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Abstract

Duplicate detection consists in determinigifferentrepresentations of real-world objects in a
database. Recent research has considered the use oingtg®among object representations
to improve duplicate detection. In the general case whéatioaships form a graph, research
has mainly focused on duplicate detection quality/effectess. Scalability has been neglected
so far, even though it is crucial for large real-world dugtie detection tasks.

In this paper we scale up duplicate detection in graph da3o large amounts of data
and pairwise comparisons, using the support of a relatidatbase system. To this end, we
first generalize the process of DDG. We then present how te a@gorithms for DDG in space
(amount of data processed with limited main memory) andnreti Finally, we explore how
complex similarity computation can be performed efficignBExperiments on data an order of
magnitude larger than data considered so far in DDG cledwbyvshat our methods scale to
large amounts of data not residing in main memory.



Chapter 1

Preliminaries

1.1 Introduction

Duplicate detection is the problem of determining thated#ht entries in a database actually
represent the same real-world object, and this for all dbjepresented in a database. Duplicate
detection is a crucial task in data cleaning [15, 25], dategration [11], and many other areas.
The problem has been studied extensively for data storediimgée relational table. However,
much data comes in more complex structures. For instan@at@onal schema is not limited
to a single table, it also includes foreign keys that definatimships between tables. Such
relationships provide additional information for comgans.

Recently, a new class of algorithms for duplicate detedtias emerged, to which we refer
to asduplicate detection in graphs (DD@)gorithms. These algorithms detect duplicates be-
tween object representations in a data source, caladidatesy using relationships between
candidates to improve effectiveness. Within this classfogas on those algorithms that itera-
tively detect duplicates when relationships form a gragle Sec. 1.2). In the remainder of this
paper, reference to DDG algorithms imply the restrictiothtat particular class of algorithms.
To the best of our knowledge, none of the proposed algorithitisn this class has explicitly
considered scalability yet.

Before delving into the details of scaling up DDG, we providaders with an intuition of
how DDG algorithms behave based on the following example.

Example 1 Figure 1.1 represents a movie database consisting of tlaigles, namely MOVIE,
ACTOR, and STARS_IN. STARS_IN translates the m:n relhtphstween movies and actors.
Key and foreign key definitions are straightforward and aog represented for conciseness. It
is obvious to humans that all three movies represent a simgleie and there are only three
distinct actors, despite slightly different represerdas.

Assume that we consider movies, titles, and actors as catetidwhich we identify by an
ID for ease of presentation and future reference. Title ¢datks illustrate that candidates are
not necessarily represented by a single relation. We' tsenark duplicates, e.gml andml’
signifies that the movies are duplicates.
Initialization. DDG algorithms usually represent the data they consider gsaph. Figure 1.2
depicts a possible graph for our movie scenario. In this d¢pajinere is one candidate node

1



1.1. INTRODUCTION 2

AID Name AID | MID

al | Brad Pitt al | ml

MID title a2 | Eric Bana a2z | ml
m1l Troy al’ | Brad Pit al” | mYl
ml’ Troja a2’ | Erik Bana a2’ | ml’
m1” | llliad Project a3 | Brian Cox a3 | ml
(a) MOVIE al” | Prad Pitt al” | ml”

a3’ | Brian Cox a2’ | ml”

(b) ACTOR (c) STARS_IN

Figure 1.1: Sample movie database

for each candidate, whereas its descriptive informationeg by the attributes of the rela-
tional table are represented as attribute nodes associatitd the corresponding candidate
note. Candidate nodes are connected to each other by ditectges, called dependency edges.
Intuitively, these edges represent the fact that findindidates of the source candidate depends
on finding duplicates of the target candidate. The lattercated influencing candidates.

Illiad Projec

Figure 1.2: Sample reference gragh.candidate nodej attribute node| dependency edge.

Next, DDG algorithms initialize a priority queue of candtdaairs. Each pair in the queue
is compared based on some similarity measure that consiesneighboring attribute nodes
and influencing candidate nodes. If the similarity is abogian threshold, the candidate pair
is considered as a duplicate. Assume that the initial ptyogqueue is”?Q = {{( m1, m1’), (m1,
m1”), (m1’,m1”), (t1,t2), (t1,t3), (t2,t3), (al,a2),...} }.

Iterative phase. We now start comparing pairs in the priority queue. The firgir petrieved
from PQ is (m1, m1’). The pair is classified as non-duplicate, because the mbsets of
influencing neighbors, i.e., the respective actor neighlame apparently all non-duplicates.
The same occurs when subsequently iterating through mavididate pairs and title candi-
date pairs. When comparing,al’), we finally find a duplicate because the actor names are
similar, and there are no influencing neighbors. Having foudhis duplicate potentially in-
creases the similarity oh1l, m1’) because the movies now share actors. Henoé, (n1’) is
added back ta’Q). The same occurs in the subsequent iterations where digbcaors are de-
tected. Now, when we compare movies again they can be adasaffiduplicates, because they
share a significant amount of influencing actor neighborghimend, we identify all duplicates
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correctly.

We make the following observations: First, re-compariseng., of the movie candidates,
increase effectiveness and should therefore be perforhrledever, if we had started by com-
paring actors, we would have avoided classifying moviescarsg time and would still have
obtained the same result. This shows that the comparisar @dmportant for efficiency.
Hence, the order of the priority queue should be chosenufrevhen initializing the priority
queue and it should adapt to updates of the priority quege, when a movie pair is added
back to the priority queue. Finally, this process shouldest@large amounts of data beyond
main memory. Whereas effectiveness and priority queuer ondéntenance for efficiency have
been considered in the past, scalability of DDG has not bddreased so far. This paper aims
at filling this gap.

More specifically, we present howerative algorithms for DDGcan scale up to large
amounts of data. We use a relational DBMS as storage managenarcome its limitations
in supporting DDG. Our contributions are: (i) A generaliaatof iterative DDG, (ii) an algo-
rithm for scaling DDG data retrieval and update in space ariaie, and (iii) methods to scale
similarity computation in space and in time. All methodspweed for scalability are based
on our generalization of iterative DDG, thus making themliapple to existing iterative DDG
algorithms, which are so far limited to main-memory proaagsOur most significant results
include successful DDG over 1,000,000 candidates, a dasaseder of magnitude larger than
any data set considered so far, and a close to linear behavi?DG runtime with respect to
several parameters.

We discuss related work in Sec. 1.2. We then generalizeiite@DG and provide defini-
tions in Sec. 1.3. Section 2.1 describes how initializabbthe algorithm is performed when
main-memory does not suffice to complete DDG, and Sec. 2geptse how we scale up the
iterative phase of DDG. Similarity computation is discubkseSec 2.3. Evaluation is provided
in Sec. 3 before we conclude in Sec. 4.

1.2 Related Work

The problem of identifying multiple representations of ensareal-world object, originally de-
fined in [22], and formalized in [14] has been addressed irrgel@ody of work. Ironically,
it appears under numerous names, e.g., record linkagerfi&e/purge [17], object match-
ing [15], object consolidation [10], and reference recbaton [12]. A duplicate detection
survey is provided in [13].

Broadly speaking, research in duplicate detection falis three categories: techniques to
improve effectivenesgechniques to improvefficiency and techniques to enabdealability.
Research on the first problem is concerned with improvingipien and recall, for instance
by developing sophisticated similarity measures [7, 9] prcbnsidering relationships [28].
Research on efficiency assumes a given similarity measureearelops algorithms that avoid
applying the measure tll pairs of objects [1, 21]. To apply methods to very large data sets,
it is essential to scale not only in time by increasing efficie but also to scale in space, for
which relational databases are commonly used [17, 24].
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Table Tree Graph
Learning Bil.03[7](Q) Sin.05[28]()
Sar.02[27]Q) Bhat.06 [5]()
Clustering | Chau.05[9]Q,T,S) Kala.06[19, 10]Q,T)
Yin06[33](Q,T)

Iterative Her.95[17](,S) | Ana.02[1]@Q,T,S) Dong05[12](?)
Mon.97[21](") Puh.06[24](,S) | Weis06[30, 31]Q,T)
Jin03[18]R,T) Mil.06 [20](Q) Bhat.04[2, 3, 4]Q)

Table 1.1: Summary of duplicate detection approaches; theis lying on efficiency(T), ef-
fectiveness(Q), or scalability(S).

In Tab. 1.1, we summarize some duplicate detection mettuaissifying them along two
dimensions, namelgataandapproach For data, we distinguish between (i) data in a single
table without multi-valued attributes, (ifyeedata, such as data warehouse hierarchies or XML
data, and (iii) data represented agraph e.g., XML with keyrefs or data for personal infor-
mation management (PIM). The second dimension discermgebetthree approaches used for
duplicate detection: (i) machirlearning where models and similarity measures are learned,
(i) the use ofclusteringtechniques, and (iiijterative algorithms that iteratively detect pairs
of duplicates, which are aggregated to clusters. In Tab.vielalso show whether an article
mainly focuses on efficiencyl|), effectiveness@), or scalability). Due to space constraints,
we limit the discussion to approaches falling in the classgdrithms we consider, i.e., iterative
duplicate detection algorithms in graph data.

Research presented in [12] performs duplicate detectiarAHiM scenario, where relation-
ships between persons, publications, etc. form a grapihs Bbcandidates to be compared are
maintained in an active priority queue where the first paneisieved at every iteration. The
pair is compared and classified as non-duplicate or dupliciat the latter case, relationships
are used to propagate the decision to neighbors, which faitgibecome more similar due to
the found duplicate, and the priority queue is reorderedyhimrs being sent to the front or
the back of the queue. The largest data set consists of 48&ikfidates, but no runtime are
reported.

In [30, 31], we presented similar algorithms to [12], andused on the impact of compar-
ison order and recomparisons on the efficiency and effewis® of DDG. We showed that the
comparison order can significantly compromise efficienay effectiveness in data graphs with
high connectivity. For evaluation, we used small data se&5%00 candidates) which easily fit
in main-memory.

The RC-ER algorithm first introduced in [3] and further désed and evaluated in [2, 4]
represents candidates and dependencies in a referende Jiag algorithm re-evaluates dis-
tances of candidate pairs at each iterative step, and sé¢fectlosest pair according to the dis-
tance measure. Duplicates are merged together beforexth#aration, so effectively clusters
of candidates are compared. The largest data set [3] car@&i000 candidates and duplicate
detection takes between 310 and 510 seconds, dependingicim veniant of the algorithm is
used. [4] describes the use of an indexed max-heap datauseuo maintain the order of the
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priority queue, but this structure again fits in main memdtyperiments in [2] show that the
higher connectivity of the reference graph, the slower RC-E

The focus of DDG has so far been set on effectiveness. Sdaldg to large amounts of
data not fitting in main memory has not been considered aaadl efficiency has been only a
minor concern. This gap is filled by the research presentéusrpaper.

1.3 DDG in a Nutshell

The methods we propose to scale up DDG are intended to be asagas possible to fit many
algorithms performing iterative DDG. Therefore, the firghtribution of this paper is a gener-
alization of existing methods into an unified model.

1.3.1 Definitions for unified DDG

Before defining our unified model, we make the following defams that are used both to
define the model and to describe our methods for scaling up.DDG

Candidates. The representations of real-world objects subject to daf#i detection are
called candidates A database represents several object types {¢,,ts,...,t,}. LetC; =
{c1,¢9,..., ¢} De the set of candidates of type T'. To denote the type of a particular candidate
¢, we uset,.. In relational tables, candidates correspond to (prajastof) tuples.

Thresholded Similarity Measure. During classification, DDG algorithms commonly use a
similarity measure. A more detailed description of a sinitjameasure template is given in
Sec. 2.3.1 when discussing methods to scale up classificad this point, we only want
to highlight that, given a similarity measusém(c,¢’) and a threshold, we conclude that
andc¢’ are duplicates ikim(c,c¢’) > 6, and non-duplicates otherwise. Intuitively, the similari
measure both considers object descriptions and influereindidate pairs in its computation,
which we define next.

Object Descriptions. The object description (ODdf a candidate that corresponds to a tuple
consists of attributes and attribute values of this tupkt. A, = {a4, ..., a;} be a set of attribute
names for a candidate of typeThen,0D,(c) = {vy, ...,v,, } defines the attribute values of the
attribute named that are part of the’'s OD. The complete OD of a candidates defined as
OD(c) = Ugen, OD,,(c), and is usually obtained using a query parameterized byatheidate.

Example 2 In our example, consider candidate typ€s= {movie, actor,title}. A candi-
date of type actor is described by it's name, so the OD of acémdidateal is OD(al) =
ODnamd@l) = {(Brad Pitt)}.

Influencing & Dependent Candidates.The set ofinfluencing candidate$(c) of a candidate

c is a set of candidates that has been designated to affectntilargy of ¢ as follows: if

the similarity (or duplicate status) of a candidate /(c) to another candidate changes, then
the similarity (or duplicate status) efto another candidate changes as well. Which other
candidates are involved in this dependency is defined néw.s€lection of candidates itfc)

is for instance based on foreign key constraints, or imptilomain constraints provided by
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a domain expert. Analogouslgependent candidated ¢ are candidates whose similarity is
influenced by, i.e.,D(c) ={c|c' + cncel(c)}.

Example 3 We assumé(m1) = {al, a2, t1} and D(m1l) = {t1}. Similarly,7(m1") = {al”,
a3, t3} and D(m1”) = {t3}.

Influencing & Dependent Candidate Pairs. Influencing candidate pairsf candidate pair
(c,c’) are defined ag(c,c’) = {(ns,n;)n; € I(c),n; € I1(c'),t,, = tn,}. Analogously, its
dependent candidate paiiS(c,c’) = {(ni,n;)n; € D(c),n; € D(c'),ty, = t,,}. Intuitively,
influencing and candidate pairs of two candidates are oddany forming the cross product
between their respective influencing and dependent catedida

Example 4 We assumé(m1, ml1”) = {(al, al"), (a1, a3), (a2, al”), (a2, a3’), (t1,t3)}, and
D(m1, m1") = {(t1, t3)}.

Based on these definitions, we now define a unified view oftiter®DG algorithms.

1.3.2 General DDG Approach

In general, we observe that algorithms for iterative DDGehiavcommon that (i) they consider
data as a graph, (ii) they perform some preprocessing be&maidates are compared to obtain
initial similarities and avoid recurrent computationsgddii) they compare pairs of candidates
iteratively in an order that potentially changes at eveeyation where a duplicate is found,
requiring the maintenance of an ordered priority queue.gihgr[3] or enriching [12] detected
duplicates is also a common technique to increase effextsgand requires updating the graph.
Based on these observations, we devise the following geagpaoach for DDG.

Unified Graph Model. Existing DDG approaches all have in common that they use hgra
to represent the data. [12] usedependency grapWwhose nodes are pairs of candidates:
(r1,7m2) and pairs of attribute values = (a;,a2), and an edge between andn exists if a;

is an attribute value of; andas, is an attribute value of,. Further edges between candidate
pair nodesn; andm, exist if m; is an influencing or dependent pairmf. The method used
in [3] defines areference graphwhere nodes do not represent pairs, but candidates and edge
relate influencing or dependent candidates. Other DDG itigos use graphs that basically
fall in one of the two categories described: nodes eitheessmt single candidates [19, 30], or
pairs [28]. Attribute values are usually treated sepayatalthe context of duplicate detection,
the dependency graph can be derived from the reference grapénce, our unified graph
model for DDG is a reference graph that consists of three compts, namely (i) candidate
nodes, (ii) attribute nodes, and (iii) dependency edgegeMpecifically, a candidate nodgis
created for every candidate. Every attribute value assatigith a candidate is translated by an
attribute nodey,. We represent relationships between candidates as diredgges in the graph.
More specifically, lety. andv’ be two candidate nodes. We add an edge (v.,v’) directed
fromo. to v’ if v’ € I(c). Figure 1.2 is a possible reference graph for our movie el@amp

In general, a dependency graph is more expressive, bullisxressiveness is not used in DDG.
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Unified DDG Initialization. To detect duplicates, DDG algorithms set upréority queue
P(Q) where candidate pairs are sorted according to a specificingdecheme. Note that block-
ing [21] or filtering [1] methods can be used to restrict thadidate pairs entering@). For-
mally, the set of pairs iP(Q is defined by

PRSc | {(e, . eCpy nvg € Cpync#d At €T}

1<i<n

Furthermore, iterative DDG algorithms have a jump-staggeh where attribute similarities are
computed or obvious duplicates are detected. Also, pyigueue initialization and precompu-

tations are performed before candidate pairs are compacedassified and thus compose the
initialization phaseof a DDG algorithm.

Iterative Phase. After initialization, candidate pairs are compared andsifited as duplicates
or non-duplicates in therative phas€Fig. 1.3). Existing algorithms maintaiR( in main-
memory. At every iteration step, the first pair () is retrieved thenclassifiedusing a sim-
ilarity (distance) metric, and finally the classificatiorusas somepdatein P() or the graph
(adding pairs taPQ, enrichment in [12], duplicate merging and similarity reqautation in [3]

) before the next iteration starts.

- Retrieve
[ e
Classify

3(m1, m1° ) (a1, a1*) duplicates

. Update
in-memory
PQ

Figure 1.3: Sample iteration for DDG

In general, the priority queue has to be reordered whenesepkcate is detected to reduce
the number of recomparisons, for which [3, 12, 30] deviséed#ht strategies. Reordering is
an expensive task for large). However, by maintaining the order ¢, complex similarity
computations are potentially saved, as we illustrated ianiple 1.



Chapter 2
Scaling up DDG

2.1 Scaling Up Initialization

Having discussed the general DDG process, we now show haealimation is performed when
processing large amounts of data. To scale up the initiadizpahase, we use arelational DBMS
to store the data structures described in the next subasctithis way, DDG can process an
arbitrarily large amount of data and can benefit from seM@BWS features, such as access to
the data, indices, or query optimization. Essentially,fBMS acts as a data store.

2.1.1 Graph Model in Database

The reference grapi,., does not fit in main-memory when considering large amoundsit,
so we decide to stor€,.; in a relational database. For every candidate typd’ a relation
C_t(CID, aq, as, ..., a,) is created.CID represents a unique identifier for a candidgtand
a; € A; represents the candidate’s OD attributes. Hence @btestores both the information
contained in candidate nodes and the information contaimedeir related attribute nodes.
Using standard SQL statements, the tables are created tathbase and tuples are inserted
as follows. For every candidateof typet, e.g., returned by a SQL query, determin®(c),
given the set of OD labeld, = {a4, ..., @;}, @again using an extraction method that can be a query
language or a parsing program. We then create a tugle), v, € OD,, (¢), ...,v; € OD, (c)>
for every candidateid(c) being a function that creates a unique ID for a candidat&) IIf,,
contains more than one value, values are concatenatedaisjpegial character.

To store edges in the database, we create a singleE&BES(S, T,REL }he first attribute
Sis the source candidat@, is the target candidate, afREL is the relevance (weight) of that
edge. Both the source and the target attribute are refes¢o@CID in a candidate table.

Example 5 Fig. 2.1 shows excerpts of data graph tables for our moviengpta. There is one
table for every candidate type, i.e., one for movie candigldt), one for title candidates (b)
and one for actor candidates (c). The table representing RRhown in Fig. 2.1(d). In our
example, all edges have equal relevance, set to 1.
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CID CID | OD1 CID OD1 S | T|REL
m1l t1 Troy al | Brad Pitt ml| al| 1
ml’ t2 | Troja a2 | Eric Bana ml|a2| 1
m1” t3 | llliad...
(@) C_MOVIE (b) C_TITLE (c) C_ACTOR (d) EDGES

Figure 2.1: Graph representation in database

2.1.2 Initializing the Priority Queue

The priority queue used in DDG is a sequence of candidats,pairere two candidates of the
same pair have same candidate type and the priority quet&icsall candidate pairs subject to
comparison. The order of pairs is determined by an algordependent heuristic that satisfies
the following property: let(c,c’) € PQ, and let the position ofc,¢’) = rank;(c,c’) at itera-
tion 4, then the heuristic guarantees that when a @air) € I(c,¢’) is classified as duplicate,
rank;.1(c,c') < rank;(c,c") at the next iterationPQ) is ordered in ascending order aink.
Using such a rank function can implement the ordering in [3,30], and is natural, because
the similarity of pairs increases with increasing numbesiafilar influencing neighbors, and
more similar pairs should be compared first, because theynare likely to be classified as
duplicate.

In the database, we store the priority qued@ in a relationPQT(C1, C2, STATUS, T,
RANK) whereC1 and C2 are references to th€ID of two candidates of a paiff is both
candidate’s typeRANKIis the current rank of a pair, which determines its positiothe priority
queue order, an8TATUSSs the processing status of the pair in the specific DDG algari For
instance STATUS= 0 if a pair is in the priority queue and has not been classi8aATUS= 1
if the pair is a duplicate, an8TATUS= -1 if the pair has been classified as a non-duplicate but
may re-enter the priority queue if an influencing duplicasgevfound.

Example 6 Examples of tuples in table PQT are shown in Fig. 2.2. As sanaplking heuristic,
we use the number of unshared influencing neighbors betwedwb candidates.

Cl| C2 | STATUS| T | RANK
ml | ml’ 0 M 7
al | a2 0 A 0
t1 | t2 0 T 2

Figure 2.2: Initial priority queue sample

2.1.3 Precomputations

As we will see in Sec. 2.3, the similarity measure we considguires the computation of
both OD similarity and OD difference. Furthermore, desaoip values can in general have a
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A w Al A2 w
Brad Pitt 1 Brad Pitt Brad Pit 1
EricBana | 1 Eric Bana | Erik Bana | 1

() ODW_actor OD1  (b) ODSIMW _actor_OD1

S1| S2 | T1| T2 | STATUS S| STATUS TIW.S|W.T

ml|ml |al|al 0 0 1 1

ml|ml |al | a2 0 0 1 1
(c) DEP

Figure 2.3: Sample precomputation tables

weight that is considered in similarity measurement. Thvasees do not vary during the itera-
tive phase, so we decide to compute them prior to the itergtnase. This way, we potentially
save expensive and recurrent similarity computationseéddthe same computations may be
performed several times due to recomparisons. Moreovegnwising functions such as the
inverse document frequency of a value for weight deterronatr the edit distance between
two values for OD similarity, the function depends on theueabf a particular description, not
on the candidate to which the OD belongs to. Hence, if the s#tribute value occurs several
times in different pairs, the computation would be perfodmeore than once. Following these
observations, we precompute (i) weights of attribute v&lwénich we store i ©ODW_a_t(A,W)
relations, i.e., one relation for each OD attribute andwi@ights of similar OD value pairs,
which are stored IODSIMW_a_t(A1,A2,Wglations. Note thaf, Al, A2 designate OD at-
tribute values, anilV stores the weight.

Another precomputation is the creation of a table that aasecandidate pairs with their
influencing pairs and that stores the duplicate status di patrs, as well as the weight of
their relationships. This way, the comparison of influegcireighbor sets, which is also
part of the similarity measures can be computed incremgnsaid without an expensive
join over PQT and EDGESthat would otherwise be necessary. The schema of the table
is DEP(S1,S2,T1,T2,STATUS_S,STATUS T,W_S,Whdde S1 and S2 describe a candidate
pair, andT1 andT2its influencing pair. The respective duplicate status ohezmdidate pair
is stored in theSTATUSattributes, whereas weights are storetMmttributes.

Example 7 Fig. 2.3 shows a table excerpt of the three types of preccatipus we perform.
Fig. 2.3(a) shows precomputed weights for actor values, Eig(b) shows weights of similar
attribute values, and Fig. 2.3(c) shows the table storingdidate pair relationships.

How to perform precomputation efficiently is not discusgethis paper, as the approach is
specific to the particular similarity measure or DBMS used.eXample, [16] discusses how to
compute string similarity joins efficiently in a database.[8], an operator for similarity joins
for data cleaning is presented. We focus on scaling up tHesdnierative phase both in space
and in time.
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2.2 Scaling Up Retrieval & Update

As described in Sec. 1.3.2, the iterative phase in DDG ctesis retrieval step, a classification
step, and an update step. In this section, we focus on scafingtrieval and update, and
postpone the discussion of classification to Sec. 2.3 fockwvhie present solutions orthogonal
to the choice of the retrieval and update algorithm.

A straightforward approach to scale up DDG is mapping the DidGcess from main-
memory (Fig. 1.3) to a database. We refer to this baselineritthgn as REcugDuP, as the
Retrieval-ClassifyUpdateSort process is guided by duplicate classifications. Althohging
straightforward, we discusseRuUSDuUP, because it is the basis for our algorithm that scales
DDG both in space and in time. Algorithm 1 provides pseudedod REcus/Dup.

Recus/DuP Retrieval Phase.Candidate pairs are retrieved from the database as longas th
priority queue tabl®QT contains non-duplicate candidate pairs, i.e., pairs RgSITATUS= 0.

To retrieve pairs, we send a query to the database, whicmeetunclassified pairs in ascending
order of theirRANK As long as no duplicate is found according to ttlassify) function
(discussion postponed to Sec. 2.3), the order of candidste im the priority queue remains
the same, so we simply iterate over these pairs. When a diplkdetected, the retrieval query
is issued again at the next iteration and we classify paitsmed by the new result. Thus, we
sort the data stored in tabRQT during the retrieval phase only when it is necessary, i.berw

a duplicate is found and the rank of dependent candidate patentially changes.

Recus/Dup Update Phase After a pair has been classified, the status of the retrieagd$
setto 1ifit has been classified as a duplicate, and to -1h#stbeen classified as non-duplicate.
Note that the functiompdateValu@ updates both the value in the ResultSet as well as the value
in the database, i.e., PQT.

In case of a duplicate classification, duplicates can be edergnriched, or clustered in
any other way using thelustef) function, which updates graph tables and precomputddgab
according to the algorithm-specific method. The next stegny algorithm is to update the
status of the duplicate pair in tabBEP. Finally, the status of every non-duplicate dependent
pair has to be reset to 0, because of new evidence that thependyplicates.

Recus/DupP makes the least possible use of main-memory by keeping osigge pair
and possibly a dependent pair in main memory at every iteraplus some information to
compute similarity. Thereby, Reus/DuP can be applied to arbitrary large amounts of data.
However, as experiments show (see Sec. 3), SOR@QJ is a very time consuming task. The
algorithm described next, namely\eRuS/BUFF, reduces the sorting effort of(RUSDUP and
makes DDG more efficient by using main memory more extengibet with an upper bound.

RECUYBUFF uses an in-memory buffd, of fixed sizes to avoid sorting?QT each time
a duplicate is found. The intuition behindERUSBUFF is that although ranks of several pairs
may change after a duplicate has been found, soRQd immediately after finding the du-
plicate is not always necessary and may actually occur sktmeres before an affected pair is
retrieved. For instance, consider the initial priority gaeorder of Fig. 2.1(e). All candidate
actor pairs have rank 0. Whexl andal’ are detected to be duplicates, the rank of their depen-
dent neighbor pairmi1l,m1’) computed as the number of non-duplicate influencing cate&d
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changes from 7 to 5. Although the rank has decreased, al actbtitle pairs still have a lower
rank (0 and 2, respectively), and will be compared first. lgsorting the priority queue does
not immediately affect the comparison order and shouldefioee be avoided. To this end, we
use B, to temporarily store dependent neighbors of pairs clagségeduplicates, whose rank
potentially decreases, and maintain these pairs in the ofdescending rank (the same order
as thePQT), which avoids sorting the much largeQT.

Using an in-memory buffer requires modifications in theiestal and update phase oER
cus/Dup, because a pair is either retrieved fr@@T on disk or the buffe3, in main-memory,
and is either updated RQT or in By, as depicted in Fig. 2.4.

Retrieve
(a1, a1") q al, at’
‘ in-memory buffer| Qlassufy

(m1, m1*) (a1, a1’ ) duplicates

in-database Update
PQ

Figure 2.4: Sample RCUSYBUFF iteration

REcUsS/BUFF Retrieval Phase. In Alg. 2, we describe the retrieval phase of ®uSBUFF.
As long as the buffe3, does not overflow, we distinguish the following two casesaishe
lastFromPQ flag: In the first case, the pair to be classified potentiallthesnext pair from
PQT. That is, the pair is pointing to has been classified previously, and we usg#tiext-
Tupel) function to get the next candidate pair frdd@T. The remaining steps performed in
this case are related to the update phase, discussed fhelosr. In the second case, the pair
at the current position of curserhas not been classified yet, because the first pdit,ihad a
lower rank. In this case, we do not move forward the cursor.
ReEcus/BUFF Update Phase.Having the correct pair in hand after the retrieval phasevsho
in Alg. 2, the pair is classified as duplicate or non-dupkcad in Ecus/DuP, beforePQT and
B, are updated accordingly. The pseudo-code for tae lRYBUFF update phase is similar to
the update phase ofdRusgDuP in Alg. 1, and we highlight only differences. When updating
the status of the classified pair, two situations are possither the pair has been retrieved
from PQT, in which case the cursor still points to that pair, or the pais been retrieved from
B,. In the first caseSTATUSan directly be updated at the current cursor position w$ing
updateVvalu@. In the latter case, the current pair, which has beeneratd fromB,, is at a
position with higher rank iPQT. Hence, the cursor would have to jump forward-ito update
the STATUSvalue, and jump back. We avoid this expensive operation loyngdor updating
the classified pair t@,, together with its status. The pair staysBn until the iterator on- has
moved to that pair ifPQT, in which case it is updated iPQT and removed fronB,. We verify
whether a pair has been classified and stordgliduring retrieval and avoid classifying it again
by setting the:pdateOnly flag to true. Instead, we update the statuB@ir to the status stored
in B, which contains the most recent status.

Essentially, Rcus/BUFF adds dependent neighbor pairs&g instead of updating?QT
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and the next retrieval phase starts, without sorting thepteta data irPQT. However, it can
be shown that RCuS/BUFF obtains the same final result as ®us/DuUP.

Example 8 Assume we classify paial,al’) as duplicate before its dependent neighbor pair
(m1, m1’). At this point, we add the dependent pair to the buffer &d- {(m1,m1’,5,0)},
where 5 is the new rank of the pair and 0 the non-duplicateustatnlike forRECuSDUP,

we do not sort PQT again to get a new ResultSdhstead, we continue iterating through the
samer, with outdated rank and order. Now, consider we reach piaal(m21”) with rank 6 in

r. When checking for lower rank iB,, we see that it contains a pair with lower rank 5. Hence,
the next pair to be classified is the first pair in the buffey, gm1,m1’). We classify the pair as
duplicate. Now, because the cursorodoes not point to pairril,m1’), which is still sorted
according to its old rank (7), we put the pair back £ with new status 1 to indicate it is a
duplicate. It will be updated later in PQT when the cursorroaches it. At the next iteration,
the pair the cursor of points to, e.g.,ri1, m1”) has not been classified yet, so we do not move
the cursor forward.

In case of a buffer overflow, a strategy that frees buffer sjpes to be devised. To minimize
the occurrences of a buffer overflow, and hence of sofiQJ, we clear the entire buffer only
when it is full. That is, we update all pairs PQT that were buffered, remove them froR,
and sortPQT in the next retrieval phase.

As for REcugDuP, the theoretical worst case requires sortf@T after every iteration.
However, whereas RcuSDuUP reaches the worst case when every pair is classified as a dupli
cate, RECUYBUFF requires the buffer to overflow at every iteration, an urjilevent especially
when wisely choosing the size of the buffer. In setting thi#édnsize one should keep in mind
that (i) it must fit in main-memory, (ii) it should be significtly smaller than tabl®QT to make
sorting it more efficient than sortingQT, and (iii) it should be large enough to store a large
number of dependent pairs to avoid sortPQT.

In this section, we have discussed the retrieval phase andgtlate phase of two algo-
rithms that enable scaling DDG both in space and in time. Ne&tdiscuss how to scale up
classification.

2.3 Scaling Up Classification

Classifying a candidate pair requires the computation afnéarity that considers both object
descriptions (ODs) and influencing candidates (see Sed.)1\®e present a similarity measure
template in Sec. 2.3.1. When the reference graph cannotlerhmain-memory, similarity
computation requires communicating with the database ragsttforward solution, described
in Sec. 2.3.2 is to use a SQL query to compute the similaritpwéler, such a solution is
limited by the expressive capabilities of SQL or its impleraion. For instance, complex
weight aggregate functions are rarely supported by comal&®BMSs, and it is not possible
to interfere with the query processing to improve query akea time. Therefore, we propose
hybrid similarity computation (Sec. 2.3.3) and the earbssification technique (Sec. 2.3.4).
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2.3.1 Similarity Measure Template

In this section, we provide a template for a base similarigasure. Different implementations
of this template [1, 3, 12, 29] use one or more similarity noe@s conforming to the template.
In the latter case, base similarity measure are for instamg#ined with sum or multiplication.
First, we define the seV, of duplicate influencing candidate pairs of a pair of cantdiga
(c,c') as
NZ (e, ) ={(n1,n2)|(n1,n2) € I(c,c") A (ny,n2) duplicate$

The setN;, of non-duplicate influencing candidates is

N7 (e, c") = {(n1,L)n1 € I(c) Any has no duplicates if(c') }
U {(L,n2)|ng € I(c") A ny has no duplicates in(c) }

where 1 denotes an empty entry. These definitions assume that we #radw, andn, are
duplicates or non-duplicates. This knowledge is acquinadingd the iterative phase, and the
similarity increases as this knowledge is gained.

Example 9 Assuming that duplicate actor and title candidates haveady been detected, we
obtainN?,(m1, m1”) = {(al, al”)}, andN7,(m1, m1”) = {(a2, 1), (t1, 1), (1, a3), (1, t3)}.

We further introduce a weight functian,,(.S) that captures the relevance of a set of can-
didate pairsS = {(n;,n})[n; € C; An} e Cy,t € T}. This weight function has the following
properties allowing its incremental computation and guograing that the complete similarity
of two candidates monotonously increases.

wya(S) = WAgg(( _U,) Swrd({(m,né)})) (2.1)
WAgg({wra({(n, 1)}), wra({(L,7)})}) 2 wra({(n,n")}) (2.2)

where W Agg is an aggregate function, e.gsum or count that combines multiple weights
such thatiW Agg(S) > WAgg(S’),S’ c S. The first property guarantees that the weight of
a set of pairs can be computed based on weights of indivichied,pallowing an incremental
computation of the weight. The second property implies thataggregated weight of two
non-duplicates is larger or equal to their weight if they evduplicates. The second property
is reasonable because the relevance of an object reprédnte/o candidates should not be
larger than the combined relevance of two individual repnéstions of that object. On the
other hand, when we do not know thaandp’ are duplicates, we have to assume that they are
different and each contribute an individual relevance ihékely to be larger or equal to their
combined relevance. More interestingly, this propertyrgntees that the similarity of two can-
didates monotonously increases as duplicate descripiniesig these candidates are detected.
Furthermore, it allows us to estimate the total similant§tl an upper and lower bound) while
duplicates are detected, allowing us to use the estimateuaghg method (see Sec. 2.3.4). In
practice, variations of the inverse document frequencyiaeel as weight function.
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Example 10 A simpler example for such a weight functionuis;(S) = |S|, using count as
aggregate function. Using this weight function, we obtaig (N7, (m1, m1”)) = 1, and
wra(N7,(m1, m1”)) = 4.

We make analogous definitions to compute the similarity dneddifference of ODs, i.e.,
Nz, N7, andwe(S). Duplicate ODs forN?, are detected with a secondary similarity dis-
tance, e.g., edit-distance, which does not vary duringttrative phase and which can thus be
precomputed.

The final similarity measure template is:

Zie{rd,od} U)Z(]VzN (C, C,))
Zie{rd,od} U)Z(]Vzqt (Ca cl)) + wZ(N:(Q C,))
Example 11 The total similarity oin1 andm2l’, which we considered in the previous examples

as well, equalsim(m1,m2)= - = 0.25. Note that the zeros are due to the empty ODs.

(2.3)

sim(c,c') =

The similarity measure obtains a result between 0 and 1. Gveser defined similarity
threshold), if sim(c,c") > 6, c andc’ are duplicates, otherwise they are non-duplicates.

Note that in definingV, and N, we assume that we know that andn, are duplicates or
non-duplicates. Clearly, this knowledge is acquired dytire iterative phase, and the similarity
measure is defined to increase as this knowledge is gaineddlmn Eq. 1 and Eq. 2). On the
other hand, the similarity and the difference of ODs can lee@mputed, as they do not vary
during the iterative phase.

Proof. We prove that the similarity of two candidatesand ¢ monotonously increases
with increasing duplicates found in their ODs and RDs, assgrthat the properties of the
weight function defined in Eq. 2.1 and Eq. 2.2 hold, dftdgg = sum(). Let N7, =
{(n1,1),(n2,1),(L,n})(L,nh),...)} and N7, = {(ns,n}),...} at a given processing point
i of a comparison algorithm. In the next steb, the algorithtewheines that; andn/ are dupli-
cates, hence’, ., = {(na, 1), (L,n5),...)} and Ny, = {(ns,n3), (n1,n7),...}. We prove
thatsim;(c, ') < sim;,1(c,¢’) by showing that the nominator efm increases from stepto
stepi + 1, whereas the denominator decreases.

It is true thatNy,;; < N, so using Eqg. 2.1 and the fact thatm(S) > sum(S’) for

rd,i+1"
S’ c S, we conclude that
sum [wrd(N:d,i)7wod(N§d)] < sum [wrd(N;d,i+l)7w0d(N:d)]

This proves that the nominator efm;(c, ¢) is smaller than the nominator efm,,;(c, c). The
denominator okim decreases from stefo stepi + 1:

sum [wrd(N:dﬁl)»wod(N:d)>wrd(N:dﬁl)»wod(N;d)]
sum [wrd(N;di N {(nlv J—)v (J-vnll)})vwod(N:d)vad(N;di U {nlanll})vwod(N:d)]
sum [wTd(N:di)vwod(N:d)7wrd(dei)vad(N:d)]

because, following Eq. 2.2y ({(n,n")}) — sum[w ({(n,1)}),w ({(L,n")})] < 0. The nomi-
nator ofsim(c, ¢’) increases from stepto stepi + 1, and the denominator decreases from step
i to stepi + 1, so we conclude thatim;(c, ¢’) < sim;,1(c, c).

IN
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2.3.2 SQL-Based Similarity Computation

To compute a similarity conforming to the template on dataresiding in main memory, a
straightforward method is to use SQL queries to determieeotrerands of Eq. 2.3. These
include computing the similarity and the difference of ODs &f influencing candidate pairs.
As the techniques to compute these are similar, we focussiagkion on ODs and make some
remarks concerning influencing candidate pairs.

Figure 2.5 outlines the query determining OD weights. Fargyair of candidateéc, ¢’)
of typet, we first determine the saetm of similar OD attributes between these pairs, and the
associated weight. Because an OD is usually composed aofaeéypes of attributes, similar
ODs have to be determined feveryattributea; € A; and are unified to obtain the complete
setN?,(c,c’) (In. 5). Next, the setirF = N, (c, ') is determined by selecting all OD attributes
from OD(c) andOD(c’) that are not irsim, together with associated weights. Again, different
types of attributes are treated individually and unified.e Teight aggregation functiom,,
is then applied taim (In. 19) and onpbirr (In. 20) and the two resulting double values, i.e.,
woa(NZ,(c,c")) andw,q(N7,(c,c’)), are returned by the queryoaLesceis used to account for
the case whersiv or biFr are empty, in which case the weight is set to 0.

WITH SIM AS (
SELECTAL A2, W 1
FrROMODSIMW _al _s,c; c1,c; c2 2
WHERE SA1= Cla; AND S.A2=C2a4 3

AND C1.CID=cAND C2.CID=¢ 4
UNION ...a3 ... UNION ... UNION ...a, ...), 5

DIFF AS ( 6
SELECTCla; AALW W 7
FROMC; C1,0DW_al_tAl 8
WHERE C1CID=¢ 9

AND A1.A=Cla 10
AND A1.ANOT IN (SELECTALFROM SIM) 11
UNION 12
SELECT C2a; AA2.W W 13
FROMC; C2,0DW_al_t A2 14
WHERE C2CID = ¢/ 15
AND A2.A=C2a4 16
AND A2.ANOT IN (SELECTA2 FROM SIM) 17
UNION ... a3 ... UNION ... UNION ...a, ...), 18

SW AS (SELECT COALESCE(,4(W),0) ODSIMFROM SIM), 19

DW AS (SELECT COALESCEf,4(W),0)ODDIFF FROM DIFF) 20

SELECTODSIM, ODDIFF FROM SW, DW 21

Figure 2.5: Computing OD weights in SQL

Computing the weights of influencing candidate pairs is @galis to computing OD
weights. We first determine the set of influencing pdi¢s, ¢’) of candidate pailc,c’) by
selecting all tuples from tabBEP whereS1= ¢ andSZ ¢'. Due to the fact that we do not have
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multiple types of dependencies, no UNION operation is neglii The set of duplicate influ-
encing pairsSIM= N7, (c,c’) is defined as the set of influencing neighbor®EP whereSTA-
TUS_T 1, i.e., where the target paiT{,T2) is a duplicate. Non-duplicatd3lFF= N7, (c,c’)
are all influencing candidates ofc, ¢’) that do not appear in any tuple 8fM. The weights of
these sets are aggregated as for OD weights (see Fig. 4ri),the weight functiono, 4.

Using SQL queries to compute weights of ODs and influencirigsgeas the benefit that
the DBMS deals with computing these values for large amaoaindsita, making use of its opti-
mization capabilities. However, the applicability of theegy is limited to aggregate functions
supported by the DBMS for the weight functions; andw,4;. As a consequence, we define
hybrid similarity computation, where SQL queries are useddther data, and aggregation is
performed in an external program.

2.3.3 Hybrid Similarity Computation

In the hybrid version of OD weight computation, we use tworeesx); and(@),. ), determines
the set of similar OD attribute pairs with their weight, @sponding to the subquery SIM
in Fig. 2.5. ), determines the set @l OD attributes defined a®D(c) u OD(c’), so it is
essentially the subquery DIFF in Fig. 2.5 without line 11 &nd 17, which check whether an
attribute value is in the set of similar attribute values.hybrid similarity computation, this
check is performed outside the database in an externalgrogs well as weight aggregation.
The external program consists of the following steps, whbkeesetsD (duplicates) andV
(non-duplicates) are initially empty.

1. For every tuples vy, ve, w > returned byQy, let D := D u {((vy,v2),w)}.

2. For every tuple< v,w > returned byQ,, check if {(vy i, v2.:)|(v14,v2:) € D A (v1; =
vV, =v)} =g Ifitisempty, letN := Nu{((v,1),w)}.

3. Once all pairs have been processed, compute the aggvegigtasw,,(D) andw,,(N).

Example 12 When computing OD similarity and OD differenceai(al’), ), returns similar
values pairs, which are added 1@ in Step 1. HenceD = {((Brad Pitt, Brad Pit), 1)}. Q-
returnsOD(al) u OD(al’) = {(Brad Pitt, 1), Brad Pit, 1)}. Because both OD values are
part of a similar pair inD, N = @ in Step 2. Step 3 computes,(D) = 1 andw,q(N) = 0,
assumingu,y computes the sum of weights.

For influencing pairs, the hybrid strategy is slightly di#fat. Indeed, for ODs we have only
a precomputed table for similar OD attribute values¢scand @, have different input tables.
For influencing pairs, tabl® E P stores both duplicate influencing pairs and non-dupliaate i
fluencing pairs together with their status. Consequentiyse a querg)s to determind (¢, ¢’),
which sorts influencing pairs in the ascending order of th&itus, so that duplicate pairs are
the first pairs in the result. The external program then takes of splitting up duplicates and
non-duplicates. The order chosen guarantees that allcps are added tO before the first
non-duplicate appears, so that we can apply Step 2 as for Gghtxaamputation.
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Example 13 When comparingnil, ml’), Qs returns tuples{(al,al’1,1), (a2,a2’,1,1),
(al,a3,1,0), @2,a1'1,0), (a2,a3,1,0), (t1,t2,1,0)} in that order, where the tuple schema is
<candl, cand2, weight, status The external program iterates through these tuples andgadd
them toD as long as status equals 0. This resultdin- {( (al,al’),1), ((a2,a2’),1) }. The re-
maining tuples are split up in two candidates and we applp 3tend obtainV = {(((a3),1),1),
(((t1),1),2), ((t2),1),1)}. Using weight sum a®,.4, we obtainw,4(D) = 2 andw,4(N) = 3.

Compared to the SQL based similarity computation, we havsettd three queries to the
database instead of one query, which can be a drawback doetmenication overhead. Fur-
thermore, the results returned By, @)», and@; are larger than the result of the query used
in SQL based similarity computation, and these results nedsk processed in main mem-
ory, i.e., entries are added 0 and N and are aggregated. But compared to the in-memory
buffer, we consider this main-memory consumption as négégbecause in the worst case
|D|+|N| =|I(c)|+|I(c")|, which can be taken into account when setting the buffer $izprac-
tice, these sets are small (14 candidates being the maxirbganeed in experiments reported
in DDG algorithms summarized in Sec. 1.2). The main advantddnybrid similarity compu-
tation is that it overcomes database system limitatiogs, when weight aggregation functions
are not supported. We expect that both methods have conipatetiime, because they both
compute the same, only that processing is split betweendatabdse and an external program
for hybrid similarity computation. This is confirmed by outperiments. We now present a
technique that improves classification runtime when usyigid similarity computation.

2.3.4 Early Classification

Essentially, early classification interrupts similaritgngputation as soon as we know if the
outcome results in a duplicate or non-duplicate classifinaEarly classification distinguishes
itself from existing filters defined as upper bounds to thelanity measure [1, 23] in that no
extra filter function is defined to prune non-duplicates proosimilarity computation. Instead,
the similarity function is computed incrementally and mtediate results are used to classify
non-duplicates or duplicates prior to termination. As +watld data usually contains only a
small percentage of duplicates, we decide to determinedupticates more efficiently using
early classification, although early classification cao &ls used to classify pairs of candidates
as duplicates before similarity has been completely catedl

If a candidate pair similaritgim(c,c¢’) > 6, candidates and¢’ are duplicates, and non-
duplicate otherwise. Hence, the following inequationsiclwtwe use in our implementation,
correctly classify non-duplicates, althoughn (Eq. 2.3) is not calculated completely. As a
reminder,sim is defined as

Zie{rd,od} wZ(Nf)
Yie{rd,od) wi(N;) +wi(NY)

Parameterg andc’ of sim, N7,, N*,, andN?, have been omitted for brevity. It is easy to verify
that the following holds:

(2.4)

sim(c,c’) =

Woa(NZ,) + wpg(N7) <0 — sim < 0 (2.5)

T
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'LUOd(de) +wrd(N“d .
o r <0 —sim<b 2.6
wrd(N:d) + wod(N:d) + wrd(N:d) (29)

To include early classification, we modify hybrid similgrtomputation. First, we do not
treat ODs and influencing pairs sequentially by first comqmuthe similarity and the difference
of ODs, and then computing them for influencing pairs. Indt@ae compute their similarity to
obtainN?, + N*,, and then incrementally compute the difference of ODs afidéncing pairs.
That is, we executé); and @3 and perform Step 1 for ODs and iterate through the result of
@5 until the duplicate status stored in the attrib&€ATUSof a tuple switches to 0. Before
we continue, we apply Eqg. 2.5. If it classifies the pair as a-tgplicate, we avoid iterating
over non-duplicates iY; and executing),. Otherwise, we start computing the difference of
influencing pairs by iterating through the remaining tuplesirned bys. At every iteration,
we check if Eq. 2.6 can classify the pair as non-duplicateotetially save further iteration
as well as query),. If the pair is not classified as a non-duplicate after itagathrough@s’s
result, we executé, and iterate over its result, again checking at every itenafiEq. 2.6 clas-
sifies a non-duplicate. When reaching the final iterationhase finally computedim(c, ¢’),
and return the corresponding classification result. Thiglé@mentation of early classification
guarantees that similarity computation stops as soon a®foalgove rules classifies a pair as
non-duplicate.

Using early classification helps to detect non-duplicatésoaut computing the exact sim-
ilarity. So it helps to increase classification efficiencyemha significant portion of pairs are
non-duplicates. The larger the number of influencing paiGD attribute values of candidates
are, the more processing is potentially saved using eaabsification, because the number of
iterations through non-duplicates among influencing paird ODs (i.e., in the results 63
and @», when it was executed) that are potentially saved incretigekarger the set of influ-
encing pairs and ODs get. This explains why in our experisjamnhich are discussed next,
classification time is not affected by increasing the nundb@rfluencing neighbors (and hence
pairs) when using early classification.
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/| * Retrieval
while executeSQ(

SELECT COUNT(*)C FROMPQT WHERESTATUS= 0

) returns C> 0 do
booleanisDup < F;

ResultSet « executeSQL

SELECT * FROMPQTWHERESTATUS= 0 ORDER BYRANK );
while r has more tuples andDup = F do

Tuplet < r.getNextTuplé);
/* Classification
15sDup «

classif(t.getVvaludC1), t.getvalugC?2));
[ * Update
if isDup = true then
t.updateValu€STATUS]);

clusteft.getvaludC1l), t.getValudC?2));

executeSQL
UPDATERELSETSTATUSZ 1
WHERE T1 =t.getValugC1)
AND T2 =t.getValugC?2) ) ;

ResultSetl < executeSQL
SELECTSL S2 RANK(S1,S2) R FROMDEP
WHERETL1 = t.getValugC1)

AND T2 =t.getValugC2)
AND STATUS}® 00R1);

while d has more tupledo

executeSQL
UPDATEPQT
SETSTATUS: 0, RANK = d.getValugR)
WHEREC1 = d.getValugT1)
AND C2=d.getValudT2) ) ;

el_se
| t.updateValué€STATUS1)

Algorithmus 1 : REcus/DuP Algorithm

*/
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while PQT or B, has unclassified pairdo
boolearvver flow « false;

booleanast FromP() « true;
booleanupdateOnly < false;
ResultSet <« executeSQL same query as in Alg. 1);
while r has more tuples andver flow = falsedo
Tuplet;
if lastFromP(@ = true then
t < r.getNextTuplé);
if t € B, then
t.updateValu€STATUSstatus inB,);
L updateOnly < true;
else
| updateOnly < false;

else
t.getCurrentTupl@;
| lastFromPQ < true;
Pairtb := b.getFirstEntry);
if updateOnly = false andpb.getRank) < p.getRank) then
p < pb;
| lastF'romP(Q « false;
else
| lastFromPQ < true,
| ... classification & update ...

Algorithmus 2 : RECUS/BUFF Retrieval Phase



Chapter 3

Evaluation

We evaluate our proposed methods based on experimentsificigdrtiata, experiments on
real-world data, and a comparative study to related work.

3.1 Data Sets

RealCD (Real-world CD Data): The real-world data set we use comes from the CD dorain
We consider CDs, artists, and track titles as candidatesOOB consist of title, year, genre,
and category attributes, and they are related to artist mauk tandidates. Artist and track
candidates respectively have the artist’'s name and thietitlecas OD. Track candidates depend
on artist candidates. Using RealCD, we have little influemteata characteristics. To modify
parameters and study their effect, we also use artificial.dat

ArtMov (Artificial Movie Data): From a list of 35,000 movie names and 800,000 actors from
IMDB?2, we generate data sets for which we control (i) the numberaafliclate movies\/
and the number of candidate actot4o be generated, (ii) the connectivityi.e., the average
number of actors that influence a movie and vice versa, lti@)duplicate ratiar, defined as the
percentage of duplicate pairs that enter the priority quéugthe probability of errors in ODs
consisting of a movie name and an actor name for the respezdindidate types, and (v) the
probability of errors in influencing candidates. Furthetaile are available in [31].

In our experimentsd = M = g The number of duplicate pairs equéals dr, which result
from duplicatingdrg original movie candidates as well ds% actor candidates. The remaining
k — k = dr non-duplicate pairs are equally distributed between mpaies and actor pairs, each
resulting fromx non duplicates such that-dr+k = x+(x—1). Hence, the relationship between
number of candidates and priority queue size is given by

pq * dr

A:M:max(pq;dr,roundUp(x))+ (3.2)

In all our experiments error probabilities are set to 20%.ewhot mentioned otherwise, con-
nectivity c = 5 and the buffer’s size is set to 1,000. We repeated expersiigpttimes to obtain

http://ww. freedb. org
2http: //ww. i mdb. com
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average execution times, which, in addition to the large lmemof experiments explains the
moderate number of candidates for ArtMov data comparedetodal-world data set.

3.2 Experimental Evaluation

All presented experiments used DB2 V8.2 as DBMS, running bimax server and remotely
accessed by a Java program running on a Pentium 4 PC (3.2GtHZ2@B of RAM. That is,
all runtimes reported also include network latency.

3.2.1 Retrieval and Update Scalability

We first compare the scalability ofERUSYBUFF to the scalability of the baseline algorithm
RecugDuP.

Experiment 1. We start with an evaluation of how both algorithms behavé wéryingdr on
various data set sizes.

Methodology. We generate ArtMov data according to Eq. 3.1 withranging from 10,000 to
50,000 candidate pairs in increments of 5,000, and vary tipahte ratiodr betweenir = 0.2
anddr = 1.0 in increments of 0.2. As representative results, we showmas of REcusDuP
and REcUYBUFF (in seconds) fotlr = 0.4, anddr = 1.0 in Fig. 3.1. The number of candidates
(|A| + |M]) is shown at the top x-axis, whereas the bottom x-axis shbesize ofPQT(in
thousands). Both axes are correlated through Eq. 3.1.

— number of candldates (1000) number of candidates (1000)
K 8 12 10 20 30 40 50
o 3000—f—F—F—° @3000—P—0 0
£25001- RECUS/BUFF— £2500- RECUS/BUFF~—
%2000_ RECUS/DUP %2000_ RECUS/DUP

81500 81500
H H
£ 1000+ £ 1000
500 P 500
0 1 0 L1 1

retrievi
retriev.

0 10 20 30 40 50 0 10 20 30 40 50
# pairs in PQT(1000) # pairs in PQT(1000)
(@)dr=0.4 (b)dr=1.0

Figure 3.1: Retrieval & update time varying data set sizér&

Discussion. Fig. 3.1 clearly shows that EBCUSYBUFF outperforms RcusDuP regardless of

dr. Obviously, sorting?QT is more time consuming than maintaining the order of the kmnal
in-memory buffer. We further observe that the highiey the more time retrieval and update
need for both algorithms, because in both algorithms sp®®T occurs more frequently:
RecugDuP sortsPQT every time a duplicate has been found, arelcBYBUFF sorts the
PQT every time the buffer overflows, happening more frequebtigause influencing neighbor
pairs entei3, more frequently. The final observation is that with incraggriority queue size /
number of candidates,FRUS/BUFF scales almost linearly for practical duplicate ratios el
0.8). Therefore, we expectBRUSBUFF to be efficient even on very large data sets such as
RealCD, as Exp. 6 confirms.
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Figure 3.2: Retrieval & update time for varyisgandc.

Experiment 2. From Exp. 1, we conclude thatR usBUFF performs better thaniRcus/DUP,
because it sort®QT less frequently, and instead maintains a main-memory buoffdixed
sizes. Clearly,s plays a central role in the efficiency gain. Another factat thffects the filling
of B, is the connectivity. The higher itis, the more neighbors enter the buffer wheampdichte

is found, and an overflow occurs more frequently. So, we edtpat RECUSYBUFF gets slower
with increasing: and smallek.

Methodology. We study how a changing buffer size affects ArtMov data widkDDO pairs in
PQT and adr = 0.4. We varys from 1 to 10,000. We further vary connectivityfrom 1 to 5
for all considered buffer sizes. Results are shown in F@j.\8hich depicts the sum of retrieval
and update time for all buffer sizes (left), update time foal buffer sizes (top), and retrieval
time for small buffer sizes (bottom).

Discussion.We observe that for all but small buffer sizes, both retriéwae and update time
stabilize, and hence the sum stabilizes. For very smalebusitzes, the smaller the buffer, the
longer retrieval and update take. Furthermore, the latgeiconnectivityc, the more time is
needed for retrieval and update, mainly resulting from tierdased update complexity. For
largerc, when a duplicate is found, a larger number of dependens paieds to be determined
and added to the buffer. As a general rule of thumb, a bufferai 1000 suffices to significantly
improve efficiency.

3.2.2 Classification Scalability

We evaluate the scalability of classification, considethmgbaseline SQL based approach, we
call SQL/Complete (SQL/C for short) and hybrid similarityaputation with and without early
classification, called HYB/Complete (HYB/C) and HYB/Optzed (HYB/O), respectively.
Experiment 3. We compare runtimes of SQL/C, HYB/C, and HYB/O on ArtMov dafa
different sizes, using varying duplicate ratios. We ex@QL/C to be slower than HYB/O,
whereas SQL/C should be comparable to HYB/C.

Methodology. We generate ArtMov data witRQT sizes ranging from 5,000 to 40,000 in
increments of 5,000, and for each size, we generate datadwittarying from 0.2 to 1.0 in
increments of 0.2. We run each classification method on eaizhsit, and measure its runtime
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in seconds. Results are shown in Fig. 3.3 for selected datpliatiosir = 0.2, anddr = 0.8.

)
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2 4 6 8 8 16 24 32

@0 £20

2 SQIL/C ! ! g SQIL/C ! !

€10l — €10l —

150 Hye/c =150 Hyeic

S100- HYB/C; | S0+ HYB/O - - - ’

a a

g 50~ g 50 /

S okl L1 1 1 | S ok L L1 1 11
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0.2 0.8

Figure 3.3: Classification time comparison

Discussion.As expected, SQL/C and HYB/C have comparable executiorstilmecause they
both have to compute the same result. All classification odslscale linearly on the range
of considered priority queue sizes, and hence with the nuwfeandidates when no blocking
technique is additionally used. Early classification alldevsave classification time: @t = 0.2,

32 % of classification time (compared to HYB/C) is saved, \utgcacefully degrades to 26%
atdr = 0.8, when 40,000 pairs are compared. Hor= 1, we still observes% savings, which
are due to pairs that are classified as non-duplicates,ugththey are (false negatives). The
reduction in the benefit of early classification with inciiegs/r is due to the fact that the more
duplicates are iPQT, the less similarity computations may be aborted for noplidates.

Experiment 4. Our next experiment shows how the connectivitgffects classification effi-
ciency. Because defines how many influencing neighbors a candidate has, wiach to be
determined using join operations and processed, we exjpeitaisty computation to be slower
for largerc when using SQL/C or HYB/C. On the other hand, HYB/O potettiadves more
processing the larget
Methodology. We varyc, i.e., the average number of influencing candidates, fremo0 to ¢ =
50 in increments of 10 for an ArtMov dataset of size 10,000 anglidate ratio 0.4. Figure 3.4
reports comparison time for SQL/C and HYB/O, SQL/C and HYBA&Ng comparable.
Discussion. When using SQL/C, comparison time increases with incrgasian effect also
observed by other DDG algorithms. On the other hand, runignaeound 7 ms for alt when
using HYB/O. This experiment shows that HYB/O counters tagative effect of increasing
on efficiency. We currently do not have an explanation forsthepe of the SQL/C curve, where
comparison time is roughly constant betwees 20 andc = 40. We suspect that “intriguing
behavior of modern [query] optimizers” [26] is partly resisible for that behavior, but this
needs further investigation. Nevertheless, the genaratitis clear.

The analysis of the techniques proposed in this paper usiffigial data of moderate size
leads to the conclusion thaERUSYBUFF and HYB/O scale up best. We now put them to the
test by applying them to large, real-world data.
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Figure 3.4: Classification time & connectivity

3.2.3 Real-World Behavior

Using RealCD, we show real-world scalability of our appioaver a large data set. Results
on effectiveness are omitted due to the lack of space. Thefibef DDG on effectiveness has
already been studied extensively (Sec. 1.2).

Experiment 5. We show that RCugBUFF in combination with HYB/O scales linearly with
the number of candidate pairsBQT on a large, real-world data set.

Methodology. Using RealCD data with 1,000,000 candidates, we apply &ligeechnique to
reduce the number of candidate pairs enteRQI, a common technique also used by [6, 19].
Note that we evaluate the behavior of our approaches acgpralithe number of candidate pairs
that are inPQT, so this does not affect our conclusions. After blockin@0B,000 candidate
pairs entelPQT. Buffer size is 1,000, so that we can compare runtimes witkd¢tobtained on
artificial data. We obtain the following results: retrietakes 1,379 s, classification takes 5,482
s, and update takes 17,572 s.

Discussion.Among the two million candidate pairs PQT, we found 600,000 duplicates, so
the observed duplicate ratio is 0.3. If we extrapolate eesi and update time obtained on
ArtMov data of size 50,000 withr = 0.3, for which we obtained a retrieval time of 36 seconds
and 432 seconds for update using a buffer of 1,000, we seththetsults obtained on a million
candidates with similar parameters are in accord with thesli behavior of retrieval and update
observed in Exp. 1. Indeed, the expected retrieval timedidQlseconds, so the observed 1,379
seconds are 4% from the expected value. Similarly, the egge,280 seconds for update and
the 17,572 seconds measured are only 2% apart. Classifi¢atie is also in accord with the
linear behavior of HYB/O observed in Exp. 3.

3.3 Comparative Evaluation

Table 3.1(a) summarizes how the different phases of DDGsnalme depending on the size
of the datas, the duplicate ratialr, and the connectivity, which in total amounts to a linear
behavior. Table 3.1(b) summarizes resuv#gortedfor other DDG algorithms, omitting those
that do not report any runtime, which altogether use smdi¢a sets as those reported here.
Tab. 3.1(b) reports on the data set size, runtime (withatitiization time) and the parame-
ters for which the algorithms doot scale linearly £, dr, andc are considered). We observe
that REcCuS/BUFF takes comparably long, but this comes as no surprise as DBnocoica-
tion overhead and network latency add to the runtime. Moteré@stingly, none of the DDG
algorithms except RcuSBUFF scales linearly in time with all three parametersir, andc.
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Indeed, all algorithms but Reus/BUFF do not scale linearly in time with the data set size
which compromises scaling up DDG to large amounts of data.

Parameter Retrieval & update | Classification
PQT sizes linear (Exp. 1,5) | linear (Exp. 3,5)
duplicate ratiadr < 0.8 linear (Exp. 1) constant (Exp. 3
connectivityc linear (Exp. 2) constant (Exp. 4
Overall linear linear

(a) DDG scalability using Rcus/BurFrF and HYB/O

Approach # candidates| Runtime (s) | Not linear in

RC-ER [6] 68,000 890 s, ¢

RelDC [19] 75,000 180 - 13,000 s, ¢
LinkClus [33] 100,000 900 s
REcCUS/BUFF 1,000,000 24,433 -

adepending on connectivity
(b) Comparison time for different approaches

Table 3.1: Comparative evaluation



Chapter 4

Conclusion and Outlook

This paper is the first to consider scalability of duplicagtedtion in graphs (DDG). We pre-
sented a generalization of existing iterative DDG alganistconsisting of an initialization phase
and an iterative phase. The latter in turn consists of raljelassification, and update steps.
We then presented how to scale up these phases to large anodutata, with the help of an
RDBMS.

For iterative retrieval and update, we proposettRSYBUFF to scale in space and in time.
It uses an internal buffer to avoid expensive sorting, wisgberformed by the straightforward
baseline algorithm Rcug/DuP.

To scale up classification of candidates, we proposed hgbridarity computation to scale
in space and to overcome the limitations of a pure SQL varidatscale up classification in
time, we presented the early classification technique, kvimterrupts similarity computation
when it is sure that a pair is not a duplicate.

Experiments on large amounts of data, such as one milliodidates (at least an order
of magnitude larger than previously considered data sei&jate our approaches and show
that the methods we propose significantly outperform agdtteorward mapping of DDG from
main-memory to a database. Part of the research presenmed/ae successfully applied to an
industry project [32]. More specifically, we used the simtlameasure template to systemat-
ically vary different similarity-based classifiers. Filyalour research on scaling classification
yielded to the design decision of using hybrid similarityaserement with early classification.

In the future, we plan to detect a candidate’s OD attributesiafluencing candidate types
automatically, because this is the task requiring the meetiateraction. Instead of determining
duplicates in a data source, we also plan to investigate h@wan avoid duplicates to enter the
database.
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