Correct Dynamic
Service-Oriented
Architectures

Modeling and Compositional
Verification with Dynamic
Collaborations

Basil Becker, Holger Giese, Stefan Neumann

Technische Berichte Nr. 29

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\3,0'0]61‘ .S'ij.}.
. ‘ Hasso
@ﬁ@ Plattner
A <D Institut

° &Q’ IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts far
Softwaresystemtechnik an der Universitat Potsdam | 29

Basil Becker | Holger Giese | Stefan Neumann

Correct Dynamic Service-Oriented Architectures

Modeling and Compositional Verification
with Dynamic Collaborations

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet Gber
http://dnb.d-nb.de abrufbar.

Universitatsverlag Potsdam 2009
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 4625
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts flir Softwaresystemtechnik
an der Universitat Potsdam.

Basil Becker, Holger Giese and Stefan Neumann

System Analysis and Modeling Group,

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmertstr. 2-3, D-14482 Potsdam, Germany
[Basil.Becker|Holger.Giese|Stefan.Neumann]@hpi.uni-potsdam.de
March 2009

Das Manuskript ist urheberrechtlich geschutzt.

Online veroffentlicht auf dem Publikationsserver der Universitat Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2009/3047/

URN urn:nbn:de:kobv:517-opus-30473
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30473]

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-940793-91-1

mailto:verlag@uni-potsdam.de�

Abstract

Service-oriented modeling employs collaborations to capture the coordination of multi-
ple roles in form of service contracts. In case of dynamic collaborations the roles may
join and leave the collaboration at runtime and therefore complex structural dynamics
can result, which makes it very hard to ensure their correct and safe operation. We
present in this paper our approach for modeling and verifying such dynamic collabo-
rations. Modeling is supported using a well-defined subset of UML class diagrams,
behavioral rules for the structural dynamics, and UML state machines for the role be-
havior. To be also able to verify the resulting service-oriented systems, we extended our
former results for the automated verification of systems with structural dynamics [7, 8]
and developed a compositional reasoning scheme, which enables the reuse of verifica-
tion results. We outline our approach using the example of autonomous vehicles that
use such dynamic collaborations via ad-hoc networking to coordinate and optimize their
joint behavior.

Contents

1 Introduction
2 State of the Art

3 Modeling
3.1 Systems with Dynamic Structure
3.2 Dynamic Collaboration
3.3 Systems with Dynamic Collaborations

4 Formal Semantics
41 FormalModel
4.2 SemanticMapping

5 Verification
51 Foundations.
5.2 Application

6 Compositional Verification
6.1 Simulation. e
6.2 Application
6.3 Compositional Reasoning Scheme
6.4 Application
6.5 Comparison

7 Conclusion & Future Work

11
11
12
16

19
19
22

29
29
32

33
33
34
35
38
38

41

Chapter 1

Introduction

The traditional approach for architectural modeling employs components with ports and
interfaces to decouple the different components. The service-oriented approach in con-
trast employs collaborations describing the interaction of multiple roles in form of service
contracts (cf. [3, 9]) and thus is able to capture complex interaction schemes between
multiple roles in a more comprehensive manner than interfaces and ports which at most
capture bidirectional interaction schemes.

In the service-oriented approach orchestration describes a collaboration with a sin-
gle dedicated coordinator that enacts the collaboration between the other parties. The
choreography interaction scheme in contrast support the free interplay of the different
roles within a collaboration.

In addition, advanced applications such as distributed self-adaptive systems [22] or
advanced mechatronic systems [29] require that the roles of collaborations can be as-
signed at run-time rather than only statically and that the number of roles and their
assignment may vary over time. Therefore, dynamic collaborations which are not re-
stricted to orchestration but also support choreography and where the participants and
their assigned roles can change dynamically at run-time have to be supported when
modeling dynamic service-oriented architectures.

If employed for safety-critical or high-integrity systems, proper means for verifying
such systems are necessary, too. However, the automated verification of systems with
structural dynamics is already a major challenge for a fixed number of roles. If dynamic
collaborations with a dynamic number of roles are considered, the state space of the
resulting models is often not finite and direct automated verification with model check-
ing as proposed in [13, 5, 30, 26, 23] is therefore not applicable. On the other hand,
existing approaches to address infinite state systems [4, 6] are usually too restricted to
be applicable.

In [17], we presented an approach to guarantee crucial safety properties for pat-
terns/collaborations with a fixed number of roles using model checking. The behavior of
the interaction of a collaboration and its roles could be verified separately. Then, these
results could be combined in a compositional manner by verifying the synchronization
of each component separately exploiting that the components refine the collaboration

5

roles. We also developed an approach [7, 8] to address the automatic formal verifi-
cation of systems with structural dynamics, as it results from rules to join and leave
a collaboration, employing UML models that are extended using concepts from graph
transformation systems. The technique automatically verifies inductive invariants for the
potentially infinite state models to exclude unsafe situations. Also a first combination of
the former two approaches to verify the coordination for one collaboration and the out-
lined pure structural rules have been presented in [15]. However, this former approach
is limited to solutions where the collaboration is instantiated or terminated as a whole,
only a small, finite number of static roles per collaboration exist, the reactive behavior of
the roles itself can be fully decoupled from the structural dynamics and the collaboration
does not support parameter passing.

In this paper we present an approach, which overcomes these limitations. We can
enable the modeling and verification of service-oriented systems with dynamic collab-
orations where the roles can join or leave at runtime, the number of roles is not nec-
essarily restricted to a small finite number, the reactive behavior of the roles itself has
not be fully decoupled from the structural dynamics and the safe collaboration may also
depends on the exchanged parameters between the roles.

The dynamic collaborations and service-oriented systems can be modeled by a well-
defined subset of UML class diagrams, behavioral rules for the structural dynamics and
UML state machines for the role behavior. For those notations we provide profound for-
mal semantics, which are based on graph transformations. Those semantics then allows
us to verify the collaborations and the service-oriented systems employing our former
results for the automated verification of systems with structural dynamics. Further, we
have extended these verification technique to also support the reactive behavior with un-
bounded integer attributes. The increased complexity of service-oriented systems with
structural-dynamics and reactive behavior, which may interfere with each other, can be
tackled by a compositional reasoning scheme we present in this paper, too.

The main contributions of the paper concerning modeling and verifying systems
with dynamic collaborations are: (1) An extended formally underpinned modeling ap-
proach for systems with structural adaptation and dynamic collaborations which be-
sides structural changes and clocks supports also integer values and parameters with
simple updates. (2) An extended checking algorithm for inductive invariants for systems
with structural adaptation and dynamic collaborations, which supports besides structural
changes and clocks also integer values with simple updates. (3) A compositional rea-
soning scheme which permits to verify guaranteed properties of dynamic collaborations
upfront and to reuse in the verification of the systems which use them that drastically
reduced the verification effort and therefore makes also the verification of more complex
systems with dynamic collaborations feasible.

Throughout the paper we use an application example, which is based on the Rail-
Cab' research project. RailCab’s intention is the development of a new railway tech-
nology. The main elements of RailCab are small and autonomous shuttle. Customers

http://www.railcab.de and [29]

can order these via the Internet and book for a direct connection. To reduce the shut-
tles’ energy consumption convoys of multiple shuttles are built, which then drive in close
proximity. Therefore, the shuttles in a convoy have to be coordinated, as otherwise
collisions between them could be not excluded. The coordination among the Shuttles
is achieved by exchanging so called braking profiles, which assign a minimum and a
maximum position for a Shuttle for each point in the future [16].

In this manner the performance of such systems could be drastically improved, if ad-
hoc networking and suitable real-time coordination is employed to enable a coordinated
behavior of the autonomous units (cf. [24]). Related examples are automotive systems
based on car-2-car communication which support the driver when approaching a cross-
ing or concepts to build convoys of autonomous vehicles. However, due to the involved
ad-hoc connections, dynamic formation building, and the real-time interaction it is hard
to ensure the correctness of such coordinated autonomous units (cf. [21]).

We present first results on the verification of this case study obtained using a newly
developed prototype.?

The paper is structured as follows: We first review the current state-of-the-art for
approaches tackling the modeling and verification of service-oriented systems or sys-
tems with dynamic structural adaptation in Section 2. Then, we outline the employed
modeling approach, which captures the service contract instantiation and termination
based on UML in Section 3 and present the underlying formal model and the mapping
to it in Section 4. The new verification algorithm is introduced in Section 5 and the new
compositional reasoning scheme, which allows reusing results from the separate verifi-
cation of the dynamic collaborations is outlined in Section 6. We finish the paper with a
conclusion and outlook on future work.

2The prototype extends like [17, 7, 8] Fujaba (www.fujaba.de).

7

Chapter 2
State of the Art

Modeling using roles and focusing on collaborations rather than components is not new:
Since the 1970s the OOram Software Engineering method [25] has been developed
which provides a clear distinction between roles and objects and separates different
collaborations in form of role models. The idea of contracts, which has been introduced
in [18], also already supports a number of participants and in addition results in some
contract obligations the classes that take over the role of the participants have to fulfill.
Also a less clear historical connection between roles/collaborations and design pattern
[14] exists, which is reflected today by the fact that design patterns can be modeled in
UML using collaborations.

The use of collaborations for the modeling of services has been proposed by sev-
eral authors (cf. [28, 9]) as well as all proposals for a UML Profile and Meta-Model for
Services [3, 1]. In [28] static but hierarchic UML collaborations and the distinction be-
tween the collaboration and the collaboration use are presented. However, the authors
omit the definition of the roles’ behavior. An approach not using UML that overcomes
this limitation is presented in [9] which uses sequence diagrams for potentially incom-
plete early behavior specifications. The UML Profile [3] is conceptually similar to [28]. It
further extends [28] also supporting behavior specifications for the different roles.

UML class diagrams for the structure and graph transformations for the behavior
modeling are also employed in [5] to model service-oriented architectures, but in con-
trast to our approach services are not modeled as collaborations.

We can conclude that none of the modeling concepts supports dynamic collabora-
tions as addressed in this work.

To our best knowledge no work exists which especially addresses the problem to
verify dynamic collaborations, however, a number of related approaches for the verifi-
cation of service-oriented systems exist. Model checking has been employed to check
business process models with varying number of active process instances. In [12], for
example, standard BPEL models are enriched by resource allocation behavior to ensure
the correct detection of deadlocks and safety violations for web services compositions
under resource constraints. In [10] an approach dedicated to the compositional ver-
ification of middleware based software architectures is presented. The verification of

9

a software architecture is divided into the verification of properties, which hold for the
middleware and those, which hold for the complete architecture. However the approach
does not cover structural dynamics and is restricted to finite state systems.

For systems with structural dynamics like our earlier work [7] some work has been
published, which does not cover dynamic collaborations to their full extent: An approach
which has been successfully applied to verify service-oriented systems [5] is the one of
Varro et al. It transforms visual models based on graph theory into a model-checker spe-
cific input [30]. A more direct approach is GROOVE [26] by Rensink where the checking
works directly with the graphs and graph transformations. DynAlloy [13] extends Alloy
[19] in such a way that changing structures can be modeled and analyzed. For oper-
ations and required properties in form of logical formulae it can be checked whether
given properties are operational invariants of the system. In [21] a petri net variant is
employed for the modeling and verification of some issues of an intelligent transporta-
tion system and it is suggested to use classical model checking techniques.Real-Time
Maude [23], which is based on rewriting logics, is the only approach we are aware of
covering structural changes as well as time. The tool supports the simulation of a single
behavior of the system as well as bounded model checking of the complete state space,
if it is finite. However, all these approaches do not fully cover the problem as they re-
quire an initial configuration and only support finite state systems (or systems for which
an abstracted finite state model of moderate size exist).

There are only first attempts that address the verification of infinite state systems
with dynamic structure: In [4] graph transformation systems are transformed into a finite
structure, called Petri graph which consists of a graph and a Petri net, each of which
can be analyzed with existing tools for the analysis of Petri nets. For infinite systems,
the authors suggest an approximation. The approach is not appropriate for the verifica-
tion of the coordination of autonomous vehicles even without time, because it requires
an initial configuration and the formalism is rather restricted, e.g., rules must not delete
anything. Partner graph grammars are employed in [6] to check topological properties of
the platoon building. The partner abstraction is employed to compute over approxima-
tions of the set of reachable configurations using abstract interpretation. However, the
supported partner graph grammars restrict not only the model but also the properties,
which can be addressed a priori.

10

Chapter 3
Modeling

In this section we outline the notations we employ for modeling systems with dynamic
structure and how we extend them to model collaborations and the combination of both.

3.1 Systems with Dynamic Structure

Systems with dynamic structure, such as the RailCab system, can be described by
the means of UML class and UML object diagrams, where the UML object diagrams
describe the system’s states (cf. [20, 7]).

DistanceCoord «actor» is_coord “oles
Shuttle [= Coorglenator
ot rone R e o
next 1 1) 1 ispart 0.1 «‘m[e»
o1 Shuttle [t Participant
1 Track [L__isAt 0.1 [+position F\oa;mat Track EI
g ot
(a) Basic system (b) RailCab system

Figure 3.1: Class diagrams for the systems

In Figure 3.1(a) the class diagram describing the elements of the application exam-
ple is shown. The system consists of Shuttles, which are located at exactly one Track and
Tracks that have at most one successor each. Like shown in [7] patterns/collaborations
are used to coordinate the movement of the Shuttles. A Shuttle can be part of a collab-
oration represented through the DistanceCoord object via links realizing the rear or front
association. An object of type DistanceCoord is connected to exactly one Shuttle over the
rear association and to exactly one Shuttle over the front association.

The system behavior for the structural dynamics is modeled by rules in form of Story
Patterns (cf. Figure 3.2(a)). A Story Pattern is an UML object diagram, whose elements
are augmented with the special stereotypes <create>> or <destroy>> to describe the
side-effects of applying the rule (cf. [20, 7]). A Story Pattern is enabled if the elements
with no or the <destroy>> stereotype attached could be matched. The application of a

11

s :Shuttle st tle
<<Cr?:/§te” s1:Shuttle s2:Shuttle
«destroy»
isAt AL ‘ isAt isAt‘
t2 frack tl fTrack tiTrack
next

{s.timeAtTrack=10, s.timeAtTrack:=0} {Is1.position-s2.position|< A}

(a) The move rule (b) Hazard collision

Figure 3.2: Hazard and move rules

—_ — P —

\/ Collaboration \/ \DynamicCoIIaboration\/

rear/‘ T \front Participant _\Coordinator
1 1

n 1
ClassifierA| |ClassifierB ICIassifierAl‘CIassifierB

(a) Simple Collabora- (b) Dynamic Collabo-
tion ration

Figure 3.3: Different types of collaborations

Story Pattern deletes and creates elements w.r.t. their stereotype. We will later refer to
these Story Patterns as modification rules.

Forbidden situations, i.e. hazards or failures, are modeled with Story Pattern without
side effects. In the special case of our application example we want our system to be
free of collisions (cf. Figure 3.2(b)). More details on modeling system with dynamic
structure with Story Pattern could be found in [20, 7].

3.2 Dynamic Collaboration

Dynamic collaborations are collaborations with a varying number of participants. In
contrast to the DistanceCoord collaboration described before where only a fixed number
of collaborating elements exist, dynamic collaborations can consist of an arbitrary num-
ber of participating objects and the number of participants as well as the participating
objects can change at runtime.

<<role>> ¢ Coord M <<role>>

Participant| Sl B , |Coordinator|
Participant """~ Coordinator
controls {ordered
Port 0. ¢ O?trl

<<impl>> T <<env>> <<impl>>
ParticipantPortnpown| WirelessLink inkup [CoordinatorPort
+ index: T o1 ot :ﬂﬂg;‘BSWT” T 0.1 0114 index: T
+update(T):void +update(T):void +confirm(T):void

P ™ +confirm(T):void +setIndex(T):void

/Erevu,l next 0. 1:\
Figure 3.4: The dynamic collaboration Coord described in UML notation

This characteristic is described in form of the cardinalities in the UML collaboration
diagram shown in Figure 3.3 where Collaboration consists of a fixed number of participat-

12

ing elements and the DynamicCollaboration can consist of an arbitrary number of Participants
and a single Coordinator.

However, the rather abstract description of dynamic collaborations as depicted in Fig-
ure 3.3 (b) is not sufficient when we want to consider also the behavior of the dynamic
collaboration. Therefore, to be able to describe the communication of the dynamic col-
laboration we in addition employ ports such as CoordinatorPort and ParticipantPort, objects
representing the environment such as WirelessLinks as well as links between them en-
coding the communication connections as shown in Figure 3.4. Following the dynamic
collaboration shown in Figure 3.4 is called Coord.

Usually when using UML classes or components a fixed number of provided or re-
quired ports are attached to components. For the dynamic collaboration Coord, however,
the number of CoordinatorPorts of the Coordinator role as well as the number of ParticipantPorts
and the respective Participant roles changes dynamically. Therefore, the structure of the
dynamic collaboration Coord models the communication ports explicitly as separate ob-
jects.

Parts of the environment in which the dynamic collaboration is deployed may also
play an important role in the behavior. If so, we represent them explicitly like in case of
the WirelessLink environment object.

Coord consists of the classes Participant, ParticipantPort, WirelessLink, CoordinatorPort and
Coordinator. Participant and Coordinator both have a «<role>> stereotype attached, which
identifies them as roles within Coord. Each Participant has at most one ParticipantPort asso-
ciated but a Coordinator could have an arbitrary number of CoordinatorPorts. The ports im-
plement the communication, hence the stereotype <impl>> is attached. A ParticipantPort
could be connected via the WirelessLink to at most one CoordinatorPort and vice versa.
CoordinatorPorts could be connected to a previous or a next CoordinatorPort over the associ-
ations prev and next. The stereotype <env>> is applied to the WirelessLink to identify it as
a part of the environment.

The structural dynamics for the dynamic collaboration, like the instantiation and the
destruction are modeled using Story Patterns. Figure 3.5 shows the modification rules
(a) join and (b) create for our dynamic collaboration Coord. These rules have to check that
the given roles do not already participate in any collaboration of the same type.

«Create» controls «create»
[«create» X ’% [«create» N ﬁ«create» -
cp2:CoordinatorPort| pre"L:pl:CcJordinatorPort icp2: CoordinatorPort| in’i_e‘(cpl:CoordinatorPort|
L 31 [

| SN
«create»] linkUp «creafe» \inkUp] ««««« te» | linkUp «create» linkUp |«Ueate"

«Create» -

[«create_» - «Create» -
wll:WirelessLink w|2:W|releSsLmk‘ wl1:WirelessLink
L

|
«create» | linkDown linkDown | «create»| _linkDown linkDown _[«create»

«create» [«create» . [«(reate» .
pp2_ParticipantPort ’991: ParticipantPort| pp2: ParticipantPort| ppl: ParticipantPort|

1
«c

L] L
reate» | port port | «crea te»} port port ‘«creale»

part2:Participant| partl:Part\cwpant‘ [partZ:Participant‘ [P_EarthPartici ant‘
L I L 1 L]
pp3: tPort| pp4 ntPort|
~—|]
(a) join rule (b) create rule

Figure 3.5: Modification rules for Coord

13

The leave and destroy rule is shown in Figure 3.6. The leave rule shown in Figure 3.6(a)
removes the elements, which are added by the join rule shown in Figure 3.5(a). The
destroy rule deletes the elements which are created by the create rule including the
Coordinator, but only if there is no other CoordinatorPort connected to the Coordinator.

controls «last»| co:Coordinator [controls controls «last»

<destroy>

«destroy» W N «destroy>
[cpZ:CoordlnatorPort n:(‘é cpl:CoordlnatorPort‘ [cpZ:CoyordinatorPort
[{ 1 L

«destroy»] linkUp__ «destroy> finkUp] «destroy»| _linkUp

destroy> N
wi2:WirelessLink

<destroy» N
wl2:WirelessLink wl1:WirelessLink

«destroy»] linkDown linkDown] «destroy»] _linkDown

«destroy» «d
oo BhticipantPort| [op1: Participantport] Bgs:wlgay?ticigantllort‘
[[1
«destroy»] port port][«destroy»| _port
part2:Participant| [partl:Participant‘ [partZ:Participant
L 1 | —
(a) leave rule (b) destroy rule

Figure 3.6: The leave and destroy rule for Coord

The reactive behavior of the dynamic collaboration is described in form of UML state
machines, which are assigned to the ports and environment classes. This allows to also
model the communication with a unbounded number of participants with simple state
machines while assigning state machines to the roles would require to have parameter-
ized state machines.

The state machines realize the propagation of indices between the Coordinator
and the Participants via the corresponding ports and the connected WirlessLinks as fol-
lows. The Coordinator role uses the CoordinatorPort to communicate via a WirelessLink
with the ParticipantPort and vice versa. During communication the CoordinatorPort prop-
agates indices (objects of the countable and partially ordered type T) he receives
to the ParticipantPort via the WirelessLink. Afterwards the ParticipantPort confirms to the
CoordinatorPort also via the WirelessLink, that he has received the index. Depending on
the current structural context the behavior of CoordinatorPort differs in two cases. First,
the CoordinatorPort only propagates the index to a next CoordinatorPort if such a port is con-
nected via the next association and second, if the CoordinatorPort is the first one (no other
CoordinatorPort is connected via the prev association) the own index is incremented by one
before it is propagated to the ParticipantPort or send to the next CoordinatorPort.

Confirmed

linkUp.confirm(i)[i==index]

linkUp.confirm(i)[i!=index]

Figure 3.7: State machine cPort
The behavior of the CoordinatorPort is described by the state machine cPort shown in

Figure 3.7. cPort starts in the state Waiting. Depending on the situation if a previous or
next CoordinatorPort exists the behavior of the state machine differs. The variation of the

14

behavior is realized within transition guards such as in the lower transition between the
states Waiting and Send. If no previous CoordinatorPort is connected via the association prev
then the index of cPort can be incremented by one and the cPort changes to the state Send.
If a previous CoordinatorPort exists the only possibility to change from state Waiting to Send is
to receive the message setindex over the channel prev' (channels are represented through
links realizing associations, e.g., through the association linkUp between the classes
WirelessLink and CoordinatorPort shown in Figure 3.4). In this case the index received by
the message is stored. When in state Send the index of cPort is sent with the message
update via the channel linkUp to the state machine of the corresponding WirelessLink and
cPort changes to state Stored. In state Stored cPort waits for the message confirm over the
channel linkUp. If the message confirm contains the parameter value i with i == index
cPort changes to state Confirmed. Otherwise cPort uses the self transition of the state
Stored. If a CoordinatorPort is connected over the next association the index can be sent
via the message setindex over the channel next. If such a CoordinatorPort is not connected
the message is not sent. In both cases the state machine can change to the initial state
Waiting.

wLinkDown] wLinkUp
lkUp update(i)/inde: DWn—II Ikan frm()/d xUp = i

Ready Recelved] Readyj [Recelved

wnpdtld Dwn)l /\kUp onfirm(indexUp)
linkUp.updatatsy | linkDown.confirm(iy/

Figure 3.8: State machine of WirelessLink

The state machine for the WirelessLink is shown in Figure 3.8. The WirlessLink realizes
behavior for sending an index from the CoordinatorPort to the ParticipantPort and vice versa.
To send an index via the WirelessLink to the ParticipantPort, the CoordinatorPort sends the
message update via the channel linkUp with the parameter ¢ as the index (cf. Figure 3.7).

On the left side of Figure 3.8 the state machine wLinkDown is shown which receives
the index via the message update using the channel linkUp and changes from the state
Ready to the state Received. With the transition from Received back to Ready this index is
sent via the message update on the channel linkDown to the ParticipantPort. On the right side
of Figure 3.8 the orthogonal state machine wLinkUp is shown which sends an index in
the opposite direction using the message confirm. When using unreliable asynchronous
communication (like in the case of a wireless link) it is possible to lose indices. This
characteristic is covered by the Ready states’ self transitions.

The behavior of the ParticipantPort is shown in Figure 3.9. When the state machine of
the ParticipantPort has received the index by the message update in state Waiting from the
WirelessLink like described above, it could receive any newly arriving index using the self
transition of the state Stored. When in state Stored the last stored index could be sent

"Communication between different CoordinatorPorts could be realized without any communication link
because all CoordinatorPorts of a collaboration are assigned to a single role and thus run on the same node.

15

linkDown.update(i)/index = i

linkDown.update(i)/index = i

Stored
linkDown. confirm(index———

Waiting

Figure 3.9: State machine pPort

back to the WirelessLink via the message confirm via the channel linkDown. This index is
then sent to the CoordinatorPort using the state machine of the connected WirelessLink.

implied: /
lc :Coordinator l
controls, controls

cgl:CoordinatorPor(l |c92:CoordinatorPort
1L
linkUp | linkUp |

wll:WirelessLink wi2:WirelessLink

‘c 1:CoordinatorPort_next| ¢ 2:CoordinatorPort‘ linkDown | inkDown
1: ParticipantPort| |pp2 ParticipantPort|

is_part | is_part |
[partl:Participant| part2:Participant|

‘ linkUp linkUp

‘wl:W\relessLink‘ ‘WZ:WireIessLink

linkDown linkDown

T T

lpgl: ParticipantPort pp2:Participa, ntPortl b —

I ‘sl:Shutt\e}ﬂ‘t:TrackMsZ:Shuttle‘
L | L | L |

{implied: ppl.index = pp2.index}

(a) Property ordering (b) Property coordExists
Figure 3.10: Guaranteed properties

For each dynamic collaboration we define a set of hazards, i.e. situations that should
not occur, as well as guaranteed properties, i.e. implications which must hold for specific
situations. While for hazards simply the forbidden situation is modeled, for a guaranteed
property we describe that a condition or structure is implied. A guaranteed property
named ordering for our application example is shown in Figure 3.10(a). The meaning is:
The existence of the depicted structure implies that the indices, assigned to the single
participants, are partially ordered.

A complete set of such guaranteed properties or excluded hazards together with the
modification rules which are embedded into a model when it comes to a collaboration
use define the interface of a collaboration. As we will demonstrate later, the interface
helps to reduce the complexity of the design when using collaborations and also enables
their compositional verification.

3.3 Systems with Dynamic Collaborations

Systems with dynamic collaborations are a combination of the two concepts introduced
above. The class diagrams of both concepts are combined by specifying which actor is
playing which role defined in the class diagram for dynamic collaborations.

Figure 3.1(b) depicts how the classes shown for the dynamic collaboration Coord in
Figure 3.4 and the classes of the dynamic system are merged together to build the
combined class diagram of the RailCab system. The Shuttle class has two associations,
which allows it to play the Participant or the Coordinator role.

16

In order to be used in the context of the merged class diagrams, the collaboration’s
modification rules have to be linked to the elements defined in the class diagram of the
system. By construction the applied modification rules then refine the modification rules
defined for Coord.

prev
ch:CoordinatorPort- cp1:CoordinatorPort

linkUp linkUp

wi2:WirelessLink wl1:WirelessLink

[linkDown linkDown |

pp2 ParticipantPortl |921: Part\cigantPort‘
1 L]
[port port]
‘partZ:Participant‘ ‘partl:Participant
L | L

is_pa
s2:Shuttle

«destroy»isAt

t2 dTrack

next ‘ t2 frack |next| t3 {Track [next| t1 :Track‘
{sl.timeAtTrack=10, sl.timeAtTrack:=0} | J 1 I 1]

(a) Modified moveCoord (b) Simplified join rule
rule

Figure 3.11: Extended move rule and simplified join rule

The system’s normal rules could use the classes defined in the collaboration’s dia-
gram of Coord (cf. Figure 3.4). For our application example this offers the possibility to
move one Shuttle at a Track where already another Shuttle is located (cf. Figure 3.11(a)), if
Coord is instantiated between the two Shuttles. Then, the collaboration ensures that due
to the coordination between the shuttles no collision can occur (cf. Figure 3.2(b)).

Also the guarenteed property that Coord exists when two Shuttles are at the same track
could be specified in a merged diagram like shown in Figure 3.10(b).

If a modification rule is accordingly extended to the systems context, this is specified
using the shorthand as depicted in Figure 3.11(b) for the join rule. The rounded rectangle
references the dynamic collaboration Coord’s modification rule join (cf. Figure 3.5(a)). The
association is_part (cf. Figure 3.1(b)) is used to connect the Shuttles s1 and s2 to the roles
of the Coord’s join rule. The additional labels part1 and part2 specify that s1 and s2 are
associated with the Participant roles part! and part2 respectively.

17

Chapter 4

Formal Semantics

To enable the later described automated verification, we require that our extended UML
models are equipped with a formal semantics. We therefore used graph transformation
systems (GTS) [27] as underlying formal model and extend them by integer attributes
and clocks.

4.1 Formal Model

Typed graphs (in the following we write only graphs) are used to represent the system
state. A graph G is a pair (V, E') with V' a set of vertices and £ C V x V a set of edges.
In addition, a set of types 7 and a functiont : VUFE — 7 assigning types to all elements
is assumed. A graph G’ matches a graph G, if there exists an isomorphic function iso
that maps all elements of G’ to elements of G of the same type. A graph pattern P =
(P*, P~) is a pair of a positive graph P and a negative application condition (NAC) P~
with P C P~. P matches a graph G, if there exists an isomorphic function iso that maps
all positive elements of P (P*) to elements of G of the same type and no isomorphic
function iso’ exists which extends iso and maps at least one negative element of P (P~
but not in P*) to elements of G of the same type. We write G’ <;,, G resp. G’ < G if the
specific iso does not matter. If for two graphs iso and iso’ exists such that G’ <;,, G and
G <;so0 G’ holds, we write G =~ G'.

A complex graph pattern P = (P*,{P,,..., P, }) is a pair build of a graph P* and
set of negative application conditions (NACs) {P,,..., P, } with P™ C P~ forall 1 <
i < n. P matches a graph G, if there exists an isomorphic function iso that maps
all positive elements of P (P*) to elements of G of the same type and no isomorphic
function iso’ exists which extends iso and maps at least one NAC of P (P ,...,P;)
completely to elements of G of the same type. Note that a graph pattern P = (P*, P7)
equals a complex graph pattern P/ = (P*,{P,,..., P, }) where {P[,....P, } ={P C
P~—P* C P

A graph transformation system S = (R, prio) consists of a set of graph transforma-
tion rules R, defining all possible transformations in the transformation system and a

19

function prio which assigns priorities to each rule. The state (configuration) of S is a
graph G typed via t¢. In our setting the types 7 and the function ¢ can be derived from
the UML class diagram.

Example 1: For the UML class diagram for the system Basic de-
picted in Figure 3.1(a), we get the following set of types: Tuy =
{Track, Shuttle, DistCoord, isAt, next, rear, front} and a related typing function tg,.
Analogously, the type set 1., and the typing function t.., for the collabora-
tion Coord are derived from the classes shown in Figure 3.4 and the type set
Traces @nd the typing function tq..., are determined by the class diagram of
Figure 3.1 (b) which references the one shown in Figure 3.4.

A rule r € R with r = ((L*, L), R) with graph pattern (L, L™) is applicable to a
graph G if G matches (L™, L~) and when no rule with higher priority can be applied.
During the application of arule r = ((L*, L™), R) to a graph G, the elements that are in
L* but notin R are removed from G, and elements that are in R but not in L* are added
to G.

Example 2: The move Story Pattern depicted in Figure 3.2(a) could easily be
translated into a rule r.,. = (L%, L...), R.e) Where L. . contains the graph
induced by the vertices named t1, 12 and s except the edge between s and
t1. The pattern L_,, contains the node s1. R, is similar to L but the edge
between s and 12 is replaced by the formerly excluded edge between s and
t1. In general all elements with none or the <destroy>> stereotype attached
belong to L ., L . consists of all elements of L and all elements, which

are crossed out. R, is built of elements without any or with the <create>>
Stereotype.

We write G —, G’ if rule r can be applied to graph G and the application re-
sults in graph G’. We write G —* G’ if G can be transformed into G’ by a (possi-
bly empty) sequence of rule applications. For a given graph transformation system
S = (R, prio) and a graph G, the set of reachable graphs of S starting from G is de-
noted by REACH(S,G) ={G" | G —-* G'}.

In case of an attributed graph transformation systems (AGTS) S = (R, prio) we in
addition have vertex type specific attributes a € .A. An attributed graph (G, «) consists
of a graph GG as well as an assignment a which provides for each vertex n and related
attribute a the current value as a(n, a) if a is defined for ¢(n).

Example 3: For the UML class diagram of the Basic system depicted in Fig-
ure 3.1(a), we get in addition to the types and typing function outlined in
Example 1 the attribute set Az, = {position, length, timeAtTrack} for the vertex
types such that for length is defined for all vertices of type Track and position
and timeAtTrack are defined for all vertices of type Shuttle.

20

Attributed graph patterns are also accordingly extended such that they can also con-
tain Boolean constraints ¢p over the vertex attributes (P = ((P*, P7), ¢p)). A forbidden
graph pattern is such an attributed graph pattern, which has to be excluded by the later
verification. In addition, for attributed graph rules r» = ((L, ¢), R, 1) also an update x can
be used to determine the new attribute values. If » matches a graph (G, «) the resulting
attributed graph (G’, 3) results from the related pure graph transformation G —, G’ for
a graph isomorphism iso and the attribute update 5 such that 5(n,a) = u(iso(n),a) if
defined and otherwise (n,a) = a(n, a).

Hazards simply equal forbidden graph pattern. For mapping guaranteed properties
with an implied part, we have to distinguish two cases how we can map them. If we
have only a condition which is implied as the ordering in Figure 3.10(a), this can be easily
mapped to a forbidden graph pattern with a NAC by simply negating the condition. The
same is possible if the implied structure consists of a single instance. On the other
hand if the implied structure consists of more than one instance such as for coordExists
in Figure 3.10(b), we have to use a forbidden complex graph pattern to capture that it is
forbidden that the whole implied structure is not present when the normal structure can
be found.

Example 4: In case of the hazard collision depicted in Figure 3.2(b), we
can do the encoding directly by translating the Story Pattern into a for-
bidden subgraph pattern P, consisting of the graph pattern (P/..., P
with vertices set {vg,vs, ...} and a boolean property ¢ Which encodes
|s1.position - s2.position| < A by the two inequalities s1.position - s2.position < A
and s2.position - s1.positon < A. The resulting property, which excluded
the hazard is then ®..,. For the guaranteed property ordering, which is
depicted in Figure 3.10(a), the specified structure implies a given con-
dition. The shown property translates to a forbidden subgraph pattern
Fumng CONsisting of the required graph pattern (P, . P.....,) With vertices set
{Vpart1; Vpart2, - - . } @nd a boolean property ¢...., by inverting the boolean im-
plication partl.index > part2.index resulting in partl.indexr < part2.index.
In case of a guaranteed property with a complex implied structure such
as coordExists (depicted in Figure 3.10(b)), the required complex graph
pattern results in the positive part Pt ... and the implied graph in the

negative part P ... of a forbidden complex subgraph pattern F, s =
((‘F)C;ErdExists7 {R:;)rdExists } Y tTU@)) -

While attributed graph transformation systems permit to model complex discrete
models, we have to also support time-related behavior and thus in addition consider
also timed attributed graph transformation systems (TAGTS) S = (R, R., prio) with a
set of urgent rules R, C R to denote rules which must be executed immediately when
enabled. The set of attributes A is split into .4, and A; for clocks and integer attributes
respectively and clock resets and comparisons of clocks with constants can be used to
describe the time related aspects of the behavior. A timed graph transformation system
(TGTS) as supported in [8] is simply a TAGTS where A; = (.

21

To reflect the continuous character of time, we have, like for hybrid automata [2], two
steps for a TAGTS: (1) At first, the classical discrete AGTS step results in a discrete
change of the graph and attributes like for a AGTS. (2) Secondly, a time consuming
continuous step as for a TGTS for 6 > 0 can result for a current state (G, «) in state
(G, a®d) with (adz)(n,a) = a(n,a) for a € A; and (a®z)(n,a) = a(n,a)+x fora € A, iff
no urgent rule r exists which is enabled for (G,a®d’) and § < §." The inverse operation
to @ is o.

4.2 Semantic Mapping

A dynamic collaboration ¢ can be straight forward mapped to a TAGTS by extending the
set of types 7 and mapping of vertices and edges to types ¢ as described in Example 1
such that all types defined by the class diagram of the collaboration are included. We
refer to the types and type mapping specific for the collaboration c as 7. and ¢..

Using the types the rules of the collaboration ¢ can be derived from the Story Pattern
and combined in a rule set R¢, RS are encoded in prio, as outlined in Example 2 and 4.
For the priorities we use simply the guideline that all rules have the same priority 0.

Also the behavior of CoordinatorPort, WirelessLink and ParticipantPort described through
state machines (compare Section 3) is translated into GTS rules. For this purpose
for each transition of a state machine the required graph structure and condition over
the attributes of this graph as well as the resulting updates are derived according to the
following scheme: The state of an element is encoded through an integer variable which
is stored as an attribute of the element. For hierarchical state machines appropriate
attributes are added to the respective classes. The created rule includes the involved
classes and possibly the associations (in case when two ore more transitions of different
state machines are synchronized via messages, these transitions are realized through
a single rule) between them. Additionally the concerned elements need to be in the
appropriate state. The update of the created GTS rules does not affect the matched
structure in form of the elements and associations. The update sets the state of the
involved elements to the successor state of the transitions and executes all actions of
these transitions. The following example shows how two synchronous transitions are
realized with one GTS rule.

Example 5: Two synchronous transitions between two instances of the state
machine cPort shown in Figure 3.7 are combined to a Story Pattern like shown
in Figure 4.1. Two instances of the cPort state machine are synchronized
when the first instance is connected via the next association (compare Fig-
ure 3.4) to the second instance and when the first is in state Confirmed and
the second state machine is in state Waiting. In this case the first instance
changes from state Confirmed to state Waiting and simultaneously the second

A more detailed presentation of the semantics can be found in [8].

22

instance changes from state Waiting to Send while both are synchronized via
the message setindex. As an additional postcondition the second state ma-
chines stores the index, which it has received through the message setindex
from the first state machine. The derived Story Pattern matches the situation
where two elements of the type CoordinatorPort are connected via appropriate
next and prev associations (compare Figure 3.4). For comparing and stor-
ing the states of the involved elements additional variables are added. The
update of the rule simply sets the states according to the successor states
of the state machines. The update of attribute valuations has been formally
introduced in Section 4.1 and is realized for storing the index, which is sent
via the synchronous message. The resulting Story Pattern is shown in Fig-
ure 4.1.

coord1:CoordinatorPort g;i‘t’ coord2:CoordinatorPort

{coordl.state==Confirmed, coord2.state==Waiting,
coordl.state:=Waiting, coord2.state:=Send, coord2.index:=coordl.index}

Figure 4.1: Mapping of synchronized behavior

Another example where two synchonous transitions are realized using a single GTS
rule is described in Example 6 where state machines of type wLinkUp and pPort are in-
volved.

Example 6: Two synchronous transitions of the state machines wLinkUp and
pPort are combined to a Story Pattern as shown in Figure 4.2. The first transi-
tion (shown in the lower part of pPort cf. Figure 3.9) is synchronized over the
message linkDown.confirm with the second transition (shown on the top right of
the state machine wLinkUp). The created rule matches all situation where a
WirlessLink is connected to a ParticipantPort via an association linkDown and the
found elements are in the appropriate state (state Stored for pPort and Ready
for wLinkUp). For comparing and storing the states of the involved elements
additional variables are added. The update of the rule simply sets the states
according to the successor states of the state machines and assigns the in-
dices (analog to the transition of the state machines). The update of attribute
valuations is realized according two the same scheme like described above.

link:WirelessLink| part:ParticipantPort|
linkDown

{link.wLinkUp.state==Ready, part.state==Ready,
link.state.wLinkUp:=Received, part.state:=Waiting, link.indexUp:=part.index}

Figure 4.2: Map synchronous communication

A transition which is not synchronized with any transition of another state machine
is mapped according the above shown scheme with just one element in the required

23

structure?. An example is shown in case of the state machine cPort in Figure 4.3 where
the lower transition from state Waiting to state Send is not synchronized.

Example 7: The not synchronized transition from state Waiting to state Send
of the state machine cPort is realized through the Story Pattern shown in
Figure 4.3. The Story Pattern consists of the required structural element of
type CoordinatorPort. Additionally the transition has the guard prev == null,
which requires that no other instance of type CoordinatorPort is connected via
the prev association. This condition is realized in the Story Pattern in form of
the shown NAC. Like described in case of the synchronous transition to be
able to compare and store the state of the CoordinatorPort additional variables
are added. As a precondition the current value of the variable state of the
element coord needs to have the value Waiting (representing the current state).
If the preconditions are fulfilled and the rule is applied the state variable of
coord is set to the successor state Send. The side effect of increasing the
index is also encoded in the additional variable index, which is incremented
by one like shown in Figure 4.3.

coord:CoordinatorPort coordZ: ratorPort

BESN

{coord.state==Waiting, coord.state:=Send, coord.index ++}

Figure 4.3: Mapping of not synchronized behavior

The properties guaranteed as well as the hazards excluded by the collaboration ¢;
are mapped to a set of forbidden subgraph patterns F; and the related property ®; as
described in Example 2 and 4.

Then, the whole collaboration ¢; is captured by a TAGTS S; = (RY, R!, prio,) and a
property &, the collaboration claim to guarantee.

Example 8: The AGTS Scws = (Reus PTi0cwa) fOr the collaboration Coord is
accordingly built by Ry = {Taestor Tians Teaw Taesioy } @NA @ fuNction priog,s such
that priog.(r) = 0 for all r € R. The property @, is derived for Foue =

{ F;rdering } -

A system s using dynamic collaborations can also be straight forward mapped to a
TAGTS by extending the set of types 7 and mapping of vertices and edges to types ¢
such that all types defined by the class diagram are included in 7; and the type mapping
ts work accordingly. The Story Pattern and state machines can be used to derive a
related rule set R* as outlined before. If urgent, a rule is in addition put into R;, and the
priorities are if present simply encoded in prio,. Therefore, the system is finally captured
by a TAGTS S, = (R*, R, prio,).

u?

2Additional elements could be included to represent forbidden structures like shown in Example 7.

24

We use a general scheme to determine the priorities for the rules in a TAGTS. Rules,
which remove a participant from or destroy a collaboration have assigned the lowest
priority. Rules, which add a participant to or create a collaboration, respectively, have
the highest priority assigned. All other rules have assigned a priority in between. Of
course it is possible to further differentiate between the different rules to fulfill special
needs.

Example 9: For our application example the TAGTS is defined as Suice, =
(RRaiICaby priORaﬂcab) Wlth ru,e set 7?'Rai\Cab = {TjF;i(r:ﬂ ngvy T?riate’ T?eitroy? T:]gveSimplw Tring }’

typeset Tr.c., = {Shuttle, Track, Participant, Coordinator, ParticipantPort, WirelessLink,
CoordinatorPort} and priorities

0 forleave, destroy,
Prionscs(r) = 41 for move, moveSimple

2 for create, join
The set of urgent rules R consists of the rules create and join.

With our current verification algorithm we are not able to check the existence of situa-
tions, which include statements about the position of Shuttles like shown in Figure 3.2(b).
Assuming that the Shuttles are able to ensure that no collision will occur if they are on
the same Track and a corresponding collaboration exists, we can reformulate the hazard
shown in Figure 4.4. To be able to check whether this forbidden situation can be reached
the NAC of the pattern needs to be considered. Such a complex NAC? like shown in
Figure 4.4 could not be directly included for technical reasons using the current version
of our verification tool.

ttle‘
1

et iSpec
‘sl:Shuttle}ﬂ‘ t:TrackMsZ:Shu
L] L | L

Figure 4.4: Collision hazard

To solve this technical problem a simplified representation of the NAC is used. To
describe the forbidden situation that two Shuttles are on the same Track and the structure
representing the corresponding collaboration does not exist (cf. Figure 4.4) a shorthand

3Here a complex NAC consists of more than one forbidden element in form of nodes respectively
classes.

25

is used. Each time such a structure is created (like described by the complex NAC in
negated form) an additional element of type DistCoord is created like shown in Figure 4.7.

To ensure that the DistCoord element is created each time the corresponding structure
is created and that it is destroyed each time the structure is destroyed the join, leave, create
and destroy rule desribed in Section 3.2 need to be extended accordingly like shown in
Figure 4.5 and 4.6*.

controls «last»
«create»y

controls controls«last» co:Coordinator| controls
pror— «Creater ||

«create»
co:Coordinator

«create» Creater
[cpl:CoordinatorPort [ch:CoordmatorPort
L

«create» controls|

[«create» -
cp2:CoordinatorPort|

next [cgl:CoordmatorPort‘
1

T -
«create» TinkUp_ | «create» «create»] linkUp ~ «create> — JinkUp |

next

«create» X
wi2:WirelessLink [wll:wirelessunk‘
]

— [
linkDown _[«create» «create» | _linkDown linkDown |

create [«create» ,, —
[991: particigantport‘ pp2:_ParticipantPort [ppl: PartlapantPort‘
| 1 [1 [1
«create» | _port port |
partZ:Participant‘ [partl:Participant
1

!tZ:TrackL next !t3:Track! next Jtl:Track ‘tz:Track ‘ next ‘tS:Track ‘ next Jtl:Track ‘
L | L | L L | L | L |

(a) create rule (b) join rule

Figure 4.5: Extended create and join rule for Coord

«destroy>

icp2: CoordinatorPort|

<destroy» -
wl2:WirelessLink

«destroy»

pp2: ParticipantPor

=+

«destroy»| port

destro
[partz :Participant‘ ‘d:DistCoord‘
L I A 1

partl:Participant|

Sgestor ‘52:Shuttle} «destro »‘a:ésitsrto({gord‘ “destm;» sliShuttle
L | L | L
(a) destroy rule (b) leave rule

Figure 4.6: Extended leave and destroy rule for Coord

Using the DistCoord element the hazard shown in Figure 4.4 can be described more
simple like shown in Figure 4.7. The NAC consists of one element of type DistCoord and
the two edges connected to this element.

If such a situation exists where two Shuttles are on the same Track which are not
connected to an DistCoord element could be checked by a pair of forbidden graph pattern
without a complex NAC. Following we show how for the type of complex NACs, like they
are used in this work such a pair of forbidden graph pattern without a complex NAC can
be derived using a shorthand like in case of the above shown example for the DistCoord
element.

4Also the join and leave rule need to be considered because they create or delete elements of the
considered forbidden structure.

26

Figure 4.7: Collision hazard simple

Given a simplified hazard P = ((P*,P~),¢p) we call the graph P* the hazard’s
structural context and the only node® existing in P~ the hazard’s collaboration node.
The hazard’s structural context and collaboration node are connected via a set of edges,
which is given by Ep- (cf. Subsection 4.1)— the edges connecting the hazards positive
part with its negative application condition. We can translate each simplified hazard into
a set of properties, which a) ensure that the collaboration node exists (existence) and b)
that the nodes contained in the structural context are all connected to the same hazard
(identity).

The set of properties required to check the existence of the collaboration node ¢
can be created in the following way: For each edge e in the set Ep- we create a new
attributed pattern P<* = ((P*, P..,), ¢p), With P_,, consisting only of ¢ and e. The set of

e,ex e,ex

all such properties created for a simplified hazard P is referenced as EX (P).

Example 10: For the simplified hazard depicted in Figure 4.7 the set EX (P)
contains, due to isomorphism, only one element. Figure 4.8(a) shows the
contained existence property. The positive pattern P* is identical to the sim-
plified hazard's positive pattern (cf. Figure 4.7), the negative pattern P;_
contains the collaboration node d, which is of type DistCoord, and the edge
is_part, which is connected to d and s1. Note that the matching of pattern
only relies on the pattern’s structure and the occurring types, hence it is no

difference whether is_part is connected to s1 or s2.

The idea for checking that only one collaboration node exists for a given struc-
tural context is to iteratively build all possible patterns, where the structural context is
connected to two disjoint collaboration nodes. The set E? = E~ x E~ contains all
pairs of edges we have to investigate. For each pair (r,s) € E? we create a pattern
Pisy = (P, 0), ¢p), where P, consists of P*, the node c and its duplicate ¢’ and
the edge r and s’. The edge s’ differs from s only in the fact that it is not connected
to ¢ but to ¢ instead. The set of all such patterns is denoted /D(P). The set ID(P)
can be shrunken by removing isomorphic patterns. By construction a pattern £, is
isomorphic to P .

Example 11: The reduced set I D(P) for P being the hazard shown in Fig-
ure 4.7 contains two elements. One of them is sketched in Figure 4.8(b). Its

5The hazard P is already a simplified hazard, thus the hazard’s negative pattern contains exact one
node only.

27

d 'Di ord d1:DistCoord d2:DistCoord

Context

(a) Existence (b) Identity
Figure 4.8: Derived Hazards

positive part contains all elements of P’s positive part and two collaboration
nodes d1, d2 — both of type DistCoord — and two edges, which are both of type
is_part. The edges connect d1 with s1 and d2 with s2 respectively. Conform-
ing to the construction rule given above, the pattern’s negative part is empty.
The second pattern contained in I D(P) contains the same elements but the
edge formerly connecting d2 and s2 connects d2 and s1 now.

Generally, instead of directly verifying that the property defined by a simplified hazard

holds, we use an indirection step and verify instead that the properties defined by the
sets ID(P) and EX(P) hold.

28

Chapter 5

Verification

We extend in this section our former results [7, 8] for automated verification of GTS or
TGTS models towards the presented formal model of timed attributed graph transfor-
mation systems (TAGTS).

5.1 Foundations

The algorithm presented in [7] permits to check a property ® defined by a set of forbid-
den graph pattern F for a GTS S. We have demonstrated in [7] that this problem can be
tackled algorithmically with an explicit as well as symbolic algorithm.

In [8], we extended the results of [7] to also cover TGTS where vertices can have real
value clocks to describe time-related behavior using linear inequalities of real variables
to encode clocks.

However, the solution developed so far does not support TAGTS, which are required
to encode complex state dependent behavior, which is present in the coordination pro-
tocols and systems with clocks and unbounded integer attributes.

The basic idea to approach also the checking for TAGTS is to extend the timed case
by also supporting attributes and their updates.

A set of forbidden subgraph patterns F = {(Fi,v1),..., (F,,¥,)}, which represent
configurations that are unsafe or contradict guaranteed properties and thus have to
be excluded are used to define a property ®. This property holds for a graph G and
assignment «, denoted by (G,) = @, iff (G, o) matches none of the graph patterns in F.
We call (G, a) a witness for the property =@ if (G, «) in contrast matches a forbidden
graph pattern (F;, ;) € F.

The property ® is an operational invariant of a TAGTS S = (R, R., prio) iff for a
given initial graph (G°, a?) for all (G, o) € REACH(S, (G°, a?)) holds (G,) = @ (cf. [11]).
However, as TAGTS are too expressive to check such operational invariants, we instead
tackle the problem whether the property ® is an inductive invariant. This is the case if
for all graphs (G, «) and for all rules r € R holds that (G,a) = ® A (G,a) —, (G',d)
implies (G', o) = ®. If we have an inductive invariant and the initial graph (G°, o) fulfills

29

the property, then @ is also an operational invariant as inductive invariants are stronger
than their operational counterparts.

We can similar to [7, 8] formulate the definition of an inductive invariant for TAGTS in
a falsifiable form: a property ® with forbidden subgraph patterns {(Fi, 1), ..., (Fn,¥n)}
is an inductive invariant of a TAGTS S = (R, R., prio) if and only if there exists no pair
((G,a),r) of an attributed graph (G, «) and an attributed rule » € R such that (G, o) = @,
(G,a) —, (G, 5), and (G',) |~ ®. Such a pair ((G, «),r), which witnesses the violation
of property ® by rule r is then a counterexample.

As explained in detail in [7], we can exploit the fact that the application of a rule
in a TAGTS can only have a local effect to verify whether a counterexample exists. A
counterexample ((G, «),r) can only exist when the local modification of (G, «) by rule r
is necessarily responsible for transforming the correct graph (G, «) into a graph that
violates the property. As we can represent infinite many possible counterexamples by
an only finite set of representative patterns O((F;,), R, i1;) of graph patterns P’ that
are combinations of a RHS R, of a rule r, = ((L;,¢), Ry, ;) and a forbidden graph
pattern (F;, ;) € F (cf. [7]), we can check that no counterexample exists (and & is thus
an inductive invariant) only considering this finite set.

As depicted in Figure 5.1 we have to check for any graph pattern (P, ¢p) €
O((F;, %), Ry,) for some (F;,v;) € F and r, € R whether the pair ((P, ¢p),r;) with
(P, ¢p) defined by (P, ¢pp) —,—s (P, ¢pr) is @ counterexample for &~ or not as follows:

1. Check that the rule r;, can be applied to the attributed graph pattern (P, ¢p) and that
(P, ¢p) —r,—s (P',¢p) (this implies that no r, € R, \ {r;} exists with prio(r;) >
prio(r;) that matches (P, ¢p) and that for all z < ¢ holds that (P, ¢ p©x) is matched
by no r,, € R, due to the definition of rule application).

2. Check for the attributed graph pattern (P, ¢p) that (P, ¢p) = ® as otherwise (P, ¢p)
would be already invalid.

MLIE, MLIE, MLIE, MLIE, MLIE,

Figure 5.1: Schema to check a potential counterexample ((P, ¢p),r;) with resulting
graph pattern (P’, ¢p/) that is a combination of a RHS R, of a rule r, and a forbidden
graph pattern (F;, ;) € F in the timed case

30

To do this check we combine the former purely structural checks with a system of
mixed linear inequalities’ for integer and clock variables. The rule r; could only be ap-
plied if the valuation of the integer variables and clocks in the source pattern (P, ¢p)
satisfies the rule’s constraint. For urgent rules with higher priority ((Ly, 1)) as well as
forbidden attributed graph patterns ((£},1;)) holds in the case they also contain con-
straints that a match found in the source graph pattern does not directly invalidate the
counterexample but rather restrict the possible clock and attribute values. We derive a
system of mixed linear inequalities MLIE,, which consist of constraints of integer vari-
ables and clocks, to encode which valuations are not excluded either by urgent higher
priority rules or forbidden graph patterns combining the conditions iso(;) for all matches
iso of F; in (P, ¢p) and iso’(¢y) for all matches iso’ of Ly in (P, ¢p).

In a TAGTS it is not required (although it is not forbidden) that (F;, ;) exists in the
target pattern immediately after the graph rule has been applied but after a time step
of length § with § > 0 it has to exists in order for the pair (P, ¢p) —,,—s (P, ¢p) be-
ing a witness against the system’s correctness. Further, clocks and attribute values
could be updated by the rule application. Considering both issues we can translate the
constraints ¢, into a system of mixed linear inequalities MLIE; by substituting each oc-
currence of variable a; € A; with u; € N if a; is updated to «; and each occurrence of
clock a; € A, with a; +t or in case of an update with u; + ¢ respectively. The additionally
introduced variable ¢ represents the time passed and is constraint by ¢ > 0.

The special variable ¢ is further restricted by an upper bound, which is defined
through a system of mixed linear inequalities MLIFE,. These upper bounds could be
derived from the conditions of each embedded urgent rule. Assuming the condition ¢,
is an urgent rule’s condition we solve it for the special variable ¢. The result of this op-
eration is an interval of points in time when the urgent rule r is activated. Due to the
fact that urgent rules have to be implied as soon as they are applicable, we only have to
consider the lower bounds of this interval. These lower bounds will be used as the upper
bound for the special variable ¢ in MLIE,. Therefore, we only have a counterexample
if a solution for the combination of MLIE,, MLIE, and MLIE, can be found.? We write
checkmizea(S, ®) 1o denote that the check did not find a counterexample for a TAGTS S
and property o.

In case of complex NACs as employed in @i (r€SP. Fooeiss 1N Figure 3.10(b)),
we have to derive an extended GTS to check them with the existing algorithm. The
extended GTS employs additional vertices and some related adjustments of the rules to
encode the occurrence of the complex NACs such that it can be checked.

A system of mixed linear inequalities is a system of inequalities, which are defined over continuous
and integer variables

2To be able to use a constraint solver for the verification algorithm, we restrict the guards and updates
to those which are formulated as linear polynomial over the objects’ attributes and allow only constant
multiplicities of attributes.

31

5.2 Application

This new verification technique now allows us to verify in principle the correctness of
our application example, consisting of the rules move (cf. Figure 3.2(a)), moveCoord (cf.
Figure 3.2(a)), join,,,, (cf. Figure 3.11), createn,c., l€aver,c., destroy,,.,, and the rules de-
scribing the behavior of the collaboration’s automatons. The checked Property @ is
defined by the conjunction of the two guaranteed properties ordering (cf. Figure 3.10(a))
and coordExists (cf. Figure 3.10(b)). The urgent transitions in this system are the rules
join and create, which both have a priority of 2. The rules leave and destroy have a priority
of 0 all other rules have priority 1. The verification of this system did not work directly
and we had to interrupt it after 4 hours as the machine started heavily swapping. The
characteristic of this check and a comparison to later introduced compositional checks
can be found at the end of Section 6.

32

Chapter 6

Compositional Verification

We will present in this section a compositional reasoning scheme for the verification
of systems that use dynamic collaborations that exploits the interfaces of the dynamic
collaborations. Beforehand, we discuss abstraction as a prerequisite.

6.1 Simulation

If we compare GTS of different level of abstraction or detail, the notion of a restriction | for
attributed graphs concerning the visible details is important. Examples are: Restricting
an attributed graph (G, «) to the types 7, of a GTS S, denoted by (G, «)|7,. Another
option is to restrict an attributed graph (G, «) to a specific subset of attributes or clocks
denoted by (G, «)| 4. We further use O as a placeholder for a specific restriction.

Given arestriction, we can compare two GTS of different level of abstraction or detail:

Definition 1 For two TAGTS S, = (R',R., prio,) and S, = (R?* R2, prio,) and a re-
striction O for Sy holds that S, is a simulation of S, for the restriction O (S; =n S,) iff an
QCH{(G,G)|G,G € GNG|o = G'} exists such that (G4, Gy) € Q implies G,|n =~ G2 and

VG, GG, 3G, : Go—GY A (G, GY) € Q (6.1)

Simulation preserves safety properties, which are not affected by the restriction.
Therefore, it is sufficient to establish a required safety property for a more abstract GTS,
which is simulated by a more detailed GTS to ensure that the safety property holds for
the detailed GTS. However, checking simulation via equation 6.1 is not feasible for in-
finite state models like GTS. Therefore, we will exploit that in specific cases simulation
can be guaranteed by construction due to a refinement relation between the rule sets.

We can at first observe that the rules, which result from embedding a collaboration
result in certain form of rule set refinement.

33

Definition 2 A set of rules R' refines another set of rules R? for a given restriction O iff
it exists an Q) C R' x R? such that

Vry € R*3A(r,) € Q: (r1]o = 7o
A (r€RE=r R
A (prio(ry) >0V 1y € R2) = 11 =139)
VAN
V(ry,re), (1], 15) € Q- (prio(ry) > prio(ry) = prio(ry) > prio(ry))

A (prio(ry) < prio(ry) = prio(ry) < prio(ry)) (6.2)

Such a system correctly use a collaboration only when it includes the types of the
collaboration (7. C 7;) and refines the rules of R¢ correctly as outlined in Definition 2.
Due to the fact that the class diagram for the system imports the types of the collabora-
tion but is otherwise disjoint and that rules in 7° can only contain vertex types from c if
derived from a rule in 7°¢ guarantees that both conditions are fulfilled by definition.

Example 12: The refinement between the TAGTS Sg.c., and the AGTS Sge
becomes the most obvious by a comparison between Figure 3.5 and Fig-
ure 3.11. The Story Pattern used in the collaboration use (cf. Figure 3.11)
adds additional elements to the precondition, but all elements added belong
to types defined in the class diagram in Figure 3.1(a). Therefore each time
the Story Pattern is enabled the Story Pattern in Figure 3.5 is also applicable.

We can now show that the refinement for the rule sets from Definition 2 implies
simulation.

Lemma 1 Fortwo TAGTS S, and Sy, where S, refines the rule set of Sy concerning the
type set T, of Sy holds S =7, S.

Proof: (sketch) The refinement of the rule sets guarantees that for all start graphs G,
of Sy and steps r, in S, and G, defined as G, |Tsl holds that the refined rule r, in G5 can
also be applied not taking preemption due to the priority or urgency into account. For the
resulting graphs G| and G, with G—,,G' and Gy—,,G5 holds G5, = G'|7:. Concerning
the preemption and urgency, we can further conclude that condition 6.2 ensures that if
ro can be blocked due to either a rule with higher priority or urgency, this is still the case
for r, and a related rule. Therefore, a not empty) exists for which the condition 6.1 is
obviously fulfilled.

6.2 Application
Exploiting the above results, we can for example check the guaranteed property of the

Coord collaboration embedded into the RailCab system abstracting from the clock values
of the RailCab system. Due to the reduced complexity the checking only requires slightly

34

more than 30 min and thus is much faster than the check of the complete RailCab in the
former section which took more than 4.5 hours.

These result show that abstraction can considerable reduce the required time, but
when the integer variables have to be checked together with a large number of complex
rules, the scalability of the verification is still not given.

However, in the above sketched cases the abstractions have to be invented ad hoc
and can not be derived from the models directly. In the next section we will demonstrate
that for the presented modeling approach we can exploit the decomposition into dynamic
collaborations and an embedding system to also decompose the verification steps and
derive abstractions automatically.

6.3 Compositional Reasoning Scheme

We further developed a compositional verification scheme that allows us to check inter-
mediate results for dynamic collaboration ¢y, . .., ¢, and their TAGTSs 51, ..., S, as well
as the system and later compose them to provide the required guarantees for the over-
all system s and its TAGTS S,. This composition is based on the proper refinement of
the collaborations ¢; by the systems S, which is guaranteed for the presented modeling
approach by construction:

(1) In a first step, we use independent checks, which consider each dynamic collab-
oration cy, ..., ¢, on its own. We employ check(S;, ®;) to directly verify the properties ®;
for the dynamic collaborations c;.

If &, does not refer to the clocks or integer variables, we can use an abstraction of
the TAGTS S; in form of an TGTS or AGTS S¢ by simply erasing all attributed conditions
and updates which refer to integer variables resp. clocks such that by construction the
rules of S; refine those of S¢. We then can conclude that the ATGTS S; simulates S¢
using Lemma 1 and can then check more efficiently for S¢ with the check (check(S{, ®;)
that a hazard does not occur and then transfer this result to the ATGTS S;. Note that
such a check is a sufficient but necessary condition.

Example 13: In our application example we use the check to ensure that
the collaboration’s reactive behavior S, does not violate the guaranteed
property ®....., (cf. Figure 3.10(a)). However, enacting the check yields that
the defined invariant is not sufficient to guarantee the system’s safety.

Figure 6.1 shows the counterexample found by our algorithm. The graph
at the top is one possible situation before a rule application and the graph
at the bottom is the situation resulting from the rule application. The in-
volved rule encodes a synchronous communication between ParticipantPort
and WirelessLink. In the detected case the rule can write any unconstrained
value to the ParticipantPort’s index attribute.

35

g e - - . I T I

=8| {B| *ICSEDS Reactive Behavior 23\""'».\.
= E —F
B & — N
| coordl: CoordinatorPort #| coord2: CoordinatorPort | E_.:]
lirk } N =
als] pp2: WirelessLink
iborations. fpr.gz 1 & | link ;r;c::D::r; =00
wior. fpr.gz [ICSE! pl: ParticipantPort I | link
ar-IC.txt 3 01.09, jrex = 1.0 p2: ParticipantPort
'y \pur‘t state = 0.0
index = 1.0
partl: Participant N | port
coordl: CoordinatorPort |7 coord2: CoordinatorPort
| Tink - | link |
i /a
ppl: WirelessLink Pp2: WirelessLink
i | link state = 2.0
pl: ParticipantPort link J ry
index = 1.0 p2: ParticipantPort
port | 4 state = 1.0 I~
port | 4
=
4 I
w11/ 74" ReactiveRules: se... |"E§E ReactiveRules: se... " ReactiveRules::se... |& sendingLinkP art
Figure 6.1: Screenshot of the counterexample
wl: WirelessLink
linkDown
part: ParticipantPort coordF :CoordinatorPort| next\| coordR:CoordinatorPort
{implies: wl.indexDown = part.index} {implies: coordF.indexToNext = coordR.index}
(a) Covering linkDown (b) Covering next

Figure 6.2: Additional guaranteed properties

The provided counterexample helps us to further strengthen the guaranteed
property. Repeatedly applying our check for refined versions we finally can
find out that the whole data path where the index variables are propagated
have to be properly covered.

To fix this, we in addition require that pp1.index < w1.indexDown and pp2.index <
w2.indexDown, w1.indexDown < cpi.index and w2.indexDown < cp2.index as well
as cpl.index < cp2.index holds. The first and second case can be encoded
together via an additional guaranteed property as depicted in Figure 6.2(a).
The third one is handled by a similar rule. Finally, the correctly strengthened

36

property has been found and can be checked successfully. For all checks
holds that the time required for it was < 1 sec.

(2) Secondly, we reuse the checks for the collaborations by exploiting the fact that
the rules in the TAGTS S, of the system using the collaborations S; refine the rules by
construction. Therefore, we can conclude that S, simulates S; concerning the elements
of S; (Ss =z S;) using Lemma 1 and can thus transfer the guaranteed property ®;
checked for the collaboration to the system.

Example 14: Applied to our application example, the guaranteed property
®,.mg Of the collaboration S, can be transferred to the systems Sgica-

(3) If we require an additional property ®¢ of the detailed system itself, we often
cannot check these properties directly for the TAGTS S, due to the resulting checking
complexity (cf. Section 5). However, we can reuse the proven properties of the col-
laborations and embed the related GTS, which does not take the integer variables and
clocks into account instead of the TAGTS. Using such an abstraction of the TAGTS S, in
form of an GTS S¢ that ensures simulation, we can then check for S¢ whether ¢ holds
and then transfer this result to the TAGTS S;.

Example 15: We have derived a TAGTS S%,.,, from the TAGTS Sg.c., €mbed-
ding for the collaboration Coord the abstract GTS S¢. , rather than the concrete
AGTS Sgg. For this TAGTS Sg,.., we then use check to verify the property
D depicted in Figure 3.10(b). After only ~ 64 sec. the check reports
that ®...«s holds. The check therefore showed that the system is safe and
excludes that shuttles nearby are not connected via the Coord collaboration.

(4) Finally, we can combine the knowledge gathered from the check of the collabo-
rations with the knowledge about the specific conditions occurrence of hazards for the
TAGTS S, to prove the correctness and safety of the system using the capabilities and
guarantees of the collaborations.

Theorem 1 Given a system s with TAGTS S, a required property V for s, collabora-
tions cy,...,c, with TAGTS S,,...,S,, used by s, abstractions S¢,...,S¢ for the col-
laborations ¢4, ...,c,, and S¢ the TAGTS which results when embedding S{,...,S¢

rather than Sy, ...,S,, into s it holds, that if a related property ®¢ for S¢ exists such
that (Algign@i) VAN <I>g = U we have:

((S1E®R) A~ A (Sul=Pn)) A (STEDS)) = S (6.3)

Proof: (sketch) The correct usage of the dynamic collaborations c, ..., c, implies

that Sy =7. S; and thus the precondition S; = ®; can be transferred to S, such that
Ss = ®; holds using Lemma 1. From S¢ |= @2 and S, Zn S analogously follows S, = ®¢
using again Lemma 1. Finally, combining these findings with (A 1<i<,®;) A ®¢ = U we
can conclude that S, = ¥ holds and condition 6.3 is fulfilled.

37

When exploiting the results of Theorem 1, we can at first reuse the properties @,
guaranteed by the dynamic collaboration ¢;. If the combination is not sufficient to prove
U, we can use the abstractions S¢ and property ®¢, which together with the guarantees
of the dynamic collaborations imply W.

6.4 Application

Example 16: As we have shown in Example 15 the collaboration is in-
Stantiated and participants are added when required in the RailCab system
(S% e = Porexss) @Nd the modeled collaboration Coord fulfills the guaranteed
property (Sees = Powng)- Therefore, we can conclude that (1) anytime two
shuttles are near each other they are driving together in the same convoy
coordinated by an instantiation of the Coord collaboration. (2) As outlined
in Section 3.3 in the concrete instantiation instead of the integer values in-
dexed driving profiles are exchanged and thus the property .., guaran-
tees that the driving profile of the follower shuttle has a lower or equal in-
dex than the shuttle in the front. (3) An Additional check for the mechani-
cal models (cf. [16]) guarantees that the driving profiles indices guarantee
|s1.position - s2.position| > A’ as long as the following shuttle has a lower or
equal index than the shuttle in front of it. Therefore we can for A’ > A ex-
clude |s1.position - s2.position| < A, the condition for the hazard collision for two
shuttles. Therefore, we can finally guarantee ., and thus exclude colli-
sions.

6.5 Comparison

Table 6.1: Characteristics of the checks

characteristics #rules | #inv | #inv' | |R| | |F|
Scoord = Pordering 7 7 8 2 3
S%Raicab = PeoordExists 6 2 2 17 | 5
SRailcab ': <I>coordExis1s/\ordering 13 9 11 17 10

Table 6.1 (a) contains some structural characteristics for the checked systems. The
columns stand for the number of rules, number of forbidden subgraph pattern, number
of cardinality checks, number of nodes in the biggest rule, and the number of nodes in
the biggest forbidden subgraph.

Performance measurements such as the overall checking time, the number of sub-
graphs generated, the number of GTS that entered the structural check and last the
number of times a system of linear inequalities had to be solved is presented in Ta-
ble 6.2 (b).

38

Table 6.2: Computation times and number of checks

check time #graphs GTS | CPLEX
Scoord = Pordering <1s 420 213 51
S%gaicab = PeoordExists ~64s 12245807 618 31
Shaicab = PooordExistsnordering | >4h | >303060034 | >900 | >109

The presented times demonstrate that the addressed problems can be tackled using
the compositional approach, while checking of the complete system requires too much
time. A brute force attempt such as model checking which consider the reachable state
space must obviously also fail due to the infinite number of graphs as well as infinite
many integer assignments which can result for the model (an example for this has been
presented in [7] for the case of GTS without time and without integer variables).

The benefits of our compositional scheme are twofold: At first we reuse proven col-
laborations and thus the checks for the guaranteed properties of the dynamic collabora-
tion have to be done only once. The use of a collaboration ensures, due to the guaran-
teed refinement of the rules, that the proven guarantees can be taken for granted in the
usage context. Secondly, the compositional approach results in a dramatically improved
efficiency for the checking. The checks for the guaranteed properties of the dynamic
collaboration can be done on a much smaller TAGTS. While the lower number of rules
helps to avoid checking several unnecessary combinations, the resulting smaller rules
ensure that the combinatorial explosion when considering all possible combinations of
a rule and forbidden graph pattern is less dramatic. The more relevant improvement,
however, can be achieved when checking properties, which must be guaranteed for the
system. Due to the combination of rules from the collaboration and the embedding con-
text (e.g., Figure 3.11(a)) the size of the rules increases considerably. By embedding
the smaller and simpler GTS rules for the collaborations rather than the detailed one,
the size and complexity of the resulting rules can be considerably reduced and instead
of the detailed rules the guaranteed properties are exploited to proof crucial system
properties. This further ensures that as long as the interface of the collaborations re-
mains the same, the verification remains valid even though the details of the rules may
be altered.

39

Chapter 7

Conclusion & Future Work

In this paper we presented our approach to model service-oriented systems with dy-
namic collaborations and outlined how crucial properties of the dynamic collaborations
and systems employing them can be verified reusing the verification of the dynamic
collaborations. Besides the structural dynamics the approach also supports integer
variables and time-related behavior. The proposed compositional verification schemes
results in a dramatic reduction of the required verification efforts by allowing to verify
the collaboration independent from the embedding context and reuse this verification
results for the checking of the embedding system.

As future work it is planned to develop comprehensive tool support for all the outlined
modeling and verification steps and applying the approach in related domains such as
automotive systems as well as other potential application areas such as high-integrity
service-oriented systems in the business domain. Further we aim at developing native
support for complex NACs.

41

Bibliography

[1] UML Profile and Metamodel for Services - for Heterogeneous Architectures
(UPMS-HA), June 2007. http://www.omg.org/cgi-bin/doc?ad/2007-06-02.

[2] R. Alur, C. Coucoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid Automata: an
algorithmic approach to the specification and verification of hybrid systems. In
R. Grossmann, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems
I, volume 736 of Lecture Notes in Computer Science, pages 209-229. Springer
Verlag, 1993.

[3] J. Amsden, P. Rivett, K. Henk, F. Cummins, J. Mukerji, A. Lonjon, C. Casanave,
and |. Badr. UML Profile and Metamodel for Services, June 2007.
http://www.omg.org/docs/ad/07-06-03.pdf.

[4] P. Baldan, A. Corradini, and B. Kbnig. A static analysis technique for graph trans-
formation systems. In Proc. CONCUR, volume 2154 of LNCS, pages 381-395.
Springer, 2001.

[5] L. Baresi, R. Heckel, S. Théne, and D. Varré. Modeling and validation of service-
oriented architectures: Application vs. style. In Proc. ESEC/FSE, pages 68-77.
ACM, 20083.

[6] J. Bauer and R. Wilhelm. Static Analysis of Dynamic Communication Systems by
Partner Abstraction. In Proc. of the 14th International Symposium, SAS, volume
4634 of LNCS, pages 249-264. Springer Berlin / Heidelberg, 2007.

[7] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic Invariant Verifi-
cation for Systems with Dynamic Structural Adaptation. In Proc. ICSE. ACM, 2006.

[8] B. Becker and H. Giese. On Safe Service-Oriented Real-Time Coordination for
Autonomous Vehicles. In Proc. ISORC. IEEE Computer Society Press, 2008.

[9] M. Broy, I. H. Kriiger, and M. Meisinger. A formal model of services. ACM Trans.
Softw. Eng. Methodol., 16(1):5, 2007.

[10] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional Verification of
Middleware-Based Software Architecture Descriptions. In Proc. ICSE, pages 221—
230, 2004.

43

[11] M. Charpentier. Composing invariants. In Proc. FME, volume 2805 of LNCS, pages
401-421. Springer, 2003.

[12] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenblum, and S. Uchi-
tel. Model checking service compositions under resource constraints. In
ESEC/SIGSOFT FSE, pages 225-234. ACM, 2007.

[13] M. F. Frias, J. P. Galeotti, C. L. Pombo, and N. Aguirre. DynAlloy: Upgrading Alloy
with actions. In Proc. ICSE. ACM, 2005.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[15] H. Giese. Modeling and verification of cooperative self-adaptive mechatronic sys-
tems. In Reliable Systems on Unreliable Networked Platforms, volume 4322 of
LNCS. Springer Verlag, 2007.

[16] H. Giese, S. Henkler, M. Hirsch, M. Tichy, and H. Vicking. Modellbasierte Entwick-
lung vernetzter, mechatronischer Systeme am Beispiel der Konvoifahrt autonom
agierender Schienenfahrzeuge. In Proc. of the 4th Paderborner Workshop Entwurf
mechatronischer Systeme, volume 189 of HNI-Verlagsschriftenreihe, 2006.

[17] H. Giese, M. Tichy, S. Burmester, W. Schafer, and S. Flake. Towards the Composi-
tional Verification of Real-Time UML Designs. In Proc. ESEC/FSE, pages 38—47.
ACM, September 2003.

[18] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems. In Proc. OOPSLA/ECOORP ’90, pages
169-180, New York, NY, USA, 1990. ACM.

[19] D. Jackson. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256—290, 2002.

[20] H. J. Kdhler, U. A. Nickel, J. Niere, and A. Zindorf. Integrating UML Diagrams for
Production Control Systems. In Proc. ICSE, pages 241-251. ACM, 2000.

[21] F. Kordon. Mastering complexity in formal analysis of complex systems: Some
issues and strategies applied to intelligent transport systems. Proc. ISORC, pages
420-427, 2007.

[22] J. Kramer and J. Magee. Self-Managed Systems: an Architectural Challenge. In
FOSE '07: 2007 Future of Software Engineering, pages 259-268. IEEE Computer
Society, 2007.

[23] P. Olveczky and J. Meseguer. Specification and analysis of real-time systems using
Real-Time Maude. In Proc. FASE, LNCS 2984, pages 354—358. Springer, 2004.

44

[24] F. Rammig. Engineering self-coordinating real-time systems. Proc. ISORC, pages
21-28, 2007.

[25] T. Reenskaug, P. Wold, and O. A. Lehne. Working With Objects - The OOram
Software Engineering Method. Manning Publications Co., Greenwhich, CT 06830,
UK, 1996.

[26] A. Rensink. Towards model checking graph grammars. In Proc. AVoCS, pages
150—-160. University of Southampton, 2003.

[27] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, volume 1. World Scientific Pub Co, 1997.

[28] R. T. Sanders, H. N. Castejon, F. A. Kraemer, and R. Braek. Using UML 2.0 collab-
orations for compositional service specification. In Proc. MoDELS, volume 3713 of
LNCS, pages 460—475. Springer Berlin / Heidelberg, 2005.

[29] W. Schafer and H. Wehrheim. The challenges of building advanced mechatronic
systems. In FOSE, pages 72—-84. IEEE Computer Society, 2007.

[30] D. Varrd. Automated formal verification of visual modeling languages by model
checking. Software and System Modeling, 3(2):85—113, 2004.

45

Band

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-940793-
84-3

978-3-940793-
81-2

978-3-940793-
65-2

978-3-940793-
46-1

978-3-940793-
45-4

978-3-940793-
42-3

978-3-940793-
29-4

978-3-940793-
171

978-3-940793-
02-7

978-3-939469-
95-7

978-3-939469-
58-2

3-939469-52-1 /
978-3-939469-
52-0

3-939469-35-1/
978-3-939469-
35-3

3-939469-34-3 /
978-3-939469-
34-6

3-939469-23-8 /
978-3-939469-
23-0

Titel

Efficient Model Synchronization of
Large-Scale Models

Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

The Triconnected Abstraction of Process
Models

Space and Time Scalability of Duplicate
Detection in Graph Data

Erster Deutscher IPv6 Gipfel

Proceedings of the 2nd. Ph.D. retreat of
the HPI Research School on Service-
oriented Systems Engineering

Reducing the Complexity of Large EPCs

"Proceedings of the 2nd International
Workshop on e-learning and Virtual and
Remote Laboratories™

STG Decomposition: Avoiding Irreducible
CSC Conflicts by Internal Communication

A quantitative evaluation of the enhanced
Topic-based Vector Space Model

Proceedings of the Fall 2006 Workshop of
the HPI Research School on Service-
Oriented Systems Engineering

Visualizing Movement Dynamics in Virtual
Urban Environments

Fundamentals of Service-Oriented
Engineering

Concepts and Technology of SAP Web
Application Server and Service Oriented
Architecture Products

(noch nicht erschienen)

Aspektorientierte Programmierung —
Uberblick liber Techniken und Werkzeuge

Autoren / Redaktion

Holger Giese, Stephan
Hildebrandt

Hrsg. von den Professoren
des HPI

Artem Polyvyanyy, Sergey
Smirnov, Mathias Weske

Melanie Herschel,
Felix Naumann

Christoph Meinel, Harald Sack,
Justus Bross

Hrsg. von den Professoren
des HPI

Artem Polyvyanyy, Sergy
Smirnov, Mathias Weske

Bernhard Rabe, Andreas Rasche

Dominic Wist, Ralf Wollowski

Artem Polyvyanyy, Dominik
Kuropka

Benjamin Hagedorn, Michael
Schobel, Matthias Uflacker,
Flavius Copaciu, Nikola Milanovic

Marc Nienhaus, Bruce Gooch,
Jirgen Déliner

Andreas Polze, Stefan
Huttenrauch, Uwe Kylau, Martin
Grund, Tobias Queck, Anna
Ploskonos, Torben Schreiter,
Martin Breest, S6ren Haubrock,
Paul Bouché

Bernhard Gréne, Peter Tabeling,
Konrad Hibner

Janin Jeske, Bastian Brehmer,
Falko Menge, Stefan
Huttenrauch, Christian Adam,
Benjamin Schiler, Wolfgang
Schult, Andreas Rasche, Andreas
Polze

ISBN 978-3-940793-91-1
ISSN 1613-5652

	Front page
	Imprint

	Abstract
	Contents
	1 Introduction
	2 State of the Art
	3 Modeling
	3.1 Systems with Dynamic Structure
	3.2 Dynamic Collaboration
	3.3 Systems with Dynamic Collaborations

	4 Formal Semantics
	4.1 Formal Model
	4.2 Semantic Mapping

	5 Verification
	5.1 Foundations
	5.2 Application

	6 Compositional Verification
	6.1 Simulation
	6.2 Application
	6.3 Compositional Reasoning Scheme
	6.4 Application
	6.5 Comparison

	7 Conclusion & Future Work
	Bibliography
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

