -S-42/"*+& *0& %-/I*<)& "/& 4$##):& *(& 86& $& %-/I*<& /*&
PI"4I&$&%-))$7-&")&)-+/:&.-(I$.)&%24I&#$/-(&/I$+&/I-&4#"-+/L)&4*%D
.#-/"*+N&
H&%-/I*<L)&<-4#$($/"*+&%$6& "+4#2<-&$& #")/&*0&)24I&)/$/"4&4*%D

%"/%-+/)N&5I-&%-/I*<&<-4#$($/"*+&4$+&*+#6&8-&)$/")0"-<&86&$+&"%D
.#-%-+/$/"*+& /I$/& "/)-#0& <-4#$(-)& /I-&)$/")0$4/"*+& *0& /I-& 4*%%"/D
%-+/N&5*&-+0*(4-& /I-&8-I$J"*(:& /I-&4*%%"/%-+/&%2)/&8-&)$/")0"-<&
+&$##&.$/I)&0(%&/I-&-+/(6&*0&/I-&%-/I*<:&-"/I-(&<"(-4/#6:&*(&86&&!44&
*(&86&#+.(N&
Z(-)2%"+7&/I"):&$+*/I-(&%-/I*<:&09:&PI"4I&")&$#)*&4*%%"//-<&/*&

)-+<&0@&4$+&8-&"%.#-%-+/-<&$)V&

+,-$(%8/0(94(!"#$!/%5/0(944(*(
::(,;<"=(',>?9;&;-,#(
!"#$(%./(91(#"@(2/4(46(((((7(

5I")& "%.#-%-+/$/"*+& ")& J$#"<& 8-4$2)-& 09&)-+<)& 0C& PI"4I& ")&
4*%%"//-<&/*&)-+<&0@:&/I2)&)$/")06"+7&09L)&4*%%"/%-+/N&]2/&"0&4$##)&
/*&09&$(-&%$<-&"+&$&#**.:&*+#6&/I-&c*/I-(&4*%.2/$/"*+d&")&)-("$#"^-<&
"+& /I-& #**.N& 5I-& -S-42/"*+& *0& /I-& (-)2#/"+7& 0CL)& 4$+& $##& *442(& "+&
.$($##-#&P"/I&/I-&#**.L)&-S-42/"*+N&
H)&<-)4("8-<& "+& TGU:& <6+$%"4& 0$"#2(-& /*&)$/")06& $& 4*%%"/%-+/:&

PI-/I-(&86& /I(*P+&-S4-./"*+&*(&86& (-<24/"*+& "+& (-)*2(4-)&4$+&8-&
I$+<#-<&#*4$##6:&*(&"/&4$2)-)&/I-&/($+)$4/"*+&/*&$8*(/N&&
!I-(-&$..(*.("$/-:&/I-&2)-&*0&)/$/"4&4*%%"/%-+/)&$#)*&-+$8#-)&

$&&!44&/I$/&P*2#<&*442(&"+)"<-&$&#**.&/*&8-&/($+)0*(%-<&"+/*&$&#+.(N&
5I-&)-(J"4-& (-Q2-)/&8(*O-(& 4$+&-+$8#-& /I-)-&$4/"J"/"-)& /*&*442(& "+&
.$($##-#N&]-4$2)-& /I-& 4*%%"//-<& $4/"*+& ")& +*/& 72$($+/--<& /*& /$O-&
.#$4-&"%%-<"$/-#6:&/I-&*("7"+$#&4$##-(&4$+&-%.#*6&/I")&%-4I$+")%&
+#6&"0&02(/I-(&4%.2/$/"*+&"+&/I$/&4$##-(&<*-)&+*/&+--<&/*&2)-&/I-&
(-)2#/)N& '*P-J-(:& "/& ")& .*))"8#-& /*& <-0"+-& 4*%%"/%-+/)& "+& $& P$6&
/I$/&-+$8#-)&)28)-Q2-+/&7$/I-("+7&$+<&.(*4-))"+7&*0&/I-&(-)2#/)N&
5I")&$#/-(+$/"J-&J"-P&*0&4*%.2/$/"*+&")&%$<-&.*))"8#-&8-4$2)-&

2+#"O-& $& 4*+J-+/"*+$#& /$(7-/D<"(-4/-<& 4$##:& /I-& 2)-& *0& $& 8(*$<4$)/&
%*<-#&$##*P)& /I-& (-Q2-)/&8(*O-(& /*&$4/& "+&$&)/*(-D$+<D0*(P$(<&4$D
.$4"/6& 0*(& .$($##-#& %-))$7"+7& "+& $<<"/"*+& /*& /I-& "%%-<"$/-D
"+J*4$/"*+D$+<D(-/2(+&4$.$4"/6&0*(&4*+J-+/"*+$#&<").$/4I-()N&

44

LB! 76-"14"/'*8$6,&4$*!-1$#*21,"0'"<$/*
5I-& 8(*<4)/&%*<-#& -+I$+4-)&%$##-$8"#"/6& 86& 4I$+7"+7& /I-& .(*D
7($%%"+7&#$+72$7-&%*<-#& /*&-%.#*6&8(*$<4$)/&($/I-(&/I$+&.*"+/D
/*D.*"+/&)-%$+/"4)&0*(&"/)&4$##&$+<&/*&%$O-&4#"-+/)&*8#"J"*2)&/*&/I-&
)/(24/2(-&*0&)-(J"4-)N&;+&<*"+7&)*:&"/&-#"%"+$/-)&/I-&+--<&0*(&$&)6+D
/$4/"4$##6&).-4"$#& /$(7-/& *8M-4/& *+& 4$##N&5I")& ")& .-(I$.)& 0*(/2"/*2):&
8-4$2)-& "+)/-$<& *0& .$))"+7& $+& "%.#"4"/& /$(7-/:& /I-& #$+72$7-& 4$+&
"+)/-$<&(-0#-4/&/I-&4*+42((-+/&)/(24/2(-&*0&/I-&)*0/P$(-&86&.$))"+7&$&
/($+)$4/"*+$#& 4*+/-S/& 0*(& 8*2+<"+7& /I-& $4/"*+& /*&8-& /$O-+&*+& 0$"#D
2(-NN&5I-&0$"#2(-&(-4*J-(6&.*"+/)&%2)/&8-&"+<"4$/-<&<"(-4/#6&P"/I"+&
/I-& 4*<-& /I$/& -+7-+<-()& .*))"8#-& 0$"#2(-)& /*& .-(%"/& 2)& /*& P("/-&
)*0/P$(-&P"/I&%*(-&#$/-+/&4*+42((-+46&/I$+&.(-)-+/N&

LBA! @09"04$1*!"##$"%&#&'(*
5I-&"+4(-$)-<&)*0/P$(-&%$##-$8"#"/6&%$<-&.*))"8#-&86&4I$+7"+7&

/I-& .(*7($%%"+7& %*<-#& 0(*%& /I-& .*"+/D/*D.*"+/& %*<-#& 2)-<& 86&
8*/I& 4#$))"4$#& *8M-4/D*("-+/-<& .(*7($%%"+7& $+<& .*.2#$(&)-(J"4-D
("-+/-<& $(4I"/-4/2(-)& /& /I-& 8(*<4)/& %*<-#& .(*J"<-)&)-J-($#&
%$##-$8"#"/6&$<J$+/$7-)V&
O6$"'$6* '-#$6"04$* 5-6* 1&55$6$0'* &:3#$:$0'"'&-0* /'6.4'.6$/B*&

5I-&2+D)I$<-<&%$/-("$#& "+&X"72(-&C& "##2)/($/-)&I*P&$&4#"-+/&+--<)&
+*& 4I$+7-& /*& /*#-($/-& $& <"00-(-+/&)-(J"4-& .(*J"<-(& /I$/&%*J-)& /I-&
<").#$6&%-/I*<&-"/I-(&/*&<"00-(-+/&4#$))-)&>)"+4-&/I-&"%.#-%-+/"+7&
4#$))& +--<& +*/& 8-& %-+/"*+-<& "+& /I-& 4$##B& *(& /*& <"00-(-+/&)-(J"4-)&
>)"+4-&/I-&)-(J"4-&$#)*&+--<&+*/&8-&%-+/"*+-<&"+&/I-&4$##BN&
244-::-1"'&-0*-5*1(0":&4*/$6,&4$*4-:3-/&'&-0B*5I-&7(-6D

)I$<-<&%$/-("$#&"+&X"72(-&C&02(/I-(&"##2)/($/-)&I*P&/I-&4#"-+/&+--<)&
+*&4I$+7-&/*&/*#-($/-&$&4I$+7-&/*&$&<"00-(-+/&)-(J"4-&.(*J"<-(&)/(24D
/2(-&$#/*7-/I-(:&)"+4-&/I-&)-(J"4-&")&+*/&%-+/"*+-<&"+&/I-&4$##N&3"+4-&
+-"/I-(& /$(7-/& *8M-4/)& $+<&)-(J"4-)& $(-& +*/& %-+/"*+-<& "+& /I-& 4$##&
)/$/-%-+/):& 4*%8"+$/"*+)& *0&)-(J"4-)& 2)-<& /*&)$/")06& $& 4#"-+/L)&
+--<)&4$+&8-&0#2"<#6&4*%.*)-<&86&/I-&)-(J"4-&(-Q2-)/&8(*O-(N&&
84"#"%#$*4-:3-0$0'*4-:3-/&'&-0B* &1*%.*+-+/&)/(24/2(-)&#"O-&

/I*)-& -%.#*6-<& "+&)-(J"4-D*("-+/-<&)*0/P$(-& $(4I"/-4/2(-)&)200-(&
0(*%&)-J-(-&.-(0*(%$+4-&.(*8#-%)&PI-+&2)-<&$/&0"+-(&7($+2#$("/6&
"+& $+& $//-%./& /*& *8/$"+& "%.(*J-<& /I-&)*0/P$(-&)/(24/2(-& "/& *00-()&
TCCUN5I-& 2)-& *0& /($+).$(-+/&)-(J"4-):& P"/I& $& 8(*$<4$)/& %*<-#& *0&
%-/I*<&4$##&#"O-&/I$/&"##2)/($/-<&"+&X"72(-&C&-+$8#-)&/I-&"%.#-%-+D
/$/"*+&/*&%*J-&/I-&/$)O&*0&%-))$7-&$+<&<$/$&0*(%$/&/($+)0*(%$/"*+&
*2/&*0& /I-&4#"-+/&$+<& "+/*& /I-&)-(J"4-&(-Q2-)/&8(*O-(N&5I")&-+$8#-)&
/I-&$))*4"$/-<&*J-(I-$<)&/*&8-&$J*"<-<&PI-+&4*%.*+-+/&)/(24/2(-)&
$(-&/"7I/#6&8*2+<&P"/I"+&$&.(*4-))N&
2,-&1"04$ -5* 36-J(* :"0"<$:$0'B* ;+& /I-& 2)2$#& <"J")"*+& *0&

4*+4-(+&8-/P--+&.(*7($%%"+7&#$+72$7-&$+<&%"<<#-P$(-:&/I-&.(*D
7($%%"+7& #$+72$7-&).-4"0"-)& /I-& 4*%.#-/-&)-%$+/"4)& *0& %-/I*<&
4$##:&"+4#2<"+7&/I-&(2#-)&0*(&<-/-(%"+"+7&I*P&/*&0"+<&/I-&"%.#-%-+D
/$/"*+&4*((-).*+<"+7&/*&$+6&.$(/"42#$(&%-/I*<&4$##N&;+&$(4I"/-4/2(-)&
0*(&<")/("82/-<:&$2/*+*%"4:&7("<:&$+<&)-(J"4-D*("-+/-<&)6)/-%):& /I-&
#"+72")/"4&).-4"0"4$/"*+& ")&2#/"%$/-#6&Q2"/-& "+4*((-4/N&5I-&"+/-(J-+D
/"*+& *0&%"<<#-P$(-& /$O-)& /I-& c4$##d& *2/& *0& /I-& (-$#%&*0& #$+72$7-&
).-4"0"4$/"*+& $+<& %$O-)& +*+D#"+72")/"4$##6&).-4"0"-<& 4I*"4-)N& ;+&
0$4/:&%*<-(+&K8M-4/&R-Q2-)/&](*O-()&$##*P& /I-&4#"-+/&$+<&)-(J"4-&
/*& 8-& (-$#"^-<& "+& <"00-(-+/& .(*7($%%"+7& #$+72$7-):& %$O"+7& /I-&
).-4"0"4$/"*+& *0& /I-& <").$/4I& .(*4-))& $)& $& #"+72")/"4& 4I$($4/-(")/"4&
"%.*))"8#-N&]2/&/I-&/$)O&*0&"+/-(0$4"+7&/I")&0#-S"8"#"/6&P"/I&/I-&#$+D
72$7-&).-4"0"4$/"*+&")&0*(4-<&2.*+&/I-&4#"-+/&"+&/I-&0*(%&*0&c.(*SD
"-)d& Y& #*4$#& *8M-4/)& /I$/& "+/-(4-./& /I-& #"+72")/"4&).-4"0"4$/"*+& $+<&
"+M-4/& $#/-(+$/"J-& %-4I$+")%)N& [24I& 7(-$/-(& 0#-S"8"#"/6& 4$+& 8-&
<-("J-<&"0&/I-&4#"-+/&$+<&/I-&)-(J"4-&.(*J"<-(&#-0/&)24I&"+/-(J-+/"*+&
/*& /I-& 2+<-(#6"+7& "%.#-%-+/$/"*+& *0& /I-& <").$/4I& .(*4-))& Y& /I-&
(-Q2-)/&8(*O-(&.(*J"<-<&86&%"<<#-P$(-N&5I-+&/I-&*J-(I-$<)&$))*D
4"$/-<&P"/I&.(-.$("+7&0*(&.*/-+/"$#&%")%$/4I-)&TCCU&4*2#<&8-&*%"/D
/-<&"0&/I-&/$(7-/)&$(-&+-$(&$+<&I$J-&)"%"#$(&*(&"<-+/"4$#&)"7+$/2(-)N&
P$5#$4'&0<*:&11#$?"6$Q/*5#$J&%&#&'(*&0*#"0<."<$Q/*'(3&0<B*5*D

<$6L)&.(*7($%%"+7&#$+72$7-&).-4"0"4$/"*+)&*J-(D).-4"06&/I-&"+/-(D

.(-/$/"*+&*0&%-/I*<D4$##:&/*&/I-&<-/("%-+/&*0&/I-&)*0/P$(-&4*%%2D
+"/6& "+& 7-+-($#N& ;+&)6)/-%)& /I$/& (-#6& I-$J"#6& *+& (-<"(-4/"*+& J"$&
.(*S"-):&"/&P*2#<&8-&%*(-&$442($/-&0*(&/I-&.(*7($%%"+7&#$+72$7-&
/*&).-4"06& *+#6& /I-&)-%$+/"4)& *0& /I-& 8-I$J"*(& *442(("+7& 8-/P--+&
-+/(6&$+<&4$##:&#-$J"+7&/I-&<-0"+"/"*+&*0&$&4$##L)&(-)*#2/"*+&/*&%"<D
<#-P$(-N& W$+72$7-&).-4"0"4$/"*+& /*<$6& ")& 4$27I/& "+& $& 8"+<& Y& /*&
O--.& <").$/4I&).-4"0"4$/"*+&)"%.#-:& /I-& /6.-&)6)/-%)& 7-+-($##6&
(-Q2"(-& /**& %24I& O+*P#-<7-& *0& /I-& "%.#-%-+/$/"*+&)/(24/2(-& /*&
PI"4I& $& 4$##& ")& <"(-4/-<N&X#-S"8"#"/6& 4$+&8-&7$"+-<& "0& /I-6& "+)/-$<&
0*42)-<& *+& $44-./"+7& $+& "+<"4$/"*+& 0(*%& %"<<#-P$(-& $8*2/& /I-&
)$0-/6& *0& 4$##"+7& $& %-/I*<& $+<& .(*.$7$/"+7& /I$/& "+0*(%$/"*+&
/I(*27I*2/& /I-&4#"-+/N& ;0& /I-& #$+72$7-&).-4"0"4$/"*+&)"%.#6&4$(("-)&
0*(P$(<& $& <-4")"*+& $8*2/& /I-& -S")/-+4-& *0& "%.#-%-+/$/"*+& ($/I-(&
/I$+& /(6"+7& /*&).-4"06& /I-& %$/4I"+7& (2#-):& %*(-& 0#-S"8#-& /6."+7&
)6)/-%)&4$+&8-&$44*%%*<$/-<& /I$+& /I*)-& /I$/& (-Q2"(-&O+*P#-<7-&
*0& /I-&<-/$"#)&*0&4#$))& "%.#-%-+/$/"*+)&.("*(& /*&(2+D/"%-N&5I-&<")D
.$/4I&%"<<#-P$(-&/I-+&I$)&0#-S"8"#"/6&"+&"+)-(/"+7&4*+J-()"*+)&$+<&
(-$(($+7-%-+/)&*0&/I-&.$($%-/-():&$+<&-J-+&*0&-%.#*6"+7&<"00-(-+/&
+$%-D%$/4I"+7&(2#-)N&!I$/&")&(-Q2"(-<&")&$&0*(%$#&)/$/-%-+/&*0&/I-&
%"<<#-P$(-L)& 4*+)/($"+/):&.-(I$.)&)"%"#$(& /*& /I-& (2#-&P-&.(*.*)-V&
c/I-&)-/&*0&%-/I*<)&J"#$8#-&/*&$&4#"-+/&"+&$&/($+)$4/"*+&")&)/$/"4&*(&
7(*P)&%*+*/*+"4$##6&*(&/I-&/($+)$4/"*+&0$"#)Nd&
P.0>'&:$*/$#$4'&-0*-5*-%R$4'*4#"//$/B*5I")&)$%-&#*42)&*0&"+/-#D

#"7-+4-& $..#"-)&PI-+& *8M-4/)&%2)/& 8-& 4(-$/-<N& ;+& /($<"/"*+$#&)*0/D
P$(-:&/I-&"%.#-%-+/"+7&4#$))&*0&$&+-P&*8M-4/&")&)-#-4/-<&$/&/I-&/"%-&
$&4#"-+/&")&<-J-#*.-<:&7-+-($##6&$0/-(&/I-&<-J-#*.-(&"+).-4/)&).-4"D
0"4$/"*+)& 0*(& $#/-(+$/"J-& "%.#-%-+/$/"*+)N& !"/I& $&)-(J"4-& (-Q2-)/&
8(*O-(:&/I-&4#"-+/&"+<"4$/-)&PI$/&O"+<&*0&*8M-4/&")&+--<-<&$+<&PI$/&
%-/I*<)&%2)/&8-&%$<-&$J$"#$8#-&0*(&/I")&O"+<&*0&*8M-4/N&5I-&cO"+<d&
")& "+<"4$/-<& 86& "/)& 4#$))"0"-(:& P"/I& #*4$##6D<-0"+-<& %-$+"+7& /I$/&
$##*P)& "+<"J"<2$#&)-(J"4-)& /*& <-)4("8-&)28/6."+7& (-#$/"*+)I".)&
$%*+7&<"00-(-+/&O"+<)&*0&*8M-4/)N&&h"+<)&*0&*8M-4/)&/I$/&)2..*(/&/I-&
)$%-&%-/I*<)&%$6&)/"##& 0$##& "+/*& <"00-(-+/& 4#$))"0"4$/"*+)& 8-4$2)-&
/I-6&$//$4I&<"00-(-+/&%-$+"+7)&/*&/I-%N&5I-&0*42)&")&*+&4I$($4/-(D
"^"+7&/I-&O"+<&*0&*8M-4/&$+<&/I-&%-/I*<)&+--<-<&"+)/-$<&*0&*+&/I-&
"%.#-%-+/"+7&4#$))N&5I")&$##*P)&/I-&$4/2$#&"%.#-%-+/$/"*+&4#$))&/*&
8-&)-#-4/-<& 4*+/-S/2$##6:& $/& (2+D/"%-:& 86& /I-&)-(J"4-&8(*O-(&2)"+7&
+-P&*(& #*4$#&$#/-(+$/"J-)& /I$/&%$6&+*/&I$J-&8--+&O+*P+&*(&J"#D
$8#-&/*&/I-&4#"-+/L)&<-J-#*.-(N&;/&")&$#)*&.*))"8#-&/*&$27%-+/&/I-&)-/&
0&%-/I<)&+--<-<&$0/-(&*8M-4/)&I$J-&8--+&4(-$/-<N&5I")&$27%-+/$D
/"*+& ")& O+*P+& $)& #+%52&+962.(2.0& $+<& -S/-+<)& /I-& "<-$& *0& c<*P+&
4$)/"+7d& "+& %*(-& 0$%"#"$(& #$+72$7-)N& !I-+&)244-))02#:& /I-& /6.-&
)6)/-%&/(-$/)&/I-&O+*P#-<7-&/I$/&/I-&%-/I*<)&$(-&)$0-&/*&4$##&$)&"0&
/I-6&P-(-&O+*P+&/*&8-&J"#$8#-&0(*%&4(-$/"*+N'
244-::-1"'&-0*-5*/$6,&4$>/.%/'&'.'&-0*36-'-4-#/B*;+&%*8"#-&

4*%.2/"+7:&$+<&-J-+&"+&<6+$%"4$##6&-J*#J"+7&)6)/-%&)/(24/2(-):&"/&
4$+&8-&+-4-))$(6& /*&<-/-(%"+-&PI-+&*+-&.(*J"<-(&*0&)-(J"4-)&4$+&
8-& <6+$%"4$##6&)28)/"/2/-<& 0*(& $+*/I-(N&H& 4*+/$4/& 0*(& 8$+O"+7& *(&
/($J-#& "+0*(%$/"*+&)-(J"4-)&%$6:& 0*(& -S$%.#-:& 4I$+7-& "+& 4(*))"+7&
(-7"*+$#&8*2+<$("-)N&K(:&)*%-&)-(J"4-&.(*J"<-()&%$6&8-&%*(-& (-D
#"$8#6& (-$4I$8#-&P"/I"+& *+-& #*4$#& (-7"*+& /I$+& $+*/I-(N& 5I-& "+/(*D
<24/"*+&*0&$+& "+/-##"7-+/&)-(J"4-&82)&$##*P)& /I-)-& "))2-)& /*&8-&$<D
<(-))-<& "+& $&%*(-& *(7$+"^-<& $+<&%*(-& -$)"#6&%$"+/$"+-<& 0$)I"*+&
/I$+&<*&.(*S"-)N&3-(J"4-&.(*J"<-()&"+/-($4/&P"/I&/I-&)-(J"4-&(-Q2-)/&
8(*O-(&PI-+& /I-6&$(-&$//$4I-<:&$+<&%$6&.(*J"<-& "+0*(%$/"*+& /I$/&
I-#.)&<-/-(%"+-&/I-"(&<6+$%"4&"+/-(4I$+7-$8"#"/6N&

LBD! ;"6"##$#&/:*"01*!.#'&>4-6$*8.33-6'*
LBDBA! @J36$//&0<*M6"0/"4'&-0"#*S$$1/**
;0&.(*7($%%"+7&#$+72$7-&<-)"7+&")&/*&4*+0(*+/&/I-&"))2-&*0&"+D

4(-$)-<& -S.#*"/$/"*+& *0& .$($##-#& $(4I"/-4/2(-):& PI-/I-(& "+& <")/("8D
2/-<&)-(J"4-)&*(& "+&%2#/"D4*(-&%$4I"+-):& /I-&$8"#"/6& /*&4#-$(#6&<-D
#"+-$/-& /I-& /($+)$4/"*+$#&8*2+<$("-)&*0&0$"#2(-&*0&$&4*+42((-+/&-#-D
%-+/&P"/I"+&%2)/&8-&.(*J"<-<N&5I")&")&"+&$<<"/"*+&/*&%$O"+7&.(*J"D
)"*+& 0*(& /($4O"+7& /I-& "+/-(0-(-+4-)& *0& 4*+42((-+/& $44-))& /*&)I$(-<&

45

<$/$N&!I"#-& /I(-$<)&$+<& /($+)$4/"*+)&%*<-#& /I-&4*+42((-+46& "/)-#0&
/I-6& I$J-& $& +$/2($#& "+/-()-4/"*+& 0*(& /I-& I$+<#"+7& *0& -((*()N&]2/&
.(*7($%%"+7&#$+72$7-)&7-+-($##6&I$J-&+-"/I-(&4*+)/(24/)&/*&-)/$8D
#")I&/I-&8*2+<$("-)&*0&/($+)$4/"*+)&P"/I"+&/I-&-S-42/"*+&+*(&$&<-0"D
+"/"*+& *0& /I-"(& (-#$/"*+)I".N& H)& P"/I& <").$/4I:& /I-& #"+-& 8-/P--+&
/($+)$4/"*+& %*<-#& $+<& /($+)$4/"*+& <-+*/$/"*+& +--<)& /*& $##*P& /I-&
<-/$"#-<&%-$+"+7&$+<&/I-&"%.#-%-+/$/"*+&*0&/($+)$4/"*+)&/*&8-&#-0/&
/*&/I-&%"<<#-P$(-:&82/&)/"##&.-(%"/&/I-&$))"7+%-+/&*0&P*(O&/*&/($+)D
$4/"*+)& /*& 8-& -S.(-))-<&)6+/$4/"4$##6& 86& /I-& <-J-#*.-(& "+& $& 4#-$(&
$+<&<"(-4/&%$++-(N&H##&-S-42/"*+&/$O-)&.#$4-&P"/I"+&$&/($+)$4/"*+N&
X*(&4*+J-+"-+4-&)$O-:&/I-&/($+)$4/"*+&"+&PI"4I&$+&"+/-(.(-/$/"*+&")&
/$O"+7&.#$4-&")&8-)/&.$))-<&"%.#"4"/#6&0(*%&4$##-(&/*&4$##-<&%-/I*<:&
$)& /I-& /I(-$<& ")& "+& 0$%"#"$(& #$+72$7-)N&]2/& /I-& #$+72$7-& +--<)& /*&
$##*P&0*(& "/& /*&8-&-S.#"4"/#6&).-4"0"-<&*+&*44$)"*+N&\S.#"4"/&.(*J"D
)"*+&%$6&8-&"+&/I-&0*(%&*0&/I-&4(-$/"*+&*0&$&+-P&/($+)$4/"*+&*(&*0&
/I-& (-)2%./"*+& *0& $+& -S")/"+7& *+-N&!I"#-& +*/& .(*.*)"+7& /I$/& /I-&
8(*<4)/&)-(J"4-&%*<-#&).-4"06& *(& (-)/("4/& /I-& /($+)$4/"*+&%*<-#&
2+<2#6:& "/&P*2#<& 8-& "+& #"+-&P"/I&%$+6& 4*%%*+&).-4"0"4$/"*+)& *0&
/($+)$4/"*+&)-%$+/"4)&0*(&/I-&/($+)$4/"*+&/*&8-&.$))-<&$)&$+&"%.#"4"/&
.$($%-/-(& 0(*%&4#"-+/& /*&)-(J"4-&$)&%-/I*<&4$##)&$(-&%$<-N&3*%-&
.(*J")"*+&%2)/& 8-&%$<-& 0*(& 4I$+7"+7& /I-& /($+)$4/"*+$#& 4*+/-S/& $/&
/I-&.*"+/&*0&4$##N&K+-&.*))"8"#"/6&")&/*&$##*P&-S.#"4"/&4I$+7-&"+&/I-&
/($+)$4/"*+&4*+/-S/&86&2)"+7&+*D#*+7-(&+-4-))$(6&)6+/$4/"4&.*)"/"*+&
*0&/I-&/$(7-/&*8M-4/&$/&/I-&.*"+/&*0&%-/I*<&4$##N&&

LBDBD! 8'"'&4*@05-64$:$0'*-5*M"/N*G-::&':$0'/*
K+-& *0& /I-& *8)/$4#-)& /*& 7(-$/-(& -S.#*"/$/"*+& *0& .$($##-#&)/(24D

/2(-)&")&/I-&0$4/&/I$/&.(*7($%%"+7&#$+72$7-)&%$"+/$"+&4*%%"/%-+/&
$+<&0$"#2(-&(-).*+)-&"+&$&<6+$%"4&%$++-(:&2)"+7&(2+D/"%-&"+/-(.(-D
/$/"*+&/*&(-).*+<&86&P$"/"+7&0*(&/I-&)-(J"4-&/*&(-/2(+N&;+&$<<"/"*+&/*&
"+I"8"/"+7& .$($##-#")%:& <6+$%"4& /($4O"+7& ")& (-)*2(4-D"+/-+)"J-N&
HJ*"<"+7&/I-&+--<&/*&I*#<&(-)*2(4-)&I$)&#-<&/*&/I-&-S.#*"/$/"*+&*0&
)*D4$##-<&c)/$/-#-))&)-(J"4-)d&"+&)-(J"4-D*("-+/-<&$(4I"/-4/2(-)N&]2/&
)/$/-#-))&)-(J"4-)& I$J-& +*& -S.(-))"*+& *0& 0#*P& <-.-+<-+4"-)& 8-D
/P--+&/I-%N&3"+4-&-$4I&)-(J"4-&")&0"+")I-<&8-0*(-&/I-&+-S/&)-(J"4-&
$4/):& /I-(-& ")&+*&P$6&/*&-S.(-))&<-.-+<-+46&*+&)244-))&*(&0$"#2(-&
0&#$/-(&)-(J"4-):&(&/*&"+<"4$/-&8$4OD*2/&$+<&(-4*J-(6&%-4I$+")%)N&
K+-&4*%%*+&$#/-(+$/"J-&")&/*&4*%8"+-&/I-%&P"/I&)-.$($/-&.(*4-))D
0#*P&).-4"0"4$/"*+)N&!I"#-&.(*4-))D0#*P&).-4"0"4$/"*+&%$6&8-&)2"/D
$8#-&0*(& /I-&+"4I-& "+&PI"4I&)-(J"4-D*("-+/-<&$(4I"/-4/2(-)&*.-($/-:&
/(6"+7&/*&2)-&"/&/*&$<<(-))&/I-&+--<&0*(&/I-&P"<-).(-$<&-S.#*"/$/"*+&
0& .$($##-#")%& 4$##-<& 0(& 86& %2#/"D4*(-& .(*.*+-+/)& ")& 2+#"O-#6& /*&
)244--<&8-4$2)-&"/&).#"/)&/I-&).-4"0"4$/"*+&"+/*&/P*&#$+72$7-&.$($D
<"7%)N&H/&$&4*$()-&7($"+&/I")&%$6&8-&$44-./$8#-:&82/&$/&0"+-&7($+2D
#$("/6&"/&"%.*)-)&/**&%24I&"+/-##-4/2$#&$+<&8**OO--."+7&82(<-+&*+&
/I-&.(*7($%%-(N&5I-&)-(J"4-&8(*O-(&$##*P)&2)&/*&"+/-7($/-&.(*4-))D
0#*P&%*(-&/"7I/#6&"+/*&/I-&2)2$#&.(*7($%%"+7&#$+72$7-&)/(24/2(-):&
"+&$&P$6&/I$/&$##*P)&$&)"+7#-&.(*7($%&<-J-#*.-(&/*&-S.#*"/&"/&-$)"#6N&

TB! P$#"'$1*U-6N*
TBA! 76-"14"/'*!-1$#/*
!-&$(-&$<J*4$/"+7&/I-&2)-&*0&$&8(*<4)/&%*<-#&0*(&%-/I*<&4$##&

/*&)28)/$+/"$##6& "%.(*J-& /I-& %$##-$8"#"/6& *0&)*0/P$(-N&](*$<4$)/&
%*<-#)&0*(&.(*4-))"+7&I$J-&$&#*+7&I")/*(6&*0&/I-"(&*P+N&K+-&0$%"#6&
0&8(<4)/&%*<-#)&4-+/-(&*+&$&)I$(-<&<$/$D)/*(-N&;+&/I$/&4*+/-S/:&
-%.I$)")&I$)&8--+&.2/&*+&/I-&2)-&*0&&--%(2.!$2-.'4!.0/!0+#:& #"O-&
W"+<$&T9UN&W"+<$&$+<&)28)-Q2-+/&/2.#-D).$4-&4**(<"+$/"*+&)6)/-%)&
.(*J"<-& .("%"/"J-)& 0*(& 4*+/(*##"+7& $44-))& 86& 4*+42((-+/& .(*4-))-)&
/*& $&)I$.-<& <$/$&).$4-& *0& /2.#-)N& 5I-& .*"+/& *0& "+/-()-4/"*+& P"/I&
%-))$7-& .(*4-))"+7& ")& /I$/& /I-& <$/$8$)-& (-$<"+7& *.-($/"*+)& 4$+&
P$"/& 0*(& /I-& $..-$($+4-& *0& $& /2.#-& %$/4I"+7& $+& $8)/($4/& /-%D
.#$/-TC@UN&5I-&-00-4/&*0&8-"+7&$8#-&/*&P$"/&0*(&/I-&$..-$($+4-&*0&$&
/2.#-&%$/4I"+7&$+&$8)/($4/&/-%.#$/-&")&%24I&/I-&)$%-&$)&/I-&-00-4/&
0&$&4+42((-+/&%2#/".#-&<").$/4I:&82/&/I-&-%.I$)")&"+&W"+<$D8$)-<&
)6)/-%)&")&"+&$..#"4$/"*+)&#"O-&<$/$D%"+"+7:&)2..*(/-<&86&$&.-()")D

/-+/&/2.#-D)/*(-N&!-&)--O&$&(-.#$4-%-+/&0*(&/I-&%-/I*<&4$##&%-4I$D
+")%&/*&(-%*J-&#$6-()&*0&8**OO--."+7&0(*%&4#"-+/)&$+<&-+4*2($7-&
%$##-$8"#"/6& *0&)*0/P$(-N& 5I-& 2)-& *0& $&)-.$($/-& 4**(<"+$/"*+& #$+D
72$7-& *(& 0($%-P*(O& *+& /*.& *0& /I-& +$/"J-& #$+72$7-& "+& $& 4#"-+/&
)4$(4-#6&%$O-)& "/& 4#-$(-(& *(&%*(-&%$##-$8#-N& ;+& J"-P& *0& /I-& .-(D
0*(%$+4-& *J-(I-$<& $))*4"$/-<& P"/I& W"+<$L)& .*"+/D*0DJ"-PTC@U:&
/I-(&8(<4)/&)6)/-%)& 0*42)&%*(-&*+& /I-&<-#"J-(6&*0&-.I-%-($#&
%-))$7-)&($/I-(&/I$+&$&(-.#$4-%-+/&0*(&%-/I*<&4$##N&
f*+D)/*($7-D8$)-<&)6)/-%):&*0/-+&4$##-<&1+##!0+'"%-8+%#:&.#$6&

$+& "%.*(/$+/& (*#-& "+& 4*%%-(4"$#&)6)/-%):&)2..*(/-<& 86& .(*<24/)&
#"O-& ;][& !-83.I-(-& [iTCjUN& 5I-& .("%$(6& $<J$+/$7-& *0&)24I&
.28#")I`)28)4("8-&)6)/-%)& ")& /I$/& /I-& 4#"-+/)& $+<&)-(J-()& +--<&+*/&
8-&%*<"0"-<&PI-+&%-))$7-&(*2/"+7&).-4"0"4$/"*+)&4I$+7-N&[-))$7-&
0($%-P*(O)& #"O-& a$J$L)& a[3TCAU& I$J-& $#)*& 8--+&).-4"0"-<:& 82/&
7-+-($##6&(-Q2"(-&/I-&4#"-+/&/*&%$O-&)/$/"4&$<J$+4-&<-4")"*+)&$8*2/&
(*2/"+7& 86&).-4"06"+7& $& 4#$))& *0& *8M-4/:& #"O-&5*."4:& /I$/&%$+$7-)&
PI-(-&%-))$7-)&$(-&)-+/N&!"/I& /I-)-&)6)/-%):& /I-&4#"-+/& /6."4$##6&
2)-)& $& 42%8-()*%-& 0($%-P*(O& /I$/& *0/-+& "+J*#J-)& <$/$& 0*(%$/&
4*+J-()"*+)N&5I")&"+/-(0-(-)&P"/I&/I-&/($+).$(-+46&$+<&%$##-$8"#"/6&
PI"4I& ")& *2(& 7*$#N&H4$<-%"4& "+/-(-)/& "+&%-))$7-& 8(*O-()& ")& /I"+:&
-S4-./&PI-+&J"-P-<&$)&%2#/"D%-/I*<)N&

TBD! !.#'&>:$'9-1/*
[-/I*<)& /I$/& %$6& 8-& <").$/4I-<& *+& /I-& 8$)")& *0& /I-& /6.-)& *0&

%*(-& /I$+& *+-& $(72%-+/& $(-& 7-+-($##6& 4$##-<& %2#/"D%-/I*<)& $+<&
$(-& $+&$(-$&*0&)"7+"0"4$+/& $+<& #*+7& "+/-(-)/N&H#/I*27I& "/& ")& $+&*8D
M-4/D*("-+/-<&#$+72$7-:&/I-&"+J*4$/"*+&4*+)/(24/&.(*J"<-<&86&1WK3&
TjU&.(*J"<-)&0*(&)/(24/2($#&$8)/($4/"*+&/*&)I"-#<&/I-&4#"-+/&0(*%&/I-&
)/(24/2(-&*0&4I*"4-D%$O"+7&"+&/I-&"%.#-%-+/$/"*+N&]2/&1WK3&<*-)&
+*/&.(*J"<-&)/$/"4&/6."+7:&$+<&"/)&2)-&P$)&#"%"/-<&/*&/I-&W;3Z&4*%D
%2+"/6& 0*(& %$+6& 6-$()N& H+& -S4-##-+/& (-4$.& *0& P*(O& *+& %2#/"D
%-/I*<)& ")&7"J-+& "+& TCkUN& ;/& ")& "%.*(/$+/& /*&+*/-& /I$/&%*)/&*0& /I")&
P*(O& ")& <"(-4/-<& $/& $4I"-J"+7&%2#/".#-D<").$/4I& "+& #$+72$7-)& /I$/&
.-(%"/& <-4#$($/"J-& /6."+7:& $+<& +*/& $/& I"<"+7& /I-& <").$/4I& 4("/-("$&
$+<&"%.#-%-+/$/"*+&)/(24/2(-&0(*%&4#"-+/):&$+<&/I-6&7-+-($##6&)$4D
("0"4-&-"/I-(&4*+<"/"*+$#&)$0-/6&*(&)/(24/2($#&$8)/($4/"*+&/*&<*&)*N&
Z(*7($%%"+7& #$+72$7-& (-)-$(4I& 7-+-($##6& -S.#*"/)& %2#/"D

%-/I*<)& /*&).-4"$#"^-& /I-& 8-I$J"*(& *0&%-/I*<)& 0*(& J$("*2)& $(72D
%-+/& /6.-)N& 5I")& I$)& #-<& /*& /I*(*27I& "+J-)/"7$/"*+& *0& "))2-)& *0&
$%8"72"/6N& ;+& /I-&$8)-+4-&*0& $&%*<2#$("^"+7&)/(24/2(-& #$(7-(& /I$+&
4#$))-)&>#"O-&K3b;L)&c82+<#-)dB:&(-)/("4/"*+)&/I$/&(-<24-&/I-&%$##-D
$8"#"/6& *0&)*0/P$(-& I$J-& 8--+& 2)-<& /*& "+/(*<24-& 1-(/4!%& /6.-D
4I-4O"+7TCkUN& & Z2()2"+7&%$##-$8"#"/6:&P-& I$J-& -S.#*"/-<& /I-& 4*+D
4-./&*0&$& #$+72$7-D<-0"+-<&)-(J"4-&/*&8*2+<&/I-&)4*.-&*0&.*))"8#-&
$%8"72"/6&"+&$<<"/"*+&/*&.(*J"<"+7&$&)-.$($/-&4*+/$"+-(&0*(&)-(J"4-&
)/$/-N&

TBF! 2/3$4'/*
;+&$<<"/"*+&/*&.(*J"<"+7&$&%$##-$8#-&4*%.*+-+/&4*+)/(24/:&)-(D

J"4-)& 4$+&)-(J-& $)& $).-4/)& $)& P-##N& 36%%-/("4& $..(*$4I-)& /*& $)D
.-4/D*("-+/-<&)*0/P$(-&)-.$($/-& /I-&%$/-("$#"^$/"*+&*0& /I-&$).-4/):&
PI"4I&4*+/$"+&)/$/-&$+<&%-/I*<&<-0"+"/"*+)&/I$/&-S/-+<&/I-&)-%$+D
/"4)& *0& *8M-4/)& 0(*%& /I-& -S.(-))"*+& *0& /I-& .*"+/42/&).-4"0"4$/"*+)&
/I$/&"+<"4$/-&PI-+&/I-6&)I*2#<&8-&-%.#*6-<N&X2)-aTC9U&.(*J"<-)&$&
2+"0"-<& $).-4/`4*%.*+-+/& %*<-#& P"/I& /I-)-& 4$.$8"#"/"-)N& !"/I&
)6%%-/("4& $).-4/):& /I-& .*"+/42/& *(& $).-4/& "+/-($4/"*+& #$+72$7-& ")&
)-.$($/-<& 0(*%& /I-& .(*7($%%"+7& #$+72$7-& $+<:& "+& *2(& 4$)-:& -SD
.(-))-<&PI-+&)-(J"4-)&$(-&"+/(*<24-<&/*&/I-&)-(J"4-&(-Q2-)/&8(*O-(N&

VB! 8.::"6(*
5*& "%.(*J-& /I-& %$##-$8"#"/6& *0&)*0/P$(-:& P-& I$J-& -%.#*6-<& $&
%*<-#&*0&%-/I*<&4$##&"+&PI"4I&$&%-/I*<L)&4$##-(&4$+&)$0-#6&<-4#$(-&
$+<& 4$##& %-/I*<)& P"/I*2/& O+*P#-<7-& *0& PI"4I& *8M-4/>)B& *(&)-(D
J"4->)B& "%.#-%-+/& /I-& %-/I*<N& !-& -S.#*"/& 4*%.*+-+/& %*<-#& "+&
PI"4I& #+%52&+#& 0*(%& 4*I-(-+/& 4*##-4/"*+)& *0& 4#$))-)& $+<& %$+$7-&

46

/I-"(&)2..*(/"+7&)/$/-N& [-/I*<& 4$##& ")& /(-$/-<& $)& $& 8(*$<4$)/& "+&
PI"4I& $& 4$##& 4$+& 8-& <").$/4I-<& /*& %2#/".#-&)-(J"4-)& /I(*27I& /I-&
.-($/"+& *0& $&)-(J"4-D(-Q2-)/& 8(*O-(N& 3-(J"4-)& 4$+& 8-& 4*%.*)-<&
#*4$##6&*(& /I-6& 4$+&8-&%*8"#-& *(& <")/("82/-<N&5I-&)/(24/2(-&*0& /I-&
)-(J"4-)&2)-<&86&$&4#"-+/&")&0#2"<&$+<&/($+).$(-+/:&$+<&/I-&*J-(I-$<&
0& 4+J-()"*+& *(& %$()I$##"+7& /$O-)& .#$4-& "+& /I-& 8(*O-(& $+<& ")&
$J*"<-<&PI-+& 4*%.*+-+/)& $(-& #*4$##6&)2..#"-<N&5I-&)/$/-& $))*4"D
$/-<& P"/I& $+& *8M-4/& 4$+& 8-& <")/("82/-<& $4(*))&)-J-($#&)-(J"4-):&
%24I&$)& "/& 4$+&8-&<")/("82/-<&$4(*))&)-J-($#&$).-4/):& -+$8#"+7& /I-&
)-(J"4-)&/*&8-&2)-<&$)&)6%%-/("4&$).-4/)N&;+&$<<"/"*+&/*&"+4(-$)"+7&
/I-&%$##-$8"#"/6& *0&)*0/P$(-:& /I-&)-(J"4-D8(*O-(& 4*+)/(24/& .-(%"/)&
/I-& "+/-7($/"*+& *0& /I-& 4*+4-./& *0& /($+)$4/"*+& "+/*&%-/I*<& 4$##&)-D
%$+/"4)N& \S.(-))"+7& /($+)$4/"*+& 8*2+<$("-)& "+& /I-& .(*7($%%"+7&
#$+72$7-&.-(%"/)&$+&-S/-+)"*+&*0&/I-&4*+4-./&*0&(-).*+)"8"#"/"-)&0*(&
02/2(-&$4/"*+N& ;/& ")&.*))"8#-&/*&2)-&/I-&)/$/"4& /6.-&)6)/-%&*0&$&.(*D
7($%%"+7& #$+72$7-& /*& -+0*(4-& /I-& 02/2(-& -S-42/"*+& *0& $&%-/I*<&
$0/-(&/I-&(-/2(+&0(*%&$&%-/I*<&PI"4I&4*%%"/)&/*&/I$/&02/2(-&-S-42D
/"*+N&5I")&0$4"#"/6&4$+&8-&2)-<&/*&.(*J"<-&7(-$/-(&.$($##-#")%&PI-+&
)24I&%-/I*<)&$(-&4$##-<&"+&#**.)N&

24N0-?#$1<$:$0'/*
;& P*2#<& #"O-& /*& /I$+O& /I-& (-J"-P-()& $+<& -).-4"$##6& \("4& \"<-& 0*(&
)277-)/"*+)&/I$/&I$J-&)28)/$+/"$##6&"%.(*J-<&/I")&.(-)-+/$/"*+N&

P$5$6$04$/*
TCU! X"#%$+:&RN\N&$+<&,NZN&X("-<%$+V&H).-4/DK("-+/-<&Z(*7($%%"+7&")&

i2$+/"0"4$/"*+&$+<&K8#"J"*2)+-))N&;.<'=-#2$2-.'*!*+%'6-%'$:+'>(9
5!.&+('?+*!%!$2-.'-6'@-.&+%.#'A-%8#:-*'!$'$:+'@-.6+%+.&+'-.'B"9
C+&$9B%2+.$+('=%-0%!112.0'?)#$+1#,'D!.0/!0+#,'!.('>**42&!$2-.#:&
["++-$.*#"):&[f:&K4/*8-(&9kkk&

T9U! b-#-(+/+-(:&,N:&1$(("-(*:&f:&1**(<"+$/"*+&W$+72$7-)&$+<&/I-"(&37+"0"D
4$+4-:&@-11/.2&!$2-.#'-6'$:+'>@E:&FG,H:&>X-8(2$(6:&CFF9B:&..N&FjD
Ckj&

T@U! '$((")*+:&!N:&W"-J-+):&,N:&!$#)I:&5NN:&H4I"-J"+7&R-4*%8"+$+4-&/*&
;%.(*J-&[*<2#$("/6N&3*0/P$(-&3/(24/2(-)&b(*2.&R-.*(/&Ck9:&K4/*8-(:&
9kkG:&J"#$8#-&0(*%&&I//.)V``PPPN4)N/4<N"-`(-)-$(4Il7(*2.)`))7&

T_U! '$((")*+:&!N&$+<&K))I-(:&'N:&328M-4/DK("-+/-<&Z(*7($%%"+7&D&H&
1("/"Q2-&*0&Z2(-&K8M-4/):&;.'=%-&++(2.0#'-6'IJJF'@-.6+%+.&+'-.'B"9
C+&$9B%2+.$+('=%-0%!112.0'?)#$+1#,'D!.0/!0+#,'!.('>**42&!$2-.#:&
3-./-%8-(&CFF@&

TAU! '$((")*+:&!N:&K))I-(:&'N:&$+<&5$((:&ZN:&3*0/P$(-&\+7"+--("+7&5**#)&
$+<&\+J"(*+%-+/)V&H&R*$<%$.:&"+&K/$/%+'-6'?-6$L!%+'M.02.++%2.0:&
H+/I*+6&X"+O-#)/-"+&>\<NB:&H1[&Z(-)):&a2+-&9kkk&

TGU! '$((")*+:&!NN&,-D4*+)/(24/"+7&$+<&R-D4*+)/(24/"+7&H).-4/D
K("-+/$/"*+:&;.'=%-&++(2.0#'-6'$:+'?+5+.$:'>../!4'A-%8#:-*'-.'
K-/.(!$2-.#'-6'>#*+&$'D!.0/!0+#:&](2))-#):&]-#7"2%:&C&H.("#:&9kkE:&
-<"/-<&86&b$(6&5N&W-$J-+)&:&H1[&,"7"/$#&W"8($(6:&9kkE:&..N&_@DAk&&

TjU! h--+-&3N:&B"C+&$9B%2+.$+('=%-0%!112.0'2.'@-11-.'D2#*,&H<<")*+D
!-)#-6:&CFEF&

TEU! W"-J-+):&,N:&'$((")*+:&!NN&36%%-/("4&-+4$.)2#$/-<&%2#/"D%-/I*<)&/*&
$8)/($4/&*J-(&$..#"4$/"*+&)/(24/2(-:&;.'=%-&++(2.0#'-6'$:+'HN$:'>../!4'
>@E'?)1*-#2/1'-.'>**42+('@-1*/$2.0,'?)1*-#2/1'-.'>**42+('
@-1*/$2.0:&'*+*#2#2:&';:&[$(4I&EDC9:&9kkF:&H1[:&9kkF:&..N&CEj@&D&
CEEk&&

TFU! W"-J-+):&,N:&!$#)I:&5N:&,$I#-%::&,N&'$((")*+:&!NN&Z(*%*/"+7&\J*#2D
/"*+&5I(*27I&H8)/($4/"*+&KJ-(&;%.#-%-+/$/"*+&3/(24/2(-:&;.'=%-&++(9
2.0#'@-1*!.2-.'-6'$:+'FI#$';.$+%.!$2-.!4'@-.6+%+.&+'-.'?-6$L!%+'
M.02.++%2.0:&m$+4*2J-(:&1$+$<$:&[$6&CGDCF:&9kkFN&&

TCkU!["##)/-"+:&5N:&$+<&1I$%8-():&1N&[*<2#$(&3/$/"4$##6&56.-<&[2#/"%-/ID
<)N&"+&=%-&++(2.0#'-6'$:+'IF$:'M/%-+!.'@-.6+%+.&+'-.'B"C+&$9
B%2+.$+('=%-0%!112.0'OM@BB='JJP:&W")8*+:&Z*(/27$#:&a2+-&C_DCE:&
CFFF&

TCCU!["/4I-##:&fN:&3-J"/)O6:&bN:&$+<&3("+"J$)$+:&'N:&[*<-#"+7&R2+/"%-&
]-I$J"*(&"+&X($%-P*(OD]$)-<&H..#"4$/"*+):&"+&=%-&++(2.0#'-6'$:+'
HQ$:'M/%-*+!.'@-.6+%+.&+'-.'B"C+&$9B%2+.$+('=%-0%!112.0'
OM@BB='QRP:&f$+/-):&X($+4-&

TC9U!32J--:&,N:&,-&X($"+-:]N:&$+<&m$+<-(.-((-+:&!N:&H&36%%-/("4&$+<&
e+"0"-<&H..(*$4I&5*P$(<)&1*%8"+"+7&H).-4/DK("-+/-<&$+<&1*%.*D
+-+/D]$)-<&3*0/P$(-&,-J-#*.%-+/,'2.'@-1*-.+.$9S!#+('?-6$L!%+'
M.02.++%2.0:&Wf13&_kG@:&3.("+7-(:&]-(#"+&`&'-"<-#8-(7:&9kkG&

TC@U!!-##):&bN:&1**(<"+$/"*+&W$+72$7-)V&]$4O&/*&/I-&X2/2(-&P"/I&W"+<$:&
Z(*4--<"+7)&*0&/I-&3-4*+<&;+/-(+$/"*+$#&!*(O)I*.&*+&1**(<"+$/"*+&
$+<&H<$./"*+&5-4I+"Q2-)&0*(&3*0/P$(-&\+/"/"-)&>!1H5kAB:&..N&EjD
FE:&9kkAN&

TC_U!1*+/"+22%&W$+72$7-&3.-4"0"4$/"*+:&$J$"#$8#-&0(*%&&
I//.)V``PPPN4)N/4<N"-`(-)-$(4Il7(*2.)`))7&

TCAU!32+&aJ&[-))$7-&3-(J"4-&>a[3B:&I//.V``MJN)2+N4*%`.(*<24/)`M%)`:&
(-/("-J-<&9_&a$+&9kCk&

TCGU!!-8&3-(J"4-)&1I*(-*7($.I6&,-)4("./"*+&W$+72$7-:&
I//.V``PPPNP@N*(7`5R`9kkA`1RDP)D4<#DCkD9kkACCkF`:&(-/("-J-<&9_&
a$+&9kCk&

TCjU!!-83.I-(-&[-))$7-&](*O-(&5-4I+"4$#&KJ-(J"-P:&
I//.V``.28#"8N8*2#<-(N"8%N4*%`"+0*4-+/-(`P%8I-#.`JG(C%k`/*."4`4*%
N"8%N-/**#)N%0/N<*4`$89kAAClNI/%:&(-/("-J-<&9_&a$+&9kCkN

!

47

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

32 978-3-86956-

037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

31 978-3-86956-
036-6

Proceedings of the 4th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

30 978-3-86956-
009-0

Action Patterns in Business Process
Models

Sergey Smirnov, Matthias
Weidlich, Jan Mendling,
Mathias Weske

29 978-3-940793-
91-1

Correct Dynamic Service-Oriented
Architectures: Modeling and
Compositional Verification with Dynamic
Collaborations

Basil Becker, Holger Giese,
Stefan Neumann

28 978-3-940793-
84-3

Efficient Model Synchronization of
Large-Scale Models

Holger Giese, Stephan
Hildebrandt

27

978-3-940793-
81-2

Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

26

978-3-940793-
65-2

The Triconnected Abstraction of Process
Models

Artem Polyvyanyy, Sergey
Smirnov, Mathias Weske

25

978-3-940793-
46-1

Space and Time Scalability of Duplicate
Detection in Graph Data

Melanie Herschel,
Felix Naumann

24

978-3-940793-
45-4

Erster Deutscher IPv6 Gipfel

Christoph Meinel, Harald Sack,
Justus Bross

23

978-3-940793-
42-3

Proceedings of the 2nd. Ph.D. retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

22

978-3-940793-
29-4

Reducing the Complexity of Large EPCs

Artem Polyvyanyy, Sergy
Smirnov, Mathias Weske

21

978-3-940793-
17-1

"Proceedings of the 2nd International
Workshop on e-learning and Virtual and
Remote Laboratories"

Bernhard Rabe, Andreas Rasche

20

978-3-940793-
02-7

STG Decomposition: Avoiding Irreducible
CSC Conflicts by Internal Communication

Dominic Wist, Ralf Wollowski

19

978-3-939469-
95-7

A quantitative evaluation of the enhanced
Topic-based Vector Space Model

Artem Polyvyanyy, Dominik
Kuropka

18

978-3-939469-
58-2

Proceedings of the Fall 2006 Workshop of
the HPI Research School on Service-
Oriented Systems Engineering

Benjamin Hagedorn, Michael
Schöbel, Matthias Uflacker,
Flavius Copaciu, Nikola Milanovic

17

3-939469-52-1 /
978-3-939469-

52-0

Visualizing Movement Dynamics in Virtual
Urban Environments

Marc Nienhaus, Bruce Gooch,
Jürgen Döllner

ISBN 978-3-86956-043-4
ISSN 1613-5652

	Titelblatt
	Impressum

	Preface
	Organizers
	Table of Contents
	Session 1: Adepts of Code and the Wizards of OS
	How Often Do Experts Make Mistakes? (Nicolas Palix, Julia L. Lawall, Ga¨el Thomas, Gilles Muller)
	Abstract
	1. Introduction
	2. Linux MemoryManagement APIs
	2.1 Common behavior and potential de
	2.2 The specific APIs

	3. Tools
	3.1 Coccinelle
	3.2 Herodotos
	3.3 Git

	4. Assessment
	5. Related work
	6. Conclusion
	Availability
	References
	Appendix
	A. SmPL files
	A.1 alloc_size
	A.2 alloc_noderef
	A.3 gfp_kernel
	A.4 cast_alloc
	A.5 alloc_nulltest
	A.6 kmalloc
	A.7 kzalloc
	A.8 kcalloc

	B. Excerpt of the HCL file

	Towards Reusable Aspects: the Callback Mismatch Problem (Maarten Bynens, Dimitri Van Landuyt, Eddy Truyen, Wouter Joosen)
	Abstract
	1. Introduction
	2. The callback mismatch problem
	2.1 Problem definition
	2.2 Motivating Example
	2.3 Minimal solution in AspectJ

	3. Approaches
	3.1 Explicit Pointcut Interfaces
	3.2 Type parameters
	3.3 Caesar
	3.4 Subject-oriented programming

	4. Conclusion
	References
	Appendix
	A. Entire example

	Session 2: Scanners and Sensors for Components and Code
	Views for Aspectualizing Component Models (Abdelhakim Hannousse, Gilles Ardourel, R´emi Douence)
	Abstract
	1. Introduction
	2. Motivating Example
	2.1 An Optimized Crane System
	2.1.1 Fulfilling Performance Constraint
	2.1.2 Fulfilling Truck Safety Constraint

	3. VIL: Views Language
	3.1 FPath Query Language
	3.2 VIL Language

	4. VIL Mapping to Fractal
	5. Wrappers Interactions
	6. RelatedWork
	7. Conclusion and Future Work
	References

	AspectKE*: Security Aspects with Program Analysis for Distributed Systems (Fan Yang, Hidehiko Masuhara, Tomoyuki Aotani, Flemming Nielson, Hanne Riis Nielson)
	Abstract
	1. Introduction
	2. Motivating Problem
	3. Design Principles
	3.1 Static Analysis for Security Aspect
	3.2 Program Analysis Predicates and Functions
	3.3 Load-Time Static Analysis

	4. AspectKE*
	4.1 The HelloWorld Example
	4.2 A Simple Aspect for HelloWorld
	4.2.1 Pointcut
	4.2.2 Advice

	4.3 Program Analysis Predicates and Functions

	5. A Security Aspect for the Distributed Chat System
	6. Implementation Issues
	7. RelatedWork
	8. Conclusions
	References

	Session 3: Fantastic Frameworks and Infamous Infrastructures
	Preserving Dynamic Reconfiguration Consistency in Aspect Oriented Middleware (Bholanathsingh Surajbali, Paul Grace, Geoff Coulson)
	Abstract
	1. Introduction
	2. Threats to Consistency
	2.1 System environment threats
	2.2 Compositional threats

	3. The AO-OpenCom Framework
	3.1 Aspects and Aspect Composition
	3.2 Reconfiguration in AO-OpenCom

	4. The Consistency Framework
	4.1 Addressing System Environment Threats
	4.2 Addressing Compositional Threat
	4.3 Ordering of Threat Aspects

	5. Evaluation
	5.1 Configurability
	5.2 Transparency
	5.3 COF Overhead

	6. Related Work
	7. Conclusion and Future Work
	References

	Malleability, Obliviousness and Aspects for Broadcast Service Attachment (William Harrison)
	Abstract
	1. Introduction
	2. Underlying Issues
	2.1 Malleability
	2.2 Obliviousness
	2.3 Using Broadcast Method Call for Malleability

	2. Using Broadcast Method Call for Obliviousness
	3. Broadcast Service Model Challenges
	3.1 Comaptibility
	3.2 State Maintenance
	3.3 Service Mangement
	3.4 Static Tracking of Commitment Satisfaction

	4. Broadcast Service Model Advantages
	4.1 Enhanced Malleability
	4.2 Parallelism and Multi-core Support
	4.2.1 Expressing Transactional Needs
	4.2.2 Static Enforcement of Task Commitments

	5. Related Work
	5.1 Broadcast Models
	5.2 Multi-methods
	5.3 Aspects

	6. Summary
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

