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Abstract

In the present work, we study wave phenomena in strongly nonlinear lattices. Such lat-
tices are characterized by the absence of classical linear waves. We demonstrate that
compactons — strongly localized solitary waves with tails decaying faster than exponential
— exist and that they play a major role in the dynamics of the system under consideration.
We investigate compactons in different physical setups. One part deals with lattices of
dispersively coupled limit cycle oscillators which find various applications in natural sci-
ences such as Josephson junction arrays or coupled Ginzburg-Landau equations. Another
part deals with Hamiltonian lattices. Here, a prominent example in which compactons
can be found is the granular chain. In the third part, we study systems which are related
to the discrete nonlinear Schrédinger equation describing, for example, coupled optical
wave-guides or the dynamics of Bose-Einstein condensates in optical lattices.

Our investigations are based on a numerical method to solve the traveling wave equation.
This results in a quasi-exact solution (up to numerical errors) which is the compacton.
Another ansatz which is employed throughout this work is the quasi-continuous approxi-
mation where the lattice is described by a continuous medium. Here, compactons are
found analytically, but they are defined on a truly compact support. Remarkably, both
ways give similar qualitative and quantitative results.

Additionally, we study the dynamical properties of compactons by means of numerical
simulation of the lattice equations. Especially, we concentrate on their emergence from
physically realizable initial conditions as well as on their stability due to collisions. We
show that the collisions are not exactly elastic but that a small part of the energy remains
at the location of the collision. In finite lattices, this remaining part will then trigger a
multiple scattering process resulting in a chaotic state.






Zusammenfassung

In der hier vorliegenden Arbeit werden Wellenphdnomene in stark nichtlinearen Gittern
untersucht. Diese Gitter zeichnen sich vor allem durch die Abwesenheit von klassischen
linearen Wellen aus. Es wird gezeigt, dass Kompaktonen — stark lokalisierte solitare
Wellen, mit Ausldufern welche schneller als exponentiell abfallen — existieren, und dass
sie eine entscheidende Rolle in der Dynamik dieser Gitter spielen. Kompaktonen treten in
verschiedenen diskreten physikalischen Systemen auf. Ein Teil der Arbeit behandelt dabei
Gitter von dispersiv gekoppelten Oszillatoren, welche beispielsweise Anwendung in gekop-
pelten Josephsonkontakten oder gekoppelten Ginzburg-Landau-Gleichungen finden. Ein
weiterer Teil beschaftigt sich mit Hamiltongittern, wobei die granulare Kette das bekann-
teste Beispiel ist, in dem Kompaktonen beobachtet werden kdnnen. Im dritten Teil wer-
den Systeme, welche im Zusammenhang mit der Diskreten Nichtlinearen Schrodingergle-
ichung stehen, studiert. Diese Gleichung beschreibt beispielsweise Arrays von optischen
Wellenleitern oder die Dynamik von Bose-Einstein-Kondensaten in optischen Gittern.

Das Studium der Kompaktonen basiert hier hauptsachlich auf dem numerischen Lésen
der dazugehorigen Wellengleichung. Dies miindet in einer quasi-exakten Losung, dem
Kompakton, welches bis auf numerische Fehler genau bestimmt werden kann. Ein an-
derer Ansatz, der in dieser Arbeit mehrfach verwendet wird, ist die Approximation des
Gitters durch ein kontinuierliches Medium. Die daraus resultierenden Kompaktonen be-
sitzen einen im mathematischen Sinne kompakten Definitionsbereich. Beide Methoden
liefern qualitativ und quantitativ gut ibereinstimmende Ergebnisse.

Zusatzlich werden die dynamischen Eigenschaften von Kompaktonen mit Hilfe von direk-
ten numerischen Simulationen der Gittergleichungen untersucht. Dabei wird ein Haup-
taugenmerk auf die Entstehung von Kompaktonen unter physikalisch realisierbaren An-
fangsbedingungen und ihre Kollisionen gelegt. Es wird gezeigt, dass die Wechselwirkung
nicht exakt elastisch ist, sondern dass ein Teil ihrer Energie an der Position der Kollision
verharrt. In endlichen Gittern fiihrt dies zu einem multiplen Streuprozess, welcher in
einem chaotischen Zustand endet.
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Chapter 1

Introduction

Everybody knows what happens if two billiard balls hit each other — they exchange
momentum. A similar phenomenom appears in the toy “Newton's cradle” depicted in
Fig. 1.1. If one ball on the side is pulled away and then released, it hits the next
ball and the ball on the other side is
knocked away. Momentum conserva-
tion is responsible for this observation.
One could repeat the experiment with
two (or in general n) balls pulled away
resulting in two (or n) balls knocked
away. But what happens exactly in the
time between the initial stroke and the
release of the last ball? How is the mo-
Figure 1.1: Newton's cradle mentum transferred through the chain

and how long does the whole process take?

To answer such questions experiments with hard spheres arranged in one line have been
performed. This setup is also called a granular chain. One could observe that momentum
is transferred in very narrow pulses, typically involving five balls [1]. The velocity of these
pulses depends on the amplitude and follows a power law.

Nowadays, the results of the experiments with the granular chain are viewed in the
context of solitons and solitary waves [2, 3]. Roughly speaking, a soliton is a wave which
travels with a constant velocity and does not change its shape during the evolution. From
a mathematical point of view, solitons appear only in integrable systems, i.e. systems
with an infinite number of conservation laws and without dissipation. The interaction
between two or more solitons is elastic, such that their properties are not destroyed
during collisions. In non- or nearly-integrable systems solitary waves also exist [4, 5].
But here, their interactions are not elastic and these waves are not exact solitons. In the
last decade, a special class of non-integrable systems has been introduced which allows
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for the formation of compactons — solitary waves with compact support [6]. The basic
mechanism behind this remarkable property is nonlinear dispersion [7].

The aim of the present work is to investigate compactons in discrete systems. One
possible application is the above mentioned granular chain. But we will look on this
topic from a broader perspective. In particular, we will not exclusively study granular
systems, but also phase oscillator lattices and systems related to the discrete nonlinear
Schrédinger equation (DNLS). As we will see, nonlinear interaction is responsible for the
emergence of compactons and compact structures.

This thesis is organized as follows. In the remaining part of the introduction the differ-
ences between discrete and continuous systems are discussed. Furthermore, nonlinear
structures, like solitons, breathers or kinks and the classical compacton are introduced
and applications are presented. In chapter 2 we will analyze compactons and related
phenomena in dispersively coupled phase oscillator lattices. We will observe that be-
sides compactons a large variety of stable traveling wave structures exist. Hamiltonian
lattices are studied in chapter 3. The granular chain belongs to this class of systems and
we will see that the above mentioned pulses are in fact compactons. The topic of chap-
ter 4 is a generalization of the discrete nonlinear Schrédinger equation. Finally,
the thesis is completed with concluding remarks and open questions in chapter 5.

1.1 Dynamics of lattices

In this thesis, we will study discrete dynamical systems

Hk :fk(uk)—i—f,goul)(ul,...,u]v) . (11)

Here, and in the following the overdot @ = du/dt always means differentiation with
respect to time. wy is the quantity under observation, which can be vector-like, and its
internal dynamics is given by fi(ux). kK = 1,..., N is the index of the k-th “particle”
and N is the total number of “particles”.

The function f,°"" denotes the coupling and contains all informations about the inter-
actions of the individual units. Especially, it describes the interaction type (e.g. two-,
three-, ...particle interaction) and the topology of the lattice. In this work we will
mainly concentrate on two-particle interaction and regular lattices in one or two dimen-
sions. In Fig. 1.2 some explanatory lattice topologies are shown. The first one (Fig. 1.2a)
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3 b 4_._’_<: is a one-dimensional regular chain.
The nodes (black dots) represent

u, and the lines interaction be-

tween two nodes. The second one

(Fig. 1.2b) shows three 1D chains

which are connected at one par-

ticular site. The third and the
d e

fourth diagrams (Fig. 1.2c and
1.2d) show two-dimensional reg-
ular lattices in a square and a
hexagonal configuration and the fifth lattice topology (Fig. 1.2e) is a random network.
As stated above, this work will only deal with regular lattices, although interesting effects
can also be expected on irregular topologies, like random networks or coupled chains.

C

Figure 1.2: Different lattice topologies

There is a natural way to compare the dynamics of a regular lattice with the dynamics
of a continuous medium — the discrete lattice is approximated by a continuous variable.
If the wave length (or spatial scale) is much larger then the lattice spacing this method
is known as long wave approximation and the spacing enters as a small parameter. In
this way, the Korteweg-de Vries equation could be derived from the Fermi-Pasta-Ulam
problem [8]. Contrary, if the wave length and the lattice spacing are of same order a small
parameter does not exist and the continuous approximation is more or less arbitrary [9-
11]. Therefore, it is called the quasi-continuous approximation (QCA) and its validity
has to be checked, either by numerics or by comparison with experiments. Throughout
this work, we will heavily utilize the QCA to compare and validate our findings in the
lattice.

1.2 Nonlinear and compact structures

Genuine nonlinear structures have attracted much attention in the scientific community.
It started with the discovery of solitons in the Korteweg-de Vries equation [8] and further
investigations lead rapidly to a full theory of solitons in integrable systems [3]. Besides
continuous systems, integrable lattices have been studied, mainly by means of the famous
Toda Lattice [12-14].

Other typical nonlinear structures are breathers — time-periodic and localized solutions
of either a continuous media equation or a lattice. Prominent examples are the sine-
Gordon and the nonlinear Schrédinger equation [15, 16], where breather solutions can be
written down analytically. Furthermore, breathers occur in Hamiltonian lattices [17, 18].
Sometimes, the terms breathers and solitons are used synonymously [19].

In 1993 Philip Rosenau introduced a model which allows for the formation of compactly
localized solitary waves [6]. In contrast to the usual solitons which possess exponentially
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T T T T T
1.5 . %
Soliton
—— Compacton
1 — —
>
0.5 -
0 | | |
-3n -2n P 0 T 2n 3n

s=x-A
Figure 1.3: The soliton and the compacton solution of the KdV and the K(2,2) equation.

decaying tails his solution is truly compact, being defined only on a small part of the
domain. In detail, he studied the K (m, n)-equation

v+ [Um]a: + [Un]mxw =0. (12)

For m = 2 and n = 1 this equation reduces to the well know Korteweg-de Vries equation,
which has soliton solutions in the form

vy (2,1) = gAsech <@s) | (1.3)

where s = x — At is the coordinate in a frame moving with velocity A. The tails of this
soliton decay exponentially with viay — e V* for s — co. In contrast, the K(2,2)
equation possesses the solution

B cos? (3s)  for |s| < 27

1.4
0 else, (14)

UKQQ(JI, t) = {

which has been named compacton due to its compact nature. It is a combination of
the constant solution v = 0 and a periodic solution. At the edge s = 27 every term
in the K(2,2)-equation is exactly zero and no balancing between various terms takes
place, hence one can “glue” together the two solutions. Furthermore, all terms in the
K (2,2)-equation are continuous and smooth, including the edge. Fig. 1.3 shows the
soliton of the KdV equation and the compacton of the K (2,2) equation for A = 1.

The formation of the compacton happens due to nonlinear dispersion [6, 7]. Around
v = 0 linear terms are completely absent and the state v = 0 is degenerate. In the
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lattice the situation is different; one does not expect a truly compact traveling wave due
to the discrete nature of the medium. But we will show that purely nonlinear interaction
between neighboring lattices sites will lead to the formation of super-exponential tails,
decaying faster than exponential ones. In this case, linear terms are not present in the
interaction and the linear approximation of the basic state does not yield any results.
In particular, exponential or periodic solutions from linearized equations can not be
obtained.

1.3 Applications and models

In this work we will study three kinds of lattice equations where strongly nonlinear
interaction between the constituents is crucial.

1.3.1 Dispersively coupled limit cycle oscillators

The first class of systems which is investigated are dispersively coupled limit cycle oscil-
lators [20], which are studied in chapter 2. Limit cycle oscillators can be found nearly
everywhere in nature. They have been used to model social, biological, physical or chem-
ical systems, see for example [21-25] or the textbooks [26, 27] and references therein.

In general, a limit cycle oscillator is described by the phase ¢, which is 27-periodic and
obeys ¢ = w, where w is its frequency. In chapter 2 we will consider lattices of such
oscillators which are coupled to their nearest neighbors. In the one-dimensional case and
under the assumption that the coupling is weak the dynamics are governed by

Ok = q(Prr1 — or) + @(Pr-1 — Y1) (1.5)

where ¢(p) represents the interaction between the oscillators. In many examples the
coupling between the oscillators is dissipative, meaning that ¢(v) is an odd function
q(—¢) = —q(p). In this case, the phases try to equalize each other, which results in the
well known phenomenon of synchronization or entrainment [27]. But, the motivation of
our studies is dispersive coupling, which leads to conservative dynamics. Such systems
have been studied in the course of magnetic systems and spin waves [28, 29] or Josephson
junctions [30]. Dynamics similar to Eq. (1.5) also appears in discrete Ginzburg-Landau
lattices with dispersive coupling [30].

1.3.2 Hamiltonian lattices

The study of Hamiltonian lattices has a long history. One remarkable mile stone on their
exploration is surely the Fermi-Pasta-Ulam-paradox [31, 32], which was one of the first
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numerical experiments and which triggered a huge amount of scientific research. One
outcome of these studies was the discovery of solitons [8]. Another important point is
the existence of genuine discrete breathers [17, 18] in such lattices.

Hamiltonian lattices are usually written as
P
H:ZE_FV]“(QIC)_‘_Wk(qDQQa7QN) ) (16)
k

where ¢, and p, are the canonical variables and the equations of motion are obtained
from ¢, = OH/Opx, pr = —OH/Oq). The potential energy is split into two parts, a
local onsite potential Vi (gx) and an interaction potential Wy (q1, ..., qn) coupling the
indiviual units. In many situations the interaction is assumed to involve only the nearest
neighbors. Then Wy.(q1, ..., qyn) simplifies to W (g, qri1)-

Due to their simplicity and practical relevance, Hamiltonian lattices have been widely used
in theoretical physics. For example, the original work of Fermi, Pasta and Ulam dealt with
a problem of thermalization. Other examples are the study of heat conduction [33], the
interplay between nonlinearity and disorder [34, 35] or dislocations of crystal lattices [36].

Granular systems: Granular materials consist of a very large number of small, but
macroscopic solid particles interacting with each other. The size of each particle has to
be large enough, such that thermal fluctuations are not significant. Although granular
materials consist of solids, they can show a fluid-like behavior [37, 38]. Examples are
sand, powders, food (rice, coffee, corn, etc.), coal and coke or planetary rings and
asteroid belts. Due to their wide-spread occurrence they are subject of intense theoretical
and applied research.

One particular example is the above mentioned granular chain where the contact force
follows the Hertzian law F' ~ /2. This system has been studied experimentally and
theoretically [39, 40] and it could be observed that traveling pulses are very narrow and
of quasi-compact nature.

1.3.3 Discrete nonlinear Schrodinger lattices

The third part deals with lattices related to the discrete nonlinear Schrodinger (DNLS)
equation:
iUy = Uppy + Upy + Bl W42, (1.7)

Here, U, is the complex field at lattice site £ and (3 is the nonlinearity parameter.
The study of this equation dates back to the 70s where the DNLS has been used in
some biophysical models [41]. Today, it is widely used in physical and mathematical
studies. It is a generic equation describing many interesting phenomena. A overview
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over recent experimental and theoretical results related to the DNLS is given in [42].
Strictly speaking, the DNLS is also Hamiltonian with complex canonical variables.

Slowly varying amplitude: The discrete nonlinear Schrodinger equation can be de-
rived from a lattice of nonlinear oscillators

Gk + wqe = K(Qer1 — 2qk + qe—1) + Bap - (1.8)

Here, w is the base frequency of each oscillator and [ and x are some parameters.
Writing g, now as g, = 1/2(¥,e ! + U*el“!) and considering only terms rotating with
e yields the DNLS (1.7). Thus, it describes the slowly varying amplitude of Eq. (1.8).

Optical waveguides arrays: An optical waveguide is a device in which light beams
(electromagnetic waves with wavelengths of the order 100 nm-1000nm) are guided.
Here, the nonlinear Kerr-effect can lead to a self trapping of the beam. In the late
90s it has been shown experimentally that coupled arrays of optical waveguides allow
the formation of discrete solitons [43, 44]. These experiments can be described by the
discrete nonlinear Schrddinger equation [45] where Wy is interpreted as the complex
amplitude of the electrical field in waveguide k and the time is replaced by the spatial
coordinate in the direction of the waveguides. The nonlinearity arises from the nonlinear
Kerr effect.

Dynamics of Bose-Einstein condensates: The discrete nonlinear Schrodinger
equation also describes with great success recent experiments in the field of ultra-cold
atomic gases. At sufficiently low temperatures all particles of a dilute bosonic gas oc-
cupy the same quantum state. This effect is the famous Bose-Einstein condensation [46]
and the gas in this state is called a Bose-Einstein condensate (BEC). BECs have been
observed first in 1995 [47, 48] with rubidium and sodium atoms. To create BECs the
atoms are trapped magnetically and then evaporatively cooled to temperatures below
the critical temperature. Then, the trap is switched off. The BEC can now expand and
its properties are recorded. These experiments triggered a huge amount of experimental
and theoretical work, for reviews see [49] or the book of Pethick and Smith [46]. To a
certain extent Bose-Einstein condensates can be modeled by the Gross-Petaevskii equa-
tion (GP) (a variant of the nonlinear Schrédinger equation), especially if the temperature
is well below the critical temperature 7. and if two body interaction is considered.

Quasi one-dimensional BECs can be loaded into optical lattices, which are created by
the superposition of two interfering laser beams. The potential experienced by the BEC
is then periodic, with the period of the interferences. Such experiments have been
realized in 1998 [50]. They are modeled by the DNLS and nonlinear structures have
been observed [51]. Effects of disorder could be studied too, resulting in an experimental
realization of Anderson localization of BECs in optical lattices [52, 53].






Chapter 2

Compactons in phase oscillator
lattices

In this part, we study lattices of coupled autonomous oscillators. They have a broad
range of application and can be found in many scientific disciplines. If the coupling
between the oscillators is weak one can describe them by their phase and neglect the
amplitude [26, 27]. We call them phase oscillators and without coupling their dynamics
is trivial: the phase is growing with a constant rate. Hence, nontrivial effects can
only arise from the interaction. In general, two types of coupling exist: dissipative and
dispersive coupling. Dissipative coupling tends to equalize the phases, such that a stable
uniform state might establish. It is the basic mechanism for synchronization and has
been discussed widely in the scientific community [54-59].

Here, we will concentrate on lattices of dispersively coupled phase oscillators. Such
systems have some conservative properties and are similar to Hamiltonian lattices; in
some cases it is even possible to write down a Hamiltonian. It is a well known fact
that localized nonlinear structures, like breathers, kinks or solitons exist in Hamiltonian
lattices [17, 19, 36, 44]. As we will see in this work, such structures also exist in
phase lattices. In detail, we will investigate solitary waves and kinks, as well as periodic
nonlinear waves. These waves usually appear in families, parameterized by their energies
or their amplitudes.

Dispersive coupling of phase oscillators can be strongly nonlinear. The coupling function
in our basic model is generic and in the ground state linear terms are absent. We will
show that this leads to the formation of compact solitary waves — the phase compactons.
Furthermore, classical solitary waves with exponential tails exists as well as periodic
waves.

This chapter is organized as follows. First, we present a numerical example of coupled
autonomous oscillators with dispersive coupling where one can observe the emergence of
phase compactons. Then, we will introduce the basic lattice model in section 2.1, where
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t[10°]

Figure 2.1: Phase compactons in the van der Pol system (2.2) with 4 = 0.2 and € = 0.1. The phase
difference between neighboring sites is shown and one observes a series of phase compactons emerging
from the initial perturbation. With increasing amplitude, the velocity of these waves also increases.

we also discuss its properties and the quasi-continuous approximation. Section 2.2 is
devoted to the study of traveling waves. Here, we will show that compactons exist in
the lattice and in the continuum, along with conventional traveling waves like solitons
and periodic waves. In section 2.3 we investigate the lattice numerically, that is, we show
the stability of phase compactons against collisions and solve the initial value problem.
Two-dimensional lattices of phase oscillators are studied in section 2.4.

Example: Coupled van der Pol oscillators

A famous example of an autonomous oscillator is the van der Pol (VdP) oscillator, which
has been derived to describe an electrical circuit with a vacuum tube:

i=—z+p(l -2 . (2.1)

This oscillator exhibits a remarkable balance between energy supply and dissipation.
For small amplitudes of = the second term on the RHS of Eq. (2.1) is positive and
acts as negative damping, hence the amplitude of x will grow. On the other hand, for
large values of z, this term is negative and energy is dissipated. These two effects are
responsible for the limit cycle, which balances enery dissipation and supply.

Consider now a chain of coupled van der Pol oscillators
i}k = —x + ,M(l — xz)xk + €,u(l’k+1 — QZEk + ZEk_l) . (22)

Here, € controls the coupling strength between each oscillator. The coupling is dispersive,
hence it allows for the emergence of phase compactons. In Fig. 2.1 we show the evolution
of a localized perturbation of the phase in the VdP chain with 4 = 0.2 and e = 0.1. The
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phase of each oscillator can approximately be described by ¢, = arctan(iy/zx) and the
phase difference v, = @11 — ©x is shown. One observes traveling objects leaving the
initial perturbation. These objects are the phase compactons.

2.1 The basic model

We study lattices of weakly coupled autonomous oscillators. Each unit possesses a limit
cycle with a characteristic frequency w; and the dynamics is described by the phase
©r(t) obeying ¢r = wg. The amplitude Ay (t) of the oscillator can vary during one
cycle, but must be periodic Ay (t) = Ag(t + Ty), where T}, = 27w, ! is the period. Of
course, the limit cycle needs to be stable, such that any initial condition in its surrounding
asymptotically reaches the cycle. From a physical point of view each limit cycle oscillator
balances energy supply and dissipation. In some regions of the phase space it gains energy
while in other regions energy is dissipated.

If such an oscillator is now weakly coupled to its neighbors the equation for the phase
reads
G =we+ Y G (1,08) (2.3)

le My

where M), is the index set of the neighbors of the k-th oscillator and ¢y, is the coupling
function, being 27-periodic in every argument. The smallness of the coupling assures
that amplitude effects does not enter the game and the phase description is still valid
for the coupled system. Now, fast oscillations are averaged out and if the frequencies
wi, = w are all equal the coupling function in Eq. (2.4) can be written as a function of
the phase differences:

r=w+>_ q(or— k) - (2.4)

leM

From here, we assume that the coupling is equal for all oscillators. The complete
derivation of Eq. (2.4) is given in appendix A.1. The case of different frequencies
Wy # wy is also shown there.

Up to now, Eq. (2.4) describes a set of coupled phase oscillators but nothing is said
about their specific topology. A simple configuration is a one-dimensional chain of N
oscillators. In such a chain, the indices k& can be sorted according to the position in the
chain and Eq.(2.4) reads

Or = q(Prr1 — r) + a(Pre-1 — k) - (2.5)

The chain might be open, where the first and the last oscillator obey ¢ = ¢(p2 — ¢1)
and ¥n = g(¢n-1 — ¢n), or arranged on a ring with ©1 = g(p2 — ¢1) + q(n — ¥1)
and o = q(p1 —pn) +q(on_1—pn). For some theoretical purposes it might also be
convenient to consider infinite chains. Other interesting and easy-to-analyze topologies
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are regular two- or higher-dimensional lattices, which are studied in section 2.4. They
are natural generalizations of the one-dimensional chain.

For the one-dimensional chain it is possible to express the evolution in terms of the
difference coordinates

Vg = k41 — Pk - (2.6)

Building the derivative of this equation with respect to time and inserting the equation
for the chain (2.5) yields

Ok = q(Vky1) + q(—vr) — q(vr) — q(—vk—1) , (2.7)

which is equivalent to Eq. (2.5) except one constant. In section 2.4 we also show, how
one can express the two-dimensional square lattice in terms of differences. In general, the
differences are a description of the connections between the lattice nodes. In this sense,
Eq. (2.5) describes the evolution of the system in terms of the nodes, and Eq. (2.7) in
terms of the edges.

Every function ¢(v) can be written as a sum of an even and an odd function ¢(v) =
¢.(v) + qo(v), where ¢.(v) = g.(—v) and ¢,(v) = —q,(—v). With this definitions
Eq. (2.7) reads

Uk = Qe(Vkt1) = Ge(Ve—1) + Go(Vkt1) — 2¢o(vi) + qo(Vi—1)
= Vaqe(vr) + Aaqo(vi) - (2.8)

V4 and Ay are the discrete nabla- and Laplace operators. The part with A, q,(vg)
introduces dissipation and for g,(v) = sinv a stable state v, = 0 exists. In this study,
we will concentrate on purely even coupling functions. Such couplings induce dispersion
and dissipation is absent. For the one-dimensional chain and identical oscillators our
model reads now

O = q(Vkt1) — q(vE-1) - (2.9)

For simplicity we have dropped the index e here. For open boundaries the equations for
the first and the last oscillator in the chain are ¥, = ¢(vy) and vy = q(vy_1) and for
periodic boundaries 7; = q(vy) — q(vy) and v = q(v1) — q(vn_1).

The most simple 27-periodic and even function is surely g(v) = cosv. Many results
in this chapter are obtained for this coupling, although we formulate all problems for
general even functions.

A particularity of the even coupling function is the existence of a singular point with
¢'(v) = 0 at v = 0. Taylor expansion of order 2 around this point leads to vy = v}, —
2k

vi_,. Interestingly, this equations possesses an explosive solution [30] v = A(t) sin 25%

with A(t) = Ag/(1 — Ap/3/4(t —to)). In the phase model (2.9) this explosive solution
will grow until the full nonlinearity will slow it down. We will see later that this instability
is crucial for the evolution of the lattice, especially in the two- or higher-dimensional case.
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2.1.1 Properties

First of all, we note that the phase volume of the infinite chain is conserved, hence
Eq. (2.9) fulfills the Liouville property >, 00 /0vr, = 0. Secondly, the infinite chain
(2.9) possesses the following conserved quantities

Ci = ) u (2.10a)

Cy = > (=1)fuy (2.10b)
k
Cy = ZQ(Uk,Uo) : where Q(v,u) = /q(x)dx : (2.10¢)

u

In finite chains we have to introduce boundary conditions at both ends of the chain. For
periodic boundary conditions the conservation laws for C; and Cj are valid. The validity
of C5 depends on the number of oscillators; if IV is even Cs is conserved, otherwise not.
In the open chain only Cj5 is conserved and for odd N another conservation law exist

04 = Z"ng_l . (211)
k

Remarkably, for open boundary conditions the Eq. (2.9) can be derived from a Hamilto-
nian

m m—1

H = Z Q(pr) + Q(s1) + Z Q(skr1 — sk) + Q(Cy — 8,,) for N =2m +1
k=1 k=1
m m—1

H=> Q)+ Qs1) + Y Qsr+1 — ) for N =2m .
k=1 k=1

The canonical variables are defined via s, = >, vy_1 and p; = v, and the evolution
equations are given by $, = OH/Opx, pr = —0H/Os,. Note, that the energy is
equivalent to H = C5 and the kinetic energy is Cj.

2.1.2 The quasi-continuous approximation

Now, we establish a continuous description of the lattice equation (2.9). That is, we
assume vy, = v(m = kh) and Taylor expand ¢(vg+1) up to third order

h? h3
q(vk1) = |1 £ ho, + 7&,;;,; + Eam q(v) . (2.13)
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h denotes the spatial distance between the lattice nodes. Inserting this equation into
(2.9) results in the partial differential equation

ov h?

which is the quasi-continuous approximation (QCA) of the lattice. Note, that this
approximation is not based on a small parameter. The spatial scale is not defined on the
lattice and its introduction in the QCA is more or less arbitrary. In the following we will
set h = 1. The cut-off of the Taylor-series at order three is also arbitrary. If the QCA
successfully describes the lattice has to be shown by direct comparison of the lattice and
the continuum.

Eq. (2.14) describes the phase differences and one might wonder if an approximation of
the original phase equation (2.5) would yield the same QCA. Of course, it is possible to
expand ¢4 in Eq. (2.5). Then, the analogon to (2.14) reads
h3 h3
=2 {h&r + —&Cm] q(v) — —0, (q”(v)vi) : (2.15)
6 12
The full derivation of this equation is given in appendix A.2. This approximation intro-
duces one additional term. But since a term proportional to ¢”(v)v? is also included in
the first part of the RHS of Eq. (2.15) the overall structure does not change and we
expect that both approximations yield similar results.

For small v the coupling function in Eq. (2.14) can be approximated by ¢(v) =~ ¢(0) +
av™, where m is a positive integer. For example, the small amplitude version of (2.14)
for q(v) = coswv reads (after an appropriate rescaling)

o =2, +3[v"], - (2.16)

This is the K(2,2) equation in [6] and it possesses compacton solutions.

2.2 Traveling waves

In this section we investigate traveling waves in the phase oscillator lattice (2.9) and
compare them with their continuous counterparts in Eq. (2.14).

2.2.1 Traveling waves in the quasi-continuum

First, we start with the QCA (2.14). Any constant v = v* is a solution and we will look
for traveling waves on the base v* in the form v(x,t) = v(x — At) = v(s), where A is
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the wave velocity. Inserting this ansatz into Eq. (2.14) and integrating once yields

Aw =)+ 20a(v) — gv)) + 5 () = 0. (2.17)

The left boundary of the integration starts at s, where the wave profile is constant
v(sg) = v* = const. This assumption can not be valid for periodic waves where the
curvature of g(v(sp)) has to enter (2.17). However, this curvature is a constant which
can be absorbed in the constants in (2.17).

Eq. (2.17) can be written as a first-order ordinary differential equation (ODE)
dv du 3A(v —v*) 4+ 6(g(v) — q(v*)) + ¢" (v)u?

& = U , & = — q/(/U) f (218)

which will be used to calculate and characterize the traveling wave solutions. In some
cases, we also need the linearization of (2.18) around v = v*, u = 0 provided ¢'(v*) # 0.
The stability of this state is determined by the eigenvalues of the according Jacobian

iy =4+~ +6¢(v*)/q (v*) . (2.19)

Interestingly, Eq. (2.17) can be written in a potential-like form. To see this, we have to
multiply Eq. (2.17) by dg(v)/ds and integrate it once, such that we obtain

prxv—w)—wav]+@w»—wm»”+éEﬂ2=0. (220)

where the function Q (v, v*) is defined in (2.10c). This equation can be transformed to

() 8 e

=0, (2.21a)

with the potential

2

Alg(v)(v —v") = Q(v,v")] + (q(v) — q(v*))

Ulw) =3 @)

(2.21b)

With the equations (2.17)-(2.21) we are now able to investigate all kinds of traveling
wave phenomena in the QCA. First, we will introduce different types of traveling waves.
Secondly, we will analyze a few coupling functions in detail and show the transitions and
bifurcations of the waves.
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Solitary waves

Solitary waves are homo-clinic orbits in Eq. (2.18) and Eq. (2.21) of the fixed point v*.
They start from v*, grow to a peak at v,,, and return back to their origin v*. At the
peak, they have to fulfill U(v,,) = 0 which gives a condition for the wave velocity Ag on
the knowledge of v* and v,

(q(vm) — q(v*))?
Q(Uma U*) - Q(Um)(vm - 'U*) .

Ag = (2.22)

Solitary waves with compact tails — compactons. As mentioned above, the
coupling function possesses some points where linear terms are absent. At least at
v* = 0 this is the case, but depending on ¢(v) other points are possible. At such points,
compact structures may occur. ¢’(v*) = 0 and linear waves can not exists in the vicinity
of v*.

One example is the coupling function ¢(v) = cos v with solitary waves on the background
v* = 0. Approximation of g(v) up to second order yields ¢(v) ~ ¢(0) + av?, with
q(0) = 1 and @ = —1/2. Inserting this approximation into (2.17) yields the traveling
wave ansatz for the K(2,2) equation in [6]. One solution of the K(2,2)-equation is
given by v(s) = —Acos?*(Bs), with appropriate constants A = 2\(3a)™! and B =

3/8. Interestingly, this solution degenerates at s = :l:\/%ﬂ', such that every term
in Eq. (2.17) is identical to zero. There is no balancing between different terms and one
can match the periodic solution with the trivial solution v(s) = v* = 0 without violating
any continuity conditions. So, one solution reads

_2x 2 3 2
v(s) —v* =4 3¢ o8 ( 88) ol <my/3 (2.23)
0 else,

which is the classical compacton. It is a single humped solitary wave, where the amplitude
depends on the wave velocity while the width is independent of amplitude or velocity. The
hump is defined on a compact domain. For the full coupling function we can now expect
that traveling wave solutions will behave according to Eq. (2.23) in the surrounding of
v* and only the shape of the hump will be affected by the full coupling.

In Fig. 2.4 below we show a compacton in the QCA for the coupling function ¢(v) = cos v
and v* = 0. This solution has been obtained by numerical solution of (2.18). The wave
velocity was chosen to A\ = 2/7.

Solitary waves with exponential tails. If the fixed point fulfills ¢’(v*) # 0 one
expects the usual exponential tails which can be observed in many soliton bearing equa-
tions like the KdV or the sine-Gordon equation. In this case we can use the linearization
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around v* to classify the tails and the traveling wave. Especially, for the existence of a
homo-clinic trajectory one needs the fixed point of Eq. (2.18) to have one stable and
one unstable direction, hence v* has to fulfill

3\ + 6¢ (v*
— —i—/—q(v) >0 . (2.24)
q'(v*)
This condition yields a critical velocity A\c = —2¢/(v*), which separates a saddle-type

stationary solution from a center.

A solitary wave with exponential tails is shown in Fig. 2.4 below. The coupling function
is ¢(v) = cos(v) and the background is v* = 7/4. The wave velocity is a free parameter,
but bounded by the above condition. For the case v* = 7/4 and v,, > v* this results in
A > 2sin7/4 = /2. In Fig. 2.4 the wave velocity was chosen to A = 7/2. The tails of
the solitary wave decay exponentially, corresponding to the eigenvalues of the stationary
state v*.

Kinks

Another class of traveling wave solutions that can be studied and observed in the QCA
as well as in the lattice are kinks. In contrast to solitary waves, kinks are hetero-clinic
orbits connecting two fixed points v* and ©*. The kink between v* and * has to fulfill
two basic conditions, first the peak condition (2.22), and secondly it has to be a fixed
point of (2.21), such that U'(v*) = 0 or

()~ qlv)

Ak =2 (2.25)

This condition can also be derived from (2.17) where one assumes, that v* is a constant
solution. Combining the two conditions (2.22) and (2.25) results in the final condition

for the kink
(q(v") + q(v")) (0" —v*)
5 .

Note, that a solution of this equation might yield a kink (v*,0*) which encloses a
singularity in Eq. (2.18) with ¢/(v) = 0. In this case, these two points can not be
connected by a hetero-clinic orbit. In general, points with ¢'(v) = 0 separate the phase
space of (2.18) into independent regions, but it might be possible that for some specific
values of the wave velocity the singularity can be removed and a trajectory crosses that
point.

Q(@*a U*) =

(2.26)

For ¢(v) = coswv the kink is given by v* = m — v*. The velocity belonging to this kink
iS Amaz = A = 4dcosv*/(m — 2v*). For other coupling functions the structure of the
kink levels is more complicated.
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Kinks with exponential tails. Kinks with exponential tails have to fulfill Eq. (2.24)
and an example is shown in Fig. 2.5. The coupling function is ¢(v) = cos(v) and
v* =m/4, v* = 3n/4. The velocity is A = /32/7.

Compact kinks. If v* and 0" fulfill ¢’(v*) = ¢/(v*) = 0 both tails will become compact
and may form a compact kink—anti-kink pair, named kovaton [60]. An example of this
wave form is shown in Fig. 2.5, with ¢(v) = cosv and v* =0, v* = 7w and Ax = 4/7.

Exponential-compact kinks. In addition to kinks with exponential or compact tails
one can also observe semi-compact kinks possessing one exponential and one compact
tail. Consider the coupling ¢(v) = cosv + acos2v with @ = 0.2. In this special case
v* = 0 fulfills ¢’(v*) = 0 and v* = 2.39955 is the kink satisfying (2.26) with the velocity
(2.25) Ag = 1.60011. This kink is shown in Fig. 2.5. It is compact at v = v* and
exponential at v = 0*.

Periodic waves

Periodic waves around v* exist if the eigenvalues ;5 in (2.19) are purely imaginary. A
periodic wave in the QCA is shown in Fig. 2.6(a). The velocity of a periodic wave must
satisfy the condition resulting from (2.18):

_ 3A+64'(v7)
q'(v*)

For g(v) = cosv and 0 < v* < 7 this condition yields A < 2sinv*. At A = A\¢ =
—2¢'(v*) a bifurcation from periodic to solitary waves occurs.

<0. (2.27)

Exemplary coupling function ¢(v) = cosv

Now, we will study the particular coupling function g(v) = cosv. The regions of existence
of the traveling wave solutions in the parameter space (v*, A) are shown in Fig. 2.2(a).
Due to the symmetry of the coupling function, only the part 0 < v* < 7/2 is shown.
For m/2 < 0 < 7 the plot has to be mirrored around v* = 7/2 and for v* < 0 it has to
be inverted.

The velocity of the kinks for this coupling function is Ax = 4cosv*/(m — 2v*). If the
velocity is larger than this value the trajectories in the v, v plane become unstable and
no traveling wave solutions exists. Hence, this velocity defines an upper bound for the
existence of traveling waves. Below A the solutions are solitary waves until A reaches
the critical velocity A¢, which separates solitary and traveling waves. For ¢(v) = cosv
the critical velocity is given by \o = 2sinv*. Below A¢ all solutions are periodic waves.
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Figure 2.2: Regions of existence of traveling waves in the parameter space (v*, A). In (a) the coupling
is g(v) = coswv. The function A\c = 2sinv™* separates periodic from solitary wave solutions. The upper
bound Ag = 4cosv*/(m — 2v*) defines the kink solutions. Compactons arise from v* = 0 and the
according kink becomes compact on both sides. In (b) the coupling function is ¢(v) = cosv+1/2 cos 2v.
At v = arccos(—1/2) & 2.0944 a singularity (¢’(v) = 0) exists, which divides the phase space into two
independent parts. Between 1.95841 < v < 2.0944 the soliton solutions are not bounded by a kink
solution for increasing A, but become directly unstable.

As stated above, compact structures occur if ¢'(v*) = 0, which results in v* = 0. Around
this point only compactons and compact kinks exist and periodic waves are absent. The
according kink is located at v* = 7 and fulfills ¢'(v*) = 0, hence it is compact on both

sides.

Exemplary coupling function ¢(v) = cosv + acos2v

Another interesting coupling function is g(v) = cosv + a cos 2v, which introduces the
second harmonic parameterized by a. For small values of a we do not expect a qualitative
difference to the harmonic coupling with a = 0, but the shape of the wave regions will
slightly change, as well as the position of the kinks.

Remarkably, a second singularity (¢/(v) = 0) appears for |a| > 1/4 at v, = +arccos ( —
1/(4a)) and the phase space of (2.18) is effectively divided at this point. In Fig. 2.2(b)
we show the regions of existence of the traveling wave solutions in the parameter space
(v*,A) for a = 0.5. At v, = arccos(1/2) = 2.0944 the phase space is divided. Below
v. we observe a similar behavior as for the harmonic coupling, whereas above v, the
situation is inverted. Interestingly, between 1.95841 < v < v, kink solutions are not
possible. In this case, the kink lies below the critical point v = 0 and the solitary wave
becomes immediately unstable if the velocity crosses that critical point.
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2.2.2 Traveling waves in the lattice

Now, we turn our attention to traveling waves in the lattice (2.9). In particular, we are
looking for solutions of the form

vE(t) = v(k — At) = v(s) (2.28)

with the wave velocity \. Inserting (2.28) into (2.9) yields

0= %(q(v(s —1)) —q(v(s+ 1))) : (2.29)

This equation is an advance-delay equation, containing terms going forward and back-
ward in time. Advance-delay equation typically describe traveling waves solutions in dis-
crete systems [61-63]. They are difficult to solve and to analyze, even numerically [64].
But, it is possible to write Eq. (2.29) as an integral

s+1
v(s) —v* = X /1 [q(v*) — q(U(T))]dT , (2.30)

where it is supposed, that v(s < sg) = v*. It will turn out below, that this integral
representation is relatively easy to solve numerically. We will propose a simple method
based on this integral equation, which reveals the traveling wave solutions.

If one requires that v(s) = 0* is a constant solution, hence a kink exists, the correspond-
ing velocity A\x has to satisfy

q(vf) —q(")

A =2 (2.31)

This condition is exactly the condition (2.25) for the QCA.

Fixed point analysis

Similar to the fixed point analysis in the QCA, one can analyze the behavior of traveling
waves close to the background v* by linearization [62, 63]. To this end we approximate
q(v) = q(v*) + a(v — v*) in (2.29) and apply the exponential ansatz v(t) = Aexplt.
This yields the characteristic equation

= (et =éy. (2.32)

Note again, that a = ¢/(v*) # 0, meaning that this approximation does not hold for
compacton backgrounds.

We split [ into its real and imaginary part [ = p + ig to obtain

p= —2% cos ¢ sinh p and ¢ = 2% singcoshp . (2.33)
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Figure 2.3: (a): Wave speed )\ in dependence of the complete imaginary eigenvalue ¢ in Eq.(2.33).
The dots mark possible bifurcation points to real eigenvalues. (b): Wave speed A vs. the real and the
imaginary part of the eigenvalues, with a = sin(0.2). Only the positive parts of the real and imaginary
axes are shown.

For purely imaginary eigenvalues p = 0 these equations result in the condition ¢ =
—2¢sing or A\ = —Qa%. This function is plotted in Fig. 2.3(a). In this plot, the
dots mark possible points for transitions to eigenvalues with real parts. In Fig. 2.3(b) all
eigenvalues l.: p + iq are shown. Purely real eigenvalues are given by p = —2¢sinhp
or A = —2a5”;#. So, when A crosses —2a (point 1 in Fig. 2.3(a)), a bifurcation from
two purely imaginary eigenvalues to two purely real eigenvalues occurs. This scenario
corresponds to the transition from periodic to solitary waves and the critical velocity is
Ac = —2a. This transition is analogous to the bifurcation in the QCA. The critical
velocities are identical.

Another bifurcation occurs, when )\ crosses point 2, see Fig. 2.3. There, the center
changes to a stable and an unstable spiral point. This refers to a transition from periodic
to solitary waves with oscillating tails and exponentially decaying amplitude. Since the
bifurcation occurs on the imaginary axis, one can calculate the critical velocity from
(2.33) by setting N'(¢) = 0. For the special case ¢(v) = cosv one obtains A =~ —2a -
0.217. Note, that this transition has no counterpart in the quasi-continuum.

Numerical determination of traveling waves
As mentioned above, it is possible to construct a numerical scheme from (2.30) to find

solitary wave solutions of the lattice [30, 65, 66]. Therefore, one initially guesses a wave
profile vy(s) and then iterates

o(s) =v" + % /:H (q(v*) — q(vi(7)))dr Vpy1 = ( )3/217 : (2.34)

-1
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Figure 2.4: Soliton solutions for the coupling function g(v) = coswv. In the left row the soliton travels
on the background v* = 7 /4 with velocity A = 7/2, and possess exponential tails. In the right row
the background is v* = 0 and the velocity is A = 2/m. The tails are super-exponential here, hence
this solitary wave is a compacton. The upper plots show the waves in original scale, whereas the lower
ones in logarithmic scale. Here and in the following figures bold dots show the traveling wave solutions
on the lattice and the dashed line the solution of QCA (2.17) which has an additional offset for better
visibility.

where || - || denotes the L;-norm. The normalization is needed in order to prevent
the algorithm from converging to the trivial solution v* = 0 and we have used the
normalization exponent & = 3/2. The integral is calculated by a high order Lagrangian
integration rule [67]. To construct kink solutions, one has to omit the normalization in
(2.34) by setting vgy1 = © and apply appropriate boundary conditions. Periodic waves
can be obtained by a slight modification of (2.34). Here, the wave length w is introduced
and periodic boundary conditions ©(0) = 0(w) are assumed in (2.34). For backgrounds
different from O one has to shift the coordinates v — v* + .

Solitary waves

Solitary waves with exponential tails. In Fig. 2.4 we show a solitary wave with
exponential tails, computed with the scheme (2.34). The coupling is ¢(v) = cosv and
the background is v* = 7/4. The velocity was chosen to A = 7/2, fulfilling the condition
(A +2¢'(v"))/¢' (v*) > 0. In the same figure we also show the solution of the quasi-
continuum with the same parameters and one can see that both solution coincide very
well.

Compact solitary waves. The condition ¢’(v*) = 0 allows for the formation of quasi-
compact tails and we call these waves compactons. In Fig. 2.4 we show a compacton on
the background v* = 0 for the coupling ¢(v) = cosv. The wave velocity was set here to



2.2. TRAVELING WAVES 23

A = 2/m. The compacton is not purely compact, but has super-exponentially decaying
tails [30]. Thus, although there is a qualitative difference between the lattice and the
QCA, quantitatively these solutions are very close to each other.

It is possible to estimate the super-exponential decay rate of the tails. In the vicinity of
v* one can write Eq. (2.30) as

v(s) = 3 /?JQ(T)dT : (2.35)

where a is a constant (for the harmonic coupling function ¢(v) = coswv this constant is
a = 1/2). Assuming now v(s) = exp(—f(s)) with an appropriate monotone function
f(s) and that the tails decay fast yields in first approximation

exp(—f(s)) = Cexp(=2f(s = 1)) . (2.36)

Here, we have written the integral as j;sjll exp(—2f(7))dT =~ Cexp(—2f(s — 1)), with
a constant C'. Such an approximation can be obtained if the exponent is expanded
around s — 1, for further details see section 3.2.2. Note further, that we have absorbed
the wave velocity in Eq. (2.36) into the constant C'. Taking the logarithm of Eq. (2.36)
and neglecting InC' yields f(s) = 2f(s — 1). One solution of this delay equation is
f(s) = Cexp(ln2s). Finally, we can write the decay of the tails as

v(s) ~ exp(—Cexp(In2s)) . (2.37)

Clearly, this function shows super-exponential behavior. In [30] some corrections in the
approximation of the integral have been performed, with similar results.

Kinks

Kinks can also be observed in the phase lattice (2.9). But here, the position of the kinks
can not be calculated as easy as in the QCA. Nevertheless, we assume, that the kinks in
the lattice are the same as in the QCA (2.26). The velocity can then be obtained from
Eq. (2.31).

Kinks with exponential tails. In Fig. 2.5 we show the shape of a kink. The coupling
is ¢(v) = cosv and the background is v* = 7 /4. The velocity of the kink is given by
Eq. (2.31) A = v/32/7. A qualitative comparison with the continuum yields very good
coincidence.
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v(s)-v

v(s)-v

V*—V(S)

Figure 2.5: Kinks in the phase lattice. Left column: A kink with exponential tails for ¢(v) = cosv;
the kink is located between v* = 7/4 and ©* = 7 — v* and the speed is A = v/32/7. The middle
column shows a compact kink between v* = 0 and #* = « for ¢(v) = cosv. In the right column, a
semi compact kink is show in the model ¢(v) = cosv + acos2v with @ = 0.2, see the text. In the
upper row the kinks are shown in normal scale, in the middle row in logarithmic scale around v* and in
the lower row in logarithmic scale around o*.

Kinks with compact tails. One can observe compact kinks, if ¢'(v*) = 0 and
¢ (v*) = 0. For the coupling ¢(v) = cosv such a case exists with v* = 0 and v* = .
The shape of this compact kink is shown in Fig. 2.5. Here, the velocity is A\ = 4/7.
Again, a good coincidence between the kink with compact tails in the quasi-continuum
is observed. Note further, that the tails for the compact kink can be estimated in
the same way as for the compacton. They decay with the same super-exponential law
v(s) ~ exp(—Cexp(In2s)).

Semi-compact kinks. It also possible to observe kinks with one exponential and one
compact tail. This is the case for ¢(v) = cosv + acos2v with a = 0.2. For v* = 0,
A =1.60011 and o* = 2.39955 the kink condition (2.26) is satisfied and a semi-compact
kink is found by the numerical method described above. In Fig. 2.5 we show a semi-
compact kink, which conincides well with the one from the QCA.

Periodic waves

Periodic waves can be calculated with (2.34) and periodic boundary conditions. A
simple example is shown in Fig. 2.6(a). As mentioned above, the wave length w has to
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v(s)

Figure 2.6: Left panel: The shape of a periodic wave for ¢(v) = cosv. The offset is v* = 7 /4,
the wave length is w = 57 and the velocity A = 7/2. Right panel: Solitary wave with periodic and
exponentially decaying tails, v* = —0.2 and A = 1.0.

be introduced. In the example w = 57, v* = /4 and the velocity is A = 7/2. Note
again, how the periodic wave in the lattice matches the wave in the QCA.

Solitary waves with periodically decaying tails

From the fixed point analysis of the advance-delay equation (2.29) a bifurcation occurs
at point 2 in Fig. 2.3(a). So, if the velocity A reaches the critical point ¢, the fixed
point changes its type from a center to a stable spiral point. This corresponds to a
solitary wave with oscillatory decaying tails. In Fig. 2.6(b) we show an example of such
a wave. The offset is v* = —0.2 and the wave velocity is A = 1.0. This behavior does
not occur in the quasi-continuum.

2.3 Numerical studies of the one-dimensional
chain

In this last section we have shown that traveling wave structures like solitary waves, kinks
and periodic waves exist in the lattice (2.9), but so far, nothing has been said about their
stability and their physical relevance. In this section, we will demonstrate numerically
how these waves emerge from generic initial conditions and how they propagate in the
lattice. Furthermore, we show how a chaotic state may appear from the collisions of
compactons.

Collision between two compacton and between a compacton and a kink have been ana-
lyzed in detail in [30]. There, it could be shown numerically, that the collisions are nearly
elastic. Nevertheless, is has also observed that a collision between a compacton and its
anti-compacton (possessing negative velocity and negative amplitude) may lead to the
formation of a large-amplitude compacton—anti-compacton pair.
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Figure 2.7: Evolution of different initial pulses for the coupling ¢(v) = cosv and v* = 0. The initial
conditions were set according to (2.38). (a) w=10and A=2, (b) w=15and A =3 and (c) w=1
and A = 1. The dashed line shows the initial condition v, (¢ = 0) and the solid line the lattice at the
time ¢ = 100.

Evolution of an initial pulse

First, we consider the evolution of an initial cos-pulse in the lattice (2.9) with the coupling
q(v) = cosv. Hence, the initial condition is

(2.38)

*

* 4+ 411 4 cos (ko for [k — K
vk(O):{Z 7 [1+cos (552)] eTSrel of <w

where A is the amplitude, kg is the center and w is the half width of the pulse.

In Fig. 2.7 we have used v* = 0 and one can observe compactons and kovatons arising
from the initial pulse. In Fig. 2.7(a) a wave train of compactons emerges out of the
initial pulse. The speed of the compactons increases with the amplitude. In Fig. 2.7(b)
we have increased the width and the amplitude of the pulse and one kovaton can be
observed. In Fig. 2.7(c) a narrow initial pulse creates a wave source, emitting periodic
waves. This behavior has also been observed in [30]. In [68] the authors showed that
periodic waves can emerge from the above initial condition.

Transition to chaos in a finite lattice

Wave trains shown in Fig. 2.7 are obtained for an effectively infinite lattice; during
the calculation times the boundaries are not reached. In a finite lattice with periodic
boundaries, collisions between waves occur, and it can be observed that at large times
eventually a chaotic regime appears. In Fig. 2.8 we show the evolution of an initial cos-
pulse with v* = 0.1. The upper plot shows the initial decomposition of this pulse into
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WA\

Transient time T

Figure 2.8: Transition to chaos. Left panel: The background is v* = 0.1 and the lattice contains
of N = 100 sites with periodic boundary conditions. The field is shown in a gray scale versus time
(horizontal axis) and space (vertical axis). Upper plot: A kink and several solitons emerge out of an
cos-pulse. The time interval is 0 < ¢ < 400. Lower plot: Emergence of chaos after a collision of
two solitons which creates a soliton—anti-soliton pair. The time interval is 2600 < ¢ < 3000. Right
panel: Transient times to chaos for different backgrounds v*. The length of the lattice is N = 32
and the initial cos-pulse is used. In order to obtain an average of the transient times we also varied
the width of the initial pulse from 5 to 15 and calculated the transient time as the average over the
transient times for different initial pulses. The line is an exponential fit and the transient times scales
with T' ~ exp 16.7v*.

one kink and several solitary waves. These structures appear to survive collisions quite
unaffected. The lower plot shows, that after some transient time chaos emerges. The
chaotic state begins to develop after a collision producing a large-amplitude soliton—anti-
soliton pair. Then an avalanche of soliton—anti-soliton collisions is triggered resulting in
a fast chaotization.

In Fig. 2.8 we show also a remarkable dependence of the average transient time, after
which chaos establishes, on the parameter v*. For larger values of v* the transient time
is exponentially large, which means extreme stability of the solitary waves. Qualitatively,
this stability can be attributed to a smallness of effects of discreteness of the lattice
for large v*. Here, the waves are relatively wide, thus they are well approximated in the
QCA, which is close to the integrable Korteweg-de Vries equation. For small v* the waves
are close to compactons that are short and for them the discreteness that causes non-
elasticity of collisions is essential. Furthermore, the number of emitted waves decreases
with increasing v* and the velocity of the waves is bounded from below. These two
effects reduce the possibility that two waves interact with each other, resulting in an
increased transient time.

2.4 Higher-dimensional phase lattices

A generalization of the chain of coupled phase oscillators (2.9) is a two- or higher-
dimensional lattice. Each phase oscillator is here coupled to its nearest neighbors in a
regular higher-dimensional geometry.
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Figure 2.9: Emergence of wave fronts in a dispersively coupled van der Pol oscillator lattice (2.39)
of dimension 120 x 120. Here, the phase difference in i-direction v; ; = @;11,; — @;,; is shown for
different times (¢t = 0, 2000, 4000, 4000, 5000 from left to right). The phase is defined via ¢; ; =
arctan(d; j/x; ;). In (a) the initial condition is a homogeneous state perturbed by a phase modulated
front and in (b) a localized initial pulse. The emergence of traveling fronts is clearly visible and these
fronts are compact.

First, we give an example where coupled phase oscillator lattices are of interest — a
two-dimensional square lattice of dispersively coupled van der Pol oscillators:

jﬁi,j = ,u(l — .QTZZJ)Q‘Z'L]' — Tyj -+ €[LAD£E7;7]' . (239)
p =02 ¢=0.08and Apz;; = it1,; + Tijs1 + Ti1j + T j—1 — 4x;; is the two-
dimensional discrete Laplacian. The phase of each oscillator can approximately be defined
as p; ; = arctan(&; ;/z; ;). In Fig. 2.9 we show the evolution of two exemplary initial
conditions. In detail, we show the evolution of the phase differences u; ; = ¢;+1 j—¢; ; in
i-direction. In Fig. 2.9(a) the initial condition is a homogeneous state, which is perturbed
by a phase modulated front. From these initial perturbation one can clearly recognize
the emergence of traveling fronts. These fronts are compact. After some transient time,
some of these fronts are destroyed and a chaotic state establishes. In Fig. 2.9(b) the
evolution of a localized pulse is shown. Again, the emergence of traveling compact fronts
is visible. In the center of the excited region the phases are chaotic.

The generalization of the chain (2.5) for a two-dimensional square lattice reads

Dij = Wotq(Pir1j—ij) Ta(Pim1—©ij) +a(Qije1—@ij) +q(pij-1—wi;) - (2.40)
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This equation can always be transformed into a rotating frame, such that w, vanishes. In
the following we will omit this term. Furthermore we assume a purely dispersive coupling
q(¢) = q(—¢). The differences in ¢ and j direction are introduced as

Uij = Pit1,; — iy and Vij = Pij+1 — Pij - (2.41)

They have to fulfill
Ui+l — Ui = Vi1 — Vij , (2.42)
because ¢;j + u;j + Vit1,; = Pit154+1 and i+ Vi Ui = Qig1je1. Eq. (2.42) can
be written as Vp x (u,v)? = 0, where Vp is the discrete nabla operator. Therefore,

the differences (u; ;,v;;) and the phases ¢, ; allow the analogy to classical continuous
fields: the vector field (u,v) is rotation free and ¢ is the according potential.

Taking now the time derivative of (2.41) and inserting the equation for the phases (2.40)
yields

Ui j =q(Uiv15) — q(uim1y) + q(Vig1;) + q(Vig1-1) — q(viz) — q(vij-1) (2.43a)
Uij =q(Vij41) — q(Vij—1) + q(wij41) + q(wiz1j41) — q(uij) — q(ui—1;) . (2.43b)

where ¢(v) = g(—v) has been used. This equation is the model for compact traveling
wave fronts.

2.4.1 Quasi-continuous approximation

One tool to study traveling wave phenomena is the approximation of the lattice equations
in terms of a continuous variable. The success of this method has been shown in the
last sections, where one-dimensional phase compactons have been described by their
continuous counterparts.

To derive a QCA for the two-dimensional phase lattice we will approximate the phases
n (2.40), which are replaced by the continuous variable p(x,y) and ;11 ;, @i jr1 are
Taylor-expanded up to third order. Next, one defines v = hy, and v = hy, and
differentiates the equation for the phases into z- and y- direction to obtain

1

1

1 1 1 1
+3 q (V) Vgyy + 3 q" (V) vy, + 5 q" (v)vy gy + 1 q(?’)(v)vzfui} (2.44a)
: 3 L, 5 1 (3) 3
v =2h0, (q(u) + q(v)> +h 34 (V)Vyyy + 64 (V)vzvy, + 14 (v)v,

1 1 1 1
+ 3 q (W) Uy + 3 ¢" (u)uytg, + B ¢" (u)upug, + 1 q® (u)uyui} . (2.44b)
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The full derivation of this equation is given in appendix A.4.

In the one-dimensional case we have shown that it is also possible to derive a QCA from
the Taylor expansion of the difference variables. Of course, such an expansion can also
be applied to the two-dimensional phase lattice (2.43). Here, one has to expand w;11 11
and v;11 11 in Eq. (2.43). Unfortunately, this expansion introduces terms like [¢(v)].s
which are of dissipative nature. Hence, this expansion is not suitable for the comparison
with the lattice.

Now, we look for traveling wave front solutions in the form
U(ZL', Y, t) = U(t - blx - bz?/) = U’(S) ' U(ZL’, Y, t) = U(t - b1$ - b2y) = U(S) ' (245)

with by and by being the inverse velocities in z and y direction satisfying b; = cos6/\
and by = sinf/A. X\ is the front velocity and 6 the propagation direction of the wave.
We insert this ansatz into Eq. (2.44) and integrate every equation from 0 to ¢, assuming,
that u(0) = u* = const and v(0) = v* = const. The resulting set of ordinary differential
equations for u(s) and v(s) fulfills by (v(s) —v*) = ba(u(s) —u*) and one finally obtains

bi
u = u'+ 2 (q(u) +q(v*) —g(u) — g(tan(O)u) ) - La(w)],,
_bibg [q(tan(ﬁ)u)]ss + %q" (u)u? + %q”(tan(@)u)u? . (2.46)

The term v* — tan(f)u* has been omitted for simplicity. The one-dimensional case can
be recovered by setting b, = 0. For by = by both components are equal u = v.

Kinks between two fixed points of Eq. (2.46) might exist. One fixed point is given by
the integration constants u* and v*. The other one has to fulfill u(s) = @* = const.
and v(s) = v* = const. This yields the condition

u—ut = —2h G(u*,v*,ﬂ*,@*) , Ut =0t = —2by G(u*,v*,ﬂ*,@*) , (2.47)

where G (u*,v*, @*, %) = q(@*) + q(v*) — q(u*) — q(v*). From this equation alone, one
can not compute u*, v* or the velocity. It only relates the three variables.

In principle one can solve the equations for the traveling waves numerically, either by
transforming them to a four-dimensional ordinary differential equation or by some more
advanced algebraic differential equation methods [69]. Here, we want to give an ana-
lytical solution for small amplitudes. In the surrounding of u*, v* the coupling function
can be approximated by a Taylor series. For ¢(v) = cosv and u* = v* = 0 the linear
term vanishes and ¢(u) ~ q(0) — 1/2u?. Inserting this approximation into (2.46) yields

bi+b; , b} + b

u = by (u* +v?) + TR + gy Wss - (2.48)
Remember, that v(s) = by/byu(s). One solution is
7 3 2\
u(s) = =Acosf cos® \/j— 5 . 2.49
(=) 5 ( 7\/3 + cos(40) > (2:49)
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Figure 2.10: (a): Top panel: sectional view of a compact front in the two-dimensional lattice (2.43)
with A = 2/v/5 ~ 0.89 and @ = arccos2/v/5 ~ 0.46 (corresponding to b; = 0.8 and by = 0.4). The
solid lines are the shapes of the u and the v part, where w is the larger one. Note, that u and v are not
centered at the same s. The dashed line is the solution of the QCA (2.44). Bottom panel: the same
plot in logarithmic scale. (b) The shape of the compact front in the lattice; only the u component is
shown.

From this periodic solution one can construct a compact traveling wave front solution

T (C1 cos® ws, Cy cos? ws)T for [s| < &

(u(s),v(s))" = (0,0)" (2.50)

else,

where the parameters C, Cy, w are determined by (2.49). At s = 7/(2w) every term in
(2.44) degenerates to zero and one can glue together the trivial (u,v)” = (0,0)” and
the periodic solution. In Fig. 2.10 we show this compact front in comparison with the
front in the lattice, both solutions coincide very well. For the full coupling function ¢(v)
we assume that the front will behave like the small-amplitude front near u*, v* and only
the shape of the hump will be affected by the full coupling.

2.4.2 Traveling compact wave fronts in the lattice

Now, we will investigate traveling waves in the lattice. Therefore, we take the plane
wave ansatz

Ui 5 = U(t — bll — bg]) and Vi = ’U(t — bll — bgj) , (251)

where b; and b, are the inverse velocities, defined in Eq. (2.45). From w; ;i1 —u;; =
Vit1,; — U;; it follows that the traveling wave fulfills

v(s —by) —ov(s) = u(s — by) —u(s) , (2.52)
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such that one can compute v(s) from the knowledge of u(s). We insert the traveling
wave ansatz into (2.43) and obtain

u = q( S—bl) ((S+b1)) ((s—bl))—i-

q(v(s — by +bs) — q(v(s)) — q(v(s + b2)) (2.53a)
v = q(v(s—b2)) —q(v(s+b)) + qluls — b)) +

q(u(s+ by — b)) —q(u(s)) — q(u(s +b1)) (2.53b)

which is a set of advance-delay equations with different delays and advances. Again, the
one-dimensional case (2.29) can be recovered by setting either b; = 0 or by = 0 and
by = by yields a scaled version of Eq. (2.29). Next, we integrate (2.53a) from 0 to s and
assume that u(s < bl + b2) = u* and v(s < bl 4 b2) = v*

s+by S s+b2

u—u* =2b(q(u”) +q(v*)) — (u)dt — (v)dt — (v)dt  (2.54a)
R L L
v =2 (g(u) + (")) - / o)t / g(w)dt — / g(u)dt . (2.54b)

The kink condition can be derived if one assumes that a s; > s exists with u(s > s1) =
u* = const and v(s > s1) = U* = const. This results in (2.47). Now, it is possible to
construct a numerical scheme to solve Eq. (2.54). For simplicity, we restrict ourself to
q(v) = cosv with u* = v* = 0. Eq. (2.54) reads then

s5+b1 s
u = 4b; — / cos udt — / { cosv(t) + cosv(t + bg)}dt = F(u,v) . (2.55a)
s—by s—b1

Then, one chooses an initial profile uy and iterates
3/2
(u ) _ (||<uk,vk>||) ! (
Ukt (@, 0)]|

@ = F(ug,vg) and (s +b1) = 0(s) + u(s + bg) — u(s) . (2.55¢)

|| - || denotes the Li-norm ||(u,v)|| = [ v/u? + v?ds and the normalization ensures that
the solution does not converge to the constant solution u(s) = v(s) = 0. The part
for v(s) in Eq. (2.55¢) is a delay equation, which can easily be solved if v(s < by +
by) = const. In Fig. 2.10(a) we show the sectional shape of a two-dimensional compact
front with A\ = 2/v/5 and 6 = arccos2/+/5. Its compact properties, i.e. their super-
exponential tails are clearly visible in the logarithmic scale. Note, that the components u
and v have different widths and that their maxima are shifted. In Fig. 2.10(b) we show
the shape of the front in the lattice.

<

) , (2.55b)

where



2.4. HIGHER-DIMENSIONAL PHASE LATTICES 33

Figure 2.11: Evolution of an initial step in ¢; ; or an initial pulse in u; ; and v; ;. The amplitudes
of the initial pulse are uy,q, = 2.30179 , Vyae = 0.459599, the width is w = 10 and the orientation
is # = w/16. The upper row shows the field ¢; ; at times ¢t = 0, 10, 20, whereas the lower row shows
the phase differences u; ;. It is clearly visible that the initial front evolves into a train of traveling wave
fronts which are the compact wave fronts.

2.4.3 Numerical studies
Evolution of an initial step

In the last section we have studied the properties of traveling wave fronts in the two-
dimensional phase lattice. Here, we address the question about their appearance from
physically realizable initial conditions.

We start with the most simple scenario allowing for the emergence of traveling wave
fronts: an initial step in ¢;; rotated against the i-axes by an angle #. To model the
sectional step we choose a cosine where the amplitude and the width w of the step are
parameters. Such a step refers to a pulse in the differences v, ; and v; ; with amplitudes
Umaz aNd Vpnez. In Fig. 2.11 we show the evolution of the step. The initial width of the
step is w = 10 and the orientation is § = 7/16; the amplitudes in the difference coordi-
nates are U,q, = 2.302 and v,,4, = 0.456. During the evolution, the step decomposes
into a train of traveling compact steps, which can be clearly seen in Fig. 2.11. In the
difference coordinates these steps are compact solitary fronts. In Fig. 2.12(a) we plot
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Figure 2.12: Compact traveling wave fronts are emitted from an initial pulse: (a) shows the amplitudes
Umaz Of the emitted pulses in dependency on the initial amplitude. The width of the initial pulse is
w = 10 and its orientation against the i-axis is § = w/16. Note, that a kovaton front appears at
approximately . (t = 0) = 3.5. In (b) the height ukovaton; UKovaton Of the emitted kovatons are
plotted in dependency on the orientation angle 6.

the amplitudes of the emitted compact fronts in dependence of the amplitude of the
initial pulse. The width is fixed to w = 10 and the orientation to § = 7/16.

From the study of the evolution of an initial step one can also observe another traveling
wave structure — kovatons, which are traveling kink—anti-kink pairs in the difference
coordinate frame. In Fig. 2.13 we show the shape of a kovaton, which emerged from an
initial step. In Fig. 2.12(b) height of the kovaton fronts in dependence of the angle 6
are plotted.

Evolution of localized initial data

Having studied the evolution of fronts in the phase lattice, we turn our attention to
general localized initial conditions. A particular initial setup in this context is a single
excited lattice site, see Fig. 2.14. In this situation two effects are observed: First,
regular fronts emerge from the initial excited lattice site. The shape is not exactly
circular, which is due to the direction-dependent propagation velocity. These fronts are
similarity to the kovaton or kink fronts observed in the evolution of steps. They have
a compact support and their height depends on the propagation direction. The second
important observation is the formation of a chaotic region and a spreading of this region.
The spreading is slower than the propagation of the front.

To specify the propagation of the chaotic region we use a simple variance based approach
to calculate the spreading velocity of this region. Therefore, we compute the variance
of sin(v; ;) for all 4,7 in a time window of length Tyindow = 20. In the upper left plot
in Fig. 2.15 we show sin(v; ;) for i = 100, j = 100. The chaotic region approximately
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Figure 2.13: Here, a kovaton front emerging from an initial step is shown. The initial width is w = 15,
the orientation 6 = 7/16 and the initial amplitudes are w4, = 3.07581 and vy4, = 0.612852.

vi ’j
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Figure 2.14: Single site initial conditions. Snapshots of the phase lattice for three different times
t = 2,40,80. The dimension of the lattice is 256 x 256. The fronts are compact and refer to kink
solutions.
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Figure 2.15: The upper left plot shows sin(vigo,100) and the lower left plot shows the variance of
sin(v100,100) in a time window of T' = 100. When the chaotic front reaches this point the variance
grows immediately. The dotted line is the threshold 0.2 which is used to compute N.;. On the right
panel the time dependence of the radius of the chaotic region R = /N, /7 is plotted. It follows a
linear growth with R = 0.0018991¢ 4 0.02667, which is a simple diffusion process.

reaches the site at ¢ = 60, and then the variance immediately grows, see the lower plot
on the left in Fig. 2.15. To determine now the spreading velocity we count the number
of lattices sites V., with a variance larger than 0.2. Assuming that the chaotic region
grows approximately circular we can define the radius R = /N, /7. The evolution of
R is shown in the right panel of Fig. 2.15. This growth is linear and proportional to
R ~ Dt width the diffusion constant D = 0.047272/7.

2.5 Conclusion

Summarizing this chapter, we have shown that many interesting and important travel-
ing wave phenomena can be found in dispersively coupled phase oscillator lattices. We
have seen that one particular property of such lattices is the strongly nonlinear coupling
function where linear terms are totally absent. This gives a link to the theory of com-
pactons which exists in systems with nonlinear dispersion. In fact, it could be shown
that the small amplitude limit of the quasi-continuous approximation of the phase lattice
is exactly the K'(2,2) equation, which is the classical compacton equation.

In the full lattice equations compactons also exists. Here, they are not defined on a
compact support but their tails decay with a super-exponential rate. We have calculated
this rate and compared the lattice compacton with their quasi-continuous counterpart.
Besides compactons we could also observe a variety of other traveling wave structures,
namely kinks with compact or exponential tails or classical solitary waves with exponential
tails. Furthermore, a solitary wave with oscillating and exponentially decaying tails could

be found.

Finally, we studied a two-dimensional phase oscillator lattice. Again, the strongly non-



2.5. CONCLUSION 37

linear coupling function is responsible for the emergence of compact structures. In
particular, we have shown that traveling two-dimensional fronts with super-exponential
tails do exist.






Chapter 3

Compactons in Hamiltonian
lattices

Hamiltonian lattices arise in many fields of theoretical physics. For example, they play
an important role in the understanding of the statistical properties of macroscopic sys-
tems. A first attempt into this direction was the Fermi-Pasta-Ulam experiment [31],
which concentrated numerically on the thermalization properties of a lattice of coupled
nonlinear oscillators. The outcome of this experiment was surprising: for some initial
conditions thermalization was not observed and a recurrence phenomena established.
A full understanding is still missing and subject of current research [32, 70, 71]. Fur-
thermore, Hamiltonian lattices have been studied in connection with heat transfer and
thermal conductance [33] or wave transmission [72].

Another direction of research on Hamiltonian lattices are discrete breathers [17, 18],
which are genuine nonlinear excitations of the lattice. Breathers are spatially local-
ized and time-periodic structures, where the frequency is located outside of the (linear)
phonon spectrum. Discrete breathers can be found in a variety of physical setups, for
example in coupled wave guide arrays [43, 44]. For more applications see the review [18]
and references therein.

Anderson localization [73-75] and related topics are usually described by Hamiltonian
lattices. Here, localization is induced by disorder and the localization mechanism can
be thought of as an infinite series of wave scattering events on impurities, such that the
wave can not leave a finite region. Recently, the interplay of disorder and nonlinearity
has attracted a lot of attention in the scientific community. Here, one basic question
deals with the destruction of Anderson localization by nonlinearity [34, 76, 77].

The general form of a Hamiltonian lattice of NV sites is

2
P
H = ka + Vielae) + Wilqr, g2, - an) (3.1a)
k
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where ¢, and p, are the generalized coordinates and momenta and can be vector-like.
Vi(qx) is the onsite potential and Wy(q1,...,qn) is the interaction potential. In many

cases, the interaction is assumed to be of nearest-neighbor type Wi(qy,...,qn) =
W{(qr+1,qr)- The equations of motions are obtained from the Hamiltonian equations
oH ow ow _
o = —— = —V'(q) — (qr+1, qr) _ (qx; qr—1) . (3.1b)
oy, g gy

Some of the examples mentioned above are not described by the Hamiltonian (3.1) but
fit better into the class of complex valued Hamiltonian systems related to the discrete
nonlinear Schrédinger equation. Such systems are the subject of chapter 4 in the context
of strongly nonlinear interaction and compact structures.

The special feature of our work are strongly nonlinear Hamiltonian systems, where linear
interaction terms are totally absent. In particular, the motivating example of the granular
chain in the introduction is exactly of this type. Here, the force between two granular balls
follows the Hertzian law F' ~ §%/2, where § is the overlap between the balls [39, 40].
Granular chains have been studied first by V. |. Nesterenko in the context of pulse
propagation in mid 1980s [1, 78]. Nesterenko also coined the term “sonic vacuum” for
the absence of linear waves in these systems.

3.1 The basic model

The basic model of this chapter is a Hamiltonian lattice of the type

2
Py 1 n+l
H = —= + — . 3.2
Ek 5 T 1|Qk+1 Q| (3.2)

It has only one parameter — the nonlinearity index n; an onsite potential is not present.
The absolute value of the differences has to be introduced to ensure that the potential
possesses a minimum. The linear lattice can be reproduced by setting n = 1. However,
this case is not very interesting and we will restrict ourself to n > 1.

In the granular chain the nonlinearity index is usually n = 3/2 which resembles the
Hertzian law and describes the repulsive force between two spheres in contact. For
other contact geometries different values of n have to be used. Since the interaction is
attractive if g1 — g1 > 0, the Hamiltonian (3.2) can not describe the granular chain in
all details. To account for the absence of an attracting force the coupling potential has

to be modified to —[ge+1 — gi]™*", where [g]- = 0 for ¢ > 0 and ¢ for ¢ < 0.

We want to mention here, that the mass or an coupling strength does not appear in
Eq. (3.2). Such constants can be removed by scaling of ¢ and ¢ and we set them without
loss of generality to 1. Note further, that the interaction is non-smooth, despite for the
valuesn =1,3,5,....
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The equations of motion read

G = |qr+1 — qrl” sign(@rs1 — ) — e — @e—1|" sign(qx — qu—1) - (3.3)

They can be written in terms of the differences QQ,, = qr1 — qx between adjacent lattice
sites

Qk = |Qr11|" sign(Qrr1) — 2[Qx|" sign(Qr) + [Qr—1]" sign(Qr—1) . (3.4)

In the following we will omit the signum function for simplicity. The Hamiltonian (3.2)
possesses two conservation laws: energy and total momentum. The first one corresponds
to the time invariance of the Hamiltonian, whereas the second one is due to the invariance
of arbitrary coordinate shifts ¢ — ¢ + qo. Furthermore, the overall momentum can be
trivially set to zero by transforming to a moving reference frame.

The lattice (3.2) has a remarkable scaling property

- n+1 1-n ~

g=aj, p=azp, H=ad""H, t=az1. (3.5a)

With these relations it is always possible to scale the system such that H = 1. Larger
energies correspond then to larger amplitudes and smaller time scales, but the spatial
structure is untouched. Furthermore, a traveling wave qx(t) = q(k — A\ot) with velocity
Ao generates a family of traveling waves with the same spatial profile but different
amplitudes and velocities, being related via

A= Aa"V/2 (3.5b)

In the last chapter, an approximation of the lattice in terms of a continuous variable
turned out to be very successful. In particular, it could be shown that traveling waves
exist in both models and that they coincide very well. To derive a quasi-continuous
approximation of (3.2) two ways are possible. The first one is a direct expansion of the
lattice variables ¢, and the second one an expansion of the differences Q.

For the direct expansion of the original lattice variables one approximates g+ in (3.3)
by a Taylor series of order 4. Inserting the series and collecting all terms up to order of
h"*3 yields

o=l M (e = ") L 0)

where h is the lattice spacing. This equation is the long wave approximation of
Nesterenko [39, 78]. To simplify and to compare it with the QCA for differences we
differentiate (3.6) with respect to z, define @) = hq, and set h = 1:

~ ~ 1/~ nn—1) ~ 5~
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Note, that the lattice spacing h is not a small parameter and the cutoff at order 4 is
more or less arbitrary. To justify the QCA one has to compare its solutions with those
of the full lattice problem.

The expansion of the difference coordinates is very similar. One approximates Q0+ by
a Taylor expansion of fourth order and inserts this approximation into (3.4)

QU Ol = Q" ) + 15 [Q" (5, s (38)

This equation differs by a coefficient [Q"?Q?],. from Eq. (3.7). In [9] both approxi-
mations have been compared from a general point of view.

Equations (3.7) and (3.8) belong to a class of strongly nonlinear PDEs, because the
dispersion term with the fourth derivative is nonlinear. The equations do not possess
linear wave solutions (this situation has been called “sonic vacuum” by V. Nesterenko),
but it has nontrivial nonlinear ones. In this way it is very similar to a family of strongly
nonlinear generalizations of the Korteweg-de Vries equation, studied in [6], and can be
considered as a strongly nonlinear version of the Boussinesq equation [7].

3.2 Traveling solitary waves

The topic of this section are localized traveling waves in the lattice equations (3.2) and
their quasi-continuous approximations (3.7) and (3.8). We will start our considerations
with the QCA where we can find analytical traveling wave solutions. In the lattice, we
tackle the problem numerically. The results of both models are compared with each
other. Contrary to the previous chapter, we do not analyze the problem in all details.
We are only interested in compacton solutions which can only exist around () = 0.
Different backgrounds @) # 0 are not considered here.

3.2.1 Quasi-continuous approximation

The models (3.7) and (3.8) describe the lattice as a continuous medium. We seek
traveling solitary waves in the usual form Q(z,t) = Q(x — At) = Q(s) where X is the
velocity. Inserting this ansatz into Eqgs. (3.7) and (3.8) and integrating twice yields

2=+ i) - N2 direet (39)

NQ=Q"+ % Q"] differences . (3.9b)

Note, that we have assumed that the solution tends to zero as s — +o0o. The second
equation also appears in the traveling wave ansatz for the K (n, n)-equation in [6]. Both
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equations can be solved [79, 80] for an arbitrary power n by

2
Q(s) = |A|™A; cos™(Bys) with m=_—— (3.10a)
where the coefficients A and B differ for both approximations

2\ (n — 1)2 ,

Al = By = —_— 1

1 (1+n) : 9 6n(n+1) direct (3.10b)
1\ 7= 1

Ay = (n il ) : B, =3 t differences. (3.10c¢)

2n n

The solutions (3.10) do not satisfy boundary conditions, moreover, they intersect with
another, trivial solution @ = 0. Remarkably, because of the degeneracy of Egs. (3.9a)
and (3.9b) at zero, one can merge periodic solutions (3.10) with the trivial solution
@ = 0 (see a detailed discussion in [6, 7]):

3.11
0 else, ( )

O(s) = {|/\|mAZ- cos™(Bys) |s| < 55
with 7 = 1, 2. This gives a compacton — a solitary wave with compact support — according
to the definition in [6, 7]. For other, non-solitary solutions of (3.7) see e.g. [39, 80].
Note that due to the symmetries © — —x, Q — —(@, solitary waves with both signs of
velocity A and of amplitude A are the solutions.

It is important to check the validity of solution (3.11) by substituting it back to (3.7)
or (3.8). Then no terms are singular for the case m > 2 only, i.e. for n < 2. Thus,
the constructed compacton solution (3.11) is, strictly speaking, not valid for strong
nonlinearities n > 2. This conclusion is, however, only of small relevance for the original
lattice problem. Indeed, the PDE (3.7) or (3.8) is only an approximation of the lattice
problem: because the spatial extent of solution (3.11) is finite, there is no small parameter
allowing us to break Taylor-expansion somewhere. Just breaking it after the fourth
derivative is arbitrary and can be justified only by the fact that in this approximation one
finds reasonable solutions at least for some values of n. A real justification can come
only from a comparison with the solutions of the lattice equations, to be discussed in the
next subsection. And there we will see that the solution can be found for nonlinearities
with n > 2.

3.2.2 Traveling waves in the lattice

In the lattice we use the same traveling wave ansatz as for the phase lattice Qx(t) =
Q(k — Mt) = Q(s) with the wave velocity A\. Mathematically, the existence of traveling
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Figure 3.1: The traveling waves obtained from (3.14) for various powers n. Markers show the wave on
the lattice, dotted lines show the corresponding solutions of the quasi-continuous approximation (3.8).
Left column: normal scale, right column: logarithmic scale. (a,b) n = 3/2; (c,d) n =3, (e,f) n = 11.

waves in (3.3) has been shown in [61, 81]. Inserting the ansatz into the equations of
motion (3.4) yields

NQ"(s) = Q" (s —1) —2Q"(s) + Q" (s + 1) . (3.12)

We use the scaling relation (3.5) to set A = 1. As shown in [82] the advance-delay
differential equation can be written in integral form

s+1

Q)= [ a-ls-eheree. (313
s—1

with a triangular kernel. Now, following the approach of V. Petviashvili [65, 66], we

are able to construct a numerical scheme to solve the integral equation (3.13), which

is quite similar to that one for the phase compactons (2.34). Starting with some initial

guess QO, one iterates

@il \* SH
a= (o) e md o= [ askgeor. G
* s—1
To compute the norm we have used the L; norm, but any other norm can be used
too. The normalization with a = "~ ensures that the scheme converges to the desired
solution. The integral has been computed numerically by a 4th-order Lagrangian inte-
gration scheme [67]. In Fig. 3.1 the traveling waves solution for various nonlinearities n
are shown. Using the logarithmic scale one clearly recognizes the compact nature of the
waves. Interestingly, the numerical scheme can be applied even to huge nonlinearities
n > 20.
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Figure 3.2: The dependency of the amplitude @4z, the energy E and the Li-norm Np, of a
compacton on the nonlinearity index n. In this plots A = 1. For comparison, the curves from the
quasi-continuous approximation are shown with dashed lines for the Eq. (3.7) and with dotted lines for
Eq. (3.8).

In Fig. 3.2 we show some properties of the found waves in dependence of the nonlinearity
index n. In detail, we show the total energy E, the L;-norm N, and the amplitude
Qmax- Remarkably, the effective width Ny, /Qna. decreases with increasing nonlinearity
index and it seems that the profile of the compacton converges to a triangular shape as
n — oo.

The stability of the compactons has been shown by direct numerical simulation, see
Figs. 3.5, 3.6 and 3.7. They travel through the lattice without distortion, even if the initial
state is perturbed. A general theory for the stability of traveling waves in Hamiltonian
lattices like Eq. (3.2) has been developed in a series of papers by Gero Friesecke and
Robert Pego [83-86] based on rigorous perturbation arguments. The stability of solitary
waves in dissipative lattices has been studied in [87].

Estimation of the tails

It has been shown in the previous section that the solitary waves in the QCA possess a
compact support. In the lattice, this is surely not the case. The integral equation (3.13),
which has to be fulfilled for solitary waves, is nonlocal and therefore a truly compact
wave is not possible. But one can estimate the decay of the tails. Therefore, we start
with Eq.(3.13) and use the ansatz Q(s) = e~/():

s+1

Qs) = / (1 |s — e ™ de (3.15)

s—1
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Figure 3.3: (a) The tails of the compactons in double logarithmic scale. (b) Comparison of the
estimate (3.19) with the compactons obtained from (3.14).

Now, we assume that the tails of )(s) decay very fast or equivalently that f(x) is a
monotonically increasing function. Then, the integrand in (3.15) has a maximum close
to s — 1 and one can expand f(£) into a Taylor series around s — 1, keeping only the
first-order term:

s+1

Qs) ~ / (1—|s— ) exp{ —nfls — 1) —nf'(s — 1)(E — (s — 1))} . (3.16)

s—1

This approximation is also know as Laplace method. Now, we shift the integration range

2
Q(s) ~ e /7D /ge—"f’(s—”fdg (3.17)
0

where we also replace the decreasing part of the kernel with £. Since this integrand
decreases very fast, we can set the upper bound of the integration to infinity and we
obtain by partial integration

o-nf(s-1)
[nf’(s — 1)]2 .

Taking the logarithm yields —f(s) = —nf(s — 1) — 2log[nf’(s — 1)]. Since we expect
that f(s) is rapidly growing we can neglect the logarithmic term f(s) = nf(s—1). This
equation is solved by f(s) = Cn® = Ce'°8(™* where C' is an arbitrary constant. Finally,
we obtain the super-exponential decay:

Q(s) = eV = (3.18)

Q(s) = e’ ~eexp [ — Cexp (log(n)s)} : (3.19)
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Figure 3.4: (a) Spatial profile uy, of the compact breather solution gx(t) = (—=1)* f(t)u in (3.3). (b)
The eigenvalues of the according monodromy matrix. One eigenvalue has an absolute value larger than
one, such that the compact breather is unstable.

This expression was first obtained by Chatterjee [88] using a direct expansion of the
advance-delayed equation (3.12). Note, that the velocity A enter this equation via the

scaling of Q(s).

In Fig. 3.3(a) we show the tails of the compactons for various values of n and in
Fig. 3.3(b) we compare the estimated decay rate (3.19) with compactons obtained nu-
merically from the traveling wave scheme (3.14). To obtain the double logarithmic decay
rate 0 = dlog(|log(Q(s))])/ds, we first compute log(| log(Q(s))|) and then the deriva-
tive is calculated using a spline smoothing scheme [89]. The numerical value of f3 is
shown in Fig. 3.3(b). Both coincide very well.

Discrete compact breathers

For n = 3 Eq. (3.2) has also been studied in the context of discrete breathers [90, 91].
It could be shown that a discrete breather can be obtained by the separation ansatz
qu(t) = (—=1)* f(#)up which results in f”(t) = Cf(t)* and Cup = (ups1 +ur)® + (ug +
ug_1)%, where C' is a constant. The temporal component can be solved by f(t) =
Acn(AV/Ct,1/+/2). en(z,n) is the Jacobi elliptic function with modulus n. The spatial
part can be solved by an iterative Petviashvili scheme, see appendix B.1. For C' =1
the spatial profile is shown in Fig. 3.4. The tails of the breather decay with a super-
exponential rate, hence this breather is compact. The stability of the compact breather
can be studied using Floquet theory. In Fig. 3.4 the eigenvalues of the monodromy
matrix are shown. One eigenvalues has an absolute value larger than one, hence, the
breather is unstable.
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3.3 Numerical experiments of the 1D chain

3.3.1 Appearance of compactons from initial conditions

The compact solitary waves constructed in the previous section are of relevance only
if they evolve from rather general, physically realizable initial conditions. For an ex-
perimental significance (see [1, 92] for experiments with Hertz beads) it is furthermore
important, that the emerging compact waves establish on relatively short distances, oth-
erwise dissipation (which has not been considered here) will suppress their formation.
We illustrate this process in Fig. 3.5. There, we show a numerical simulation of (3.3)
on a finite lattice of length N = 128 with open boundaries ¢; = |2 — ¢1|"sign(q2 — ¢1)

and ¢y = —|qn — qn_1|"sign(gn — gn_1). One of the quantities we report is the local
energy
pi 1 +1 +1
=2+ ———— — q|" — qr_1|" ) 3.20
E= 5 +2(n+1) (lgrr1 — ™™ + lax — qr—a|™™) (3.20)

As initial condition we have chosen a kink in the variables q;: ¢, = (n + 1)1 for
k > 64 and g, = 0 elsewhere. This profile has unit energy and it corresponds to localized
initial condition for the differences Qy = dp64 - (n + 1)+ The evolution is shown
in Fig. 3.5. From the initial pulse of @, a series of compactons with alternating signs is
emitted in both directions. Of course, compactons with large amplitude are faster which
is nicely illustrated in the plot. We expect that at large times, compactons with small
amplitudes will continue to detach. For other nonlinearities n the plots look very similar
and compactons are emitted in every case, see also [93].

In the next numerical experiment we studied the emergence of compactons not from
a sharp step in the coordinates ¢, but from localized random initial conditions. In
Fig. 3.6(a) we show a typical evolution in a lattice of length N = 512 (with nonlinearity
index n = 3) resulting from random initial conditions g in the small region N/2 —5 <
k < N/2 45 around the center of the lattice. In this region the coordinates ¢, have
been chosen as independent random numbers, identically and symmetrically uniformly
distributed around zero, while p,(0) = 0. Furthermore, the energy of the lattice was
set to £/ = 1 by rescaling. In the particular realization of Fig. 3.6(a) two compactons
emerge to the right and four compactons to the left. In the center of the lattice a chaotic
region establishes and slowly spreads over the lattice, possibly emitting more compactons
on a longer time scales. In Fig. 3.6(b) we perform a statistical analysis of this setup
by showing the energy distribution of compactons emitted from localized random initial
conditions as described above. This distribution was obtained from 60000 simulations,
in each simulation the energy of the emitted compactons have been determined and
counted. The functional form of the distribution obeys in very good approximation
P(E) ~ E~*1eE)=b with ¢ = 0.57 and b = 5.47.
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Figure 3.5: Evolution of compactons from an initial kink and for the nonlinearity index n = 3; the
lattice length is N = 128 and open boundary conditions are used. Different plots show different
quantities of the lattice: (a) the coordinates g; (b) the energy & defined in (3.20); (c) the difference
coordinates Qx = qr+1 — gk at time ¢t = 80, the initial state at ¢ = 0 is shown here as the dashed line
and (d) the difference momenta P, = pr41 —pk at t = 80. The compactons originating from this initial
state are clearly separated near the borders of the chain, those in the middle part are still overlapping.

3.3.2 Collisions of compactons

As we have demonstrated above, compactons naturally appear from initial conditions.
Their stability during the evolution can be characterized by studying their stability due
to collisions. In Fig. 3.7 we exemplarily show the collision of two compactons heading
towards each other. They survive the collision but this process is not completely elastic,
some small perturbations (that presumably on a very long time scale may evolve into
small-amplitude compactons) appear. In [94] a method to systematically study the
collision of solitary waves in lattices was introduced. This method can be applied to
Eq. (3.2) and a similar study of collision of discrete compactons in DNLS-type lattices
has been performed in section 4.3.

Because of the non-elasticity of the collisions, the initial compactons get destroyed on a
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.

Figure 3.6: (a) Compactons emerging from localized random initial conditions. The nonlinearity index
is n = 3. The gray scale corresponds to the energy (3.20) of the lattice site. (b) Energy distribution
of the compactons emitted from localized random initial conditions. The statistics was obtained from
60000 simulations; in each simulation the lattice was integrated to the time 7" = 1000 and the energy
distribution of the compactons emerged to the right (black circles) and to the left (crosses) have been
determined. The distributions obeys in very good approximation P(E) ~ E~21°8(E)=b with ¢ = 0.57
and b = 5.47.

Figure 3.7: Collisions of compactons in the Hamiltonian lattice with n = 3, shown are the difference
coordinates Q.
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Figure 3.8: Collisions of compactons and emergence of chaos after multiple collisions. Different plots
show different nonlinearity indices (a) n = 3, (b) n = 9/2 and (c) n = 11. Time increases from left
to right and the difference coordinates Q) are shown in gray scale. Remarkably, the elasticity of the
collision increases with increasing nonlinearity index n, so that practically no irregularity appears at
n > 10.

finite lattice and a chaotic state appears, as illustrated in Fig. 3.8. There, we show the
evolution of two compactons with the same amplitude for three different nonlinearities:
n = 3,9/2,11. In the first two cases the chaotic state establishes relatively fast. In
the third simulation with n = 11 the situation is different. Here, the chaotic state
does not appear even on a very long time scale. We run the simulation for times up to
T = 2-10°, but could not observe the development of a chaotic state. We have checked
this phenomenon also for higher values of n with the same result. Presumably, these
initial conditions lie on a stable quasi-periodic orbit or are extremely close to one.

3.3.3 Chaos in a finite lattice

As demonstrated above, in a finite lattice general initial conditions evolve into a chaotic
state. For characterization of chaos we use Lyapunov exponents. The chaotic state of
the lattice has also been characterized in [40, 95] by the means of the velocity distri-
bution of the lattice sites. It has been found that the lattice possesses a quasi-non-
equilibrium phase, characterized by a Boltzmann-like velocity distribution but without
energy equipartition.

First, we check that chaos in the lattice is extensive, i.e. the Lyapunov exponents form
a spectrum when the system size becomes large and the energy density H/N remains
constant (Fig. 3.9(a)). This property allows us to extend the calculations of finite
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Figure 3.9: Lyapunov exponents of the Hamiltonian (3.2). (a) The Lyapunov spectra for one fixed
nonlinearity index n = 3 and different values of lattice length N = 16, 32, 64, 128. The index axis
is normalized to 1. (b) The Lyapunov spectra A; for various values of the nonlinearity index n (from
bottom to top: n = 3/2, 2, 5/2, 3, 7/2, 4, 6, 8) and fixed lattice length N = 16. Larger values of n
produce stronger chaos that smaller ones. (c) The largest Lyapunov exponent A; for different values of
n. The horizontal axis is logarithmic, thus one can see that roughly Ag ~ const - log(n).

lattices to the thermodynamic limit. Note, that due to the two conservation laws, four
Lyapunov exponents vanish; we have not found any more vanishing exponents, indicating
the absence of further hidden conserved quantities.

For a lattice of length N = 16 the dependence of the Lyapunov exponents on the
nonlinearity is shown in Fig. 3.9(b). For a fixed total energy (we have set H = N = 16
in these calculations) the Lyapunov exponents grow with the nonlinearity index. The
plot presented in Fig. 3.9(c) indicates that A, o logn, although we did not consider
very high nonlinearity indices to make a definite conclusion on the asymptotics for large
n.

We stress here that because of the scaling of the strongly nonlinear lattices under con-
sideration, chaos is observed for arbitrary small energies — only the Lyapunov exponents
decrease accordingly.

3.4 Higher-dimensional lattices

The Hamiltonian (3.2) can be generalized easily onto two- or higher-dimensional lattices.
Similar systems have been widely studied in different contexts and setups. For example,
traveling fronts have been investigated in [96-103] or discrete two-dimensional breathers
in [104]. Other studies concentrated on two-dimensional discrete solitons [105] and
discrete vortices [106]. In the context of compact structures two-and higher-dimensional
compactons have been found in generalizations of the K (m,n) equation [107] and their
discrete counterparts [108].

The Hamiltonian for the two-dimensional square lattice reads

1

n+1
il LR ay|" (3.21)

Pij 1 n
H = ;TJ + n—H}qz‘H,j — 4] e
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where (i, j) are the lattice indices. Other geometries like hexagonal or honeycomb lattices
are also possible but will not be considered here. The equations of motion read

Gij = (Qz‘+1,j — Qi,j)n — (Qi,j — Qi—l,j)n + (Qz‘,j+1 - Qi,j)n — (Qi,j — Qi,j—l)n . (3.22)

For simplicity, we have omitted the signum function here. The system has two conser-
vation laws — energy and total momentum. Furthermore, the scaling (3.5) is valid here.
Eq. (3.22) can also be written in terms of the difference variables U; ; = ¢;+1; — ¢;; and

‘/i,j = {qij+1 — Gij

Uy = Uy, — 200+ U+ Ve =V =V o+ ;; . (3.233)
‘/7:,]' — Zj+1 QVn +VT‘L] 1+ 7:'1]+1 U,Lnj Un1]+1 +Uzn . (323b)

The differences are rotation free Vp x (U, V)T = U, ;11 — Ui; — (Vigrj — Vij) = 0.

3.4.1 Quasi-continuous approximation

Here, we study the lattice (3.22) by means of the QCA. Therefore, the lattice variables
are described by a continuous variable ¢; ; ~ ¢(x,y) and neighboring sites are Taylor
expanded to fourth order. The calculations are rather lengthy, such that we restrict
ourself to the special case n = 2 and set the lattice spacing h = 1. Then, the quasi-
continuous analogon of (3.22) reads

G = |:<Q:r)2] + [(Qy)Q] + %([(qm)ﬂx + [(a49)?], + Goloaws + quyyyy) . (3.24)

T Y

For the general case with arbitrary n and h the equation is given in Appendix B.2. In
principle one could also derive a quasi-continuum of the difference equations (3.23),
but in this case terms proportional to h® arise, breaking the symmetry of the original
problem.

A continuous analogon for differences variables can be obtained by introducing the vari-
ables ¢, = U/h and ¢, = V/h and differentiation of (3.24) with respect to z and y:

T xy
VVgyy + ViVigy + 2Viy Vi + 2vxyyvy} (3.25a)
Vo= 0] [V GV Ve Vi + 20050
ry vy
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The full formula for arbitrary exponents n is also given in appendix B.2.

Next, we seek traveling wave solutions of this partial differential equation. Especially,
we look for plane traveling fronts in the form

Ulx,y,t) =U(t — bz — bey) = U(s) (3.26a)

Viz,y,t) =V(t — bz —byy) = V(s), (3.26b)

where by and b, are the inverse velocities into = and y-direction: b; = cos @/, by = sin 6.

A is the absolute value of the velocity and 6 is the propagation direction of the wave.
Inserting this ansatz into the equations (3.25) and integrating twice over s yields

U = U+ bb V2+b—%((U )2 42U, ) +b1—bg((\/)2+2vv ) (3.27)
1 1V2 12 S EE] 192 s S8 .
b bb
_ 2772 2 2 2 1Y2 2
Vo= BV bibU+ 2 ((V;) +2va8) + = ((US) +2UUSS> . (3.28)

Multiplying the first of these equations by by and the second by b; and subtracting both
equations results in boU = bV, such that V' can be expressed in terms of U. The
resulting equation reads then

U:b§+b§U2+b§’+bg

, o ((U5)2+2UU53), (3.29)

and has a periodic solution

| 3 b [v3 1 b3
U(s) = Acos’ws with A:§b§+b§' w= S (3.30)

As in the one-dimensional case this solution touches the trivial solution U = 0. Due to
the strong degeneracy of (3.25) both solutions can be combined and form the compact
front solution

T (Acos®ws, boby " Acos’ws)”  for s < -
(U(S)’V(S>> B {(O,O)T else. 2

(3.31)

In the previous section, we have seen that the one-dimensional compacton solution is not
a strong solution of the underlying partial differential equation, since not every term is
singular. In this sense, the two-dimensional front is also not a strong solution of (3.25).
But as we will see in Fig. 3.10(b) below it describes the compact front in the lattice
quite well.

3.4.2 Traveling waves in the lattice

Now, we search for traveling front solution of the lattice (3.23) fulfilling
Upj(t) = U(t—bii —byj) = U(s) (3.32a)
Vijt) = V(t—bii—0byj)=V(s). (3.32b)
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Figure 3.10: (a): The kernels in (3.35) at the position s = 0 for by = 1 and bs = 1/2, or equivalently
A =+/5/2 and 0 = arctan 1/2. Upper panel: dashed line shows the kernel K7, (s,t) for s = 0 and the
bold line Ky1(s,t). Lower panel: dashed line shows Ky2(s,t) and the bold line Ky5(s,t). (b) The
shape of the traveling wave solution obtained by the numerical scheme (3.36). The velocities are again
by = 1 and by = 1/2. The black (grey) line is the traveling front solution U(s) (V (s)), whereas the
black (grey) dots symbolize the wave on the lattice. The dashed lines show the solution of the QCA.

This ansatz implies, that the traveling wave has to obey
U(s—by)—U(s) =V(s—b) —V(s), (3.33)

which follows directly from the definitions of the difference coordinates. Inserting (3.32)
into (3.23) yields an advance-delay equation

Uss(s) = U(s+b)" =2U(s)"+U(s—b)" +
V(is=b)"=V(s)"+V(s+b)"—V(s—b+b)" (3.34a)
Vis(s) = Vi(s+by)" =2V (s)"+ V(s —b)" +
( )

US_bQn_U<S)n+U(S+b1)n_U<S_b2+b1)n (334b)

As already noticed above, these equations are difficult solve and analyze, even numeri-
cally. Nevertheless, we can integrate them twice and obtain

s+b1 s+b2

Ue) = [ Kolsou@rdes [ Knsoverd  (335)
s—by s—b1
s+bo s+b1

Vi) = [ Kulsoviorder [ Ko.ouerd. (335)
s—bg s5—ba

For by = 1 and by = 1/2 the kernels are shown in Fig. 3.10(a) and the definition is given
in (B.4) and (B.5). The full derivation of Egs. (3.35) is shown in appendix B.3. Now,
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Figure 3.11: Quantitative characterization of the traveling wave fronts in the lattice. Panel (a) shows
the mass (my, my), the maximas (Unax, Vinax) and the width (wy = my/Unax, wv = my/Vinax)
in dependence of the propagation direction 6 and for fixed nonlinearity n = 3 and velocity A = 1. The
solid lines are the values for U, whereas the dashed lines the values for V. In panel (b) the dependence
of the mass my on the propagation direction 6 for various values of the nonlinearity index n is plotted.
The mass scale is logarithmic and the lines refer to n = 3/2,3,9/2,6,15/2 (from top to bottom).

we contruct a numerical method based on Eqgs. (2.34) and (3.14) to solve the integral
equation. Therefore, we start from an initial wave profile Uy(s), Vi(s) and iteratively

apply

s+b1 s+b2

U(s) = | Kou(s, DUt + [ Kya(s, t)Vi(t)"dt (3.36a)
s—/b1 s—/b;

V*(s) = V*(s—bi)+U*(s — by) + U*(s) (3.36b)

()= Grevan) () (3:369)

with « =n/(n —1). As norm, we have used the Ly-norm:

Heml= { / (%) + V2(7)>d7}1/2 _

The normalization is necessary to avoid convergence to the constant solution U =V = 0.

In Fig. 3.10(b) we show the shape of the solitary wave for the nonlinearity n = 3 and
by = 1 and by = 1/2. First, one notices that the profiles are not centered at the same
positions. This is due to the fact, that the U and VV component of the wave are mapped
on the same range s although the wave is more narrow in in V-component. Secondly,
one observes again the super-exponential decaying tails, which results from the nonlinear
coupling.
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(a) (b) (c) (d)

Figure 3.12: Evolution of compact traveling wave fronts from plane initial conditions. The nonlinearity
index is n = 3 and the lattice size is 136 x 136. (a) An initial step in the coordinate space as defined
in the text. Shown is the local energy (3.37). The height of the step is 1 and its orientation against
the z-axis is § = /6. (b) The state of the lattice at ¢ = 100. One can see, that traveling compact
fronts have been emerged. (c) An initial pulse in the momentum space. The orientation of this pulse
is @ = w/6. Shown is the local energy. (d) The state of the lattice at ¢ = 50. Again, one recognized
the formation of a series of compact traveling fronts.

To give a quantitative characterization of the wave fronts we have calculated its mass
my = [U(s)ds, my = [V(s)ds, the maximas Upax, Vinax and the width wy =
My /Unax, Wy = My /Viax. In Fig. 3.11(a) we show these quantities in dependence on
the propagation direction 6 and for the nonlinearity n = 3. The velocity of the front was
fixed to A = 1. Results for other velocities can be obtained by the scaling relation (3.5).
It is clear that for & = 0 the mass and the maxima of V' vanish, since this case refers to
the quasi one-dimensional case where only U is present. For § = /4 both components
are equal and possess the same values of myy and U/V,,q,. In the parameter region
0 < 6 < m/4 one observes an increase of the mass and an increase of the maxima. In
Fig. 3.11(b) the mass my is shown in dependence on 6 for various nonlinearity indices
n. One can clearly see, that for increasing nonlinearity the mass decreases.

3.4.3 Numerical studies
Now, we study the lattice directly, that is we solve Eq. (3.22) numerically. The main

focus is on the emergence of compact traveling wave fronts. To present the results we
use the local energy defined by

Si?j =

2 + 2(n + 1) ’ql+17‘] ql:j’ + ‘ql,j+1 Qz,]‘

|4ij — Gim1" + gy — qz‘,j—1|"+1> : (3.37)

which is the sum of the kinetic energy and the half of the interaction energy of each
particle.
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()

Figure 3.13: Evolution of random initial conditions in a circular region of the lattice. The nonlinearity
is n = 3, the lattice dimension is 128 x 128. Shown is the energy defined in Eq. (3.37) for (a) ¢t = 0,
(b) t =10 and (c) ¢t = 20.

The easiest initial condition one could imagine to allow the emergence of compact trav-
eling wave fronts is a plane step in the coordinate space ¢ rotated by an angle 6 against
the z-axis. In Fig.3.12(a) we show the local energy (3.37) of such an initial condition.
The height of the step is 1 and its orientation against the z-axis is § = /6. The step
refers in the energy representation to a plane pulse. In Fig. 3.12(b) the energy state of
the lattice is shown at time ¢ = 100. One can see that at least two compact traveling
wave fronts have emerged and the orientation of these fronts are identical to the initial
orientation of the step. Nevertheless, the initial step does not fully decompose into a
series of traveling fronts. A significant part of the energy remains at the location of the
initial excitation.

Similar to a step is a pulse in momentum space p. In Fig. 3.12(c) the local energy (3.37)
for such a pulse is shown which is indistinguishable from the step in ¢q. The state of
the lattice at time ¢t = 50 is shown in Fig. 3.12(d). Again, one recognizes a series of
compact traveling fronts having the sane orientation as the initial pulse.

Other interesting phenomena related to the formation of traveling wave fronts can be
observed if random localized initial conditions are investigated. In Fig. 3.13 the evolution
of a random circular region in ¢ is shown for the nonlinearity n = 3. The momenta are
initially O and the radius of the circular region is » = 10. From this initial excitation wave
fronts emerge radially and the front is compact, hence, it possesses super-exponentially-
decaying tails. In Fig. 3.13 one can see at least two radial fronts. We assume, that more
front have been emerged which are not visible in this plots, due to their small amplitudes
and finite observation times. The fronts can be considered as deformed versions of the
plane traveling compact wave fronts. During our observation they have been stable but
its amplitude and radial velocity decrease during the spreading process.
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3.5 Long-range interacting systems

In this section we study Hamiltonian lattices where the interaction is not limited to the
nearest neighbors. An example is a chain of charged particles, where the interaction
between the sites follows the long-range Coloumb law. Another examples is a chain
of electric or magnetic dipoles. Lattices with long-range interaction have been widely
studied in physical, biological and mathematical sciences [109-111]. In the context of
traveling waves it could be shown that long-range interaction may result in solitary waves
with algebraic tails in contrast to the usual exponential decay [112].

The motivation of this section is the question, if long-range interaction will destroy the
super-exponential decay of the solitary waves. Therefore, we study a one-dimensional
Hamiltonian lattice similar to Eq. (3.2) but with additional coupling terms

2 m
_ § : Dk 1 2 : n+1
H = k {? + n+ 1 < oej]qkﬂ — qk| } . (338)

The coefficients a; denote the strength of the interaction and m is the interaction range.
We want to stress here, that the motivation to study Eq. (3.38) is purely mathematical.
A realistic physical model with long-range interaction will typically include linear terms,
which can not result in compact tails.

The energy of the Hamiltonian (3.38) can be scaled to H = 1 by the scaling relation
(3.5) and the equations of motion are

m
Gy = Zaj<<Qk+j —aq)" — (g — Qkfj)n) : (3.39)
j=1
For the sake of simplicity we restrict ourself to odd n. Otherwise we have to introduce
the sign function in the equations of motion. But the results presented here are valid for
general nonlinearities. If one introduces the difference coordinates Qp = qx11 — qi the
equations of motions are transformed to

Q=Y oy { ()" = i) = @) + (w)) (3.40a)
j=1
where o
] 1<)
w? =3 Qry (3.40b)
=0

are the sums of the differences.

Now, we look for traveling waves in the form Qx(t) = Q(s) = Q(k — At) with the wave
velocity A. Inserting this ansatz into (3.40) yields

Que = Zaj{(w<f><s+1>>”—(w<j><s—j+1>)”—<w<f><s>)”+(w<”<s—j>>”} - (34)
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Figure 3.14: The Kernel K defined in (3.42b) for j =1,2,3.

Note, that we have already set the wave velocity to A = 1. Next, we integrate (3.41)

twice and obtain
s+1

Q(s) = Zaj / K;(T,s) (w(j)(T))ndT . (3.42a)

To derive this equation we have used Q(—j < s < m) = 0. The kernel K;(r,s) is
defined via
j—(s—=71) for s—j<7<s—j+1
Ki(r,s) =11 for s—j+1<7<s (3.42b)
l—(r—s) for s<7<s+1.

In Fig. 3.14 we show K (7, s) for various values of j. The complete derivation of (3.42)
is shown in appendix B.4.

Now, we use a modification of the Petviashvili's scheme (3.14) to compute the traveling
solutions. Therefore, one defines a starting pulse Qo(s) and then iterates

m s+1
Q. = Zaj / K;(r, 8)(w§j)<7>)nd7' and Qi1 = (
P

—=J

1|
J[oN]

)a Qs (3.43)

where @ = (n + 1)/n ensures convergence of the algorithm. In the following we will
present results for two specific interactions: constant and exponential interaction.

Constant coupling

In Fig. 3.15(a) we show the shape of the traveling wave solution obtained from the
numerical scheme (3.43) for a uniform coupling o; = const. = 1. The nonlinearity index
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Figure 3.15: (a) Traveling waves in the Hamiltonian lattice (3.38) with constant coupling coefficient
aj = const., the power of the nonlinearity is n = 3. (b) Numerical findings and analytical estimation
of the double logarithmic decay rate 3 of the tails of the compacton.

is n = 3 and the interaction length varies m = 1,2,4. For all interaction ranges m the
according solitary wave possesses super-exponential decaying tails. Furhtermore, one
observes that the width of the wave becomes larger with increasing m.

For the constant coupling o; = 1 we can estimate the decay of the tails. Therefore, the
ansatz Q(s) ~ e~/ is used, where the function f(s) has to be determined. Since the
tails of the wave are considered one can impose monotony on f(s). Inserting the ansatz
into Eq. (3.42a) yields

m s+1

e /) Z / K;(t,s) (e_f(T) +e /O Ly e_f(7+(j_1))> dr . (3.44)
=17
5—j

Using the Laplace method we can approximate this integral and obtain

ey e 3.45
c [nf’(s—mﬂ2 . (549

Taking the logarithm of this equation and neglecting the term with log(nf'(s — m))
yields the function f(z) = exp(logn/ms) and finally for Q(s)

1
Q(s) ~ exp(~ exp(—

s)) = exp(—exp(s)) . (3.46)

The full derivation of (3.46) is given in appendix B.5. In Fig. 3.15(b) we show the
coefficient (3 obtained from the traveling waves generated with (3.43) and compare it
with the theoretical values (3.46). Numerical findings and our analytical estimation of
( agree very well.
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Q(s)

Figure 3.16: The shape of a compacton in (3.38) with an exponential decaying interaction strength
(3.47) with k = 10 and m = 10. This solitary wave solution consists of exponential tails of length m =
10 and the first three segments follow Q(s) ~ exp(—10s), Q(s) ~ exp(—30s) and Q(s) ~ exp(—90s).

Exponential coupling

Next, we present results for an exponential decaying interaction, also known as Kac-Baker
interaction [113, 114]

o~ e (3.47)

with x being the inverse penetration depth. In Fig. 3.16 we show the shape of a compact
traveling solitary wave for m = 10 and x = 10. This wave consists of a series of
exponentially decaying segments ..., Q_a(s), Q-1(s), Q1(s), Q2(s), ..., where the
peak is located between (Q_; and ;. Each segment has approximately the length m
and it decays with

Qr(s) ~ exp ( - sign(k;)mn'k_lls) : (3.48)

In Fig. 3.16 the first three segments decay with exp(—10s), exp(—30s) and exp(—90s).
Some examples for varying parameters x and m are shown in Fig. 3.17. One clearly
observes that the length of segments is m and that the penetration depth s changes the
slope of the segments according to (3.48).

Note, that for finite m the waves always possesses super-exponential decaying tails —
the result of the decay for the constant interaction is an upper bound for the case of
exponential interaction. For infinite m we assume that the tails follow an exponential
function.
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Q(s)

Figure 3.17: The shape of the compactons in the Hamiltonian lattice (3.38) with exponential coupling
and varying interaction length m and strength x. (a) The penetration depth is fixed to kK = 1 and m
varies from 5, 10, 20, 40, 80, the according wave solutions are shown from inside to outside. (b) The
same plot as in (a), but with different interaction strength « = 10. (c) Here, the interaction length is
fixed to m = 5 and k varies 1, 4, 16, 64, 256. (d) The same plot as in (b), but with m = 20. One
remarkable feature of all compacton solutions are the piecewise exponentially decaying tails, where the
length of the pieces is approximately m.

3.6 Conclusion

In this chapter, we have investigated strongly nonlinear Hamiltonian lattices. Such
systems play a major role in the description of compression pulses in granular chains.
By means of the quasi-continuum and by an iterative Petviashvili's method we could
show that compactons exists. Furthermore, we studied the lattice directly by numerical
solution of the initial value problem to show how compactons emerge from initial data
and how they collide. The extensive chaotic state of the strongly nonlinear Hamiltonian
has been characterized by Lyapunov exponents and the Lyapunov spectrum.

Two generalizations of the one-dimensional chain have been introduced: First, a two-
or higher-dimensional lattice, which is important for real-world applications especially in
the context of granular and atomic systems. Again, the strongly nonlinear interaction
between the particles causes super-exponential traveling waves which appear in the form
of traveling fronts. Secondly, we studied a lattice with long-range interaction. Here,
we have been interested in the question for the existence of the super-exponential tails.
Interestingly, it could be shown that the tails remain compact if the interaction range
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is finite. For an infinite range the super-exponential tails vanish, even in the case of an
exponential decaying coupling.



Chapter 4

Compactons in discrete
Schrodinger systems

In this section we study compactons in systems which are related to the discrete nonlinear
Schrédinger Equation (DNLS)

Wy = Uppy + Uiy + B0, 20, (4.1)

Here, U, is the complex field at lattice site & and (3 is the nonlinearity parameter.
The DNLS is widely used in physical and mathematical setups, where some fields of
applications have been presented in section 1.3.

4.1 The basic model

The DNLS is a Hamiltonian system and can be derived from

k

where (-)* denotes the complex conjugate. W}, and W} are the canonical variables and
the equations of motion can be obtained from iV, = 0H/0V} and i¥; = —0H/0V,.
See also appendix C.1 for the properties of Hamiltonian systems of type (4.1).

In the following, Hamiltonians are studied which possess a global phase invariance, mean-
ing that ¥, — W.e'? does not changes the Hamiltonian or the equations of motion.
The Noether theorem relates this phase invariance to the norm conservation [115]

N=> [T, (4.3)
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In this chapter, we want to study traveling waves with compact or quasi-compact support
in equations related to the DNLS. In previous chapters we have seen that such struc-
tures arise if the interaction between two neighboring lattice sites is purely nonlinear.
Therefore, a promising candidate to find compactons in DNLS-type models is

H=>>" (1W* + @) (U5 Wpp1 + U T ,) - (4.4)
k

The terms Wy |?|Wyyq|? and (PFU;2, + U207 ) are also coupling terms of the same

order, but they can not be responsible for wave propagation, which results from ¥, = 0
for ¥, = 0, see appendix C.2. The equation of motion are given by

iU, = W1 [Pk + [Vt PO 4+ 2|03 P (Vg + Wpmr) + U (T + 05 ) - (4.5)

Although Eq. (4.4) might look a bit artificial and arbitrary, a similar Hamiltonian describes
a waveguide array embedded in a material with Kerr nonlinearity [116]. In this setup
the coupling between two waves-guides is nonlinear. Furthermore, nonlinear interaction
in the DNLS has also been studied in the context of disorder [117] and tight-binding
approximation [118]. Nonlinear coupling also describes the evolution of the DNLS in
terms of the linear eigenmodes [119].

In Eq. (4.4) a scaling similar to (3.5) exists

UV=qU, H=d*H, t=a2, N:Z]\IlkP:aQN. (4.6)
k

This is due to the fact, that each term in Eq. (4.4) is of order four. As a consequences,
any traveling wave with velocity A can be rescaled to A = 1. An interesting case occurs,
if the state W (t) can be written as W, = uy(t)e'¥e™/2 with u,(t) € R, ¢ € R. Then,
the equations of motion Egs. (4.5) reduce to

Uk = uiﬂ — uz_l + uz (Uk+1 - kal) ' (4.7)

which are very similar to the phase oscillator lattice (2.9). In the next section we will
see that compactons exist in this reduced model.

In Chapters 2 and 3 the QCA has been used to describe the lattice and its traveling wave
solutions. Of course, Eq. (4.5) can also by approximated by continuous equations. But
unfortunately, we could not find any traveling wave solutions in the continuum models,
such that we avoid the introduction of the QCA here.

4.2 Traveling waves

Now, we study traveling waves in the reduced equations (4.7). In the next section it is
demonstrated that traveling waves also exist in the full equation (4.5), although they
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Figure 4.1: The shape of the compacton in model (4.5) for A = 1. The straight line shows the solution
u(§) of (4.9) and the dots show the |¥| on the lattice. In the logarithmic plot the super-exponential
tails can be recognized.

are not stable on large time scales. We seek waves in the form
uk(t) = u(k — At) , (4.8)
where ) is the wave velocity. Inserting this ansatz into (4.7) yields
—Mi(s) = u(s +1)% —u(s — 1)* + u(s)?u(s + 1) — u(s)’u(s — 1) . (4.9)

As mentioned above, the wave velocity can be scaled to A = 1. Next, we integrate
Eq.(4.9) from 0 to s. Unfortunately the integral does not become local, meaning that
the part from 1 to s — 1 does not cancels out:

s

u(s) = u(0) = = [ [u€+1) ~u( = 1 +u(efu(e+ 1) — € uls —1)]de . (4.10)
0
Nevertheless, this equation can be solved numerically by an iterative scheme, which

is based on the approach of Petviashvili [65, 66] and which has been explored in the
previous chapters. First, an initial pulse uo(s) is chosen. Then, the pulse is iterated via

Uipg = (HWH) u, with (4.11)

[l

s

wa(s) = u;(0) - / {ui(f 1) = i€ = 1)+ ui(€)* (i€ + 1) — wil€ — 1))} dé |

until the scheme converges. The normalization avoids that the trivial solution u(s) =0
is reached; the exponent is & = 3/2 and the Ly-norm ||u|| = [ [ u(s)%ds] "% is chosen,
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Since the lattice obeys

and is invariant under an arbitrary phase shift one can use

(b)
Ui(t = 0) = Ok, for the initial state. This kind of initial condition can be written

As expected, the tails converge to zero

with a super-exponential rate. The evolution of an compacton in the lattice is shown in

)

4.6

(
ure?e®™/2 for an appropriate choice of uy. Therefore, the dynamics can be

described be the reduced model (4.7) and we expect that compacts will emerge. The

in (a) the norm and in (b) its real part. The phase shift between two neighboring sites is always 7/2,

such that the real part vanishes at every second lattice site when the compacton passes trough.
but any other norm can be used as well. In Fig. 4.1 the envelope u(£) and the absolute

Fig. 4.2. One can see the phase shift 7/2 between two neighboring sites, such that the

real part of the wave function vanishes every second lattice site.
In this section we study the lattice equations (4.4) directly by numerical solution of the

initial value problem. We will show that compactons evolve from rather general initial

conditions and that they are stable under collisions.
temporal evolution is shown in Fig. 4.3. The initial excitation triggers the emergence of

Fourier space. Nonetheless, they could show that a true traveling wave solution in the

proposed in [120], where the authors investigated an iterative Petviashvili's method in
DNLS (4.1) can not be obtained by this method.

Figure 4.2: The evolution of the compacton in the lattice. Both panels show the same wave function,
Another method for solving the traveling wave ansatz in DNLS-type equations has been

The most simple scenario is a single excited site at position k.

value of the wave function || are shown.

4.3 Numerical experiments
Emergence of compactons from initial conditions
the scaling relation

as W,
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Figure 4.3: Evolution of compactons from a single excited site in (4.4). The color coding represents
W2

a sequence of compactons evolving to the left and right. These compactons are ordered
by their amplitudes, which results from the scaling (4.6) — a large amplitude implies a
large velocity.

A more complicated situation arises if two neighboring lattice sites are excited. Here,
the initial conditions can be generally written as

Uit =0) = Spry + 708 kgt - (4.12)

The amplitude and the phase at site kg are fixed, whereas at site kg + 1 the amplitude is
ro and the phase is ¢g. In Fig.4.4 the evolution is shown for three exemplary parameters
(ro,¢0). The left panel shows the evolution from 7y = 0.5,¢9 = /2. This initial
condition matches the reduced model (4.7) and a sequence of compactons emerge to
the left. In the middle panel the parameters are ry = 1.0,y = 7/4 which does not
obey Eq. (4.7). Remarkably, a traveling solitary wave emerges, but this wave is not a
true compacton. In the direction of motion it possesses a compact tail but at its back it
leaves a small disturbance and looses energy. We will call this type of traveling solitary
wave a quasi-compacton. Its energy loss can be also seen by the deceleration of the
wave. In the right panel the parameters are ry = 0.5, ¢g = 7 and one observes that the
initial energy is localized for a finite time near the initial excitations. After a transient
time this localized state spreads and possibly splits into some compactons or traveling
waves.

Summarizing, three different situations have been observed: the emergence of com-
pactons, the emergence of quasi compactons and energy localization. Here, detailed
studies should be carried out. Especially, the emergence of the quasi compactons is not
observed in the phase oscillator (2.9) or the Hamiltonian lattice (3.2) and seems to be a
generic feature of the DNLS with nonlinear interaction. Further studies should also take
more general initial conditions into account, like randomly initialized parts of the lattice.
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Figure 4.4: Evolution of the lattice (4.4) from two neighboring excited sites (4.12). The lattice length
is N = 256 and the integration time T' = 256. The z-axis is the lattice index, the y-axis is the time and
the color coding represents |U|2. In the left panel 7o = 0.5, ¢9 = 7/2, in the middle panel ry = 1.0,
¢o = m/4 and in the right panel o = 0.5, ¢ = 7.

Collisions of compactons

We have shown that compactons emerge from rather general initial conditions, although
they might not be perfect and lose energy. Here, we study their stability due to collisions.
The tails of the compactons decay very fast and the lattice can be prepared with two
compactons heading towards each other and which do not interact initially. The setup is
the following: First, we prepare the lattice with two compactons with different velocities
and phases heading towards each other. Then, the lattice equations (4.5) are solved
numerically until the collision has been finished and the resulting velocities A; and Ay of
the first and second compacton are measured. A similar study has been performed in
FPU-type lattices [94].

We initialize the first compacton with the velocity A\ = 1 and phase ¢ = 0, such that
its initial state can be written as W{" (£ = 0) = u,e™/2e!¢_ uy, is calculated from (4.11)
and the peak of the compacton is centered at k. The second compacton is created with
velocity \g and phase ¢ but it is centered at a different lattice site k5. Both compactons
do not touch each other. Note, that the initial conditions do not reduce the equations
of motion to Eq. (4.7).

In Fig. 4.5 the velocities after the collision are shown in dependence on Ay and ¢y. It
is clearly visible that the collision are not always elastic. In some parameter regions the
compactons gain or lose energy during the interaction. Surprisingly, one can also see
that the faster compacton can gain energy.
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(a) M (b) Az

Figure 4.5: Velocities after the collision of two compactons. The initial velocity of the first compacton
is A = 1 and its phase is ¢ = 0. See the text for a definition of the non-trivial phase. The second
compacton possesses the initial velocity Ag and phase ¢y. The dependency of the velocities on these
two parameters (Ao, @) is shown in the plots; on the left for the first compacton and on the right for
the second compacton. It can be seen from this plots, that the collision are not always ideal. In some
parameter regions the compactons gain or lose energy from the collision.

4.4 Conclusion

Here, a variant of the discrete nonlinear Schrédinger equation with nonlinear interaction
has been introduced and studied. As we have seen in the previous chapters, nonlinear
interaction may lead to compact traveling waves, which can be also observed in this
model. As a particularity, the compactons in the DNLS-type lattice have a special form:
the phase difference between two neighboring sites is exactly /2. We have computed
their spatial shape by means of the Petviashvili's method and we could show that this
compactons emerge from specially prepared initial conditions.

For general initial conditions we have observed traveling waves which radiate energy
and leave a small perturbation of the lattice. Nevertheless, in the direction of motion
their tails decay super-exponentially such that we call them quasi-compactons. The
exact properties of these kinds of waves have to be determined and are left as an open
question.






Chapter 5

Conclusion and Outlook

Strongly nonlinear lattices play an important role in many scientific disciplines. An
unusual feature of such lattices is the absence of linear terms and consequently linear
waves are not present. Linearization techniques will not work and advanced analysis
methods have to be introduced. In this work we have studied strongly nonlinear lat-
tices numerically and analytically in the context of traveling waves. In particular, we
have investigated compactons — traveling solitary waves with compact or quasi-compact
support — in different physical setups.

5.1 Phase oscillator lattices

In this part we have studied lattices of dispersively coupled phase oscillators. Such
lattices are conservative and are similar to Hamiltonian systems. Traveling waves are
described by an advance-delay equation, possessing terms going forward and backward in
time. In general, these equations are very difficult to solve, even numerically. But here,
the advance-delay equation can be transformed into an integral equation which is solved
numerically by an iterative scheme, known as Petviashvili's method. With the help of
this method and by comparison with the quasi-continuous approximation it is possible
to show that a large variety of traveling wave structures exist in one-dimensional chains.
In particular, we have investigated solitary waves with super-exponentially decaying or
quasi-compact tails — the compactons. Furthermore, solitary waves with oscillatory but
exponentially decaying tails are described and a new class of kinks with one exponential
and one compact tail are introduced. All wave structures are stable against collisions
and emerge from physically realizable initial conditions.

We also studied a higher-dimensional lattice as a generalization of the chain of phase os-
cillators. There, we demonstrated that traveling solitary wave fronts with quasi-compact
support exist. These waves have been successfully investigated by a generalization of
the Petviashvili's method and by a two-dimensional quasi-continuum approach.
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5.2 Hamiltonian lattices

In the second part of this work we have investigated a strongly nonlinear Hamiltonian
lattice of FPU-type. A particular realization of such a lattice is a chain of hard spheres,
where the contact force between two neighboring spheres follows the Hertzian law F' ~
83/2. We could show that traveling solitary waves are basic excitations in these lattices.
They emerge from physically realizable initial conditions and are stable against small
perturbations and collisions. The shape of the wave could be computed numerically by
an enhancement of the Petviashvili's method and analytically from the quasi-continuous
approximation of the equations of motion. It turns out that the tails of the wave
decay with a super-exponential rate. Hence, these waves are compactons. Furthermore,
compact breathers exist in such lattices, although they are unstable.

As an important feature of nonlinear systems in general and strongly nonlinear ones in
particular we have studied the chaotic state of the lattice. This state emerges from
a variety of different initial conditions. One possibility is due to multiple collisions of
compactons: although compactons are stable against collisions this process is not purely
elastic and a small part of the compacton's energy remains at the position of the collision.
This energy might trigger a multiple scattering process which results in the chaotic state.
Of course, the chaotic state also appears from random initial conditions. We characterize
chaos by Lyapunov-exponents and demonstrate that the thermodynamic limit is reached
for small system sizes.

Two generalizations of the one-dimensional chain have been studied: A two-dimensional
square lattice and a strongly nonlinear Hamiltonian with long-range interaction. In the
2D-lattice solitary traveling fronts have been found and analyzed by the help of the
Petviashvili's method and the QCA. Due to the strongly nonlinear interaction these
waves are quasi compact and we demonstrated how they emerge from localized initial
conditions. For the long-range interacting Hamiltonian the motivation of our studies has
been the question for the existence of the compact tails. It could be shown, that for finite
interaction ranges the tails always remain compact. For an infinite interaction range the
particular case of an exponentially decaying coupling strength has been investigated in
detail. In this case the quasi-compact tails are lost and decay exponentially.

5.3 Discrete nonlinear Schrodinger lattices

In the third and last part some results concerning compactons in lattices similar to the
discrete nonlinear Schrédinger equation are presented. The model we have used here
is a strongly nonlinear version of the DNLS and we could show, that compactons also
exist in this model. They have a specific form; the phase difference between two lattice
sites is exactly m/2. We could compute the shape of the compactons with the help of
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the Petviashvili's method and we have shown that these compactons emerge from initial
conditions fulfilling the phase relation. For general initial conditions quasi-compactons
could be observed. These objects are stable, at least during the observation time but
they radiate energy and are not exact traveling wave solutions.

5.4 Open questions and outlook

Influence of dissipation: In this work, we have studied lattices which conserve energy
or are at least conservative. The influence of dissipation has been totally neglected. In
this context many interesting and important questions arise. The existence of traveling
waves is not clear, as well as their stability and life time. Another issue concerns the
super-exponential decay of the tails. It is assumed, that the tails remain compact if
dissipation is also strongly nonlinear. For example, this is the case for realistic friction
in granular chains [121, 122].

Stability of compactons: The stability of compactons has been studied in terms of
numerical simulations and collisions between the compactons. A general theory based
on perturbation arguments has not been worked out so far. This could be carried out
with the help of the works from G. Friesecke and R. Pego [83-86].

Destruction of compactons due to inhomogeneities and disorder: Another
major question is the behavior of compactons in the presence of local inhomogeneities
and disorder. We assume that three major phenomena can be observed: absorption
of energy, scattering and transmission, see Fig. 5.1 for an illustrative example of such
processes in the Hamiltonian lattice (3.2). It is a major task to understand this behavior
as well as characterizing them qualitatively and quantitatively and to give statistical
measures like the mean-free path of compactons in a disordered medium.

Statistical properties: The statistical properties of the lattice and the traveling waves
have not been studied in all details. For example, a detailed analysis of the collisions
would be very interesting and would give valuable insights and hints for applications.
The life-time of compactons and the creation of small-amplitude compactons from the
collisions are important questions in this direction. Another direction is the question
of the emergence of compactons from initial conditions which could be investigated
statistically. A third topic are the thermodynamic properties of strongly nonlinear lattices,
like heat transport or thermalization. The existence of a compacton or a kink gas in
such lattices could also be addressed in this topic.
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Figure 5.1: Scattering of compacton on inhomogeneities in (3.2) with nonlinearity n = 3. The
inhomogeneities have been introduced by adding a local linear terms w?q?/2. On the left plot the
scattering on 10 sites with random eigenfrequencies wy, is shown. One observes that some part of the
compacton is reflected but some energy also tunnels through the inhomogeneity. On the right panel
the apsorption of a compacton in a disordered region is shown. Here, all lattice sites with & < 128
posseses a local random potential and the compacton is slowly decelerated and absorbed.

Different topologies: In this work, only regular lattice topologies have been studied.
It would be desirable to enhance the results to irregular topologies like networks or
networks of regular pieces. Strongly nonlinear lattices are predestinate candidates to
study such systems, since their excitations are super-exponentially localized and can be
easily detected. Furthermore, the two- or three-dimensional lattices could be investigated
with different topologies like hexagonal or honeycomb geometry.



Appendix A

Compactons in phase oscillator
lattices

A.1 Averaging of the phase equations

The coupling function ¢ in (2.3) can be expressed as a Fourier series

i (1, ) Z Ay jeliontion (A1)

i,k=—00

Now, we write
r = wit + O (A.2)

where ¢, is small due to the weak coupling. Then the terms with iwy + jw; = 0 are in
resonance. Consider w, = w; = w. Inserting Eq. (A.2) into Eq. (A.1) and separating
the resonant terms where i = —j yields

d(@z,wk ZAZ ze ii(d1—dr) + Z A e| (ip1+jdr) |wt(z+J)_ (A3)

1,5,i#—]

All summands in the second term of this equation oscillate fast. After averaging over
one period only the resonant terms remain and we can write

G (prpn) = Y Ai €% = g(o1 — 1) - (A.4)

If the frequencies are not equal the above equation can not be valid. But, if one assumes
that wy is a rational multiple of w; (rw; = swy with 7 and s being integers without a
common divisor) the resonant terms have the form

A,; _Sieii(T@—S(ﬁk) _
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Then, the analogon of (A.4) reads

q (o1, 08) = Z A€ O30 — ((rp — s01) (A.5)

7

A.2 Quasi continuous approximation of the phases

In this section we derive a quasi-continuous approximation of the phase variables in (2.5).
That is, we Taylor expand @11 up to order 3

0 h* 9? h? 9?

ST G (A-6)

Ox
where h is the lattice spacing. Inserting (A.6) into (2.5) yields
: h? h? h? 3

Note, that we have used ¢(v) = g(—v). To compare this equation with (2.14) we
introduce v = hy,, differentiate (A.7) with respect to z, and multiply it with h. This

yields
0 h h? h h?
vy = h% {q (v + ol + Evm) +q (v — Gl + Evm)} . (A.8)

Now, we are nearly done and develop this equation in h:

0 0 (1 1
v, = 2h=—q(v)+h*= <—q”(v)v§ + —q’(v)vm)

ox 0, \ 4 3
- o o o,
_ [h% + E%} q(v) — Ea_x(q (v)%) . (A.9)

A.3 Transition from solitary to periodic waves in
the QCA

To investigate the behavior of (2.18) in the vicinity of the critical wave velocity A\c =
—2¢'(v*) we develop Eq. (2.17) up to second order in u and v around the fixed point 0,

*

v

: . 3 3b 2 by

v=u |, u:—a()\+2a)v+¥()\+a)v —au , (A.10)
with a = ¢/(v*) and b = ¢”(v*). Introducing the control parameter u = A + 2a and
using the scaling v — b~'v and t — +/a /3t yields

1 1,

b= — —(p —a)v® — —u? . A.11
U /w—l—a(u a)v —u (A.11)
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We are interested in the behavior of this equation in the vicinity of the critical velocity
Ac = —2a or equivalently pc = 0, such that i —a ~ —a. This yields the final equation

1
b= —pv —v? — ~u? . (A.12)
a

A.4 QCA of the two-dimensional phase lattice

Here, we derive the QCA of Eq. (2.40). Therefore, the phases ¢, ; are replaced by a
continuous variable ¢(z,y) and the phase variables ;11 ;, ¢;j+1 are Taylor expanded
up to third order expanded by @;i1; = ¢ £ hpy + h? /204, £ h3 /60, and ¢, ja1 =
© £ hp, +h?/2¢,,+h?/6p,,,. h denotes the lattice spacing and the subscripts are the
partial derivatives into the x and y direction. Inserting the expansion into (2.40) and
using the symmetry relation ¢(v) = g(—v) yields

2 hS 2 h3
2 Q(90+2§0 +690 >+Q(90 2@ +690 >+

h2 3 h2 h3
q (hSOy + ESOyy + E‘Pyyy) +4q (}W’y - ?Wyy + ESOyyy) - (A13)

Without the explicit knowledge of the coupling function, this equation can not be sim-
plified further. But one can define u = hy, and v = hy, and differentiate (A.13) into
x- and y- direction to obtain

1 1

1 1 1 1
+ 3 q (V) Vsyy + 3 q" (V) + 3 q" (V) vy vy + 1 q(?’)(v)vzvz} (A.14a)

1

. 1 )
v =2h0), (q(u) + q(v)) + h3{§ q (V) Vyyy + A q"(V)vgvy, + 1 ¢ (v}

1 1 1 1
+ 3 q (W) Uy + 3 ¢" (u)uyty, + 5 q" (u)upug, + 1 q® (u)uyui} . (A.14b)






Appendix B

Compactons in Hamiltonian
lattices

B.1 Compact breathers

We study compact breathers in the the Hamiltonian (3.2) with n = 3. We look for
breathers in the form of qy(t) = (—1)*ugf(t). Inserting this ansatz into (3.3) and
separating the time and the space dependence yields

f+Cf=0
(’U,k+1 + uk)?’ + (Uk + uk,1)3 = C’uk ,

where C'is a constant. The first equation can be solved by f(t) = Acn(wt, Lz) where

w = AV C. The solution for the lattice part can be obtained iteratively. First one defines
an initial state u) and then iterates

L i i N
uj = C ((U/c+1 +up)® + (uj, + Uk—1)3)

i 3/2
P (WH) /
o |
‘ ]

where 7 is the iteration index.

B.2 QCA for the two-dimensional lattice

The equations of motion for the lattice are given by (3.22). The quasi-continuous
approximation is derived by introducing ¢; ; ~ ¢(z, y) and neighboring sites are expanded
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by a Taylor series of order 4, for example ¢;y1; ~ q + hq, + h?/2que + 1 /6quee +
h*/24Gy22z, Where N is the spatial difference. This yields

§ = nh"t ([qm}”_l%x + [qy]"_lqyy> + hn+3{ 12 <[qﬂc] Nrzae + [Qy]n_lquy)

TL(TL _ 1) n— n—
T <[Qw] Zq:qu:mvx + [Qy] 2nynyy)

3022 (g, g )+ [qy]”[qyyﬁ)} | .

A continuous analogon for differences of the lattice variables can be obtained by intro-

ducing the variables ¢, = U/h and g, = V/h and differentiation of (B.1) with respect
to x and y:

U = h2 ([Un]xx Vn my + h {Al Un_lU:p:mEr + Vn_lVﬂUyZ/?J)

By (U 23U, Ui+ 2U2) + V' 2(ViViy + 2Viy Vi + 2V Vy) )

F U U Ve + V" (CVVVyy + oV [V

+D, <U "+ V”‘A‘V}c[‘@]?’) } (B.2a)

V o= n? ([Un]a:y + [Vn]yy> + h4{A1 (V”_l‘/yyyy T Un_lUM“’)

By (V' 2(3V, Vi + 20Vin]?) + U™ 220Uy + 2ialUy + UraUy))

FCV V2V + U (CoULUn Uy + Gl [U]2)

+D, (vn*‘*[v;,rl + U"4[Ux]3Uy>} . (B.2b)

The constants are given by

n n(n —1) n(n* — 3n + 2) n(n® — 3n + 2)
Al=—, Bj=—+ — _
P Y TR 24 O 6
-3 2 3—6n>+1ln—6
C, = (n n+ 2) and Dlzn(n n* + 11n )

8 24
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B.3 Integral equation for traveling fronts in the 2D
lattice

The equations to solve are given in Eq. (3.34). For simplicity we define

S S

Us)" = u(s) . V(s)" = v(s) . F(s) = / wB)dt, Gls) = / o(B)dt . (B.3)

S0 S0

Furthermore, it is assumed that a s exist with U (s < so+b1+bs) = V(s < so+by1+by) =
0. We start from (3.34a). Integration from sg to s yields

U, = F(s+b)— F(s)— (F(s) ~F(s— b1)>
Y G(s +by) — G(s) — (G(s by 4 by) — G(s — b1)> .

Integrating once more results in

s+b1 s s+bo s—b1+b2
Us) = / Flt)dt — / Ft)dt + / Gt)dt — / Glt)dt
s s—by s s—by

Every term is now integrated partially and one obtains

s+b1 s S+bao s—b1+bo
Uls) = tF()|  —tF(1)|  +1G(1)| G|
s+b1 s s+bo s—b1+ba
- / tF' (t)dt + / tF'(t)dt — / tG'(t)dt + / tG'(t)dt .
s s—by s s—b1
This equation can be simplified to
s+b1 s+bo
U(s) = / Ky (s, t)u(t)dt + / Ky (s, t)v(t)dt, (B.4a)
s—b1 s—b1
with the kernels
KUl(S,t) = bl — ‘8 — t’ (B4b)
bl—(S—t) fOI’S—blgtSS—bl—f-bg

K\/l(S,t) = b2 for s — bl + bg <t<s (B4C)

bp—(t—s) fors<t<s+by.



84 APPENDIX B. COMPACTONS IN HAMILTONIAN LATTICES

For the equation for V'(s) one obtains a similar result

s+bo s+b1

s) = / Kyso(s, t)u(t)dt + / Kya(s, t)u(t)dt (B.5a)
s—bg s—bo
with the kernels
Kya(s,t) = by —|s—t (B.5b)
by —(s—t) fors—by <t<s
Kya(s,t) = < by for s <t <s-+b — by (B.5¢c)

bl—(t—S) fOI’S—i-bl—bggtSS—l-bl.

B.4 Long-range interaction: Integral equation for
traveling waves

We try to find an integral equation for (3.41). Therefore, we integrate Eq. (3.41) twice
and write each summand as Q(s) = > o;Q;(s)

Q = /dg/ (r+1) (T—j+1)—W(r)+W(T—j)}dr

s+1 s—j+1
— [ s - [ o (B.6)
s s—j
where F(§ fo 7)dr and W(t) = (w"(t))". Next, we integrate this equation
partially and arrive at
s+1 s—j+1 s+1 s—j+1
@ = F©| —cr©] - [Pk [ o
s 5= s s—j
= (s+1)F(s+1)—sF(s)—(s—j+1)F(s—74+1)+(s—7)F(s—j)
s+1 s—j+1
- / eFode+ [ e
5=

- /K 7,5) (B.7)
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where the kernel K;(7, s) is defined as

j—(s=71) for s—j<7<s—j+1
Ki(r,s) =11 for s—j+1<7<s (B.8)
l—(r—s) for s<7<s+1.

B.5 Long-range interaction: Estimation of the
tails

To estimate the tails we start with

m s+1

Z/K ( ) +Q(T+1)+.. Q(T+(j—1))> dr . (B.9)

Inserting the ansatz Q(s) ~ e~/(*) yields

m s+1

e f(s) NZ/K ( —f() e Fr ) e—f(7+(j—1))) dr (B.10)

In the sum inside the integral only the first summand contributes significantly to the
integral — the other terms can be neglected:

st
e /Y / Kj(r)e ™ Ddr (B.11)
=17
Now, we use the same argument to neglect all other terms with j # m and obtain
s+1
/ K (T)e ™ Mdr (B.12)
We approximate this integral by
s+1
e gnfls-m) / m))e=nS (s=m)(r—(a=m) g

e—nf(s—m)

—nfsm/Te—nfsdeT — o
[nf/(s—m)]
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Taking logarithm of this equation yields f(s) =nf(s —m) + 2log(nf'(s —m)). Since
we assume, that f(s) is a rapidly decreasing function, we can neglect the last term and
obtain f(s) = nf(s —m) which can be solved by

(B.13)



Appendix C

Discrete Schrodinger systems

C.1 Properties of DNLS-type equations

For DNLS-type Hamiltonians like (4.2) the equations of motion can be obtained from
iV, = 0H/0¥; and iV = —0H/0V),. The Poisson brackets are defined via

- of 99  Of 0Og
[f.9] = (axpk ou;  0U; axpk> ! (C1a)

k

and they obey the fundamental relation
[\Dk, \Ifﬂ = 5]%[ ) [\Ifk, \Iflj| =0 and [\IJZ, \Ifﬂ =0. (Clb)
The time dependency of some function F(¥y, U5 t) can then be obtained from

0 OF
F=—i[F H] 5 (C.1¢)

for example
Uy, = —i[Uy, H| or U} =—i[T}, H] . (C.1d)

We study Hamiltonians which can be written in the form
H = 1) (W0, W) + M2 (U, W, Wi, W) (C2)
k
where H,(cl) is the local one particle — or onsite — Hamiltonian and H,(f) is the local

two particle — or interaction — Hamiltonian. Note, that both Hamiltonian may generally
depend on the index k.
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For systems with a global phase invariance the norm Eq. (4.3) is conserved and the
according continuity equation is

d . .
E|\1jk|2 = \I/k\I/z -+ \I/k\:[fz = Pk,k+1 — Pk—1,k - (C3)

The quantity py 411 is called the probability flux from site k to site k+1 and its functional
form has to be determined from the interaction Hamiltonian H,(f)

8H122) (W, Wiy Wperr, ‘I’ZH) o* ang) (Wh, WF, Wpis, \DZH)

=ilw —
Pkk+1 '( k o, k (9\11,*;

(C.4)
One can easily show that the onsite Hamiltonian H,(:) will not contribute to the proba-
bility flux.

With the condition of phase invariance the onsite Hamiltonian H,(:) can be written in the
form H,(fl)(\lfk, Ur) = H,(cl)(|\lfk\2) and this term contributes to the equations of motion
in the form il = H\'(|W,12) Wy + ... for example H (|W,|2) = 3/2|W[* yields the
nonlinear onsite term in the standard DNLS (4.1).

For the interaction Hamiltonian H,(f) the situation is more complicated. Here, we con-
sider interaction potentials consisting of polynomials. The order of the polynomials
has to be even and each term must consist of the same number of conjugated and
non-conjugated coordinates, otherwise the phase invariance of the Hamiltonian is not
guaranteed. The most simple interaction Hamiltonian consist of polynomials of order
two

" = o (U Wiy + U Whir) (C.5a)
which contributes to the equations of motion by i¥, = - + @ WUriq + e Wy g . ..
and to the flux by

P = 1 (Uplh, — Wl ) (C.5b)

This Hamiltonian is responsible for linear interaction. The «;,'s are real constants, which
only depend on k.

Polynomials of order four in the interaction Hamiltonian lead to nonlinear coupling be-
tween the nodes. Four combinations of Wy, W, ¥}, Wy , exist. The according
equations are shown in Appendix C.2.

Nonlinear coupling arises if the normal-or eigenmodes of the original DNLS (with a
possible random onsite potential) are studied. The onsite potential can be introduced
on the RHS of Eq. (4.1)

Wy = Uy 4+ Uiy + Vil + 610,20, (C.6)
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where Vj, is the local (and possible random) potential. The wave function can then be
expressed in terms of the eigenmodes ¢,(f) of the linear problem

Uy, = Z Oﬂﬂ;(f) . (C.7)
I
which obey the equation
eyl = i, + U, + Vil (C8)

The ¢;'s are the eigenvalues of the linear problem. In the linear problem each mode

rotates with its frequency —¢;. Using the eigenmode representation of the wave function
the DNLS (C.6) transforms to

iC) = ¢,C + Z Vi 12,05 Ci CrL Ch (C.9a)

l1,l2,l3

H=) alCl+ ) VinwuCnCLCuCr (C.9b)
l

Lly,l2,l3

where the coefficients Vj;, ;, ;, are the overlaps between the eigenmodes

x* (1 I2)* (I
‘/l7l1,l2,l3 - Z¢£) wl(cl)wl(cz) ](€3) : (CQC)
k

The coupling of the eigenmodes in (C.9) is purely nonlinear, but an infinite number
of coupling terms exists. For systems with disorder the coupling strength between two
neighboring modes decreases very fast, since each mode is exponentially localized. For
details on disorder in DNLS-type systems, see [119] and references therein.

C.2 Interaction polynomials of order four

In this section polynomials of order four in the interaction Hamiltonian are considered.
Four combinations exist:
2 * 2 x2
Hl(c) = ak(\l/i PEE ‘Piﬂ) ,
W, = ...+ 2 (Vi + a1 P y) + (C.10)
Pkk+1 = --- + 2(\I/k Z+1 + \I/]:\I/k_;,_l) pﬁ’k+1 + ...

HY = U Ten*
I\I’k = ... + \Ifk(Oék|\I/k+1|2+Ozk_1|\11k_1|2) + ... , (Cll)
Pkk+1 = .- + 0 + ...
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HY = oW 2 (005, + W)
i, = ... + Oék“lfk+1|2\1/k+1 + o1 (2|\Ifk|2\l’k_1 + ‘I’i‘I’ZA) + ..., (C12)

_ 2 L
Pritr = - + Ve ["ppp + -

H](f) = ak‘\Ilk‘z (\IJZ\IIIC—H +\Ilkqu+1)
iV = o+ WV + e (20U Wy + W PT) + .0, (C13)
Prk+1 = ... T+ |‘Ijk|29é,k+1 + ..

Remarkably, the first two combinations can not be responsible for the spreading alone.
A lattice site ky with Wy, = 0 acts as a barrier which can not be crossed, since in this
case (C.10) and (C.11) yield W, = 0. Note further, that (C.12) and (C.13) are not
symmetric in the lattice index k, meaning that in the Hamiltonian k£ and k£ + 1 can not
be exchanged. One can combine these two terms to obtain

HY = (W + [V ) (Vi Whia + 007 )
il = 4 UV + o1 Vh ) + 210 (0 Upp + a1 W)+
|V PUhyy + g [ U1 Py + . '

Prk+1 = ... + (|‘1’k|2+|‘11k+1|2)P£,k+1 + ..

(C.14)
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