

HASSO - PLATTNER - INSTITUT
für Softwaresystemtechnik an der Universität Potsdam

Dominik Kuropka
Harald Meyer

Survey on Service Composition

Technische Berichte Nr. 10
des Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

Nr. 10

Survey on Service Composition

Dominik Kuropka
Harald Meyer

Potsdam 2005

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion:
Email:

Vertrieb:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Dominik Kuropka; Harald Meyer
dominik.kuropka; harald.meyer}@.hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2005

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 10 (2005)
ISBN 3-937786-78-3
ISSN 1613-5652

Survey on Service Composition

Dominik Kuropka and Harald Meyer

2005-10-21

Executive Summary

It is predicted that Service-oriented Architectures (SOA) will have a high impact on future elec-
tronic business and markets. Services will provide an self-contained and standardised interface
towards business and are considered as the future platform for business-to-business and business-to-
consumer trades. Founded by the complexity of real world business scenarios a huge need for an
easy, flexible and automated creation and enactment of service compositions is observed.

This survey explores the relationship of service composition with workflow management—a tech-
nology/concept already in use in many business environments. The similarities between the both and
the key differences between them are elaborated. Furthermore methods for composition of services
ranging from manual, semi- to full-automated composition are sketched. This survey concludes that
current tools for service composition are in an immature state and that there is still much research
to do before service composition can be used easily and conveniently in real world scenarios. How-
ever, since automated service composition is a key enabler for the full potential of Service-oriented
Architectures, further research on this field is imperative. This survey closes with a formal sample
scenario presented in appendix A to give the reader an impression on how full-automated service
composition works.

2

Contents

1 Introduction 1
1.1 Historical overview on Workflows and Service Composition 1
1.2 Positioning in the ASG Context . 3

2 State-of-the-art 6
2.1 Manual Planning of Business Workflows . 6
2.2 Manual Service Composition . 7

3 Current Research Efforts 10
3.1 Semi-automated Composition of Services . 10
3.2 Full-automated Composition of Services . 13

4 Conclusion and Outlook 17

A Service Composition Sample 18
A.1 Service Specification Ontology . 18
A.2 Domain Ontology . 23
A.3 Service Specifications . 24
A.4 User Request . 27
A.5 Sketch of full-automated Service Composition . 28

Bibliography 33

3

List of Figures

1 Structure of the ASG project. 3
2 ASG subsystems and interface dependencies. 4

3 Sample task definitions for HTN planning. (Source: [Mey04]) 14
4 HTN planning on task definitions from figure 3. (Source: [Mey04]) 15

5 Composition after first step. 28
6 Composition after second step. 29
7 Composition after third step. 30
8 Composition after fourth step. 31
9 Composition after fifth and final step. 31

4

1. Introduction

The main objective of the Adaptive Services Grid (ASG) project1 is the development of an open and
generic software platform for discovery, creation, composition and enactment of services. The aim
of this deliverable is the presentation of current efforts for the automated composition of services.
Since the idea of service composition is derived from workflow planning we will start in section 1.1
with a brief overview on the roots of workflows and workflow planning and their relation to service
composition. Section 1.2 discuss service composition in the context of the ASG project. The two
main parts of this deliverable are chapter 2 and 3. The first one presents the state-of-the-art on (man-
ual) planning of business workflows and (manual) service composition. The second one presents
current research efforts in the field of semi-automated and full-automated service composition. The
deliverable is closed with a conclusion and outlook in chapter 4. Appendix A contains a formal
sample for some services including their specification. Furthermore a sketch is presented, on how an
automated service composition including matchmaking could be derived from a given sample user
request.

1.1. Historical overview on Workflows and Service
Composition

Workflow management is the (technological) answer for the demand on scheduling and supervision
of administrative business processes. This demand emerged in the 1990s by the wide application
of Business Process Re-engineering (BPR) in various business domains. Due to the increased com-
plexity of business and administration the limits of dividing tasks up by functional division become
apparent. For this reason processes and especially their re-engineering was put on the agenda of
most executives at those time.

Previous to the focus on processes and BPR the traditional solution for complexity was the ’divide
and conquer’ approach with focus on functionality of tasks. This means that complex tasks where di-
vided in several sub-tasks which where handled by specialists. Over time the complexity of subtasks
raised because of new legal rules, new business models or new functionality due to technological
advancements. This lead to the situation that subtasks where divided into smaller sub-tasks again
which where handled by even more specialist people. After this dividing has been repeated several
times, following challenges emerged:

• Slow process execution: It was observed that the passing of business cases (e.g. a sales orders
or an insurance claims) through the organisation was slow and takes a long time although the

1This paper presents results of the Adaptive Services Grid (ASG) project (contract number 004617, call identifier
FP6-2003-IST-2) funded by the Sixth Framework Programme of the European Commission.

1

summarised processing time of all tasks was relatively short. The main problem was, that
the flow of a business case through the organisation was fragmented into a lot of small tasks
handled by different people. This caused a frequent transfer of documents, which delayed
the processing of the case significantly. This was even worsened by the fact, that the transfer
of business cases and relevant data from one resource to the other needed much time since it
was not digitalised. Further, the assignment of resources was not flexible enough. Usually the
assignment was done by some artificial criteria (e.g. by the first letter of the last name of the
customer). This lead to the situation that some resources has been overloaded while others
run idle. Finally, a dynamic re-assignment of resources was not possible in most cases, since
nobody had a clue what was the current load on and availability of the resources. This leads
to situations where already assigned cases where not processed for longer time because the
processing staff where not available for example due to holidays or disease.

• Loss of control on process execution: Another experience made in the past was that in the
functional division approach nobody was responsible for a specific business case as a whole.
While every specialist executing a specific function is responsible for all business cases which
are scheduled for him and which are on his desk, he loses this responsibility after successful
execution of his task. If somebody wants to find out the current status of a business case, in
the worst case he has to ask all employees to get the information who is currently working at
the business case and to find out what is the status of the case. This makes the assurance of
deadlines complicated and time intensive.

• Missing overview on processes: Finally a result of the functional division approach was, that
each specialist had deep knowledge about his special field but nobody had the overview on the
whole process. This led to inefficiencies due to lack of understanding on what a small change
in task processing may cause in the subsequent tasks. Also cases are well known, where tasks
get obsolete by time or technology but which are still executed because nobody is able to see
that the result of the task is neither used by any other task nor relevant for the business any
more.

To avoid the mentioned problems business realised in 1990s that the modelling and enactment of
business processes as a whole is needed to cope with the new challenges on flexibility, complexity
and efficiency. Parallel to this Workflow Management Systems (WfMS) emerged as the technology
for automated support on process enactment. These systems are able to control, coordinate, and
monitor all aspects of a process activity: function, data, resource and embedding into the whole
process. To enable this automated support by WfMS business processes are translated and detailed
into a formal and computer-readable process model, which is usually named workflow.

With the advent of the Service-oriented Architectures (SOA) [Bur00] a new field for the appli-
cation of WfMS evolved. SOA is about structuring of software by using a service-paradigm. Thus
software and services as well as their properties and their relationships to other objects like service
providers and requestors are in focus of SOA. Services are self-contained functions which accept
requests and return responses through a well-defined interface. Especially in business contexts em-
bedding of services into existing processes is crucial. Furthermore new business models are enabled
by SOA which often include the need for composition of services to independent processes. For this

2

ASG Interface

Service Composition & Discovery
Service Creation

Adaptive Process Management

Services Grid Infrastructure

Te
le

co
m

m
un

ic
at

io
ns

Te
le

m
at

ic
s

IT
 E

nt
er

pr
is

e
A

rc
hi

te
ct

ur
es

Ad
di

tio
na

l
Se

ct
or

s

Grid
Service
Registry

Grid
Service
Registry

Grid
Service
Registry

OntologiesOntologiesOntologies

D
ev

el
op

m
e n

t
M

et
ho

do
l o

gy

D
is

se
m

in
at

io
n

U
sa

bi
lit

y
&

D
em

on
st

ra
ti o

n

Project Management

Figure 1.: Structure of the ASG project.

reason it makes sense to reuse and adapt existing tools, like WfMS to support the task of controlling
and enactment of service compositions. Like the enactment of conventional processes, the enact-
ment of service compositions has to deal with data and it’s proper transfer as well as with resource
management in the sense of choosing the right provider in case a service is provided by several ones.
In chapter 2 we start with the illustration of the state-of-the-art of manual workflow planning and
manual service composition in general and focus later in chapter 3 on current research efforts on au-
tomated service composition in particular, since the latter one is—as shown in the next section—of
direct relevance for the ASG project.

1.2. Positioning in the ASG Context

The composition of services is an important—though challenging—feature of the ASG platform,
since it is unrealistic to assume that all user request can be satisfied by execution of exactly one
existing service. The idea is that user requests are not specified as direct service calls, but rather as a
semantic description of the current situation (state and data) and the intended goal of the user. On the
basis of this description a service composition planner creates a valid service composition which is
able to fulfil the indented goal. Service composition increases the value of the ASG platform since it
enlarges the range of possible solutions that may be presented to the user. For this reason the service
composition planner (as part of Service Composition & Discovery) has a central role in the ASG
project which is also reflected by it’s central position in the ASG project structure (refer to figure 1).

Figure 2 presents the ASG subsystems and their dependencies. Technically is service compo-
sition planner encapsulated in an own subsystem named composition. It is directly controlled by

3

enactment

ComposedSvcExeHistoryListener

ComposedSvcExeHistorySource

ServiceEnactment

negotiation

NegotiationManager

NegotiationAgent

composition

CompositionPlanner

facade

RequestHandler

creation

ServiceIntegration

deployment

DeploymentManager

discovery

DdbQuery

invocation

ServiceFactory

profiling

ServiceProfiling

contracting

SlaManager

replanning

MediatedReplanner

invoke services

renegotiate

broadcast
events

instantiate negotiation agents

retrieve service profiles

discover service groundings

create sla

negotiate

discover services

replan
negotiate

enactpan

(un-) deploy services

store service specifications and groundings

register

mediate replanning process

retrieve profiles for better hints

Figure 2.: ASG subsystems and interface dependencies.

4

the facade subsystem which provides the composition planner with user requests. The composition
planner itself accesses the deductive database query interface to build up a service compositions.
Starting from the given input data the composition planner finds proper services having a specifi-
cation matching to the given data and the output data of their respective predecessors. The final,
resulting service composition, which is in fact a composition of service specifications, is returned
to the facade subsystem which forwards them to the enactment subsystem. This subsystem initiates
negotiation on services having an specification matching to the specifications in the composition
and binds the most suitable one to the composition. After all services are bound, the composition
is enacted and the invocation subsystem is used for the invocation of the services at their particular
provider.

5

2. State-of-the-art

2.1. Manual Planning of Business Workflows

The starting point for a manual planning and modelling of business workflows is usually a given or
planned technological and organisational structure of an enterprise. This structure is often described
by a textual or graphical (e. g. using ARIS [Sch00]) but usually semi-formal description of business
processes. So it is the task of a human workflow planner to concretise these business processes in
that way, that they are precise enough to be executed full-automated by a workflow management
system. To achieve this goal the workflow planner has first to ensure, that all relevant tasks as well
as technological and organisational entities are modelled properly within the workflow management
system. At least the following aspects of a task have to be modelled and stored in the system:

• Constraints on (human) Resources describe what abilities (e. g. speaks Spanish fluently) and
competencies (e. g. is a purchasing agent with the accreditation to make contracts up to
10,000 e) the person in charge has to provide. These constraints are automatically evaluated
during workflow execution by the workflow management system to ensure that a task appears
only on the work list of appropriate persons. For a sound modelling of these constraints a
model of all involved organisational entities is indispensable.

• Input and Output Data are described in order to enable a proper transfer of data from one task
to an other during the enactment of workflows. This description includes a formal specification
of the syntax of the data including used data types and structuring. Furthermore, an informal
description of the semantics of data (meta data) can (and should be) included.

• Technical Issues subsume all other technical stuff which is needed to manage the automated
enactment of a task. This usually includes glue code to access input and output data from
databases or applications as well as code to execute proper applications or input masks on
the users desktop. To solve the technical issues all involved technological entities have to be
modelled and they have to provide adequate interfaces for access and manipulation of data or
invocation of proper applications.

Having the tasks well defined, the workflow planner can start with the modelling of workflows.
This includes the specification of logical and temporal dependencies on tasks usually named as
control-flow. The control-flows defines under which conditions a task has to be executed or skipped.
VAN DER AALST ET. AL. identifies in [vdAtHKB03] twenty1 different patterns of control-flow
types. Commonly observed examples of these patterns are simple sequences (e. g. task b is executed
always after task a), parallel splits (e. g. tasks a and b are executed in parallel) or exclusive choices

1In the named paper.

6

(e. g. either task a or task b is executed). Next to control-flow the data-flow plays an important role
in workflow modelling. The data-flow defines which output data of which task has to be delivered to
which input data connector of a task. Although for humans data-flow seems to be obviously inferable
from a given control-flow structure, it is sometimes not trivial to find a formal representation which
is non-ambiguous in all possible cases of given data and the workflow enactment path resulting
from the specified control-flow. It is a general practice to create workflows step by step from given
business process descriptions by sequentially adding new tasks to a workflow and connecting them
by data- and control-flow to the already modelled tasks. The challenge in this proceeding is to
achieve a workflow which can be handled without human intervention by a workflow engine in
ideally all possible situations. This means that ideally all eligible and exceptional situations have to
be modelled properly. For this reason traditional workflow management systems are mainly used in
stable and predictable environments like for example administration of insurance claims or general
business administration with well defined processes. Since not all business environments are as
stable as the aforesaid, research on making workflow management systems more flexible is still
ongoing. Next to providing better methods for exception modelling and handling also approaches
for adaptation of already running workflows are in discussion. An overview on different approaches
increase flexibility of workflow management systems is presented in [RRD04].

To enable full-automated execution of workflows a machine understandable which usually means
more or less formal description of workflows is needed. Over time a huge amount of workflow
modelling languages have been developed. Languages like Petri nets [Pet66, Pet81] or π-calculus
[Mil99] have a strong scientific and theoretical background. Their main focus is the study of process
phenomenona and their behaviour. For this reason they are very formal and precise and are often
used as an theoretical backbone for other languages. However modelling of real world problems is
often laborious and inconvenient. The reasons for this valuation are for example that modelling of
even relative simple real world workflows tend to result in complex representations. Furthermore,
these languages focus purely on the modelling of data- and control-flow, usually without taking
detailed task modelling and especially technical and organisational issues into account. For this
reason vendors of workflow management systems invent their own workflow modelling languages or
extended the scientific ones. They aim to find an optimum between the needed degree of formalism
and the ease of the modelling of tasks and workflows, intuitive understanding of the models and
proper tool support usually including visualisation. Just to name a few, well known languages of
business workflow management systems are for example Staffware [Sta00], COSA [Sof99], SAP R/3
Workflow [SAP97] and naturally the relatively young Business Process Modelling Notation (BPMN)
[BPN04].

2.2. Manual Service Composition

As already mentioned in section 1.1 are service compositions strongly related to workflows. For
this reason experiences made in workflow planning are also relevant for the service composition
task. Regarding some aspects service composition is easier and regarding other aspects it is more
challenging than workflow planning. Service composition is easier regarding the aspect of task
modelling, since the individual tasks of a service composition are service (operation) invocations

7

and services are described by their providers. This means that the major part of work regarding
to task description is already done by the service providers. Service description languages like the
Web Services Description Language (WSDL) [W3C01] ensure that a well defined service description
includes information on the formal specification of the syntactical structure of input and output data
(messages) of a service as well as information on technical issues (in particular invocation protocols
etc.) needed to properly invoke the service. Furthermore, aspects regarding the resources and their
constraints are not a part of a service description since it is the key concept of the Service Oriented
Architecture (SOA) that the service requester does not need to take care about resources needed for
the execution a service. This is the task of the service provider [Bur00]. However it has to be noted
that the number of concrete services in the service landscape is higher than the number of tasks in
usual workflow management systems, since service providers are not limited to one company. This
also means that there might exist several different services having the capability to solve the same
task probably with different costs and quality aspects making the decision on a concrete service not
easy. Furthermore the dynamics of the service landscape, which include service change, deletion or
creation, has to be taken into account.

Regarding the control-flow there is only a small difference between workflows and service com-
positions. There is no reason from the theoretical perspective why some control-flow constructs
should not be allowed to appear in service compositions while they are allowed in workflows and
vice versa. However it is possible that the frequency of specific control-flow constructs is differ-
ent. Unlike for control-flows, the difference between workflows and service composition is clearly
apparent for data-flows. Traditional workflow planning is done within one organisation using tasks
and applications under the control of the organisation. This means that the semantics of tasks and
especially their data is well understood, although it is not always trivial to connect the output of a
task with the input of an other task. However there are experts within the organisation which can
help the workflow planner on this job. Furthermore, mediation layers and application servers are
often existing within the organisation since they are needed for the interoperability of different or-
ganisational parts, databases and applications. This infrastructures provide common view on tasks
and data structures which can be reused for workflow planning. This situation is different in the
context of the Service Oriented Architecture (SOA). A key idea of SOA is that service requestors
and service providers can be and usually are from different organisations [Bur00] which are under
certain circumstances residing in different parts of the world. Furthermore usual service description
languages like WSDL [W3C01] contain only a syntactical description of services, their data and the
invocation mechanisms. These circumstances hamper the task of the service composer, since he has
to deal with heterogeneous technical environments. Especially the probability is high, that the output
data structure of one service does not match the input data structure of an other service. This means
that the service composer has to analyse the syntax of the different data structures and find a trans-
formation mechanisms between them which matches their semantics. As a very simple example
for illustration, it can be observed that the used format of dates often differs in different environ-
ments. The date ‘28th of July 2005’ can be represented as a string type for instance as ’28.06.05’
(German notation) or ’2005-06-28’ (ISO 8601). Alternatively it can be represented by a number
type like 1119948614 (seconds since 1st of January 1970, used internally by GNU/Unix systems)
or as a well defined record like {day: 28, month: 6, year: 2005}. For this reason dedicated service
composition languages like Business Process Execution Language for Web Services (BPEL4WS)

8

[ACD+03] provide special constructs which allow not only the representation of data-flows but also
the specification of data transformations which are needed to adapt different data structures.

The general approach in modelling of service compositions is similar to modelling of workflows.
Starting from a given informal process description, the human modeller has to find proper services
which match directly or after some data transformation indirectly with the given initial data. Further-
more, a sequence of the services has to be found which are corresponding to the desired process goal.
This composition of services is usually done step by step. Like in workflow planning, it is a challenge
to find a service composition which can be handled automatically and without human intervention
in ideally all possible situations. The probability of errors (especially communication failures) and
changes of services in distributed environments is higher than in mono-organisational environments.
Modelling of all these aspects (in case of using BPEL [ACD+03] as service composition language
for example by using fault and compensation handlers) is a laborious challenge and it is impossible
to ensure that all feasible and future situations are correctly modelled. Therefore the need for adap-
tive and fast approaches for modelling of service compositions is huge. If service compositions can
be created cheaply, on demand and are enacted only one or few2 times, then the probability for a
change of the involved services is low. Furthermore, if an exception occurs it would be possible to
re-compose a service composition with the aim that the new composition—with probably different
services—works without failure. For this reason the semi- and full-automated service composition
are interesting, since they promise an easy and cheap way to create new service compositions. An
automated ad-hoc integration of new or improved services into existing business processes is a key
enabler for a service market and it is only feasible with automated composition of services.

2Even if composition of services is cheap it will still need some time and computational resources to create a compo-
sition. For this reason it might be useful to store compositions for a shorter period of time to implement a caching
mechanism. This might improve systems performance if a lot of requests for the same composition have to be en-
acted in a short time period. However this is only reasonable if the assumption holds, that the service landscape will
not change significantly according the stored composition during the short time period.

9

3. Current Research Efforts

This chapter sketches some concepts and ideas of current research efforts on methods for semi- and
full-automated composition of services.

3.1. Semi-automated Composition of Services

Composition of services is a step by step assembling of self-contained services to process with a
specific capability as already described in chapter 2. Each assembling step consist at least of the
following tasks:

• Service Discovery is the task of finding a service. Since services can be provided by various
providers all over the world, finding of services is a non-trivial task. The challenges in finding
proper services are the potentially huge number of service repositories as well as of different
languages, law spaces, ontologies and business models. Searching for services on the world
scale is the worst case according the named challenges.

• Service Matchmaking denotes the task of selecting a proper service from a list of existing ser-
vices for assembling. Due to the potentially huge amount of services a matchmaking mech-
anism should have a high precision1 in selecting a proper service. This is important to avoid
overwhelming the modeller with unsuitable services. Furthermore, the variability of possible
service capabilities is high due to the high complexity of the world and the various business
scenarios. This also demands from a matchmaking mechanism a high recall, especially for
rare and special services. High recall means, that ideally all matching services are found. In
case capabilities of rare or special services are needed, high recall is important to ensure that
at least one of the existing and matching services is retrieved.

• Data-/Control-flow Linkage defines the logical sequence of services and specifies the needed
data transfers. Depending on the desired capability of the final service composition and the
capabilities of the existing services the control-flow of the services may vary from a simple se-
quence to complex control structures including branches, parallelism and loops. Furthermore
data-flow can be in the simplest case just an opaque propagation of the output of a service
to the input of an other service. However in most cases data-flow will imply transformation
of data and data structures to overcome different representations of the same or similar, but
matching concepts.

1The term precision is used here in the sense common to the information retrieval domain. It is a measure of the number
of relevant documents (in our case services) in the set of all documents (services) returned by a search.

10

Methods and tools which are able to cope with all above mentioned tasks are capable to provide
a full-automated service composition of services and will be discussed in section 3.2. Since the
provision of an automated data- and control-flow linkage is the hardest task and only solvable by
using artificial intelligence techniques, we will discuss semi-automated service composition methods
and tools first. Tools and methods for semi-automated service composition provide usually some
automatisms for the service discovery and matchmaking tasks and leave the data- and control-flow
linkage task to the user.

Service discovery can be automated by the provision of service repositories conceptually similar
to the idea of white, yellow or green pages. The basic idea is that service providers register their
services at the repository provider.2 Furthermore these services should be described by a universal
and standardised description to give the service consumer an opportunity to examine the service
capabilities prior to the usage. A common standard on service descriptions and repositories is the
Universal Description, Discovery and Integration (UDDI) [OAS02] provided by the Organization
for the Advancement of Structured Information Standards (OASIS). Having a service repository in
place, service discovery is done by inquiring the repository.

The automatisation of service matchmaking is a very important enabler for services application
in real world scenarios. Since there are potentially many services out there, a mechanism is needed
to find the proper one to solve a specific task or to assemble it into a service composition. Current
approaches for service descriptions like WSDL and UDDI are lacking formal semantics. This has
a negative impact on service matchmaking. A WSDL service description can only give very vague
hints on the suitability of a service according to some given requirement on needed service capabil-
ities. Indeed a WSDL description specifies the syntax of a service call. This includes information
about how a service has to be invoked and what the structure of the input and output messages are,
but it does not give any hints on the capability of the service and on the meaning of the input and
output messages. In case the service composer wants to find a service which returns him the phone
number of a person with a given name, it is not very helpful to know that there are many services
existing which have a string-type as input and output. In fact for a successful service matchmaking
the meaning of the inputs and outputs is relevant. In the above described sample case only these
services with an string-type as input and output are relevant, that get a person name as input and
return a phone number as output.

UDDI uses WSDL for the specification of the syntax of service calls, but UDDI also provides
some natural-language service descriptions and some categorisation possibilities for service capa-
bilities. This allows a partial automation of service matchmaking for service composition. Partial in
the sense, that a computer is not able to find all possible matching services automatically without the
help of the user. The reason for this limitation is the lack of formal semantics of service input and
outputs which hinders an automated matching to previous or succeeding service output or inputs.
However the computer can support the composition modeller in service matchmaking by visuali-
sation of and search in categories as well as by providing keyword based searches on the textual
service descriptions using information retrieval approaches [Kur04, BYRN99].

2An alternative is the usage of a crawler. The aim of the crawler is to sweep through the world-wide web and to store
all service descriptions in the repository, which it finds at the home pages of the providers.

11

For a full automation of the matchmaking task, the whole semantics of services and their capa-
bilities have to be described by formal, logical expressions. This can be achieved by the use of a
semantic specification language like WSML [dB05] or OWL [MvH04] in combination with a service
specification ontology like WSMO [RLK05] or OWL-S [Mar04] and a proper domain ontology. The
semantic service specification language is the basic means of expression for the service description.
It specifies which language constructs are syntactically correct and the abstract meaning of language
constructs. For example a language might specify ’x OR y’ as an expression meaning that either
x or y has to be true, but it usually do not specify what x or y are or exactly mean. These kind
of meaning of different entities and their relationships are defined by ontologies [Kur04, Smi02].
The service specification ontology provides the entities and relationships which are needed for a
specification of services. It defines terms like ’service’, ’operation’ and ’capabilities’ and their re-
lationships among each other. Since services always have a relationship to a specific domain of the
real world, the specification of their capabilities has to fall back on concepts of the specific domain.
These domain specific concepts are provided by a domain ontology. Each semantic service specifi-
cation is always related to at least one domain ontology. By help of the above described languages
and ontologies the semantics of services and especially their preconditions and effects as well as the
meaning of the input and output data can be expressed uniquely and exactly. This the matchmaking
task can be ascribed as a logical reasoning or inference task. To be more concrete, the requirements
on a service capability can be described by a logical expression which have to be logically matched
against the logical service specifications. An sample service specification ontology can be found in
appendix A.1; a sample domain ontology is presented in appendix A.2 and formal, semantic service
specifications are shown in appendix A.3. An combined approach using information retrieval and
semantic techniques is presented by CARDOSO and SHETH in [CS02]. They define next to pure
syntactic similarity measures also operational and semantic similarity measures basing on semantic
service signatures and ontologies. This allows an ordering of services according to their similarity
towards the requested service signature specified by the user.

SIRIN, HANDLER and PARSIA present in their paper [SHP02] an example for a semi-automated
service composition tool. Their tool uses OWL in combination with DAML-S (a predecessor of
OWL-S) for the specification of services. As inference engine and service repository their tool uses
an OWL reasoner built on Prolog for service discovery and matchmaking. The tool disburdens
the task of service composition significantly by proposing the service composer proper services at
every assembly step during the composition. The process of composing a service begins with the
specification of the desired result. This desired result is specified by selecting concepts of the domain
ontology which are representing the result. From this, the composition tool proposes a list of services
which are matching toward this desired result in the sense that they are producing this result. In case
there are several services producing the result, the user has to choose one of them by taking for
example non-functional properties like execution cost etc. into account. In the next step the tool
proposes other services which are capable of producing an output which is matching the input of the
last, already assembled service. Again the user has to make a choice by non-functional properties in
case several results are given. This activity is repeated until all needed inputs are given by the data
the user knows to have and which can be used as input for the service composition.

In summary semi-automated service composition has to be evaluated as a useful step to ease the
composition of services in general. However it does not provide any solution for the dynamics

12

of a web service world, since the service compositions are always driven by the human modeller.
Regarding the adaptability of service compositions towards changes of the world the human factor
is a bottle-neck, which rises the costs of individual service compositions. Therefore semi-automated
composition of services is restricted to a relative stable and predictable domains with well defined
providers and services. An automated ad-hoc integration of new or improved services into business,
which is a key enabler for a service market, is not feasible.

3.2. Full-automated Composition of Services

Full-automated composition of services is necessary to exploit the whole potential of services. An
ideal full-automated composition of services limits the task of a human to the specification of a initial
state and a goal including optimisation criteria. Ideally it is the task of the system to find a proper
service composition to meet the goal specified in the user request. Since an ideal full-automated
composition of services removes the human factor as a bottle-neck, an on-demand composition for
(in extreme case) each business case is possible. This also means, that each business case will
automatically be adapted to the current state of the service world, reducing the probability of failure
and potentially rising the efficiency by incorporating new, more efficient services into the business.

The initial state is a description of the given data or at least data-types as well as relevant world
states in relation to the domain ontology. The initial state could be for example the information, that
the user know the name of a person, which is coded in a record consisting of two strings, the first and
the last name. Furthermore the request for service composition contains also a goal specifying what
the result of the service composition should be. For example the goal could be that the user wants as
a result a map with a cross marking the position of the person he knows the name of. It is also useful
to add an optimisation criteria like cost minimisation. Appendix A.4 presents a formalised version
of the above specified user request on basis of the domain ontology enlisted in appendix A.2. It is
then the task of the full-automated service composer to find proper services and to assemble them
to a valid service composition which is able to reach the user specified goal. Figure 9 on page 31 in
the appendix shows exemplary how such a composition of services may look like according to the
previously specified sample request.

Meteor-S is a prototypical platform for execution and enactment of semantic web services and
processes developed by the university of Georgia. It supports the composition of web services, how-
ever their engine is limited to automatic binding of services according to user-defined constraints
[AVMM04]. This means the user has to provide manually an abstract process containing restric-
tions on suitable services for each activity of the process. Prior to enactment of the services, these
abstract processes are transformed to real processes by binding each activity to a real service. Thus
this approach should not be labelled as a full-automated composition of services, it is a reasonable
step towards an adhoc integration of new services into business. The specification of activities by
constraints on services allows the selection of the most optimal service matching the constraints.
However this approach is limited, since the general structure of the process remains untouched. It
is for example not possible to replace two activities by a service which matches the sum of two
constraints instead of each of the constraints alone.

Hierarchical Task Network (HTN) planning is an artificial intelligence (AI) planning method.

13

GetLocation

GetPosition
InMap MakeCrossGetMap

Vodafone
GetLocation

Telekom
GetLocation

LocateBuddy GetPhoneNumber
FromBuddyList

FindProvider

GetLocation GetPosition
InMap

Figure 3.: Sample task definitions for HTN planning. (Source: [Mey04])

Each state of the world is represented by a set of atoms, and each action corresponds to a determin-
istic state transition. However, HTN planners differ from classical AI planners in what they plan
for, and how they plan for it. The objective of an HTN planner is to produce a sequence of actions
that perform some activity or task. The description of a planning domain includes a set of operators
similar to those of classical planning, and also a set of methods describing how to decompose a task
into sub-tasks (smaller tasks). Given a planning domain, the description of a planning problem will
contain an initial state like that of classical planning—but instead of a goal formula, the problem
specification will contain a partially ordered set of tasks to accomplish. Planning proceeds by using
the methods to decompose tasks recursively into smaller and smaller sub-tasks, until the planner
reaches primitive tasks that can be performed directly using the planning operators. For each non-
primitive task, the planner chooses an applicable method, instantiates it to decompose the task into
sub-tasks, and then chooses and instantiates methods to decompose the sub-tasks even further. If
the plan later turns out to be infeasible, the planning system will need to backtrack and try other
methods. [NAI+03]

Figure 3 shows an example for HTN task definitions. This definition consist of three tasks namely
LocateBuddy, GetLocation and GetPositionInMap which are composed of several other tasks. On
basis of this task definitions the possible result of a HTN planning is presented by figure 4. The initial
state consist only of the task LocateBuddy. During the HTN planning this initial tasks is decomposed
into smaller tasks until the lowest possible decomposition level is reached. This example shows also
the limitations of the HTN planning method. Since tasks are manually defined as compositions out
of other tasks the benefits of HTN planning in comparison to manual composition of an execution

14

LocateBuddy GetPhoneNumber
FromBuddyList GetLocation GetPosition

InMap

GetPhoneNumber
FromBuddyList

GetPosition
InMap

Vodafone
GetLocation

Telekom
GetLocation

FindProvider

GetPhoneNumber
FromBuddyList GetMap

Vodafone
GetLocation

Telekom
GetLocation

FindProvider MakeCross

Figure 4.: HTN planning on task definitions from figure 3. (Source: [Mey04])

plan is low.
SIRIN ET AL. presents in [SPW+04] a prototypical implementation of a service composer which

bases on the HTN-planner SHOP2 [NAI+03]. The prototype transforms atomic services described
in OWL-S into primitive HTN-tasks and composed services also described in OWL-S into non-
primitive HTN-tasks. As user request an initial state and a partially ordered set of services has to be
provided instead of the goal of the user. This means the user has to compose the needed services on
a high level on his own. If the services in the user request are assembled out of other services then
they are decomposed by the prototype into atomic services. This decomposition will be optimised
according to a given optimisation rule in case several different decompositions are possible. This
approach is more powerful than the Meteor-S prototype, since it can handle a replacement of two
atomic activities by a superseding atomic activity. However like the Meteor-S approach the proto-
type presented by SIRIN ET AL. is very limited according it’s composition power since it heavily
relies on given human modelled service compositions. But this limitation in power has naturally a
positive effect on composition complexity, making HTN-planning relatively fast in comparison to
the forthcoming approaches.

Classical AI planning methods and especially their successors are a good fundament for full-
automated service composition. Classical methods represent the planning domain as a deterministic
state-transition system. In such approaches services are represented as transitions which change the
state of the world. An initial state as well as the goal are represented by states within the state-
transition system. Planning methods try to find a path of transitions—a service composition—from
the initial state to the goal state [NM02, GNT04]. This proceeding reduces the planning problem to a
search problem on states and transitions. MARTÍNEZ and LESPÉRANCE present in [ML04] a proto-
typical implementation of such a planner. The user can specify initial states and goals by using a log-
ical language. After planning, the service composer returns a service composition which is capable
of meeting the specified goal. This approach assume a deterministic behaviour of the services, which
is a quite a limiting assumption for some real world domains. In [Mey04] MEYER presents an com-

15

position prototype, which indeed bases on a classical planning by state search. However the search
algorithms has been extended in a way making it capable to deal with uncertain, non-deterministic
results of services. The service composer is able to handle uncertainties by incorporating XOR-splits
into the service composition. Further a graphical visualisation component for service compositions
using graphical process representation is provided with the composer. PISTORE ET AL. present in
[PBB+04] a different approach basing on planning as model checking. The main advantages of their
approach are the consideration of non-determinism. This means the planner cannot foresee the ac-
tual interaction that will take place with external services and it cannot foresee the result of a service
execution. However the planner relies on information about possible interactions and results of a
service. Another interesting advantage are extended goals. Since model checking approaches work
with temporal logic, it is possible to specify goal constraints which have to be met the whole time
during the enactment of a service composition and not only at the end.

As recapitulation it has to be stated that current approaches towards full-automated service com-
position are in a immature state. While the fundamental algorithms are already known and well
documented in AI books like [GNT04] there is a significant lack of matured application of these
algorithms in the domain of services. Especially user-friendly methods for the specification of initial
states, goals and service capabilities are missing. Furthermore the service composers are prototypical
implementations not ready for a daily use. The reasons for this evaluation are missing robustness and
composition power for real world scenarios as well performance issues due to missing optimisations
towards the application domain.

Since full-automated service composition is essential for the exploration of the full potential of
services further research on service composers is indispensable. A further area of application of
full-automated service composers is presented in [SW03] and in more detail in [GMM+05]. It is
proposed to use service composers not only for the creation of initial service compositions but also
for exception handling by re-planning of service compositions which are in enactment. In case a
service fails and this failure is not explicitly recovered by the service composition, the enactment of
the composition has to be halted and the not-enacted part of the composition is re-planned in order
to reach to user specified goal anyway. This is possible by retaining the goal and incorporating the
results of all executed and failed services into the initial state of the user request. The application of
such a strategy has the advantage of high self-adaptability according to changes in the web service
world and that the service composer may create optimistic service compositions without trying to
handle all possible failures in a composition. This make the compositions more concise and the
planning less resource intensive.

16

4. Conclusion and Outlook

This survey presented an overview on the relationship of service composition and workflows and
on methods for service composition ranging from a manual, semi- and full-automated composition
to enable an evaluation. It can be concluded that tools for service composition are in a immature
state and that there is still much research to do before service composition can be used easily and
conveniently in real world scenarios. Reasons are the seriousness of the matter and the lack of
widely used and elaborated formal and semantic service specifications and languages. Furthermore
the term (automated) service composition is used differently by varying groups, making discussion
and comparison not easy.

However the potential of automated services composition for the exploration of benefits of service
oriented architectures is clear. For this reason further research in methods for service composition
and re-composition, languages for semantic service specification and description of compositions is
an imperative.

17

A. Service Composition Sample

This appendix denotes how a simplified service specification ontology, domain ontology and seman-
tic service specifications may look like by using a coherent example. Furthermore the appearance
of user requests is shown as well as the automated proceedings for composition and matchmaking
of services are sketched. As formal, logical language the F-Logic [KLW95] dialect Flora-2/XSB1

is used; for didactic reasons the usage of a simple and well known language for explanation of the
sample scenario is more reasonable than the usage of the relatively new and still moving languages
like OWL [MvH04] or WSML [dB05].

A.1. Service Specification Ontology

These service specification ontology describes concepts of the service domain. This are for example
concepts like service, user requests and properties. In our example blow, the service specification on-
tology also includes descriptions on basic and enhanced data types like boolean or string and record
or enumeration. Furthermore the ontology includes some validation rules to allow the syntactical
validation of domain ontologies and service specifications.

// *****************************
// * Filename: asgOntology.flr *
// *****************************

// Validiation Constructs
// ==
// This ontology defines validation constructs to ensure valid specifications.
// Due to it is not possible to raise custom exceptions on insertion in Flora/XSB
// invalid specifications have to be queried manually after insertion by
// the following query (X is the object to validate, R is the reason for invalidity):
//
// X[], invalid(X, R).

// By default all objects are invalid if no valid statement is defined for them.
invalid(X, R) :- \+ valid(X), R = "1a not valid by default".

// The idea is that the "valid(X)" statement defines that an object X is valid
// in all cases for which no specific "invalid(X, R)" is defined.

// Classes
// ==
// Instances of class represent classes in the sense of the object oriented concept
class[].

// "class" itself is valid. Further, all subclasses if "class" are valid too.
valid(class).
valid(X) :- X::class.

1http://flora.sourceforge.net

18

// All subclasses of a class which is an instance of "class" are also instances of the
// concept "class":
Subclass:class :- Subclass::Superclass, Superclass:class.

// Overloading of attributes while inheriting from a class is allowed, but the type of
// the attribute
// of the subclass has to be the same or a subtype to the type of the superclass.
invalid(X, R) :- X:class, X::SupX, X[A *=> T], SupX[A *=> SupT], \+ T = SupT,

\+ T::SupT, R = "1b type mismatch in attribute overloading".

// Unfortunately Flora/XSB shows all defines types for overloaded attributes.
// The following query finds the most restricted type of the overloaded attribute
// for a class named "xxx".
// _C = xxx, _C[A *=> T], lowestType(_C, A, T).
lowestType(C, A, T) :- C[A *=> T], C[A *=> SubT], \+ SubT = T, \+ SubT::T.
lowestType(C, A, T) :- C[A *=> T], \+ otherTypeExists(C, A, T).
otherTypeExists(C, A, T) :- C[A *=> T2], \+ T2 = T.

// All instances of class are invalid if they have an attribute which is not an instance of "class":
valid(X) :- X:class.
invalid(X, R) :- X:class, X[_ *=> T], \+ T:class, \+ T::class,

R = "2a attribute type not instance or subclass of class".
invalid(X, R) :- X:class, X[_ => T], \+ T:class, \+ T::class,

R = "2b attribute type not instance or subclass of class".
invalid(X, R) :- X:class, X[_ *=>> T], \+ T:class, \+ T::class,

R = "2c attribute type not instance or subclass of class".
invalid(X, R) :- X:class, X[_ =>> T], \+ T:class, \+ T::class,

R = "2d attribute type not instance or subclass of class".

// All instances of classes are invalid if they have attribute values which have a type
// which is not matching the class definition.
valid(X) :- X:C, C:class.
invalid(X, R) :- X:C, C:class, C[A *=> T], X[A -> V], \+ V:T,

R = "3a attribute value has wrong type".
invalid(X, R) :- X:C, C:class, C[A => T], X[A -> V], \+ V:T,

R = "3b attribute value has wrong type".
invalid(X, R) :- X:C, C:class, C[A *=>> T], X[A -> V], \+ V:T,

R = "3c attribute value has wrong type".
invalid(X, R) :- X:C, C:class, C[A =>> T], X[A -> V], \+ V:T,

R = "3d attribute value has wrong type".

// Hint: The current ontology does not enforce to set all attributes with values.
// So it is possible that some attribute values of class instances are not set.

// The "reification" is a special class which is used for the representation of
// logical expressions
// in F-Logic using the ${...} construct. These expressions are used for the
// specification of
// preconditions and effects of services.
reification:class.

// Relations
// ==
// Relations are a special concept used to specify a relation between two classes
relation[].

// Relations and all instances of them are valid.
valid(relation).
valid(X) :- X:relation.

// Grounded classes
// ==
// Grounded classes are classes which are representable in Java and XML, and which
// can be instantiated in Java and XML.

19

// Grounded classes are a special case of "class".
groundedClass::class[javaType *=> string,

xmlType *=> string].

// "any" is a special class which is a superclass to all grounded classes.
// it should be only used within the ontology.
any:class.
Class::any :- Class:groundedClass.

// All subclasses of a class which is a grounded class are also grounded classes:
Subclass:groundedClass :- Subclass::Class, Class:groundedClass.

// These are the basic/atomic grounded types supperted by the ASG platform:
boolean:groundedClass[javaType -> "boolean":string,

xmlType -> "xsd:boolean":string].
ordinal:groundedClass[javaType -> "long":string,

xmlType -> "xsd:long":string].
float:groundedClass [javaType -> "float":string,

xmlType -> "xsd:float":string].
string:groundedClass [javaType -> "java.lang.String":string,

xmlType -> "xsd:string":string].
binary:groundedClass [javaType -> "byte[]":string,

xmlType -> "xsd:base64Binary":string].

// For convenience reasons Flora/XSB integers are mapped to ASG ordinals:
X:ordinal :- X:integer.

// A Record is a special case of a grounded class with an customized attribute/type definition.
// The types of the attributes have to be classes which are instances of groundedClass.
record::groundedClass.

// All records are represented in Java by "org.w3c.dom.Element" and in XML by an XML document fragment:
R[javaType -> "org.w3c.dom.Element":string] :- R:record.
R[xmlType -> "XML document fragment":string] :- R:record.

// All attribute types of a record have to be a grounded class.
invalid(X, R) :- X:record, X[_ => T], \+ T:groundedClass,

R = "6a attribute types must be member of groundedClass".
invalid(X, R) :- X:record, X[_ *=> T], \+ T:groundedClass,

R = "6b attribute types must be member of groundedClass".
invalid(X, R) :- X:record, X[_ =>> T], \+ T:groundedClass,

R = "6c attribute types must be member of groundedClass".
invalid(X, R) :- X:record, X[_ *=>> T], \+ T:groundedClass,

R = "6d attribute types must be member of groundedClass".

// Only single, inheriable attributes (*=>) are allowed for grounded classes!
invalid(X, R) :- X:record, X[_ =>> _], R = "6e =>> not allowed in record definitions".
invalid(X, R) :- X:record, X[_ *=>> _], R = "6f *=>> not allowed in record definitions".

// Restrictions are restricted types like enumerations or ranges which define restrictions on
// basic/atomic types/classes.
restriction::groundedClass[type *=> groundedClass].

// Enumerations are created by: _#:enumeration[type -> GROUNDEDCLASS, values ->> {V1, V2,...}].
enumeration::restriction[values *=>> any].
Enum[javaType -> JavaType] :- Enum[type -> Type], Type[javaType -> JavaType].
Enum[xmlType -> XmlType] :- Enum[type -> Type], Type[xmlType -> XmlType].
Enum::Type :- Enum:enumeration, Enum[type -> Type].
V:Enum :- Enum:enumeration, Enum[values ->> V], V:T, Enum[type -> T].

// Some constraints on enumerations:
invalid(X, R) :- X:Enum, Enum:enumeration, \+ Enum[values ->> X],

R = "4a value not part of enumeration".
invalid(X, R) :- X:enumeration, X[type -> T], X[values ->> V], \+ V:T,

R = "4b enumeration type and value are not matching".

20

invalid(X, R) :- X:enumeration, \+ (X[type -> string]; X[type -> ordinal]; X[type -> float]),
R = "4c enums have to be string, ordinal or float".

// Ranges are created by: _#:range[type -> GROUNDEDCLASS, minimum -> V1, maximum -> V2].
range::restriction[minimum *=> any,

maximum *=> any].
Range[javaType -> JavaType] :- Range[type -> Type], Type[javaType -> JavaType].
Range[xmlType -> XmlType] :- Range[type -> Type], Type[xmlType -> XmlType].
Range::Type :- Range:range, Range[type -> Type].
V:Range :- V:float, Range[minimum -> Min], Range[maximum -> Max],

V >= Min, V =< Max, V:T, Range[type -> T].
V:Range :- V:ordnial, Range[minimum -> Min], Range[maximum -> Max],

V >= Min, V =< Max, V:T, Range[type -> T].

// Some constraints on ranges:
invalid(X, R) :- X:range, X[type -> T], X[minimum -> V], \+ V:T,

R = "5a minimum has wrong type".
invalid(X, R) :- X:range, X[type -> T], X[maximum -> V], \+ V:T,

R = "5b maximum has wrong type".
invalid(X, R) :- X:range, \+ (X[type -> ordinal]; X[type -> float]),

R = "5c ranges have to be ordinal or float".
invalid(X, R) :- X:Range, Range:range, Range[minimum -> V], X < V,

R = "5d value smaller than range minimum".
invalid(X, R) :- X:Range, Range:range, Range[maximum -> V], X > V,

R = "5e value bigger than range maximum".

// Definition of service related concepts
// ==

// Parameters are special classes which are used to mark variables as input or output
// variables of a service. All variables which are marked as parameters in preconditions
// are input variables. All variables marked as parameters in positive effects are
// output variables of the service.
parameter:class.

// The hasValue relation is used to specify possible values of variables.
hasValue(_Variable, _Value):relation :- true.

// A Semantic Service Specification consists of at least one condition.
semanticServiceSpecification:class[conditions *=>> condition].

// Conditions consists of preconditions, (positive/negative) effects and queries.
// They are used to describe the possible
// different effects of a service according to a given precondition.
// Transformation of strings to reifications at run-time is not supported by Flora/XSB,
// so we have to store both variants of all
// precondition, positive/negative effects and queries.
// Conditions which are marked as exceptions are not used during normal planning, but
// they play a role in re-planning.
condition:class[precondR *=> reification,

precondS *=> string,
posEffR *=> reification,
posEffS *=> string,
posQueryR *=> reification,
posQueryS *=> string,
negEffR *=> reification,
negEffS *=> string,
negQueryR *=> reification,
negQueryS *=> string,
isException *=> boolean].

// Two conditions are equivalent if their reification and isException attributes are matching:
equivalentAttr(X, Y, A) :- X:condition, X[A -> P1], Y[A -> P2], P1 = P2.
equivalentAttr(X, Y, A) :- X:condition, \+ X[A -> _], \+ Y[A -> _].

21

equivalent(X, Y) :- equivalentAttr(X, Y, precondR),
equivalentAttr(X, Y, posEffR),
equivalentAttr(X, Y, posQueryR),
equivalentAttr(X, Y, negEffR),
equivalentAttr(X, Y, negQueryR),
equivalentAttr(X, Y, isException).

// oSP (=ordinalStringPair) is a tuple consisting of an ordinal and a string.
oSP:record[ord *=> ordinal,

str *=> string].

// Service Grounding Specification holds all information which are needed to invoke
// the implementation of the service using C-5 interfaces
serviceGroundingSpecification:class[serviceImplRef *=> string,

operationName *=> string,
inParamSeq *=>> oSP,
outParamSeq *=>> oSP].

// Instances of provider represent the providers of services.
provider:record[name *=> string].

// provider names have to be unique
invalid(X, R) :- X:provider, X[name -> N], Y:provider, Y[name -> N], \+ X = Y,

R = "7a provider names have to be unique".

// Service property specifications types are special types of a record used for the specifications
// of static properties of services. Instances of those types are used to represent the results
// of negotiation, dynamic properties of services.
servicePropType::record.

// serviceProperties defines a minumum set of properties which have to be supported by a service.
serviceProperties:servicePropType[serviceName *=> string,

providerName *=> string].

// All subclasses of serviceProperties are also an instance of servicePropType.
P:servicePropType :- P::serviceProperties.

// Only subclasses of serviceProperties are valid values for servicePropType:
invalid(X, R) :- X:servicePropType, \+ X = serviceProperties, \+ X::serviceProperties,

R = "7b only subclasses of serviceProperties are valid values for servicePropType".

// Services consist of one or more specifications, an implementation reference
// and a property definition.
service:class[spec *=> semanticServiceSpecification].

// Composed Service
composedService::service[bpelRef *=> string].

// Atomic Service
atomicService::service[grounding *=> serviceGroundingSpecification,

properties *=> servicePropType].

// A user request consits of an initial state, a goal and a property
// definitions which is used as an constraint for planning an negotiation.
userRequest:class[initialStateR *=> reification,

initialStateS *=> string,
goalR *=> reification,
goalS *=> string,
propertyConstr *=> servicePropType,
optCriteria *=>> oSP].

// Query for executable services with new effects: (should be maybe extended
// by negative Effects in the future)
// Service[spec -> Spec], Spec[conditions ->> Cond], Cond[precondR -> Prec],

22

// Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

A.2. Domain Ontology

The domain ontology defines the concepts used in a concrete application scenario. For example the
concept of phone numbers in a the telecommunication scenario presented here.
// ********************************
// * Filename: domainOntology.flr *
// ********************************

// Include ASG-Ontology.
?- flAdd asgOntology.

// Definition of domain specific classes/records
// ==

// A phone provider is a special case of a provider.
phoneProvider::provider.

// A phone number is a special string.
phoneNumber::string.

// Coordinates used for location based services.
coordinate:record[longitude *=> float,

latitude *=> float].

// A person has a name and a phone number:
person:record[name *=> string,

phoneNumber *=> phoneNumber].

// Maps are rectangular images of regions:
map:record[image *=> binary,

upperLeft *=> coordinate,
lowerRight *=> coordinate].

// Within our domain we support also cost and payment service properties.
// All service property definitions have inherit from minServProps.

minServProps::serviceProperties[cost *=> float,
payment *=> paymentType:enumeration[type -> string,
values ->> {"CreditCard":string, "EC":string, "none":string}]].

// For convenience reason we define some often used service property types.
zeroCostType:range[type -> float, minimum -> 0.0, maximum -> 0.0].
noPaymentType::paymentType[type -> string, values ->> {"none":string}].

// Definition of domain specific relationships and rules
// ==
// Maps may have a cross at a specific coordinate:
hasCross(map, coordinate):relation.

// Some phone numbers habe a known provider.
providerOf(phoneNumber, phoneProvider):relation.

// phone numbers and persons may be located at a specific coordinate.
coordinateOf(phoneNumber, coordinate):relation.
coordinateOf(person, coordinate):relation.

// If the coordinate of a phone number is known, then it is assumed that the owner
// of the phone number is located at the same coordinates.
coordinateOf(X, C) :- X[phoneNumber -> P], P:phoneNumber, coordinateOf(P, C).

23

// Definition of domain specific objects/instances
// ==
telco:phoneProvider[name -> "Telco":string].
vfone:phoneProvider[name -> "Vfone":string].
hpi:provider[name -> "HPI":string].
falk:provider[name -> "Falk":string].

A.3. Service Specifications

The following code sniplets specify the semantics of various services of our scenario.

fpn:atomicService[
spec -> fpnSpec:semanticServiceSpecification[

conditions ->> fpnCond:condition[
precondR -> ${N:string, N:parameter, X:person, X[name->N]}:reification,
precondS -> "N:string, N:parameter, X:person, X[name->N]":string,
posEffR -> ${P:phoneNumber, P:parameter, X[phoneNumber->P]}:reification,
posEffS -> "P:phoneNumber, P:parameter, X[phoneNumber->P]":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "fpnRef":string,
operationName -> "doIt":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "N":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "P":string]}],

properties -> fpnProps::minServProps[
serviceName *=> fpnSNType:enumeration[type -> string,

values ->> {"findPhoneNumber":string}],
providerName *=> fpnPNType:enumeration[type -> string,

values ->> {"HPI":string}],
cost *=> zeroCostType,
payment *=> noPaymentType]].

This service describes the findPhoneNumber service, which is provided by the Provider HPI. This
service takes a string, which is assigned to the variable N, as input parameter and it delivers a pho-
neNumber as output parameter, which is assigned to the variable P. For the specification of precon-
ditions and effects we need further the variable X of type person. This variable no direct relation
with the service implementation, it is just needed for the a formal semantic specification. The pre-
condition of the service is fulfilled if the input parameter N is a name of a person (X[name->N]).
The effect of the service execution is, that a phoneNumber is returned by the service, which belongs
to the person X (X[phoneNumber->P]).

Hint: The service object defined above is identified by fpn. The identification string is not of
interest, because the real name of the service is stored in the static property name of the service. In
an full-fledged implementation the object identification strings should be generated automatically.

fpp:atomicService[
spec -> fppSpec:semanticServiceSpecification[

conditions ->> fppCond:condition[
precondR -> ${P:phoneNumber, P:parameter}:reification,
precondS -> "P:phoneNumber, P:parameter":string,
posEffR -> ${N:string, N:parameter, QueryX:phoneProvider[name->N],

providerOf(QueryX, P)}:reification,
posEffS -> "N:string, N:parameter, QueryX:phoneProvider[name->N],

providerOf(QueryX, P)":string,
posQueryR -> ${QueryX:phoneProvider}:reification,
posQueryS -> "QueryX:phoneProvider":string]],

grounding -> fpnBridge:serviceGroundingSpecification[

24

serviceImplRef -> "telekomRef":string,
operationName -> "fpp":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "P":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "N":string]}],

properties -> fppProps::minServProps[
serviceName *=> fppSNType:enumeration[type -> string,

values ->> {"findPhoneProvider":string}],
providerName *=> fppPNType:enumeration[type -> string,

values ->> {"Telco":string}],
cost *=> fppCostType:range[type -> float, minimum -> 1.0, maximum -> 3.0],
payment *=> fppPayType::paymentType[type -> string,

values ->> {"CreditCard":string}]]].

gpn:atomicService[
spec -> gpnSpec:semanticServiceSpecification[

conditions ->> gpnCond:condition[
precondR -> ${P:phoneNumber, P:parameter}:reification,
precondS -> "P:phoneNumber, P:parameter":string,
posEffR -> ${N:string, N:parameter, QueryX:phoneProvider[name->N],

providerOf(QueryX, P)}:reification,
posEffS -> "N:string, N:parameter, QueryX:phoneProvider[name->N],

providerOf(QueryX, P)":string,
posQueryR -> ${QueryX:phoneProvider}:reification,
posQueryS -> "QueryX:phoneProvider":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "vodafoneRef":string,
operationName -> "gpn":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "P":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "N":string]}],

properties -> gpnProps::minServProps[
serviceName *=> gpnSNType:enumeration[type -> string,

values ->> {"getProviderName":string}],
providerName *=> gpnPNType:enumeration[type -> string, values ->> {"Vfone":string}],
cost *=> gpnCostType:range[type -> float, minimum -> 2.0, maximum -> 4.0],
payment *=> gpnPayType::paymentType[type -> string, values ->> {"EC":string}]]].

The precondition of both services is that the required input parameter (phone umber P) is delivered.
The costs of the service execution is not fixed for boths services (for example it may depends on the
load). It has to be negotiated at runtime. Nevertheless static properties for costs are given to define
the range of possible values. In case of the findPhoneProvider service the costs are known to be
between 1 and 3 and in case of the getProviderName service the costs are between 2 and 4.

Having a closer look at both services we see, that both services are semantically identical. They
have equivalent service specifications. This means: both services have the same input, output, pre-
conditions and effects. This phenomenon is called synonymy. Usually most programmers and sys-
tem designers try to avoid such a situation by giving semantically identical services the same name.
But practical experience shows, that this proceeding can not be keept up if a larger amount of part-
ners are involved into a project for a longer time period. For this reason a semantic service platform
should be able to deal with such situations.

gpl1:atomicService[
spec -> gpl1Spec:semanticServiceSpecification[

conditions ->> gpl1Cond:condition[
precondR -> ${P:phoneNumber, P:parameter, providerOf(Q, P), Q[name -> "Telco"]}:reification,
precondS -> "P:phoneNumber, P:parameter, providerOf(Q, P), Q[name -> ""Telco""]":string,
posEffR -> ${C:coordinate, C:parameter, coordinateOf(P, C)}:reification,
posEffS -> "C:coordinate, C:parameter, coordinateOf(P, C)":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "telekomRef":string,

25

operationName -> "gpl":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "P":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "C":string]}],

properties -> gpl1Props::minServProps[
serviceName *=> gpl1SNType:enumeration[type -> string,

values ->> {"getPhoneLocation":string}],
providerName *=> gpl1PNType:enumeration[type -> string,

values ->> {"Telco":string}],
cost *=> gpl1CostType:range[type -> float, minimum -> 10.0, maximum -> 10.0],
payment *=> gpl1PayType::paymentType[type -> string,

values ->> {"CreditCard":string}]]].

gpl2:atomicService[
spec -> gpl2Spec:semanticServiceSpecification[

conditions ->> gpl2Cond:condition[
precondR -> ${P:phoneNumber, P:parameter, providerOf(Q, P), Q[name -> "Vfone"]}:reification,
precondS -> "P:phoneNumber, P:parameter, providerOf(Q, P), Q[name -> ""Vfone""]":string,
posEffR -> ${C:coordinate, C:parameter, coordinateOf(P, C)}:reification,
posEffS -> "C:coordinate, C:parameter, coordinateOf(P, C)":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "vodafoneRef":string,
operationName -> "gpl":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "P":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "C":string]}],

properties -> gpl2Props::minServProps[
serviceName *=> gpl2SNType:enumeration[type -> string,

values ->> {"getPhoneLocation":string}],
providerName *=> gpl2PNType:enumeration[type -> string,

values ->> {"Vfone":string}],
cost *=> gpl2CostType:range[type -> float, minimum -> 10.0, maximum -> 10.0],
payment *=> gpl2PayType::paymentType[type -> string, values ->> {"EC":string}]]].

The two services above have a slightly different semantic (the first one works only for phone numbers
provided by Telco and the second one only for phone numbers provided by Vfone). Both services
have been assigned the same name. This phenomenon is called homonymy (or to be more exact
homography). Like synonymy this phenomenon appears when serveral people from different areas
are working together on a huge system. For this reason our ASG-system should be able to deal with
such situations. The costs of service execution is for both services exactly 10, independently from
any run-time aspects.

gm:atomicService[
spec -> gmSpec:semanticServiceSpecification[

conditions ->> gmCond:condition[
precondR -> ${C:coordinate, C:parameter}:reification,
precondS -> "C:coordinate, C:parameter":string,
posEffR -> ${M:map, M:parameter}:reification,
posEffS -> "M:map, M:parameter":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "falksRef":string,
operationName -> "getMap":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "C":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "M":string]}],

properties -> gmProps::minServProps[
serviceName *=> gmSNType:enumeration[type -> string, values ->> {"getMap":string}],
providerName *=> gmPNType:enumeration[type -> string, values ->> {"Falk":string}],
cost *=> gmCostType:range[type -> float, minimum -> 15.0, maximum -> 15.0],
payment *=> gmPayType::paymentType[type -> string,

values ->> {"CreditCard":string, "EC":string}]]].

mc:atomicService[
spec -> mcSpec:semanticServiceSpecification[

26

conditions ->> mcCond:condition[
precondR -> ${M1:map, M1:parameter, C:coordinate, C:parameter}:reification,
precondS -> "M1:map, M1:parameter, C:coordinate, C:parameter":string,
posEffR -> ${M2:map, M2:parameter, hasCross(M2, C)}:reification,
posEffS -> "M2:map, M2:parameter, hasCross(M2, C)":string]],

grounding -> fpnBridge:serviceGroundingSpecification[
serviceImplRef -> "falksRef":string,
operationName -> "makeCross":string,
inParamSeq ->> {_#:oSP[ord -> 1, str -> "M1":string],

_#:oSP[ord -> 2, str -> "C":string]},
outParamSeq ->> {_#:oSP[ord -> 1, str -> "M2":string]}],

properties -> gmProps::minServProps[serviceName *=> gmSNType:enumeration[
type -> string, values ->> {"makeCross":string}],
providerName *=> gmPNType:enumeration[

type -> string, values ->> {"Falk":string}],
cost *=> zeroCostType,
payment *=> noPaymentType]].

The last two definitions specify a service providing a map and a service which is able to make a
cross on a map at an arbitrary position.

A.4. User Request

In this scenario we presume that a user wants to find his buddy, and that there is no composed service
stored in the system to solve this problem. To allow an automated service composition, the request
of the user has to be specified in a formal manner:

ur:userRequest[initialStateR -> {N:string, N:parameter, hasValue(N, "Dominik Kuropka"),
X:person, X[name->N]}:reification,

initialStateS -> "N:string, N:parameter, hasValue(N, ""Dominik Kuropka""),
X:person, X[name->N]":string,

goalR -> {M:map, M:parameter, C:coordinate, coordinateOf(X, C),
hasCross(M, C)}:reification,

goalS -> "M:map, M:parameter, C:coordinate, coordinateOf(X, C),
hasCross(M, C)":string,

propertyContr -> minServProps,
optCriteria -> _#:oSP[ord -> 1, str -> "min(cost)"]].

This formal specification is equal to the following natural language problem specification: "I (the
user) know a name N of a person. The name is "Dominik Kuropka". This is the initial state of the
problem. My problem is solved if I have reached a state, in which the coordinates C of the person
N are known and I get a map M having a cross at those coordinates C." Further the selected services
have to ensure the property constraint. Because minServProps is the most general class of properties,
in fact no constraint is specified in this case.

Before service composition can start the ontologies and service specifications have to be loaded
and the initial state has to be transformed into a valid Flora/XSB insert statement. Besides wrapping
the initial state inside an insert statement the variables like the name N have to be replaced by objects
like urN (stands for variable N of the user request). The initial state has to be stored in the Flora
reasoning engine by the use of the following commands:

flora2 ?- [serviceSpecifications].
flora2 ?- insert{urN:string, urN:parameter, hasValue(urN, "Dominik Kuropka"),

urX:person, urX[name->urN]}.

27

prec: N:string, N:parameter,
 X:person, X[name->N]
posEff: P:phoneNumber, P:parameter,
 X[phoneNumber->P]

Figure 5.: Composition after first step.

A.5. Sketch of full-automated Service Composition

The composition is stated by querying the executable services in a given state. The generic Flora
query and the given result is presented next:

flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond], Cond[precondR -> Prec],
Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

Service = fpn
Prec = (${urN:string}, (${urN:parameter}, (${urX:person}, ${urX[name -> urN]})))

The above query states, that we are looking for a service with a service specification, that has pre-
conditions which are fulfilled and effects which are not fulfilled in the actual state. The result for the
initial state is only the findPhoneNumber service. Further the result tells us which variables (in this
case urN) are assigned to the parameters. The next step is the virtual execution of the found service.
This means the state has to be adjusted according to the service’s effects:

flora2 ?- insert{fpnP:phoneNumber, fpnP:parameter, urX[phoneNumber->fpnP]}.

As for the initial state the variables inside the service’s effects must be replaced by concrete objects
(sample: fpnP stands for the variable P of the service with the object identifier fpn). Therefore a new
phoneNumber object fpnP is added to the reasoners database. The phoneNumber object is assigned
to the person as its phone number. Figure 5 shows the state of the composition after this first step.

Again the executable services must be found. The already presented query for this task will be
used again, resulting in the following list of execuitable services:

flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond],
Cond[precondR -> Prec], Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

Service = fpp
Prec = (${fpnP:phoneNumber}, ${fpnP:parameter})

Service = gpn
Prec = (${fpnP:phoneNumber}, ${fpnP:parameter})

As stated in the service specification both services are synonymous. This can be shown using the
equivalent(X,Y) rule. It returns yes if the service specifications X and Y are equivalent (the
service specifications have to have equivalent preconditions and effects):

flora2 ?- fpp[spec ->> S1], gpn[spec ->> S2], equivalent(S1,S2).

Yes

Because both services are equivalent, the decision which service is used, should be done during run-
time through negotiation. For this reason the services are merged in the composed service. As it is

28

Prec: N:string, N:parameter,
 X:person, X[name->N]
posEff: P:phoneNumber, P:parameter,
 X[phoneNumber->P]

Prec: P:phoneNumber, P:parameter
posEff: N:string, N:parameter,
 QueryX:phoneProvider[name
 ->N], providerOf(QueryX, P)
posEffQ: QueryX:phoneProvider

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

P: phoneNumber

Figure 6.: Composition after second step.

shown in figure 6, a service specification is inserted into the service composition that is equivalent
to both service specifications.

The merged service has to be be virtually executed:
insert{fppgpnN:string, fppgpnN:parameter, QueryX:phoneProvider[name->fppgpnN],

providerOf(QueryX, fpnP) | QueryX:phoneProvider}.

The service has more than one possible effects. The provider could be either Telco or Vfone. Actually
the above query is not correct regarding all details. It inserts both possible effects into the state. To
work correctly the planer has to work with two different states from now on. This is not displayed
here because the result of both approaches are the same in this special case. Again the executable
services for the (two merged) states have to be queried:
flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond],

Cond[precondR -> Prec], Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

Service = gpl1
Prec = (${fpnP:phoneNumber}, (${fpnP:parameter}, (${providerOf(telco, fpnP)},

${telco[name -> "Telco"]})))

Service = gpl2
Prec = (${fpnP:phoneNumber}, (${fpnP:parameter}, (${providerOf(vfone, fpnP)},

${vfone[name -> "Vfone"]})))

One service is executable in each of the possible states. If the provider of the phone numer is Telco
then the service gpl1 is executable. If the provider is vfone the service gpl2 is executable. Because
the location has to be found, one of the services has to be executed alternatively. We have to add the
effects of both services. This is unproblematic here as both services have the same effect. For this
reason only one insert statement is necessary:
flora2 ?- insert{gplC:coordinate, gplC:parameter, coordinateOf(fpnP, gplC)}.

Because two services have been selected, both must be added to the composition as shown in figure 7.
This effects that a new coordinate object exists and this new coordinate object is the coordinate of

the given phoneNumber. According to the world rules a person has the same location as its phone.
Now the location of the person and its phone are known and we have to request a map. Lets see if
the reasoner thinks the same:

29

Prec: N:string, N:parameter,
 X:person, X[name->N]
posEff: P:phoneNumber, P:parameter,
 X[phoneNumber->P]

Prec: P:phoneNumber, P:parameter
posEff: N:string, N:parameter,
 QueryX:phoneProvider[name
 ->N], providerOf(QueryX, P)
posEffQ: QueryX:phoneProvider

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Telekom"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Vodafone"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Telekom

Vodafone
!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

P: phoneNumber

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

N: string

N?

Figure 7.: Composition after third step.

flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond],
Cond[precondR -> Prec], Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

Service = gm
Prec = (${gplC:coordinate}, ${gplC:parameter})

Only the getMap service is exectuable at the moment. Therefore it is selected and virtually executed:

insert{gmM:map, gmM:parameter}.

A new map oject is created. The two alternative execution flows for the different location services
are merged as shown in figure 8.

Finally the position in the map has to be marked by a cross. The query retrieves the following
executable services:

flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond],
Cond[precondR -> Prec], Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

Service = mc
Prec = (${gmM:map}, ${gmM:parameter}, (${gplC:coordinate}, ${gplC:parameter})))

Only the makeCross service executable. Its virtual execution looks like this:

insert{mcM2:map, mcM2:parameter, hasCross(mcM2, gplC)}.

The composition including also the last selected service is shown in figure 9. We can test if we can
execute some more services and if the user specified goal is reached:

30

Prec: N:string, N:parameter,
 X:person, X[name->N]
posEff: P:phoneNumber, P:parameter,
 X[phoneNumber->P]

Prec: P:phoneNumber, P:parameter
posEff: N:string, N:parameter,
 QueryX:phoneProvider[name
 ->N], providerOf(QueryX, P)
posEffQ: QueryX:phoneProvider

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Telekom"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Prec: C:coordinate, C:parameter
posEff: M:map, M:parameter

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Vodafone"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Telekom

Vodafone
!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

P: phoneNumber

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

N: string

N?

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

C: coordinate

Figure 8.: Composition after fourth step.

Prec: N:string, N:parameter,
 X:person, X[name->N]
posEff: P:phoneNumber, P:parameter,
 X[phoneNumber->P]

Prec: P:phoneNumber, P:parameter
posEff: N:string, N:parameter,
 QueryX:phoneProvider[name
 ->N], providerOf(QueryX, P)
posEffQ: QueryX:phoneProvider

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Telekom"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Prec: M1:map, M1:parameter,
 C:coordinate, C:parameter"
posEff: M2:map, M2:parameter,
 hasCross(M2, C)

Prec: C:coordinate, C:parameter
posEff: M:map, M:parameter

Prec: P:phoneNumber,
 P: parameter, providerOf(Q,
 P), Q[name -> "Vodafone"
posEff: C:coordinate, C:parameter,
 coordinateOf(P, C)

Telekom

Vodafone
!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

P: phoneNumber

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

N: string

N?

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

C: coordinate

!"#$%&'$()*+$,-+.+/0$1+0 %&23$#"4

$

!"#$#%&' !"#$%&'()*!*+,,-.*/0123"%'**455*6&'()7*6878%98:

;<=58*>*/0?*!"%8*@58A8B)*C8)

!"#"$%&'()# !"#"$%&'()#*$"+($),-*./(+(/$0+#.1")#*$

&()"2*($#3(4$/,$-,#$3"5($"-4$/.+()#$(11()#$

,-$#3($6(72(-)($89,:$,+$;(**"<($89,:$,1$

#3($=+,)(**>$&2#$#3(4$/,$?+,5./($.-1,+@"#.,-$

"&,2#$:3"#$")#.5.#.(*$+(72.+($#,$&($?(+1,+@(/$

"-/A,+$:3"#$#3(4$?+,/2)(B

C+,2?$D"$&,E$"+,2-/$

"$<+,2?$,1$,&'()#*$1,+$

/,)2@(-#"#.,-$

?2+?,*(*F

0$<+,2?.-<$,1$")#.5.#.(*$#3"#$/,(*$-,#$"11()#$

#3($6(72(-)($89,:B$G3($<+,2?.-<$)"-$&($

2*(/$1,+$/,)2@(-#"#.,-$,+$"-"94*.*$

?2+?,*(*B$C+,2?*$)"-$"9*,$&($2*(/$#,$

./(-#.14$#3($")#.5.#.(*$,1$"$/.*#+.&2#(/$

#+"-*")#.,-$#3"#$.*$*3,:-$")+,**$=,,9*B

G(E#$0--,#"#.,-$

D"##")3(/$:.#3$"-$

0**,)."#.,-F

G(E#$0--,#"#.,-*$"+($"$@()3"-.*@$1,+$"$

@,/(9(+$#,$?+,5./($"//.#.,-"9$.-1,+@"#.,-$1,+$

#3($+("/(+$,1$"$H=;I$!."<+"@B

I"@(

!(*)+.?#.5($G(E#$J(+(

M: Map

Figure 9.: Composition after fifth and final step.

31

flora2 ?- Service[spec -> Spec], Spec[conditions ->> Cond],
Cond[precondR -> Prec], Prec, Cond[posEffR -> _PosEff], \+ _PosEff.

No

flora2 ?- M:map, M:parameter, C:coordinate, coordinateOf(X, C), hasCross(M, C).

Yes

Note: In this simple example the planner did not need to do any service selections. In a more
complex example possibly several service with different effects are executable in a given state. The
planner has to select the service that makes the most sense. Further optimisation criteria (like: I want
it as cheap or fast as possible) and static restrictions (like: I want only that services of the provider
X and Y are used) are not taken into account in this scenario.

32

Bibliography

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, and Jo-
hannes Klein et. al. Business process execution language for web services version
1.1. Technical report, BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems,
2003.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint driven
web service composition in meteor-s. In Proceedings of IEEE SCC 2004, 2004.

[BPN04] Business Process Management Initiative. Business Process Modeling Notation
(BPMN) Version 1.0, 2004.

[Bur00] Steve Burbeck. The tao of e-business services — the evolution of web applications
into service-oriented components with web services. Technical report, IBM, 2000.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Ad-
dision Wesley Publishing Company, 1999.

[CS02] Jorge Cardoso and Amit Sheth. Semantic e-workflow composition. Technical report,
LSDIS Lab, Department of Computer Science at the University of Georgia, 2002.

[dB05] Jos de Bruijn, editor. The Web Service Modeling Language WSML, 2005.

[GMM+05] Michal Gajewski, Harald Meyer, Mariusz Momotko, Hilmar Schuschel, and Math-
ias Weske. Dynamic failure recovery of generated workflows. In Proceedings of
the 16th International Conference and Workshop on Database and Expert Systems
Applications, pages 982 – 986. IEEE Computer Society Press, 2005. 1st workshop
on Business Process Monitoring and Performance Management.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Morgan Kaufmann, 2004.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented
and frame-based languages. Journal of ACM, May 1995.

[Kur04] Dominik Kuropka. Modelle zur Repräsentation natürlichsprachlicher Dokumente –
Information-Filtering und -Retrieval mit relationalen Datenbanken. Logos Verlag,
Berlin, 2004.

[Mar04] David Martin, editor. OWL-S: Semantic Markup for Web Services, 2004.

33

[Mey04] Harald Meyer. Entwicklung und realisierung einer planungskomponente für die
komposition von diensten. Master’s thesis, University of Potsdam, 2004.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, 1999.

[ML04] Erick Martínez and Yves Lespérance. Web service composition as a planning
task: Experiments using knowledge-based planning. In Workshop on Planning and
Scheduling for Web and Grid Services in conjunction with ICAPS 2004, Whistler,
Canada, 2004.

[MvH04] Deborah L. McGuinness and Frank van Harmelen, editors. OWL Web Ontology Lan-
guage Overview. Web Ontology Working Group at the World Wide Web Consortium
(W3C), 2004.

[NAI+03] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Okhtay Ilghami, J. William Murdock,
Dan Wu, and Fusun Yaman. Shop2: An htn planning system. Journal of Artificial
Intelligence Research, 20:379–404, 2003.

[NM02] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and automated
composition of web services. In WWW, pages 77–88, 2002.

[OAS02] Organization for the Advancement of Structured Information Standards (OASIS).
UDDI Version 2 Specifications, 2002.

[PBB+04] Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso.
Planning and monitoring web service composition. In Workshop on Planning and
Scheduling for Web and Grid Services in conjunction with ICAPS 2004, Whistler,
Canada, 2004.

[Pet66] Carl Adam Petri. Kommunikation mit automaten. Schriften des IIM, 2, 1966.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[RLK05] Dumitru Roman, Holger Lausen, and Uwe Keller, editors. Web Service Modeling
Ontology (WSMO), 2005.

[RRD04] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteria for dy-
namic changes in workflow systems–—a survey. Data & Knowledge Engineering,
50(1):9–34, 2004.

[SAP97] SAP AG, Walldorf, Germany. WF SAP Business Workflow, 1997.

[Sch00] August-Wilhelm Scheer. ARIS - Business Process Modeling. Springer, 3 edition,
2000.

34

[SHP02] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS 2003, 2002.

[Smi02] Barry Smith. Ontology and information systems, 2002.

[Sof99] Software-Ley GmbH, Pullheim, Germany. COSA 3.0 User Manual, 1999.

[SPW+04] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. Htn planning
for web service composition using shop2. Journal of Web Semantics, 1(4):377–396,
2004.

[Sta00] Staffware plc, Berkshire, United Kingdom. Staffware 2000 / GWD User Manual,
2000.

[SW03] Hilmar Schuschel and Mathias Weske. Integrated workflow planning and coordina-
tion. In 14th International Conference on Database and Expert Systems Applica-
tions, pages 771–781, 2003.

[vdAtHKB03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

[W3C01] World Wide Web Consortium. Web Services Description Language (WSDL) 1.1,
2001.

35

ISBN 3-937786-78-3
ISSN 1613-5652

	Introduction
	Historical overview on Workflows and Service Composition
	Positioning in the ASG Context

	State-of-the-art
	Manual Planning of Business Workflows
	Manual Service Composition

	Current Research Efforts
	Semi-automated Composition of Services
	Full-automated Composition of Services

	Conclusion and Outlook
	Service Composition Sample
	Service Specification Ontology
	Domain Ontology
	Service Specifications
	User Request
	Sketch of full-automated Service Composition

	Bibliography

