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Reducing the Complexity of Large EPCs

Artem Polyvyanyy, Sergey Smirnov, Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

D-14482 Potsdam, Germany
{polyvyanyy,smirnov,weske}@hpi.uni-potsdam.de

Abstract. Business processes are an important instrument for under-
standing and improving how companies provide goods and services to
customers. Therefore, many companies have documented their business
processes well, often in the event-driven process chains (EPC). Unfor-
tunately, in many cases the resulting EPCs are rather complex, so that
the overall process logic is hidden in low level process details. This paper
proposes abstraction mechanisms for process models that aim to reduce
their complexity, while keeping the overall process structure. We assume
that functions are marked with efforts and splits are marked with prob-
abilities. This information is used to separate important process parts
from less important ones. Real world process models are used to validate
the approach.

1 Introduction

Business process modeling plays an important role in the design of how com-
panies provide services and products to their customers [6]. To improve the
understanding of processes and to enable their analysis, business processes are
represented by business process models [4, 15]. In typical projects, business pro-
cesses are described in a detailed manner. The resulting complex process models
are hard to comprehend, because every event and every function is represented.

This paper proposes abstraction mechanisms that transform detailed process
models in less detailed ones that still reflect the overall process logic. The results
are developed for the event-driven process chains (EPC) [7, 13]. However, they
can be adapted to any graph-based process modeling notation, for instance the
Business Process Modeling Notation (BPMN) [3].

Recently a number of research projects has focused on similar tasks [9, 12, 14].
In [2] the authors discuss a method for creating customized views for an existing
process model. An approach for reducing the complexity of process models mined
from process logs is presented in [5].

This paper is structured as follows: Section 2 motivates the approach. Af-
terwards, the fundamental concepts are explained in Section 3. Elementary ab-
straction mechanisms are presented in Section 4, subsequently it is shown how
elementary abstractions can be composed together. An example illustrates the
approach in Section 5. Concluding remarks complete this paper.



2 Artem Polyvyanyy, Sergey Smirnov, Mathias Weske

2 Motivation and Goal

The work was conducted in a joint research project with the health insurance
company AOK Brandenburg in Teltow, Germany. The operational processes of
the company are captured in no less than 4 000 EPCs, enriched with information
about the effort required to complete each function of each process. AOK uses the
process models for estimation of workforce required for running the processes; in
addition, working procedures are developed from the process models. Detailed
models lead to information overload creating a demand for abstracted process
models.

Process models consist of automated or/and manual activities executed by
an employee with a support of an information system. The goal of a process
model is to provide a basis for defining and optimizing working procedures that
are used by companies in their daily work. Often achievement of this goal is
traded for the cost of complex, “wallpaper-like” models, that tend to capture
every small detail and exceptional case. On the other hand, models are useful for
process improvements. This task does not always require detailed specifications
of business processes. More so, fine granular process models distract attention
of a reader from the overall process logic by exhaustive details.

Agile business environment, where regulations and markets keep changing,
makes companies to modify their processes regularly. Since processes are modeled
in a very detailed manner, keeping process models up to date requires consider-
able effort.

Given this background, the goal of this paper is to provide an approach en-
abling abstraction from process model details. A resulting process model should
be easier to comprehend and to adapt to changing requirements.

The basic principle of the abstraction methodology proposed in this paper
can be described as follows. Starting with a complex, detailed process model, a
number of abstractions are performed. Formally, each abstraction takes a process
model as input and generates a process model as output where an abstracted
process fragment is replaced by a new one. The new process fragment gives a
generalized view of the substituted process fragment. Each individual abstraction
leads to process details become concealed in a resulting process model.

A complex event-driven process chain from the project partner describing a
business process in the medical insurance sector is shown in Figure 1. The process
model consists of 333 nodes, 130 of which are functions. Each function of the
EPC has an effort associated—a time period required to execute this function.
Each connection carries information about a probability of a transition from
its source to the target. Based on this information and the number of process
instances per year, the annual effort of this process can be determined. The
average processing time of a business process instance is 5.57 minutes. With
roughly 240 000 instances per year, the overall process effort adds up to over
22 000 working hours per year. A method for estimation of a business process
cost (which is similar to effort concept) based on the extended BPMN diagram is
proposed in [10]. However, it does not address the problem of process abstraction.
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Fig. 1. Complex event-driven process chain (unreadability intended)

The investigated process models are used to estimate the work force required
to run business processes. This means that function efforts, connection proba-
bilities and the number of cases per year are used as basis for an estimation
of a head count of departments. The project partner uses proprietary tools to
calculate the number of employees and their roles to enact all process instances
that need to be executed. Since process models are the basis for head count
estimations, an overall process effort after abstractions must remain unchanged.

3 Fundamentals

In this section the fundamentals of the approach are introduced, i.e. formaliza-
tion of the event-driven process chains, requirements and assumptions of the
approach, concepts of efforts and probabilities.

3.1 Formalizing EPC

The event-driven process chains play an important role in the business process
engineering research community. There exist several works on formalization of
EPC [1, 8, 11, 15]. In this paper we base our approach on the formal definition
proposed in [15].
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Definition 1. A tuple (E,F, C,A, t) is an event-driven process chain if:

– E is a set of events, E 6= ∅
– F is a set of functions, F 6= ∅
– C is a set of connectors
– N = E ∪F ∪C is a set of nodes, such that E, F and C are pairwise disjoint
– A ⊆ N ×N is a set of connections
– t : C → {and, or, xor} is a mapping assigning connector type to a connector
– (N, A) is a connected graph
– Each function has exactly one incoming and one outgoing connection.
– There is at least one start event and at least one end event. Each start event

has exactly one outgoing connection and no incoming connections. Each end
event has exactly one incoming connection and no outgoing connections. All
the other events have exactly one incoming and one outgoing connections.

– Each event can only be followed (possibly via a connector) by a function and
each function can only be followed (possibly via a connector) by an event.

– There is no cycle that consists of connectors only.
– No event is followed by an OR or a XOR split connector.

In order to address regions of an EPC we define an EPC process fragment as a
connected subgraph of the (N, A) graph.

We assume that process models follow proposed formal EPC definition. How-
ever, this is not always true, e.g. in the investigated process models events within
a sequence of functions might be omitted (see Figure 2). If this is the case, we as-
sume a preprocessing step that modifies EPC to conform to proposed definition,
i.e. missing events are automatically inserted.

3.2 Assumptions, Stipulations, Requirements

As a requirement, process model abstraction methodology must be mean process
effort preserving, i.e. the mean process effort before and after abstraction should
be the same. Mean process effort can be obtained from the process model where
each function is enriched with mean effort and mean number of occurrences. Such
information can be obtained from process execution statistics, e.g. collected by a
workflow execution engine, or estimated by a process modeler. As an alternative,
a process model can be supplied with connection transition probabilities, which
unambiguously define mean number of process node occurrences and vice versa.

Further we assume that probabilities are associated with process connection
transitions and function mean execution efforts are provided. All the subse-
quently presented abstraction rules will exploit this knowledge to derive proba-
bilities and efforts for the modified parts of the output process model. Proposed
modifications will have to ensure a mean process effort to stay unchanged.

We do not assume any limitations on the initial process model control flow
structure. However, proposed process model abstraction mechanisms implicitly
define a set of addressed control flow patterns.
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Fig. 2. Real world example of the EPC fragment enriched with probabilities and efforts
(Definition 1 is not satisfied because events are missing between successive functions)

3.3 Probabilities and Efforts

As input for an abstraction we obtain an EPC with additional data on connection
transition probabilities and time required to execute process functions. Following
definitions are based on this information.

Definition 2. Relative probability of reaching a process node n from one of its
predecessors np is the probability of a connection transition from np to n:
pr : {(np, n) ∈ A|np ∈ N, n ∈ N} → [0, 1].

Definition 3. Mean occurrence number of a node is the mean number that the
node will occur in a process instance.

Definition 4. Relative effort of a process function (er) is the time required to
execute the function: er : F → R+.

Definition 5. Absolute effort of a process function (ea) is the mean effort con-
tributed to the execution of the function in a process instance: ea : F → R+.
Absolute effort can be obtained as the relative effort multiplied by the mean
occurrence number of the function.
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Definition 6. Process absolute effort (ep
a) is the mean effort required to execute

a process instance: ep
a : P → R+, where P is a set of process models. Process

absolute effort can be obtained as the sum of absolute efforts of process functions.

Figure 2 shows the fragment of the EPC from Figure 1 and illustrates pre-
sented concepts. Here, all the outgoing connections of the exclusive or split are
supplied with the relative probabilities that sum up to one. All the other con-
nections are assumed to have the relative probability of one. Each function is
enriched with the relative and absolute (visualized in italic type) efforts given
by the time interval in minutes that a worker needs to perform a function. For
instance, the function “Make a telephone call to employee” has the relative effort
of 3 minutes meaning that it is expected to take 3 minutes of worker’s time once
reached in a process instance. On average, this function requires 3 · 0.2 = 0.6
minutes in every process instance which constitutes the absolute effort of the
function. The absolute effort is obtained under the assumption that the process
fragment is reached only once in a process instance with the probability of one.

4 Elementary Abstractions

In this section elementary abstractions are presented. Elementary abstractions
define how certain types of process fragments are generalized. Elementary ab-
stractions satisfy the requirements defined in the previous section, e.g. they are
effort preserving. This section discusses dead end, sequential, block and loop
abstraction.

The abstractions can be applied in any order or frequency, provided a process
model contains the structures required for a particular abstraction. This also
assumes that any function can be the result of a prior abstraction.

4.1 Dead End Abstraction

Modeling of exceptional and alternative control flows in EPCs usually results
in “spaghetti-like” process models with lots of control flow branches leading to
multiple end events. As the primary goal of abstraction is to reduce excessive
process details, it is of high importance to be capable of eliminating such flows,
leaving only the essential information. To address this problem an elementary
abstraction called dead end abstraction is introduced. Further discussion requires
a precise definition of the term dead end.

Definition 7. An EPC process fragment is a dead end if it consists of a func-
tion, followed by a XOR split connector, followed by an event, followed by a
function, followed by an end event. The XOR split connector has only one in-
coming connection.

Figure 3 illustrates the mechanism of the dead end abstraction. On the left
side the initial process fragment containing a dead end is provided. Functions f0

and fk, events ek and ek+1 and the XOR split connector constitute the dead
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Fig. 3. Dead end abstraction

end. The XOR split has k outgoing branches and after the abstraction the
k-th branch is removed. On the right side of Figure 3 the abstracted process
is presented. The dead end fragment and its replacement are enclosed within the
rectangles with dotted borders.

As a result of abstraction, a XOR split branch which belongs to a dead
end is completely removed from a process model. Function f0 is replaced by an
aggregating function fD. An aggregating function in dead end abstraction has
the following semantics: upon an occurrence of function fD in a process, function
f0 is executed. Afterwards, function fk may be executed. The probability that
function fk occurs is the probability of reaching function fk from f0 in the initial
process. If function fk is executed the branch is terminated and fD is not left.
Otherwise, the execution of the branch is continued.

From a practical point of view, the naming of an aggregating function is very
important. Rather than providing a generic name automatically, we combine the
names of the aggregated functions and allow a modeler to edit the name of the
aggregating function.

The relative effort of an aggregating function takes into account the relative
efforts of functions f0 and fk and the probability of fk occurrence in fD:

er(fD) = er(f0) + er(fk) · pr((f0, xor)) · pr((xor, ek)) · pr((ek, fk)).

The relative probability of reaching an aggregating function from event e0 equals
the relative probability of reaching the replaced function f0 from event e0 in the
initial process:

pr((e0, fD)) = pr((e0, f0)).
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The relative probability of reaching a XOR split connector from function fD is
the probability of reaching the XOR connector from function f0 and not reaching
function fk in the initial process:

pr((fD, xor)) = pr((f0, xor)) · (1− pr((xor, ek)) · pr((ek, fk))).

As a result of a dead end abstraction, the relative probability of entering the
aggregating function is greater than the relative probability of leaving it: once
function fk is executed, the branch is terminated. Therefore, to find a probability
of reaching one node from another, it is always required to take into account
probabilities of all intermediate transitions.

Finally, we normalize the probabilities of the XOR split outgoing connections
so that the following statements hold:

– the probabilities of reaching events ei (i = 1, 2, . . . , k − 1) from function fD

equal to the probabilities of reaching ei from f0 in the initial process
– the sum of the probabilities of the XOR outgoing connections is one.

The normalized relative probabilities are obtained in the following way:

p′r((xor, ei)) =
pr((xor, ei))

1− pr((xor, ek))
.

If a XOR split has only two outgoing connections in the initial process, the
dead end abstraction leaves only one XOR split outgoing connection. Therefore,
it is possible to omit the XOR split in the abstracted process. A new connection
from the aggregating function to the event, following the omitted XOR split,
should be added to the EPC. The connection relative probability equals the
probability of reaching this event from function f0 in the initial process.

4.2 Sequential Abstraction

Real world business process models of high fidelity often contain sequences of ac-
tivities, which are captured in EPCs as sequences of functions. Within a sequen-
tial abstraction a sequence of functions and events is replaced by one function—
an aggregating function. An aggregating function has a coarse granularity and
brings a process model to a higher level of abstraction.

Definition 8. An EPC process fragment is a sequence if it is formed by a func-
tion, followed by an event, followed by a function.

Figure 4 exemplifies the concept of sequential abstraction. Functions f1, f2 and
event e1 form a sequence. As a result of sequential abstraction, a sequence is
replaced by an aggregating function fS . Semantics of the aggregating function
is the following: function f1 is executed and afterwards function f2 occurs with
the probability equal to the probability of reaching function f2 from f1 in the
initial process.
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The relative effort of an aggregating function depends on the relative efforts
of functions f1 and f2 and the probability that f2 occurs in fS :

er(fS) = er(f1) + er(f2) · pr((f1, e1)) · pr((e1, f2)).

The relative probability of an aggregating function incoming connection is
pr(e0, f1). The relative probability of an aggregating function outgoing connec-
tion is defined as:

pr((fS , e2)) = pr(f1, e1) · pr(e1, f2) · pr(f2, e2).

4.3 Block Abstraction

To model parallelism or to show that a decision is made in a process, a mod-
eler encloses several branches of control flow between split and join connector.
Depending on the desired semantics, an appropriate connector type is selected:
AND, OR or XOR. A process fragment enclosed between connectors has a precise
and self-contained business semantics. Therefore, the fragment can be replaced
by one function of coarse granularity. Block abstraction enables this operation.
To define block abstraction we use a notion of a path in EPC—a sequence of
nodes such that for each node there exists a connection to the next node in the
sequence.

Definition 9. An EPC process fragment is a block if:

– it starts with a split and ends with a join connector of the same type
– all paths from the split connector lead to the join connector
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– there is at most one function on each path
– each path between the split and the join contains only events and functions
– the number of the outgoing connections of the split connector equals the

number of the incoming connections of the join connector
– the split connector has one incoming connection and the join connector—one

outgoing.
It should be noticed that the definition does not allow a join connector to have
incoming branches from outside the block. Figure 5 shows an example of a block.
After block abstraction, an original process fragment is replaced by an event,
followed by an aggregating function, followed by another event (events are added
to assure that a new EPC is well-formed). The approach introduced in this paper
supports AND, OR and XOR connectors. Semantics of the aggregating function
conforms to the semantics of the abstracted block and depends on the block
type. For instance, in case of a XOR block the aggregating function means that
only one function of the abstracted fragment is executed. In general we name an
aggregating function fB .

The relative effort of an aggregating function is independent of a block type
and considers the relative efforts of functions fi and probabilities of reaching
these functions from a split connector:

er(fB) =
k∑

i=1

er(fi) · pr((c1, ei1)) · pr((ei1, fi)),

where k is the number of split outgoing connections.
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The relative probability of reaching event e1 from f0 equals the relative prob-
ability of reaching node c1 from its predecessor. The relative probabilities of
connections (e1, fB) and (e2, fk+1) are one.

Hitherto, we have specified every block abstraction rule, except a method for
finding the relative probability of an aggregating function outgoing connection
(denoted with px in Figure 5). If in the initial process no branch of a block
contained a dead end, the probability of leaving the block equals the probability
of reaching it and px is one. However, if a branch of a block contained a dead
end, a dead end abstraction has to be performed to enable the block abstraction.
As a result of dead end abstraction, a function on a block branch is left with
probability less than one (see subsection 4.1). In this case a method for px

estimation is block type specific. Let us introduce probability pi—the probability
that a control flow reaches the join connector from the split connector on the
i-th branch. Then the probability of reaching e2 from fB in an AND block is the
probability that control flow on every branch reaches the join connector:

pr((fB , e2)) =
k∏

i=1

pi.

For a XOR block this probability equals the probability that the control flow on
any branch reaches the join connector:

pr((fB , e2)) =
k∑

i=1

pi.

For an OR block where at least one probability of leaving a function is less than
one further research is required.

4.4 Loop Abstraction

It is a common situation when a task (or a set of tasks) in a business process is
iterated to complete the process. In a model, capturing such a process, a task
(or a set of tasks) is put into a loop construct. EPC enables loop modeling by
means of control flow. Wide application of loops by modelers makes support of
abstraction from loops an essential part of the approach. Therefore, we introduce
one more elementary abstraction—loop abstraction. Let us define what kind of
process fragment is considered to be a loop.

Definition 10. An EPC process fragment is a loop if:

– it starts with a XOR join connector and ends with a XOR split connector
– the process fragment does not contain any other connectors
– the XOR join has exactly one outgoing and two incoming connections
– the XOR split has exactly one incoming and two outgoing connections
– there is exactly one path from the split to the join and exactly one path from

the join to the split
– there is at least one function in the process fragment.
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The whole process fragment corresponding to a loop is replaced after the abstrac-
tion by one aggregating function fL (see Figure 6). An extra event e0 is inserted
between the functions f0 and fL in order to obtain correct EPC. An aggregating
function states that functions f1 and f2 are executed iteratively. Information
about the number of loop iterations is hidden inside the aggregating function
and is reflected in its relative effort and connections relative probabilities in the
abstracted process model.

The relative effort of an aggregating function can be found as:

er(fL) = pr((xorj , e1)) · pr((e1, f1)) ·

·
∞∑

i=0

pi · (er(f1) + er(f2) · pr((e1, xors)) · pl · pr((e2, f2))),

where p = pr((xorj , e1)) ·pr((e1, f1)) ·pr((e1, xors)) ·pr((e2, f2)) ·pr((f2, xorj)) ·pl

and pl = pr((xors, e2)).
After loop abstraction, the probability of reaching e0 from f0 equals the

probability of reaching the XOR join from function f0 in the initial process. The
probability of reaching aggregating function fL from event e0 is one. Probability
of leaving the aggregating function (denoted with px in Figure 6) is the proba-
bility of leaving a loop in the initial process. Since we assume that probabilities
of leaving functions are not always one, it is possible that the control flow does
not leave a loop in a process instance. The probability that a loop is stopped
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between xorj and xors is:

ppath
stop = 1− pr((xorj , e1)) · pr((e1, f1)) · pr((f1, xors)).

The control flow stops on the path between xors and xorj with probability:

ploop
stop = 1− pr((e2, f2)) · pr((f2, xorj)).

Therefore, the relative probability of leaving an aggregating function equals to:

pr((fL, e3)) = 1−
∞∑

i=0

pi · (ppath
stop + (1− ppath

stop ) · pl · ploop
stop).

4.5 Applying Elementary Abstractions

So far elementary abstractions that aim to get rid of process details were pre-
sented. Each abstraction is characterized by a process fragment it abstracts from
and defined transformation rules. A single application of an elementary abstrac-
tion is not of great value for the task of process abstraction. Therefore, strategies
prescribing rules of elementary abstraction compositions are introduced. Con-
ceptually, an abstraction strategy is a sequence of elementary abstraction steps.
At each abstraction step one of the proposed elementary abstractions is applied.
An abstraction step is atomic, i.e. does not depend on the previous ones. Thus,
one might come up with various project specific abstraction strategies, leading
to different resulting abstracted process models.

Each abstraction step is aimed to reduce the overall number of functions in a
process model. We propose to derive an order of abstraction steps based on the
function absolute effort priority. Hence, at first place we aim to abstract from
functions of low weight, i.e. concepts that require less effort. Once the function
with the lowest absolute effort is identified, it can be questioned to be a part of
the elementary abstraction process fragment. Upon success, abstraction trans-
formation rules are applied. Otherwise, an attempt to apply another elementary
abstraction is made. The choice of an elementary abstraction can be carried out
based on the predefined priority. Abstraction process is continued until there
is no more elementary abstraction process fragment recognized, or the lowest
absolute effort of a function in the process has reached the preset threshold.

As basic abstraction strategies one can identify pure strategies of iteratively
applying only one kind of elementary abstraction. As a result, one will obtain
an abstracted process model where only sequential, dead end, block or loop
abstraction is performed. For instance, in case of pure sequential abstraction
strategy, sequences of an arbitrary length can be reduced to one function.

An advanced abstraction strategy can be obtained by specifying the priority
order on elementary abstractions in which they are attempted to be applied on a
function with the lowest absolute effort. The precedence of sequential, dead end,
block and then loop abstraction is one possible strategy. This strategy ensures
that all elementary abstractions are performed; application of one elementary
abstraction might enable further application of another that will be triggered at
one of the subsequent abstraction steps.
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a) b)

Fig. 7. Original and abstracted process models

5 Real World Example

In this section the developed abstraction approach is illustrated by a real world
example. The process model presented in Figure 1 is chosen as the subject for
abstraction. The following abstraction strategy is used: sequential, dead end,
block and then loop elementary abstraction.

Figure 7 gives a good comparison of the initial process model (a) and the
result of its abstraction (b). The initial process model is composed of 333 nodes:
130 functions, 137 events and 66 connectors. After abstraction, the number of
process model nodes was reduced to 167 composed of: 44 functions, 82 events
and 41 connector. The overall reduction of process nodes is near 50%.

Application of the abstraction steps is illustrated in Figure 8. Here, Figure 8.a
shows the initial EPC process fragment (enlarged in Figure 7.a). All of the subse-
quent fragments are derived by applying one or several elementary abstractions
to the initial process fragment. As a result (see Figure 8.e), we obtain the pro-
cess fragment enlarged in the abstracted process model in Figure 7.b. The first
step is application of the sequential abstraction inside of the block structure: two
sequential functions are replaced by one (see Figure 8.b). As the next step, the
dead end abstraction is applied (see Figure 8.c). At the third step, we perform
the block abstraction; the result is visualized in Figure 8.d. Finally, in order
to obtain the process fragment given in Figure 8.e. three successive sequential
abstractions need to be performed. Consequently, the initial process fragment
is represented by one aggregating function that incorporates information about
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a) b) c) d) e)

Fig. 8. Applying a sequence of abstraction steps

the initial control flow structure and has the absolute effort equal to the absolute
effort of the aggregated fragment.

6 Conclusions

In this paper the approach to effort preserving abstraction of business process
models was presented. In the beginning we have described the challenges of
our partner, AOK Brandenburg, which they came across managing their process
models and which motivated this work. Afterwards, the main concepts employed
in the approach were introduced. Further, elementary abstractions: dead end,
sequential, block and loop abstraction were proposed. For every elementary ab-
straction it was defined to which type of process fragment it can be applied and
in which model transformation it results. Abstraction strategies, the approach
to combining elementary abstractions, were introduced. Finally, the abstraction
of the EPC from the project partner was discussed.

Theoretical results of this work were used in the implemented tool proto-
type. The task of the tool is to provide automatic abstraction of process models
captured in EPC. The results of the tool work are presented in Figure 8 and
are discussed in detail in Section 5. The tool supports all types of elementary
abstractions proposed in this paper. The prototype implements the abstraction
strategy based on the function effort priority.

As the future steps we identify the task of developing additional elementary
abstractions. This implies the theoretical foundations of abstraction mechanisms
as well as their prototypical implementation. An important finding will be to
show which class of EPCs can be abstracted to one function by a given set of
elementary abstractions. It is also of great interest to learn which set of elemen-
tary abstractions is capable of reducing an EPC to one function or to prove that
such a set does not exist.
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