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Abstract

Duplicate detection consists in determiningdifferentrepresentations of real-world objects in a
database. Recent research has considered the use of relationships among object representations
to improve duplicate detection. In the general case where relationships form a graph, research
has mainly focused on duplicate detection quality/effectiveness. Scalability has been neglected
so far, even though it is crucial for large real-world duplicate detection tasks.

In this paper we scale up duplicate detection in graph data (DDG) to large amounts of data
and pairwise comparisons, using the support of a relationaldatabase system. To this end, we
first generalize the process of DDG. We then present how to scale algorithms for DDG in space
(amount of data processed with limited main memory) and in time. Finally, we explore how
complex similarity computation can be performed efficiently. Experiments on data an order of
magnitude larger than data considered so far in DDG clearly show that our methods scale to
large amounts of data not residing in main memory.



Chapter 1

Preliminaries

1.1 Introduction

Duplicate detection is the problem of determining that different entries in a database actually
represent the same real-world object, and this for all objects represented in a database. Duplicate
detection is a crucial task in data cleaning [15, 25], data integration [11], and many other areas.
The problem has been studied extensively for data stored in asingle relational table. However,
much data comes in more complex structures. For instance, a relational schema is not limited
to a single table, it also includes foreign keys that define relationships between tables. Such
relationships provide additional information for comparisons.

Recently, a new class of algorithms for duplicate detectionhas emerged, to which we refer
to asduplicate detection in graphs (DDG)algorithms. These algorithms detect duplicates be-
tween object representations in a data source, calledcandidatesby using relationships between
candidates to improve effectiveness. Within this class, wefocus on those algorithms that itera-
tively detect duplicates when relationships form a graph (see Sec. 1.2). In the remainder of this
paper, reference to DDG algorithms imply the restriction tothat particular class of algorithms.
To the best of our knowledge, none of the proposed algorithmswithin this class has explicitly
considered scalability yet.

Before delving into the details of scaling up DDG, we providereaders with an intuition of
how DDG algorithms behave based on the following example.

Example 1 Figure 1.1 represents a movie database consisting of three tables, namely MOVIE,
ACTOR, and STARS_IN. STARS_IN translates the m:n relationship between movies and actors.
Key and foreign key definitions are straightforward and are not represented for conciseness. It
is obvious to humans that all three movies represent a singlemovie and there are only three
distinct actors, despite slightly different representations.

Assume that we consider movies, titles, and actors as candidates, which we identify by an
ID for ease of presentation and future reference. Title candidates illustrate that candidates are
not necessarily represented by a single relation. We use’ to mark duplicates, e.g.,m1 andm1’
signifies that the movies are duplicates.
Initialization. DDG algorithms usually represent the data they consider as agraph. Figure 1.2
depicts a possible graph for our movie scenario. In this graph, there is one candidate node
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1.1. INTRODUCTION 2

MID title
m1 Troy
m1’ Troja
m1” Illiad Project

(a) MOVIE

AID Name
a1 Brad Pitt
a2 Eric Bana
a1’ Brad Pit
a2’ Erik Bana
a3 Brian Cox
a1” Prad Pitt
a3’ Brian Cox

(b) ACTOR

AID MID
a1 m1
a2 m1
a1’ m1’
a2’ m1’
a3 m1’
a1” m1”
a2’ m1”

(c) STARS_IN

Figure 1.1: Sample movie database

for each candidate, whereas its descriptive information, given by the attributes of the rela-
tional table are represented as attribute nodes associatedwith the corresponding candidate
note. Candidate nodes are connected to each other by directed edges, called dependency edges.
Intuitively, these edges represent the fact that finding duplicates of the source candidate depends
on finding duplicates of the target candidate. The latter arecalled influencing candidates.

Figure 1.2: Sample reference graph.◯ candidate node,◻ attribute node,↓ dependency edge.

Next, DDG algorithms initialize a priority queue of candidate pairs. Each pair in the queue
is compared based on some similarity measure that considersboth neighboring attribute nodes
and influencing candidate nodes. If the similarity is above agiven threshold, the candidate pair
is considered as a duplicate. Assume that the initial priority queue isPQ = { {( m1, m1’), (m1,
m1”), (m1’,m1”), (t1,t2), (t1,t3), (t2,t3), (a1,a2),...} }.
Iterative phase. We now start comparing pairs in the priority queue. The first pair retrieved
from PQ is (m1, m1’). The pair is classified as non-duplicate, because the movies’ sets of
influencing neighbors, i.e., the respective actor neighbors are apparently all non-duplicates.
The same occurs when subsequently iterating through movie candidate pairs and title candi-
date pairs. When comparing (a1,a1’), we finally find a duplicate because the actor names are
similar, and there are no influencing neighbors. Having found this duplicate potentially in-
creases the similarity of (m1, m1’) because the movies now share actors. Hence, (m1, m1’) is
added back toPQ. The same occurs in the subsequent iterations where duplicate actors are de-
tected. Now, when we compare movies again they can be classified as duplicates, because they
share a significant amount of influencing actor neighbors. Inthe end, we identify all duplicates
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correctly.

We make the following observations: First, re-comparisons, e.g., of the movie candidates,
increase effectiveness and should therefore be performed.However, if we had started by com-
paring actors, we would have avoided classifying movies a second time and would still have
obtained the same result. This shows that the comparison order is important for efficiency.
Hence, the order of the priority queue should be chosen carefully when initializing the priority
queue and it should adapt to updates of the priority queue, e.g., when a movie pair is added
back to the priority queue. Finally, this process should scale to large amounts of data beyond
main memory. Whereas effectiveness and priority queue order maintenance for efficiency have
been considered in the past, scalability of DDG has not been addressed so far. This paper aims
at filling this gap.

More specifically, we present howiterative algorithms for DDGcan scale up to large
amounts of data. We use a relational DBMS as storage manager and overcome its limitations
in supporting DDG. Our contributions are: (i) A generalization of iterative DDG, (ii) an algo-
rithm for scaling DDG data retrieval and update in space and in time, and (iii) methods to scale
similarity computation in space and in time. All methods proposed for scalability are based
on our generalization of iterative DDG, thus making them applicable to existing iterative DDG
algorithms, which are so far limited to main-memory processing. Our most significant results
include successful DDG over 1,000,000 candidates, a data set an order of magnitude larger than
any data set considered so far, and a close to linear behaviorof DDG runtime with respect to
several parameters.

We discuss related work in Sec. 1.2. We then generalize iterative DDG and provide defini-
tions in Sec. 1.3. Section 2.1 describes how initializationof the algorithm is performed when
main-memory does not suffice to complete DDG, and Sec. 2.2 presents how we scale up the
iterative phase of DDG. Similarity computation is discussed in Sec 2.3. Evaluation is provided
in Sec. 3 before we conclude in Sec. 4.

1.2 Related Work

The problem of identifying multiple representations of a same real-world object, originally de-
fined in [22], and formalized in [14] has been addressed in a large body of work. Ironically,
it appears under numerous names, e.g., record linkage [18],merge/purge [17], object match-
ing [15], object consolidation [10], and reference reconciliation [12]. A duplicate detection
survey is provided in [13].

Broadly speaking, research in duplicate detection falls into three categories: techniques to
improveeffectiveness, techniques to improveefficiency, and techniques to enablescalability.
Research on the first problem is concerned with improving precision and recall, for instance
by developing sophisticated similarity measures [7, 9] or by considering relationships [28].
Research on efficiency assumes a given similarity measure and develops algorithms that avoid
applying the measure toall pairs of objects [1, 21]. To apply methods to very large data sets,
it is essential to scale not only in time by increasing efficiency, but also to scale in space, for
which relational databases are commonly used [17, 24].
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Table Tree Graph
Learning Bil.03[7](Q) Sin.05[28](Q)

Sar.02[27](Q) Bhat.06 [5](Q)
Clustering Chau.05[9](Q,T ,S) Kala.06[19, 10](Q,T )

Yin06[33](Q,T )
Iterative Her.95[17](T ,S) Ana.02[1](Q,T ,S) Dong05[12](Q)

Mon.97[21](T ) Puh.06[24](T ,S) Weis06[30, 31](Q,T )
Jin03[18](Q,T ) Mil.06 [20](Q) Bhat.04[2, 3, 4](Q)

Table 1.1: Summary of duplicate detection approaches, their focus lying on efficiency(T), ef-
fectiveness(Q), or scalability(S).

In Tab. 1.1, we summarize some duplicate detection methods,classifying them along two
dimensions, namelydataandapproach. For data, we distinguish between (i) data in a single
table, without multi-valued attributes, (ii)treedata, such as data warehouse hierarchies or XML
data, and (iii) data represented as agraph, e.g., XML with keyrefs or data for personal infor-
mation management (PIM). The second dimension discerns between three approaches used for
duplicate detection: (i) machinelearning, where models and similarity measures are learned,
(ii) the use ofclusteringtechniques, and (iii)iterative algorithms that iteratively detect pairs
of duplicates, which are aggregated to clusters. In Tab. 1.1, we also show whether an article
mainly focuses on efficiency (T ), effectiveness (Q), or scalability(S). Due to space constraints,
we limit the discussion to approaches falling in the class ofalgorithms we consider, i.e., iterative
duplicate detection algorithms in graph data.

Research presented in [12] performs duplicate detection ina PIM scenario, where relation-
ships between persons, publications, etc. form a graph. Pairs of candidates to be compared are
maintained in an active priority queue where the first pair isretrieved at every iteration. The
pair is compared and classified as non-duplicate or duplicate. In the latter case, relationships
are used to propagate the decision to neighbors, which potentially become more similar due to
the found duplicate, and the priority queue is reordered, neighbors being sent to the front or
the back of the queue. The largest data set consists of 40,516candidates, but no runtime are
reported.

In [30, 31], we presented similar algorithms to [12], and focused on the impact of compar-
ison order and recomparisons on the efficiency and effectiveness of DDG. We showed that the
comparison order can significantly compromise efficiency and effectiveness in data graphs with
high connectivity. For evaluation, we used small data sets (≈ 2,500 candidates) which easily fit
in main-memory.

The RC-ER algorithm first introduced in [3] and further described and evaluated in [2, 4]
represents candidates and dependencies in a reference graph. The algorithm re-evaluates dis-
tances of candidate pairs at each iterative step, and selects the closest pair according to the dis-
tance measure. Duplicates are merged together before the next iteration, so effectively clusters
of candidates are compared. The largest data set [3] contains 83,000 candidates and duplicate
detection takes between 310 and 510 seconds, depending on which variant of the algorithm is
used. [4] describes the use of an indexed max-heap data structure to maintain the order of the
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priority queue, but this structure again fits in main memory.Experiments in [2] show that the
higher connectivity of the reference graph, the slower RC-ER.

The focus of DDG has so far been set on effectiveness. ScalingDDG to large amounts of
data not fitting in main memory has not been considered at all,and efficiency has been only a
minor concern. This gap is filled by the research presented inthis paper.

1.3 DDG in a Nutshell

The methods we propose to scale up DDG are intended to be as general as possible to fit many
algorithms performing iterative DDG. Therefore, the first contribution of this paper is a gener-
alization of existing methods into an unified model.

1.3.1 Definitions for unified DDG

Before defining our unified model, we make the following definitions that are used both to
define the model and to describe our methods for scaling up DDG.
Candidates. The representations of real-world objects subject to duplicate detection are
called candidates. A database represents several object typesT = {t1, t2, ..., tn}. Let Ct =
{c1, c2, ..., ck} be the set of candidates of typet ∈ T . To denote the type of a particular candidate
c, we usetc. In relational tables, candidates correspond to (projections of) tuples.
Thresholded Similarity Measure. During classification, DDG algorithms commonly use a
similarity measure. A more detailed description of a similarity measure template is given in
Sec. 2.3.1 when discussing methods to scale up classification. At this point, we only want
to highlight that, given a similarity measuresim(c, c′) and a thresholdθ, we conclude thatc
andc′ are duplicates ifsim(c, c′) > θ, and non-duplicates otherwise. Intuitively, the similarity
measure both considers object descriptions and influencingcandidate pairs in its computation,
which we define next.
Object Descriptions. Theobject description (OD)of a candidate that corresponds to a tuple
consists of attributes and attribute values of this tuple. LetAt = {a1, ..., al} be a set of attribute
names for a candidate of typet. Then,ODa(c) = {v1, ..., vm} defines the attribute values of the
attribute nameda that are part of thec’s OD. The complete OD of a candidatec is defined as
OD(c) = ⋃ai∈At

ODai
(c), and is usually obtained using a query parameterized by the candidate.

Example 2 In our example, consider candidate typesT = {movie, actor, title}. A candi-
date of type actor is described by it’s name, so the OD of actorcandidatea1 is OD(a1) =
ODName(a1) = {(Brad Pitt)}.

Influencing & Dependent Candidates.The set ofinfluencing candidatesI(c) of a candidate
c is a set of candidates that has been designated to affect the similarity of c as follows: if
the similarity (or duplicate status) of a candidatei ∈ I(c) to another candidate changes, then
the similarity (or duplicate status) ofc to another candidate changes as well. Which other
candidates are involved in this dependency is defined next. The selection of candidates inI(c)
is for instance based on foreign key constraints, or implicit domain constraints provided by
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a domain expert. Analogously,dependent candidatesof c are candidates whose similarity is
influenced byc, i.e.,D(c) = {c′∣c′ ≠ c ∧ c ∈ I(c′)}.

Example 3 We assumeI(m1) = {a1, a2, t1} andD(m1) = {t1}. Similarly,I(m1”) = {a1”,
a3’, t3} andD(m1”) = {t3}.

Influencing & Dependent Candidate Pairs. Influencing candidate pairsof candidate pair
(c, c′) are defined asI(c, c′) = {(ni, nj)∣ni ∈ I(c), nj ∈ I(c′), tni

= tnj
}. Analogously, its

dependent candidate pairsD(c, c′) = {(ni, nj)∣ni ∈ D(c), nj ∈ D(c′), tni
= tnj

}. Intuitively,
influencing and candidate pairs of two candidates are obtained by forming the cross product
between their respective influencing and dependent candidates.

Example 4 We assumeI(m1, m1”) = {(a1, a1”), (a1, a3’), (a2, a1”), (a2, a3’), (t1, t3)}, and
D(m1, m1”) = {(t1, t3)}.

Based on these definitions, we now define a unified view of iterative DDG algorithms.

1.3.2 General DDG Approach

In general, we observe that algorithms for iterative DDG have in common that (i) they consider
data as a graph, (ii) they perform some preprocessing beforecandidates are compared to obtain
initial similarities and avoid recurrent computations, and (iii) they compare pairs of candidates
iteratively in an order that potentially changes at every iteration where a duplicate is found,
requiring the maintenance of an ordered priority queue. Merging [3] or enriching [12] detected
duplicates is also a common technique to increase effectiveness and requires updating the graph.
Based on these observations, we devise the following general approach for DDG.

Unified Graph Model. Existing DDG approaches all have in common that they use a graph
to represent the data. [12] uses adependency graphwhose nodes are pairs of candidatesm =
(r1, r2) and pairs of attribute valuesn = (a1, a2), and an edge betweenm andn exists if a1

is an attribute value ofr1 anda2 is an attribute value ofr2. Further edges between candidate
pair nodesm1 andm2 exist if m1 is an influencing or dependent pair ofm2. The method used
in [3] defines areference graph, where nodes do not represent pairs, but candidates and edges
relate influencing or dependent candidates. Other DDG algorithms use graphs that basically
fall in one of the two categories described: nodes either represent single candidates [19, 30], or
pairs [28]. Attribute values are usually treated separately. In the context of duplicate detection,
the dependency graph can be derived from the reference graph1. Hence, our unified graph
model for DDG is a reference graph that consists of three components, namely (i) candidate
nodes, (ii) attribute nodes, and (iii) dependency edges. More specifically, a candidate nodevc is
created for every candidate. Every attribute value associated with a candidate is translated by an
attribute nodeva. We represent relationships between candidates as directed edges in the graph.
More specifically, letvc andv′c be two candidate nodes. We add an edgeed = (vc, v

′
c) directed

from vc to v′ if v′c ∈ I(c). Figure 1.2 is a possible reference graph for our movie example.

1In general, a dependency graph is more expressive, but its full expressiveness is not used in DDG.
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Unified DDG Initialization. To detect duplicates, DDG algorithms set up apriority queue
PQ where candidate pairs are sorted according to a specific ordering scheme. Note that block-
ing [21] or filtering [1] methods can be used to restrict the candidate pairs enteringPQ. For-
mally, the set of pairs inPQ is defined by

PQS ⊆ ⋃
1≤i≤n

{(c, c′)∣vc ∈ Cti ∧ vc′ ∈ Cti ∧ c ≠ c′ ∧ ti ∈ T}

Furthermore, iterative DDG algorithms have a jump-start phase, where attribute similarities are
computed or obvious duplicates are detected. Also, priority queue initialization and precompu-
tations are performed before candidate pairs are compared and classified and thus compose the
initialization phaseof a DDG algorithm.

Iterative Phase.After initialization, candidate pairs are compared and classified as duplicates
or non-duplicates in theiterative phase(Fig. 1.3). Existing algorithms maintainPQ in main-
memory. At every iteration step, the first pair inPQ is retrieved, thenclassifiedusing a sim-
ilarity (distance) metric, and finally the classification causes someupdatein PQ or the graph
(adding pairs toPQ, enrichment in [12], duplicate merging and similarity recomputation in [3]
) before the next iteration starts.

Figure 1.3: Sample iteration for DDG

In general, the priority queue has to be reordered whenever aduplicate is detected to reduce
the number of recomparisons, for which [3, 12, 30] devise different strategies. Reordering is
an expensive task for largePQ. However, by maintaining the order inPQ, complex similarity
computations are potentially saved, as we illustrated in Example 1.



Chapter 2

Scaling up DDG

2.1 Scaling Up Initialization

Having discussed the general DDG process, we now show how initialization is performed when
processing large amounts of data. To scale up the initialization phase, we use a relational DBMS
to store the data structures described in the next subsections. This way, DDG can process an
arbitrarily large amount of data and can benefit from severalDBMS features, such as access to
the data, indices, or query optimization. Essentially, theDBMS acts as a data store.

2.1.1 Graph Model in Database

The reference graphGref does not fit in main-memory when considering large amounts ofdata,
so we decide to storeGref in a relational database. For every candidate typet ∈ T a relation
C_t(CID, a1, a2, ..., an) is created.CID represents a unique identifier for a candidatec, and
ai ∈ At represents the candidate’s OD attributes. Hence tableC_t stores both the information
contained in candidate nodes and the information containedin their related attribute nodes.
Using standard SQL statements, the tables are created in thedatabase and tuples are inserted
as follows. For every candidatec of type t, e.g., returned by a SQL query, determineOD(c),
given the set of OD labelsAt = {a1, ..., al}, again using an extraction method that can be a query
language or a parsing program. We then create a tuple<id(c), v1 ∈ ODa1

(c), ...,vl ∈ ODal
(c)>

for every candidate,id(c) being a function that creates a unique ID for a candidate. IfODai

contains more than one value, values are concatenated usinga special character.
To store edges in the database, we create a single tableEDGES(S,T,REL): the first attribute

S is the source candidate,T is the target candidate, andREL is the relevance (weight) of that
edge. Both the source and the target attribute are references to aCID in a candidate table.

Example 5 Fig. 2.1 shows excerpts of data graph tables for our movie example. There is one
table for every candidate type, i.e., one for movie candidates (a), one for title candidates (b)
and one for actor candidates (c). The table representing RDsis shown in Fig. 2.1(d). In our
example, all edges have equal relevance, set to 1.

8
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CID
m1
m1’
m1”

(a) C_MOVIE

CID OD1
t1 Troy
t2 Troja
t3 Illiad...

(b) C_TITLE

CID OD1
a1 Brad Pitt
a2 Eric Bana
... ...
(c) C_ACTOR

S T REL
m1 a1 1
m1 a2 1
... ... ...
(d) EDGES

Figure 2.1: Graph representation in database

2.1.2 Initializing the Priority Queue

The priority queue used in DDG is a sequence of candidate pairs, where two candidates of the
same pair have same candidate type and the priority queue contains all candidate pairs subject to
comparison. The order of pairs is determined by an algorithm-dependent heuristic that satisfies
the following property: let(c, c′) ∈ PQ, and let the position of(c, c′) = ranki(c, c′) at itera-
tion i, then the heuristic guarantees that when a pair(i, i′) ∈ I(c, c′) is classified as duplicate,
ranki+1(c, c′) ≤ ranki(c, c′) at the next iteration.PQ is ordered in ascending order ofrank.
Using such a rank function can implement the ordering in [3, 12, 30], and is natural, because
the similarity of pairs increases with increasing number ofsimilar influencing neighbors, and
more similar pairs should be compared first, because they aremore likely to be classified as
duplicate.

In the database, we store the priority queuePQ in a relationPQT(C1, C2, STATUS, T,
RANK), whereC1 and C2 are references to theCID of two candidates of a pair,T is both
candidate’s type,RANKis the current rank of a pair, which determines its position in the priority
queue order, andSTATUSis the processing status of the pair in the specific DDG algorithm. For
instance,STATUS= 0 if a pair is in the priority queue and has not been classified, STATUS= 1
if the pair is a duplicate, andSTATUS= -1 if the pair has been classified as a non-duplicate but
may re-enter the priority queue if an influencing duplicate were found.

Example 6 Examples of tuples in table PQT are shown in Fig. 2.2. As sample ranking heuristic,
we use the number of unshared influencing neighbors between the two candidates.

C1 C2 STATUS T RANK
m1 m1’ 0 M 7
a1 a2 0 A 0
t1 t2 0 T 2
... ... ... ... ...

Figure 2.2: Initial priority queue sample

2.1.3 Precomputations

As we will see in Sec. 2.3, the similarity measure we considerrequires the computation of
both OD similarity and OD difference. Furthermore, description values can in general have a
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A W
Brad Pitt 1
Eric Bana 1

. . . . . .

A1 A2 W
Brad Pitt Brad Pit 1
Eric Bana Erik Bana 1

. . . . . . . . .
(a)ODW_actor_OD1 (b) ODSIMW_actor_OD1

S1 S2 T1 T2 STATUS_S STATUS_T W_S W_T
m1 m1’ a1 a1’ 0 0 1 1
m1 m1’ a1 a2’ 0 0 1 1
. . . . . . . . . . . . . . . . . . . . . . . .

(c) DEP

Figure 2.3: Sample precomputation tables

weight that is considered in similarity measurement. Thesevalues do not vary during the itera-
tive phase, so we decide to compute them prior to the iterative phase. This way, we potentially
save expensive and recurrent similarity computations. Indeed, the same computations may be
performed several times due to recomparisons. Moreover, when using functions such as the
inverse document frequency of a value for weight determination or the edit distance between
two values for OD similarity, the function depends on the value of a particular description, not
on the candidate to which the OD belongs to. Hence, if the sameattribute value occurs several
times in different pairs, the computation would be performed more than once. Following these
observations, we precompute (i) weights of attribute values, which we store inODW_a_t(A,W)
relations, i.e., one relation for each OD attribute and (ii)weights of similar OD value pairs,
which are stored inODSIMW_a_t(A1,A2,W)relations. Note thatA, A1, A2 designate OD at-
tribute values, andW stores the weight.

Another precomputation is the creation of a table that associates candidate pairs with their
influencing pairs and that stores the duplicate status of both pairs, as well as the weight of
their relationships. This way, the comparison of influencing neighbor sets, which is also
part of the similarity measures can be computed incrementally and without an expensive
join over PQT and EDGES that would otherwise be necessary. The schema of the table
is DEP(S1,S2,T1,T2,STATUS_S,STATUS_T,W_S,W_T), where S1 and S2 describe a candidate
pair, andT1 andT2 its influencing pair. The respective duplicate status of each candidate pair
is stored in theSTATUSattributes, whereas weights are stored inW attributes.

Example 7 Fig. 2.3 shows a table excerpt of the three types of precomputations we perform.
Fig. 2.3(a) shows precomputed weights for actor values, Fig. 2.3(b) shows weights of similar
attribute values, and Fig. 2.3(c) shows the table storing candidate pair relationships.

How to perform precomputation efficiently is not discussed in this paper, as the approach is
specific to the particular similarity measure or DBMS used. As example, [16] discusses how to
compute string similarity joins efficiently in a database. In [8], an operator for similarity joins
for data cleaning is presented. We focus on scaling up the unified iterative phase both in space
and in time.
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2.2 Scaling Up Retrieval & Update

As described in Sec. 1.3.2, the iterative phase in DDG consists of a retrieval step, a classification
step, and an update step. In this section, we focus on scalingup retrieval and update, and
postpone the discussion of classification to Sec. 2.3 for which we present solutions orthogonal
to the choice of the retrieval and update algorithm.

A straightforward approach to scale up DDG is mapping the DDGprocess from main-
memory (Fig. 1.3) to a database. We refer to this baseline algorithm as RECUS/DUP, as the
Retrieval-Classify-Update-Sort process is guided by duplicate classifications. Although being
straightforward, we discuss RECUS/DUP, because it is the basis for our algorithm that scales
DDG both in space and in time. Algorithm 1 provides pseudocode for RECUS/DUP.
RECUS/DUP Retrieval Phase.Candidate pairs are retrieved from the database as long as the
priority queue tablePQT contains non-duplicate candidate pairs, i.e., pairs having STATUS= 0.
To retrieve pairs, we send a query to the database, which returns unclassified pairs in ascending
order of theirRANK. As long as no duplicate is found according to theclassify() function
(discussion postponed to Sec. 2.3), the order of candidate pairs in the priority queue remains
the same, so we simply iterate over these pairs. When a duplicate is detected, the retrieval query
is issued again at the next iteration and we classify pairs returned by the new result. Thus, we
sort the data stored in tablePQT during the retrieval phase only when it is necessary, i.e., when
a duplicate is found and the rank of dependent candidate pairs potentially changes.
RECUS/DUP Update Phase.After a pair has been classified, the status of the retrieved pair is
set to 1 if it has been classified as a duplicate, and to -1, if ithas been classified as non-duplicate.
Note that the functionupdateValue() updates both the value in the ResultSet as well as the value
in the database, i.e., inPQT.

In case of a duplicate classification, duplicates can be merged, enriched, or clustered in
any other way using thecluster() function, which updates graph tables and precomputed tables
according to the algorithm-specific method. The next step inany algorithm is to update the
status of the duplicate pair in tableDEP. Finally, the status of every non-duplicate dependent
pair has to be reset to 0, because of new evidence that they maybe duplicates.

RECUS/DUP makes the least possible use of main-memory by keeping only asingle pair
and possibly a dependent pair in main memory at every iteration, plus some information to
compute similarity. Thereby, RECUS/DUP can be applied to arbitrary large amounts of data.
However, as experiments show (see Sec. 3), sortingPQT is a very time consuming task. The
algorithm described next, namely RECUS/BUFF, reduces the sorting effort of RECUS/DUP and
makes DDG more efficient by using main memory more extensively, but with an upper bound.

RECUS/BUFF uses an in-memory bufferBs of fixed sizes to avoid sortingPQT each time
a duplicate is found. The intuition behind RECUS/BUFF is that although ranks of several pairs
may change after a duplicate has been found, sortingPQT immediately after finding the du-
plicate is not always necessary and may actually occur several times before an affected pair is
retrieved. For instance, consider the initial priority queue order of Fig. 2.1(e). All candidate
actor pairs have rank 0. Whena1 anda1’ are detected to be duplicates, the rank of their depen-
dent neighbor pair (m1,m1’) computed as the number of non-duplicate influencing candidates
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changes from 7 to 5. Although the rank has decreased, all actor and title pairs still have a lower
rank (0 and 2, respectively), and will be compared first. Hence, sorting the priority queue does
not immediately affect the comparison order and should therefore be avoided. To this end, we
useBs to temporarily store dependent neighbors of pairs classified as duplicates, whose rank
potentially decreases, and maintain these pairs in the order of ascending rank (the same order
as thePQT), which avoids sorting the much largerPQT.

Using an in-memory buffer requires modifications in the retrieval and update phase of RE-
CUS/DUP, because a pair is either retrieved fromPQTon disk or the bufferBs in main-memory,
and is either updated inPQT or in Bs, as depicted in Fig. 2.4.

Figure 2.4: Sample RECUS/BUFF iteration

RECUS/BUFF Retrieval Phase. In Alg. 2, we describe the retrieval phase of RECUS/BUFF.
As long as the bufferBs does not overflow, we distinguish the following two cases, using the
lastFromPQ flag: In the first case, the pair to be classified potentially isthe next pair from
PQT. That is, the pairr is pointing to has been classified previously, and we use thegetNext-
Tupel() function to get the next candidate pair fromPQT. The remaining steps performed in
this case are related to the update phase, discussed furtherbelow. In the second case, the pair
at the current position of cursorr has not been classified yet, because the first pair inBs had a
lower rank. In this case, we do not move forward the cursor.
RECUS/BUFF Update Phase.Having the correct pair in hand after the retrieval phase shown
in Alg. 2, the pair is classified as duplicate or non-duplicate as in RECUS/DUP, beforePQTand
Bs are updated accordingly. The pseudo-code for the RECUS/BUFF update phase is similar to
the update phase of RECUS/DUP in Alg. 1, and we highlight only differences. When updating
the status of the classified pair, two situations are possible: either the pair has been retrieved
from PQT, in which case the cursor still points to that pair, or the pair has been retrieved from
Bs. In the first case,STATUScan directly be updated at the current cursor position ofr using
updateValue(). In the latter case, the current pair, which has been retrieved fromBs, is at a
position with higher rank inPQT. Hence, the cursor would have to jump forward inr to update
the STATUSvalue, and jump back. We avoid this expensive operation by adding or updating
the classified pair toBs, together with its status. The pair stays inBs until the iterator onr has
moved to that pair inPQT, in which case it is updated inPQT and removed fromBs. We verify
whether a pair has been classified and stored inBs during retrieval and avoid classifying it again
by setting theupdateOnly flag to true. Instead, we update the status inPQT to the status stored
in Bs, which contains the most recent status.

Essentially, RECUS/BUFF adds dependent neighbor pairs toBs instead of updatingPQT
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and the next retrieval phase starts, without sorting the complete data inPQT. However, it can
be shown that RECUS/BUFF obtains the same final result as RECUS/DUP.

Example 8 Assume we classify pair (a1,a1’) as duplicate before its dependent neighbor pair
(m1, m1’). At this point, we add the dependent pair to the buffer andBs = {(m1,m1’,5,0)},
where 5 is the new rank of the pair and 0 the non-duplicate status. Unlike forRECUS/DUP,
we do not sort PQT again to get a new ResultSetr. Instead, we continue iterating through the
samer, with outdated rank and order. Now, consider we reach pair (m1, m1”) with rank 6 in
r. When checking for lower rank inBs, we see that it contains a pair with lower rank 5. Hence,
the next pair to be classified is the first pair in the buffer, e.g., (m1,m1’). We classify the pair as
duplicate. Now, because the cursor onr does not point to pair (m1,m1’), which is still sorted
according to its old rank (7), we put the pair back toBs with new status 1 to indicate it is a
duplicate. It will be updated later in PQT when the cursor onr reaches it. At the next iteration,
the pair the cursor ofr points to, e.g., (m1, m1”) has not been classified yet, so we do not move
the cursor forward.

In case of a buffer overflow, a strategy that frees buffer space has to be devised. To minimize
the occurrences of a buffer overflow, and hence of sortingPQT, we clear the entire buffer only
when it is full. That is, we update all pairs inPQT that were buffered, remove them fromBs,
and sortPQT in the next retrieval phase.

As for RECUS/DUP, the theoretical worst case requires sortingPQT after every iteration.
However, whereas RECUS/DUP reaches the worst case when every pair is classified as a dupli-
cate, RECUS/BUFF requires the buffer to overflow at every iteration, an unlikely event especially
when wisely choosing the size of the buffer. In setting the buffer size one should keep in mind
that (i) it must fit in main-memory, (ii) it should be significantly smaller than tablePQT to make
sorting it more efficient than sortingPQT, and (iii) it should be large enough to store a large
number of dependent pairs to avoid sortingPQT.

In this section, we have discussed the retrieval phase and the update phase of two algo-
rithms that enable scaling DDG both in space and in time. Next, we discuss how to scale up
classification.

2.3 Scaling Up Classification

Classifying a candidate pair requires the computation of a similarity that considers both object
descriptions (ODs) and influencing candidates (see Sec. 1.3.1). We present a similarity measure
template in Sec. 2.3.1. When the reference graph cannot be held in main-memory, similarity
computation requires communicating with the database. A straightforward solution, described
in Sec. 2.3.2 is to use a SQL query to compute the similarity. However, such a solution is
limited by the expressive capabilities of SQL or its implementation. For instance, complex
weight aggregate functions are rarely supported by commercial RDBMSs, and it is not possible
to interfere with the query processing to improve query execution time. Therefore, we propose
hybrid similarity computation (Sec. 2.3.3) and the early classification technique (Sec. 2.3.4).
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2.3.1 Similarity Measure Template

In this section, we provide a template for a base similarity measure. Different implementations
of this template [1, 3, 12, 29] use one or more similarity measures conforming to the template.
In the latter case, base similarity measure are for instancecombined with sum or multiplication.

First, we define the setN≈rd of duplicate influencing candidate pairs of a pair of candidates
(c, c′) as

N≈rd(c, c
′) ∶= {(n1, n2)∣(n1, n2) ∈ I(c, c′) ∧ (n1, n2) duplicates}

The setN≠rd of non-duplicate influencing candidates is

N≠rd(c, c
′) ∶= {(n1,�)∣n1 ∈ I(c) ∧ n1 has no duplicates inI(c′)}
∪ {(�, n2)∣n2 ∈ I(c′) ∧ n2 has no duplicates inI(c)}

where� denotes an empty entry. These definitions assume that we knowthat n1 andn2 are
duplicates or non-duplicates. This knowledge is acquired during the iterative phase, and the
similarity increases as this knowledge is gained.

Example 9 Assuming that duplicate actor and title candidates have already been detected, we
obtainN≈rd(m1, m1”) = {(a1, a1”)}, andN≠rd(m1, m1”) = {(a2, �), (t1, �), (�, a3’), (�, t3)}.

We further introduce a weight functionwrd(S) that captures the relevance of a set of can-
didate pairsS = {(ni, n

′
i)∣ni ∈ Ct ∧ n′i ∈ Ct, t ∈ T}. This weight function has the following

properties allowing its incremental computation and guaranteeing that the complete similarity
of two candidates monotonously increases.

wrd(S) =WAgg( ⋃
(ni,n

′

i
)∈S

wrd({(ni, n
′
i)})) (2.1)

WAgg({wrd({(n,�)}),wrd({(�, n′)})}) ≥ wrd({(n,n′)}) (2.2)

whereWAgg is an aggregate function, e.g.,sum or count that combines multiple weights
such thatWAgg(S) ≥ WAgg(S′), S′ ⊂ S. The first property guarantees that the weight of
a set of pairs can be computed based on weights of individual pairs, allowing an incremental
computation of the weight. The second property implies thatthe aggregated weight of two
non-duplicates is larger or equal to their weight if they were duplicates. The second property
is reasonable because the relevance of an object represented by two candidates should not be
larger than the combined relevance of two individual representations of that object. On the
other hand, when we do not know thatp andp′ are duplicates, we have to assume that they are
different and each contribute an individual relevance thatis likely to be larger or equal to their
combined relevance. More interestingly, this property guarantees that the similarity of two can-
didates monotonously increases as duplicate descriptionsamong these candidates are detected.
Furthermore, it allows us to estimate the total similarity (with an upper and lower bound) while
duplicates are detected, allowing us to use the estimate as pruning method (see Sec. 2.3.4). In
practice, variations of the inverse document frequency areused as weight function.
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Example 10 A simpler example for such a weight function iswrd(S) = ∣S∣, using count as
aggregate function. Using this weight function, we obtainwrd(N≈rd(m1, m1”)) = 1, and
wrd(N≠rd(m1, m1”)) = 4.

We make analogous definitions to compute the similarity and the difference of ODs, i.e.,
N≈od, N≠od, andwod(S). Duplicate ODs forN≈od are detected with a secondary similarity dis-
tance, e.g., edit-distance, which does not vary during the iterative phase and which can thus be
precomputed.

The final similarity measure template is:

sim(c, c′) =
∑i∈{rd,od}wi(N≈i (c, c′))

∑i∈{rd,od}wi(N≠i (c, c′)) +wi(N≈i (c, c′))
(2.3)

Example 11 The total similarity ofm1 andm1’, which we considered in the previous examples
as well, equalssim(m1,m2)= 1+0

4+1+0+0 = 0.25. Note that the zeros are due to the empty ODs.

The similarity measure obtains a result between 0 and 1. Given a user defined similarity
thresholdθ, if sim(c, c′) > θ, c andc′ are duplicates, otherwise they are non-duplicates.

Note that in definingN≈rd andN≠rd, we assume that we know thatn1 andn2 are duplicates or
non-duplicates. Clearly, this knowledge is acquired during the iterative phase, and the similarity
measure is defined to increase as this knowledge is gained (based on Eq. 1 and Eq. 2). On the
other hand, the similarity and the difference of ODs can be precomputed, as they do not vary
during the iterative phase.

Proof. We prove that the similarity of two candidatesc and c′ monotonously increases
with increasing duplicates found in their ODs and RDs, assuming that the properties of the
weight function defined in Eq. 2.1 and Eq. 2.2 hold, andWAgg = sum(). Let N≠rd,i =
{(n1,�), (n2,�), (�, n′1)(�, n′2), . . .)} and N≈rd,i = {(n3, n

′
3
), . . .} at a given processing point

i of a comparison algorithm. In the next step, the algorithm determines thatn1 andn′
1

are dupli-
cates, henceN≠rd,i+1 = {(n2,�), (�, n′2), . . .)} andN≈rd,i+1 = {(n3, n

′
3
), (n1, n

′
1
), . . .}. We prove

thatsimi(c, c′) ≤ simi+1(c, c′) by showing that the nominator ofsim increases from stepi to
stepi + 1, whereas the denominator decreases.

It is true thatN≈rd,i ⊂ N≈rd,i+1, so using Eq. 2.1 and the fact thatsum(S) ≥ sum(S′) for
S′ ⊂ S, we conclude that

sum [wrd(N≈rd,i),wod(N≈od)] ≤ sum [wrd(N≈rd,i+1),wod(N≈od)]

This proves that the nominator ofsimi(c, c) is smaller than the nominator ofsimi+1(c, c). The
denominator ofsim decreases from stepi to stepi + 1:

sum [wrd(N≈rdi+1
),wod(N≈od),wrd(N≠rdi+1

),wod(N≠od)]

= sum [wrd(N≈rdi
∖ {(n1,�), (�, n′1)}),wod(N≈od),wod(N≠rdi

∪ {n1, n
′
1}),wod(N≠od)]

≤ sum [wrd(N≈rdi
),wod(N≈od),wrd(N≠rdi

),wod(N≠od)]

because, following Eq. 2.2,w ({(n,n′)}) − sum [w ({(n,�)}) ,w ({(�, n′)})] ≤ 0. The nomi-
nator ofsim(c, c′) increases from stepi to stepi + 1, and the denominator decreases from step
i to stepi + 1, so we conclude thatsimi(c, c′) ≤ simi+1(c, c′).
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2.3.2 SQL-Based Similarity Computation

To compute a similarity conforming to the template on data not residing in main memory, a
straightforward method is to use SQL queries to determine the operands of Eq. 2.3. These
include computing the similarity and the difference of ODs and of influencing candidate pairs.
As the techniques to compute these are similar, we focus the discussion on ODs and make some
remarks concerning influencing candidate pairs.

Figure 2.5 outlines the query determining OD weights. For every pair of candidates(c, c′)
of type t, we first determine the setSIM of similar OD attributes between these pairs, and the
associated weight. Because an OD is usually composed of several types of attributes, similar
ODs have to be determined foreveryattributeai ∈ At and are unified to obtain the complete
setN≈od(c, c′) (ln. 5). Next, the setDIFF = N≠od(c, c′) is determined by selecting all OD attributes
from OD(c) andOD(c′) that are not inSIM, together with associated weights. Again, different
types of attributes are treated individually and unified. The weight aggregation functionwod

is then applied toSIM (ln. 19) and onDIFF (ln. 20) and the two resulting double values, i.e.,
wod(N≈od(c, c′)) andwod(N≠od(c, c′)), are returned by the query.COALESCEis used to account for
the case whereSIM or DIFF are empty, in which case the weight is set to 0.

WITH SIM AS (

SELECTA1, A2, W 1
FROM ODSIMW_a1_tS,Ct C1,Ct C2 2
WHERE S.A1 = C1.a1 AND S.A2 = C2.a1 3

AND C1.CID = c AND C2.CID = c′ 4
UNION ... a2 ... UNION ... UNION ...an ... ), 5

DIFF AS ( 6
SELECT C1.a1 A A1.W W 7
FROMCt C1,ODW_a1_tA1 8
WHERE C1.CID = c 9

AND A1.A = C1.a1 10
AND A1.A NOT IN (SELECTA1 FROM SIM) 11

UNION 12
SELECT C2.a1 A A2.W W 13
FROMCt C2,ODW_a1_t A2 14
WHERE C2.CID = c′ 15

AND A2.A = C2.a1 16
AND A2.A NOT IN (SELECTA2 FROM SIM) 17

UNION ... a2 ... UNION ... UNION ...an ...), 18
SW AS (SELECT COALESCE(wod(W),0) ODSIM FROM SIM), 19
DW AS (SELECT COALESCE(wod(W),0) ODDIFF FROM DIFF) 20
SELECTODSIM, ODDIFF FROM SW, DW 21

Figure 2.5: Computing OD weights in SQL

Computing the weights of influencing candidate pairs is analogous to computing OD
weights. We first determine the set of influencing pairsI(c, c′) of candidate pair(c, c′) by
selecting all tuples from tableDEPwhereS1= c andS2= c′. Due to the fact that we do not have
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multiple types of dependencies, no UNION operation is required. The set of duplicate influ-
encing pairsSIM= N≈rd(c, c′) is defined as the set of influencing neighbors inDEP whereSTA-
TUS_T= 1, i.e., where the target pair (T1,T2) is a duplicate. Non-duplicatesDIFF= N≠rd(c, c′)
are all influencing candidates ofI(c, c′) that do not appear in any tuple ofSIM. The weights of
these sets are aggregated as for OD weights (see Fig. 2.5), using the weight functionwrd.

Using SQL queries to compute weights of ODs and influencing pairs has the benefit that
the DBMS deals with computing these values for large amountsof data, making use of its opti-
mization capabilities. However, the applicability of the query is limited to aggregate functions
supported by the DBMS for the weight functionswod andwrd. As a consequence, we define
hybrid similarity computation, where SQL queries are used to gather data, and aggregation is
performed in an external program.

2.3.3 Hybrid Similarity Computation

In the hybrid version of OD weight computation, we use two queriesQ1 andQ2. Q1 determines
the set of similar OD attribute pairs with their weight, corresponding to the subquery SIM
in Fig. 2.5. Q2 determines the set ofall OD attributes defined asOD(c) ∪ OD(c′), so it is
essentially the subquery DIFF in Fig. 2.5 without line 11 andline 17, which check whether an
attribute value is in the set of similar attribute values. Inhybrid similarity computation, this
check is performed outside the database in an external program, as well as weight aggregation.
The external program consists of the following steps, wherethe setsD (duplicates) andN
(non-duplicates) are initially empty.

1. For every tuple,< v1, v2,w > returned byQ1, let D ∶=D ∪ {((v1, v2),w)}.

2. For every tuple< v,w > returned byQ2, check if {(v1,i, v2,i)∣(v1,i, v2,i) ∈ D ∧ (v1,i =
v ∨ v2,i = v)} = ∅. If it is empty, letN ∶= N ∪ {((v,�),w)}.

3. Once all pairs have been processed, compute the aggregateweightswod(D) andwod(N).

Example 12 When computing OD similarity and OD difference of (a1, a1’), Q1 returns similar
values pairs, which are added toD in Step 1. Hence,D = {((Brad Pitt, Brad Pit), 1)}. Q2

returnsOD(a1) ∪ OD(a1’) = {(Brad Pitt, 1), (Brad Pit, 1)}. Because both OD values are
part of a similar pair inD, N = ∅ in Step 2. Step 3 computeswod(D) = 1 andwod(N) = 0,
assumingwod computes the sum of weights.

For influencing pairs, the hybrid strategy is slightly different. Indeed, for ODs we have only
a precomputed table for similar OD attribute values, soQ1 andQ2 have different input tables.
For influencing pairs, tableDEP stores both duplicate influencing pairs and non-duplicate in-
fluencing pairs together with their status. Consequently, we use a queryQ3 to determineI(c, c′),
which sorts influencing pairs in the ascending order of theirstatus, so that duplicate pairs are
the first pairs in the result. The external program then takescare of splitting up duplicates and
non-duplicates. The order chosen guarantees that all duplicates are added toD before the first
non-duplicate appears, so that we can apply Step 2 as for OD weight computation.



2.3. SCALING UP CLASSIFICATION 18

Example 13 When comparing (m1, m1’), Q3 returns tuples{(a1,a1’,1,1), (a2,a2’,1,1),
(a1,a3,1,0), (a2,a1’,1,0), (a2,a3,1,0), (t1,t2,1,0)} in that order, where the tuple schema is
<cand1, cand2, weight, status>. The external program iterates through these tuples and adds
them toD as long as status equals 0. This results inD = {( (a1,a1’),1), ( (a2,a2’),1) }. The re-
maining tuples are split up in two candidates and we apply Step 2 and obtainN = {(((a3),�),1),
(((t1),�),1), (((t2),�),1)}. Using weight sum aswrd, we obtainwrd(D) = 2 andwrd(N) = 3.

Compared to the SQL based similarity computation, we have tosend three queries to the
database instead of one query, which can be a drawback due to communication overhead. Fur-
thermore, the results returned byQ1, Q2, andQ3 are larger than the result of the query used
in SQL based similarity computation, and these results needto be processed in main mem-
ory, i.e., entries are added toD andN and are aggregated. But compared to the in-memory
buffer, we consider this main-memory consumption as negligible, because in the worst case
∣D∣+ ∣N ∣ = ∣I(c)∣+ ∣I(c′)∣, which can be taken into account when setting the buffer size. In prac-
tice, these sets are small (14 candidates being the maximum observed in experiments reported
in DDG algorithms summarized in Sec. 1.2). The main advantage of hybrid similarity compu-
tation is that it overcomes database system limitations, e.g., when weight aggregation functions
are not supported. We expect that both methods have comparable runtime, because they both
compute the same, only that processing is split between the database and an external program
for hybrid similarity computation. This is confirmed by our experiments. We now present a
technique that improves classification runtime when using hybrid similarity computation.

2.3.4 Early Classification

Essentially, early classification interrupts similarity computation as soon as we know if the
outcome results in a duplicate or non-duplicate classification. Early classification distinguishes
itself from existing filters defined as upper bounds to the similarity measure [1, 23] in that no
extra filter function is defined to prune non-duplicates prior to similarity computation. Instead,
the similarity function is computed incrementally and intermediate results are used to classify
non-duplicates or duplicates prior to termination. As real-world data usually contains only a
small percentage of duplicates, we decide to determine non-duplicates more efficiently using
early classification, although early classification can also be used to classify pairs of candidates
as duplicates before similarity has been completely calculated.

If a candidate pair similaritysim(c, c′) > θ, candidatesc andc′ are duplicates, and non-
duplicate otherwise. Hence, the following inequations, which we use in our implementation,
correctly classify non-duplicates, althoughsim (Eq. 2.3) is not calculated completely. As a
reminder,sim is defined as

sim(c, c′) =
∑i∈{rd,od}wi(N≈i )

∑i∈{rd,od}wi(N≠i ) +wi(N≈i )
(2.4)

Parametersc andc′ of sim, N≈
od

, N≈
rd

, andN≠
rd

have been omitted for brevity. It is easy to verify
that the following holds:

wod(N≈od) +wrd(N≈rd) ≤ θ → sim ≤ θ (2.5)
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wod(N≈od) +wrd(N≈rd)
wrd(N≠rd) +wod(N≈od) +wrd(N≈rd)

≤ θ → sim ≤ θ (2.6)

To include early classification, we modify hybrid similarity computation. First, we do not
treat ODs and influencing pairs sequentially by first computing the similarity and the difference
of ODs, and then computing them for influencing pairs. Instead, we compute their similarity to
obtainN≈od +N≈rd, and then incrementally compute the difference of ODs and influencing pairs.
That is, we executeQ1 andQ3 and perform Step 1 for ODs and iterate through the result of
Q3 until the duplicate status stored in the attributeSTATUSof a tuple switches to 0. Before
we continue, we apply Eq. 2.5. If it classifies the pair as a non-duplicate, we avoid iterating
over non-duplicates inQ3 and executingQ2. Otherwise, we start computing the difference of
influencing pairs by iterating through the remaining tuplesreturned byQ3. At every iteration,
we check if Eq. 2.6 can classify the pair as non-duplicate to potentially save further iteration
as well as queryQ2. If the pair is not classified as a non-duplicate after iterating throughQ3’s
result, we executeQ2 and iterate over its result, again checking at every iteration if Eq. 2.6 clas-
sifies a non-duplicate. When reaching the final iteration, wehave finally computedsim(c, c′),
and return the corresponding classification result. This implementation of early classification
guarantees that similarity computation stops as soon as oneof above rules classifies a pair as
non-duplicate.

Using early classification helps to detect non-duplicates without computing the exact sim-
ilarity. So it helps to increase classification efficiency when a significant portion of pairs are
non-duplicates. The larger the number of influencing pairs or OD attribute values of candidates
are, the more processing is potentially saved using early classification, because the number of
iterations through non-duplicates among influencing pairsand ODs (i.e., in the results ofQ3

andQ2, when it was executed) that are potentially saved increasesthe larger the set of influ-
encing pairs and ODs get. This explains why in our experiments, which are discussed next,
classification time is not affected by increasing the numberof influencing neighbors (and hence
pairs) when using early classification.
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/* Retrieval */

while executeSQL(
SELECT COUNT(*)C FROM PQT WHERESTATUS= 0

) returns C> 0 do
booleanisDup← F ;
ResultSetr ← executeSQL(
SELECT * FROMPQT WHERESTATUS= 0 ORDER BYRANK );
while r has more tuples andisDup = F do

Tuplet ← r.getNextTuple();
/* Classification */

isDup←

classify(t.getValue(C1), t.getValue(C2));
/* Update */

if isDup = true then
t.updateValue(STATUS, 1);
cluster(t.getValue(C1), t.getValue(C2));
executeSQL(

UPDATERELSETSTATUS2= 1
WHERE T1 =t.getValue(C1)

AND T2 = t.getValue(C2) ) ;

ResultSetd ← executeSQL(
SELECTS1, S2, RANK(S1,S2) R FROMDEP
WHERET1 = t.getValue(C1)
AND T2 = t.getValue(C2)

AND STATUS1≠ 0 OR 1 ) ;

while d has more tuplesdo
executeSQL(

UPDATEPQT
SETSTATUS= 0, RANK= d.getValue(R)
WHEREC1 = d.getValue(T1)

AND C2 = d.getValue(T2) ) ;

else
t.updateValue(STATUS,-1)

Algorithmus 1 : RECUS/DUP Algorithm
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while PQT or Bs has unclassified pairsdo
booleanoverflow ← false;
booleanlastFromPQ ← true;
booleanupdateOnly ← false;
ResultSetr ← executeSQL( same query as in Alg. 1 );
while r has more tuples andoverflow = falsedo

Tuplet;
if lastFromPQ = true then

t ← r.getNextTuple();
if t ∈ Bs then

t.updateValue(STATUS,status inBs);
updateOnly ← true;

else
updateOnly ← false;

else
t.getCurrentTuple();
lastFromPQ ← true;

Pairtb := b.getFirstEntry();
if updateOnly = false andpb.getRank() ≤ p.getRank() then

p ← pb;
lastFromPQ ← false;

else
lastFromPQ ← true;

... classification & update ...

Algorithmus 2 : RECUS/BUFF Retrieval Phase



Chapter 3

Evaluation

We evaluate our proposed methods based on experiments on artificial data, experiments on
real-world data, and a comparative study to related work.

3.1 Data Sets

RealCD (Real-world CD Data): The real-world data set we use comes from the CD domain1.
We consider CDs, artists, and track titles as candidates. CDODs consist of title, year, genre,
and category attributes, and they are related to artist and track candidates. Artist and track
candidates respectively have the artist’s name and the track title as OD. Track candidates depend
on artist candidates. Using RealCD, we have little influenceon data characteristics. To modify
parameters and study their effect, we also use artificial data.
ArtMov (Artificial Movie Data): From a list of 35,000 movie names and 800,000 actors from
IMDB2, we generate data sets for which we control (i) the number of candidate moviesM
and the number of candidate actorsA to be generated, (ii) the connectivityc, i.e., the average
number of actors that influence a movie and vice versa, (iii) the duplicate ratiodr, defined as the
percentage of duplicate pairs that enter the priority queue, (iv) the probability of errors in ODs
consisting of a movie name and an actor name for the respective candidate types, and (v) the
probability of errors in influencing candidates. Further details are available in [31].

In our experiments,A =M = k
2
. The number of duplicate pairs equalsk ∗ dr, which result

from duplicatingdr k
2

original movie candidates as well asdr k
2

actor candidates. The remaining
k − k ∗ dr non-duplicate pairs are equally distributed between moviepairs and actor pairs, each
resulting fromx non duplicates such thatk−dr∗k = x∗(x−1). Hence, the relationship between
number of candidates and priority queue size is given by

A =M =max(
pq ∗ dr

2
, roundUp (x)) +

pq ∗ dr

2
(3.1)

In all our experiments error probabilities are set to 20%. When not mentioned otherwise, con-
nectivityc = 5 and the buffer’s size is set to 1,000. We repeated experiments five times to obtain

1http://www.freedb.org
2http://www.imdb.com

22
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average execution times, which, in addition to the large number of experiments explains the
moderate number of candidates for ArtMov data compared to the real-world data set.

3.2 Experimental Evaluation

All presented experiments used DB2 V8.2 as DBMS, running on aLinux server and remotely
accessed by a Java program running on a Pentium 4 PC (3.2GHz) with 2GB of RAM. That is,
all runtimes reported also include network latency.

3.2.1 Retrieval and Update Scalability

We first compare the scalability of RECUS/BUFF to the scalability of the baseline algorithm
RECUS/DUP.

Experiment 1. We start with an evaluation of how both algorithms behave with varyingdr on
various data set sizes.
Methodology. We generate ArtMov data according to Eq. 3.1 withpq ranging from 10,000 to
50,000 candidate pairs in increments of 5,000, and vary the duplicate ratiodr betweendr = 0.2

anddr = 1.0 in increments of 0.2. As representative results, we show runtimes of RECUS/DUP

and RECUS/BUFF (in seconds) fordr = 0.4, anddr = 1.0 in Fig. 3.1. The number of candidates
(∣A∣ + ∣M ∣) is shown at the top x-axis, whereas the bottom x-axis shows the size ofPQT(in
thousands). Both axes are correlated through Eq. 3.1.

RECUS/DUP
RECUS/BUFF

number of candidates (1000)

# pairs in PQT(1000)

re
tr

ie
va

l+
up

da
te

tim
e

(s
)

4 8 12 16 20

50403020100

3000

2500

2000

1500

1000

500

0

RECUS/DUP
RECUS/BUFF

number of candidates (1000)

# pairs in PQT(1000)

re
tr

ie
va

l+
up

da
te

tim
e

(s
)

10 20 30 40 50

50403020100

3000

2500

2000

1500

1000

500

0

(a) dr = 0.4 (b) dr = 1.0

Figure 3.1: Retrieval & update time varying data set size &dr.

Discussion.Fig. 3.1 clearly shows that RECUS/BUFF outperforms RECUS/DUP regardless of
dr. Obviously, sortingPQT is more time consuming than maintaining the order of the smaller
in-memory buffer. We further observe that the higherdr, the more time retrieval and update
need for both algorithms, because in both algorithms sorting PQT occurs more frequently:
RECUS/DUP sortsPQT every time a duplicate has been found, and RECUS/BUFF sorts the
PQTevery time the buffer overflows, happening more frequently,because influencing neighbor
pairs enterBs more frequently. The final observation is that with increasing priority queue size /
number of candidates, RECUS/BUFF scales almost linearly for practical duplicate ratios (below
0.8). Therefore, we expect RECUS/BUFF to be efficient even on very large data sets such as
RealCD, as Exp. 6 confirms.
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Figure 3.2: Retrieval & update time for varyings andc.

Experiment 2. From Exp. 1, we conclude that RECUS/BUFF performs better than RECUS/DUP,
because it sortsPQT less frequently, and instead maintains a main-memory buffer of fixed
sizes. Clearly,s plays a central role in the efficiency gain. Another factor that affects the filling
of Bs is the connectivityc. The higher it is, the more neighbors enter the buffer when a duplicate
is found, and an overflow occurs more frequently. So, we expect that RECUS/BUFF gets slower
with increasingc and smallers.
Methodology. We study how a changing buffer size affects ArtMov data with 10,000 pairs in
PQT and adr = 0.4. We varys from 1 to 10,000. We further vary connectivityc from 1 to 5
for all considered buffer sizes. Results are shown in Fig. 3.2, which depicts the sum of retrieval
and update time for all buffer sizes (left), update time for small buffer sizes (top), and retrieval
time for small buffer sizes (bottom).
Discussion.We observe that for all but small buffer sizes, both retrieval time and update time
stabilize, and hence the sum stabilizes. For very small buffer sizes, the smaller the buffer, the
longer retrieval and update take. Furthermore, the larger the connectivityc, the more time is
needed for retrieval and update, mainly resulting from the increased update complexity. For
largerc, when a duplicate is found, a larger number of dependent pairs needs to be determined
and added to the buffer. As a general rule of thumb, a buffer size of 1000 suffices to significantly
improve efficiency.

3.2.2 Classification Scalability

We evaluate the scalability of classification, consideringthe baseline SQL based approach, we
call SQL/Complete (SQL/C for short) and hybrid similarity computation with and without early
classification, called HYB/Complete (HYB/C) and HYB/Optimized (HYB/O), respectively.
Experiment 3. We compare runtimes of SQL/C, HYB/C, and HYB/O on ArtMov dataof
different sizes, using varying duplicate ratios. We expectSQL/C to be slower than HYB/O,
whereas SQL/C should be comparable to HYB/C.
Methodology. We generate ArtMov data withPQT sizes ranging from 5,000 to 40,000 in
increments of 5,000, and for each size, we generate data withdr varying from 0.2 to 1.0 in
increments of 0.2. We run each classification method on each data set, and measure its runtime
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in seconds. Results are shown in Fig. 3.3 for selected duplicate ratiosdr = 0.2, anddr = 0.8.

HYB/O
HYB/C
SQL/C

number of candidates (1000)

# pairs in PQT

co
m

pa
ris

on
tim

e
(s

) 2 4 6 8

4035302520151050

200

150

100

50

0

(a) SQL Complete, dr =
0.2

HYB/O
HYB/C
SQL/C

number of candidates (1000)

# pairs in PQT

co
m

pa
ris

on
tim

e
(s

) 8 16 24 32

4035302520151050

200

150

100

50

0

(b) SQL Complete, dr =
0.8

Figure 3.3: Classification time comparison

Discussion.As expected, SQL/C and HYB/C have comparable execution times, because they
both have to compute the same result. All classification methods scale linearly on the range
of considered priority queue sizes, and hence with the number of candidates when no blocking
technique is additionally used. Early classification allows to save classification time: atdr = 0.2,
32 % of classification time (compared to HYB/C) is saved, which gracefully degrades to 26%
at dr = 0.8, when 40,000 pairs are compared. Fordr = 1, we still observe5% savings, which
are due to pairs that are classified as non-duplicates, although they are (false negatives). The
reduction in the benefit of early classification with increasing dr is due to the fact that the more
duplicates are inPQT, the less similarity computations may be aborted for non-duplicates.

Experiment 4. Our next experiment shows how the connectivityc affects classification effi-
ciency. Becausec defines how many influencing neighbors a candidate has, whichhave to be
determined using join operations and processed, we expect similarity computation to be slower
for largerc when using SQL/C or HYB/C. On the other hand, HYB/O potentially saves more
processing the largerc.
Methodology. We varyc, i.e., the average number of influencing candidates, fromc = 10 to c =
50 in increments of 10 for an ArtMov dataset of size 10,000 and duplicate ratio 0.4. Figure 3.4
reports comparison time for SQL/C and HYB/O, SQL/C and HYB/Cbeing comparable.
Discussion. When using SQL/C, comparison time increases with increasing c, an effect also
observed by other DDG algorithms. On the other hand, runtimeis around 7 ms for allc when
using HYB/O. This experiment shows that HYB/O counters the negative effect of increasingc
on efficiency. We currently do not have an explanation for theshape of the SQL/C curve, where
comparison time is roughly constant betweenc = 20 andc = 40. We suspect that “intriguing
behavior of modern [query] optimizers” [26] is partly responsible for that behavior, but this
needs further investigation. Nevertheless, the general trend is clear.

The analysis of the techniques proposed in this paper using artificial data of moderate size
leads to the conclusion that RECUS/BUFF and HYB/O scale up best. We now put them to the
test by applying them to large, real-world data.
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Figure 3.4: Classification time & connectivity

3.2.3 Real-World Behavior

Using RealCD, we show real-world scalability of our approach over a large data set. Results
on effectiveness are omitted due to the lack of space. The benefit of DDG on effectiveness has
already been studied extensively (Sec. 1.2).
Experiment 5. We show that RECUS/BUFF in combination with HYB/O scales linearly with
the number of candidate pairs inPQT on a large, real-world data set.
Methodology. Using RealCD data with 1,000,000 candidates, we apply a blocking technique to
reduce the number of candidate pairs enteringPQT, a common technique also used by [6, 19].
Note that we evaluate the behavior of our approaches according to the number of candidate pairs
that are inPQT, so this does not affect our conclusions. After blocking, 2,000,000 candidate
pairs enterPQT. Buffer size is 1,000, so that we can compare runtimes with those obtained on
artificial data. We obtain the following results: retrievaltakes 1,379 s, classification takes 5,482
s, and update takes 17,572 s.
Discussion.Among the two million candidate pairs inPQT, we found 600,000 duplicates, so
the observed duplicate ratio is 0.3. If we extrapolate retrieval and update time obtained on
ArtMov data of size 50,000 withdr = 0.3, for which we obtained a retrieval time of 36 seconds
and 432 seconds for update using a buffer of 1,000, we see thatthe results obtained on a million
candidates with similar parameters are in accord with the linear behavior of retrieval and update
observed in Exp. 1. Indeed, the expected retrieval time is 1,440 seconds, so the observed 1,379
seconds are 4% from the expected value. Similarly, the expected 17,280 seconds for update and
the 17,572 seconds measured are only 2% apart. Classification time is also in accord with the
linear behavior of HYB/O observed in Exp. 3.

3.3 Comparative Evaluation

Table 3.1(a) summarizes how the different phases of DDG scale in time depending on the size
of the datas, the duplicate ratiodr, and the connectivityc, which in total amounts to a linear
behavior. Table 3.1(b) summarizes resultsreportedfor other DDG algorithms, omitting those
that do not report any runtime, which altogether use smallerdata sets as those reported here.
Tab. 3.1(b) reports on the data set size, runtime (without initialization time) and the parame-
ters for which the algorithms donot scale linearly (s, dr, andc are considered). We observe
that RECUS/BUFF takes comparably long, but this comes as no surprise as DB communica-
tion overhead and network latency add to the runtime. More interestingly, none of the DDG
algorithms except RECUS/BUFF scales linearly in time with all three parameterss, dr, andc.
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Indeed, all algorithms but RECUS/BUFF do not scale linearly in time with the data set sizes,
which compromises scaling up DDG to large amounts of data.

Parameter Retrieval & update Classification
PQT sizes linear (Exp. 1,5) linear (Exp. 3,5)

duplicate ratiodr < 0.8 linear (Exp. 1) constant (Exp. 3)
connectivityc linear (Exp. 2) constant (Exp. 4)

Overall linear linear
(a) DDG scalability using RECUS/BUFF and HYB/O

Approach # candidates Runtime (s) Not linear in
RC-ER [6] 68,000 890 s, c

RelDC [19] 75,000 180 - 13,000a
s, c

LinkClus [33] 100,000 900 s

RECUS/BUFF 1,000,000 24,433 -

adepending on connectivity
(b) Comparison time for different approaches

Table 3.1: Comparative evaluation



Chapter 4

Conclusion and Outlook

This paper is the first to consider scalability of duplicate detection in graphs (DDG). We pre-
sented a generalization of existing iterative DDG algorithms consisting of an initialization phase
and an iterative phase. The latter in turn consists of retrieval, classification, and update steps.
We then presented how to scale up these phases to large amounts of data, with the help of an
RDBMS.

For iterative retrieval and update, we proposed RECUS/BUFF to scale in space and in time.
It uses an internal buffer to avoid expensive sorting, whichis performed by the straightforward
baseline algorithm RECUS/DUP.

To scale up classification of candidates, we proposed hybridsimilarity computation to scale
in space and to overcome the limitations of a pure SQL variant. To scale up classification in
time, we presented the early classification technique, which interrupts similarity computation
when it is sure that a pair is not a duplicate.

Experiments on large amounts of data, such as one million candidates (at least an order
of magnitude larger than previously considered data sets) validate our approaches and show
that the methods we propose significantly outperform a straightforward mapping of DDG from
main-memory to a database. Part of the research presented here was successfully applied to an
industry project [32]. More specifically, we used the similarity measure template to systemat-
ically vary different similarity-based classifiers. Finally, our research on scaling classification
yielded to the design decision of using hybrid similarity measurement with early classification.

In the future, we plan to detect a candidate’s OD attributes and influencing candidate types
automatically, because this is the task requiring the most user interaction. Instead of determining
duplicates in a data source, we also plan to investigate how we can avoid duplicates to enter the
database.
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