

Earthquake source models for earthquakes in Northern Iran

S. Donner, M. Strecker, D. Rößler, A. Ghods, F. Krüger, A. Landgraf, P. Ballato Universität Potsdam, contact: stefanie.donner@uni-potsdam.de

1. Motivation (Fig. 1)

- double vergent mountain belt between two aseismic blocks
- complex system of thrust and strike slip faults
- good structural and geomorphic data base contrasts lacking or insufficient geophysical data base
- open questions concerning seismotectonics and seismic hazard assessment:
 - kinematics of faults and their geometry with depth
 - slip partitioning and its reasons/mechanism
 - regional stress field
 - active transtension in the internal domain of central Alborz
 - stress transfer and interaction between faults

2. Moment tensor inversion (Figs. 2 & 3)

- first tests on moment tensor inversion and velocity model
- moment tensor inversion of broadband waveforms for selected events
- inversion in frequency domain: avoid possible complications due to time shifting between data and synthetics
- frequency range 0.03 to 0.1 Hz (surface waves)
- comparison with P-wave polarities (Fig. 2a)

3. Perspectives

development of an extended algorithm using

- waveforms of surface and body waves from broadband data
- first motion body wave polarities from broadband and short-period data as well as accelerometers
- Amplitude ratios of P- and S-waves from broadband and short-period data as well as accelerometers
- comprehensive study of earthquake source parameters starting with M ≥ 3.8
- develop a scaling relation between M_L and M_w
- determining regional stress tensors using retrieved moment tensors

1-9). Circles mark earthquakes between 1996 and 2008. Symbol size: magnitude; symbol colour:

depth; red lines: main faults; purple triangles: broadband station; blue reversed triangles: short-

period stations; transparent squares: accelerometers; grey focal mechanisms: Harvard CMT.

Yellow solutions correspond to solutions in Fig. 2.

Fig. 3 - velocity model: Currently for inversion used velocity model. Modified global ak135 model. Black: P wave velocity, blue: S wave velocity, orange Vp/Vs relation.

Acknowledgement:

^[3] IIEES online at http://www.iiees.ac.ir

^[7] Harvard CMT catalogue online at http://www.seismology.harvard.edu

^[8] EMSC online at http://www.emsc-csem.org [9] NOAA online at http://www.ngdc.noaa.gov