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Zusammenfassung

Diese Diplomarbeit untersucht den Casimir-Effekt zwischen normal- und supraleitenden Platten über einen weiten
Temperaturbereich, sowie die Casimir-Polder-Wechselwirkung zwischen einem Atom und einer solchen Ober-
fläche. Hierzu wurden vorwiegend numerische und asymptotische Rechnungen durchgeführt. Die optischen Eigen-
schaften der Oberflächen werden dann aus dielektrischen Funktionen oder optischen Leitfähigkeiten erhalten.
Wichtige Modellen werden vorgestellt und insbesondere im Hinblick auf ihre analytischen und kausalen Eigen-
schaften untersucht.

Es wird vorgestellt, wie sich die Casimir-Energie zwischen zwei normalleitenden Platten berechnen lässt. Frühere
Arbeiten über den in allen metallischen Kavitäten vorhandenen Beitrag von Oberflächenplasmonen zur Casimir-
Wechselwirkung wurden zum ersten mal auf endliche Temperaturen erweitert. Für Supraleiter wird eine analytis-
che Fortsetzung der BCS-Leitfähigkeiten zu rein imaginären Frequenzen, sowohl innerhalb wie außerhalb des
schmutzigen Grenzfalles verschwindender mittlerer freier Weglänge vorgestellt. Es wird gezeigt, dass die aus dieser
neuen Beschreibung erhaltene freie Casimir-Energie in bestimmten Bereichen der Materialparameter hervorragend
mit der im Rahmen des Zwei-Fluid-Modells für den Supraleiter berechneten übereinstimmt. Die Casimir-Entropie
einer supraleitenden Kavität erfüllt den Nernstschen Wärmesatz und weist einen charakteristischen Sprung beim
Erreichen des supraleitenden Phasenübergangs auf. Diese Effekte treten ebenfalls in der magnetischen Casimir-
Polder-Wechselwirkung eines Atoms mit einer supraleitenden Oberfläche auf.

Es wird ferner gezeigt, dass die magnetische Dipol-Wechselwirkung eines Atomes mit einem Metall sehr stark von
den dissipativen Eigenschaften und insbesondere von den Oberflächenströmen abhängt. Dies führt zu einer starken
Unterdrückung der magnetischen Casimir-Polder-Energie bei endlichen Temperaturen und Abständen oberhalb der
thermischen Wellenlänge. Die Casimir-Polder-Entropie verletzt in einigen Modellen den Nernstschen Wärmesatz.
Ähnliche Effekte werden für den Casimir-Effekt zwischen Platten kontrovers diskutiert. In den entsprechenden
elektrischen Dipol-Wechselwirkungen tritt keiner dieser Effekte auf.

Die Ergebnisse dieser Arbeit legen nahe, das bekannte Plasma-Modells als Grenzfall eines Supraleiters bei niedri-
gen Temperaturen (bekannt als London-Theorie) zu betrachten, statt als Beschreibung eines normales Metalles.
Supraleiter bieten die Möglichkeit, die Dissipation der Oberflächenströme in hohem Maße zu steuern. Dies kön-
nte einen experimentellen Zugang zu den optischen Eigenschaften von Metallen bei niedrigen Frequenzen er-
lauben, die eng mit dem thermischen Casimir-Effekt verknüpft sind. Anders als in entsprechenden Mikrowellen-
Experimenten sind hierbei die Energien und Impulse unabhängige Größen. Die Messung der Oberflächenwech-
selwirkung zwischen Atomen und Supraleitern ist mit den heute verfügbaren Atomfallen auf Mikrochips möglich
und der magnetische Anteil der Wechselwirkung sollte spektroskopischen Techniken zugänglich sein.



Abstract

This thesis investigates the Casimir effect between plates made of normal and superconducting metals over a broad
range of temperatures, as well as the Casimir-Polder interaction of an atom to such a surface. Numerical and
asymptotical calculations have been the main tools in order to do so. The optical properties of the surfaces are
described by dielectric functions or optical conductivities, which are reviewed for common models and have been
analyzed with special weight on distributional properties and causality.

The calculation of the Casimir energy between two normally conducting plates (cavity) is reviewed and previous
work on the contribution to the Casimir energy due to the surface plasmons, present in all metallic cavities, has been
generalized to finite temperatures for the first time. In the field of superconductivity, a new analytical continuation
of the BCS conductivity to to purely imaginary frequencies has been obtained both inside and outside the extremely
dirty limit of vanishing mean free path. The Casimir free energy calculated from this description was shown to
coincide well with the values obtained from the two fluid model of superconductivity in certain regimes of the
material parameters. The Casimir entropy in a superconducting cavity fulfills the third law of thermodynamics and
features a characteristic discontinuity at the phase transition temperature. These effects were equally encountered
in the Casimir-Polder interaction of an atom with a superconducting wall.

The magnetic dipole coupling of an atom to a metal was shown to be highly sensible to dissipation and especially to
the surface currents. This leads to a strong quenching of the magnetic Casimir-Polder energy at finite temperature.
Violations of the third law of thermodynamics are encountered in special models, similar to phenomena in the
Casimir-effect between two plates, that are debated controversely. None of these effects occurs in the analog
electric dipole interaction.

The results of this work suggest to reestablish the well-known plasma model as the low temperature limit of a
superconductor as in London theory rather than use it for the description of normal metals. Superconductors offer
the opportunity to control the dissipation of surface currents to a great extent. This could be used to access experi-
mentally the low frequency optical response of metals, which is strongly connected to the thermal Casimir-effect.
Here, differently from corresponding microwave experiments, energy and momentum are independent quantities.
A measurement of the total Casimir-Polder interaction of atoms with superconductors seems to be in reach in
today’s microchip-based atom-traps and the contribution due to magnetic coupling might be accessed by spectro-
scopic techniques.
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Introduction

In 1911 H. Kammerlingh-Onnes discovered that mercury undergoes a phase-transition at a critical temperature of
4.2 K, below which it loses its electric DC-resistance: it turns into a superconductor [Kammerlingh-Onnes 1911].
Similar behavior was then also found in other materials. Meißner and Ochsenfeld demonstrated in 1933 that the
interior of a superconductor is free from magnetic fields and introduced the notion of an ideal diamagnet [Meißner
and Ochsenfeld 1933].

A phenomenological description that contained these two important phenomena was proposed in 1935 by the
brothers F. and H. London [London and London 1935]. Their model gives a very good description for a system
at zero temperature, but could not account for thermal effects. An extension was introduced following work by
C. Gorter and H. B. Casimir [Gorter and Casimir 1934]. In today’s language, it is an interpolation between the
London zero temperature model and the Drude model for normal conductors, which holds pretty good above
the phase transition. In this so-called two fluid model, a superconducting (dissipationless) current and a normal
current are added up, and the relative weight between the two is characterized by an temperature dependent order
parameter.

A generalization of the London model was given by L. D. Landau and V. Ginzburg [Ginzburg and Landau
1950, Ginzburg 1955] in 1950, based on general properties of arbitrary phase-transitions and was applied with
great success to obtain a macroscopic description of superconductivity including the rich phenomenology of vor-
tex dynamics. The fundamental concept of both London and Ginzburg-Landau theory is a macroscopic wave
function, whose absolute square is identified with the order parameter. Thus superconductivity is understood as a
macroscopic manifestation of the charge carrier’s quantum nature.

Even so, the early phenomenological descriptions did not start from the basis of quantum mechanics. A very
successful quantum-mechanical description of superconductivity was found by J. Bardeen, L. Cooper and J. R.
Schrieffer [Bardeen et al. 1957]. They based their calculation an attractive interaction of electrons through virtual
photons and found a ground state separated from the excitations by a temperature-dependent gap, the opening of
which occurs at the superconducting transision. The connection of BCS theory to the macroscopic theories was
later found by L. Gorkov [Gorkov 1959]. Today, classical superconductors have found wide use in technology
and the BCS-type of superconductivity is well understood and covered in many textbooks, e.g. [Rickayzen 1965,
Schrieffer 1999, Ketterson and Song 1999, Tinkham 2004].

It was the dawn of a new era when in 1986 J. G. Bednorz and K. A. Müller [Bednorz and Müller 1986] discovered
materials that have extremely high critical temperatures in the order up to 100 K. Typically high-Tc materials are
made of layered structures of either cuprates CuO2 and a non-metallic elements or of iron and a pnictogen such as
arsenic or phosphorous. For a review, see e.g. [Basov and Timusk 2005]. The physical mechanisms at work in any
of these systems are still not completely understood and are a hot topic as well in experimental physics as in solid
state theory.

While superconductivity was initially discovered in the laboratory, the discovery of vacuum interactions was trig-
gered by a rather theoretical work. The concept of attractive dispersion forces between atoms or molecules was
proposed by van-der-Waals [Van der Waals 1873] in 1873 in order to explain the non-ideal behavior of gases. He
depicted the interaction as due to the interaction of fluctuation-induced dipoles with its mirror-charges. A first quan-
titative calculation [London 1930] was done by F. London1. In 1948 a QED description of the interaction between
an atom and a perfectly reflecting surface, including the effects of retardation, was given by H. B. Casimir and D.
Polder [Casimir and Polder 1948]. In honor of these researchers, vacuum effects are known today interchangeably
under the names van-der-Waals forces, London dispersion forces or Casimir-Polder forces.

Casimir’s and Polder’s work on the atom-surface interaction led immediately to Casimir’s prediction of the vac-
uum interaction between plates [Casimir 1948]. He found an attractive interaction acting on perfectly reflecting
plates, which was then traced back to zero-point fluctuations of the electromagnetic vacuum in a bounded system.

1 Looking at the names in this short historical outline, it is quite amazing to notice that many of the physicists working on superconductivity
– like Landau, Lifshitz, London and Casimir, to name just a few – have also had an impact on the field of vacuum energy or vice versa.



Cavity QED with superconductors and its application to the Casimir effect 3

Hence, vacuum interaction occurs not only between microscopic objects like atoms or molecules, but also between
macroscopic objects. A seminal contribution to the theoretical understanding of these interactions was made by
Lifshitz, when he derived a general formula for the Casimir-force between dielectrics which allowed for to include
the effects of dispersion and dissipation [Lifshitz 1956].

First measurements were performed by Sparnaay in 1957 [Sparnaay 1957] but the results were rather indecisive,
due to the big uncertainty of the data. Recently, thanks to advancing nanotechnology and quantum optics, interest in
the vacuum-induced effects has been risen once again and it it has become possible to measure the electromagnetic
Casimir force between two bodies to a very high precision [Lamoreaux 1997, Mohideen and Roy 1998, Harris et
al. 2000, Chen et al. 2005, Chan et al. 2001, Iannuzzi et al. 2004, Lisanti et al. 2005, Decca et al. 2005, Bressi et
al. 2002]. Theory has made great steps towards a thorough understanding as well, but new questions have come
up, too, and controversial discussions keep being led [Milton 2004]. In nanotechnology one big problem is a
phenomenon known as stiction [Chan et al. 2001, Buks and Roukes 2001], which is the jamming of small devices
(known as micro-electromechanic systems MEMS) due to attractive forces. One of the goals of ongoing research is
to find regimes of material parameters, e.g. in metamaterials, where the vacuum interaction is repulsive and could
thus help to prevent these effects. On the other hand, switchable Casimir-forces could also be used to control small
devices.

Casimir-Polder forces, too, are nowadays frequently seen in magnetic traps implemented on microchips (atom
chips, e.g. [Fortagh and Zimmermann 2007]). Such setups allow to manipulate few or single atoms or even exotic
states of matter like Bose-Einstein condensates near solid surfaces. The most simple scheme of an atom chip is
drawn in fig. 0.1. It consists of a current-carrying wire that produces a constant magnetic field, and an external
homogeneous bias field. The superposition of the two magnetic fields has a minimum which can be adjusted at a
certain trapping height above the chip-surface. The right panel in fig. 0.1 shows the trapping potential (∼ |B| ) and
its gradient, which is proportional to the force exerted on a static magnetic dipole moment. The potential minimum
above the wire can thus be used to trap atoms in states with a dipole moment.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 0.1: Left: General setup for a magnetic line guide trap made of a wire on a chip surface placed in a homogeneous bias
field. The field minimum is located above the wire (red) and can be used to trap electrically neutral atoms. Right: Magnetic
trapping potential ∼ |B| (color coded) and its gradient (arrows).

Often the atom-surface interaction leads to a deformation of the potential and undesired losses of atoms from the
trap, but the deformation of an otherwise well-known potential can also be used to measure the Casimir-Polder
effect (section 3.1.2, [Obrecht et al. 2007, Obrecht 2007, Landragin et al. 1996, Yuju et al. 2004]).

The topic of this thesis is the Casimir effect in superconducting cavities and the Casimir-Polder interaction of an
atom with a superconducting surface. Thus, the investigation involves two fields of physics, where the quantum
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world and the macroscopic world meet, and exciting phenomena can be expected to arise from the combination.
Dissipation is a key concept in this context, and it is exactly the possibility to switch off dissipation in super-
conducting materials below the critical temperature, that makes the vacuum interaction with such surfaces highly
interesting:

• Superconductors provide physical systems that realize the plasma-model (London theory), which stands at
the very center of this discussion about the role of dissipation in the Casimir effect [Milton 2004], and it has
been proposed, that measurements of the Casimir-effect in a superconducting cavity might lead to a better
understanding of the low frequency current response of metals [Bimonte et al. 2005b].

• Also the interaction between an atom and a superconducting surface may become relevant in the next gen-
eration of atom chips. Recently it has become interesting to use superconducting materials for the trapping
wires, because it allows to reduce the magnetic noise [Dikovsky et al. 2009]. In normal metals this noise is
connected to the dissipation (i.e. finite conductivity) and induces spin-flips of the trapped atoms, leading to
their loss from the trap [Henkel et al. 1999, Henkel 2005, Hohenester et al. 2007, Skagerstam et al. 2006].
For the operation of these traps, an exact knowledge of the Casimir-Polder-potential is highly desirable.

This thesis is organized as follows.

In the first chapter, the electrodynamics and optics of the most relevant models for metals and superconductors are
reviewed. Special attention is paid to the causal and analytical properties of optical response functions, which pro-
vide valuable tools like Kramers-Kronig relations and sum rules. The distributional properties are very important
in the light of the discussions led over the low-frequency behavior of the plasma and Drude model. The analytic
continuation of optical response functions to purely imaginary frequencies is introduced for later use. An important
original result of this work shows how this can be done for the optical conductivity in the BCS model both inside
and outside the extremely anomalous limit. Finally, the reflectivities of the different models (that will be the key
ingredients for the calculation of the Casimir- and Casimir-Polder interactions) are compared and the effects of the
collective mode in superconductors are discussed.

The second chapter covers the Casimir effect between conducting and superconducting half-spaces at both zero
and finite temperature. The relevant thermodynamic potential from which all further quantities such as the entropy,
Casimir pressure, specific heat etc. can be obtained, is the free energy per unit area. The scenario of perfectly
reflecting walls is introduced as a first example, and shows already many of the effects that occur also in more
realistic settings. An original calculation yields the thermal correction to the Casimir free energy from the surface
plasmons. These give the dominating contribution to the Casimir interaction between metals at small distances,
and the thermal effects found here will be recovered in other models. A numerical toolbox for calculations of
the Casimir free energy has been developed and is applied to the different materials. The asymptotic behavior
of the Casimir free energy and entropy is calculated in different distance and temperature regimes and recover
negative entropies and a violation of the third law of thermodynamics, that have been discussed strongly during
the last years. The origin and validity of this law is discussed in the context of a Casimir setup, and it is shown,
that no thermal anomalies occur in the Casimir interaction between superconductors. The interaction between
superconductors close to the critical temperature is investigated and is found to feature a characteristic entropy
minimum and a discontinuity of the entropy at the critical temperature. An surprising result is, that the predictions
obtained in the BCS and two fluid model coincide with great accuracy (at least in certain regimes of the material
parameters). In these regimes it is therefore legitimate to use the two fluid model rather than the numerically and
less convenient BCS model, which is valuable for future numerical work.

In the third chapter, the techniques developed earlier are adapted and applied to the Casimir-Polder effect between
atoms and a conducting surface. The interaction energies due to electric and magnetic dipole-coupling are calcu-
lated and compared. Again the asymptotic behavior is calculated within different regimes and new effects are found
in the magnetic case, where the interaction turns out to be highly sensitive to surface currents and the dissipative
effects in the medium. Therefore, the contribution due to the magnetic coupling with a surface depends strongly
on the material properties and differs strongly between the different models. It is shown, that thermal anomalies –
similar to the ones known from the Casimir-interaction between plates – reappear in the special case of a perfect
crystal, where the dissipation vanishes as T → 0. Previous calculations had considered thermal effects only for the
electric dipole contribution, where the above phenomena do not occur. Finally, the magnetic interaction of atom
with a superconductor is calculated. Exactly as in the case of two plates there is an entropy discontinuity and a
strong change of the Casimir-Polder free energy at the critical temperature.

In the end, the main results of this work are summarized briefly, and an outlook is given on connected topics, that
might be the subject of future research.
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1 Electrodynamics of superconductors

1.1 Electrodynamics of solids

1.1.1 Basic equations of electrodynamics

This chapter reviews some topics from the theory of electrodynamics and optics that will used in later parts of this
work. The fundamental relations of electrodynamics are the macroscopic Maxwell equations, which in the frame
of the système international (SI) are given by

∇ ·B = 0 ∇ ·D = ρ

∇×H = j + Ḋ ∇×E = −Ḃ . (1.1)

The connection between the electric and magnetic fields E and H and the dielectric displacement and the mag-
netic induction D,B in a medium featuring electrical or magnetic polarization P or M is given by the material
equations

B = µ0(H + M) = µH (1.2)
D = ε0E + P = εE ,

where the last identities hold only for linear media. More generally, permeabilities and permittivities µ, ε are tensor-
valued and depend on the orientation of the medium. In addition, the responses for transverse and longitudinal field
components do not generally coincide [Dressel and Grüner 2002]. The consideration of these properties is beyond
the scope of this thesis, and – unless stated differently – all media will be considered linear, isotropic, homogeneous
and local, which allows to use scalar quantities rather then tensors.

To obtain a complete system of equations, it is necessary to introduce one more relation which connects fields and
currents. The simplest version is Ohm’s law, given by the linearity

j = σE , (1.3)

where σ is the electrical DC conductivity. Later, more general relations including some nonlocal effects will be
introduced for superconductors and for normal metals, from which Ohm’s law is recovered in the local limit.

The continuity and wave-equation of electrodynamics follow directly from Maxwell’s equations

∇ · J +
∂

∂t
ρ = 0 (1.4)(

∆− n2

c2
∂2

∂t2

)
E = ∇(∇ ·E) + µ

∂

∂t
j (1.5)(

∆− n2

c2
∂2

∂t2

)
B = −µ∇× j.

Here c = 1/
√
ε0µ0 is the speed of light in vacuum and the index of refraction is

n = c
√
εµ . (1.6)
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1.1.2 Harmonic analysis

Harmonic time and spatial dependences are common in electrodynamics, so that it is convenient to express quan-
tities in the Fourier representation. Different conventions for the sign of the frequencies are possible. In this text,
the inverse and direct Fourier transforms connecting frequency and time domain are given by

f(ω) = F−1f(t) :=
1

2π

∫ ∞
−∞

f(t) exp(iωt)dt (1.7)

⇔ f(t) = Ff(ω) =
∫ ∞
−∞

f(ω) exp(−iωt)dω .

Where no confusion can occur, the same symbol will be used for functions in both the time and the frequency
domain (f(t), f(ω)). If a spatial decomposition is performed, too, the sign convention is positive for outgoing
waves

f(k, ω) = F−1f(r, t) :=
1

(2π)4

∫ ∞
−∞

f(r, t) exp(−ik · r + iωt) dt dr (1.8)

⇔ f(r, t) = Ff(k, ω) =
∫ ∞
−∞

f(ω) exp(ik · r− iωt) dω dk .

According to the well-known theorems of Fourier analysis one can replace differential operators ∇ → ik and
∂t → −iω by wave vectors and frequencies respectively in the frequency domain.

1.1.3 Electromagnetic waves in media

In a medium, there are not only free charges and conductive currents, but also polarization charges and bound
currents due to the polarizability of the matter. In a static field, the two kinds have very distinct characteristics,
but when the fields are not constant in time, it is no longer possible to clearly distinguish between conducting and
displacement currents

∇×H = j + Ḋ

= (σ − ε0εriω)︸ ︷︷ ︸
:=σ(ω)

E (1.9)

= (εr +
iσ

ε0ω
)︸ ︷︷ ︸

:=ε(ω)

(−iω)ε0D .

It is then useful to define complex dielectric functions or complex conductivities and act, as if only one kind of
currents were present. Throughout this text, the backgrounds are assumed to be non-polarizable εr = 1, and the
media under consideration are non-magnetic µr = 1.

The relation between complex conductivity and dielectric function is given by

ε(ω) = 1 +
iσ

ωε0
, (1.10)

which can also be decomposed into real and imaginary parts denoted by primed and double primed quantities

ε = ε′ + iε′′, σ = σ′ + iσ′′, n = n′ + in′′

ε′ = 1− σ′′

ε0ω
, ε′′ =

σ′

ε0ω

σ′ = ε′′ε0ω, σ′′ = (1− ε′)ε0ω .

The real and imaginary parts are not independent of each other but are connected by causality relations or as they
are sometimes called dispersion relations and which will be discussed in section 1.2.1.
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Now, plugging a monochromatic wave ansatz

Evac(r, t) = E(k, ω) exp(ik · r− iωt) (1.11)

into Ampere’s law in the presence of matter (1.5) gives the dispersion relation that relates wave vectors and
frequencies

k(ω) =
ω

c

√
ε′µ′ +

iµ′σ′

ε0ω
=:

ω

c
n(ω) . (1.12)

The last step defines the complex index of refraction, which could have been obtained as well by just plugging
in the complex dielectric function into (1.6). Of course the descriptions through n(ω), ε(ω) and σ(ω) are totally
equivalent.

Using the dispersion relation (1.12), one can express the field inside the medium in terms of the wave vector in
free space.

Ematter(r, t) = E(kvac, ω) exp(in′kvac · r− iωt) exp(−n′′kvac · r) , (1.13)

Obviously, the wave therefore damped during its propagation. Furthermore, a realistic wave packet contains several
frequencies and will disperse since n = n(ω) is a function of frequency. So, absorption is due to the imaginary
part of the index of refraction, while its real part leads to dispersion. As for the other complex response functions
there are causality relations connecting the real to the imaginary parts and hence dispersion to dissipation.

1.1.4 Fields at boundaries

Each incoming wave traveling along a direction k can be decomposed into two polarizations

• s- or TE-polarization: electric field perpendicular to the plane of incidence,

• p- or TM-polarization: electric field parallel to the plane of incidence.

When incidence is normal to the plane, TE- and TM-modes coincide, and in free space in the absence of boundary
conditions, all modes are both transverse electric and magnetic (TEM).

Let k⊥ be the wave vector in normal direction

Figure 1.1: Decomposition of an incoming wave.

and k the orthogonal complement. The disper-
sion relation using definitions (1.10, 1.6) be-
comes

k2 + k2
⊥ = ε

ω2

c2
, (1.14)

and it is quite useful to introduce a longitudinal
wave number

κ = −ik⊥ =

√
k2 − ε(ω)

ω2

c2
.(1.15)

The root must be chosen so that Re
√
· > 0,

which implies that fields are damped along their
propagation.

Maxwell’s equation require the continuity of
the normal components of B and the tangential
components E across boundaries. From these
follow the laws of reflection and refraction, and
the general form of Fresnel’s equations [Jack-
son 2002, Dressel and Grüner 2002]. The reflectivity for a wave of polarization i ∈ {TE, TM} crossing from
medium 1 to medium 2 can be expressed in terms of permittivities or impedances

ri =
Zi1 − Zi2
Zi1 + Zi2

, (1.16)

ZTE = Z0
κ2

κ1
, ZTM = Z0

ε2(ω)κ1

ε1(ω)κ2
, Z0 =

√
µ0

ε0
≈ 377 Ω . (1.17)
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Usually one medium will be the vacuum, where ε = 1. In this case the reflectivities take the following form

rTE =

√
k2 − ω2

c2 −
√
k2 − ε(ω)ω2

c2√
k2 − ω2

c2 +
√
k2 − ε(ω)ω2

c2

, rTM =
ε(ω)

√
k2 − ω2

c2 −
√
k2 − ε(ω)ω2

c2

ε(ω)
√
k2 − ω2

c2 +
√
k2 − ε(ω)ω2

c2

. (1.18)

All information on the surface optics can be compiled in an impedance tensor [Jackson 2002, Landau and Lifshitz
1974,Ford and Weber 1984], which describes the resistance to a wave crossing a medium or an interface. Assuming
only diagonal components, i.e. no mixing between the field components,

Zp :=
Ep∫∞

0
jpdz

=
√
µ

ε
≈ Ep
Hp

. (1.19)

The electric field is taken just outside the surface, while the current integral goes over the medium beyond. The
second equality holds only, where - as in (1.16) - it is reasonable to introduce quantities µ(ω), ε(ω). The last
approximation gives the so-called Leontovich-impedance, that applies when the displacement current is negligible.
Commonly the impedance is given as a scalar for perpendicular incidence [Dressel and Grüner 2002], where TE
and TM coincide .

1.1.5 Electric conductivity

The first successful description of dissipative electronic transport phenomena in a metal was given by Drude.
Even though the basic assumptions of Drude’s original model are really simple, the result can be recovered from
quantum-mechanical descriptions, which starting from the Boltzmann-equations and Fermi’s golden rule lead to
Kubo’s equation and give asymptotically identical expressions [Dressel and Grüner 2002].

The basic equation is obtained in the relaxation time approach, where just a general rate of dissipation γ = 1/τ
due to a mechanism not further defined is assumed, but where the conduction electrons are otherwise considered
as free particles accelerated by the external electric field.

v̇n = −vn
τ
− e

m
E . (1.20)

The equations of motions have to be read as referring to the expectation value of a kinematic momentum operator
p/m.

Using harmonic time-dependence ∼ exp(−iωt) and ji = −nieivi
!= σiE for the currents, the equation of motion

yields the AC conductivity for a normal metal

σn(ω) =
nne

2τ

m(1− iωτ)
=:

ω2
pε0

γ − iω
,

defining the plasma frequency ωp (see below) and relations (1.10) give the dielectric function of the Drude model

ε(ω) = 1−
ω2
p

ω(ω + iγ)
. (1.21)

The poles and zeros of the dielectric function are connected to important phenomena.

• ω = 0: This pole can be found from the continuity equation of electrodynamics. It must occur for a general
conductivity just due to the conservation of charge.

• ω = −iγ: Since γ is the dissipation rate of the relaxation time approach, this pole describes the relaxation
of currents to the equilibrium.

• ω ≈ ±ωp − iγ2 : A perturbation of the homogeneous charge distribution in the electron gas can excite
collective oscillations known as plasma oscillations [Jackson 2002]. Without damping γ, the two modes of
the system coincide at the plasma frequency

ωp =

√
ne2

meε0
. (1.22)
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In the high frequency limit γ � ωp < ω of (1.21), all excitations or resonant effects become irrelevant and
the response is dominated by inertia. The asymptotic function is well-known in solid state physics as the plasma
model

ε(ω) = 1−
ω2
p

ω2
. (1.23)

In fact it is recovered as an asymptotic for any conducting system at high frequencies well above the resonant
regime [Jackson 2002, Dressel and Grüner 2002]. Even so, it has often been used to describe metals also at low
frequencies, where it is certainly not valid, e.g. [Geyer et al. 2007]. It can be argued though, that in this regime it
rather approximates the optics of a superconductor and later in this thesis more support for this point will be given
(sections 1.4.1, 1.7.3). For a first try at the superconducting case, it comes quite natural to set γ ≡ 0, and so the
equation of motion becomes

v̇s = − e∗

m∗
E (1.24)

which gives exactly the plasma conductivity, which will turn out to be the fundamental result of London’s theory
of superconductivity (1.72).

The plasma model conductivity is purely imaginary and is given by

σs(ω) = i
n∗se
∗2

ωm∗
= i

ω2
pε0

ω
. (1.25)

If instead of an identically vanishing relaxation γ ≡ 0 the limit γ → 0 is taken, a causal distribution is obtained
whose imaginary and real parts are connected by Kramers-Kronig relations (see 1.2.5) in contrast to the pure
plasma model. The model is thus extended and reads

σs(ω) = ω2
pε0

1
ω + i0+

= πω2
pε0 δ(ω) + iω2

pε0P
1
ω

or in terms of the dielectric function (causal or distributional plasma model)

ε(ω) = 1−
ω2
p

ω
P 1
ω

+ iπ
ω2
p

ω
δ(ω) . (1.26)

1.1.6 Temperature dependence of Drude’s relaxation

The temperature dependence of Drude’s relaxation parameter γ has strong impacts on the conductivity. Its finite
value is due to scattering of the charge carriers, for instance in electron-electron interaction, electron-phonon
scattering and the scattering at crystal imperfections, impurities or interfaces.

If different mechanisms occur, each one can be attributed a characteristic dissipation rate γi or equivalently a
resistivity %i. The total resistivity is then given approximately by their sum, which is known as Matthiessen’s
rule

% =
∑
i

%i . (1.27)

The interaction between the conduction electrons is relevant in semiconductors, but in common metals the most
important interaction is between electrons and phonons, which is well described by the Bloch-Grüneisen-formula
[Bloch 1930, Grüneisen 1933]. Electric conduction is a non-equilibrium process, but it is safe to assume that
the phonon-gas is in a thermal equilibrium and follows Debye statistics. Details of the calculation can be found
in [Ashcroft and Mermin 1987, Ziman 1972, Jones and March 1973]. The final result reads

%BG(T ) =
C

Θ

(
T

Θ

)5 ∫ Θ/T

0

du
u5

(1− e−u)(eu − 1)

T→0→ %0

(
T

Θ

)5

, %0 = 124.431
C

Θ
(1.28)

At low temperatures the dissipation rate follow asymptotically a T 5 power law, which works up to about 10% of
the Debye temperature Θ, as is shown in fig. 1.2 for aluminum, together with reference data from data from [Lide
1995].
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Figure 1.2: Resistivity of aluminum and Bloch-
Grüneisen-law and its low-temperature asymptotics.
The result of the fit of %BG data from [Lide 1995] are
C = 7.5 ·1011 ΩmK,Θ = 429 K, which is remarkably
close to the reference value for aluminum Θ = 428K.

Numerically it can be necessary to use functions that
show a similar qualitative behavior but do not request the
numerical evaluation of integrals. An example is

%(T ) = %0 [1− exp (−(T/T0)α)] (1.29)

where the parameters %0, T0, α must be chosen ad-
equately. Drude’s relaxation rate and the Bloch-
Grüneisen-parameter are connected by

γ =
1
τ

= %BGε0ω
2
p . (1.30)

The other important contribution to resistivity in normal
metals is the one due to scattering at crystal imperfec-
tions, impurities and interfaces which does not depend on
temperature. Only close to the melting point could ther-
mally induced defects become relevant.

If there is a constant contribution to the relaxation rate
due to material imperfections, it will dominate the resis-
tivity at low temperatures. In the case of aluminum, an estimate for the plasma frequency gives ωp ≈ 2.4 · 1016 Hz
and thus, using the resistivity at T = 1 K from [Lide 1995] an order of γ ≈ 2 · 10−7ωp. Presumably the measure-
ments were done on extremely pure samples, so that typical values may be even higher.

This consideration motivates the distinction of two limiting cases of dissipative models:

• Drude models with a constant relaxation rate for impure metals.

• Perfect crystals for models of the Bloch-Grüneisen-type.

1.1.7 The skin effect

Normal skin effect

The last term in (1.13) leads to the attenuation of a wave in a dissipative medium over a characteristic length scale
δ := Im 1/k(ω) given by the imaginary part of the wave-vector in the medium.

At low frequencies the current in a metal is dominated by conducting currents and the wave equation reduces to
the diffusion equation

∆E = µσĖ , (1.31)

which is solved by a diffusive wave E ∼ exp(ikz − iωt), where

k = ±
√
iµσω ≈ ±(1 + i)

√
µσω

2
(1.32)

⇒ δ =
√

2
µσω

. (1.33)

The approximation is valid at small enough frequencies. From the form of the wave equation it is clear, that
identical relations hold also for a magnetic field. The final result is, that a time-dependent electromagnetic field can
penetrate only a short distance into a metal. This is known as the normal skin effect [Jackson 2002].

It is easy to obtain a general expression for the impedance of a metal in the regime of the normal skin effect. A
comparison of the low frequency approximation for the wave vector in a metal (1.33) with the dispersion relation
gives the permittivity

ε ≈ iσ

ωε0
(1.34)

which can be plugged into (1.16 ff.) and yields the low frequency surface impedance

Z ≈ Z0(1− i)
√
ωε0
2σ

, (1.35)

Thus, the impedance of metals features a characteristic
√
ω-behavior at low frequencies.
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Anomalous skin effect

At low temperatures or high frequencies, the skin depth becomes smaller than the mean free path in the material
δ � l ≈ vF τ , and the penetration depth is no longer described by the above expression but can become much
larger. In this regime it is common to talk about the anomalous skin effect. Chambers gave a phenomenological
description in terms of a nonlocal current-field relation

j(r, ω) =
e2N(EF )vF

2π

∫
dR

R(R ·E(r−R)) exp(−R/l)
R4

, (1.36)

where N(EF ), vF are the density of states and electron velocity at the Fermi edge. A similar analysis as in the
previous case of the normal skin effect can be performed (e.g. [Dressel and Grüner 2002]) and gives a skin depth

δ ∼
(
l

ω

)1/3

.

In the local limit, the field is assumed to vary on much larger scales than the mean free path l and can be taken out
of the integral. In this case the current-field relation reduces to Ohm’s law which leads to the normal skin effect

j(r, ω) ≈ E(r)
e2N(EF )vF

2π

∫
dR

RR
R4

exp(−R/l) (1.37)

= E(r)
e2N(EF )vF

2π
4πl
3

=: σE(r) . (1.38)

1.2 Causality and optics

This section deals with the analytical properties of optical response functions, such as the conductivity, the dielec-
tric functions or generally susceptibilities. All of these are complex functions and can be expressed in the time
domain (hence the name response function) or equivalently in the frequency domain. The two representations are
linked by Fourier transformations as introduced in section 1.1.2. In many calculations it is convenient to use a
analytical continuation into the Gaussian plane of complex frequencies, where the analytical and distributional
properties of the response functions become important, more so as these properties are closely connected to deep
physical concepts such as causality and the link between dispersion and dissipation.

1.2.1 Causality and analytical properties

The first part of this work has introduced the basic quantities used to describe response of a material to an elec-
tromagnetic field. Among these were the electric conductivity, the index of refraction or the dielectric function.
Most of the time, these functions have been expressed in the frequency domain, i.e. as the Fourier-transforms of a
system’s time-dependent response to a perturbation or excitation.

A general linear response function to a time dependent source h has the form

f(t) =
∫ ∞
−∞

dt′g(t− t′)h(t′) = [g ∗ h](t) , (1.39)

where the last identity defines the convolution product. If the system is to be causal, the response must not precede
an excitation, so

g(t) != g(t)θ(t)⇔ g(t < 0) = 0 . (1.40)
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Figure 1.3: Integration contours for causal functions.

Such functions are called causal transforms1. Now, if
g(−|t|) is expressed through its Fourier transform,

g(−|t|) =
∫
dω exp(iω′|t|) exp(−ω′′|t|)g(ω) , (1.41)

the integration path can be closed in the upper complex
plane ( Im ω > 0) as shown on the left of figure 1.3 be-
cause the integrand vanishes asymptotically, and since
causality requires that integral must vanish for t < 0 , there cannot be any poles in this region according to
Cauchy’s theorem (e.g. [Nussenzveig 1972, Landau and Lifshitz 1979]).

1.2.2 Causality relations

For causal and square-integrable analytic functions g(ω′) ∈ L2 on R, g(ω′)
ω′−ω has a single pole in the ω′-plane at

real ω 6= 0. Cauchy’s theorem applied to the contour on the right in figure 1.3 gives

0 =
1

2πi

∮
g(ω′)
ω′ − ω

dω′ . (1.42)

As the integral along the large semi-circle vanishes due to the properties of g, the contribution from the pole must
compensate the rest of integral along the real axis, which defines Cauchy’s principle value (valeur principale) of
the integral2

g(ω) =
1
πi
PV

∫ ∞
−∞

g(ω′)
ω′ − ω

dω′ (1.43)

:= lim
ε→0

1
πi

[∫ −ε
−∞

+
∫ ∞
ε

]
g(ω′)
ω′ − ω

dω′ .

If this is separated into real and imaginary part it becomes obvious that both are not independent but connected by
Hilbert-Transforms known as Plemelj’s equations, causality relations or dispersion relations

Re g(ω) =
1
π
PV

∫ ∞
−∞

Im g(ω′)
ω′ − ω

dω′ (1.44)

Im g(ω) = − 1
π
PV

∫ ∞
−∞

Re g(ω′)
ω′ − ω

dω′ . (1.45)

Besides, it can be shown that

g(ω) = lim
v→0

g(ω + iv) (1.46)

g(ω + iv) ∈ L2 for almost all v > 0 .

All these properties are connected by Titchmarsh’s theorem: All of the expressions (1.40), (1.44), (1.45) and (1.46)
are equivalent for square-integrable and causal functions onR.

1Nussenzveig [Nussenzveig 1972] calls this primitive causality to distinguish it from the more general concept of relativistic causality which
takes into account the retardation due to a signal’s maximum velocity of propagation. In covariant notation, this requires

g(xµ)
!
= g(xµ)θ(xµx

µ)

. The primitive causality condition is thus the local limit of the relativistic one.
2 How this is connected to distribution P1/ω, known as Cauchy’s principal value of 1/ω is discussed below. The definition is actually a

generalization of the integral concept, and there is another even more general one:
If the divergences of an integral can be separated as the limit of a series R in terms of log ε and 1

ε
, then

PF
∫
f :=

∫
f −R

(
log(ε),

1

ε

)
defines Hadamard’s part finie (finite part) of the integral, which does coincide with Cauchy’s principal value of the integral, whenever the
latter exists. The identification of integrals with their part finie is considered good practice in quantum field theory, where divergent parts
are absorbed into otherwise badly defined constants through a renormalization procedure.

Anyway, for the scope of this text, the principal value integral is powerful enough.
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1.2.3 Basic theory of distributions

In many physical contexts, Titchmarsh’s theorem does not apply because it applies only to square-integrable func-
tions g ∈ L2. Also, response functions will often contain distributions like the Dirac δ-distribution, so that they
are not even regular functions. The theory of distributions can of course not be fully covered here, but it is useful
to sketch a few important elements, that will be used later and allow to find a more general form of Titchmarch’s
theorem. More complete introductions to the field can be found e.g. in [Vladimirov 1972,Gel’fand et al. 1962]. The
topic of causal transforms has been treated thoroughly from the physicist’s point of view by Nussenzveig [Nussen-
zveig 1972] and in a rigorous mathematical way by Beltrami and Wohlers [Beltrami and Wohlers 1966].

Distributions are linear functionals that act on a space of functions. The evaluation of a distribution is performed
by means of the inner product with a test function, typically from a space of quickly decaying functions like e.g.
L2. The inner product is is usually defined by

〈α, f〉 :=
∫ ∞
−∞

α(x)f(x)dx . (1.47)

A distribution is called regular, if it can be replaced by an element of the function space itself. Then it has a well-
defined value in any point of its support. In physics non-regular distributions are omnipresent. The most prominent
one of which is Dirac’s δ-distribution. It cannot be expressed through any regular function but it can be obtained as
the limit of a family of functions. The δ-distribution is defined by its property to select a value of the test-function

〈δ, f〉 := f(0) (1.48)

The distributional derivative can be defined in terms of the inner product (1.47). Performing a partial integration
and using the fast decay of the test functions

⇒ 〈α′, f〉 := −〈α, f ′〉 . (1.49)

Every distribution (even the irregular ones) can be expressed as distributional derivatives of regular functions. The
space of distributions that are the nth derivative (Dtn ) of a continuous regular functions is usually called

E(n)
0 = {Dtnf(t) : f(t) ∈ C0} . (1.50)

Another important space is made up by the (anti-)causal distributions

D± = {gt ∈ E(1)
0 : gt = gtθ(±t)} . (1.51)

This includes the causal regular functions as defined by equation (1.40) as a special case. The elementary (anti-)
causal distribution δ± is obtained as the Fourier transform of the unit step function

F
[
δ±(ω)

]
= θ(∓t) (1.52)

δ±(ω) = 1
2δ(ω)∓ 1

2πiP
1
ω = lim

ε→0
∓ 1

2πi
1

ω ± iε
(1.53)

δ(ω) = δ+(ω) + δ−(ω) = lim
ε→0

1
π

ε

ω2 + ε2
. (1.54)

The distribution P 1
ω is defined by means of Cauchy’s principal value of the integral (1.43)

〈P 1
ω
, f(ω)〉 := PV

∫ ∞
−∞

f(ω)
ω

dω . (1.55)

This clarifies the connection between the symbols PV for Cauchy’s principal value of an integral and P as the
notation for a special distribution, which cannot be generalized to arbitrary functions.A common equivalent repre-
sentation of (1.53, 1.54), which has been used earlier in this text to introduce the causal plasma model, is known
as Dirac’s identity or Sochozky’s formula

lim
ε→0

1
ω ± iε

= P 1
ω
∓ iπδ(ω) . (1.56)

Finally, a surprising identity can be obtained from the convolution theorem of Fourier analysis

P 1
ω
∗ P 1

ω
= −π2δ(ω) . (1.57)
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1.2.4 Causality relations for distributions

In the case of causal distributions gω ∈ D+ the analog to (1.43) is the fundamental theorem

gω = − 1
iπ
gω ∗ P

1
ω
. (1.58)

The generalization of Plemenj’s equations are thus

Re gω = − 1
π

Im gω ∗ P
1
ω

(1.59)

Im gω =
1
π

Re gω ∗ P
1
ω
. (1.60)

As in Titchmarsh’s theorem, both equations are equivalent, since one is obtained from the other by a convolution
with the distribution P 1

ω and (1.57).

An example for a causal distribution is the distributional plasma model introduced in (1.26). In the above notation,
it becomes

ε(ω) = 1−
ω2
p

ω
P 1
ω
− iπ

ω2
p

ω
δ(ω) = 1 +

2πω2
p

ω
δ+(ω) . (1.61)

As a causal distribution it fulfills the distributional Plemenj’s equations, which can be shown directly with help of
(1.57).

Note that it is not possible to introduce only the δ-contribution without doing the replacement 1
ω → P

1
ω at the

same time. This step is often neglected, e.g. in [Dressel and Grüner 2002, Berlinsky et al. 1993], and is a common
source of confusion, because the version of Plemenj’s equations for functions will not give the desired results.

This stresses, that consistent causal response functions and causality relations are obtained only, if the distributional
properties are taken into account completely.

1.2.5 Kramers-Kronig relations and sum rules

The Kramers-Kronig relations

Special examples of response functions introduced earlier are the

• dielectric function ε(ω): response of the dielectric displacement to an electric field.

• electric susceptibility χ(ω) = ε(ω)− 1 = iσ(ω)
ε0ω

: response of the dielectric polarization to an electric field.

• electric conductivity σ: current response to an applied field.

The responses must be causal, and so there should be Plemenj’s equations. Unfortunately, dielectric functions have
the limit ε(∞) = 1 and are hence not (square-)integrable. On the other hand the closely related susceptibility
χ(ω) = ε(ω) − 1 fulfills all requirements and Kramers-Kronig relations can be introduced. The final result can
then be expressed in terms of ε(ω).

These causality relations for the dielectric functions were introduced independently by Kramers and Kronig
[Kramers 1927, Kronig 1926] and are therefore known as Kramers-Kronig (KK-) relations.

ε′(ω) = 1 +
1
π
PV

∫ ∞
−∞

ε′′(ω′)
ω′ − ω

dω′

ε′′(ω) = − 1
π
PV

∫ ∞
−∞

ε′(ω′)− 1
ω′ − ω

dω′ . (1.62)

Since physical electric fields are real, ε(−ω) = ε∗(ω) and σ(−ω) = σ∗(ω). Using these properties, (1.44), (1.45)
can be written in a symmetric form, which for the conductivity gives

σ′(ω) =
2
π
PV

∫ ∞
0

ω′σ′′(ω′)
ω′2 − ω2

dω′

σ′′(ω) = −2ω
π
PV

∫ ∞
0

σ′(ω′)
ω′2 − ω2

dω′ . (1.63)
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Kramers-Kronig relations for conductors

Kramers-Kronig relations are unambiguous only up to a constant, which is usually fixed by a reference value at
a fixed frequency. A first example for a subtraction scheme for dispersion relations was already given in the last
section. Here, the quantity ε(ω)− ε(∞) could have been used instead of the susceptibility with identical results.

Similarly, subtractions can be introduced in order to renormalize even UV- and IR-divergences. This leads to
generalized or higher order Kramers-Kronig relations.

In conductors σ′(0) 6= 0, and ε′′(0) features an IR-divergence, such that the first of (1.62) does not exist. The pole
may be renormalized by simply subtracting it and the resulting function is analytic and fulfills Plemenj’s equations.
For conductors, the second of (1.62) is now replaced by

ε′′(ω)− σ′(0)
ε0ω

= −2ω
π
PV

∫ ∞
0

ε′(ω′)− 1
ω′2 − ω2

dω′ .

Kramers-Kronig relations for the plasma model

The formalism of subtraction from the last section can be applied to the singularity of the plasma model. Of course
this means just subtracting the complete plasma model from the dielectric function and the resulting function
is analytic per definitionem. This was done in in [Klimchitskaya et al. 2007] for a version of the plasma model
featuring additional resonances. These resonances, which are Drude-like and do not create problems are everything
that is left over after the subtraction. Higher order KK-relations similar to the ones given in [Landau and Lifshitz
1979] have then been recalculated by performing contour integrations explicitly. The interpretation needs some
clarification in my point of view:

• The method of constructing an analytic function by subtraction of single terms, makes it possible to describe
correctly mathematical properties of functions. Of course this does not guarantee the causality of the original
function and does thus not prevent the problems created by non-causal functions.

• The authors of [Klimchitskaya et al. 2007] reject the introduction of a δ-contribution as it fulfills only one
of the Kramers-Kronig relations. But it has been pointed out in section 1.2.4 that it is absolutely essential in
this case to use the distributional Plemenj’s equations (1.59, 1.60) rather than the functional KK-relations.

The oscillator strength sum rule

Sum rules are yet another consequence of causal properties of the optical response functions. It has been stated
before that the plasma model is the general limit of dielectric functions at high frequencies, where absorption or
excitation do not longer occur, but where the response is due to inertia. In this regime

ε(ω) ≈ ε′(ω) ≈ 1−
ω2
p

ω2
. (1.64)

Plugging this limit into the left hand side of the Kramers-Kronig relation and using ω � ω′ also in the denominator
under the integral, gives what is known as the oscillator sum rule

ε′(ω)− 1 =
2
π
P
∫ ∞

0

dω′
ω′ε′′(ω′)
ω′2 − ω2

≈ − 2
ω2π

∫ ∞
0

dωω′ε′′(ω′) (1.65)

⇒
∫ ∞

0

ω′ε′′(ω′)dω′ =
∫ ∞

0

σ′(ω′)
ε0

dω′ =
πω2

p

2
. (1.66)

Thus, the total dissipation of a system is connected to the plasma-frequency. Arguments of this type can be used
to estimate parts of the spectral dissipation function if only a part is known. Is is obvious, that the sum rule (1.66)
holds in the case of the Drude model.

The term oscillator strength stems from a semi-classical model of the matter of structure, introduced by Lorentz
and based on the observation, that general dielectric functions can be well-fitted by a sum of Lorentz oscillators.
The Drude model (with only one resonance frequency ω = 0) is just the simplest scenario. Each of the oscillators
is interpreted as an ensemble of harmonically bound electrons in the solid. In this picture, the relative weight of the
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resonances is measured by the oscillator strength which is just proportional to the respective fraction of electrons.
Since the total number of electrons must be conserved, the oscillator strengths must add up to 1, which is mirrored
by the above sum rule. In quantum mechanics, the oscillator strength of the classical model can be linked directly
to a transition matrix element.

Optics at imaginary frequencies

Optical response-functions such as the conductivity, dielectric function or (complex) index of refraction are causal
functions or distributions and they allow generally for analytic continuation into the upper half of the complex
frequency plane. A description of optical properties at purely imaginary frequencies is very desirable. As an ex-
ample, frequency-integrations along the imaginary axis result in exclusively real-valued square-roots in Fresnel’s
formulas (1.16). Later in this work, when surface interactions are calculated, the use of imaginary frequencies will
turn out to be very favorable for the evaluation of thermal corrections.

Often the analytic continuation can be obtained from the known response function at real frequencies by simply
substituting ω = iξ, where ξ ∈ R. This direct complexification is very simple, where the frequency dependence
is explicitly known and no further complications, such as branch cuts due to multiple valued functions occur.
Examples for dielectric functions that allow a direct evaluation at imaginary frequencies are the ones of the plasma
and Drude model.

Where this is not possible - as in the BCS theory presented below - the Kramers-Kronig relations or the Cauchy
formula respectively may be used to evaluate the response functions along the imaginary axis. Since the complete
information is contained in either the real or the imaginary part of a response function, the analytical continuation
can be done from either of them. After some algebra the corresponding KK-relations read

σ(iξ) =
2
π

∫ ∞
0

dω
ωσ′′(ω)
ξ2 + ω2

(1.67)

=
2
π
ξ

∫ ∞
0

dω
σ′(ω)
ξ2 + ω2

. (1.68)

If the analytic continuation is obtained by other means, such as the explicit evaluation along the imaginary axis,
the above KK-relations are still very helpful to check the results.

1.3 Phenomena in superconductivity

The previous sections have dealt with the general electrodynamical and optical properties of conductors or metals.
Superconductors are a special case and before some of the most important descriptions are presented, the most
relevant phenomena occurring in these materials shall be presented. A historical overview on the discovery of
superconductivity has already been given in the introduction.

Superconductors feature a phase transition at a critical temperature Tc, below which they expose two very charac-
teristic macroscopic properties

• Vanishing resistivity σ0 →∞: superconducting materials loose their electric DC-resistance below a critical
temperature Tc in the order of magnitude of some Kelvin [Kammerlingh-Onnes 1911].

• Meißner-Ochsenfeld effect B → 0: The inside of superconductors is free of magnetic fields3 [Meißner and
Ochsenfeld 1933]

These two points alone - later the details and mechanisms will be discussed much more carefully - are sufficient
to give rise to many optical, thermodynamical and electrical properties and must be reproduced by any theoretical
description of the superconductors. In fact the great success of the London model described in the next section,
which is still the standard description of a superconductor for many technical and engineering purposes, is due to
the fact, that for the first time both effects could be recovered from one model.

3This is strictly true only for so-called type I superconductors in the Meißner-state. In section 1.5 it will turn out, that in some materials (type
II superconductors) superconducting and normally conducting domains can coexist in a mixed phase.
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Due to the vanishing conductivity a superconductor can carry huge persistent supercurrents that do not decay on any
experimental time scale. The Meißner-Ochsenfeld effect (cf. section 1.4.2) can be understood as the consequence
of surface supercurrents that will adapt to the external field and cancel it out in the interior of the superconductor.
Note that supercurrents can be excited only in a multiply connected body, i.e. in superconducting rings or as a part
of a circuit.

Superconductivity breaks down at certain critical thresholds of the temperature Tc, external fieldsHc or the current
jc. These critical values can all be connected to a critical energy scale, e.g. kBTc ∼ µ

2H
2
c (T = 0), which was an

important hint at the energy gap fundamental for the BCS description. At finite temperature, the value of the critical
field was very early found to follow well a parabolic law [Shoenberg 1938]

Hc(T ) ∼
(

1− T 2

T 2
c

)
. (1.69)

There is vast literature on superconductivity and solid state electrodynamics. Some relevant textbooks and mono-
graphes on superconductivity are [Landau and Lifshitz 1979, Tinkham 2004, Buckel 1977, Schrieffer 1999, Rick-
ayzen 1965, Ketterson and Song 1999, Zhou 1991], whereas general solid state physics and optics are covered e.g.
in [Landau and Lifshitz 1974, Dressel and Grüner 2002, Ashcroft and Mermin 1987, Jones and March 1973, Kittel
2002]. A classical review article on classical superconductors is [Tinkham 1974] and a concise review is also given
in the introduction of [Basov and Timusk 2005] covering the new and exciting field of high Tc superconductors.
Such materials were discovered in 1986 [Bednorz and Müller 1986] and cannot be covered in this text, which is
limited to classical superconductors in the Meißner-state (cf. 1.5).

1.4 The two fluid model

1.4.1 The London’s model

The London equations

A very successful early model of superconductivity was proposed in the 1930s by the brothers F. and H. London
[London and London 1935]. They considered a fluid of superconducting charge-carriers of mass m∗, charge e∗

and density n∗s = |Ψ|2 described by a macroscopic wave function

Ψ =
√
n∗s exp(iϕ) . (1.70)

The gauge-invariant current due to this wave function is

js =
e∗

m∗
〈Ψ| − ih̄

−→
D|Ψ〉 =

n∗se
∗h̄

m∗
(∇ϕ− e∗

h̄
A) . (1.71)

The London brothers assumed the order parameter to be rigid towards perturbations 4 so that 〈Ψ| − ih̄∇|Ψ〉 ≈ 0,
and obtained the celebrated gauge invariant London equations [London and London 1935]

∇× js = −e
∗2n∗

m∗
B (1.72)

E =
m∗

e∗2n∗
djs
dt

=: Λ
djs
dt

(1.73)

The London equations are often given in terms of the vector potential

js = −ε0ω2
pA , (1.74)

but one must keep in mind that this requires the proper transverse choice of gauge ∇ · A = 0, or the correct
definition of the boundary conditions which will eventually lead to the subtraction of gauge-violating terms in any
physical situation [Schrieffer 1999].

4Since ∇ · B = 0, the magnetic field is necessarily transverse and perturbations affect only transverse excitations. The order parameter
is thus rigid only towards transverse perturbations [Schrieffer 1999] and it is the non-rigidity w.r.t. longitudinal excitations, that leads to
corrections.
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Superconductivity is clearly a quantum effect but interestingly the London equations do not depend on Planck’s
constant h̄, which is the typical signature of "quantumness". Interestingly, it is the very assumption of phase rigidity,
responsible for the special properties of a superconductor, that suppresses the only term in (1.71) that depends
on h̄. Hence, the only element of a quantum mechanical description left over in the London equations, is the
interpretation of the density n∗s of the charge carriers in terms of a wave-function.

When in the 1950s the pairing theory of superconductivity came up, the charge carriers were immediately inter-
preted as Cooper-pairs of electrons5 of mass m∗ = 2me, charge |e∗| = 2|e| and density n∗s = ns

2 = |Ψ0|2. A nice
observation is, that the London equations are independent of the nature of the charge-carriers (single electrons or
pairs within an one-particle picture as defined above), as is the specific charge e/m and the charge density e ·n, so
that the stars can be dropped from the notation.

The quantity Λ appearing in the London equations is known as the London-parameter and is closely related to the
plasma-frequency

Λ =
1

ε0ω2
p

, ω2
p =

ne2

mε0
.

Plasma model and impedance

In the frequency domain, the second London equation (1.72) becomes

E(ω) = − iω

ε0ω2
p

j(ω). (1.75)

As in section 1.1.5 a complex conductivity or equivalently a dielectric function can be introduced to describe the
current-field relation

σ(ω) =
iω2
pε0

ω
, ε(ω) = 1−

ω2
p

ω2
,

which is just the plasma model (1.23) known from section 1.1.5. From this, equation (1.16 ff.) can be used to obtain
the impedance of a superconductor, which grows linearly with frequency [Zhou 1991]

Z = Z0

√
1

ε(ω)
= Z0

ω

ωp
. (1.76)

This power law differs from the one in (1.35) obtained for the normal metal which shows once again, that the
plasma model should not be carelessly used to model normal metals especially at low frequencies.

Quantization of magnetic flux

An immediate consequence of the macroscopic wave-function ansatz is the quantization of the magnetic flux
through a superconducting ring [Ashcroft and Mermin 1987]. Since the macroscopic wave-function must be single-
valued, it must change by a multiple of 2π along the ring, and using that inside the bulk

∮
j · dl = 0

Φ =
∮

A · dl =
h̄

e∗

∮
∇ϕ · dl =

h̄

e∗
∆ϕ︸︷︷︸
2πk

= kΦ0 , (1.77)

where the quantum of flux is Φ0 = h
e∗ . This is a measurable quantity and the experimental confirmation of the

value e∗ = 2e contributed immensely to the acceptance of the pair-description of superconductivity. Anyhow,
recently doubt has been raised on this value for high-Tc superconductors [Loder et al. 2008].

1.4.2 The Meißner-Ochsenfeld effect

In 1933 Meißner and Ochsenfeld discovered [Meißner and Ochsenfeld 1933], that the magnetic field is expulsed
from the superconductor’s interior while undergoing the superconducting transition. Together with the vanishing

5Actually, Cooper pairs are quasi-particles in a many-particle-theory, while the London theory deals with one-particle-states. The densities
occurring e.g. in the BCS theory features therefore coherence effects, so that London-theory is but a first approximation, cf. 1.4.3, 1.6,
[Landau and Lifshitz 1979, §144].
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Figure 1.4: Ideal conductor Φ̇ = 0 (left). Superconductor Φ = Φ̇ = 0 (right). In thermodynamic equilibrium states the final
state must not depend on the path chosen in B − T -plane.

resistivity this is the reason, why superconductors have often been called both ideal conductors and ideal diamag-
nets. Both terms may be somewhat misleading and need some clarification [Tinkham 2004, Schrieffer 1999].

The term ideal diamagnet hints at a medium with a magnetic susceptibility χm = −1 = − |M||H| and thus µr =
1 + χm = 0, which produces the required property H 6= B = 0 on the interior.

Another way of looking at things is to leave magnetization completely out of the picture, but assume that free
surface supercurrents arise in response to the external field and contribute to the discontinuity of B at the surface
such as to shield the interior. The London theory (using µr = 1) is formulated within this framework and it is
certainly the more common point of view. But, since the description by a ideal diamagnet requires some kind of
magnetic moments, connected to bound currents in the classical picture, both pictures cannot be well distinguished.
Anyway it is clear now, that when talking about ideal diamagnets, materials are meant, that feature the Meißner-
Ochsenfeld effect.

In an ideal conductor, characterized by zero resistivity, the electric field needed to produce a given current vanishes,
and from Maxwell’s equation follows that the magnetic field freezes, i.e. the magnetic flux is constant

E = lim
σ→∞

1
σ
j = 0

⇒
∫
∇×EdA = −

∫
ḂdA = −Φ̇ = 0 .

If superconductors and ideal conductors were identical, the magnetic flux would have to be conserved even when
going through the superconducting transition. But in this case, the state of the material would depend on the path
in B − T -space (fig. 1.4), which is not possible, if the superconductor is to be a thermodynamic equilibrium state
and furthermore is in clear contradiction to the well-established Meißner-Ochsenfeld effect.

On the other hand, when the London equations are used as the current-field relation, and coordinates are chosen so
that x points into the superconductor, the stationary solution reads

∆B =
µ0

Λ
B, ∆j =

µ0

Λ
j (1.78)

⇒ B, j ∼ exp(−x/λL)⇒ lim
x→∞

B = 0 .

Hence, not only is the flux constant but also vanishes inside the superconductor. This explanation of the Meißner-
Ochsenfeld effect was a great success of the London theory. The scale, on which the field decays is known as the
London penetration depth and coincides with the plasma wavelength

λL = (ω2
pε0µ0)−1/2 =

c

ωp
= λp . (1.79)
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The London theory includes thus a stronger condition than just that of vanishing resistance. At the same time, the
Meißner-Ochsenfeld effect is the solution to the thermodynamical conundrum arising from the ideal conducting
case.

It must be stressed that London theory deals with stationary states and order parameters and does not give a
description of how the field is expulsed from the bulk. Clearly the processes depicted above include an evolution
in time. A dynamical description of the process is possible in a time-dependent generalization of Ginzburg-Landau
theory (check section 1.5, [Tinkham 2004]) but is beyond the scope of this thesis.

1.4.3 Two fluid model and the Gorter-Casimir relation

The London theory works very well but only at very low temperatures. The two fluid model is an extension of
the original theory and was constructed in analogy to Landau’s theory of superfluidity [Landau and Lifshitz 1979,
Soldati 2003]. In this model, the total current through the superconducting metal is described as a superposition of
dissipative normal contribution and a superconducting non-dissipative current

j = jn + js, jn = σE . (1.80)

As this description is based on a classical model, charge conservation requests that the total number of charge-
carriers be constant, but they can still be distributed between the supercurrent and the normal current depending on
temperature. The partial densities of charge carriers responsible are described by a temperature-dependent order
parameter

η(T ) =
ns
n

= 1− nn
n

(1.81)

It seems reasonable to describe the superconducting current by a London type plasma model and the normal current
by the Drude model. Hence, a first educated guess at the dielectric function of superconductors reads

ε(ω) = 1−
ω2
p

ω2
η(T )−

ω2
p

ω(ω + iγ)
[1− η(T )] . (1.82)
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Figure 1.5: The Gorter-Casimir order parame-
ter η(T )

At very low temperatures, the plasma model is a good descrip-
tion for the superconductor, so generally η(0) = 1, i.e. all elec-
trons contribute to the superconducting current. On the other
hand above the critical temperature Tc the material behaves as
a normal conductor and η(T > Tc) = 0.

A specific form of the order parameter was proposed by Gorter
and Casimir based on a somewhat artificial form of the free
energy including a constant condensation energy for the super-
fluid [Gorter and Casimir 1934, Zhou 1991, Schrieffer 1999]

F = −
√

1− η(T )
a

2
T 2︸ ︷︷ ︸

normal current

−η(T )b︸ ︷︷ ︸
supercurrent

, (1.83)

which when varied with respect to η ∼ ns ∼ |Ψ|2 gives the
Gorter-Casimir order parameter

η(T ) =

[
1−

(
T

Tc

)4
]
θ(Tc − T ) (1.84)

θ(x) =
{

1 x > 0
0 x < 0

Heaviside’s unit-step function θ(x) is introduced to cut off the temperature dependence at the critical temperature.
A jump of the specific heat occurs at the critical temperature, and if the difference between the two contributions
is balanced to a critical field,

µHc
2

2
= Fn(T )−Fs(T )⇒ Hc(T ) ∼

(
1− T 2

T 2
c

,

)
,
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which recovers (1.69) and fits very well to the experimental data.

The Gorter-Casimir relation (fig. 1.5) gives the generally correct asymptotics of the superconducting gap at low
temperatures, which is the analog to an order parameter obtained from microscopic BCS theory (cf. 1.6).

1.5 The Ginzburg-Landau model

1.5.1 The free energy approach

Another highly successful macroscopic description of superconductivity was given by Ginzburg and Landau (GL)
[Ginzburg and Landau 1950, Ginzburg 1955]. This section will give only a brief overview over the fundamental
concepts of this theory and show a few results that are important for the definition and understanding of the systems
considered in the rest of this work, but it is not possible to give a complete introduction to this complex and rich
theory. Extensive material can be found in references [Lifshitz et al. 1984, Tinkham 2004, Ketterson and Song
1999, Schrieffer 1999].

GL theory is based on general properties of the free energy per unit volume of a system near a phase transition,
described through an order parameter. The theory can be seen as a generalization of the London model, and as in
the earlier model, the order parameter is identified with a macroscopic wave-function but without the restriction of
rigidity.6.

Gorkov [Gorkov 1959] showed that the Ginzburg-Landau model can be derived asymptotically from BCS theory
(section 1.6), and found thus a microscopic justification for the macroscopic description. It turned out, that Ψ ∼
∆(T ) is closely connected to the superconducting gap ∆(T ), which takes the role of an order parameter in BCS
theory.

T>Tc T<Tc
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Figure 1.6: Ginzburg-Landau potential V (Ψ) in the
normal state at T > Tc (gray) and in the supercon-
ducting state with broken symmetry at T < Tc (black).
The respective stable equilibria are indicated by the cir-
cles. Note that the potential is invariant under rotations
in the complex Ψ plane.

The potential in the Ginzburg-Landau ansatz can contain
only contributions in even powers of the density |Ψ|2,
since a global phase must not show up in the physics.
The free energy ansatz contains the normal free energy
density fn, a kinetic term and the first two orders of the
Ginzburg-Landau potential V (Ψ)

fs = fn +
h̄

2m∗
|∇Ψ|2 + a|Ψ|2 +

b

2
|Ψ|4︸ ︷︷ ︸

V (Ψ)

. (1.85)

At the critical temperature Tc, the equilibrium state of
the potential must change its stability. This happens if a
spontaneous symmetry breaking at Tc introduced through
the parameters a, b. Since GL theory holds only at tem-
peratures close to Tc, the exact form of the ansatz is not
very important, because any expression can be expanded
in low order terms of the form

a = α(T − Tc), α > 0 (1.86)
b = const. (1.87)

Figure 1.6 shows the Ginzburg-Landau potential above and below Tc. Above the critical temperature, Ψ = 0 is
the stable minimum corresponding to the normal state, but below Tc the potential takes a Mexican hat form with a
stable minimum at a non-vanishing value of the order parameter and superconductivity sets in.

Without any external fields, for instance deep inside the bulk, where field are screened, Ψ does not depend on the
spatial coordinates, i.e.∇Ψ = 0. The equilibrium value of the order parameter is given by

∂F

∂|Ψ|2
= 0⇔ |Ψ|2 =

|a|
b

=: Ψ2
0 . (1.88)

6Also in the microscopic BCS theory, where the gap between the ground and excited state takes the role of an order parameter, it is supposed
to be spatially constant.
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The superconducting phase transition is of second degree, thus it features a discontinuity in the heat capacity, yet
entropy is continuous. The difference of free energy between normal and superconducting state can be connected
to a thermodynamic critical value of the external field as in London theory,

µ

2
Hc

2 =
|a|2

2b
. (1.89)

Yet another relation between a and b can be taken by analogy from London theory, stating that λ2 ∼ 1/|Ψ|2, thus
all parameters can be expressed by the measurable quantities critical field and penetration depth.

When an external field is present, minimal coupling must be introduced by replacing the derivative by its covariant
equivalent. Minimizing the free energy with respect to the parameters of the system Ψ,Ψ∗,A yields the famous
Ginzburg-Landau equations

0 =
1

2m∗
(−ih̄∇Ψ− e∗

h̄
A)2Ψ + aΨ + b|Ψ|2Ψ

∇×B = µ0j (1.90)

j =
−ie∗h̄
2m∗

[Ψ∗∇Ψ−Ψ∇Ψ∗]− e∗

2m∗
|Ψ|2A

In order to perform the variation, it is necessary to evaluate a surface-integral. It vanishes if no currents occur
perpendicular to the superconductor surface

n · (−ih̄∇− e∗A)Ψ != 0 (1.91)

While this is certainly true at superconductor-vacuum interfaces, attention has to be paid at superconductor-metal
interfaces, for instance where superconductors are part of a circuit.

1.5.2 Weak fields
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Figure 1.7: The relaxation of the squared or-
der parameter to its equilibrium value shows
the typical vortex structure.

An adimensional form of the Ginzburg-Landau equations can be
obtained introducing the so-called coherence length

ξ =

√
h̄2

2m∗|a|
, (1.92)

and normalizing the wave function to its equilibrium value f =
Ψ/Ψ0. The coordinate x points into the superconductor. In the
absence of external fields the first of the GL-equations (1.90)
written in the adimensional form

0 = −ξ2f ′′ − f + f3

=
d

dx

[
−1

2
f ′2ξ2 − 1

2
f2 +

1
4
f4

]
(1.93)

Deep inside the material (x → ∞), the system it is completely
superconducting, i.e. f ′ → 0, f2 → 1 and the term in brackets on the right hand side takes the value − 1

4 . Since
this value is independent of x,

ξ2f ′2 =
1
2

(1− f2)2 ⇒ f(x) = tanh
(

x√
2ξ

)
. (1.94)

Thus, the coherence length describes the scale on which a perturbation of the wave function present at x = 0
decays inside the bulk. Fig. 1.7 shows the square of f2, which as in the two fluid model can be interpreted as the
density of the superconducting charge carriers. This function features the characteristic form of a vortex, in the
center of which a single flux filament can penetrate the superconductor.
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If the external field is non-vanishing but weak, the GL-equations (1.90) can be solved using an expansion of the
order parameter in powers of the field. Using only the lowest order, i.e. the constant equilibrium value Ψ =

√
−ab

from the field-free case, the dimensional form of the field equation yields

∆B =
e∗2

m∗ε0
|Ψ|2B , (1.95)

which is solved by a field which decays exponentially on the length scale

λ−2
GL =

e∗2|Ψ|2

ε0m∗
. (1.96)

This is obviously the London-limit (1.79) and identifying |Ψ|2 = ns ⇒ λGL ≡ λL. In fact the order parameter’s
independence from the weak magnetic field at lowest order has reintroduced the rigidity, that had been explicitly
present in the London model and which will be somewhat softened if leading or higher orders in the field are taken
into account.

1.5.3 Type I and II superconductivity

The relation of the two typical length scales, the skin depth and the coherence length, is called the Ginzburg-
Landau-parameter

κ =
λGL
ξ

. (1.97)

It can be shown [Lifshitz et al. 1984] that this parameter is connected to the surface energy of a superconductor.
Table 1.8 compiles the typical scales of a few superconducting elements [Buckel 1977,Kittel 2002]. The Ginzburg-
Landau parameter is often used to distinguish two classes of superconducting materials with distinct properties.

• Type I-superconductors κ < 1√
2
≈ 0.7 have a positive surface energy. No domains are created and the order

parameter is basically homogeneous in the bulk. Hence the system is in the Meissner-state, which breaks
down rapidly above the critical temperature. Type I superconductors are the ones well-described by London
theory or the two fluid model and BCS theory.

• Type II-superconductors κ > 1√
2

have a negative surface energy. This favors the creation of domains and
vortex structures and the order parameter can show strong spatial dependences. Superconductivity does not
break down as rapidly as in type I-materials in strong external fields but instead undergoes a transition to
a mixed (Shubnikov) state, where the superconductor is penetrated by flux filaments and beautiful vortex-
structures are created.

Element Tc/K κ λL/ nm
Al 1.2 0.03 16
Sn 3.7 0.1 34
Pb 7.2 0.4 37
Nb 9.5 0.8 39

Figure 1.8: Characteristic physical
scales of superconducting elements.

The possibility to deal with the effects arising from the spatial depen-
dence of the order parameter and describe type II superconductors is one
great advantages of GL theory. It is interesting to mention, that there
is also a time dependent extension of GL theory (TDGL [Gorkov and
Eliashberg 1968], cf. [Tinkham 2004]), which makes it possible to look
at fields not constant in time. For example, in such a theory it should be
possible to determine the way in which the equilibrium state is reached
and find a dynamical description of the Meißner-Ochsenfeld effect.

An optical description in terms of reflectivities or dielectric functions
starting from GL theory is quite tricky, because it requires the evaluation
of nonlinear systems of equations. To my knowledge there is no established formalism in which optical response
functions can be obtained for general time dependent external fields. Nevertheless it might be possible to find
reflectivities and transmittivities in a scattering approach. This is a possible topic of future work.

In the following chapters the optical response of superconductors will be described in the framework of BCS theory
and the two-fluid model, where reflectivities can be calculated more readily. Of course this limits the description
to type-I superconductors and hence throughout the rest of this work superconductors are always assumed to be in
the Meißner-state.
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1.6 BCS theory

1.6.1 The BCS approach

Bardeen, Cooper and Schriefer [Bardeen et al. 1957] introduced a microscopic theory of superconductivity based
on Cooper’s theory of correlated electron pairs. Following a proposal by Fröhlich in 1950, Cooper had shown,
that the Fermi-sea is not stable with respect to the formation of two-particle states of electrons if these interact
attractively. The interaction stated by BCS was attributed to the interchange of virtual phonons. This was backed
by the discovery of the isotope effect [Tinkham 2004]: For different isotopes of the same superconducting element,
the critical quantities are connected to the mass of the lattice atoms, which is a clear signature of the relevance of
lattice vibrations:

Tc, Hc ∼M−1/2 .

Due to the Pauli principle, the only excitable electrons are those close to the Fermi surface, and the conservation
of the total momentum leads to the highest probability for a correlation of electron pairs of opposite spin and
momentum.

The BCS-Hamiltonian [Jones and March 1973,Nolting 1990,Ketterson and Song 1999,Tinkham 2004,Dressel and
Grüner 2002,Henkel 2007] has therefore an attractive two-particle interaction term, where the coupling constant is
set constant over a range close to EF and the interaction acts only between momentum and spin states |k,+〉 and
| − k,−〉

H =
∑
k,σ

h̄2k2

2m
a†k,σak,σ −

g

V

∑
k,k′

a†k′,+a
†
−k′,− a−k,−ak,+ (1.98)

In the grand canonical description the chemical potential can be fixed by a constant mean number of one particle-
statesN =

∑
k,σ a

†
k,σak,σ

!= N̄ which is done by adding a Lagrange multiplier−µN . This is of course equivalent
to introducing new variables which measure the energy from the Fermi level

h̄2k2

2m
→ ηk =

h̄2k2

2m
− µ ≈ h̄2kF

m
· (k − kF ) .

The last approximation holds close to the Fermi edge µ ≈ EF and assuming a spherical Fermi surface.

Now the Hamiltonian may be diagonalized through a canonical Bogoliubov transformation7. Creation and annihi-
lation operators a†k,σ, ak,σ are replaced by linear combinations

bk,− = ukak,− + vka
†
−k,+ (1.99)

bk,+ = ukak,+ − vka†−k,− (1.100)

where the coherence factors
u2
k + v2

k = 1 (1.101)

describe the probability of a pair state being occupied or not. The field operators fulfill fermionic anti-commutation
rules [

bk,σ, b
†
k′,σ′

]
+

= δk,k′δσ,σ′ . (1.102)

The energy of the system in terms of the quasiparticle excitation number

nk,σ = b†k,σbk,σ = 1− bk,σb†k,σ
7This transformation has been proposed independently by Valentin and Bogoliubov. A first attempt at the pairing hypothesis by Cooper used

the easiest of choice of two-particle-states

c†k = a†k,+a
†
−k,−, ck = a−k,−ak,+ .

The Fermi ground state cannot be expressed exactly through these operators that produce two-particle states, but it can be approximated by∑
k,σ

h̄2k2

2m
a†k,σak,σ →

∑
k 2 h̄

2k2

2m
c†kck [Schrieffer 1999, Nolting 1990]. The particles created by the new operators are not physical

(i.e. eigenstates under permutation), because they conform neither to bosonic nor fermionic commutation relation, but

[ck, c
†
k′ ] = δk,k′

(
1− (a†k,+ak,+ + a†−k,−a−k,−)

)
, [ck, ck′ ] = [c†k, c

†k′] = 0 .

Nevertheless, the resulting spectrum and predictions are rather good.
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reads

E = 2
∑
k

ηkv
2
k +

∑
k

ηk(u2
k − v2

k)(nk,+ + nk,−)− g

V

(∑
k

vkuk(1− nk,+ + nk,−)

)2

︸ ︷︷ ︸
=:∆2

. (1.103)

Variation of the energy with respect to uk, gives

2ηkukvk = ∆(u2
k − v2

k) (1.104)

and using (1.101)

u2
k =

1
2

(
1 +

ηk√
∆2 − ηk

)
, v2

k =
1
2

(
1− ηk√

∆2 − ηk

)
. (1.105)

Thus the Hamiltonian is diagonalized, and its excitation spectrum can be obtained performing the variation of
energy with respect to the quasiparticle number nk. Putting in the original expression for the canonical momentum,
the spectrum is then given by

E(p) =

√
∆2(T ) +

(
p2

2m
− µ

)2

. (1.106)
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Figure 1.9: ∆(T ) Temperature dependence of
the BCS gap ∆(T ) (black) and its asymptote
near Tc (dashed). The Gorter-Casimir parame-
ter η(T ) (gray solid line) is shown for compar-
ison.

It features a ground state separated from the excitations by
∆(T ). This gap - similar to the effects in Bose-Einstein con-
densates - is responsible for the special properties of the super-
conducting state. In order to break up a Cooper pair and create
free conducting electrons, an energy of 2∆ must be provided.

If the expressions for uk, vk andE(h̄k) are plugged into (1.103),
one obtains an implicit equation for the temperature-dependent
value of the gap (the so-called gap function). The resulting ex-
pression is known as a self-consistency condition and can be
solved, assuming a fixed average number of quasi-particles. Fol-
lowing [Thouless 1960, Ashcroft and Mermin 1987, Jones and
March 1973] this condition and its asymptotics can be written as
follows

∆(T )
∆(0)

= tanh
(
Tc
T

∆(T )
∆(0)

)
(1.107)

→ 1.74
√

1− T

Tc
as T → Tc . (1.108)

The normalized gap function ∆(T )/∆(0) is universal and agrees
exquisitely with experimental data [Townsend and Sutton 1962].
The numerical solution of the implicit equation (1.107) is shown in fig. 1.9 together with the Gorter-Casimir
relation (1.84) which is the equivalent quantity in the two fluid model. The two quantities show good agreement
only at low T .

1.6.2 Mattis-Bardeen theory

The macroscopic approach

The calculation of surface interactions in the following chapters requires knowledge of the optical response func-
tions. In the framework of BCS theory the fundamental quantity is usually the optical conductivity. A first calcu-
lation valid at T = 0 was given already in the original paper by Bardeen, Cooper and Schrieffer [Bardeen et al.
1957]. An interesting result was, that the BCS conductivity calculated in the limit T → 0, ω → 0 takes the form
of the causal plasma model (1.26), including the δ−peak at zero frequency [Berlinsky et al. 1993].
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Shortly after, a generalization to finite temperature was given by Mattis and Bardeen (MB) [Mattis and Bardeen
1958] which agreed splendidly with Glover’s und Tinkham’s experimental data [Glover and Tinkham 1957]. To-
day,the optical description of BCS superconductors is commonly called Mattis-Bardeen theory. A general intro-
duction may be found in [Schrieffer 1999] or [Dressel and Grüner 2002].

Mattis and Bardeen considered only what they called the extremely anomalous limit of a dirty superconductor,
where the interaction between the external field and the response of the superconductor can be assumed totally
local. More general expressions outside the extremely anomalous limit have been given by Zimmermann, Berlinsky
and co-workers [Zimmermann et al. 1991,Berlinsky et al. 1993], but the interaction is still considered local. Closed
analytical evaluations for the MB integral kernel including nonlocal effects where derived in [Pöpel 1989].

The fundamental equations in the original paper by Mattis and Bardeen are obtained from first order perturbation
theory in the external field and lead a nonlocal formula for the current-field-relation

j(r, ω) =
3σ0

(2π)2l

∫
dR

R(R ·A(r + R))
R4

I(ω,R, T ) exp(−R/l) (1.109)

I(ω,R, T ) =
∫
dε

∫
dε′
[
L(ω, ε, ε′)− f(ε)− f(ε′)

ε′ − ε

]
cos
(

R

h̄vF
(ε− ε′)

)
(1.110)

L(ω, ε, ε′) = − 1
2E

(1− 2f(E))

[
E2 + Eh̄ω + ∆2 + εε′

E′2 − (E + h̄ω)2 +
E2 − Eh̄ω + ∆2 + εε′

E′2 − (E − h̄ω)2

]
(1.111)

E =
√
ε2 + ∆2 > 0 , (1.112)

where f is Fermi’s function with energies measured from the Fermi energy,NF is the density of states at the Fermi
edge and ∆ = ∆(T ) is the temperature dependent BCS gap. A finite value of the mean free path l ≈ vF τ is
generally included in this description.

The response functions at the end of this calculation should describe macroscopic electrodynamics. This is consis-
tent with the assumption that A vary slowly compared to the mean free path l. In this local limit the vector potential
can be taken out of the integral. At a flat interface the tensor is diagonalized by TE and TM polarization vectors.
No mixing occurs between the components of the vector potential, so that it can be taken out of the integral and
the angular integral can be performed

j(r, ω) =
e2NF vF

2π2h̄

4π
3

A(r)
∫ ∞

0

dRI(ω,R, T ) exp(−R/l) (1.113)

In the frequency-representation, A = E/iω, so that the scalar complex conductivity be read off directly.

Following Mattis-Bardeen, the ε′-integral can be performed by contour-integration introducing a cut-off function,
which allows to neglect the second term in (1.110), that does not depend on ∆. The integration path is determined
by the representation of the cosine as a sum of two exponentials. In order to ensure causality, it is necessary to
introduce a small shift from the real axis and to define the square roots appearing in the poles with a positive
imaginary part and

ε =
√
E2 −∆2, ε± =

√
(E ± h̄(ω − i0))2 −∆2 . (1.114)

It is then sufficient to consider the first term in L, as the second may be obtained from the first one by substituting
ω → −ω and complex conjugation, so that

L(ω, ε, ε′) = − 1
2E

(1− 2f(E))
[
E2 + Eh̄ω + ∆2 + εε′

(ε′ − ε+)(ε′ + ε+)
+ (ω → −ω)∗

]
(1.115)

Note that in this form, L contains terms that are odd under the exchange ε ↔ ε′ and should vanish during the
integration. Using the residue theorem for the ε′-integral and performing the substitution ε → E (and in a further
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step E → E − h̄ω respectively), one obtains Mattis’ and Bardeen’s result

I(ω,R, T ) = − iπ
2

∫ ∞
∆

dE [1− 2f(E)]
[
(1− g+)e−iα(ε+ε+) − (1 + g+)eiα(ε−ε+)

+ (1 + g−)eiα(ε+ε−) − (1− g−)e−iα(ε−ε−)
]

(1.116)

= −iπ
∫ ∞

∆−h̄ω
dE [1− 2f(E + h̄ω)] [g(E) cos(αε+)− i sin(αε+)] exp(iαε)

+iπ
∫ ∞

∆

dE [1− 2f(E)] [g(E) cos(αε) + i sin(αε)] exp(−iαε+) (1.117)

g+ = g(E) =
E2 + ∆2 + h̄ωE

ε ε+
, g− =

E2 + ∆2 − h̄ωE
ε ε−

,

where α = R/h̄vF .

It should be stressed that up to this point only the approximation of macroscopic (local) electrodynamics has been
used. No assumptions whatsoever have been made as for the relaxation-processes.

The extremely anomalous limit
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Figure 1.10: Real and imaginary part (left, right) of the Mattis-Bardeen BCS conductivityat T/Tc ∈ {0.1, 0.5, 0.9, 1.1} (black
- yellow). .

In their fundamental paper, Mattis and Bardeen considered the extremely anomalous limit, where the free path
l = vF γ = vF /τ is much smaller than the range of correlation of electrons ξ ≈ h̄vF /π∆ [Bardeen et al. 1957]
connected to the energy gap ∆. Thus, it is the limit h̄γ � ∆ of an extremely dirty superconductor, where the
interaction can be considered local and so that only values of R ≈ 0 contribute.

Let us consider for a moment the extremely anomalous limit in a normal metal (∆ = 0) at low frequencies ω ≈ 0.
In this case, the integral kernel I(ω, 0, T ) = −iπh̄ω [Mattis and Bardeen 1958], so that equations (1.113, 1.109)
coincide with Chambers’ formula given in section 1.1.7. Hence, the extremely anomalous limit in a normal metal
recovers the DC conductivity of a Drude metal σ0.

This observation allows to express the conductivity of a superconductor generally in units of this value σ0

σ

σ0
=

∫
dR

l
e−R/l

I(ω,R, T )
−iπh̄ω

, (1.118)

even outside the local limit, where I depends on R.

Returning to that limit, all trigonometric functions in (1.118) become trivial. In order to separate the real and
imaginary part of the conductivity, the frequency-shifted part of the integral integral is cut into pieces∫ ∞

∆−h̄ω
=
∫ −∆

∆−h̄ω
+
∫ ∆

−∆

+
∫ ∞

∆

. (1.119)
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To get the real and imaginary part right, one must keep in mind that the root ε becomes imaginary in the interval
−∆ < E < ∆, while ε+ is real-valued over all the range considered. The integral over [−∆,∆− h̄ω] can give a
contribution depending on the values of ∆ and ω

• If h̄ω > 2∆, the interval E ∈ [∆ − h̄ω,−∆] gives a real contribution that sets in at lower frequencies as
the gap closes (fig. 1.10). This contribution is due to direct absorption, i.e. the breaking up of Cooper-pairs
that cannot occur at lower energies. Of course, as real and imaginary part are connected through causality,
the direct absorption edge has an effect on the imaginary part, too.

• If h̄ω < 2∆ no direct absorption takes place, and only the interval E ∈ [∆ − h̄ω,∆] gives an imaginary
contribution.

The cancellation of some parts of the integrals can be expressed most elegantly, yielding the result of Mattis and
Bardeen

σ′

σ0
=

2
h̄ω

∫ ∞
∆

[f(E)− f(E + h̄ω)] g(E)dE (1.120)

+θ(ω − 2∆)
1
h̄ω

∫ −∆

∆−h̄ω
[1− 2f(E + h̄ω)] g(E)dE

σ′′

σ0
= − 1

h̄ω

∫ ∆

max{∆−h̄ω,−∆}
[1− 2f(E + h̄ω)] (−ig(E)) dE . (1.121)

The real and imaginary parts of the MB conductivity at different temperatures is shown in figure 1.10. Note that at
T > Tc the conductivity is entirely real and coincides with the static Drude-value without any further frequency
dependence. This is due to the extremely dirty limit under consideration. At γ = 1/τ � ω the Drude model is
completely dominated by its static value. For this reason MB theory must not be applied at frequencies in the order
of the relaxation rate, which is still present in σ0.

This limitation is a big disadvantage for the calculation of surface interactions to which the next chapters are
dedicated. Here, the optical response functions must hold over a wide range of frequencies. For this reason, the
original MB-theory cannot be used and a more general description is desirable.

Zimmermann’s formulae

Zimmermann and shortly afterwards Berlinsky et al. were the first to consider a general rate of relaxation γ =
1/τ = vF /l [Zimmermann et al. 1991, Berlinsky et al. 1993] (and references therein). The basic observation is
that outside the extremely anomalous limit, if the integral over R 6= 0 is not neglected but performed explicitly, it
yields a Lorentzian. Taking just the parts of (1.109) depending on R, the relevant expression is

∫ ∞
0

dR exp(−R/l) cos
(

R

h̄vF
(ε′ − ε)

)
=

h̄2vF /τ

h̄2/τ2 + (ε′ − ε)2
. (1.122)

The complete complex conductivity is therefore given by

σ(ω)
σ0

=
h̄

−iπωτ2

∫ ∞
−∞

dε

∫ ∞
−∞

dε′
[
L− f(ε)− f(ε′)

ε′ − ε

]
1

h̄2/τ2 + (ε′ − ε)2
(1.123)

The contour integration and separation in real and imaginary parts have been performed in the above papers. MB’s
extremely anomalous limit is recovered in the regime, where (ε′ − ε)� γ →∞, so that

1
τ2

1
(ε± ε′)2 + h̄2/τ2

≈ 1
h̄2 . (1.124)

Fig. 1.11 and 1.12 show the real and imaginary part of this modified BCS conductivity vs. temperature. Above the
transition temperature T > Tc there is no gap, and the material becomes normal-conducting and shows just the
Drude model’s behavior at the same value of γ, as is shown in fig. 1.11. At lower temperature the response of the
superconductor agrees still nicely with the Drude mode at frequencies well above the gap ω � ∆(T ). As in the
previous scenario, direct absorption sets in at h̄ω > 2∆(0).
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The temperature dependence of the dissipation rate has been discussed earlier in section 1.1.6. After what has
been said there, it seems reasonable to use a constant value of γ because at the relevant temperatures T ≈ Tc the
vibrational excitations of the lattice are frozen out and the dissipation is dominated by impurities.

Fig. 1.13 shows the conductivity vs. temperature at a constant frequency as compared to the two fluid model.
Evidently, above the critical temperature both models take on the temperature independent Drude behavior. A
characteristic feature is the so-called coherence peak in the real part, just below the transition temperature. Since
the quantum mechanical current density is not identical to the classical particle density, there can be interferences
which lead exactly to the peaks under consideration.
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Figure 1.11: Real and imaginary part (left, right) of the Zimmermann conductivity where γ = 5 · 10−4ωp at T/Tc ∈
{0.1, 0.5, 0.9, 1.1} (black - yellow) and the Drude model (dashed). The static Drude conductivity is σ0 =

ω2
pε0

γ
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Figure 1.12: Real and imaginary part of the Zimmerman conductivity at T = 0.5Tc, h̄γ/∆(0) ∈ {0.01, 0.1, 1.0, 10} (yellow
- blue).
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Figure 1.13: BCS conductivity vs temperature (solid) at ω = 10−10ωp, γ = 5 · 10−4 and the two fluid model (dashed).
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1.6.3 Continuation to imaginary frequencies

To our knowledge of the existing literature, analytical calculations in the framework of Mattis-Bardeen theory
have always used real frequencies. Yet, for the application in the Casimir effect, it is desirable to have access to the
optical response functions at imaginary frequencies. It is in principle possible, to do an analytical continuation of
Mattis-Bardeen theory using the Kramers-Kronig relations. Unfortunately the result is quite ineffective numerically
and is therefore useless for practical applications. Nevertheless can they be used to check the consistency of the
results obtained analytically.

In the following sections, an original analytical calculation is presented and that leads to expressions for the con-
ductivity at imaginary frequencies both inside and outside the extremely anomalous limit. The results are then
compared to the ones obtained with the help of Kramers-Kronig relations.

Continuation in the extremely anomalous limit

An elegant expression for the conductivity at imaginary frequencies can be obtained, if the substitution ω = −iξ
is done in the unshifted expression8 (1.110) in the MB-limit α = 0 and replacing the quantities g±, ε±, I by their
complex counterparts g̃, ε̃±, Ĩ denoted by a tilde

g∓ → g̃± :=
E2 ± ih̄ξE + ∆2

εε̃±
, ε∓ → ε̃± =

√
(E + ih̄ξ)2 −∆2 , ( Im > 0)

The conductivity along the positive imaginary axis is then given by

σ

σ0
=

Ĩ

πh̄ξ
. (1.125)
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Figure 1.14: Evaluation of the analytic continuation
(line) and the KK results (dots).

Here, one must pay attention to the convergence of the
integral. Without the cut-off function, there is a contribu-
tion in I that does not depend on the gap function ∆. If
plugged into σ, this term is generally needed to reproduce
the Drude-model at T > Tc. The proof is quite involved
is not given here in detail [Haakh et al. 2009].

In the extremely anomalous limit, the contribution from
the Drude term must be replaced by the asymptotic value,
which is its static value σ0. The conductivity can then be
written down in terms of these quantities and reads

σ(iξ)
σ0

= 1 +
i

2h̄ξ

∫ ∞
∆

dE[1− 2f(E)] (2g̃− − 2g̃+)

= 1− 2
h̄ξ

∫ ∞
∆

dE[1− 2f(E)] Im (g̃+) ,

(1.126)

where g̃− = g̃∗+ was used.

This expression is sufficiently well-behaved to be calculated numerically and shows a good agreement with the
values that have been obtained by Kramers-Kronig analysis from the conductivity at real frequencies (fig. 1.14).

8No direct continuation can be performed from any form of Mattis’ and Bardeens’ expressions, where the frequency appears in the integral
boundaries of the integral equations because the integration contour would be badly defined after a direct complexification. Note also, that
the convention for the sign of ω in the Fourier transformation differs from the one applied previously.
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Continuation of Zimmermann’s formulae

The analytical continuation outside the extremely anomalous limit is a bit more involved. Starting from (1.123),
the complexification is done by replacing ω → −iξ. At imaginary frequencies, the function L(iξ, ε, ε′) can be
written as

L(ω, ε, ε′) = − 1
2E

[1− 2f(E)] Re
[
E2 + Eh̄iξ + ∆2 + εε′

ε′2 − ε̃2
+

]
(1.127)

In a second step, the ε′ integral is performed by closing the integration contour the upper half-plane. As before,
there is a pole ε′ = ε̃+ and the dissipation kernel adds another one at ε′ = ε + ih̄/τ . The residue theorem can be
applied and gives the result [Haakh et al. 2009]

σ(iξ) = σDr(iξ) +
σ0

ξτ
2 Im

∫ ∞
∆

dE [1− 2f(E)]×

×
[
(g̃+ + 1)

h̄/τ

(ε̃+ − ε)2 + h̄2/τ2
− iE

2 + ih̄ξE + ∆2 + ε(ε+ ih̄/τ)
ε(ε2 − ε̃2

+)

]
. (1.128)

The extremely anomalous limit should be recovered as τ → 0 ⇔ γ → ∞. In this regime, the Drude conductivity
is then dominated by its static value σDr(ω)→ σ0 and the term in brackets can be expanded in powers of τ

g̃+τ

h̄
+O(τ2) , (1.129)

which gives the expected result (1.126).
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Figure 1.15: Evaluation of the analytic continuations.
Dots are obtained from KK-relations, lines show direct
analytical continuations. Extremely anomalous limit
(orange), γ = ωp ≈ 1400∆(0)/h̄ (blue) and γ =
5 · 10−4ωp ≈ 1.4∆(0)/h̄ (red).

A consistency check of these results can be done as be-
fore by using the Kramers-Kronig relations. The analyt-
ical continuation can be done from both real and imag-
inary part of the conductivity on the real frequency axis
but some care must been taken when using the real part
because of the localized (δ(ω)-) contribution.

Bimonte et al. [Bimonte et al. 2005b] have proposed to
evaluate the δ(ω)− part by means of a sum rule. This
means, that it is the difference between the Drude- and
Zimmermann-dielectric function which is considered as
the causal transform and then continued analytically by
means of (1.68). The result can then be added to the con-
tinuation of the pure Drude model. Defining σ′s(ω) as the
real part of the superconducting conductivity without the
localized part, the conductivity can be evaluated numeri-
cally without much trouble from

σ(iξ) = σDr(iξ)−
2
π

∫ ∞
0

dω
ω2(σ′s(ω)− σ′Dr(ω))

ξ2 + ω2
,

(1.130)
Alternatively, a continuation can be done according to (1.67) from the imaginary part, where no distributional
contribution occurs, and which works just as well.

The results obtained by KK-continuation and the ones from the above analytical formula coincide very well, as can
be seen in fig. 1.15. The anomalous limit is recovered for high values of γ. Note that the analytical continuations
give the correct Drude limit at high frequencies and coincide results in the extremely anomalous limit if γ �
∆(0).
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1.7 Reflectivity

The reflectivity is the basic quantity used in later sections to calculate Casimir and Casimir-Polder interactions
between objects. All physical effects in the matter enter the calculation through the optical reflectivity. Therefore
it is very instructive to compare directly the reflectivities calculated in the different models.

The numerical evaluation of the TE and TM reflectivities at real frequencies from (1.16ff) for the different models
are shown in figures 1.16 - 1.19. The next sections cover physical effects, such as high- or low-frequency trans-
parency or the gap in BCS-superconductors, that show signatures in the reflectivity and which will have significant
consequences in the Casimir effects, too.

1.7.1 The plasma edge

All materials become asymptotically transparent at very high frequencies in the order of the plasma-frequency
ω � ωp. Here, the charge carriers cannot follow an external field any more and the response becomes dominated
by inertia,so that all models take the asymptotic behavior of the plasma model (cf. section 1.1.5, eq.(1.64)). In
the calculation of the Casimir effect, which is due to the introduction of boundary conditions into a system, this
property will become very important because it introduces a natural cutoff above which the boundary conditions
become irrelevant.

Total reflexion occurs in the plasma model, where k/c < ω < ωp in both polarizations. In this regime, the
transmitted fields are evanescent.

The surface plasmon resonance is a resonant collective excitation that occurs the zero of the dielectric function.
It is responsible for the prominent peak in the TM reflectivity, where |rTM | > 1. The fields are evanescent and
do not carry energy, hence a increase of amplitude does not necessarily violate energy conservation. A thorough
discussion of the plasmon-modes can be found in [Intravaia and Lambrecht 2005].

1.7.2 Screening by surface charges

In all electrical conductors surface charges can build up and screen very effectively low frequency TM modes,
whose electrical fields are perpendicular to the surface. Since dissipation (next section) does not play a big role for
the charges in a steady state situation, the TM reflectivity – unlike the TE one – is nearly identical in all models.
The screening will work only at low frequencies, where the surface charges can keep up with the field and breaks
down somewhere beyond the plasma edge, which gives the asymptotically transparent regime mentioned before.

Of course the screening must be present in Fresnel’s equations (1.18), and in fact the low frequency limit in any of
the models considered is

lim
ω→0

rTM (ω) = 1 . (1.131)

1.7.3 Dissipation

In the Drude model (section 1.1.5), dissipation is described within the relaxation time approach, where the timescale
is defined by the Drude parameter γ = 1/τ . Dissipation cannot change charge distributions but has an impact only
on the velocity distribution of the charge carriers, i.e. the current. Since the TM modes are screened by surface
charges (not currents, see previous section), dissipation is irrelevant once the charges are distributed at the surface,
unless the field varies very rapidly.

In contrast, TE-modes of low frequency correspond to external magnetic fields that can generally penetrate into
normal conductors, but are very sensitive to surface currents and hence to dissipation. Modes ω � γ that vary
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Reflectivity of the plasma, Drude, two fluid and BCS model
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Figure 1.16: r = |r| exp iφ in the plasma model, tangential wave vector k = 0.3ωp/c. TE-polarization (left) and TM-
polarization (right). Solid: Absolute value |r|. Dashed: Argument |φ|.
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Figure 1.17: Drude model, where γ/ωp ∈ {5 · 10−5, 5 · 10−4, 5 · 10−3, 5 · 10−2} (yellow - purple).
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Figure 1.18: Two fluid model with a Gorter-Casimir order parameter at T = 0.8Tc, same value γ.
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Figure 1.19: BCS model at T = 0.6Tc, same value γ. BCS gap ∆(0) ≈ 3.5 · 10−4h̄ωp.
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slower than this time fail completely to excite currents and the material becomes permeable, leading to a charac-
teristic dissipation edge at ω ≈ γ in the TE-reflectivity of all dissipative models.

lim
ω→0

rTE(ω,k) =


0 γ 6= 0

k−
√

ω2
p

c2 +k2

k+

√
ω2

p

c2 +k2

≈ 1 at small k γ ≡ 0 (plasma) (1.132)

The transparent regime at low frequencies can be understood as a consequence of the Bohr-van-Leeuwen theorem,
that does not allow a diamagnetic response in a system described by classical physics in the absence of static
magnetic moments [Soldati 2003]. Hence any material described by classical physics should become transparent
to low frequency magnetic fields [Bimonte 2009]. This effect will become extremely important in the discussion
of the thermal Casimir effect in section 2.2.2.

In general, high dissipation rates lead to a softening of all structures, especially the sharp plasma edge and the
totally reflecting regime. Thus, the transparent regime for low frequency TE fields can also be seen as the smeared
out distributional effect that will be shown to appear in the causal plasma model γ = 0+ in section 1.8.1.

1.7.4 Superconductors

The optical properties of superconductors and normal conductors are expected to differ enormously, because the
Meißner-Ochsenfeld effect in superconductors shields quasistatic magnetic fields from the bulk. Since the super-
conducting surface currents are not dissipated, they can play a very similar role for TE-modes as the charges do
for TM-modes. Thus the expulsion of slowly varying magnetic fields from the bulk in the Meißner state translates
directly to a finite value of the static TE-reflectivity rTE(0) > 0 as holds indeed for the BCS theory (fig. 1.19),
the two fluid model (1.18), and of course also for its low temperature limit given by the plasma model (London
superconductor, fig. 1.16).

The TM reflectivity was shown to depend only on the surface charges but not on dissipation. A superconductor is
still a metal, though in a very special state, and the surface charges can build up as in any other metal, so that the
TM-reflectivities for superconductors and other models are very much alike.

The two parameters relevant in superconductors are the dissipation rate and the temperature. In the two fluid model
the dissipation rate determines merely the frequency scale, where the transition between from a plasma- like to a
Drude-like behavior sets in. The effects are much stronger in the case of the BCS model. Here, the TE-reflectivity
at low frequencies depends strongly on the dissipation rate and the numerical results show, that in the clean limit
h̄γ � ∆ ⇒ rTE(0) → 1. The comparison of figures 1.19, 1.16 and 1.18 hints at a dependence of the effective
plasma frequency on the relaxation rate. Values rTEBCS(0) > rTEPl (0) can be obtained formally by using higher
values of the plasma frequency and are a consequence of of the coherence effects not covered in the classical
model.

Interestingly the BCS model coincides pretty closely with the two fluid model if h̄γ
>
≈ 2∆(T ). Here, even the

temperature dependence is quite consistent (fig. 1.20, 1.21). At the same time this is a quite realistic regime,
since it accounts for γ ≈ 10−5ωp, which is about the value in a normal metal like gold at room temperature.
The good agreement of the reflectivities at comparable values of the dissipation rate will lead to the astonishing
coincidence of the predictions for the Casimir interaction obtained using the BCS and two fluid model section 2.4.
The underlying effects and the impact of the coherence effects are an interesting topic for future research.

There is one more small feature TE-reflectivity of the BCS model. Here, a notch occurs at the inset of direct
absorption at h̄ω ≈ 2∆(T ). Above this frequency, the reflectivity converges quickly to the behavior in other
models, which was expected from the previous results for the conductivity.

1.8 The δ-peak in superconductivity

1.8.1 The δ-peak from sum rules

Earlier in this work, it has been proposed to add a δ-peak to the plasma model by taking the limit γ → 0 in the
Drude model. The result was called the distributional plasma model (1.26) and turned out be a causal transform
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Figure 1.20: Two fluid model, where γ = 5 · 10−4ωp at T/Tc ∈ {0.1, 0.9, 0.95, 1.2} (yellow-purple).

-10 -8 -6 -4 -2 0 2

Log
10
Ω�Ωp

0.2

0.4

0.6

0.8

1.0

ÈrÈ, ÈjÈ�Π

-3 -2 -1 0 1

Log
10
Ω�Ωp

0.5

1.0

1.5

2.0

ÈrÈ, ÈjÈ�Π

Figure 1.21: BCS model, same values of γ and T .

(sec. 1.2.4) while the "common" plasma model in the form (1.23) is not causal and does not fulfill the Kramers-
Kronig relations [Ferrell and Glover 1958, Glover and Tinkham 1957, Dressel and Grüner 2002].

Another way of introducing the localized contribution uses the oscillator strength sum rule (1.66). The rule is valid
for general conductivities and there is no reason, why the total spectral weight should not be conserved through
the superconducting transition. At T = 0, the two fluid superconductor coincides with the plasma model and the
conductivity is purely imaginary σ = σ′′. Using the oscillator strength sum rule∫ ∞

0

σ′s(ω
′)dω′ =

∫ ∞
0

σ′n(ω′)dω′ =
πε0ω

2
p

2

Since, σ′(ω) ≡ 0 at any finite frequency ω ∈ (0,∞), any effect must take place at the lower boundary of the the
integration domain. The spectral weight can be preserved, if a δ(ω)-contribution is introduced [Ferrell and Glover
1958, Glover and Tinkham 1957, Dressel and Grüner 2002]

σ′s = πε0ω
2
pδ(ω). (1.133)

The factor 2 is introduced to take into account the integration domain in (1.133).

At T = 0 all the spectral weight (or oscillator strength) is in the collective mode at ω = 0 [Glover and Tinkham
1957, Berlinsky et al. 1993]. Generalizing this to temperatures 0 < T < Tc, some spectral weight is given by the
dissipation due to the normal current, and the relative spectral weight of the collective mode is just given by the
order parameter η(T ).

1.8.2 BCS and two fluid model

The collective mode is closely connected to the existence of supercurrents, and it is natural to ask, whether a
localized contribution occurs also in descriptions other than the two fluid models. The answer is yes, it does. The
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plasma model is recovered in the limit of low temperature and small frequencies from the BCS theory [Bardeen et
al. 1957, Berlinsky et al. 1993], and it was shown there, that a δ-distribution occurs. The optical effects found in
the two-fluid model connected to this peak should therefore occur also in the other descriptions.

In the context of analogies between the models it may be interesting to mention, that notwithstanding the complex
structure of BCS theory and the coherence effects, the BCS model can still be read in some way as a two fluid
model, in the sense that a normal and a supercurrent coexist. A first attempt to interpret the gap-function as an order
parameter of a two-fluid model was given Bardeen in [Bardeen 1958]. More recently, Berlinsky et al [Berlinsky
et al. 1993] proposed a decomposition of the BCS conductivity with the goal of identifying the equivalents to
the normal and superconducting contribution in the two fluid model. Basically, the direct absorption component
accounts for the first one and the superfluid is given by the rest. The authors used the oscillator strength sum rule
to obtain the spectral weight of the δ-contribution, which they considered as an extra contribution.

1.8.3 Reflectivity revisited

The introduction of a δ-peak to the plasma model changes not only the causal properties of the response but also the
reflectivity. Earlier, the distributional plasma model was introduced as a limit of the Drude model, where γ = 0+

is infinitesimal.

It was shown in section 1.7.2 that the low frequency TM reflectivity is determined by the surface charges, does not
depend on the specific model and holds hence at all values of γ, including the distributional limit γ = 0+.

Things are quite different in the case of TE-modes. The dissipation is highly relevant and it was shown in section
1.7.3 that in the Drude model rTE(ω) → 0 for ω � γ, while it remains finite for the "normal" plasma model.
Now, in the distributional limit, the regime ω ∈ [0; γ] is compressed the single frequency ω ≡ 0, and it becomes
important, in which order the limits are performed:

lim
γ→0

lim
ω→0

rTE(ω,k) = 0 (1.134)

lim
ω→0

lim
γ→0

rTE(ω,k) =
k −

√
ω2

p

c2 + k2

k +
√

ω2
p

c2 + k2

≈ 1 at small k . (1.135)

This result and its physical interpretation are quite puzzling for two reasons:

• The Meißner-Ochsenfeld effect: Since the plasma model describes a superconductor at T = 0, there is an
apparent contradiction with the requirement that static magnetic fields be expelled from the bulk, which is a
well-established experimental fact for low-frequency fields.

• Thermal Casimir effect: In section 2.2.3 the effect of a vanishing rTE(0)-reflectivity for the thermal Casimir
effect will be discussed in detail. Limits like the above ones will be shown to have a significant effect on
the Casimir forces at large distances and for the entropy at low temperatures. No such effects occur for the
"normal" plasma model, but the problems encountered in other models could be reproduced, if the δ-peak is
included in the description of the plasma.

The usual way of dealing with these difficulties is to just ignore the δ(ω)-contribution for optical descriptions but
leave it in the model when looking at causality. Still, there is no final answer to the question yet. Meanwhile one
can think of different arguments that point into this direction:

• Dissipation at ω = 0: Tinkham and Glover [Glover and Tinkham 1957] argued that according to the
fluctuation-dissipation theorem, a mode without any time-dependence cannot contribute to dissipation, which
is furthermore proportional to the mode energy.

• Definition of reflectivity for ω = 0: The concept of a reflectivity rTE(0) > 0 for a static field is not a very
well-defined quantity. One can think of the extra field created by the object in contrast to externally applied
fields. This would connect the static TE reflectivity to the magnetization response. In any way, rTE(0)
is certainly not directly accessible to any measurement in frequency space, since any finite experimental
time scale limits the uncertainty of frequency measurements so that it is experimentally impossible to be
sure a supposedly static field has really ω ≡ 0. If the response at ω = 0 has a measure in some integral, it
should be chosen such that the resulting observable quantities are consistent with experiments or fundamental
principles of physics.
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• Adiabatic and isothermal processes: If not an adiabatic but an isothermal process is considered, the suscep-
tibilities are slightly different. It is not improbable, that for the static fields under consideration the adiabatic
approximation breaks down. More attention should therefore be paid to the influence of the specific thermo-
dynamic process under consideration in order to understand the topic fully.

1.9 Conclusions

This chapter has given an introduction to the electrodynamical and optical properties of solids needed in the rest of
this work, and some tools from the theory of distributions and complex analysis have been presented and applied to
important models commonly used to describe metals and superconductors. Normal metals were described in terms
of the Drude model, in which the dissipation can depend on impurity scattering or electron-phonon scattering.

The plasma model, which in the context of Casimir physics has often been used to describe metals, was shown to be
the low-temperature limit of the two most prominent descriptions of superconductors: the two-fluid model and BCS
theory. If was found that the usual form of the plasma model is not a causal response function. The introduction
of a δ-peak at zero frequency is a remedy to this problem, but leads to a transparency of the superconductor for
exactly static magnetic fields ω ≡ 0 which is in contradiction with the Meißner-Ochsenfeld effect. A possible
solution to this conundrum recovers the commonly used recipe to just neglect the localized contribution in the
optical description.

The most important original result in this chapter was found in the framework of BCS theory. Here, it was shown
how the expressions by Mattis-Bardeen and Berlinsky-Zimmermann for the optical conductivity valid at real fre-
quencies can be analytically continued to purely imaginary frequencies. The results were found to coincide with
results independently by G. Bimonte and were checked against numerical data obtained from Kramers-Kronig
relations. This result is very valuable for the calculation of the Casimir effect.

A direct comparison of the reflectivities calculated in the different models has been done and shown that ability of
all metals to build up surface charges leads to an almost dissipation-independent behavior of the TM-reflectivity,
while the TE-reflectivity is determined mostly by surface currents and is therefore very sensitive to dissipative ef-
fects. The comparison between the two fluid model and BCS theory showed an overall good agreement, especially
where the dissipation rate is comparable to the superconducting gap energy h̄γ ≈ ∆(0).
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2 Casimir interaction

2.1 Casimir interaction

2.1.1 Vacuum interactions

The first chapter of this thesis has dealt the optical and electrodynamical properties of superconductors and metals.
The descriptions and methods introduced there will be applied in this and the following chapter to calculate the
vacuum interaction between metallic plates or a plate and an atom. What are those vacuum interactions?

It was J. D. van-der-Waals [Van der Waals 1873] who had the idea, that electrically neutral atoms or molecules
in a gas interact attractively, which leads to the deviation from the ideal gas law. His explanation depicted the
interaction of fluctuation-induced dipoles with their mirror-charges. A first quantitative calculation was done by F.
London [London 1930].

In 1948, Casimir and Polder calculated a QED description of the interaction between two atoms and the effects of
retardation [Casimir and Polder 1948, Casimir 1948]. What they found more or less by the way, was that not only
atoms attract, but that attractive forces occur between perfectly reflecting plates, too. In this special scenario, no
properties of the matter were introduced in the description, and so the interpretation was, that the zero-point-energy
of the electromagnetic vacuum is sensitive to the boundary conditions and responsible for the effect.

These and similar interactions between metallic plates are covered in this chapter. The next chapter will then come
back to the interaction of atoms with a surface.

In honor of the four researchers mentioned above, today all kinds of vacuum-interactions are known indiscrimi-
nately under the names van-der-Waals forces, London dispersion forces or Casimir-Polder forces. For this reason,
it necessary to introduce the nomenclature used in this work before going deeper into the subject,

Figure 2.1: a) Casimir interaction between macroscopic objects , b) Casimir-Polder interaction between an atom or molecule
and a macroscopic object and c) Casimir-Polder interaction between two atoms or molecules.

It is common to distinguish the effects according to the objects involved as shown in figure 2.2 and call

• Casimir interaction the interaction between two macroscopic bodies.

• Casimir-Polder effect the interaction involving one or two microscopic objects, i.e. atoms or molecules.
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Anyway, this is not completely settled in the literature. Each configuration involves characteristic power laws
of the force in function of the separation, and quite often the above terms are used rather to describe forces in
special regimes, where these power laws apply. As an example, the term van-der-Waals interaction is often used
for the non-retarded atom-surface interaction to distinguish it from the retarded one also known as Casimir-Polder
interaction. To avoid confusion, the nomenclature in this text refers always to configurations and not to power law
regimes.

2.1.2 Vacuum expectation values in bosonic fields

In classical physics, the vacuum was considered to be just free, empty space with no physical properties of its own.
But at the beginning of the 20th century, it became clear that in a quantum world this vision does not work any
more. Space became much more complex a thing and the quantum vacuum turned out to be not at all empty nor
static but rather endowed with energy and fluctuations that lead to physical effects, especially in the presence of
boundaries1.

The origin of these energies lie in the quantization of bosonic fields, such as the photon field, Bose-Einstein-
condensates, the phonon-field, etc. All these fields are described by Hamiltonians that can be decomposed into an
ensemble of harmonic oscillators

H =
∑
k

h̄ωk
2

[
a†kak + aka

†
k

]
=
∑
k

h̄ωk
2

[
2a†kak + 1

]
. (2.1)

The creation and annihilation operators a†k, ak of a one-particle state with quantum numbers k and energy eigen-
value Ek = h̄ωk adhere to bosonic commutation relations

[ak, a
†
k]− = 1, [ak, ak′ ]− = [a†k, a

†
k′ ]− = 0 . (2.2)

The Hamiltonian has a vacuum expectation value 〈0|H|0〉 6= 0 and a vacuum or zero point energy E0
k = h̄ωk

2 per
mode. Summed up, the vacuum energy may well be divergent. The usual way of coping with this difficulty is the
introduction of a normally ordered Hamiltonian

H →: H : := H − 〈0|H|0〉 =
∑
k

h̄ωka
†
kak . (2.3)

Physically, this subtraction fixes the level from which energy is measured, but the offset may well be infinite! This
procedure works in many cases presented in a lecture in quantum statistics, but a lot more of attention is required,
whenever the mode spectrum and subsequently the vacuum energy is modified by the boundary conditions or
control parameters of the system α. Then the system will feel a generalized force Fα = 〈−∂H∂α 〉 , even if there
are no excitations present in the system. These general Casimir forces arise from the dependence of the quantum-
vacuum state of a bosonic system on the boundary conditions.

2.1.3 Casimir interaction of ideal mirrors

In his original paper Casimir [Casimir 1948] considered a cavity made of parallel and ideally reflecting plates2 (fig.
2.2a). This defines a Dirichlet problem for the electromagnetic field inside the cavity, which is solved by harmonic

1 In some sense it looks as if the physical properties connected to the quantum vacuum make it a new kind of ether. This is not as scandalous
at it seems at first sight, because the vacuum not a medium in the sense of the theory of relativity. Einstein [Einstein 1920] put it this way:

More careful reflection teaches us, however, that the special theory of relativity does not compel us to deny ether. We may assume the
existence of an ether; only we must give up ascribing a definite state of motion to it, i.e. we must by abstraction take from it the last
mechanical characteristic which Lorentz had still left it.

In this context it must be mentioned, that the vacuum energy may have a great impact not only in the quantum world, considered in this
thesis but also in cosmology and relativity. It might for instance give rise to a cosmological constant or vacuum drag (e.g. [Davies 2005]
and references therein).

2Ideally reflecting means plates of unit reflectivity rTM = −rTE = 1 for both polarizations. The term ideal conductor should be avoided
in this context. It is misleading since a vanishing resistivity does not automatically imply unit reflectivity for TE-modes (cf. sections 1.4.2
and 1.7.3).
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waves. Each mode of the electromagnetic field inside the cavity has a zero-point energy E0
n = h̄ωn

2 . The frequency
follows the dispersion relation

ω(n,k) = c

√
k2 +

n2π2

L2
, (2.4)

where k is the two-dimensional wave vector component parallel to the plate and the third component is quantized
in units of the inverse plate-distance L. In a cavity of finite size, only discrete resonant waves n ∈ N are allowed,
but sending L → ∞ leads to the continuum limit where n ∈ R. The total zero-state energy diverges at both finite
and infinite L, but Casimir’s amazing result was that their difference does not. This difference is known as the
Casimir energy

EC = gP

∞∑′

n=0

∫
Ad2k
(2π)2

h̄ω(n,k)
2

f(ω)− gP
∫ ∞

0

dn

∫
Ad2k
(2π)2

h̄ω(n,k)
2

f(ω) . (2.5)

The function f(ω) is a regulator such that f(0) = 1, f(ω → ∞) → 0, which introduces a frequency cut-off
into the system but does not appear in the final result, and gP = 2 takes into account the two polarizations.
Casimir [Casimir and Polder 1948] justified it by comparison to the realistic media, which become asymptotically
transparent at high frequencies (see 1.7.1). The zero-point energy of modes of very high frequency that do not see
the boundary, will not be changed by the presence of a boundary.

The sum prime symbol has been introduced because there is only one polarization of the mode n = 0 and frequent
use of this notation is made in the rest of this work. It is defined as follows

∞∑′

n=0

:=
∞∑
n=0

(
1− 1

2
δn,0

)
(2.6)

The angular integration can be performed and by a change of variables k = πc
L y the remaining integrals can be

made adimensional

EC =
Ah̄cπ2

4L3

[ ∞∑′

n=0

−
∫ ∞

0

dn

]∫ ∞
0

dyy
√
y2 + n2f

(√
y2 + n2πc/L

)
. (2.7)

The difference between the integral and the sum can be evaluated using the Euler-MacLaurin formula (e.g. [Gour-
don and Sebah 2002])

∞∑′

n=0

F (n)−
∫ ∞

0

dnF (n) = −
∞∑
m=1

B2m

(2m)!
F (2m−1)(0) = −F

′(0)
12

+
F ′′′(0)
3 · 240

+ ... (2.8)

where Bm are Bernoulli’s numbers (e.g. loc. cit.) and the derivatives must be taken with respect to n. In the case
of the Casimir energy one more substitution x =

√
y2 + n2 ⇒ xdx = ydy gives

F (n) =
∫ ∞
n

dxx2f (xcπ/L) , (2.9)

⇒ F ′(0) = 0, F ′′′(0) = −4, F (n>3)(0) = 0. (2.10)

from which follows Casimir’s famous formulae for the interaction energy and the Casimir force

EC = − h̄cπ2

3 · 240
A

L3
, (2.11)

F = −∂EC
∂L

= − h̄cπ
2

240
A

L4
. (2.12)

The appearance of Planck’s constant h̄ indicates a generic quantum effect. Apart from this constant, the Casimir
effect between perfect mirrors depends only on the speed of light and the geometry of the system.

The physical interpretation of the force [Milonni et al. 1969] seems straight forward: The continuous mode spec-
trum outside the cavity exerts a radiation pressure on the wall that does not depend on the plate separation, while
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the inside mode spectrum and the radiation pressure do (2.2). Hence, the Casimir force is due to a difference of
radiation pressures from both sides of the wall and the Casimir energy is just the work done on the system while
approaching the plates from infinite distance to L.

Since the mode density inside the cavity is always discrete and hence more "dilute" than the one outside, it is
intuitive to assume, that the pressure from the outside always dominates and the Casimir force is always attractive.
This notion is incorrect as was shown in [Boyer 1974, Hushwater 1997]. They considered the force in a cavity
made of one perfect reflector and an imperfect one, so that the boundary conditions are of a mixed Dirichlet-von
Neumann type, and found a repulsive interaction.

This shows, that the formalism exposed above holds only for "flat" plates and perfect mirrors. Of course it is
necessary to include the boundary conditions imposed by real materials and more general geometries.

2.1.4 General boundary conditions

The Lifshitz formula

Another way of calculating the Casimir energy was given by Lifshitz in 1956 [Lifshitz 1956], who had obtained
his result using a somewhat different approach. Rather than comparing the modes inside a resonator at finite and
infinite distances, Lifshitz considered the fluctuations in the dielectric cavity walls to calculate the electromag-
netic stress-tensor on both sides of the plate directly. The physical picture from which he started considers the
fluctuations in the matter as the fundamental quantity, that produces the zero-point field. This can be seen as com-
plementary to Casimir’s approach, but as Milonni [Milonni and Shih 1992] stated it: Interpretation of the Casimir
force in terms of the vacuum field is largely a matter of taste. While Lifshitz’ approach includes dissipation from
the very beginning, the same was not easily obtained within Casimir’s description.

Figure 2.2: Scheme of a Casimir setup. The spectra
inside the cavity made of two parallel mirrors differ
strongly from the one outside, where only one bound-
ary condition is imposed.

In an imperfect cavity made of a dispersive but non-
dissipative medium the resonances will be somewhat
shifted with respect to the ideal mirror case due to the
partial penetration into the mirrors, but they will still be
discrete poles. In this case it is possible to find an ex-
pression for the Casimir energy or force between which
coincides exactly with Lifshitz’s. This is shortly outlined
in this paragraph.

Rather than calculating the energies independently and
performing a subtraction as before, it is useful to in-
troduce a regularized density of states which counts the
difference due to the boundaries and integrate over fre-
quency and wave vectors in the end:

[%(ω,k, L)]L∞ := %(ω,k, L)− lim
L→∞

%(ω,k, L) (2.13)

In Casimir’s calculation this was implemented by taking
the difference between the sum and integral (2.5), which
could also have been written in terms of a density of
states

%(ω,k, L) =
∞∑
m=0

′

δ(ω − ω(k, n, L))(2.14)

∞∑′

n=0

h̄ω(n,k)
2

=
∫ ∞

0

dω
h̄ω

2
%(ω,k, L) .(2.15)

Since this holds only for ideal mirrors, it is natural to look
for a generalization to imperfect boundary conditions, in-
cluding in a first step dispersion, but no dissipation.
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Cavities made up by two parallel mirrors are commonly
known as Fabry-Pérot etalons and the calculation of the mode structure inside is a textbook problem. From the
Fresnel reflectivities (1.16) it is easy to obtain the field amplitude after one cycle of reflection (open-loop-function)
and after an infinite number of cycles (closed-loop-function). For the polarizations p ∈ {TE, TM} they are given
by

ρpk(ω) = rp1,k(ω)rp2,k(ω) exp(−2κL) ≤ 1 , (2.16)

fpk(ω) =
∞∑
n=1

(ρpk)n =
ρpk

1− ρpk
. (2.17)
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Figure 2.3: TM contribution to the regularized density
of states at normal incidence k = 0 for a perfect reflec-
tor (blue) and the plasma model (orange). The plates
distance is set to L = 2λp.

Here, κ =
√
k2 − ω2

c2 is the wavenumber inside the cav-
ity, chosen such that Re κ ≥ 0. The factors r in ρ account
for the changes in phase and amplitude due the reflections
from the walls and the exponential describes the propaga-
tion inside the cavity.

If %pk(ω) = 1, the field is mapped to itself after one
round trip in the cavity, which is just the characteris-
tic of a cavity mode. The function fpk(ω) will be show
up again later.Schram [Schram 1973] (cf. also [Intravaia
and Henkel 2008]) used this property of ρpk(ω) = 1 to
give an expression for the regularized density of states
between general dispersive mirrors, by applying the ar-
gument principle of complex analysis, which counts the
number of poles and zeros of a complex function within
an integration contour.

The regularized density of states is given by

[%p(ω,k)]L∞ = − 1
π

Im
d

dω
ln (Dp(ω,k)) , (2.18)

Dp(ω,k) = 1− ρpk(ω) = 1− ri1,kri2,k exp(−2κL) . (2.19)

As an example, Fig. 2.3 shows the regularized density of states in TM polarization for a perfect reflector and for
plates described by the plasma model. It is evident from the above formulae, that in a perfectly reflecting cavity
ρpk(ω) = 1⇔ Dp(ω,k) = 0 wherever a mode is resonant. Any non-resonant mode in such a cavity cancels out by
destructive interference and does not contribute to the density of states.

The first one features just the equidistant spectrum of Casimir’s calculation and the density of states of the plasma
model shows the effects of dispersion and the asymptotic transparency beyond the plasma edge. The Casimir
energy can now be written in terms of the density of states or the mode function D respectively. In a second step a
partial integration is performed, in which the evaluation of at the boundaries [ω lnDp(ω,k)]∞0 vanishes, because
of the transparency at high frequencies and because (hopefully) lnDp(ω) <∞.

E =
∑
p

∫ ∞
0

dω

∫
Ad2k
(2π)2

h̄ω

2
[%p(ω,k, L)]L∞ (2.20)

= − Im
∑
p

∫ ∞
0

dω

∫
Ad2k
(2π)2

h̄ω

2π
d

dω
ln (Dp(ω,k)) (2.21)

= Im
∑
p

∫ ∞
0

dω

∫
Ad2k
(2π)2

h̄

2π
ln (Dp(ω,k)) . (2.22)

The Casimir force is again obtained from the derivative with respect to the cavity length L, and since

d

dL
ln(Dp) =

−2κρpk(ω)
1− ρpk(ω)

= −2κfpk(ω) , (2.23)

⇒ F = −dE
dL

=
h̄

π
Im
∑
p

∫ ∞
0

dω

∫
Ad2k
(2π)2

κfpk(ω) . (2.24)
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The last equation (2.24) is just the celebrated Lifshitz formula which expresses the Casimir interaction in terms
of Fresnel’s reflectivities at the interface between the vacuum and a dielectric. It should be stressed again that
equation (2.24) as obtained by Lifshitz holds for both dispersive and dissipative media and is the basis of most
contemporary calculations in the field of Casimir physics.

The above derivation included only dispersion. If dissipation is to be included in the description, the eigenfrequen-
cies become complex and it is no longer possible to just define a zero-point energy per mode E0 = h̄ω

2 and take
the difference (2.7) as before. A way of defining the zero-point energy and write it as a sum over modes in such
systems was worked out in the nineties [Jaekel and Reynaud 1991, Lambrecht and Reynaud 2000, Genet et al.
2003, Genet et al. 2004, Intravaia and Lambrecht 2005, Intravaia 2005]).

Representation by real and imaginary frequencies

So far, real frequencies have been used, and the fields can be distinguished into two kinds with clearly differing
properties:

• Propagating κ ∈ iR: fields can propagate in the cavity,

• Evanescent κ ∈ R: fields decay exponentially.

Analytical continuation of optical functions to the imaginary frequency axis has already been introduced in section
1.2.5, but no use has been made of the formalism until now. It is possible to express the Casimir energy or force as
an integral over purely imaginary frequencies ω = iξ, using the analyticity of κf in the upper complex half-plane.
In this representation, both κ and ln(D) become real quantities, so there is no need to write the Re explicitly. The
difference between propagative and evanescent fields however, is no longer evident. The Casimir free energy and
force as integrals over imaginary frequencies read:

E =
h̄

2π

∑
p

∫ ∞
0

dξ

∫
Ad2k
(2π)2

ln (Dp(iξ,k)) (2.25)

F =
h̄

π

∑
p

∫ ∞
0

dξ

∫
Ad2k
(2π)2

κf ik(iξ) . (2.26)

Example: Perfect reflection revisited

The formalism presented in the last sections can be used to calculate the Casimir force between perfectly reflecting
plates in a very elegant way. As the reflectivities are rp = ±1, the sum over polarization becomes a degeneracy
factor

∑
p = gP = 2. Direct evaluation gives

κfpk(iξ) =

√
k2 + ξ2

c2

exp
(

2L
√

k2 + ξ2

c2

)
− 1

. (2.27)

The integral over wave vectors can be transformed to spherical coordinates in three dimensions including the

frequency integral, setting K =
√
k2 + ξ2

c2 , so that

c

∫ ∞
−∞

d2k
∫ ∞

0

d

(
ξ

c

)
=

1
2
c

∫ ∞
−∞

d3K .

⇒ F = Ah̄cgP

∫ ∞
−∞

d3K
(2π)3

K

exp(2KL)− 1
(2.28)

=
Ah̄cgP
25π2L4

Γ(4)ζ(4) =
Ah̄cπ2

240L4
(2.29)

This is of course just Casimir’s result for the force (2.12).
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2.1.5 Experiments measuring the Casimir force

Measuring the Casimir force has been a challenge for experimentalists since Casimir’s prediction of the effect in
1948. At this point only the most important setups are sketched. More extensive reviews are given in [Bordag et
al. 2001, Milton 2004, Klimchitskaya et al. 2009].

First measurements were done by Sparnaay in 1957 using a spring balance [Sparnaay 1957]. He measured the
forces between parallel plates made of different metals at distances in the order of 1µm and failed to give decisive
answers due to a big range of uncertainty of about 100%. Follow-up experiments during the fifties and seventies
by Derjaguin and van Blokland and Overbeek reached experimental uncertainties of about 50% using curved
objects close to a surface rather than two plane surfaces [Derjaguin et al. 1956,Blokland and Overbeek 1978]. This
eliminates one of the largest sources of error, i.e. the non-parallelism of the plates, and is still used today.

Recently, thanks to advancing nanotechnology and quantum-optics, interest in the vacuum-induced effects has
risen again and experimentally it has become possible to measure Casimir forces to the precision of some percent.
A milestone experiment was done by Lamoreaux in 1997, who used a spherical lens close to a surface and a torsion
pendulum and reached an estimated uncertainty of about 5%−10%. At this level of accuracy, it becomes important
to include conductivity and thermal corrections into the theoretical description [Lamoreaux 1997].

Further experiments were done by Mohideen et al. using a sphere attached to the cantilever of an atomic force
microscope (AFM) and measuring its displacement to high precision by the reflection angle of a laser beam. This
setup reached very high precision up to 1% at distances smaller than 1µm [Mohideen and Roy 1998, Harris et al.
2000, Chen et al. 2005].

Yet another setup developed by Capasso et al. exploited the change of the eigenfrequency of a nano-mechanical
oscillator if a metal-coated sphere mounted to the tip of the AFM is approached [Chan et al. 2001, Iannuzzi et al.
2004, Lisanti et al. 2005]. This type of experiment measures the curvature of the surface potential in function of
the distance. A conceptually similar experiment has recently performed in the context of atom-surface interaction
(cf. 3.1.2).

Only one recent experiment by Bressi et al. tried to measure the force between even surfaces and reached a pre-
cision of 15% [Bressi et al. 2002]. As in the older experiments, the alignment of the plates turned out to be the
crucial point and main source of inaccuracy.

Still it is highly desirable to measure the Casimir force in the two plates geometry, because it is the only setup,
where a rather complete theory exist. Other geometries are compared to predictions obtained from the plane plate
geometry by means of the proximity force theorem. It must be mentioned, that even for plane plates, the theory is
not universal, because the inclusion of roughness, conductivity, etc. requires generally the use of material data.

2.1.6 The thermal Casimir effect

Finite temperature T 6= 0

At non-zero temperature, the electromagnetic field inside the cavity is not only due to the vacuum fluctuations, but
there is also a thermal field. The first ones to include temperature into the calculation of the Casimir effect were
Mehra and Lifshitz [Mehra 1967, Lifshitz 1956]. Here, the relevant thermodynamical potential for the system at a
constant temperature is the Helmholtz free energy3

F(T, V ) = E − TS . (2.30)

Once this potential is known, the toolbox of thermodynamics can be used to derive many other quantities such as
entropy, the Casimir force, etc. In this text, a calligraphic F is used for the Casimir free energy to distinguish it
from the force F .

The complete free energy per mode including both the thermal and the zero-point contribution can be obtained
from the well-known formulae of quantum statistics, but exploiting the complete Hamiltonian (2.1) instead of the

3The term free energy is often used indiscriminately for two different quantities. The first is the Helmholtz free energy F(T, V ) = E − TS
with the differential dF = −SdT − pdV , which is the thermodynamical potential minimized at constant temperature and volume. It
should not be confused with Gibb’s free enthalpy G(T, p) = F + pV, dG = −SdT + V dp, which becomes relevant if the pressure is
held constant rather than the volume.
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normally ordered one (2.3). Using the common abbreviation β = 1/kBT , the partition function of a mode with
quantum numbers k is obtained from

Zk = Tr
[
e−βh̄ωk(a†kak+1/2)

]
=
∑
m

e−βh̄ωkme−βh̄ωk/2 =
exp (−βh̄ωk/2)

1− exp (−βh̄ωk)
(2.31)

The corresponding Casimir free energy and force per mode are given by [Mehra 1967]

Fk = −kBT ln(Zk)

= kBT ln (1− exp (−βh̄ωk)) +
h̄ωk

2
(2.32)

= kBT ln
(

2 sinh
(
h̄ωk

2kBT

))
(2.33)

Fk = −∂Fk
∂L

= − coth
(
h̄ωk

2kBT

)
∂E0

k

∂L
, (2.34)

so that the Casimir free energy and the Casimir force at finite temperature can be obtained from the expressions
(2.20, 2.24) at T = 0 by a simple replacement E0

k → Fk or by introducing a thermal kernel coth
(

h̄ω
2kBT

)
respectively.

Expansion in Matsubara frequencies
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Figure 2.4: Hyperbolic cotangent coth(ω) and
i coth(iξ) evaluated at real (black) and imaginary
(gray) arguments.

A very useful representation of the thermodynamic func-
tions can be obtained, if the ω-integral is continued an-
alytically to the complex plane and rotated to imaginary
frequencies, as has been done before. Here, the thermal
kernel coth

(
h̄ω

2kBT

)
, which is a slowly varying function

at real frequencies, is purely imaginary apart from a dis-
crete number of poles. Fig. 2.4 shows the behavior along
both axes.

This property of the hyperbolic cotangent makes it possi-
ble to use the series expansion, e.g. [Mostepanenko and
Trunov 1997]

Re coth
(

iξh̄

2kBT

)
=

2πkBT
h̄

∞∑
n=−∞

δ(ξ − ξn) .(2.35)

The quantities ξn = 2πnkBT/h̄ are known as the Mat-
subara frequencies.

The Casimir force at finite temperature can now be written directly using equations (2.34) and (2.26) and writing
the real part explicitly

F (L, T ) =
h̄

2π
Re
∫ ∞

0

dξ
∑
p,k

κf ik(iξ) coth
(

h̄iξ

2kBT

)
= kBT

∞∑′

n=0

∑
p,k

κf ik(iξn) . (2.36)

In the case of the free energy (2.21), the internal energy per mode must be replaced by the corresponding free energy
(2.33). A partial integration yields again a hyperbolic cotangent. The result is rotated to imaginary frequencies,
where the series expansion of coth gives a very compact expression for the thermal Casimir free energy.
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F = − Im
∑
p,k

∫ ∞
0

dωkBT ln
[
2 sinh

(
h̄ω

2kBT

)]
1
π

[
d

dω
lnDp(ω)

]

=
h̄

2π
Im
∑
p,k

∫ ∞
0

dω coth
(

h̄ω

2kBT

)
lnDp(ω) (2.37)

=
h̄

2π
Re
∑
p,k

∫ ∞
0

dξ coth
(

h̄iξ

2kBT

)
lnDp(iξ) (2.38)

= kBT
∑
p,k

∞∑′

n=0

lnDp(iξn) . (2.39)

The thermal fluctuations introduce a new physical energy scale into the system which translates directly to a change
of the characteristic power laws of the thermodynamical quantities. It is natural to expect thermal effects to occur
at lengths comparable to the thermal wave length

λT =
2πh̄c
kBT

≈ 0.014 K ·m
T

(2.40)

As a general feature of the Casimir interaction, the free energy is enhanced by a Bose factor kBT/Ek ≈ kBTL
h̄c

in the high T regime. The next section will use perfect reflectors to illustrate this effect further and demonstrate
how asymptotic expressions can be obtained. In this case there are no intrinsic spectral effects from the optical
properties of the material surface and it becomes clear, that the change of power law is a purely thermo-geometric
effect.

Example: Perfect reflection
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Figure 2.5: Numerical evaluation of the function
I(L, T ) vs. temperature (equivalently distance, since
I(T,L) = I(TL)), calculated at L = 100λp. Dashed
lines show the asymptotes at low and high T .

Once again, the perfectly reflecting resonator is a sim-
ple model to try out the formalism. A similar treatment
was given in [Mostepanenko and Trunov 1997]. Since
|rTE | = rTM = 1, both polarizations behave identi-
cally and the sum over both contributions yields simply
a degeneracy factor gP = 2. The free energy expressed
through the Matsubara expansion reads now

F =
kBTAgP

2π

∫
dkk

∑
n

′
ln(1− e−2κ(n)L), (2.41)

where again κ =
√
k2 + ξ2

n/c
2. Hence, the Casimir force

can be obtained by differentiating with respect to L. In a
second step the integration variable is substituted k →
2Lκ which yields a dimensionless integral.

F = −∂F
∂L

= −kBTAgP
2π

∑
n

′
∫ ∞

0

dkk
2κ

e2κL − 1

= −AkBTgP
8πL3

∑
n

′
∫ ∞

2Lξn/c

du
u2

eu − 1︸ ︷︷ ︸
I

.

(2.42)

The dimensionless function I has a structure similar to
(2.9) and must generally be calculated numerically. Its
behavior in function of temperature is shown in fig. 2.5. Since I(T, L) is a function of the product TL only, the
plot of I vs. distance at fixed temperature would be identical.
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In the two limiting regimes of very high and low T it is possible to obtain asymptotic expressions for I and the
functions derived from it, such as the Casimir force, free energy or entropy [Mehra 1967] (see also [Mostepanenko
and Trunov 1997, Milton 2004]).

• High temperatures or large distances L � λT : In the calculation of I , the temperature enters only via the
Matsubara frequencies ξn = 2πnkBT/h̄. If the temperature is sufficiently high, the zeroth frequency ξ0 = 0
is separated from the other ones by a big interval and gives the only non-vanishing contribution, because it
is the only mode that is thermally excited. Thus, the high temperature limit is given by the zeroth term of the
Matsubara expansion, i.e. in the free energy

∑
n
′ → 1

2

∑0
n=0 which can be evaluated immediately

I ≈ 1
2

∫ ∞
0

du
u2

eu − 1
= ζ(3) ≈ 1.202 .

The free energy law can be recovered from the force by integration, and from there the limits of other
thermodynamical quantities such as the Casimir entropy can be obtained.

F(T, L) ≈ −AkBT
8πL2

ζ(3) (2.43)

⇒ S = −∂F
∂T
≈ kBAζ(3)

8πL2
. (2.44)

• Low temperatures or small distances L � λT : At low values of T , the Matsubara frequencies are quasi-
continuous. In this regime, the sum can be replaced by an integral and a correction to first order in T can
be calculated by means of the Euler-MacLaurin formula (2.8). Doing so, and substituting y = n/u, the
integration boundaries can be made independent of n.

I ≈
∫ ∞

0

dn

F (n)︷ ︸︸ ︷∫ ∞
2Lξ1/c

dy
y2n3

eny − 1︸ ︷︷ ︸
I1

− 1
12

d

dn
F (n)

∣∣∣∣
n=0︸ ︷︷ ︸

I2

+
1

720
d3

dn3
F (n)

∣∣∣∣
n=0︸ ︷︷ ︸

I3

+...

Now, with the substitution n→ N = yn, the first term can easily be calculated. The following term vanishes
identically and the third one gives in after some algebra.

I1 =
∫ ∞

2Lξ1/c

dy
1
y2

∫ ∞
0

dN
N3

eN − 1
=

h̄c

4πLkBT
Γ(4)ζ(4)

I2 ≡ 0

I3 =
1

240

∫ ∞
2Lξ1/c

dyy2 =
1

720

(
4πLkBT

h̄c

)3

..

The final result for the force recovers Casimir’s result for T = 0 plus an correction and again, the free energy
and entropy asymptotics can be obtained.

F (T, L) ≈ − h̄cAπ
2

240L4
− π2

45
A(kBT )4

(h̄c)3
+ ... (2.45)

⇒ F(T ) ≈ − h̄cAπ
2

720L3
− π2

45
A(kBT )4L

(h̄c)3
+ ... (2.46)

S ∼ ALT 3 . (2.47)

The thermal contribution to the free energy shows the T 4 law of the Stefan-Boltzmann law, so that the addi-
tional Casimir-pressure can be interpreted as the pressure of black-body radiation. The entropy connected to
this thermal field is an extensive quantity, proportional to the cavity volume V = AL. At low temperatures
the entropy vanishes, and the system fulfills Nernst’s theorem - better known as the third law of thermody-
namics. While this is a nice property of the perfectly reflecting cavity, it will show in the following sections,
that S(T → 0) = 0 does not necessarily hold, once the boundary conditions are imposed by reflectivities
derived from a dielectric function.
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Figure 2.6: Casimir force (left) and free energy (right) between perfect mirrors for different temperatures and its low and high
temperature limits (dotted/dashed lines).

The results of numerical calculations of the thermal Casimir force and free energy vs. distance is given in fig. 2.6.
Both feature the characteristic changes of the temperature power law postulated earlier and now derived asymptot-
ically. The comparison of the numerical results and the asymptotic power laws shows very good agreement.

The distance at which the transition between the power laws takes place is given about by the intersection of the
low and high T asymptotics, i.e. where

h̄cAπ2

720L3
≈ kBTAζ(3)

8πL2
⇔ L ≈ λT

π2

180ζ(3)
≈ 0.045λT := ΛT . (2.48)

This recovers the thermal wavelength λT as the characteristic length scale in this problem, which does not come
as a surprise, since it is the only physical scale in the system. Anyhow, it is astonishing to find it multiplied by
so small a numerical factor, such that the transition takes place at distances a factor ≈ 20 smaller than λT . The
calculations in other systems including more realistic boundary conditions will show closely related effects.

2.1.7 Numerics

Evaluation of Matsubara sums

Already in the last section, numerical calculations were performed to obtain values of the Casimir free energy or
force respectively and a big part of the results in this thesis are based on numerical calculations. The two main
problems that one meets doing numerical calculations are, that firstly computers are always too slow and secondly
the results most of the time too imprecise.

The numerical calculation of Casimir energies requires the calculation of integrals over the perpendicular wave
vector and the frequencies. There are basically two different approaches to perform the frequency integral. Either
one can do an integration along the real frequency axis (2.33) or move to the imaginary frequency axis according
to (2.38). Due to the expansion of the hyperbolic cotangent at imaginary frequencies (2.35), the latter collapses to
a sum over discrete Matsubara frequencies as in (2.39).

This has another advantage: Each point in the ω,k plane used in the numerical integrations requires the calculation
of the optical reflectivities. This step is not a big issue for models where an analytical form is known for the
dielectric function, like in the Drude oder plasma model, but e.g in BCS theory the calculation of ε(ω) involves a
numeric integration itself. Here, it is preferable to evaluate reflectivities only for a rather small number of Matsubara
frequencies and not quasi-densely as necessary in a frequency-integral.

The starting point of the calculation of the thermal Casimir free energy is usually a spectral free energy density
g. A discussion of these functions and a more precise definition is given in section 2.2.2. They decay rapidly at
sufficiently high frequencies because of the exponential damping with exp(−2κL). This property can be used to
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truncate the infinite sum and approximate the remaining infinite partial sum by an integral

F(T ) =:
∞∑′

n=0

g(n)

≈
N∑′

n=0

g(n) +
∫ ∞
N

g(n)dn+ ... . (2.49)

If the upper summation limit N is chosen correctly, the free energy density g(n > N) at frequencies ξ > ξmax
varies very slowly and the difference between the integral and the sum is small. The error can be estimated with
help of the Euler-MacLaurin-formula.

In practice it is necessary to obtain an estimate for the summation limit N in an algorithmic, fast and reliable way.
A scheme proposed in [Boström and Sernelius 2004] used a fixed number of Matsubara-terms N = 10. Such
a recipe puts a lower limit to temperatures where the algorithm works, because as the Matsubara summands are
proportional to the temperature, for any fixed number N there is a maximum value of T , for which ξN > ξmax,
and at lower temperatures the integral is used in a regime, where the free energy density has not yet the required
slow variance.
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Figure 2.7: Matsubara-terms on a toy energy density
(solid) at imaginary frequencies. Dashed: TE-modes in
the Drude model. For numerical evaluation the remain-
ing terms of the sum is approximated by an integral,
where its relative weight is small enough. For some
functions the integral (orange area) may be estimated
by N · g(N) (gray area).

A basic criterion for N is, that the integral must be only
a small correction to the total result, so that fixing the re-
lation between the partial sum and the remainder integral
gives a value for N that does not depend on the specific
form of g. Along the way uF,max can be used as an esti-
mate for the numerical error.∫∞

N
g(n)dn∑N

n=0

′
g(n)

< uF,max . (2.50)

Such a recipe can be used as the final condition in a loop.
In this case it is essential that the first partial sum give
a non-vanishing contribution, which can be secured by
fixing N > Nmin � 0.

Another possibility opens if the asymptotic behavior of
the energy density is known. Often there is an approxi-
mately exponential decay at high n. Then g varies slower
than a heuristic toy-model G.

g(n) ∼ exp(−αn) < n exp(−αn) =: G(n) .

This is a rather pessimistic estimate, but the extra factor
n guarantees an overall similar qualitative behavior as in
the Drude model and the curves match well at high fre-
quencies (see fig. 2.7 for a comparison of the toy model with the Drude energy density). The toy-model allows to
perform the integral which yields∫ ∞

N

G(n) =
1 + αN

α2
exp(−αN) ≈ N

α
exp(−αN)

at high N . This gives a coarse estimate for N , which is very quick to calculate and is therefore an advantage in
numerical calculations. The criterion (2.50) in this approximation becomes:

Ng(N)∑N
n=0

′
g(n)

< uF,max . (2.51)

For appropriate models, the values of N stemming from the two estimates (2.50) and (2.51) are very similar and
the approximation can save much time. But in other cases, especially for non-monotonous behavior of the energy
density at n > Nmin it must be used with care because it may give too low values of N .
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In this work (2.50) is usually used, because it turned out to be more reliable at very low temperatures and for
general models. The parameters used were uF,max ∈ {10−3, 10−6}, Nmin ∈ {101, 103} and the result include
sums over N ∈ {102, 105} terms. In some cases like BCS theory, due to the time-consuming calculation of the
optical response, the remainder integral was neglected completely, which may be done if uF,max is chosen high
enough and the contribution from the integral is vanishing anyway, but will yield a systematic numeric error and
yield generally too small values of the energy.

As a last point one should mention that in the algorithmic evaluation of the Matsubara sum, the zeroth term must
usually be evaluated separately, since it requires performing the limit ξ → 0 in the Fresnel’s reflectivities, which
can be done much more efficiently using analytical or asymptotic techniques rather than numerical ones.

Numerical differentiation

The Casimir free energy is not the only relevant quantity of the system. Experimentalists will mostly be interested
in forces and in the context of thermodynamics also the entropy is very interesting. Both quantities are related to
the free energy by a derivative

S = −∂F
∂T

and F = −∂F
∂L

.

It is possible to perform the differentiation first analytically and evaluate the Matsubara sums afterwards, but to
save time it can be often convenient to use already generated data for the free energy first and extract the entropy or
force using a numerical differentiation. In this, one uses difference quotients as an approximation for differential
quotients. This is of course an additional source of numerical errors but can be minimized by the right choice of
the sample points. From the Taylor expansion of a function f(x) one obtains

f ′(x) =
f(x+ a)− f(x)

a
− a

2
f ′′(x) +O(a2) (2.52)

= −f(x)− f(x− b)
b

+
b

2
f ′′(x) +O(b2) (2.53)

⇒ f ′(x) =
1
2

[
f(x+ a)− f(x)

a
+
f(x)− f(x− b)

b

]
+O(a− b) +O(a2, b2) . (2.54)

Hence, the error of a non-central difference quotient (a 6= b) goes in first order as the non-centrality a − b which
is directly connected to the interval length, but this order can be suppressed if the difference quotient is chosen
centrally a = b. In this case

f ′(x) =
f(x+ a)− f(x− a)

2a
+ 2O(a2) , (2.55)

the error is in second order of the interval length. A similar or higher precision could also be obtained including
higher orders or the Taylor expansion, but this requires usually the calculation of more sample points of the free
function f at special values of x.

Therefore, the optimal way (at least to this order) to calculate entropies, forces, etc. numerically from the existing
free energy data, is just in between two of the sample points.

2.2 Casimir interaction in the Drude and plasma model

2.2.1 Thermal surface plasmons

Energy correction at general distances

The mode spectrum of a free electron gas filling the whole space by a neutral background (εr = 1) features
collective longitudinal charge oscillations known as Bulk plasmons or plasma polaritons, that occur at the zeros of
the dispersion relation [Ibach and Lüth 1981]

k2 − ε(ω)
ω2

c2
= 0 .
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These excitations can propagate inside the bulk material and are not further considered here. They correspond to
the collective plasma oscillations in the bulk introduced earlier in section 1.1.5. The characteristic frequency is the
plasma frequency ωp.

Bounded system with interfaces can carry a second kind of plasmonic modes, known as surface plasmons. They
belong to the solutions of

1− rp(k, ω)2 exp(−2κL) = 0

in the evanescent sector of the mode spectrum. Therefore they are confined to the interface and are connected to
electric fields that decay both inside and outside the medium.
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Figure 2.8: TM plasmonic dispersion relations. Sur-
face modes Ω±,Ω0 and continuum of bulk-modes (gray
area). One branch of the surface dispersion relation
crosses the light cone (gray).

It is worthwhile noticing that the collective excitations
in superconductors are very similar to the ones in a
normal metal [Rickayzen 1959, Bardasis and Schrieffer
1961]. In the 1980s surface plasmons raised new inter-
est, as they may be connected to the yet unknown cou-
pling mechanism in some high Tc superconductors [Ru-
valds 1987], which are typically layered structures. To-
day, the advances in nanotechnology offer precise tools
to tailor (meta-)materials with specific optical properties,
that are often determined by plasmonic excitations. This
branch of material science is therefore also known as
(nano-) plasmonics.

The relevance and impact of surface plasmons on the
Casimir effect at zero temperature has been discussed
thoroughly in [Intravaia and Lambrecht 2005, Intravaia
2005,Intravaia et al. 2007]. The presentation in this para-
graph follows closely the third of the references and uses
the same notation, but includes the effects of finite tem-
perature.

Figure 2.8 shows the plasmonic dispersion relations ob-
tained in TM-polarization. An isolated surface has only
one surface plasmon mode Ω0, which splits in two
branches Ω± in the case of two plates at finite distance

because of the electromagnetic coupling. The plasmon dispersion curve Ω0 of an isolated surface is recovered in
the limit of large plate separation. The upper branch crosses the light cone. In contrast, all TE-modes (not shown
here) lie inside the light cone. The dispersion relation for the surface-modes at given distance L can be expressed
in a parametric form [Intravaia 2005]

z = (κL)2, Ω =
ωL

c
, K = kL (2.56)

Ω0,± =
√
g0,±(z), K0,± =

√
z + g0,±(z), dK2

0,+,− = dz + g′0,±(z)dz (2.57)

g0,±(z) =
Ω2
p

√
z

√
z +

√
z2 + Ω2

p[tanh( z2 )]0,±1
. (2.58)

The variable z = 0 where the dispersion relations cross the light cone. To obtain the complete dispersion curves
shown in fig. 2.8, z must run over the interval Γ− = Γ0 = [0,∞] in the branches Ω0,Ω−, but in the Ω+-branch
z ∈ Γ+ = [−z+,∞], where

√
z+ = Ωp cos(√z+/2), so that an additional contribution to the integral must be

taken into account.

Knowing the dispersion relation, there is no need to calculate a density of states, and the integration over modes
can be done at once. The difference w.r.t isolated plates is obtained by the subtraction Ω±−Ω0 for each branch:

E(L) =
cAh̄

4πL3

∫ ∞
0

KdK [Ω+(K) + Ω−(K)− 2Ω0(K)] (2.59)

=
cAh̄

8πL3

∑
a=0,±

ca

∫
Γa

dz
√
ga(z) (1 + g′a(z)) . (2.60)
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The K-integral is replaced by the parametrization over z, and c+ = c− = 1, c0 = −2 realizes the subtraction.

The general case including T > 0 is obtained by substituting the internal energy per mode with the respective free
energy as in (2.32)

E(ga(z))→ F(ga(z)) =

{
h̄c
L

√
ga(z), T = 0

kBT ln[1− exp( h̄c
√
ga(z)

kBTL
)] + h̄c

L

√
ga(z), T > 0

Now, the second term in the integrals (2.60) can be evaluated by a substitution of the variable dz → dg(z)

F(L, T ) =
A

8πL2

[( ∑
a=0,±

ca

∫
Γa

dzF(ga(z))

)
+

( ∑
a=0,±

ca

∫
ga(Γa)

dgF(g)

)]
(2.61)

=
A

8πL2

[( ∑
a=0,±

ca

∫
Γa

dzF(ga(z))

)
− [A(g+(−z+))−A(0)]

]
.

The integral can be performed and is expressed through the antiderivative A(g) =
∫
dg′F(g′). Contributions arise

only from the lower limit of the Ω+-branch (minus the free space value), because the other two branches coincide
here g0(0) = g−(0) = 0. The other integration boundary has no contribution at all, because all three branches
converge to Ωp/

√
2 as z →∞. The evaluation of A(g) gives

A(0) =
2(kBT )3

(ch̄/L)2
ζ(3) (2.62)

A(g) =
2ch̄
3L

g3/2 +

{
ch̄

3L
g3/2 + kBTg log

1− e−
ch̄
√

g

kBT L

1− e
ch̄
√

g

kBT L

 (2.63)

−2(kBT )2

ch̄/L

√
g Li2

[
e

ch̄
√

g

kBT L

]
+

2(kBT )3

(ch̄/L)2
Li3

[
e

ch̄
√

g

kBT L

]}
.

The term in curly brackets involves polylogarithms Lis(z) =
∑∞
k=1

zk

ks and collapses to A(0) as T → 0. In this
case the term vanishes in the subtraction of the free space value and the contribution from the second integral in
(2.61) is just the single term 2ch̄

3L g
3/2, which recovers the surface plasmon interaction energy at T = 0 [Intravaia

and Lambrecht 2005, Intravaia 2005, Intravaia et al. 2007]

E(L) = −Ah̄cπ
2

720L3
(−1)

90
π3

[
−2

3
z

3/2
+ +

∑
a=0,±

ca

∫
Γa

dz
√
ga(z)

]
︸ ︷︷ ︸

η(L)

. (2.64)

Fig. 2.9 shows the free energy and the correction factor η(L, T ) = Fpl(L, T )/EC(L), which is the plasmon
energy measured in units of the Casimir energy of a perfectly reflecting cavity of equal size at T = 0 as introduced
in [Intravaia et al. 2007].
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Figure 2.9: TM plasmonic energy vs. the plate distance L at T/Tp ∈ {0, 0.1, 0.2, 0.3} normalized to the Casimir energy at
the plasma-wavelength (left) and at the same distance (right). Dashed: Small-distance asymptotics.
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The surface plasmon Casimir energy has two characteristic features already present at T = 0:

• Repulsive regime: The plasmonic Casimir energy changes its sign i.e. there is a transition from an attractive
to a repulsive force. This was a very surprising result, since the Casimir effect between perfect reflectors and
metals was known to be purely attractive. The transition from an attractive to an repulsive force occurs at
approximately L ≈ 0.08λp at T = 0, but sets in at larger distances as the temperature increases. Here, the
characteristic length scale is the plasma wavelength

λp =
2πc
ωp

. (2.65)

• Small distance correction: The correction-factor η(L, T ) is linear inL at small distances (see the next section
for a detailed calculation). This means, that the Casimir interaction in this regime does not follow Casimir’s
power law, but is enhanced by one power of L so that

F(T, L) ∼ L−2 at small L� λp . (2.66)

This effect is common to all conducting media with finite bandwidth [Lambrecht et al. 1998] and will appear
again in other models, showing that at small plate separations the electrostatic interaction of the surface
plasmons dominates the Casimir interaction [Van Kampen et al. 1968].

The small distance limit
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Figure 2.10: η1(T/Tp), thermal contribution to the free
energy correction factor at small distances L � λp
(solid black line) and the fit (gray dashed line).

The correction-factor η(L, T ) can be calculated asymp-
totically in the limit of small plate separations. An expan-
sion of the dispersion relations to first order in Ωp = 2πL

λp

yields

Ω0 =
Ωp√

2
, Ω± = Ω0

√
1± exp(−

√
z) .(2.67)

In the calculation of the energy correction factor to first
order, the propagative contribution can be neglected, be-
cause it gives contributions to the third order in L (as at
zero temperature). The result consists then of two parts,
one of which survives at T = 0 while the other depends
explicitly on temperature and accounts for the steepening
of the curves at small distance with temperature (see fig.
2.9). Introducing the plasma temperature Tp = h̄ωp/kB
for a more compact notation, the energy correction is
given by

η(L, T ) = −90
π3

(
2πL
λp

η0 +
2πL
λp

T

Tp
η1(T/Tp)

)
(2.68)

where

η0 =
∫ ∞

0

dz

{√
1− e−

√
z

√
2

+

√
1 + e−

√
z

√
2

−
√

2
}
≈ −0.0981 (2.69)

η1(τ) =
∫ ∞

0

dz

{
2 ln

[
1− exp

(
−
√

1− e−
√
z

√
2τ

)]
+ 2 ln

[
1− exp

(
−
√

1 + e−
√
z

√
2τ

)]

−4 ln
[
1− exp

(
− 1√

2τ

)]}
. (2.70)

Figure 2.10 shows the thermal contribution η1(τ) in function of temperature. The curve saturates against a constant
value at high temperatures. The integral can be evaluated analytically, which involves the asymptotic evaluation of
polylogarithms similar to the ones encountered before, and gives the nice result



Casimir interaction 54

lim
τ→∞

η1(τ) = −ζ(3)
2
≈ −0.601 , (2.71)

so that the slope of the energy correction at small distances grows linearly with temperature in this regime.

At low temperatures, η1(τ) decays exponentially, so that no expansion in powers of τ = T/Tp can be done. A
numerical fit to an ansatz with similar qualitative behavior gives the approximation

η1(τ) ≈ −0.575 exp
(
−0.135 τ−1.345

)
, (2.72)

which shows quite good agreement with the exact function over a wide range of temperatures, though the high T
limit is not reproduced exactly (see the plot). Note that the prefactor of η1(T/Tp) can be written as 2πL

λp

T
Tp

= kBTL
h̄c .

It links the geometric and the thermal energy scale and does not depend on the value of the plasma frequency.

2.2.2 Plasma and Drude model

Distance power laws

The surface plasmon modes covered explicitly in the last section, give important contributions to the mode spec-
trum of metals, but they are not the only ones. In fact, the repulsive regime created by them is overcompensated by
other contributions. Numerical results for the Casimir energy vs. distance calculated in the plasma and Drude model
are shown in figures 2.11. As in the case of the perfect reflector, there are different regimes, each of which features
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Figure 2.11: Casimir free energy vs. distance in the plasma (left) and Drude model (right). The free energy is scaled to the
value F0, obtained in the plasma model at T = 0, L = 100λp and scaled to L2/λ2. Thermal effects set in at ΛT ≈ 0.045λT .
The dashed line in the right plot shows the corresponding curve in the plasma model, which differs from the drude curve by a
factor ≈ 2 at large L.

a characteristic power law connected to characteristic length scales of the system. The thermal wavelength plays
the same role as before, but unlike the case of perfect reflectors, the material of the cavity walls can carry plasmonic
excitations. This introduces a new energy scale into the system, given by the plasma wavelength λp = 2πc/ωp and
new effects occur when the plate distance becomes comparable. The distance regimes determined by these scales
are

• Non-retarded regime L � λp: At distances below the plasma wavelength, the non-retarded electrostatic
interaction between surface plasmons is dominant and Casimir free energy follows a distance power law
F ∼ L−2 as in (2.66). Qualitatively, there are no big differences between the plasma and Drude model in
this regime , so that any dissipative effects (cf. next section) result merely in a scaling of the free energy but
do not influence the power law.

• Retarded regime λp � L � λT : Where the electrostatic surface interaction becomes less important and
retardation sets in, the power law is just the one known from Casimir effect for perfect reflectors F ∼ L−3 .
The arrows in the plot indicate the length scale ΛT ≈ 0.045λT originally found for perfect reflectors in
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(2.48), where the crossover to the thermal regime takes place. Interestingly, the finite temperature curves in
the Drude model fall below the one at T = 0 in this regime. This indicates a (small) repulsive correction due
to dissipative effects.

• Thermal regime λT � L: Exactly as for the perfect reflector, the thermal wavelength is the scale that
determines the thermal regime. The zeroth Matsubara summand dominates the behavior and the free energy
follows F ∼ L−2. Dissipation has a strong influence on this value, and the plasma and Drude model differ
by a factor 2 (solid and dashed line in plot 2.11) as will be discussed in the next sections. At very low
temperatures the thermal wavelength becomes very long, so that the thermal regime is suppressed and the
retarded regime extends to infinity instead.

Effects of dissipation

If the complete mode spectrum of the plasma or Drude model is included into the calculation of the Casimir effect,
dissipation becomes relevant and results in big differences between the two models in at both zero- and nonzero-
temperature. The Casimir free energy is usually calculated from (2.39) and it is useful to introduce a spectral
Casimir free energy density g(iξ), such that

F = kBT

∞∑′

n=0

g(iξ)⇔ g(iξ) =
∑
p,k

lnDp(k, iξ) . (2.73)

Fig. 2.12 shows the spectral Casimir free energy density for the plasma and Drude model. The solid lines show
the total free energies and the dashed lines separate the contributions from TE and TM-modes. Note that the TE
energy density of the Drude model goes to zero below the dissipation rate ξ � γ, while nothing alike occurs for
the plasma.
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Figure 2.12: Spectral free energy density g(ω) = ∂F
∂ω

in the plasma model (left) and Drude model (right), where γ = 5·10−4ωp,
L = 10λp. Total energy density TE+TM (solid), contributions from TM (dashed black) and TE polarization (dashed red).

In the plasma model, the contributions from both polarizations have a very similar qualitative behavior and their
absolute values are very close, too, due to the the high value of the plasma frequency ωp in a good conductor. In
the bad conductor limit with small values of ωp, the contribution from TE polarization results much smaller, so
that difference to the corresponding Drude model would become less pronounced. This was pointed out recently
by Klimchitskaya et al. [Klimchitskaya 2009] in the discussion of the data analysis for a semiconductor.

As expected from the discussion of the optical properties in section 1.7, surface charges can build up in a very
similar way in both a plasma and a Drude metal, and so TM reflectivities and subsequently the free energies
contributions do not differ greatly.

Things are of course different for TE-modes. It was shown in section 1.7.3, that the dissipation in the Drude model
creates leads to a transparency for low frequency TE-modes, i.e. (quasi-) static magnetic fields with ω � γ. This set
of TE-modes decouples from the resonator and does not contribute to the Casimir effect. This difference between
the Drude and the plasma model becomes relevant for the thermal correction. In the calculation of the Casimir
free energy, the spectral free energy is evaluated at the Matsubara frequencies. This leads to the smaller thermal
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correction in the Drude model, that have been seen in figures 2.11 and will be discussed in more detail in the next
section.

Thermal effects and the thermal problem
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Figure 2.13: Casimir free energy and entropy in the plasma model between plates at distances L = 100λp (orange, blue) and
L = 10λp (yellow, gray). TE- (dashed red) and TM-contributions (dashed black) are indistinguishable on this scale (shown
for L = 100λp only). Energies are scaled to the value Fpl(T = 0) of the plasma model, and the entropies to the value
Spl(T →∞), cf. (2.44). Thermal effects become dominant where L = ΛT ≈ 0.045λT .
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Figure 2.14: Drude model (orange, blue), where γ = 10−3ωp, L = 100λp, T = 2 · 10−2Tp, and for the perfect crystal (red,

green) γ(T ) = ωp
(

1− e−(T/T0)2
)
, T0 = 0.02Tp. Scales as before.

Figures 2.13 and 2.14 show the numerical calculation of the thermal Casimir free energy between metals described
by the plasma model, Drude model and also for the perfect crystal. At high and low temperatures, an asymptotic
evaluation can be done as before.

• High temperatures: In this limit, the zeroth Matsubara term dominates and as in section 2.1.6, it is possible
to obtain asymptotic expressions. The integrals can be evaluated with help the asymptotic values of the TE
and TM reflectivities from equations (1.131, 1.132). In all models rTM (0) = 1 so the contribution gives
just half the value of the perfect reflector (2.43). The low frequency transparency of the Drude model gives
rTE(0) = 0 so the TE modes give no contribution whatsoever to the Casimir free energy in this limit. No
difference occurs in this limit between the perfect crystal and the Drude model, because limT→∞ γ(T ) =
γ 6= 0. In the plasma model on the other hand, the contribution is non-vanishing and goes again to the perfect
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reflector limit at large distances.

F(T →∞) ≈ kBT

4π

∑
p

∫
dkk lnDp(0,k) (2.74)

=
kBT

4π

∫
dkk ln[1− e−2kL]︸ ︷︷ ︸

1
2
FC ≈ −

kBTA

16πL2
ζ(3)

+
kBT

4π

∫
dkk ln[1− rTE(0)2e−2kL]︸ ︷︷ ︸

=

 0 Drude
1
2FC , Plasma, L� λp

(2.75)

So, in the limit of large distances and high temperatures, the plasma model recovers the perfect mirror case
and the Drude model gives just half the value.

FPl = FC = 2FDr as T →∞ .

Of course this translates directly to entropies and forces and it is exactly this factor 2 that has aroused a very
hot debate in the last decade: Within the Drude model, it is not possible to retrieve the perfect reflector limit.

• Low temperatures: In this case it is not possible to do a simple asymptotic evaluation of the free energy
analogous to the perfect reflector, because the integral over wave vectors now involves the reflectivities in
a nontrivial way. Asymptotic expansions have been performed e.g. in [Ellingsen et al. 2008]. It is possible
though to calculate the Casimir entropy directly in a very elegant way, presented in the next section 2.2.3.
Before that, a first step is to look at the numerical free energy data, which turn out to differ greatly between
the models.

The only really well-behaved entropy seems to come from the plasma model, which has S(0) = 0 and goes
to a finite positive value SPl(∞) at high temperatures. The transition between the low and high T regime
occurs, where the thermal scale meets the geometric one, as has been shown for the perfect reflector. This
can be seen in fig. 2.13 where the free energy and entropy are given for two different plate distances.

A striking feature in the Drude model (fig. 2.14) is the regime of negative entropy. Here, the entropy decays
from S(0) = 0 (this cannot be shown in a logarithmic plot) to a negative value on a temperature scale related
to the dissipation rate γL2/λ2

p (Thouless-energy). At the onset of the high T regime, the entropy approaches
rapidly to the asymptotic value SDr(∞) = 1

2Spl(∞).

Even more challenging is the interpretation of the perfect crystal, given in the same plot, because it features
a finite negative entropy S(0) < 0 at zero temperature. Thus it apparently violates Nernst’s theorem, i.e. the
third law of thermodynamics (cf. next section), which states that for a non-degenerate system S(T )→ 0 as
T → 0.

The nonzero entropies, together with the factor 2 in the large distance behavior at finite T have provoked harsh
controversies on what has become known as the thermal problem. See [Bordag et al. 2000, Brevik et al. 2006,
Klimchitskaya et al. 2009] for more extensive reviews.

It was put forward, that a negative ground state entropy should not occur in a supposedly well-defined system like
the perfect crystal. On the other hand any tiny dissipation rate - present in any realistic system - is sufficient to at
least formally fulfill Nernst’s theorem as T � γ [Boström and Sernelius 2000,Boström and Sernelius 2004,Bezerra
et al. 2004,Brevik et al. 2006,Sernelius 2006a,Hoye et al. 2007,Svetovoy 2007,Klimchitskaya and Mostepanenko
2008]. There are also claims, that recent high precision experiments measuring the Casimir force between metallic
plates favors the plasma model, even though the Drude model seems to be a far more realistic description for a
normal metal. So far, there is not even a consensus on the analysis and interpretation of the data [Boström and
Sernelius 2000, Decca et al. 2005, Brevik et al. 2005, Bezerra et al. 2006, Mostepanenko et al. 2006, Brevik and
Aarseth 2006] and the discussion keeps stirring minds.

2.2.3 Casimir entropy

Calculation of the Casimir entropy

The problem of negative entropy makes it necessary to discuss the origin of Nernst’s theorem and the very concept
of a Casimir entropy.
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In thermodynamics, entropy is obtained from free energy as the negative temperature derivative while a force is
the negative derivative with respect to a spatial degree of freedom. In the case of the Casimir force, this is the
separation of the cavity boundaries. Force and entropy are thus connected by the Maxwell relation

− ∂2F
∂L∂T

=
(
∂F

∂T

)
L

=
(
∂S

∂L

)
T

. (2.76)

It has recently been stressed by L. P. Pitaevskii [Pitaevskii 2008b, Pitaevskii 2008a], that in a Casimir context, the
quantity obtained from the Lifshitz formula is the force, not the free energy. For Nernst’s theorem to hold, it is vital,
that the L is held constant in the calculation of ∂F/∂T and taking the limit T → 0. All quantities are regularized
by subtraction of the free space value, so there is a constant of integration

∆S = S(T, L)− S(T,∞) = −
∫ ∞
L

∂F

∂T

∣∣∣∣
L

dL′ . (2.77)

If the two summands display a different distance behavior and the limit S(T,∞) remains finite (some support has
been given that this is possible), then there is no reason why the Casimir entropy ∆S could not take negative values
at finite temperatures. Another open question is, whether a global thermal equilibrium can be assumed in the case
of two bodies separated by infinite distance.

It was shown in the last section, that negative entropy occurs in the model of a perfect crystal with a temperature
dependent dissipation rate as e.g. in the Bloch-Grüneisen law (1.28) and it turned out to give a finite negative value
S(T → 0) < 0. On the other hand, a constant rate of dissipation γ = const. was shown to fulfill Nernst’s theorem.
The following paragraph presents the formalism from a paper by Intravaia and Henkel [Intravaia and Henkel 2008],
who put the results by Sernelius and Boström [Boström and Sernelius 2000] and the model specific calculation by
Bezerra et al [Bezerra et al. 2004] in a general context.

The free energy is represented by a free energy per mode (similar to (2.73), but without performing the k-integral)
kBTgp,k(ω, T ) = kBTgp,k(iξ, T ) = kBT ln

[
1− (rp(k, iξ, T ))2 exp(−2κL)

]
evaluated at the Matsubara fre-

quencies ωn = iξn = 2πinkBT
h̄

F = kBT
∑
p,k

∞∑
n=0

gp,k(iξn, T ) (2.78)

⇒ S = −kB
∑
p,k

∞∑
n=0

[
gp,k(iξn, T ) + iξn

∂

∂ω
gp,k(iξn, T ) + T

∂

∂T
gp,k(iξn, T )

]
. (2.79)

If the optical properties of the plates depend on temperature, generally the limits

lim
T→0

(αT )2ε(αT, T ) 6= lim
T→0

lim
ω→0

ω2ε(ω, T ) , (2.80)

occurring in the reflectivities, need not coincide. These effects were discussed earlier in sections 1.7.3 and 1.8.3
and it was shown, that TM polarization is not affected by the problem. The order in which the limits are taken has
manifest effects only on the zeroth Matsubara term. Introducing a function

ĝp,k(iξn, T ) :=

{
lim
T→0

g(αT, T ) n = 0

gp,k(iξn, T ) n 6= 0
(2.81)

which coincides with g at all ξn 6= 0, the zeroth summand can be isolated and the entropy can be expressed as

S = −kB
∑
p,k

(
gp,k(0, T )− ĝp,k(0)

2
+
∞∑
n=0

′ [
ĝp,k(iξn, T ) + iξn

∂ĝp,k
∂ω

+ T
∂ĝp,k
∂T

])
(2.82)

⇒ S(T → 0) ≈ −
∑
p,k

(
kB

gp,k(0, 0)− ĝp,k(0)
2

+
h̄

2π

∫ ∞
0

dξ
∂ĝp,k
∂T

)
. (2.83)

In the limit T → 0, the Matsubara sum can be replaced again by the integral and only two terms survive, the others
being proportional to T . The last term vanishes for the plasma and the standard Drude model, because these do
not depend explicitly on T , but needs to be considered in the case of the perfect crystal or later in the two fluid
superconductor, where such a dependence exists.
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Only the first summand depends on the limits ω, T → 0 and the order in which they are taken. For a plasma and
the simplest Drude model γ = const., it is easy to see that the limits (2.80) commute and thus the total entropy at
T = 0 vanishes.

To check condition (2.80) for a general dissipative model of the Drude form, including a temperature dependent
dissipation rate γ(T ), one has to compare the limits

lim
T→0

γ(T )
T

?= lim
T→0

lim
ω→0

γ(T )
ω

, (2.84)

At low temperatures, an ansatz γ(T ) ∼ T β can be used to recover the two interesting cases of the perfect crystal
model, where β > 2, and the impurity dominated Drude model, where β = 0 (section 1.1.6). The limits depend on
the exponent β and since the limit on the right hand side does not exist, the limits cannot commute for β ≥ 1.

In the "normal" Drude model, both limits in (2.84) are divergent but identical (it is also easy to show and that (2.80)
is fulfilled), so there is no effect from the first term in (2.83), and also the other term vanish as T → 0 because ĝ
has no explicit temperature dependence of its own, as was said before. Therefore, Nernst’s theorem is fulfilled by
the Drude model with constant γ.

If as in the perfect crystal model the dissipation is dominated by electron-phonon scattering or electron-electron
scattering, β ≥ 2, so the limits do not coincide. Nicely, in these cases, the last term in the entropy (2.83) vanishes
(cf. [Intravaia and Henkel 2008])

∂ĝ

∂T
=
∂ĝ

∂γ

∂γ(0)
∂T︸ ︷︷ ︸
→0

→ 0 as T → 0 .

Only the contribution from the TE polarizations can show this kind of defect and so the zero-point entropy of the
perfect crystal is finally given by the finite negative value

S(0) = kB
∑
k

1
2
ĝTE,k(0) < 0 (2.85)

≈ FC(L)
2T

if L� λT . (2.86)

The large distance limit is found by comparing the equation to (2.74), having in mind that the ĝTE,k behaves like
the plasma model at low frequencies. This recovers half of the free energy calculated for the perfect reflector. All
results from this section comply well with the numerical data shown in fig. 2.14.

Nernst’s theorem

The finite zero-point entropy at T = 0 K resulting from some models is apparently in contradiction with Nernst’s
fundamental theorem [Nernst 1906b, Nernst 1906a], which in its most common form reads

T → 0⇒ S(T )→ 0 .

So far, the theorem, which is at the very heart of the discussion of the thermal problem, has only been quickly
introduced in section 2.2.2. This section will discuss its origin and validity.

In his original paper Nernst formulated his principle for the entropies S, S′ of a substance in two different states
with heat capacities C,C ′ and claimed that the difference of entropy vanishes

∆S = S − S′ =
∫
dT

C − C ′

T
(2.87)

lim
T→0

∆S = 0 , (2.88)

leaving the absolute value for S(T = 0) arbitrary. Planck [Planck 1927] subsequently imposed the stronger condi-
tion

lim
T→0

C = 0 , (2.89)
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and thus fixed the constant of integration S(0) = 0. The vanishing heat capacity at low temperatures leads to the
statement of phenomenological thermodynamics, that "it is impossible to reach T = 0 by cooling".

The connection between thermodynamics and statistical physics brought about a more intuitive interpretation of
entropy by means of Boltzmann’s celebrated formula

S = kB ln(Ω) . (2.90)

while Ω denotes the number of phase space cells connected to a macrostate of given energy in the microcanonical
ensemble of classical statistical mechanics. In quantum statistics Ω is the number of quantum-mechanical states of
a given energy. In a quantum system with a non-degenerate ground state, the system must necessarily be in just
this state at T = 0 , such that the multiplicity is Ω = 1 and the entropy vanishes S = 0. A textbook example for
a quantum system with a non-degenerate ground state is the harmonic oscillator. Also, the vibrational degrees of
freedom of a solid (phonons) can be modeled as a collection of harmonic oscillators (Einstein-Debye model), and
have this property.

On the other hand a system with a degenerate ground state may have a non-zero entropy at zero temperature.
Beyond of what can be found in every textbook on thermodynamics and statistical physics, references [Dugdale
1996, Schwabl 2002] cover the topic very thoroughly.

Violation of Nernst’s theorem

When Max Planck presented his version of Nernst’s theorem, he also pointed out a special case where it does not
apply: The model of the ideal non-interacting gas [Planck 1927, Fermi 1956], whose entropy is given by

S = CV log T +R log V + a , (2.91)

where a is an integration constant. Obviously S(T → 0) diverges, unless a is chosen infinite4. The reason is easy
to find: The description assumes a constant heat capacity CV , which stands in contrast to (2.89) and is certainly
not true for any real gas at low temperatures, where quantum statistics become important.

In the framework of statistical physics it is easier to find systems that feature a physical zero-temperature entropy,
connected to a degenerate ground state [Schwabl 2002]. A very simple system of this type is another type of
ideal gas, made of particles with uncoupled spins s and in the absence of external fields. The partition function
decomposes into the single particles’ ones, where Z0(T ) includes all degrees of freedom except the one due to the
spin

Z(T ) = (2s+ 1)NZ0(T ) (2.92)
⇒ S(T = 0) = kBN ln(2s+ 1) . (2.93)

Thus, even at T = 0 the entropy is extensive and the entropy per particle does not vanish in the thermodynamical
limit. Usually it is argued, that in such systems some symmetry breaking must occur at low temperatures, e.g. when
the spin coupling starts to dominate over mechanical degrees of freedom. The system is not "ideal" any more and
a single ground state is created, so that Nernst’s theorem holds eventually.

A related and very common system in everyday life is ice, where a ground state degeneracy occurs due to realization
of a specific distribution of hydrogen bonds between oxygen and hydrogen atoms, where other possibilities would
be energetically equivalent [Schwabl 2002].

But there are also systems that feature a metastable state in which the system can get stuck if the temperature drops
very quickly, because thermal fluctuations will only very seldom lift the system above the activation threshold. Thus
the relaxation to the fundamental state is suppressed by the kinetics of the thermodynamical process and the system
will remain in the metastable state for all experimentally accessible times. Obviously such systems do not meet the
requirements of ergodicity5

4The volume must be held constant. Nernst’s theorem does not apply, if temperature and volume vary at the same time [Pitaevskii 2008b]
5 In an ergodic system, the phase space trajectory φ fills the iso-energetic subspace Γ densely and homogeneously, i.e. it gets arbitrarily

close to any state that is energetically allowed at some point. In this case the time average along the trajectory and the phase-space average
coincide.

〈A〉t = lim
T→∞

1

T

∫ T

0
dtA(φ(t)) ≡ 〈A〉Γ =

1

Γ

∫
Γ
dφA(φ)

So, in some sense, in the metastable systems described above, the trajectory is just not long enough to fill the phase space.
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and hence are not thermal equilibrium states in the sense of statistical mechanics. In this case it may be very
reasonable to introduce a finite zero-temperature entropy, which can be calculated in the microcanonical ensemble6

.

Such behavior is known from glasses made of SiO or from polymers. These materials feature a glass-transition
(liquid to crystalline or amorphous). A special example given e.g. in [Schwabl 2002] are binary alloys like brass
CuZn in the β-phase, which show a phase transition that depends crucially on the kinetics. A slow cooling will
lead to a well-ordered structure of low residual entropy, while fast cooling makes it impossible for an equilibrium
structure to be reached. The resulting lattice is not well ordered and can be attributed a considerable entropy
that persists even at low T . Even though these systems are not in total thermal equilibrium, some degrees of
freedom decouple and can be considered in thermal equilibrium. For instance the phonon gas will relax quickly
to a distribution well-described by equilibrium thermodynamics (Einstein-Debye statistics). As a result of the
decoupling of different subsystems, one can introduce more than one effective temperature present at once.

2.2.4 Diamagnetism and diffusive modes

Now, how is the negative Casimir entropy to be interpreted? Is it a relict of a inconsistent renormalization or is it a
physical entropy related to a degenerate ground state?

1. T > 0: Here a negative value of the Casimir entropy S < 0 does not create problems. It was shown before,
that this can happen just because the Casimir entropy is a entropy difference w.r.t. isolated plates.

2. T = 0: The value S(T → 0) < 0 in the perfect crystal is more puzzling. An elegant solution to the
conundrum could be a glassy state.

Intravaia and Henkel [Intravaia and Henkel 2009] have recently shown, that the negative entropy in the Drude
model stems from a set of diffusive Foucault or eddy current modes. The finite entropy attributed to these modes,
motivates the postulation of a Foucault glass state present in the perfect crystal at low temperatures. If the eddy
contribution were suppressed in a normal metal, the negative entropy supposedly violating Nernst’s theorem would
not appear.

It is not very intuitive though, why this should happen, after what has been said on the influence of dissipation
on causality and optics. A recent argument by Bimonte [Bimonte 2009] stresses this yet again: Since any material
described by classical physics cannot be diamagnetic according to Bohr-van Leeuwen’s theorem (e.g. [Soldati
2003]), it should always become transparent to low frequency magnetic fields. This coincides with the value of
rTE(0) = 0 in the Drude model and imposes a strong condition on the possible mechanisms that could suppress
the diffusive modes in a normal metal. It would have to be a quantum effect that survives in the classical limit
where commonly the models works quite well. Interestingly, such an effect could also explain the large distance
behavior.

It is interesting, to think of what happens in a superconductor. Here, the U(1) gauge symmetry is broken (see
chapter 1.5) and a diamagnetic response is no problem, because superconductivity is a manifest quantum effect. At
T = 0 the superconductor can be safely assumed to be completely in the London-state, i.e. it is well-described by
the plasma model. The eddy currents must collapse to the collective mode which in a superconductor is the only
mode on the imaginary axis. This can be seen as a rearrangement of the eddies, which now produce the diamagnetic
surface current responsible the Meißner-Ochsenfeld effect. Hence there is some different level of order present in
a superconductor and a change of entropy seems reasonable. At this point it is not yet possible to give a final
statement on neither of the topics of this paragraph and further investigation is necessary.

6 Conceptually, one should spend some thoughts on the differences between the microcanonical and the canonical ensemble description.
Entropy and temperature can be defined in either description and coincide.

Ergodicity is usually introduced as a property of an isolated system, described by the microcanonical ensemble and characterized by its
fixed energy. The system considered here is coupled to a thermal bath and thus described in the canonical ensemble, where not the energy
is fixed but its average value [Soldati 2003].

Let ΓA be the phase space of the system and ΓB the one of the bath. If a microcanonical picture is to be applied, the bath must be included
into the description and the total phase space is given by Γ(E) =

∏
EB

ΓA(E−EB)⊗ΓB(EB). Nevertheless, if the trajectories φ ⊂ ΓA
fail to fill the subspace ΓA, the system A is non-ergodic leaving out the bath, and so neither is the complete system Γ including it.
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2.3 Two-fluid superconductors

2.3.1 The superconducting transition

From the experimental point of view, the thermal problem is basically the question, to which model data should be
fitted. In this context, different experimental setups involving superconductors have recently been brought into the
discussion by Bimonte [Bimonte et al. 2005b,Bimonte et al. 2005a,Bimonte et al. 2006,Bimonte 2008]. The basic
idea is that the plasma model should describe well a superconductor below T = Tc and above it is just a normal
metal (Drude model). Thus, there should be a significant change in the interaction energy if the normal metal is
described by the Drude model, and the change should be much smaller or even vanishing, if the normal metal,
too, is better described by the plasma model (for whatever physical reason). Thus, superconductors might be a
means for investigating the mechanisms responsible for the thermal anomalies encountered in the thermal Casimir
effect.
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Figure 2.15: Casimir free energy (left) and entropy (right) in a two fluid model (purple) and the other models for comparison.
The critical temperature is Tc = 2 · 10−4Tp, L = 100λp, γ = 10−3ωp. As before, dashed red and black lines show the TE and
TM contributions to the free energy.

In his first papers on the Casimir interaction involving superconductors, Bimonte considered a abrupt transition
between the plasma and the Drude-model at Tc (later work has also included BCS-superconductors using the
evaluation at imaginary frequencies developed previously).

A next step towards a more realistic description of the phenomena can be obtained using the two fluid model.
The results of numerical calculations of the Casimir free energy for such a model are shown in fig. 2.15. Rather
than use an abrupt transition between plasma and Drude behavior, it features a continuous interpolation of the
optical properties that occurs below Tc. The change of the material properties translates to a continuous transition
of the free energy from the plasma curve at T = 0 to the Drude curve, with which it must of course coincide for
T ≥ Tc. A plot of the free energy in this interval is given in fig. 2.16. A non-intuitive effect occurs in the entropy.
Very slightly below Tc it decays to large negative value and then jumps back onto the Drude curve at the critical
temperature. This is a consequence of the form of the order parameter, whose intrinsic temperature dependence
dominates the thermodynamics at temperatures close to the critical transition. In the following these effects will be
investigated in more detail.

2.3.2 Casimir entropy

Entropy at T = 0

A two fluid model interpolates between the plasma and the Drude model. It must asymptotically approach the
plasma model at low temperatures ε ≈ εPl and a Drude-like behavior above the superconducting phase transition
ε(T > Tc) = εDr.
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A class of two fluid models is given by

ε(ω, T ) = η(T )εPl(ω) + [1− η(T )]εDr(ω) , (2.94)

where the order parameter η(T ) needs not necessarily be of the Gorter-Casimir type7 (1.84) but must fulfill several
conditions in order to guarantee the interpolation properties:

1. η(T ) ∈ [0, 1] ⇔ . Since η(T ) = ns/n is fraction of charge carriers contributing to the supercurrent, this is
just the conservation of charge8.

2. η(0) = 1⇔ Full superconductivity at T = 0.

3. η(T ) has no discontinuities⇔ Continuous phase transition.

4. d
dT η(0) = 0⇔ Ensures, that the plasma model holds in an environment of T = 0. This can also be seen as
a requirement obtained from experimental results in the regime, where the measured gap function coincides
well with the order parameter.

With help of the formalism from [Intravaia and Henkel 2008] exposed in section 2.2.3 the entropy at T = 0
can be calculated from the free energy densities as before. For the superconductor there is an additional explicit
temperature dependence of the order parameter and the relevant derivative in eq. (2.83) becomes

∂ĝ

∂T
=

∂ĝ

∂γ︸︷︷︸
(*) →0 at T=0

∂γ(T )
∂T

+
∂ĝ

∂η

∂η(0)
∂T︸ ︷︷ ︸

(**) ≡0

. (2.95)

Since the two fluid model approaches the plasma value at T = 0, a possible thermal dependence through γ(T )
becomes irrelevant, since it is quenched by the order parameter (condition 1): Even if the dissipative current
contribution is described through a perfect crystal model (clean superconductor), the previously troublesome part
(*) is simply switched off at low T .

The additional term due to the order parameter (**) might also cause an entropy defect at T = 0, but only if
∂η(0)
∂τ 6= 0. These models are excluded by condition 4, because though they would approach the plasma model

value of ε(ω) at T = 0, the plasma model would not describe the asymptotic behavior which is well established
experimentally. Therefore there is no contribution to entropy at T = 0 from any explicit temperature dependence
of the model.

The last remaining term in (2.83) is the one connected to the order of the limits. This term, too, vanishes, again due
to the plasma model asymptotics. As before, one must compare the limits

lim
T→0

(αT )2ε(αT, T ) ?= lim
T→0

lim
ω→0

ω2ε(ω, T ) . (2.96)

A direct calculation gives

lim
T→0

lim
ω→0

ω2ε(ω, T ) = −ω2
p lim
T→0

η(T ) = −ω2
p

lim
T→0

(αT )2ε(αT, T ) = −ω2
p − lim

T→0
[1− η(T )] ·

[
1

1 + iγ(T )
αT

]

= −ω2
p + 0 · lim

T→0

1

1 + iγ(T )
αT︸ ︷︷ ︸

:=A

. (2.97)

Conditions 3 - 4 make sure for T = 0 to be an accumulation point of the domain of η(T ), so the limits can be
separated9 and even though γ(T )/αT → 0 or∞, the limit A→ 1 or 0 is always finite.

7The Gorter-Casimir like models are of course a special case. Here ηa(T ) = 1 − (T/Tc)
a , where typically a = 4. Note that all models

with a > 1 meet the conditions 1 - 4. The special value a = 1 violates number 4 and gives a pseudo-two fluid model, without the plasma
asymptotic which - if evaluated asymptotically or numerically - features a non-vanishing zero-point entropy, in agreement with the results
of this section.

8It was mentioned earlier that in BCS theory, due to the quantum nature of the charge carriers, interference effects occur and lead e.g. to the
coherence peak (cf. sections 1.4.1, 1.7.4 and 1.6.2). To obtain a similar peak in a classical model, one would require η > 1.

9 Let f, g : D ⊆ R 7→ R and p an accumulation point of D, i.e. p ∈ D̄. If the limits limx→p f(x) = a, limx→p g(x) = b exist, then
limx→p f(x) · g(x) = a · b.
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It has now been shown, that due to asymptotic plasma-like behavior at low temperatures, Nernst’s theorem holds
for the whole class of two fluid models and order parameters as specified above, including those where γ depends
on temperature.

A minimum of entropy

The Casimir entropy in the two fluid model features a local minimum at temperatures slightly below Tc, i.e. before
the entropy discontinuity.

The free energies F(T ) must be continuous through the superconducting transition and it has been shown that
FDr(T ) ≥ FPl(T ) and SDr(T ) ≤ SPl(T ) at all T . So there must be a transition between the asymptotic regimes,
and it follows from the mean value theorem applied to F and S that either

• F(T ) must be monotonous and grow with T

• or have at least one inflection point where the derivative changes from + to −.

The second case is the mathematical definition of a minimum of the entropy and in the first, the minimum coincides
with the entropy discontinuity.

This shows that the local minimum of the Casimir entropy is a general feature of superconductors and not a relic
of the description used: It is just the consequence of the fact that the free energy must in some way arrive at the
Drude curve starting from the plasma value. Until now, the effect has only been presented in the two fluid model,
but it can be expected to arise similarly from BCS theory, too. In fact this will be one of the results shown in the
next section.

In a two fluid model, the minimum can be deduced directly from the order parameter. If the order parameter is
differentiable at the phase transition (η(Tc) = 0, d

dT η(Tc) = 0), there is no discontinuity of free energy or entropy
and a minimum of entropy must occur at T < Tc in contrast to the scenario, where ∂η/∂T is discontinuous as in
the Gorter-Casimir model and the entropy minimum occurs at T = Tc.

Entropy jump at Tc

The numerical results for a two fluid model with a Gorter-Casimir oder parameter given in fig. 2.15, feature a cusp
of the free energy at Tc, connected to a jump of entropy or equivalently a latent heat.

It is possible to identify the source of the jump: Writing the entropy in terms of the free energy

S =
∫
dω
∑
p,k

d

dT
[kBT lnDp(ω,k)]

=
∫
dω
∑
p,k

kB lnDp(ω,k) +
∫
dω
∑
p,k

kBT
∂ lnDp(ω,k)

∂ε

∂ε

∂η

∂η(T )
∂T

(2.98)

∆S = − lim
τ→0

[S]Tc+τ
Tc−τ (2.99)

The first integral for ∆S vanishes, since drastic changes near Tc stem from the dielectric function ε(ω, T ) and not
from the explicit prefactor T . The second one is identically zero above Tc, where η(T ) ≡ 0, so only the limit of
the superconductor at Tc is relevant, where ∂ε/∂η = εPl − εDr

∆S = −kBTc
∂η(Tc − 0+)

∂T︸ ︷︷ ︸
=:δT η

∫
dω
∑
p,k

∂ lnDp(ω,k)
∂ε

∣∣∣∣
ε=εDr

[εPl(ω)− εDr(ω)] (2.100)

As before, the low frequencies give the important contribution to the entropic effects, since εPl(ω) − εDr(ω)
vanishes at high frequencies, introducing a kind of cut-off in the order of γ into the integral. In the Gorter-Casimir
model, the term δT η = − 4

Tc
but in a model, where the order parameter is differentiable at T = Tc, δT η = 0 and

∆S = 0. On the other hand, if the BCS gap function ∆(T )/∆(0) is used as the order parameter in a two fluid
model, δT η → −∞ and so does the entropy discontinuity.
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2.4 BCS superconductors

As a next step, it is highly interesting to compare the previous results of the two fluid model to the BCS theory.
The Casimir free energy has been calculated using Zimmermann’s version of Mattis-Bardeen theory. In practice
it turned out to be impossible to do the numerics in decent time using either the real frequency version or the
continuation through Kramers-Kronig relations, which involves another integral for each frequency. This was the
reason, why the direct analytical continuation to imaginary frequencies as presented in section 1.6.3, was calculated
to start with.
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Figure 2.16: Left: Casimir free energy in the BCS model (red) and two fluid model (gray), critical temperature Tc ≈ 13K,
ωp = 8.95 · 1015s−1, γ = 5 · 10−3ωp and at a plate separation of L = 2µm. Right: Relative difference between the results
obtained in the BCS and two fluid description.

The numerical results of the BCS model are shown in fig. 2.16 together with the data obtained in the two fluid
model (cf. previous section) and show a complete coincidence at the parameters chosen up to a relative precision
of ≤ 2 · 10−3 for all temperatures below Tc. Near the critical temperature the differences are largest. Beyond
the critical temperature, the models coincide exactly and the resulting deviation (gray line in the right plot) is
comparable to the numerical error from the Matsubara summation, i.e. the value fits well with the one used for the
cut off criterion (2.50).

This high agreement is somewhat fortuitous due to the choice of parameters. In section 1.7.4 it was shown, that in
the regime h̄γ ≈ ∆(0), the optical response of the two fluid and BCS descriptions coincide very well. This may
put a limit to the application of the two-fluid model instead of the numerical more challenging BCS model, but it
was shown earlier, that this regime of γ is not unreasonable for common metals.

In any case, after what has been said in the previous section about the dependence of the entropy-jump in a two-
fluid model of the slope of η(T ) at Tc, it is relieving to see, that the discontinuity obtained from the BCS-theory is
finite and coincides well with the prediction from the Gorter-Casimir model.

In future work, the dependence on the value of γ will be considered also outside the regime of good coincidence. It
would be especially desirable to find a precise interval in which the application of the two fluid model is justified.

2.5 Conclusions

In this chapter the interaction of two metallic or superconducting plates was investigated. Two alternative descrip-
tions due to Casimir and Lifshitz were presented, and it was shown, how the Lifshitz formula covers more general
classes of systems including dissipative ones. In a next step nonzero temperatures have been included in the cal-
culation. It was shown, how the infinite Matsubara sums can be evaluated to good precision numerically using a
self-adjusting cut-off criterion.

The perfectly reflecting cavity was presented as a first instructive example and showed characteristic features
which survive also for more realistic cavities. The most important result was a crossover to a distance power law
F ∼ TL−2 in the thermal regime where the thermal wavelength is small compared to the plate distance.
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In metals, the surface plasmons were shown to dominate the interaction at small distances, where they give rise to
another crossover to power law to for the free energy vs. distance to F ∼ ωpL

−2 at distances small compared to
the plasma wavelength. The thermal correction to the plasmonic Casimir energy was calculated numerically and
asymptotically for the first time, and the energy correction factor was found to be η(T, L) = F(L, T )/EC(L) ∼ L
at small distances, where its slope depends on temperature.

Then the complete spectrum of modes in a plasma, Drude metal and perfect crystal was considered, previous
results were recovered. These included a notorious factor 2 between the free energies of the plasma and the Drude
model, and negative entropies occurring in the dissipative models at low temperatures. Some arguments have been
given, why negative Casimir entropies – measuring entropy differences – at finite temperatures are not unphysical,
and how the violation of Nernst’s theorem at T = 0 featured by some models could be understood in terms of a
Foucault glass.

From there it was a natural step to consider superconductors, for which is known that the plasma model is a decent
description at very low temperatures. The description of superconductors in terms a two fluid model lead to a
characteristic jump of entropy in the superconducting transition at Tc and to a minimum of entropy slightly below
and it was proven that Nernst’s theorem holds for a general class of two fluid models.

Finally the optical description obtained from BCS theory at imaginary frequencies obtained in the first chapter was
used to describe the optical properties of the superconducting surface in the calculation of the Casimir effect. The
numerical results for the Casimir free energy obtained in this model agree to great accuracy with the ones calculated
for the two fluid model, at least in the reasonably realistic regime h̄γ ≈ ∆(0) encountered already earlier. This
shows, that for the purpose of predicting the Casimir effect between superconducting plates, it is sufficient (at least
in this regime) to use the two fluid description. This is much easier accessible to analytical calculations and also
advantageous for numerical simulations.
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3 Casimir-Polder interaction

3.1 Casimir polder interaction

3.1.1 Atoms near surfaces

Figure 3.1: Atom near a metallic sur-
face. The atom is characterized through
its electric and magnetic dipole mo-
ments.

Until now, the interaction of two macroscopic bodies has been studied in
a framework in which the microscopic structure of matter has been used
only to determine macroscopic electrodynamic response functions. This
chapter will investigate the interaction of single atoms with a surface,
where the dynamics of the atom becomes relevant.

Starting from the Casimir configuration involving two plates in global
thermal equilibrium, this new scenario can be thought to be obtained
in a dilute limit, first considered by Lifshitz [Lifshitz 1956]: If one of
the plates is made ever less dense, the collective effects such as the
Lorentz polarization field or conductivity vanish and what remains are
the single non-interacting atoms of the wall, which are characterized by
a magnetic and electric polarizability. It is not generally possible to do
the calculation the other way round, i.e. to recover the Casimir interac-
tion of two macroscopic bodies outside the dilute limit from summing
up the single atoms’ interactions. This is because in the dilute limit,
nonadditivity and screening effects are excluded from the beginning.
See also [Spagnolo 2009] and [Buhmann and Scheel 2008] for non-
equilibrium situations.

Historically, the idea of dispersion forces was proposed by van der
Waals [Van der Waals 1873]. He assumed, that close to a polarizable
medium (another atom or a metallic surface) a spontaneously polarized
atom will feel the field created by its own mirror charge. Fritz Lon-
don [London 1930, London 1937] was the first to give a quantitative description of the interaction. A complete
calculation for perfect reflection including the retardation effects was done by Casimir and Polder [Casimir and
Polder 1948].

The idea of the charge/mirror-charge interaction is catchy but it does not give the complete picture. The reason is,
that there is more than one contribution to an atom’s polarization:

• Spontaneous fluctuations of the charge densities in the atom.

• Mirror polarization due to induction from the mirror(-charge), which is statistically perfectly correlated to
the atom’s spontaneous fluctuations.

• Induced polarization due to other atoms’ (or the mirror’s) own spontaneous fluctuations. This contribution
is statistically independent from the spontaneous fluctuations of the atom.

Therefore in a setup with physical mirrors or two atoms, the other object will not only mirror the first atoms’
fluctuation but also show fluctuations of its own that will "blur" the mirror image.

Casimir and Polder considered the interaction of an atom, characterized by its static electric polarizability α with
a perfectly reflecting wall at the distance L. Their result for the interaction energy (at zero temperature) in the
retarded regime reads

U(L) = −3h̄cα
πL4

. (3.1)

In this section, energies will be labeled U , to distinguish them from electric field components.
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3.1.2 Experiments

A handful of recent experiments have probed the atom-wall interaction. Reviews can be found in [Aspect and
Dalibard 2002, Spagnolo 2009]. There are different approaches, the most important of which are the following:

• Scattering of thermal atom beams: Early experiments used a thermal atom beam of scattering of atoms from
a crystalline surface. If the deBroglie wavelength of the atoms is in the order of the lattice distance of the
crystal, Bragg-diffraction occurs. On these length scales, the Casimir-Polder forces have a relatively long
range, and can be extracted from the diffraction pattern – similar to a surface form factor. A theoretical work
on this field was given in [Beeby and Thomas 1974].

• V-setup: In this setup described by Sukenik et al. [Sukenik et al. 1993] atoms travel slowly through a cavity
made of plates that form a small angle (V-shape). Thus, the setup allows to change the cavity width by
moving the source vertically. Inside the cavity, already the (classical) transverse momentum distribution
leads to a certain geometric loss of the atoms that hit the walls. Further loss is due to the attractive Casimir-
Polder forces. The actual number of atoms arriving at a detector is then measured and compared to Monte-
Carlo simulations. At large plate distances, the purely geometric losses dominate, but below a critical width,
the Casimir-Polder losses become significant. This experiment allowed for the use of ground-state atoms and
showed good agreement at both retarded and non-retarded distances with an accuracy of about 10%.

• Light force potential: Here, the equilibrium between a repulsive light force and the attractive surface interac-
tion is used to establish a potential barrier, that can be well controlled by changing the light field. The barrier
height influences is then probed through the reflectivity for incident atoms [Landragin et al. 1996].

• Quantum reflection: Atoms move under a small angle towards a surface, carrying a small kinetic energy
in the perpendicular direction. Classically, a potential gradient leads to an attractive force and adsorption
of the atoms. Due to quantum reflection in the potential gradient, most of the atoms will not reach the
plate but are deflected from the surface. It can be shown, that very slow atoms will actually be reflected
perfectly. Experiments demonstrating quantum deflection have been conducted with H atoms on a liquid
helium surface and also for Ne atoms at solid surfaces. Measuring the atom-reflectivity in function of the
atoms’ velocity, the reflecting potential can be reconstructed. This has been done [Shimizu 2001] for the
Casimir-Polder potential in the retarded regime quite far from the surface, where quantum deflection is
mostly sensitive.

• Spectroscopic measurements: The atom-wall interaction leads to a distance-dependent shift of the atomic
energy levels which may be detected by resonant spectroscopic techniques. These techniques offer a very
high precision, but involve necessarily energy shifts for excited atoms which behave very differently from
atoms in the ground state. The Casimir-Polder forces have successfully been probed in such experiments
[Laliotis et al. 2007, Sandoghdar et al. 1992, Failache et al. 1999].

• Oscillation frequency shift: Very precise measurements of the Casimir-Polder force including the thermal
correction have been done by Obrecht et al. [Harber et al. 2005,Obrecht et al. 2007,Obrecht 2007] by mea-
suring the frequency of center of mass oscillations of the atoms inside chip-based trap. As the trap-minimum
is moved closer towards the surface, the Casimir-Polder forces change the curvature of the potential which
leads to a relative change of the oscillation frequency in the order of 10−4 [Antezza et al. 2004]. The same
basic concept was applied by Capasso et al. [Chan et al. 2001, Iannuzzi et al. 2004, Lisanti et al. 2005] to
measure the Casimir effect between macroscopic bodies (section 2.1.5).

• Deformed trapping potential: In modern atom chip setups, cold neutral atoms can be trapped close to a sur-
face in a magnetic trap. The trapping potential is usually measured by direct imaging of an atomic cloud
inside the trap. Close the surface the Casimir-Polder interaction deforms and finally destroys the trap po-
tential which is frequently seen (see e.g. [Petrov et al. 2008] for an example in a trap involving a carbon
nanotube). This kind of measurement seems basically possible, e.g. [Yuju et al. 2004].

3.1.3 Atom-surface interaction at T = 0

The interaction of a neutral atom with an external field can be expressed through its multipole coefficients. The
most important contributions stem from the lowest electric and magnetic multipole moments, because the atom
size is small compared to the relevant wavelengths. Usually, the dominating one is the electric dipole moment
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(E1), followed by the magnetic dipole moment (M1) and the electric quadrupole contribution (E2). In atoms,
the multipole moments are connected to specific transitions between energy states. In alkali atoms, for example,
E1-transitions connect to electronic ground state to excited states with transition frequencies in the visible range
(≈ 1015 Hz) and M1 transitions occur between Zeeman- or hyperfine states with much lower transition frequencies
( MHz− GHz) [Henkel 2005].

The electric dipole case has been investigated thoroughly e.g. [Antezza et al. 2004, Spagnolo et al. 2006, Scheel
and Buhmann 2008,Bezerra et al. 2008] so this chapter will focus mainly on the magnetic dipole contribution and
use previous work done by Power [Power et al. 2005b, Power et al. 2005a] and Spagnolo [Spagnolo and Intravaia
2008,Spagnolo 2009]. A comparison to the electric case will be done on the basis of the numerical data. Generally,
the magnetic dipole coupling is much smaller than its electric counterpart. Anyhow this is partially compensated,
because it has been shown in [Joulain et al. 2003] that the local magnetic density of states (LMDOS) close to a
surface is higher than its electric equivalent (LEDOS) by orders of magnitude.

In the case of the Casimir-Polder interaction, the multipole-moments involved are not static due to fluctuations and
induction, but physically this does not change the form of the interaction Hamiltonian, e.g. [Spagnolo 2009].
Splitting the contributions to the magnetic dipole moment into spontaneous fluctuations and the induced part
µ = µind + µfl, the interaction energy with an external magnetic field B = Bind + Bfl is

U = −1
2
〈µ ·B〉 . (3.2)

The induced dipole is due to the polarizability β and the induced part of the field is the response to the fluctuations
of the source dipole (using a Green’s tensor H)

µindi (ω) = βij(ω)Bflj (ω) (3.3)

Bindi (ω) = Hij(ω)µflj (ω) . (3.4)

Assuming statistical independence of the dipole and field fluctuations, the interaction energy at zero temperature
can be evaluated with help of the dissipation-fluctuation theorem and gives an expression obtained by Wylie and
Sipe [Wylie and Sipe 1984, Wylie and Sipe 1985]

U(r) = − h̄

2π
Im
∫ ∞

0

dωβij(ω)Hji(r, ω) . (3.5)

So, very similar to the two-plates scenario, the interaction energy of a dipole with a surface, which enters the
description via the Green’s tensor, is given by an integral over a spectral energy density. At T = 0, the atom is in
the ground-state and so only transitions from and to the ground state can contribute to the magnetic polarizability,
which is given by

βij(ω) =
∑
m

〈0|µi|m〉〈m|µj |0〉
h̄

2ω0m

ω2
0m − (ω − i0)2

, ω0m =
E0 − Em

h̄
(3.6)

In the upcoming calculations, the atom was modeled as a two-level system, so the sum collapses to only one
transition with a transition frequency ω01 =: Ωm. Here the magnetic moment is due to electron spin only (orbital
angular momentum L2 = 0), the two states correspond to the spin orientation and the matrix element can be
assumed to be in the order of Bohr’s magneton µB

µi = −µBgsσi
2

⇔ |〈0|µi|1〉|2 =
µ2
Bg

2
s

4
, (3.7)

where gs ≈ 2.0 is the Landé g-factor for the electron and σi is a Pauli matrix.

To obtain the analog equations for the electric dipole contribution, the magnetic polarizability β and the Green’s
tensor H have to be replaced by the corresponding electric quantities α,G. The electric and magnetic Green’s
functions at a surface are obtained from one another by interchanging the reflectivities rTM ↔ rTE , and the
polarizabilities require the replacement of the transition frequency Ωm ↔ Ωe and the dipole moment 〈0|µi|1〉 ↔
〈0|di|1〉, i.e. µ

2
Bg

2
s

4 ↔ e2a2
0

3 , where a0 is the Bohr’s radius [Power et al. 2005b, Power et al. 2005a].
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3.1.4 Atom-surface interaction at finite temperature

At non-zero temperature the free energy rather than the internal energy is the relevant thermodynamic potential.
As in the Casimir effect, the thermal effects can be included by introducing a thermal kernel [Novotny and Henkel
2008, Wylie and Sipe 1985]

F(r) = − h̄

4π
Im
∫ ∞
−∞

dωβTij(ω)Hji(r, ω) coth
(

h̄ω

2kBT

)
. (3.8)

The polarizability itself depends on temperature, which must be taken into account according to the system under
consideration.

• Thermal equilibrium: The system is in total thermal equilibrium and at finite temperature the atoms near
the surface will no longer be in the electronic ground state (or its Zeeman-/hyperfine states), but thermally
excited . The following sections will deal with such situations.

• Non-equilibrium: Typically, in magnetic traps including the ones integrated on a microchip, there are not
single atoms but a cloud of ultracold atoms or a Bose-Einstein condensate (BEC). Thus the system is not
in global thermal equilibrium, and while the chip surface has room temperature, the ensemble of atoms can
be attributed an effective temperature which lies typically in the order of µK [Spagnolo 2009] and is often
modeled as zero [Buhmann and Scheel 2008]. This is not a bad choice, since ground state cooling is possible,
and especially in BECs the ground state is populated macroscopically. A different non-equilibrium situation
describes field due to two different temperatures scales, one for the chip surface and one for the "surrounding
chamber" [Antezza et al. 2005, Antezza et al. 2008, Antezza 2008].

The polarizability of an excited atom differs from the one in the ground state, because now the transitions between
different excited states must be taken into account, too:

βTij =
∑
n,m

exp (−h̄En/kBT )
Z

〈n|µi|m〉〈m|µj |n〉
h̄

ωnm
2ω2

nm − (ω − i0)2
, (3.9)

where Z is the partition function of the system. For the two-level system the thermal polarizability takes the very
simple form [Spagnolo 2009]

βTij(ω) = tanh
(
h̄Ωm
2kBT

)
βij(ω) . (3.10)

At T = 0, both the thermal kernel and the factor in the polarizability, coth
(
h̄Ωm

2kBT

)
= tanh

(
h̄Ωm

2kBT

)
= 1 which

recovers (3.6). On the other hand, at finite temperature an analytic continuation to imaginary frequencies ω = iξ
can be performed to obtain an expansion in Matsubara frequencies as before.

The magnetic Green’s tensor evaluated at imaginary frequencies ω = iξ and setting κ =
√
k2 + ξ2/c2 reads

[Wylie and Sipe 1984, Wylie and Sipe 1985]

Hij =
µ0

8π2

∫ 2π

0

dφ

∫ ∞
0

kdk

κ

(
−ξ

2

c2

)[
rTE(p̂+

0 p̂
−
0 )ij + rTM (ŝŝ)ij

]
exp(−2κL) . (3.11)

Here, the unit vector ẑ is perpendicular to the surface. The angular integration of the tensor-components yields
then

1
2π

∫
dφ(ŝŝ)ij =

1
2

[x̂x̂+ ŷŷ] (3.12)

1
2π

∫
dφ(p̂+

0 p̂
−
0 )ij = − c

2

ξ2

[
k2ẑẑ +

κ2

2
(x̂x̂+ ŷŷ)

]
. (3.13)

Now, both the Green’s tensor and the polarizability tensor are known and the traces will be calculated in two special
configurations for later use in numerical evaluations:
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• Anisotropic dipole: The transition-dipole is parallel to the surface. Then, the shift does not depend on the
ẑẑ-element of the Green’s function, and the polarizability tensor has components βxx = βyy = βT , βzz = 0.

βijH
ji =

µ0

4π

∫ ∞
0

kdk

κ

[(
−ξ

2

c2

)
rTM + κ2rTE

]
βT exp(−2κL) (3.14)

This applies in atom chips, where static trapping fields parallel to the surface exist. Here, Ωm ∼ B the
trapping field.

• Isotropic dipole: The average is taken over all directions, which gives βij = βT 1
3δij .

βijH
ji =

1
3
µ0

4π

∫ ∞
0

kdk

κ

[(
−ξ

2

c2

)
[rTM + rTE ] + 2κ2rTE

]
βT exp(−2κL) . (3.15)

This is relevant in optical traps and Ωm can be assumed in the order of the hyperfine splitting.

In these expressions, the temperature dependent diagonal polarizability elements

βT (ω, T ) = |µm|2
2Ω

Ω2 − ω2
tanh

(
h̄Ω

2kBT

)
, |µm|2 =

g2
sµ

2
B

4h̄
. (3.16)

do not depend on the wave vector and can be separated from the trace, defining the trace of the Green’s tensor
(trace-function H) by

βijH
ji =: H(ω,L)βT (ω, T ) ,

which depends on frequency and includes the k-integral. How useful this is will turn out in section 3.2.3, where
a more detailed analysis of the trace function will enable to see the physical origin of many effects much more
clearly.

3.2 Atom near a metal surface

3.2.1 Length scales and asymptotics at T = 0

Fig. 3.2 and 3.2 show the numerical results for the free energy vs. distance of a magnetic anisotropic dipole placed
in front of a metal half-space described by the Drude model or plasma model respectively (see the caption for
parameters) at zero and finite temperature1.

The energies are normalized to the L−3 power law of the non-retarded electric Casimir-Polder energy. Clearly
there are at least three different regimes, in which the potential follows characteristic power laws. In this section,
the power laws will be motivated and obtained from asymptotic expansions. The magnetic Casimir-Polder potential
is repulsive at all distances. Nowhere is there a change of sign of the free energy or the Casimir-Polder force.

The asymptotics for the Drude model at T = 0 have been calculated in [Power et al. 2005b, Power et al. 2005a,
Henkel 2005]. At zero temperature, the system is characterized by two characteristic length- or energy-scales. The
first is the penetration depth δ(Ωm) evaluated at the transition wavelength. In the Drude model this is the skin
depth (1.33) and in the case of the plasma model it coincides with the plasma wavelength λp. The second is the
transition wavelength λm = 2πc/Ωm connected to the dipole transition. Due to these length scales, there are three
distinct distance regimes:

• Sub-skin depth regime L � δ(Ωm) � λm : At distances smaller than the penetration depth depth δ(ω),
the asymptotic behavior is dominated by the T = 0-contribution. The zero-temperature limits for the Drude
model reads [Power et al. 2005b, Power et al. 2005a, Henkel 2005]

UDrm (L) ≈ |µm|2µ0

16π2δ2(Ωm)
1
L

ln
(
δ(Ωm)
L

)
(3.17)

1 In this work, atoms, fields and surfaces are always considered to be in a global thermal equilibrium.
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The small distance calculation for the plasma model at T = 0 can be done analog to the Drude case. In
the sub-skin-depth regime the wave vector is dominated by its transverse component (κ ≈ k), and in the
plasma model the Green’s tensor becomes independent of ξ. Hence, the frequency-integral depends only on
the polarizability and does not show the logarithmic behavior

Hxx =
−µ0ω

2
p

8πc2

∫ ∞
0

dk
k

κ︸︷︷︸
≈1

e−2κz ≈ −
µ0ω

2
p

16πc2z
. (3.18)

UPlm (L) ≈ − h̄

2π
2Hxx

∫ ∞
0

dξβ0(iξ) (3.19)

=
|µm|2µ0ω

2
p

64π2c2
1
L

=
|µm|2µ0

16λ2
p

1
L
. (3.20)

• Non-retarded regime δ(Ωm) � L � λm: At intermediate distances the free energy for the Drude model
obtained in [Power et al. 2005b, Power et al. 2005a, Henkel 2005] is

UDrm (L) ≈ |µm|2µ0

64π
1
L3

, (3.21)

which shows just the trace function’s power law stemming from the dipole field. The same power law holds
for the plasma model, where it extends also to the large distance limit in the limit of very high temperatures
covered below.

• Retarded Casimir-Polder regime L � δ, λm : In the limit of large distances the power law is changed due
to retardation effects. Wherever a model displays good conductivity at low frequencies and low values of k,
the specific dielectric features of the model become irrelevant2 and it can be assumed that |ε(ω)| � 1. No
difference is therefore expected between the Drude and the plasma model at T = 0 and the energy follows
a power law given by

Um =
3µ0|µm|2c

16π2L4
. (3.22)
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Figure 3.2: Casimir-Polder free energy vs. distance for an anisotropic magnetic dipole. Plasma model (left) and Drude model
(right), where ωp = 8.5 · 1015 s−1 and γ = 0.01ωp. The transition frequency is Ωm = 3 · 109 s−1. The free energy scale F0 is
the value at T = 0, L = 10−2 µm, this value is F0 = 3.0 · 10−32 J in the plasma model and 9.6 · 10−36 J in the Drude model.

3.2.2 Casimir-Polder interaction at T > 0

Distance dependence and dissipative quenching

At finite temperature, the thermal wavelength λT introduces a characteristic thermal regime at large distances
L > λT . As the temperature rises and λT gets eventually smaller than the other characteristic length scales

2 This is true only in the T = 0 limit. At finite temperature things become more difficult as discussed in the following.
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δ(Ωm), λm, the thermal effects set in at smaller distances, so that the power laws calculated for T = 0 do not hold
any longer.

Plots 3.2 and 3.2 show the Casimir-Polder free energies vs. distance calculated for the plasma and Drude-model at
different temperatures. In both models the thermal corrections lead to big variations from the T = 0 values at large
distances, i.e. in the thermal regime, but the impacts are much stronger in the Drude model.

In the dissipationless plasma model, the large distance limit of the Casimir-Polder free energy is finite. Even
at low temperatures the system approaches very rapidly the limit of T → ∞, where the non-retarded regime
extends to large distances. At distances much smaller than the thermal wavelength, and specially in the range of
temperatures and distances accessible to measurements, the thermal corrections to the plasma model are negligible
(λT (0.1 K) ≈ 14 cm, cf. (2.40).

A very remarkable effect occurs in the case of the Drude metal (fig. 3.2). Here, the magnetic Casimir-Polder free
energy is exponentially suppressed at large distances and finite temperatures. This phenomenon will be called
dissipative quenching, because it is due to the effects of dissipation on the low-frequency reflectivity for TE-modes
known from section 1.7.3, as will be shown in the next section. It is very interesting, that the inset of the thermal
effects occurs at a very similar length scale L ≈ ΛT ≈ 0.045λT as found in (2.48) for the Casimir-interaction
between perfectly reflecting plates.

Nothing alike occurs for the electric dipole interacting (in any of the models) nor for the magnetic dipole in the
plasma model. This can be seen immediately comparing figure 3.8 to 3.3), which show the thermal Casimir-Polder
energy vs. temperature in the different models for an electric and magnetic dipole. Note that even at distances
below the thermal wavelength, where the T = 0 power laws remain valid, the thermal effects result in an overall
much smaller value of the free energy.

From an experimental point of view, the thermal quenching and the large deviations of the free energy vs. distance
from the T = 0 curve might indicate a convenient way of distinguishing the two models in experimental data. The
high sensitivity towards dissipation makes the magnetic dipole a very good detector for surface currents and their
dynamics. Still, one should keep in mind that the magnetic contribution to the Casimir-Polder interaction is rather
small and that it is not easy to separate the magnetic interaction from the electric one in an experiment.

This first discussion of the numerical results has shown that dissipation is of crucial significance for the thermal
effects in the magnetic Casimir-Polder interaction. The next sections will investigate in more detail, how dissipation
accounts for the thermal deviation from the T = 0 curve and also discuss the entropy corresponding to the atom
surface interaction.

Limits of high and low temperatures

Fig. 3.3 shows the Casimir-Polder free energy and entropy vs. temperature at a fixed distance for the anisotropic
magnetic dipole3 in different models, including the two fluid model for a superconductor, covered in section 3.3. In
the global equilibrium considered here, there is no ambiguity to define an entropy. The dissipative quenching leads
to a very strong dependence on temperature in the Drude case, while only very small thermal corrections occur in
the plasma model. The asymptotic values can be calculated in a analog way as in the analysis done for the Casimir
effect between two plates using different expansions at low and high temperatures. The transition between the two
regimes occurs approximately at the temperature T = h̄Ωm

2kB
. Above this value, both states of the two level atoms

are almost equally occupied and the polarizability βT (ω) vanishes as T−1.

• High temperatures: This limit is dominated by the zeroth term in the Matsubara expansion. In this regime
the tanh

(
h̄Ωm

2kBT

)
can be replaced by its argument, so that

F(T →∞) ≈ −kBT
2

βT (0)H(0) = − h̄
2
|µm|2H(0) . (3.23)

Thus, the factor T−1 from the polarizability at high temperatures is compensated by the prefactor, and the
limit is independent of temperature. Of course the free energy depends still on distance.

In the plasma model, the free energy saturates at a finite positive value (H(0) < 0) while H(0) = 0 in
the Drude model and other related models, due to the transparency of a dissipative metal for TE-fields of

3The analysis holds equivalently for the isotropic dipole. The two cases are compared in section 3.2.4.
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Figure 3.3: Casimir-Polder free energy and entropy of a magnetic anisotropic dipole with a plasma (solid), Drude-metal
(dashed), perfect crystal (dotted) and two fluid superconductor (gray). ωp = 1018 s−1 and the dipole is placed 10−2 µm from
the surface. The transition energy is h̄Ωm = 1/3600 Kk∗B . In the temperature dependent plots, k∗B = 3600kB for better
visibility.

low frequencies (section 1.7.3). Therefore, the origin of dissipative quenching of the thermal Casimir-Polder
interaction is due to the same physical effect that has given rise to the large distance anomalies in the case of
the interaction between two plates (section 2.2.2).

The saturation towards a temperature independent value of the free energy implies automatically a vanishing
entropy in all models.

• Low temperatures: The limit is obtained by replacing the sum with its integral. In this limit, tanh
(
h̄Ωm

2kBT

)
→

1 and the zeroth and first Matsubara terms loose their special role so that any distributional effects at ω ≡ 0
become irrelevant.

The free energy in the plasma model at T = 0 is

F(0) = − h̄

2π

∫ ∞
0

βT (iξ)H(iξ)dξ (3.24)

In this mode, the trace function has a behavior close to a step-function and the support of the polarizability
lies well inside the one of the (monotonous) trace function (see section 3.2.3 and fig. 3.5). Using these
properties, the trace-function can be taken out of the integral by introducing a factor C ≤ 1 that depends on
Ωm/T , and the remaining integral over the polarizability gives the area of a Lorentzian.

F(0) ≈ − h̄

2π
H(0)C

∫ ∞
0

βT (iξ)dξ

= − h̄
2
|µm|2H(0)C = F(∞)C , (3.25)

A value of C very close to one can be read off the numerical results in graph 3.3.

The entropy at zero temperature can be estimated with help of the formalism from section 2.2.3. Since no
non-interchanging limits nor any other temperature-dependences occur for the plasma model, the entropy
at absolute zero must vanish, so that - as in the Casimir effect - no thermal anomalies appear in the plasma
model.

This calculation cannot be done identically for the Drude model. In this model the trace function decays at
low frequencies ω � γ, again due to the TE-transparency in the low frequency regime. Thus the integral
over the polarizability and the trace function cannot be separated as before and only a part of the Lorentzian
polarizability curve can contribute to the integral. This yields a much lower interaction energy as in the
plasma model. The transparent regime for TE-modes covers a larger frequency interval as γ becomes larger
and the dissipative quenching becomes stronger. Figure 3.4 shows the magnetic Casimir-Polder free energy
at fixed distance and temperature over the dissipation rate γ and confirms this qualitative prediction.
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Figure 3.4: Free energy of a magnetic anisotropic dipole in the Drude model scaled to the plasma limit (γ = 0). ωp = 1018 s−1

and the distance to the surface is 10−2 µm. The transition energy is h̄Ωm = 1 Kk∗B .

Zero-point entropy in the perfect crystal

The phenomena arising in Casimir context if the rate of dissipation γ varies with temperature rapidly enough have
been addressed before in section 2.2.3. The previous analysis and the numerical computations have shown, that
a Drude metal or the plasma model satisfy Nernst’s theorem. For the perfect crystal model, no such anomalies
have been found in the investigation done on the entropy an electric dipole near a surface described by any model
[Bezerra et al. 2008]. (Cf. section 3.2.5 and figure 3.8).

Yet, in the case of the magnetic dipole, a positive finite zero-point entropy appears for the perfect crystal shown
in fig. 3.3. It is straight forward to apply the formalism exposed in section 2.2.3 to this case. The equivalent to the
energy density used there is

g(0)− g̃(0) = β(0)(HPl(0)−HDr(0)) .

Remembering that due to the transparency of the Drude model for low frequency TE-modes HDr(0) = 0, the
Casimir-Polder entropy at T = 0 is given by

∆S(T = 0) =
kB(g(0)− g̃(0))

2
=
kB
2
β0(0)HPl(0) (3.26)

=
kB |µm|2

Ωm
H(0) =

2kB
h̄Ωm

|FPl(∞)| .

This result fits perfectly with the entropy offset obtained numerically. In the units chosen, the value 2C can be read
off the graph 3.3 directly.

Interestingly the zero-temperature entropy is positive in the Casimir-Polder configuration, while it has a negative
value in the Casimir configuration with plates. The reason is the paramagnetic nature of the permanent dipole that
favors a parallel alignment of the dipole to the field fluctuation. In contrast, the current response in the Casimir
effect between plates must obey the Lenz rule. If these currents are interpreted as connected to a magnetic moment,
the response would be diamagnetic, leading to an antiparallel alignment.

3.2.3 Analysis of the trace functions

Partial trace functions

So far the complete trace function H has been used in the analysis. It is possible to separate distinct contributions
from the rTM - and rTE-polarizations separately. This offers a way of relating contributions to the energy to special
sets of modes and will reveal the origins of some of the structure discovered earlier in the total free energy much
more clearly and also understand better the differences between the interaction energies of the electric and magnetic
dipole.
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The four basic partial trace functions are given by

Hp1 =
∫∞

0
dkκ2rTMe−2κL, Hp2 =

∫ ∞
0

dk(−)
ξ2

c2
rTMe−2κL (3.27)

Hs1 =
∫∞

0
dkκ2rTEe−2κL, Hs2 =

∫ ∞
0

dk(−)
ξ2

c2
rTEe−2κL (3.28)

All relevant trace functions can be constructed by summing two or three of them. The magnetic trace function in
the anisotropic and isotropic case are given by

Han = Hp2 +Hs1, 3Hiso = Hp2 +Hs2 + 2Hs1

and the electric ones can be obtained by interchanging rTE ↔ rTM , i.e. the indices s↔ p using the recipe given
above:

Gan ∼ Hs2 +Hp1, 3Giso ∼ Hs2 +Hp2 + 2Hp1 .

Figure 3.5 shows the polarizability and the trace functions for the plasma model over frequency in arbitrary units.

����
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Βm, H

Βm
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Hp2

Hp2+Hs2

Hp1+Hs1

Figure 3.5: Partial magnetic trace functions for the plasma model and the magnetic polarizability. As before, red lines indicate
TE or s-polarization and black lines TM or p-polarization. Blue lines indicate sums of two partial trace functions. βm is the
magnetic polarizability.

Monotony and the geometry of the system

The thermal Casimir-Polder free energies can be expressed in terms of the Matsubara sum

F(T, L) = −kBT
2

∑
n

′
βT (iξn)H(iξn) . (3.29)

Interesting effects occur, if βT (iξ)H(iξ) is not monotonous or locally peaked in an interval around a frequency Ξ.
The Matsubara-sum produces a Riemann-partition of the integral (i.e. the limit T = 0), which becomes coarser and
more sensitive to local structures as T rises. The strongest effects are expected when the first Matsubara summand
ξ1 = 2πkBT/h̄ crosses the local extremum Ξ, which will translate directly to an extremum in the free energy. In
the two-level atom βT is monotonous anyway, and it is sufficient to consider the monotony of the trace functions.

Examples for such non-monotonous partial trace functions are the functions Hp2 and Hs1 of the plasma model
shown in figure 3.5. In fact, in the case of the magnetic anisotropic dipole’s interaction with a plasma, the contri-
bution from the trace function Hp2 associated to the rTM -polarization leads to a characteristic notch and produces
the maximum of entropy shown in fig. 3.3. The notch in Hp2 occurs generally close to the frequency Ξ ≈ c

L
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connected to the geometric scale of the system. The frequency can be calculated analytically in the two special
cases of a plasma model at small distances and for a perfect reflector, where the angular integration inside the trace
function can be performed explicitly.

• The perfect reflector trace function Hp2 has a peak with its maximum at ξmax, and its width Γ is measured
as the distance between its turning points

Gperfectp2 ∼
∫ ∞
ξ/c

ξ2 exp(−2κL)dκ =
ξ2

2L
exp(−2

ξ

c
L) (3.30)

⇒ Ξ =
c

L
, Γ =

√
2c
L

. (3.31)

So the contribution comes from modes that "fit" between the cavity wall and the atom and has a geometric
origin.

• In the plasma model in the limit of distances below the skin depth L� δ0, one can again use that κ� ξ/c
and approximate the reflectivity by

rTM ≈ ±ε(iξ)− 1
ε(iξ) + 1

.

Therefore the trace function can be calculated explicitly and the maximum can be found

G ∼
∫ ∞
ξ/c

ξ2r2
TM exp(−2κL)dκ =

ξ2

2L+ 4Lξ2
exp(−2

ξ

c
L) (3.32)

⇒ Ξ ≈ c

L

[
1− 2c2

L2ω2
p

+O((
c

Lωp
)4)
]
, (3.33)

which recovers the perfect reflector limit, where L� λp.

3.2.4 Anisotropic and isotropic polarizability
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Figure 3.6: Isotropic magnetic dipole, same parameters as above.

Numerical calculations show that the energetic behavior of the Drude model, perfect crystal and two fluid model
with an isotropic polarizability (fig. 3.6)) is almost identical to the anisotropic case shown in fig. 3.3.

An interesting feature occurs in the plasma model. Fig. 3.7 shows the comparison of the anisotropic and isotropic
dipole interaction with a plasma. It was shown in the last section, how for in the anisotropic magnetic dipole the
trace function Hp2 creates the minimum of the free energy (or the entropy maximum respectively) due to the
dependence of on the system geometry, clearly present in the graph. But in the isotropic case the minimum is
strongly suppressed - by a factor 104 at this distance.

This effect can be understood immediately by looking at the partial trace functions (3.27, 3.28). In the isotropic
case the contributions Hp2 + Hs2 connected to TE and TM modes cancel each other out almost completely, so
that the extremum found in the anisotropic case is much smaller. The dominating contribution in the isotropic case
is Hs1, which is monotonous in ω.
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Also the limit of the free energy at high temperatures is much higher in the isotropic case.

This result indicates that the magnetic dipole-transitions perpendicular to the surface (not included in the anisotropic
case) give the most relevant contribution to the magnetic Casimir-Polder free energy. A very similar phenomenon
is known from the case of electric dipoles covered below.
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Figure 3.7: Casimir-Polder free energy and entropy of a magnetic isotropic (blue) and anisotropic (black) dipole at 10−2 µm
from a surface described by the plasma model, where ωp = 1018 s−1. The transition energy is h̄Ωm = 1 Kk∗B .

3.2.5 Comparison to the electric dipole

Fig. 3.8 shows the numerical results of the interaction energy and entropy of an isotropic electric dipole with a
surface described by different models. A comparison of the atom-surface interaction in the Drude model at T = 0
has been given in [Henkel 2005].

The values are very similar for all the materials to within < 1%, which is below the precision reached in any of
the recent experiments (mind the relative energy scale of the plot). The qualitative form of the curves resembles
the case of the isotropic magnetic dipole in the plasma-case, but with an overall negative sign of the free energy.
The high-temperature limit of the free energy is finite and nonvanishing in all models, which means that the
electric dipole does not feature the strong dissipative quenching of the interaction at finite temperature found in the
magnetic case.

When having a closer look at the entropy in the plasma model, there is a small local minimum at temperatures
just below the value, where the maximum occurs (cf. the inset in fig. 3.8). Recently Bezerra et al. [Bezerra et al.
2008] have shown that the Casimir-Polder entropy takes negative values in the case of a dipole with a temperature-
independent isotropic electric polarizability and assuming perfect reflection. The authors mentioned that analog
behavior is to be expected in more realistic models as well, and pointed out that there is no finite zero-temperature
entropy for an electric dipole in any of the models. The numerical results agree with all of these statements and
show in fact a vanishing entropy at T = 0 even for the notorious perfect crystal model. The value can also be easily
checked by an analog calculation as in the magnetic case.
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Figure 3.8: Casimir-Polder free energy and entropy of an electric isotropic dipole with a plasma (solid), Drude-metal (dashed),
perfect crystal (dotted) and two fluid superconductor (gray), where ωp = 1018 s−1. The distance to the surface is 10−2 µm
and the transition energy is h̄Ωm = 1 Kk∗B .
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Keeping in mind that the role of the TE and TM reflectivities is interchanged in the electric case w.r.t to magnetic
one, it becomes clear, why dissipation (and thus the model under consideration) plays a minor role: Since the
dominating trace function is now Gp2 connected to the rTM reflectivity, the Casimir-Polder interaction of the
electric dipole is sensitive mostly towards the surface charges, which are independent of dissipation as has been
argued before (section 1.7.3). In other words: the image of the static dipole is the same in all models, due to perfect
electrostatic screening at a metallic surface.

The near coincidence of all models is an advantage for experimental prediction. From another viewpoint, it makes
the the electric dipole a bad detector for the current response of the surfaces, but a highly sensitive one for surface
charges. In fact, the first data taken in a recent experiment by E. Cornell et al. were found to be dominated by
random, static surface charges due to adsorbate atoms [McGuirk et al. 2004]. Thus, if atoms are to be used to
probe the dissipative properties or decide on the correct model to describe a material, the magnetic contribution
would give a much more decisive answer, if it was measurable separately.

3.3 Atom near a superconductor
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Figure 3.9: Two fluid model, where ωp = 8.5 ·
1015 s−1, Tc = 0.5K, γ = 0.01ωp. Casimir-Polder
free energy vs. distance for an anisotropic magnetic
dipole. The transition frequency is Ωm = 3 · 109 s−1.
The free energy scale F0 = 3.0 ·10−32 J is the value at
T = 0, L = 10−2 µm.

During the investigation of the magnetic Casimir-Polder
interaction of an atom with a metallic surface in the pre-
vious sections, it has become clear that the dissipative
properties play a key role here. Very interesting effects
can thus be expected in the interaction with a supercon-
ductor, where dissipation sets in suddenly at temperatures
above the transition temperature.

Fig. 3.9 shows the dependence of the magnetic Casimir-
Polder free energy for a two fluid superconductor on dis-
tance at different temperatures. It features significant dif-
ferences to the plasma and Drude model at both small
and large distances. At T = 0, the interaction energy
coincides of course with the plasma model, but approx-
imately in the interval 0.5Tc < T < Tc the low dis-
tance law approaches the Drude curve. On the other hand,
at large distances L � λm the free energy approaches
the high-temperature-limit very rapidly. In this regime,
no signature of the dissipative quenching encountered in
the Drude model in section 3.2.2 can be found below Tc,
even though a fraction of the charge carriers contributes
to a dissipative current. Only above this value does the
effect set in abruptly.

The temperature dependence of the Casimir-Polder free energy and entropy has already been shown along with the
other models in figures 3.3, 3.6 and 3.8. Here, the transition between plasma and Drude-like can be seen clearly.

The discussion of entropy at T = 0 and the entropy discontinuity at Tc can be performed analogous to the case
of the Casimir interaction, but the relative signs of the electric and magnetic dipole energies must be taken into
account. For this reason, the entropy-discontinuity changes it sign in the magnetic atom-surface coupling, where
the Drude model free energy is smaller than the plasma model one at zero temperature. Also, the entropy minimum
found for superconducting plates translates to a maximum.

Comparing the effects found for the magnetic case to to the electric one, it is noticeable that the strong difference
of the interaction energy below and above the superconducting transition is almost non-existing in the case of the
electric dipole, because the plasma and Drude model behave very much alike (cf. plot 3.6 to 3.8), as was shown in
the previous section.

Therefore, experiments similar to the ones proposed by Bimonte (see section 2.3.1) but measuring the change
of the Casimir-Polder energies above and below Tc should be a promising way to isolate to the magnetic dipole
contribution.
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3.4 Towards experimental measurements

The main problem in measuring the magnetic dipole Casimir-Polder interaction is the very small value of the
interaction energy as compared to the electric one. The typical orders of magnitudes given as an example in the
first section of this chapter, assumed that the electric polarizability will depend frequencies in the order of electronic
transitions while the magnetic one is due to Zeeman-splitting in an external field and connected to much smaller
energies.

A comparison of the electric and magnetic interaction energy at zero temperature calculated in the Drude model has
been performed in [Henkel 2005]. See also [Spagnolo and Intravaia 2008]. Due to the different interaction energies
Ωe � Ωm in the magnetic and electric case, the distance regimes set in at different length scales λe � λm. In the
retarded regime one can compare the electric and magnetic dipole interaction energy

Ue(L) ≈ Aα(0)L−4, Um(L) ≈ A

c2
β(0)L−4 , (3.34)

where A ≈ h̄c
ε0

is the same constant, cf. Casimir’s expression (3.1). Hence, the relation between the electric and
magnetic interaction energies is

c2α(0)
β(0)

≈ 1
α2

,

where α = 1/137 is the fine-structure constant.

Due to the smallness of the effect, future measurements of the magnetic Casimir-Polder interaction will most prob-
ably involve high precision spectroscopic techniques making use of the level shift due to the surface interaction.
The calculation of these energy shifts is a perspective for future work. So far numerical calculations have been
performed for the two-level system, but a first step towards a realistic system could be the calculation of the effects
in a hydrogen atom.

In any case it is interesting to find control parameters that have an effect only the magnetic but not on the electric
coupling. One possibility to influence the magnetic dipole coupling, could come through variation of external
fields. If the transition frequency Ωm is due to Zeeman splitting, the level splitting is proportional to the external
magnetic fields. Apart from the external field, the level splitting depends also on the static magnetic moments,
i.e. the hyperfine state. Another possibility is the use of different isotopes or hyperfine states that differ in their
magnetic dipole moment.

Atom chip experiments, which have successfully been used to measure the electric Casimir-Polder force with
good precision, might not be the best setups for measurements of the magnetic Casimir-Polder interaction be-
cause today’s normally conducting traps work at quite large distances in the order of µm, where the thermal
quenching is highly relevant. The next generation of atom chips, using still smaller structures or superconducting
elements [Dikovsky et al. 2009], might be better suited. Also, other kinds of trap setups could be a better choice for
experiments involving spectroscopic techniques. These could be applied e.g. in optical traps involving evanescent
fields, e.g. [Power et al. 1997, Grimm et al. 2000], where both hyperfine states are trapped at close distances from
a surface (≤ 1µm).

3.5 Conclusions

This chapter has covered some aspects of the interaction of an atom with a metallic surface. The interaction was
described through magnetic and electric dipole coupling, and a two-level system was considered in the numerical
evaluations.

New effects were found in the magnetic contribution to the interaction, that were unknown from previous work
dealing with the electric dipole coupling only. Among these was the strong dissipative quenching of the interaction
at finite temperature and distance and the reappearing of thermal anomalies such as a finite entropy at zero tem-
perature in the perfect crystal model. Interestingly the entropy defect takes a positive value in the Casimir-Polder
case, while the one of the Casimir effect was negative. This is due to the overall negative sign of the interaction
energy w.r.t the Casimir scenario. The asymptotic evaluations of the energies and entropies coincide well with the
numerical results.
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A decomposition of the Casimir-Polder free energy into the contributions from different partial trace functions
allowed to consider the TM and TE effects separately and helped to understand all the above effects more clearly.
It became clear how the sensitivity of an electric or magnetic dipoles to electric surface charges or surface currents
respectively leads to the differences between anisotropic and isotropic polarizabilities and between the electric and
magnetic surface interaction.

In the magnetic Casimir-Polder interaction between an atom and a superconductor, very similar effects as those
encountered in the Casimir effect occur. They include a entropy discontinuity and extremum close to the critical
temperature, connected to a strong change of the free energy due to the inset of dissipation. The corresponding
effects occurring in the electric dipole coupling are very small, since the electric dipole is primarily sensitive to the
surface charges but not to dissipation.

The Casimir-Polder interaction can be measured in atom chip experiments. The separation of the magnetic con-
tribution remains a challenge, that can possibly be mastered by using optical spectroscopy on the hyperfine or
Zeeman levels.
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4 Conclusions and Outlooks

The aim of this work was the investigation of the surface interactions involving superconducting materials.

The optical response of normal metals has been described in the Drude model

ε(ω) = 1−
ω2
p

ω(ω + iγ)
,

in which the dissipation rate γ is constant if it depends on impurity scattering, or has a temperature dependence
γ(T ), if it is dominated by electron-phonon scattering.

If the dissipation rate is set γ ≡ 0, one recovers the plasma model. The results of this work suggest to interpret the
plasma model as the low temperature limit of a superconductor known as London theory, rather than a description
of a normal metal. Also, the above form of the plasma model is not a causal response function. This problem can be
solved formally by taking the limit γ → 0+, which leads to a transparency of the superconductor for exactly static
magnetic fields ω ≡ 0 in contradiction with the Meißner-Ochsenfeld effect. A possible solution to this conundrum
is the commonly used recipe to just neglect the localized contribution in the optical description when calculating
fluctuation induced interactions.

Optical reflectivities were calculated from the dielectric functions using the Fresnel formulas. It turned out that
the TM-reflectivity of all metals and superconductors coincides closely, because surface charges can build up in
a similar way, independent from the effects of dissipation. In contrast, the TE reflectivity is determined mostly
by surface currents and is therefore very sensitive to dissipative effects, especially at low frequencies ω � γ.
In this regime, normal metals become transparent to magnetic fields (rTE → 0), which can be understood as the
consequence of the Bohr-van-Leeuwen theorem and has a strong impact on the thermal Casimir and Casimir-Polder
effect.

Knowing the optical reflectivities of a material, one can calculate Casimir energies and related quantities using
the Lifshitz formula (2.24). Thermal effects become important, when the plate distances become larger than the
thermal wavelength λT = 2πh̄c/kBT . More precisely, a crossover between distance power laws occurs, when
L ≈ 0.045λT . The numerical prefactor obtained in the case of perfectly reflecting plates holds very well generally,
including in the Casimir-Polder interaction between an atom and a surface.

Another universal feature of the Casimir interaction between metals is a crossover of the energy-distance power
law at small distances L � λp below the plasma wavelength. This is due to the contribution from the surface
plasmons. In this work, the thermal correction to the plasmonic Casimir energy was calculated numerically and
asymptotically for the first time. The energy correction factor was found to scale as L/λp at small distances, where
its slope depends on temperature.

The free energy and entropy of the Casimir effect, including the full mode spectrum of the plasma, Drude model
and perfect crystal were reviewed. Arguments have been given, that negative values of the Casimir entropies at
finite temperatures are not necessarily unphysical, since they are actually entropy differences, and how the apparent
violation of Nernst’s theorem at T = 0 featured by some models could be understood in terms of a glassy state of
persistent currents.

One important original result of this work gives analytical expressions for the continuation of the BCS conductivity
to purely imaginary frequencies ω = iξ, which are highly desirable for the calculation of the Casimir effect.
The analytical continuation has been performed for both the expressions given by Mattis-Bardeen, valid in the
extremely anomalous limit h̄γ � ∆, and by Berlinsky-Zimmermann, which hold for general values of γ. The
results were confirmed by a check against a numerical analytical continuation obtained from Kramers-Kronig
relations. The numerical results for the Casimir free energy obtained in this model were compared to the ones
calculated in the two-fluid model. The results were found to great accuracy, at least in the reasonably realistic
regime h̄γ ≈ ∆(0) encountered already in the comparison of the reflectivities. In this regime (future work may
define the validity of the approximation more precisely) it is therefore sufficient to use the two fluid model for the
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description of the optical response of a superconductor. This result is highly valuable for numerical work, because
it reduces significantly the computational effort.

The Casimir entropy between superconducting plates features a characteristic jump of entropy at the transition
temperature Tc and a minimum of entropy slightly below. These properties were shown to be universal in the
Casimir effect between superconductors and it has been proven that Nernst’s theorem holds for a general class of
two fluid models.

The interaction of an atom with a metallic surface is dominated by electric and magnetic dipole coupling. The
important quantities are the Green’s tensor of the electromagnetic field and the electric or magnetic polarizability.
In numerical calculations, atoms were described by two-level systems. The magnetic contribution to the Casimir-
Polder interaction at finite temperatures has not been investigated before, because it is generally much smaller than
its electric counterpart.

Furthermore, the magnetic Casimir-Polder interaction depends very sensitively on the dissipation in metals with
finite conductivity and especially on the surface currents. Dissipation leads to a strong quenching in the thermal
regime L � λT . This effect is closely related to the thermal Casimir-effect in the Drude model is due to the
transparency of a dissipative metal for low frequency magnetic fields (rTE(0)→ 0). Thermal anomalies including
a non-vanishing zero-point entropy – very similar to the one occurring in the interaction between two surfaces but
with a positive sign – were found to reappear in the case of the magnetic atom-surface interaction with a perfect
crystal. None of the above effects occurs for the electric dipole coupling, which is highly sensitive to surface
charges, but not to currents. Therefore the electrical coupling of an atom to a metal is almost independent of the
dissipative properties.

The sensitivity of the magnetic Casimir-Polder interaction to dissipation leads to strong thermal effects in the
atom-superconductor interaction, which occur in the temperature and distance regimes accessible in experimental
setups. The magnetic Casimir-Polder entropy shows feature very similar to the ones encountered in the Casimir-
interaction between plates, including an strong entropy discontinuity at the critical temperature. This is connected
to a strong change of the Casimir-Polder free energy at the onset of dissipation, which might allow to identify the
magnetic contribution in an experimental measurement, since the phase transition leaves the electric atom-surface
coupling almost unchanged.

The opportunity to control the dissipation of surface currents to a great extent by switching them on and off through
temperature makes superconductors a promising tool for an investigation of the low frequency response of metals,
which has a strong effect on the thermal Casimir and Casimir-Polder interaction. In experimental setups mea-
suring the Casimir-effect between macroscopic bodies, the experimental precision and the validity of theoretical
predictions are usually limited by the alignment of plates or by the necessity to use the proximity force theorem
if non-planar geometries are used. The atom-surface system could thus provide a better defined system, in which
measurements of the Casimir-Polder forces can be done with a very high precision. Such measurements could also
help to understand better the Casimir-effect between macroscopic bodies.

From another point of view, Casimir-Polder interactions are becoming important in atomic traps on microchips.
In future work, the atom-surface interaction occurring in atom chip environments could be investigated more
explicitly. Here, important topics are the physics of the trapped atom carrying a static magnetic moment, the
excitation to trappable states and the level shift in an external field, which have strong effects on the polarizability.
In this work, no external field was assumed and no static dipole moment has been considered. This could be done,
since the static dipole moment does not contribute to the dynamical fluctuations and has therefore no influence
on the Casimir effect. Anyway, if the transition frequency Ωm that characterizes the Casimir-Polder interaction is
connected to Zeeman-levels, the level splitting is connected to an external field h̄Ωm ∼ B, and could thus be used
to control the relative magnitude of the magnetic dipole coupling with respect to the electric one.

Also, it has recently become interesting to use superconducting materials for the trapping wires, because it allows to
reduce the magnetic noise [Dikovsky et al. 2009]. This noise induces spin-flips of the trapped atoms, leading to their
loss from the trap [Henkel et al. 1999,Henkel 2005,Hohenester et al. 2007,Skagerstam et al. 2006]. Hence, another
topic not directly connected to the Casimir-effects, might be the study of the electric and magnetic noise from these
materials. In superconductors, the fluctuations of the order parameter close to the critical temperature [Tinkham
1974] can be expected to produce a strong noise. Another very interesting contribution to the noise should arise in
type II superconductors (section 1.5) from the vortices in the mixed state, whose number can be controlled very
precisely by tuning the magnetic field. Finally, should it turn out possible to measure Casimir-Polder interactions
in a trap including superconducting elements to a good precision, some of the effects calculated in this thesis might
become relevant.
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The calculations in this work were based on the assumption made in section 1.1.1, that nonlocal effects can be
neglected. For this reason, no distinction was made between longitudinal and transverse response. While this is a
good description at high frequencies, nonlocal effects may become relevant at low frequencies [Dressel and Grüner
2002]. In the context of the Casimir effect nonlocal effects in normal conductors have been taken into account, e.g.
in [Buhl 1976, Esquivel and Svetovoy 2004, Svetovoy and Esquivel 2005, Esquivel-Sirvent and Svetovoy 2005,
Esquivel-Sirvent et al. 2006, Sernelius 2006b]. Overall, the corrections are rather small, because the geometric
length scale L is much larger than the other scales involved, such as the Thomas-Fermi screening length vF /ωp or
the inverse Fermi wave vector 1/kF .

In atom chips, these corrections might provoke a change of the noise-spectrum close to the surface and hence
influence the spin-flip rate of trapped atoms. A step towards the calculation of these effects has been done by
Horovitz and Henkel [Horovitz 2007, Henkel and Horovitz 2007], including carrier diffusion in either a sheet of
surface charges or in the bulk medium.

For both fields, the Casimir-effect and atom-chips, it would be interesting to investigate further the nonlocal effects
occurring in superconductors. In BCS-superconductors, the very approach of Mattis and Bardeen is nonlocal, but
locality is introduced at an early stage in the calculations. Pöpel [Pöpel 1989] has given a more general description
including effects of nonlocality and it would be very interesting to extract the physical effects arising from this
description.
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