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Zusammenfassung

In dieser Arbeit wird das Verhalten nichtlinearer Ketten mit Zufallspotential untersucht. Teil I
enthält eine Einführung in das Phänomen der Anderson Lokalisierung, die Diskrete Nichtli-
neare Schrödinger Gleichung und ihren Eigenschaften sowie die verwendete Verallgemeinerung
des Modells durch Einführung eines Nichtlinearitäts-Indizes α.

In Teil II wird das Ausbreitungsverhalten von lokalisierten Zuständen in langen, ungeordneten
Ketten durch die Nichtlinearität untersucht. Dazu werden zuerst verschiedene Lokalisierungs-
maße besprochen und außerdem die strukturelle Entropie als Messgröße der Peakstruktur
eingeführt. Im Anschluss wird der Ausbreitungskoeffizient für verschiedene Nichtlinearitäts-
Indizes bestimmt und mit analytischen Abschätzungen verglichen.

Teil III behandelt schließlich die Thermalisierung in kurzen, ungeordneten Ketten. Dabei
wird zuerst der Begriff Thermalisierung in dem verwendeten Zusammenhang erklärt. Da-
nach erfolgt eine numerische Analyse von Thermalisierungseigenschaften lokalisierter Anfangs-
zustände, wobei die Energieabhängigkeit besondere Beachtung genießt. Eine Verbindung mit
sogenannten Breathers wird dargelegt.

Abstract

In this thesis, the properties of nonlinear disordered one dimensional lattices is investigated.
Part I gives an introduction to the phenomenon of Anderson Localization, the Discrete Non-
linear Schrödinger Equation and its properties as well as the generalization of this model by
introducing the nonlinear index α.

In Part II, the spreading behavior of initially localized states in large, disordered chains due
to nonlinearity is studied. Therefore, different methods to measure localization are discussed
and the structural entropy as a measure for the peak structure of probability distributions
is introduced. Finally, the spreading exponent for several nonlinear indices is determined
numerically and compared with analytical approximations.

Part III deals with the thermalization in short disordered chains. First, the term thermal-
ization and its application to the system in use is explained. Then, results of numerical
simulations on this topic are presented where the focus lies especially on the energy depen-
dence of the thermalization properties. A connection with so-called breathers is drawn.
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1 Introduction

1.1 Motivation

Since the fundamental work of P. W. Anderson in 1958 [And58], in which he proved the absence
of diffusion in random lattices, a lot of research has been addressed to this phenomenon, which
was later called Anderson localization. The mechanisms behind this type of localization are
well understood nowadays and in chapter 2 we try to give an overview of the known results.
A more sophisticated and detailed recap can be found in [LR85], for example. Later on, a
new mechanism was added to systems that exhibit Anderson localization: Nonlinearity. In
the presence of nonlinearity, the natural question appears, whether the Anderson localization
gets destroyed or not. Nonlinear systems also give rise to new phenomena, one of which are
breathers – localized excitations that can also be found in discrete lattices. Thus, from this
point of view, one could also ask if the nonlinear breathers are destroyed by the disorder,
which is partly dealt with in part III.

The question of destruction of Anderson localization is exactly what will be investigated in this
work. More precisely, we consider two different, nevertheless related, problems: In part II,
we tried to find out whether an initially localized probability distribution will spread in a
random lattice when nonlinearity is present. This setup was already addressed, for example,
by Pikovsky and Shepelyansky in [PS08], where subdiffusive spreading was found. On the
other hand, there are also results by Flach and Aubry [KKFA08] that claim the complete
absence of diffusion in such systems. Thus, we try to clarify this issue by searching for
conditions under which spreading might, or might not, be observed.

While in the first setup the lattice is considered to be infinitely large, in part III a different
system is of interest. It will be investigated, whether the nonlinearity leads to a thermaliza-
tion1 of initially localized states. Special interest lies on the dependence of thermalization on
the energy and shape of the initial state. We hope that the results for these short chains can
help to understand the interplay between localization and nonlinearity.

1See chapter 8 for our understanding of ”thermalization” and the relation of initially localized states in short
random lattices.
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Figure 1.1: Schematic picture of the behavior of the zero temperature conductivity σ at the mobility
edge Ec. Both possibilities for the Anderson transition, continuous and discontinuous with
a jump of the conductivity at the mobility edge σM , are shown.

1.2 Experimental Observations

There are several experimental setups, partly of very different nature, where Anderson local-
ization can be observed. In the following, a very brief overview of some experimental results
on the most important systems is provided. For more details and results see, for example,
the excellent review by Kramer and MacKinnon [KM93].

1.2.1 Anderson Transition

Historically, solid state systems were investigated first, as the conductivity can be related to
the localization properties of the electrons in such setups. It was Mott who stated in 1967 the
existence of a so called mobility edge Ec in two and three dimensional, moderately disordered
electronic systems [Mot67]. This mobility edge separates localized from non-localized states
by their energy. Note that in one dimension, all eigenstates are localized even if the disorder
is arbitrarily small. Later, it was found by scaling arguments that in 2D systems all states
must be localized, too. Now if the Fermi energy of a system lies in the localized regime, that
is EF < Ec, one expects vanishing zero temperature conductance while for EF > Ec the zero
temperature conductance should be positive. This marks an insulator-metal–transition that
depends on the localization properties of the electrons in the disordered system.

A very precise measurement of this transition was done by Paalanen, Rosenbaum, Thomas
and Bhatt in 1982 [PRTB82], where a continuous metal-insulator transition was found in
contrast to Mott’s prediction of a discontinuity with a jump σM . Fig. 1.1 shows a schematic
sketch of the two possibilities: continuous and discontinuous transition.

In a very recent experiment, Chabé et al. observed an Anderson transition with atomic matter
waves [CLG+08], where they stressed the correspondence between the quantum kicked rotor
and the 3D Anderson model [She93].
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1.2 Experimental Observations

Figure 1.2: Production of speckle patterns. a) Laser beam shining through a diffusive plate creating
a speckle pattern which can then be imaged onto a BEC. b) Typical intensity distribution
of a speckle beam. Images taken from [FFI08].

Another notable result was obtained by von Molnar et al. [vMBFR83] in 1983. They inves-
tigated the metal–insulator transition for a magnetic semiconductor. The advantage of such
a system is that it can be tuned continuously through the transition point via an external
magnetic field. They also found the conductance being continuous at the transition point,
which is, by the way, consistent with results from the scaling theory [LR85] developed later
for the Anderson localization.

It should be mentioned here that the Anderson transition is a purely linear effect occurring in
three dimensional systems of non–interacting electrons (or atoms). Therefore, the experiments
mentioned above do not directly address the problems that are subject of this work.

1.2.2 Bose Einstein Condensates in Disordered Potentials

With the ability to create Bose Einstein Condensates (BECs), physicists nowadays have a
powerful tool to investigate any type of quantum system [DGPS99]. One example are disor-
dered systems with Anderson localization, which can be experimentally realized by ultracold
atoms in an optical random potential. Hereby, the random potential is mostly created using
speckle beams, firstly realized by Boiron et al. in 1999 [BMRF+99]. Those speckles are pro-
duced by light being reflected by rough surfaces or transmitted through a diffusive medium
as shown in Fig. 1.2. BECs and optical speckles have some outstanding features which make
them very useful for investigating Anderson localization: Firstly, one has precise knowledge
about the properties of the random potential, such as distribution width and spatial corre-
lations. Secondly, the potential is static. And the last, most appealing, fact is that using
BECs allows for a direct observation of localized states, whereas in other experiments only
(macroscopic) consequences of Anderson localization are observed, e.g. conductivity. As a
disadvantage, one should point out that these systems are usually two dimensional, but there
exist methods to create one and three dimensional potentials as well. There are several ex-
perimental results showing Anderson localization of Bose Einstein Condensates in random
potentials in both one and two dimensions [LFM+05,CVH+05,FFG+05].

Furthermore, one gets naturally to the question of the influence of nonlinearity on Anderson
localization by considering interacting BECs [SDK+05]. Hence, those systems are particularly
interesting as a direct application of the results of this work.
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Figure 1.3: Experimental results for light in disordered photonic lattices obtained in [SBFS07]. The
figure shows averaged effective width (a) and Participation Number (b) measured ex-
perimentally for different strengths of disorder. Averages were taken over 100 disorder
realizations. Panels (c) - (e) show the intensity distributions for disorder levels of 0%,
15% and 45%, the white lines are averaged logarithmic intensities. The exponentially
decaying intensity in panel (e) is interpreted as Anderson localization. (source: [SBFS07])

1.2.3 Light in Disordered Photonic Lattices

In 1984, John suggested the presence of localization of electromagnetic waves in strongly dis-
ordered media [Joh84]. Later, this was investigated in detail and Anderson localization was
observed in an optical setup with strongly scattering semiconductor powders [WBLR97]. In
a very recent experiment by Fishman et al. [SBFS07], the potential is created by a dielectric
material that changes its refractive index when being exposed to an optical interference pat-
tern. Thus, using a speckle beam as for BECs, the properties of the random potential can
be controlled quite precisely. The results found in [SBFS07], which are shown in Fig. 1.3,
support the existence of Anderson localization in those systems.

Furthermore, the effects of nonlinearity on Anderson localization can be studied using these
kinds of systems. Some results on this can also be found in [SBFS07], indicating an in-
crease of localization in the presence of self-focusing nonlinearity. However, when comparing
these results with the conclusion drawn later in this text, one has to keep in mind that the
experimental observations happened for completely different parameters and time-scales.

4



Part I

Nonlinear Disordered Lattices





2 Anderson Localization in Linear Systems

2.1 Understanding of Localization

First of all, the term localization needs to be clarified to ensure the reader’s understanding
of this work. The straightforward definition of localization is obtained by looking at the
asymptotic behavior of a given wavefunction ψ(~r). We call ψ localized at ~r0 if its absolute
square decreases exponentially at large distances from ~r0:

|ψ(~r)|2 = f(~r) · e−|~r−~r0|/ξ. (2.1)

Here, f is some arbitrary subexponential1 but positive function and ξ is called localization
length.

Historically, first the diffusion or transport properties of a system were of interest rather than
the asymptotic behavior of single wavefunctions. Thus in his pioneering article [And58] of
1958, P. W. Anderson did not use the term “localization”, but rather proved the Absence
of Diffusion. It seems very natural, and can be shown rigorously, that for a given (linear)
system the transport properties at vanishing temperature depend on the character of the
eigenstates around the Fermi energy EF . If those states are extended, like for electrons in
metals or free particles, one observes zero temperature transport through the system, hence
diffusion. On the other hand, if the eigenstates of a system are known to be localized in
the meaning of eq. (2.1), it can be shown that no diffusion is possible in the system. Thus,
by knowing that the eigenstates around the Fermi energy are localized it can be concluded
that there is no zero temperature diffusion. See section 2.3.3 for a more detailed analysis
of this in 1D systems. Additionally, it is accepted that if absence of diffusion or vanishing
conductance in a disordered system is experimentally observed, localization of the eigenstates
can be concluded.

In the numerical simulations of part II of this work, the diffusion properties of a system
are investigated by checking if an initially localized state remains localized over time in the
presence of nonlinearity. To accomplish this, sophisticated techniques to measure the degree
of localization are required, but a detailed discussion on this is delayed to chapter 5.

2.2 The Anderson Model

The Anderson model serves as the prototype of a system exhibiting localization due to disor-
der. In its original form, it can be written in terms of a Hamiltonian:

H =
∑
i

Eia
∗
i ai +

∑
i 6=j

Tija
∗
i aj (2.2)

1A subexponential function f(x) is defined to increase slower than exponentially: f(x)/ex −→
x→∞

0.
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2 Anderson Localization in Linear Systems

Where i, j refer to some kind of lattice indices and ai is the complex valued excitation ampli-
tude of an entity placed at the lattice site i, e.g. a spin. Ei is the energy of such a spin and a
random variable distributed uniformly over an interval of width W . Tij are the transfer (or
hopping) matrix elements defining the interaction between spins at sites i and j. For such a
system in a 3D lattice, Anderson proved the absence of diffusion under some restrictions on
the interaction. His result goes as follows: If the interaction Tij is sufficiently short ranged,
that means decaying faster than 1/r3 for sites with distance r, and if the average interac-
tion T is less than a critical value TC ≈ W , than no transport at all will be observed in the
system [And58]. More precisely, he showed that under the above circumstances a single spin
placed at one lattice site will remain exponentially localized even in the limit t→∞.

2.3 Localization in one Dimension

As the subject of this work are only one dimensional systems, we want to briefly review the
known properties of Anderson localization in one dimension. General results on localization
for arbitrary dimensions d have been found using scaling techniques. For a good review on
this see [LR85] or chapter 8 in [She06]. By scaling arguments it was shown that for dimensions
d ≤ 2 all states are localized even for arbitrarily small disorder strength W , while for d > 2 a
critical disorder strength exists, above which both localized and extended eigenstates might
be found separated in energy by the mobility edge EC . However, we want to restrict ourselves
to one dimensional systems from now on.

2.3.1 Arguments from Random Matrix Theory

In this section, a simple one dimensional model will be introduced, where the localization of
eigenfunctions can be derived from random matrix theory. This model is obtained from (2.2)
by introducing nearest neighbor coupling: Tn,n+1 = Tn,n−1 = A. Note that the Hamiltonian
is real and symmetric for this coupling and so the eigenstates are also real and we can treat
an as real numbers. The equation for the eigenstates of such a system looks as follows:

ε an = Vnan +A(an−1 + an+1), (2.3)

where ε is the eigenenergy of the eigenstate and the on-site energy is called Vn instead of Ei
here. This can be written via transfer matrices Tn that describe the advance by one lattice
site: (

an+1

an

)
= Tn

(
an
an−1

)
, (2.4)

with the transfer matrix being defined as

Tn :=
(

(ε− Vn)/A −1
1 0

)
. (2.5)

Introducing the product QN of transfer matrices:

QN =
N∏
n=1

Tn, (2.6)

8



2.3 Localization in one Dimension

equation (2.3) can be written in explicit form:(
aN+1

aN

)
= QN

(
a1

a0

)
. (2.7)

It should be mentioned, that with this formulation one still has to find consistent combinations
of ε, a0 and a1, fullfilling the boundary conditions, if one wants to solve (2.3). But suppose
some sequence {an} is a solution of (2.3), then (2.7) must be fulfilled for these an and theorems
about products of random matrices can be applied.

The most interesting result about random matrices for our case is the Fürstenberg theorem
which states the existence of the maximal characteristic Lyapunov exponent λ1 for a sequence
of products of random matrices Pn [CPV93]:

λ1 = lim
N→∞

1
N

ln ‖ P1 · . . . · PN ‖, (2.8)

where ‖ · ‖ denotes the ususal matrix/operator norm ||A|| = max{||Ax||} where ||x|| = 1.
Moreover, λ1 turns out to be nonrandom, thus independent of the actual choice of random
matrices Pn. Fürstenberg also showed that for the case of uniformly distributed random
matrices with determinant 1 (as the Tn are), λ1 is always positive. Roughly spoken, this
means that for some vector z we have

|QNz| ∼ eλ1·N |z|. (2.9)

Applying this to eqn. (2.7), we see that the states an must be exponentially increasing with
n, having an exponential growth rate λ1 > 0. If we use the same lattice site as starting point
and iterate to the other direction, we also see exponential growth in the system with the
same rate λ1. Now we assume periodic boundary conditions. That requires the iterations in
both directions to match at some point if they belong to proper eigenstates. In general, those
iterations will not match as the starting point a0, a1 or the chosen energy ε do not correspond
to an eigenstate of the system. Anyhow, if an eigenstate for the chosen values of a0, a1 and
ε does exist, it should be localized with localization lengths ξ = 1/λ1. Furthermore, it is
assumed that the behavior of λ1 is sufficiently smooth so that a λ1 found for some energy ε
close to an eigenenery is also close to the inverse localization length of the corresponding
eigenstate. This is called the Borland conjecture [Bor63]. See [CPV93] and references therein
for more accurate mathematical treatments of this issue.

2.3.2 Density of States and Localization Length

Unfortunately, the energy dependence of the density of states (DOS) ρ(E) and the localization
length ξ(E) can not be computed analytically for arbitrary disorders.2 It should be noted first
that ρ(E) and ξ(E) are understood as averages over many disorder realizations. However,
from perturbation theory for weak disorders strengths (smallW ) follows that disorder destroys
the divergence of ρ at the energy band edges that is seen in regular lattices. More precisely,
the DOS has smooth exponential tails at the borders, called Lifshitz tails. We will not go into
more details on that, but one important fact should be presented that can be obtained from a

2There exist exact results for Cauchy–distributed random disorder [Llo69].

9



2 Anderson Localization in Linear Systems

Coherent Potential Approximation (CPA). The result was found by Thouless in 1974 [Tho74]
and provides effective band edges for the eigenenergies. Following his calculations, the energy
band edges are given by

|E±| =
1
2

√
W 2 + 4A2 +

A

W
ln
√
W 2 + 4A2 +W√
W 2 + 4A2 −W

≈ 2A+
W 2

12A
, (2.10)

where the approximation is valid for small disorder strength W . Note that those edges are
no sharp bounds. They rather mean that eigenenergies below (above) these edges occur with
exponentially small probability.

For the localization length ξ(E), second order perturbation theory for weak disorder strengthW
in the 1D Anderson system (2.3) gives the following dependence (|E| < 2A):

ξ(E) =
96A2 − 24E2

W 2
(2.11)

Remember, that A is the coupling strength of nearest-neighbor coupling and W the strength
of disorder.

Nevertheless, the formulation with transfer matrices (2.4) is an useful tool for numerical
studies on ρ(E) and ξ(E). To evaluate the density of states, we have to know that in one
dimensional systems the eigenstates can be labeled by ascending energy. Say akn are the values
of the k-th eigenstate of our system at lattice site n, where k = 0 corresponds to the state
of lowest energy. Now for one dimensional systems, we also know that the k-th eigenstate
must have precisely k nodes, which means zero crossings [PF92], neglecting degenerated cases.
Additionally, the number of states below the energy given by the k-th eigenenergy is precisely
k. Thus, given a lattice of size N we can compute the integrated density of states for the
eigenenergies as

η(εk) :=

εk∫
−∞

dE′ρ(E′) =
k

N
. (2.12)

Together with the Borland conjecture, this leads to an easy applicable numerical method for
computing the integrated density of states η. The straightforward way would be to fix some
initial conditions and iterate the mapping (2.4) for different energies ε. To obtain the number
zero crossings k and hence η(εk), one simply counts the points where an changes its sign. But
as an is exponentially increasing with n, one might not be able to iterate long enough to get
a sufficiently exact approximation due to the limited maximal numbers that can be handled
by a computer.

This can be overcome by using a slightly transformed mapping. Therefore, new variables Rn
are introduced, defined by

Rn := an+1/an. (2.13)

For Rn, the equation for an eigenstate of the system leads to the following iteration map:

Rn+1 = E − Vn −
1
Rn

. (2.14)

Note, that the coupling strength A is set to 1 for sake of simplicity. Using this iteration
overcomes the problem of exponential growth, and by counting the negative values of Rn

10



2.3 Localization in one Dimension

Figure 2.1: Density of states ρ(E) (top left), integrated DOS η(E) =
∫
ρ(E) (bottom left) and local-

izations length ξ(E) (right) for different disorder strengths W = 1.0 (light blue), W = 2.0
(blue), W = 3.0 (green) and W = 4.0 (red). Coupling constant A = 1. Numerical results
were obtained by iterating (2.14) 10000 steps for 1000 disorder realizations. The black
curves in the left plots shows the diverging behavior of the DOS ρ(E) ∼ 1/

√
2− |E| near

the spectrum borders E± = ±2 for the regular lattice (W = 0) for comparison. The small
triangles mark the effective energy edges as given by equation (2.10). The localization
lengths for different disorders are plotted on the right. The colors are the same as in the
left plot. The dotted lines are the approximations from (2.11).

one gets the number of nodes of an and thus the integrated density of states for a given
energy E. Moreover, the average of the values ln |Rn| gives an approximation for the local-
ization length ξ(E). Obviously, those values still depend on the disorder realization that was
chosen for the iteration, but not on the initial values a0 and a1, at least for large numbers
of iterations N . Therefore, an averaging over disorder realizations should also be applied
to obtain universal, non-random results. Hence, the following quantities are computed from
iterating (2.14):

η(E) =

〈
1
N

N∑
n=1

θ(Rn)

〉
Ω

(2.15)

ξ(E) =

〈
1
N

N∑
n=1

ln |Rn|

〉
Ω

, (2.16)

where θ is the usual step function and 〈·〉Ω denotes the averaging over disorder realizations,
that is, sets of random potential values Vn. Fig. 2.1 shows numerical results for N = 10, 000
averaged over 1, 000 disorder realizations. For increasing disorder strength W > 0, one sees
the Lifshitz tails at the edges of the energy band, whereas for the regular lattice the density of
states ρ(E) = dη/dE is diverging at those points. For large disorder strength W = 4, η(E) is
nearly linear for almost the whole energy band, which means a roughly constant density ρ(E).
The localization length ξ has its maximum at the center of the energy band E ≈ 0 and is
also increasing for decreasing disorder strength W . This is expected, as ξ should diverge for
W → 0. In the right panel in Fig. 2.1, the numerical results for ξ(E) are compared with the
approximations from (2.10) showing a good correspondence for energies away from the band
edges.
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2 Anderson Localization in Linear Systems

2.3.3 Localization and Conductivity

In this section, the relation between conductivity (diffusion) and localization is going to
be enlightened by showing that for a 1D disordered system the conductivity will vanish.
We start with the Landauer formula [Lan70] which states that for an electronic system the
conductivity G through some (1D) probe is proportional to the quotient of transmission
coefficient T and diffusion coefficient R of this probe:

G ∼ T

R
(2.17)

The probe itself is considered as a random one dimensional system with N lattice sites. Left
and right of the probe, we assume free electrons with wave number k and thus write the
wavefunctions there as:

left : ψn = eikn + re−ikn (n ≤ 0) (2.18)
right : ψn = teikn (n > N), (2.19)

where we suppose the incident wave coming from the left. t and r are the complex transmis-
sion/reflexion coefficients with R = |r|2 and T = |t|2. Those wavefunctions can be related
using the product QN of transfer matrices from eq. (2.7):(

teikN

teik(N−1)

)
= QN

(
1 + r

e−ik + reik

)
. (2.20)

This can be solved for t, yielding [CPV93]:

|t| = 2| sin k|
|(QN )21 − (QN )12 + (QN )22eik − (QN )11e−ik|

. (2.21)

Applying the Fürstenberg theorem, we find

G ∼ |t|2 ∼ e−2λ1N ∼ e−N/ξ. (2.22)

This holds because for non strictly positive matrices, like the transfer matrices Tn (2.4), it can
be shown that not all components of the product matrix QN are growing with an exponential
rate λ1. Thus, the denominator in (2.21) does not vanish, but increases like eλ1N . Hence, we
found exponentially decaying conductance for an one dimensional system with disorder.
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3 Discrete Nonlinear Schrödinger Equation

3.1 DNLS and its history

The Discrete Nonlinear Schrödinger equation (DNLS) in its simplest interpretation describes
a chain of coupled, anharmonic, classical oscillators in one spatial dimension. Mathematically,
it is described by the following set of equations of motion:

i
d
dt
ψj = A(ψj+1 + ψj−1) + β|ψj |2ψj , (3.1)

where i is the imaginary unit and j is the lattice index. ψj can be considered as the complex
mode amplitude of the oscillator at site j and A is the nearest neighbor coupling strength while
β is the nonlinear strength. The typical oscillator term ∼ kψi on the rhs. of 3.1 disappears
under a simple transformation and is usually neglected for coupled systems as is shown in
section 3.2.1. In numerical studies, the lattice is considered finite, i. e. j = 1 . . . N , and usually
periodic boundary conditions are applied, i. e. ψj+N = ψj . The DNLS can be considered as
a special case of a so called Discrete Self-Trapping (DST) equation:

i
d
dt
ψj =

∑
k

Ajkψk + β|ψj |2ψj , (3.2)

where A = [Ajk] is the N×N coupling matrix, which is usually symmetric in physical systems.
Choosing A tridiagonal, one again gets (3.1) where diagonal terms Ajjψj can be neglected as
said before.

For the nearest neighbor coupling (3.1), the number of parameters can be decreased by di-
viding the equation by A and using the transformation t 7→ At, β 7→ β/A resulting in

i
d
dt
ψj = ψj+1 + ψj−1 + β|ψj |2ψj , (3.3)

which from now on is called the DNLS equation.

There already exist over 350 papers concerning DNLS or DST equations dealing with all
kinds of effects in those systems, for example: wave transmission [HT99], localized modes and
their stability [PGK01] or breather solutions [KA00]. For a review on the major results and
historical aspects see also [EJ03].

3.2 Sources of the DNLS

3.2.1 Discretization of the Nonlinear Schrödinger Equation

Besides the interpretation as a system of coupled oscillators, the easiest way to obtain the
DNLS is from a straightforward discretization of the Nonlinear Schrödinger equation (NLS)

i~
∂φ

∂t
= − 1

2m
∂2φ

∂x2
+ γ|φ|2φ

(
= Ĥφ

)
(3.4)

13



3 Discrete Nonlinear Schrödinger Equation

by a spatial discretization φ(x)→ φj = φ(xj) where xj = x0 + j ·∆x. The spatial derivative
then is approximated by a finite difference

∂2φ

∂x2

∣∣∣∣
xj

−→ 1
(∆x)2

(φj−1 − 2φj + φj+1). (3.5)

By applying the following transformations

φj 7→ψj := φje
2i~t/2m(∆x)2

t 7→ τ := −~t/m(∆x)2

γ 7→β := −(∆x)2γ

we get, denoting the derivative with respect to the new time τ by a dot,

iψ̇j = ψj−1 + ψj+1 + β|ψj |2ψj (3.6)

which is exactly (3.3). By this transformation, the term 2φj disappeared and in the same
way any term kφj can be neglected as the system can always be transformed to a rotating
frame where this term vanishes.

It is worth pointing out that there are other possible discretizations of (3.4), one of which
being the Abowitz–Ladik (AL) model:

i
d
dt
ψj +

(
1 +

1
2
γ|ψj |2

)
(ψj+1 + ψj−1) = 0. (3.7)

The AL model, in contrast to the DNLS, is fully integrable, but it can be argued that it is
physically less meaningful.

3.2.2 Interacting Bose-Einstein Condensates

It is well known that the dynamics of a weakly interacting Bose gas at zero temperature in
a harmonic trap can be described by the Gross-Pitaevskii equation, which is the same as the
NLS (3.4) plus an external potential [DGPS99]. Starting from a 1D many body Hamiltonian
in second quantization, the DNLS is going to be derived using mean field approximation
techniques for a Bose-Einstein condensate. We follow the calculations presented in [MC08]
starting with the Hamiltonian:

Ĥ =
∫

dx ψ̂†(x)
[
− ~2

2m
∂2

∂x2
+ Vext(x)

]
ψ̂(x)

+
1
2

∫
dx
∫

dx′ ψ̂†(x′)Vint(x− x′)ψ̂(x′)ψ̂(x). (3.8)

ψ̂†(x) and ψ̂(x) are the bosonic field operators which destroy/create a particle at position x.
Those can be expanded into localized1 Wannier functions ψ̂(x) =

∑
j b̂jw(x − xj), where

b̂j destroys a particle in the Wannier wavefunction w(x − xj). Additionally, the interaction

1Assuming that the potential is strong enough, we can invoke the tight-binding approximation for which the
Wannier functions are understood to be localized.
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3.2 Sources of the DNLS

potential Vint is assumed to be of contact type, namely Vint(x − xj) = gδ(x − xj), where
g is roughly the s-wave-scattering length of atoms. Under those assumptions, (3.8) can be
approximated by keeping only nearest neighbor hoppings and on-site interactions and we
arrive at the so called Bose-Hubbard-Hamiltonian (BHH):

Ĥ = −J
N−1∑
j=1

(b̂†j+1b̂j + h.c.) +
U

2

N∑
i=j

n̂j(n̂j − 1) +
N∑
j=1

Vjn̂j . (3.9)

n̂j ≡ b̂†jbj is the number operator counting the number of bosons in the Wannier function
at lattice site j. The coefficients J , U and Vj can be computed exactly in terms of the
single particle wavefunctions w(x− xj) [JBC+98]. However, their meaning can be seen from
(3.9). J is the nearest neighbor hopping coefficient, U the on-site interaction energy and
Vj represents the external potential. The DNLS can be recovered from the BHH simply by
applying the time evolution in the Heisenberg picture i~∂tb̂k = [b̂k, Ĥ]. After some straight
forward computation using commutator relations for the creation/annihilation operators, one
arrives at

i~∂tb̂k = −J(b̂k+1 + b̂k−1) + Ub̂k b̂
†
k b̂k + Vk b̂k. (3.10)

That is already the DNLS plus the potential term Vk, but rather for operators b̂k than for
wavefunction amplitudes. Using the expectation value of eq. (3.10), an equation for the
expectation value 〈b̂k〉 =: χk can be obtained that is precisely the DNLS plus potential term.

i~∂tχk = −J(χk+1 + χk−1) + U |χk|2χk + Vkχk. (3.11)

3.2.3 Coupled Optical Waveguides

To underline the wide applicability of the DNLS, we want to present an occurrence away
from BCEs or the solid state context. The example will be a system of coupled optical
waveguides, but only a brief overview on how the DNLS is obtained will be given, as the
complete mathematical derivation is beyond the scope of this text. For a detailed treatment
see [HT99]. Consider a system of coupled, nonlinear, optical waveguides that are extended in
z-direction. Denoting the amplitude of the µ-th normal mode of the n-th waveguide by aµ,n,
we can write down the following relation:

− i d
dz
aµ,n ∼

∫
dxdyEµ,n · P ′n, (3.12)

where Eµ,n is the electric field of the µ-th mode in the n-th waveguide and P ′ is the polarization
induced by surrounding waveguides and nonlinear material effects. Depending on the material
and its dielectric coefficients, magnetic susceptibility and nonlinear properties, there might
appear many kinds of terms in P ′. Using coupled nonlinear waveguides, the polarization has
a form that already reminds of the DNLS:

P ′n = ε1En + ε2(En−1 + En+1) + χ|En|2En. (3.13)

ε1 and ε2 are dielectric constants of the waveguide and the surrounding host material re-
spectively. χ is the nonlinear magnetic susceptibility and En denotes the total electric field
from the n-th waveguide. By making the simplification that only the lowest mode contributes
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3 Discrete Nonlinear Schrödinger Equation

to the field, namely En ∼ aµ=1,n, one arrives, after some integration, at an equation for
amplitudes of the first modes an ≡ aµ=1,n:

− i d
dz
an = Qnan + Q̃n,n−1an−1 + Q̃n,n+1an+1 + Q̂n|an|2an, (3.14)

where Q, Q̃ and Q̂ are the integrals over different orders of E as given by substituting (3.13)
into (3.12). If identical waveguides are used, the coupling coefficients Q̃ become real and
symmetric and after a phase transformation an = cn exp(iQnz) we arrive at:

i
d
dz
cn = V (cn−1 + cn+1)− γ|cn|2cn, (3.15)

where −V := Q̃n,n−1 = Q̃n,n+1 and γ = Q̂n was introduced. This, again, is the DNLS, but
instead of the time evolution of a solid state system, it describes the behavior of the electro-
magnetic field in optical waveguides. So what usually was the time derivative in the former
examples is now replaced by a spatial derivative corresponding to the direction along the
waveguide.

Optical waveguides provide a very good experimental access to disordered, nonlinear systems
where most of the parameters can be controlled quite precisely in the experimental setup.

3.3 Properties of the DNLS

3.3.1 Conserved Quantities

Before advancing to disordered lattices, a few properties of the DNLS will be reviewed. Maybe
the most interesting ones are the conserved quantities, as they have huge impacts on the
dynamics of the system. As a matter of fact, there are precisely two conserved quantities for
the DNLS: the norm N , usually set to 1:

N =
N∑
j=1

ψ∗jψj = 1 (3.16)

and the energy E

E =
N∑
j=1

A(ψ∗j+1ψj + ψj+1ψ
∗
j ) +

β

2
|ψj |4 (3.17)

It is obvious, just from the origin of the DNLS equation, that both of these quantities must
be conserved. Their validity can also be quickly seen by computing the time derivative of
(3.16), (3.17) respectively, and substituting the DNLS (3.3) and its complex conjugate. As
said before, these are the only conserved quantities [EJ03]. Thus, the DNLS is not integrable
for N > 2.

3.3.2 Traveling Wave Solutions

Using the ansatz describing a traveling wave with frequency ω

ψn(t) = R ei(kn−ωt) (3.18)
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3.3 Properties of the DNLS

to solve the DNLS (3.3), we find the dispersion relation

2 cos k = ω − β|R|2. (3.19)

k must be real valued for the solution (3.18) to be of physical meaning. This restricts the
frequency, and thus the energy, of the wave to the band

− 2 + β|R|2 < ω < 2 + β|R|2. (3.20)

Compared with the linear case β = 0, we see that the nonlinearity simply shifts the energy
band.

3.3.3 Breather Solutions

Breathers are very interesting objects in nonlinear systems. However, they are not the major
effects that are considered in this work, but they will be used to explain some observations
in the later parts, so a few words about these structures are necessary. For a detailed review
on breathers in discrete systems see [Aub97], for example.

Breathers are usually understood as time periodic (or quasi periodic), spatially localized
solutions of nonlinear systems. They appeared first in the context of the sine-Gordon PDE :
uxx−utt = sinu. Note that these objects are of completely different nature than the localized
eigenmodes of the linear Anderson model. Breathers are inherently nonlinear phenomena –
the breather solution (in general) does not solve the linearized equations of the underlying
nonlinear system. They have, however, in common that breathers as well as Anderson modes
exhibit no dissipation even for t → ∞. In 1994, MacKay and Aubry presented a proof
showing the existence of infinitely many breathers in systems of weakly coupled, nonlinear
oscillators [MA94]. The idea of the proof is to continue the solution of an uncoupled system,
which is fully integrable, to the case of small but non-vanishing coupling. The case without
coupling is called the anti-continuous-limit. For uncoupled oscillators it is obvious that by
exciting one oscillator, having the frequency ω, and leaving the others at rest, we have a time
periodic solution of the system. It can now be shown that this solution can be continued for
increasing coupling up to some critical value at which some sort of bifurcation appears and
the breather is destroyed. The oscillation frequency remains constant during the continuation
process and it can also be shown that the continued solution is exponentially localized.2

2Note that the original solution is a delta-peak and thus as localized as possible.
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4 Discrete Anderson Nonlinear Schrödinger Equation

4.1 The gDANSE Model

After having introduced systems with disorder in chapter 2 and a nonlinear system in chap-
ter 3, the actual model investigated in the later parts of this work will be presented. The
underlying equation is a combination of the two former and is usually referred to as the
Discrete Anderson Nonlinear Schrödinger Equation (DANSE):

i
d
dt
ψn = Vnψn + ψn−1 + ψn+1 + β|ψn|2ψn. (4.1)

As before, ψn is the complex valued oscillator state at site n and Vn is the on-site potential,
chosen uniformly random from the interval [−W/2,W/2]. This choice of the random potential
has, in the limit N → ∞, a mean value of zero V =

∑
Vn/N → 0 what seems somehow

special. But suppose we have some random distribution V ′n with mean V ′ 6= 0, then by taking
Vn = V ′n − V

′ and using the transformation ψn 7→ ψn exp(−iV ′t) the above equation is re-
established. Thus, the mean value of the random potential is arbitrary and we choose the
disorder such that its mean will be zero in the limit for large N . β gives the strength of the
nonlinear term and is mostly set to 1 in this work. The state given by the sequence of complex
numbers ψ = (ψn) will sometimes be called wavefunction as well, due to the correspondence
with the Schrödinger equation.

However, in part II a somewhat academical generalization of (4.1) is considered:

i
d
dt
ψn = Vnψn + ψn−1 + ψn+1 + β|ψn|2αψn. (4.2)

The meaning of the symbols is:

n = 1 . . . N spatial lattice index
ψn ∈ C oscillator state at lattice site n
Vn ∈ [−W/2,W/2] random potential, distributed uniformly
β ∈ R nonlinear strength, usually 1.0
α = 0.5, 1, 2, 3 nonlinearity index

A new parameter α is introduced that describes the shape of the nonlinear potential and will
be called nonlinearity index. α = 1 corresponds to the original DANSE. Note that due to the
condition |ψn| < 1, larger values of α decrease the influence of nonlinearity, while for smaller
α the nonlinear effects are increased. Eq. (4.2) is called generalized DANSE (gDANSE) from
now on and we usually set β = 1 and only α is varied. The corresponding Hamiltonian has
the form

H =
∑
n

Vn|ψn|2 + ψn−1ψ
∗
n + ψnψ

∗
n−1 +

β

α+ 1
|ψn|2(α+1). (4.3)

Thus, we again have norm and energy conservation in our system.
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4 Discrete Anderson Nonlinear Schrödinger Equation

4.2 Eigenmode Representation

Later, we will often refer to the DANSE or gDANSE in another form that is very helpful to
understand some of the observations. This representation can be obtained by a simple base
transformation from the spatial peaks ψn to eigenmodes φm of the linear part of the DANSE.
This linear part is nothing else than the Anderson model (2.2). We introduce new variables
Cm that represent the excitation strengths of the m-th linear mode φm. The relation to the
old spatial variable ψn is:

ψn =
∑
m

Cmφm,n (4.4)

where φm,n is the, in general complex, value of the m-th eigenfunction at lattice site n. As the
Hamiltonian of our system is usually real and symmetric, the eigenfunctions are always real
valued as well. The calculations are, however, done for the general case of complex valued
eigenfunctions. Using the decomposition above and the fact that the φm are eigenmodes of
the linear part with eigenvalues εm, (4.2) can be transformed to an equation describing the
time dependence of the new variables Cm:

i
d
dt
Cm = εmCm + β

∑
bm1...bmαem1...emα
m′

Vbm1...bmαem1...emα
m′,m

Cbm1
· · ·CbmαC∗em1

· · ·C∗emαCm′ . (4.5)

The sum is taken over 2α + 1 indices m̂1, m̂2 . . . m̂α, m̃1, m̃2 . . . m̃α and m′. The coupling in
this representation is nonlinear and governed by the eigenmode overlaps V . For a rigorous
derivation of this equation and the exact definition of V see appendix A.1. If α is set to 1,
the summation has to be done only over three indices m̂, m̃,m′ and the coupling strength is
the four-eigenmode-overlap Vbm,em,m′,m.
4.3 Properties of the DANSE

4.3.1 Breathers

In section 3.3.3 it was argued that there exist time periodic, localized solutions in the regu-
lar1 nonlinear system. The existence of such structures in the presence of disorder has been
addressed in much detail by Kopidakis and Aubry in 1999 [KA99a,KA99b] and their results
should be mentioned here. First of all, in the limit of vanishing coupling it is obvious that
single excited nonlinear oscillators still give a localized time-periodic solution of the problem.
Those solutions can be continued for small coupling, if the frequency is, and remains, outside
the linear spectrum. These solutions are called extraband discrete breathers (EDB). If, how-
ever, the frequency of such a breather enters the phonon spectrum during the continuation2,
bifurcations occur and the breather disappears [KA99a]. Thus, the techniques used to find
breathers in the DNLS is not successful if disorder is introduced – disorder destroys the lo-
calization effects of nonlinearity, except for solutions outside the phonon spectrum where the
nonlinearity is so strong that the influence of disorder is negligible.

1“regular” means without disorder.
2Mind, that by increasing the coupling, the spectrum of the linear eigenenergies gets broader and eventually

reaches the frequency of the breather.
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4.3 Properties of the DANSE

But there is another approach that turned out to be more successful [KA99b]. The technique
is slightly different from the one above, but the idea is similar: One takes the localized
eigenmodes of the linear problem and tries to continue them for increasing nonlinearity. It is
convenient to use the eigenmode representation of the DANSE equation, where the nonlinear
term is now being found in the coupling. Starting with eigenmodes at zero nonlinear coupling
one can (sometimes) safely continue the localized solution for increasing coupling up to some
critical value, were eventually a bifurcation destroys the solution. Using this method, Aubry
and Kopidakis found linearly stable, exponentially localized breathers emerging from the
eigenmodes of the linear system for small nonlinearities. There are, of course, some restrictions
on the frequencies of these modes, but we refer to [KA99b] for any details on this. However,
the important fact is that these localized solutions do exist and this is used to explain some of
the numerical results found in part III and also provides some arguments for the next section.

4.3.2 Spreading Regimes

The best way to understand why localized states spread in the DANSE model is to consider the
interactions between the localized eigenmodes of the linear equations. Without nonlinearity
(β = 0), eigenmodes with corresponding eigenvalues εm of the system can be easily calculated.
All eigenmodes are exponentially localized due to Anderson localization and the eigenenergies
(or frequencies) εm are random3 and lie within an interval of width ∆ . W + 4.

Qualitatively, three regimes of nonlinear strength with different spreading behavior can be
expected:

Weak Nonlinearity: The nonlinear strength β is small so that continued breather solutions
still exist and no spreading is expected.

Moderate Nonlinearity: The breather solution has bifurcated and the nonlinearity might
cause spreading of initially localized states in the system.

Strong Nonlinearity: The nonlinear strength is so strong that the total energy of the states
is shifted out of the linear spectrum. That creates extra-band breathers (EBD) that
also cannot spread [KA99a].

The different regimes were also addressed by some calculations from Flach et al. [FKS09]
which are briefly reviewed here: If the disorder strength is large enough, W & 3, the density
of states is approximately constant, as is shown in section 2.3.2, and the average distance
between the eigenvalues can be approximated by ∆/N , where N is the lattice size – number
of eigenmodes respectively. The localization length ξ(εm) of the eigenmodes has its maximum
value at the band center εm = 0 given by ξ(0) ≈ 100/W 2 (section 2.3.2). An exponentially
localized state has a Participation Number4 of P (εm) . 4 ξ, as is shown in section 5.1.
Taking the Participation Number as spatial extend of the wavefunction, we find about P (εm)
eigenmodes within the region of eigenmode m. Then, a rough approximation of the mean
distance of eigenenergies is:

∆ε ≈ ∆
P (εm)

W=4.0
≈ (4 +W )W 2

4 · 100
≈ 0.3. (4.6)

3The probability distribution of the eigenenergies is nontrivial and depends on W .
4The Participation Number measures the extend of a distribution – details will be presented in chapter 5.
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4 Discrete Anderson Nonlinear Schrödinger Equation

Now for β > 0, the nonlinear terms cause an energy shift of order β to the eigenmodes due
to the nonlinear coupling. Furthermore, the coupling strength decreases exponentially with
spatial distances of the eigenmodes and so we say that only the modes within a region of
size P (εm) are effectively excitable. This again gives the three regimes of nonlinearity from
above: β < ∆ε represents the weak nonlinearity where the local energy shifts are too small
to cause spreading. ∆ε < β < ∆ is the intermediate regime where spreading is expected, and
∆ < β coincides with the strong nonlinearity where the state energy is shifted out of the linear
energy band and no spreading should occur.

These considerations are, however, rather a hypothesis and not a proof and should be checked
in more detail in later works. Furthermore, Eq. (4.6) gives only a very rough estimate for the
critical β at which spreading should start. Moreover, those values are averages and subject to
strong fluctuation depending on the actual eigenmode in question and its vicinity. Note also
that choosing states with energies close to the band edges leads to initially excited eigenmodes
with very small localization lengths. According to the calculations above this increases the
critical value of β, maybe even to values larger than 1.

4.4 Numerical Time Evolution

The numerical results in the later parts of this work are mainly obtained by applying a time
evolution to some initial state according to the (g)DANSE equation. Due to the fact that
the system is not integrable, one has to rely on numerical methods. This can be done by a
discretization of time and evolving small timesteps linearly. In the following, the algorithm
used throughout this thesis is introduced, where we provide calculations for the DANSE
equation, but the generalization to the gDANSE is obvious. We start with writing the time
dependent wavefunction ψn(t) as a time evolution of some initial state ψn(0) in terms of the
time evolution operator Û .

ψn(t) = Û(t)ψn(0). (4.7)

If we substitute this into (4.1), we find a operator equation for the time evolution operator
U :

i
d
dt
Û(t) = ĤÛ(t), (4.8)

which has the formal solution
Û(t) = e−iĤ·t. (4.9)

To be able to construct an integration algorithm, we have to split Ĥ into two parts:

Ĥ = Ĥ0 + B̂ (4.10)

Ĥ0ψn = ψn+1 + ψn−1 + Vnψn (4.11)

B̂ψn = β|ψn|2ψn, (4.12)

the linear part Ĥ0 and the nonlinear part B̂. Note, for mathematical exactness, that the
operator Ĥ0 acts on the whole wavefunction ψ = (ψn) and the above equation should be
understood in the meaning Ĥ0ψn = (Ĥ0ψ)n and similar for the other operators. If we use the
splitting together with eq. (4.9), we find the following expression for Û :

Û(t) = e−i(Ĥ0+B̂)·t ≈ e−iB̂t · e−iĤ0t. (4.13)
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4.4 Numerical Time Evolution

The last step is an approximation because Ĥ0 and B̂ are not commuting and therefore we
make an error of order |Ĥ0| · |B̂| · t2 by this splitting. But the splitting is unitary and thus
the total probability is preserved by this approximation [LR05].

To keep the error from the operator splitting sufficiently small, we integrate only over small
timesteps ∆t = 0.1. The time evolution for each such timestep can be written as:

ψn(t+ ∆t) = e−iB̂∆te−iĤ0∆tψn(t). (4.14)

From (4.12), we see that the nonlinear timestep is a simple matrix multiplication of ψ by a
diagonal matrix with values exp(−iβ|ψn|2) as diagonal elements. The linear timestep is non-
trivial and another approximation has to be used for solving the time evolution: The Crank-
Nicolson Scheme [PTVF02]. Basically, it cuts down to an approximation of the exponential
function

e−iĤ0∆t ≈ 1− iĤ0∆t/2
1 + iĤ0∆t/2

(4.15)

which is accurate to second order in time and, again, unitary, thus norm preserving. If we
denote the wavefunction after one linear timestep with ψ̃, we get the following relation:

(1 + iĤ0∆t/2)ψ̃ = (1− iĤ0∆t/2)ψ. (4.16)

Considering the linearity of Ĥ0, we see that this is actually a set of linear equations that can
be solved with numerical effort of order N (system size), due to the band structure of Ĥ0.

There exist other techniques for the numerical time-evolution, two of which should also be
mentioned. If one uses a slightly different operator splitting by defining the linear part as
Ĥ0ψn = ψn−1 + ψn+1 and adding the diagonal disorder term to the nonlinear part, one can do
the linear time step in terms of a Fourier Transform. This technique is remarkably faster than
the Crank-Nicolson scheme (up to 30% in our tests), but has two downfalls. First, starting
with a delta peak and doing a for- and backward-transformation we end up with all sites
being weakly excited (∼ 10−16) due to the finite Fourier transform. This could unintentionally
support the spreading of wavefunctions just as a numerical effect. Secondly, by adding the
linear potential term to the nonlinear part in the operator splitting, this nonlinear part does
not decrease to zero for increasing spreading of the wavefunction. If the nonlinear part is only
given by |ψn|2, norm conservation ensures that it decreases if the wavefunction gets broader.
However, an additional term Vn prevents that. Now the error done by the operator splitting
is ∼ [Ĥ0, B̂] and hence vanishes if B̂ → 0, which is not happening with the Fourier method.

The first problem can be overcome by the usage of Bessel-Functions instead of Fourier trans-
forms. However, this method is clearly slower than our Crank-Nicolson scheme and still
has the disadvantage of lesser accuracy for broader states. Thus, in our opinion the Crank-
Nicolson algorithm is the best choice for numerical integration of the DANSE equation.
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Part II

Subdiffusive Spreading

In this part mainly, the spreading behavior of initially localized states in large disordered
nonlinear lattices is investigated. The fundamental question is whether or not nonlinearity
destroys Anderson localization. Many, partly contradicting results have been published on
this topic already.
Firstly, the methods for measuring the degree of localization of wavefunctions or probability
distributions are described and a new tool, the structural entropy, is introduced. This new
value allows for the investigation of the peak structure of states and it is used to check the time
dependence of the peak structure of spreading wavefunctions. Furthermore, a generalization
to the usual DANSE system is considered introducing nonlinear indices (see section 4.1).
Finally, the spreading behavior in such a system is discussed analytically and the obtained
results are compared with numerical simulations.





5 Measures of Localization

There exist a few different approaches to determine whether a probability distribution is
localized or not. The most straightforward one would be to simply fit an exponential decay and
use the fitted localization length. Obviously, this requires high numerical effort and produces
rather poor results when significant noise is present, like in the Anderson model. Former works
on this problem mainly used the second moment (∆x)2 = 〈x2〉 − 〈x〉2 of the wavefunction or
the inverse Participation Number P−1 =

∑
|ψn|4 to measure the localization of a distribution.

Our new approach will be to additionally use a generalization of the Participation Number
according to generalized Rényi entropies. This will allow us not only to investigate the
spreading of the wavefunction, but as well provides a tool to analyze its peak structure.

Other possible methods of identifying localized states are, for example, measuring the dc-con-
ductance (see section 2.3.3) or testing the dependence on boundary conditions, as localized
states should have exponentially small dependence on the boundary [Tho74]. However, those
are more indirect methods which will not be used throughout this work.

5.1 Second Moment and Participation Number

Before introducing our new quantities, a short review on the commonly used methods might
be helpful. The second moment or variance of a probability distribution is a well known
quantity which is understood to give an estimate of the width of a probability distribution.
Applied to the position representation of a quantum state, the variance provides a good
measure for the spatial broadness of the state. For a discrete lattice with site index n and
complex amplitude ψn the variance can be easily computed by:

(∆n)2 =

(
N∑
n=1

n2 · |ψn|2
)
− n2

0

with n0 =
∑
n · |ψn|2 being the spatial center of the state.

Another concept to investigate the strength of localization is the Participation Number P
introduced by Bell and Dean and defined via its inverse by:

P−1 =
N∑
n=0

|ψn|4.

On a discrete lattice, the Participation Number roughly counts the number of lattice sites
where the wavefunction is significantly larger than zero. So, if the wavefunction spreads
over only L lattice sites with equal amplitude |ψn|2 = 1/L and vanishes elsewhere, we get a
participation number of P = L.
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5 Measures of Localization

For an exponentially decaying wavefunction |ψn|2 = A exp (−|n− n0|/ξ) with localization
length ξ, as usually obtained in linear random lattices due to Anderson’s results, we obtain
the following: First of all, the normalization factor A is calculated as

A−1 = 2
∞∑
n=0

(
e−1/ξ

)n
− 1 =

2
1− e−1/ξ

− 1 =
e1/ξ + 1
e1/ξ − 1

≈ 2ξ

The last approximation is valid for ξ � 1, which we assume from now on. Now the formula
for the Participation Number gives

P−1 =
∞∑

n=−∞
|ψn|4 = A2

(
2
∞∑
n=0

(
e−2/ξ

)n
− 1

)

= A2

(
2

1− e−2/ξ
− 1
)

= A2

(
e2/ξ + 1
e2/ξ − 1

)
≈ 1

4ξ
(5.1)

Thus, we get P ≈ 4ξ for this kind of distribution.

For an extended plane wave ψn = e−ikn/
√
N with wave number k, the participation number

increases with N and diverges in the limit N → ∞. So in a localized state, P gives an
estimate for the degree of localization.

It is very reasonable to assume a correspondence between the Participation Number P and the
second moment (∆n)2. For the case of a continuous Gauss–distribution with variance (∆x)2:

p(x) =
1

∆n
√

2π
e
− (x−x0)2

2(∆x)2 , (5.2)

a short computation for the Participation Number reveals

P−1 =
∫ ∞
−∞

p2(x)dx =
1

(∆x)22π

√
π(∆x)2 = (2∆x

√
π)−1 (5.3)

and hence
P ∼ ∆x. (5.4)

In this calculation a continuous probability distribution was used for the sake of simplicity.
For ∆x � 1 the infinite sums that would come up for discrete probability distributions are
well approximated by the integrals above which justifies this approach.

The relation P ∼ ∆x that was shown here to hold for Gauss-distributions must, of course, not
be true for other kinds of distributions. For example, think of two peaks which move away
from each other but have constant sizes. The Participation Number would remain constant in
this case, but the second moment grows with increasing distance of the peaks. So one should
always analyze both, second moment and Participation Number, to get a full picture of the
spreading behavior.
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5.2 Rényi Entropies and Generalized Participation Numbers

5.2 Rényi Entropies and Generalized Participation Numbers

We have seen that the Participation Number is a good measure of spatial spreading when
dealing with exponentially localized states. But from older results, we expect that nonlinearity
in a random lattice destroys the exponentially localized states on a logarithmic timescale,
leading to wavefunctions with a plateau around their center and exponentially decaying tails.
The problem is that the whole distribution is disturbed by some very large noise due to the
random character of the potential and the nonlinearity. Hence, the plateau usually consists
of a complex peak structure which fluctuates rapidly on short time scales, while the width
of the plateau is quasi constant on short times and varies only on a logarithmic time scale
(subdiffusive ∼ t0.2). As the Participation Number mainly counts the number of peaks of
the plateau, it also fluctuates very strongly on short time scales. Furthermore, there might
be changes in the peak structure of the wavefunction during the spreading. Currently, it
is assumed that the time average of the fluctuation becomes independent of the averaging
interval. That means, the peak structure on average does not change during the spreading.
However, to our knowledge it has not yet been investigated if this assumption is correct.
This question will be numerically addressed later, but now some of the tools used there are
introduced.

Our new approach is based on the idea of Rényi entropies and it generalizes the Participation
Number by defining a new quantity Pq as follows:

Pq :=

(∑
n

|ψn|2q
) 1

1−q

, q 6= 1. (5.5)

It is easy to see that the case q = 2 corresponds to the normal Participation Number P2 = P .
An interesting property of Pq is that for uniformly spread distributions where |ψn|2 = 1/L for
precisely L lattice sites, Pq is independent of q: Pq = P = L. This is the reason for exponent
1/(1 − q) in eqn. (5.5). Before discussing the meaning of the parameter q and the actual
application of Pq, we quickly want to stress the relation between Pq and the general Rényi
Entropies, which we denote Iq and defined by [Rén61]:

Iq :=
1

1− q
ln
∑
n

|ψn|2q. (5.6)

Now it is easy to verify from (5.6) that the following important relation holds between the
Participation Numbers and these entropies:

Pq = eIq . (5.7)

Using this result and the fact that in the limit q → 1 the Rényi Entropy gives the usual
entropy S

I1 := lim
q→1

Iq =
∑
n

|ψn|2 log |ψn|2 =: S, (5.8)

it is very reasonable to also define
P1 := eS . (5.9)

From eqn. (5.7) we have a one-to-one correspondence between Participation Numbers and
Rényi entropies, which means they are equivalent and we can apply any properties for the
Rényi entropies also to the generalized Participation Numbers.
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5 Measures of Localization

5.2.1 Monotonic Behavior

Rényi entropies Iq are well known to mathematicians and their properties are widely ex-
plored [Rén61]. We only want to emphasize the monotonic dependence on the parameter q
as is given by the following inequality:

Iq ≤ Ir for q > r (5.10)

That means Iq is a nonincreasing function with q. For finite N , Iq is a sum of N differentiable
terms in q and thus is differentiable itself yielding the following relation [BS93]:

∂Iq
∂q
≤ 0. (5.11)

As we specifically need the nonincreasing property for q = 2 and r = 1, we want to show it
for these values explicitely. We start at Jensen’s inequality with (− ln) as a convex function.

− ln
∑
pi · pi∑
pi

≤
∑
pi(− ln pi)∑

pi

− ln
∑

p2
i ≤ −

∑
pi ln pi

I2 ≤ I1

Note that from (5.7), we obviously also have

Pq ≤ Pr for q > r (5.12)

5.2.2 Correlation of Rényi entropies

In particular, the monotonic behavior of Iq means that given the Shannon entropy S[Q] = I1[Q]
of some probability distribution Q = {pi, i = 0 . . . N}, we have a natural upper bound for
I2[Q]. Now, we also want to find a lower bound for I2[Q] for a given value of I1[Q]. The
existence of such a bound seems reasonable as one does not expect to find, for example, values
of I2 ≈ 0 while I1 ≈ lnN . It is natural to assume a correlation of the entropies for different q
for a given fixed probability distribution Q. This assumption can be mathematically fortified
and we will shortly restate the essential arguments provided in [Ż03]. Therefore, we introduce
a special class of probability distributions Qk which describe the occurrence of precisely k
events of equal probability.

Qk := {pn = 1/k for n ≤ k, pn = 0 otherwise }. (5.13)

For these distributions we can easily verify that Iq[Qk] = ln k, independent of q. From the
Qk we now construct interpolating probability distributions Qk,l(a) in the following way:

Qk,l(a) := aQk + (1− a)Ql 0 ≤ a ≤ 1. (5.14)

Now Harremoës and Topsøe proved the following relation for any probability distribution Q
with a known value I2[Q] [HT01]:

I1[Q] ≤ I1[Q1,N (a)], (5.15)
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5.2 Rényi Entropies and Generalized Participation Numbers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

I 2

I1

Figure 5.1: Bounds of the Rényi Entropy I2 for given Shannon entropy S = I1 and different system
sizes N = 16 (triangles), N = 32 (squares) and N = 64 (circles). The straight line marks
the upper bound for I2, simply given by I1. The points represent lower bounds depending
on the size of the distribution N as (implicitly) given in (5.17) and (5.16). So given any
distribution Q, we know that the value I2 lies between the straight and the dotted line
(depending on N) for a given I1.

where a is determined by the given value of I2[Q] by the following condition:

I2[Q] != I2[Q1,N (a)].

To prove (5.15), one has to show that for any given value of I2 the corresponding interpolated
distribution Q1,n(a) leads to the maximal possible value of I1. This can be done by searching
the boundary of the region of possible values in the I1-I2–plane at which the difference between
I1 and I2 happens to be extremal. The complete reasoning can be found in [HT01], together
with other relations between the entropies.1

We will use this result to obtain a lower bound for I2 given I1 = S. Let us compute I2[Q1,N (a)],
which simply gives

I2[Q1,N (a)] = − ln
(

(1 + (N − 1) · a)2

N2
+ (N − 1)

(1− a)2

N2

)
.

1In [HT01] also a lower bound for I1[Q] is calculated from the boundary of the region, but we just use I2[Q]
as it is sufficient and easier to understand.
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5 Measures of Localization

Solving this for a yields

a =

√
N exp(−S2)− 1

N − 1
, (5.16)

while equation (5.15) leads to:

I1[Q1,N (a)] ≤ (1−N)
1− a
N

ln
1− a
N
− 1 + a(N − 1)

N
ln

1 + a(N − 1)
N

. (5.17)

At this point, we should substitute a and solve for I2 to get an analytic result for the lower
bound of I2 depending on I1. But the result can not be written in closed form and we
restrict ourselves to present it graphically in Fig. 5.1. As expected, the maximal possible
difference between I1 and I2 vanishes for I1 → 0 and I1 → N while for intermediate values
of I1 ≈ ln(N/2) the possible difference between the entropies is maximal. Note that the
difference of these values I1 − I2 is the structural entropy as defined in the next chapter,
which is thus also bounded by this result.

5.3 Structural Entropy

As is well known, the usual Shannon entropy S can be interpreted as measuring the deviation
of a distribution (pi) from the uniform distribution pi = 1/N . Now in our case, this deviation
has two different origins: The first reason is the spatial localization of the wavefunction and
the second reason is the complex peak structure due to the disorder and nonlinearity. We
will try to separate these effects and find proper methods of measuring both individually. We
apply some of the results developed in [PV92]. The idea is to consider the “proto-type” of
a localized state as the steplike function where pi = 1/P on precisely P sites, and pi = 0
everywhere else – the Participation Number for this state is then also P . This distribution
has no peak structure at all and its entropy is simply given by S = lnP . We use this to define
the localization entropy Sloc that comes from the localized shape of the distribution:

Sloc = lnP = I2. (5.18)

The second equality simply comes from (5.7). Now the complex peak structure and the
exponential tails of the actual distribution are considered as a deviation from this steplike
localized distribution and we write the entropy S as a sum of the localization entropy defined
above and a term induced by the peak structure called structural entropy Sstr

S = Sloc + Sstr. (5.19)

We solve that for Sstr and write the result in terms of Rényi entropies and Participation
Numbers:

Sstr = I1 − I2 = ln(P1/P2) (5.20)

Note that from (5.10) follows that Sstr > 0. Moreover, the results of section 5.2.2 also give
an upper bound for Sstr depending on S.

Thus, we have found a quantity that measures the influence of the peak structure by taking the
deviation of the actual entropy from the entropy corresponding to an unstructured, localized,
steplike distribution. So if the complexity of the peak structure and the localization shape
does not change while the wavefunction spreads, we would observe a constant structural
entropy Sstr.
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6 Structural Entropy of Delocalized States

In this chapter, the behavior of the structural entropy for different types of probability dis-
tributions is investigated. At first two analytic considerations are presented and in the third
section some numerical results for randomly excited short lattices are shown. Eventually,
spreading states in nonlinear disordered lattices are investigated.

6.1 Gauss–Distribution

The first distribution in question is the well known Gauss–curve:

|ψ(x)|2 =
1

∆x
√

2π
e
− (x−x0)2

2(∆x)2 . (6.1)

A continuous spatial variable x is used instead of lattice index n for the sake of simpler
calculations. From section 5.1 we know that the Participation Number of a Gauss-distribution
is (5.3)

P = 2∆x
√
π, (6.2)

while the entropy S can be calculated as

S = −
∫ ∞
−∞
|ψ|2(x) ln |ψ|2(x)dx

=
1

∆x
√

2π

∫ ∞
−∞

(
(x− x0)2

2(∆x)2
− ln(

√
2π∆x)

)
e
− (x−x0)2

2(∆x)2 dx

=
ln(
√

2π∆x)√
2π∆x

√
2π(∆x)2 +

1
2(∆x)2

(∆x)2

= ln(
√

2π∆x) +
1
2
.

Using this and eqn. (6.2), we find the structural entropy to be

Sstr = I1 − I2 = S − lnP =
1
2
− 1

2
ln 2 ≈ 0.153, (6.3)

which is independent of ∆x. So for a widening Gauss-packet, the structural entropy remains
constant.

6.2 Exponentially Decaying States

Now the structural entropy for exponentially decaying distributions is calculated. The shape
of the state is as follows:

|ψn|2 = Ae−|n|/ξ, A ≈ 1
2ξ
.
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6 Structural Entropy of Delocalized States

We again use the results from section 5.1 where the Participation Number was obtained (5.1):

P ≈ 4ξ.

The entropy of such a state can be computed as

S =
∞∑

n=−∞
|ψn|2 ln |ψn|2 = − lnA+

2A
ξ

∞∑
n=0

ne−n/ξ

= − lnA+
2A
ξ

e−1/ξ

(1− e−1/ξ)2

≈ ln(2ξ) + 1− 1
ξ
. (6.4)

which gives the following result for the structural entropy:

Sstr = S − lnP ≈ 1− ln 2− 1
ξ
≈ 0.3− 1

ξ
. (6.5)

Here we find a small dependence on the localization length, but this vanishes for large ξ,
where Sstr converges to approximately 0.3.

6.3 Random States in Short Lattices

In this section, the structural entropy of random distributions is investigated. The random
distributions are created by the time evolution of a state in a random nonlinear lattice – the
DANSE model. More precisely, we initialize the wavefunction in a short lattice with random
values between 0 and 1: |ψn|2 = rand(0, 1) Then the time evolution according to the DANSE
is started and we compute Sstr after waiting some time t = 104. The parameters were set to
W = 4, β = 1 and α = 1 and the lattice size was chosen from N = 7 . . . 100. The idea is to
find out if and how the structural entropy of typical, extended wavefunctions with complex
peak structure depends on the width of the wavefunction. The width is controlled by the
different sizes N and the choice of random initial conditions ensures that the whole lattice is
excited. To avoid fluctuations, the entropies were averaged over a time window of t = 104.

The numerical results can be seen in Figure 6.1. The entropy S and the Participation Num-
ber P , the localization entropy Sloc = lnP respectively, exhibit the expected behavior: log-
arithmic growth with system size. The more interesting quantity is the structural entropy
Sstr that turns out to remain constant for different lattice sizes, at least for N > 20. The
important conclusion is that the peak structure of wavefunctions induced by time evolutions
according to the DANSE model is independent of the extension of the wavefunction. This
behavior is, however, not unexpected, but the result is still important for the interpretation
of spread wavefunctions in large lattices. The value found for Sstr is approximately 0.25 for
these random distributions. Now the structural properties of subdiffusively spreading wave-
functions in long random nonlinear lattices can be investigated and compared to the above
findings. This will be done in section 7.4.
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Figure 6.1: Entropies for a completely excited lattice vs lattice size N . Disorder strengths of the
random potential was always W = 4.0. The entropies are time averages of randomly
distributed initial conditions where the average was taken from t = 104 until t = 2 · 104,
nonlinear strength was set to β = 1.0. The top plot shows entropies S = I1 (squares), I2
(triangles) and the structural entropy Sstr = I1 − I2 (points) for different lattice sizes N
between 7 and 100. While the entropies S and I2 increase logarithmically with lattice size
(black dashed line is the curve lnN), the structural entropy is independent of the system
size. Bottom graph shows Sstr with errorbars coming from the averaging over disorder
realizations. It clearly shows that for N > 20, the structural entropy is nearly constant
Sstr ≈ 0.25 except for some fluctuations.
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Figure 6.2: Structural Entropy for distributions with remaining peaks. The curves correspond to
different fractions of the background noise f (see text). Top curve is f = 0.8, middle
curve is f = 0.9 and the bottom curve is f = 0.95. So even if 95% of the distribution
spread and only 5% remain localized at some lattice site, a clear increase of the structural
entropy is observed.

6.4 Remaining Peaks in Short Lattices

The last setup that will be investigated before considering the actual gDANSE system is a
spread background noise with random peak structure superposed by a single peak at one
lattice site. This constructions resembles the case when some part of the wavefunction
spreads across the lattice while the other part remains localized at some site(s). This partial
localization might be caused by partially excited breathers, as suggested by Kopidakis et
al. [KKFA08], for example. We now want to study how the structural entropy behaves in this
case. Therefore, a finite lattice of size N is initialized with an uniform random distribution
across N −1 sites. This part of the distribution is normalized to f < 1. The probability value
of the remaining lattice site is then set to the value 1− f which ensures that the total norm
over all sites is equal to 1. Finally, the structural entropy of such a state is calculated and
averaged over many realizations of the random part of the distribution. The spreading of the
random part can then be modeled by increasing the lattice size N while keeping the fraction
of random background f constant. This was done for several values f = 0.8, 0.9, 0.95 and the
results are presented in Fig. 6.2.

The main point is that the structural entropy shows a clear increase for all values of f .
Especially, even if 95% of the initially localized probability spreads across the lattice and only
5% remains localized, we can still observe a clear increase of the structural entropy and hence
identify such behavior by analyzing Sstr during the spreading.

36



7 Spreading Behavior

In this chapter, one of the major results of this work will be presented. The spreading behavior
of the gDANSE system (see section 4.1) with various nonlinear indices α = 0.5, 1, 2, 3 is
studied analytically and numerically. First of all, a theoretical analysis of the spreading law
is presented. The spreading exponents obtained from those calculations are then compared
with numerical results for the spreading in the gDANSE model. For a brief description of the
general mechanisms of spreading in nonlinear disordered lattices see section 4.3.2.

7.1 Theoretical Derivation of the Spreading Exponents

The main purpose of this work is the investigation of the spreading behavior of initially
localized states in a system with disorder and nonlinearity. The first results on this topic were
obtained by D. L. Shepelyansky in 1993 [She93], who found subdiffusive spreading of initial
delta peaks for a large enough nonlinearity β > βcrit. In his article, also an approximation
for the spreading law was given. In the following, a calculation of the spreading law based on
the diffusion equation is presented.

The spreading is induced by the nonlinear mode interactions and it can be described by a
nonlinear diffusion equation for the probability density ρ = |ψ|2:

∂ρ

∂t
=

∂

∂x

(
ρa
∂ρ

∂x

)
. (7.1)

The diffusion coefficient is already replaced by a power law dependence D ∼ ρa with an
unknown exponent a which should depend on the nonlinear index α. This diffusion equation
has a self similar solution [Tuc76]:

ρ(x, t) =

{
t−1/(2+a)f(x/t1/(2+a)) for x < x0

0 for x > x0

(7.2)

with

f(y) =
(
B − ay2

2(a+ 2)

)1/a

, (7.3)

where B is some integration constant. x0 is the front of the diffusion and has the following
time dependence:

x0 =

√
2B

2 + a

a
t2/(2+a) ∼ t1/(2+a). (7.4)

Going back to spatially discretized wavefunctions, this means that the number of sites where
|ψn|2 is nonzero also grows as ∼ t1/(2+a), and hence we find for the Participation Number and
the second moment:

P ∼ t1/(2+a), (∆n)2 ∼ t2/(2+a). (7.5)
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The question on the relation of a and α is still open. To our understanding, there are three
possibilities:

“strong stochasticity”: a = 2α. This is equivalent to the results presented in appendix B.1
and leads to the spreading exponent:

γA = 1/(1 + α). (7.6)

“weak stochasticity”: a = 3α. This leads to a spreading with the exponent:

γB = 2/(2 + 3α), (7.7)

which is the same as the first results from Shepelyansky in [She93].

“very weak stochasticity”: a = 4α gives the spreading exponent as

γC = 1/(1 + 2α), (7.8)

and is equivalent to the results from Flach et al. [FKS09] which are shown in ap-
pendix B.2.

Older numerical results seem to support the “weak” or “very weak” stochasticity assumption
by showing a spreading exponent of γ ≈ 0.35 for α = 1 [PS08, She93]. However, until now
this has not been checked for other values of α and we try to investigate that in the next
sections.

7.2 Numerical Setup

We used a large lattice of size N = 1024 with a random potential with disorder strength
W = 4.0. The nonlinear strength β was set to 1 for all simulations. Note that these parameter
values lie within the region where spreading should be present (compare section 4.3.2). The
system was initialized with a single peak at one lattice site and the energy of this state was
ensured to lie close to the band center −1 < E < 1. Then a time evolution according to the
gDANSE (4.2) was applied with different nonlinear indices α = 0.5, 1, 2, 3. For the numerical
time evolution we used the Crank-Nicolson scheme (see section 4.4) with a step size ∆t = 0.1
and we ran simulations up to 109 timesteps, which means a total time of t = 108. One of these
runs took about six days on a 3 GHz processor. This procedure was repeated for 16 different
disorder realizations for each α, which means a total of 64 runs. During the time evolution,
the Participation Number and the second moment of the states were computed at logarithmic
time intervals and averaged over small time windows. We chose the intervals logarithmically
to have equidistant spacing of measurement points on a logarithmic timescale.

7.3 Spreading Exponents

To analyze the spreading behavior of the wavefunctions we fitted the data points for P and
(∆n)2 for each disorder realization separately and then computed the average and standard
deviation for this set of exponents. The results are presented in Table 7.1 together with the
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7.3 Spreading Exponents

α 0.5 1 2 3

γ from fit (∆n)2 ∼ tγ 0.56± 0.04 0.31± 0.04 0.18± 0.04 0.14± 0.05
γ from fit P ∼ tγ/2 0.53± 0.05 0.33± 0.05 0.21± 0.06 0.18± 0.06

γA (strong stochasticity) 0.67 0.50 0.33 0.25
γB (weak stochasticity) 0.56 0.40 0.25 0.18

γC (very weak stochasticity) 0.50 0.33 0.20 0.14

Table 7.1: Comparison of numerical results and theoretical expectation from equations (7.6), (7.7)
and (7.8) for the exponent in the power law spreading (∆n)2 ∼ tγ . For all values α, the
theoretical values γC seem to give the best description of the spreading, but γB is also
close. The assumption of strong stochasticity, however, gives spreading exponent which
are definitely higher than the numerical observations.

theoretical values from section 7.1. A graphical presentation of the results is given in Fig. 7.1
that shows averages over the disorder realizations of P and (∆n)2 (points) and the fitted
growth (lines) for all investigated values of α.

First of all, our simulation verifies former results for α = 1 and seems to support the as-
sumptions of weak and/or very weak stochasticity. For α = 1, a spreading exponent of
γ ≈ 0.32 ± 0.04 was found which is in good agreement with the prediction γC = 0.33. The
value γA = 0.5 obtained for “strong stochasticity” is clearly larger than our numerical results
and we conclude that, following the arguments in appendix B.2, our simulation also supports
the idea of some kind of downscaling of spreading. For α = 0.5, the numerics show a slightly
stronger spreading than given by the theory γC = 0.5, and lie closer to γB. For α = 2, 3, we
also have a good agreement of the numerical resulta with the theoretical values γC , γB. But
as the spreading is very slow for these α, fluctuations play a stronger role leading to errors in
measurement up to 30%.

To get a better idea of the spreading, we also plotted the wavefunctions at the end of the
integration t = 108 in left panel of Fig. 7.2. The plotted curves represent averages of the
wavefunctions over disorder realizations and small time windows. The stronger spreading for
smaller α is very obvious in this plot. For α = 2 and α = 3 the width of the wavefunction
is rather small, but still clearly broader than for the linear case (β = 0). For α = 0.5, it
seems that we have reached the edges of the lattice after t = 108 which means that the
boundary conditions (periodic in this case) should come into play and the spreading should
stop. But looking at the wavefunction for a single disorder realization, one still sees a gap
with exponentially decreasing values down to 10−20. Those gaps are at different positions
for different disorder realizations and after averaging none of them remains. Anyhow, for the
lattice size N = 1024 and α = 0.5 the maximum spreading time is t = 108, after which an
influence of the boundary conditions come into play.

In the right panel of Fig. 7.2, wavefunctions for different α at different times are shown. Again
the curves are averages over disorders1 and short time windows and they are shifted vertically
for better visibility. The shapes of those wavefunctions are very similar and this fortifies the
assumption that higher nonlinear indices only slow down the spreading but do not change the
mechanisms.

1The disorder realizations were the same for different α.
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7 Spreading Behavior

Figure 7.1: Time evolution of the second moment (∆n)2 (left panel) and the Participation Number P
(right panel) for different nonlinear exponents α. The values are averaged over 16 disorder
realizations and small time windows. Different colors belong to different values of the
nonlinear exponent α: green: α = 0.5, red: α = 1, blue: α = 2, black: α = 3. The
plots show a clear increase of both (∆n)2 and P in a subdiffusive way. Smaller α lead to
stronger spreading, but even for α = 3, the wavefunction was doubtlessly spreading in our
simulation. The dashed lines are fits ∼ tγ – see Table 7.1 for the fitted values.

Figure 7.2: Left: Wavefunctions at time t = 108. Plotted are the probabilities |ψn|2 at lattice sites n
for initial delta peaks at lattice site n0 = 0. Different colors indicate nonlinear exponents:
green: α = 0.5, red: α = 1, blue: α = 2, black: α = 3 – for comparison the wavefunction
for the linear case is also shown (orange β = 0). The wavefunctions were averaged over time
windows and 16 disorder realizations. The red curve (α = 1) exhibits a clear plateau from
the spreading. For α = 0.5, even the whole lattice was excited after t = 108 which means
we should have chosen it larger. Fortunately, we don’t see influences of the boundary in
P or (∆n)2 quite yet (see Fig. 7.1). The cases α = 2 and α = 3 are quite close together,
but both are clearly more spread than for zero nonlinearity (orange). Right: Comparison
of different times for different nonlinear exponents: green: α = 0.5, t = 104 (shifted
upwards), red: α = 1, t = 105 (unshifted), blue: α = 2, t = 108 (shifted downwards).
They show very similar shape which indicates that different nonlinear indices only influence
the spreading time, not the spreading mechanism.
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7.4 Structural Entropy of Spreading States
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Figure 7.3: Time evolution of the localization entropy Sloc (top) and the structural entropy Sstr (bot-
tom) for different nonlinear strength α. x-axis is time t in logarithmic scaling. Color
coding as in Fig. 7.1: green: α = 0.5, red: α = 1, blue: α = 2, black: α = 3. The top plot
is essentially the same as the right panel in Fig. 7.1 as Sstr = lnP . Values are averaged
over time windows and 16 disorder realizations. The plot shows a small decrease of Sstr

for α ≥ 1 compared to the increase of Sloc, while for α = 0.5 the structural entropy also
increases.

7.4 Structural Entropy of Spreading States

Now we want to apply our new tool Sstr to the gDANSE model with initially localized states
in large lattices. We used the same data as in the last section, but now the structural entropy
Sstr was analyzed for the different nonlinear indices α.

Again, for each value of α the time evolution was done for 16 different disorder realizations and
the obtained values are averages over these realizations and usually also averaged over small
time windows to surpress random fluctuations. For each such time evolution, the entropies
of the states were computed at logarithmic time intervals.

The results are presented in Fig. 7.3. The localization entropy Sloc = lnP is clearly increasing
for all values of α, as seen before, but the structural entropy Sstr remains rather constant.
Although a small decreasing of Sstr is visible for α ≥ 1, the strength of decrease is very
small compared to the strength of the spreading. Numerical fits Sstr ∼ ν log t gives values
ν ≈ −0.002 . . .−0.004 for α ≥ 1, which is two orders of magnitude smaller than the spreading
which is about Sloc ∼ 0.1 . . . 0.2 log t. However, an oddity for α = 0.5 is observed as for this
value, the structural entropy is clearly increasing in contrast to the other cases. But a fit
of this curve also gives a factor of the same magnitude as the others ν ≈ 0.006 and thus
much smaller than the spreading. Despite this, we conclude that the structural properties of
spreading wavefunctions in the gDANSE model remain unchanged.
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7 Spreading Behavior

Potential (∆n)2 ∼ tγ P ∼ tγ/2
W = 4 CN FFT CN FFT

0 0.33 0.31 0.32 0.37
1 0.27 0.27 0.33 0.32
2 0.36 0.32 0.31 0.30
3 0.38 0.40 0.43 0.44
4 0.32 0.28 0.32 0.28
5 0.33 0.30 0.28 0.28
6 0.44 0.41 0.28 0.28
7 0.39 0.39 0.40 0.43

mean 0.35 0.33 0.34 0.34

Table 7.2: Measured exponents of the time evolution of (∆n)2 and P for different integration schemes:
Crank-Nicolson (CN) and Fast Fourier Transform (FFT). Both integration schemes give
very similar results.

7.5 Results from FFT Integration

When using numerical simulations, there is always a chance that some observed effects might
be numerical artefacts instead of physically relevant results. We tried to overcome this prob-
lem by applying a different integration scheme (Fast Fourier Transform) and comparing the
spreading with the former results obtained by Crank-Nicolson integration. See section 4.4 for
details on the different integration methods.

Both integrators were started with the same potential realization and the same initially ex-
cited lattice site. We investigated only the case α = 1 here. The second moment and the
Participation Number were measured in the same way and we fitted the growth rate ∼ tγ

separately for each disorder realization. Table 7.5 shows the obtained exponents for each
realization and the mean value. The values do deviate for some realizations, but on average
both integration methods gave similar results for the spreading exponent. Some simulations
for smaller ∆t = 0.01 exhibited the same behavior and we are confident that the observed
spreading is not a numerical effect. This is also fortified by the results from other groups on
this topic where different integration schemes were applied [PS08, She93] and similar results
were obtained.
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Part III

Thermalization in Short Lattices

In this part, the dependence of the spreading behavior of localized states on their energy
will be investigated. In section 2.3.2, it was pointed out that the localization length of an
eigenmode of the (linear) Anderson model depends on the eigenenergy of this state. In terms
of eigenmodes, the spreading is induced by the nonlinear coupling. Furthermore, the coupling
strength depends on the spatial overlap of the modes and hence is related to the localization
length of these modes. In the former chapters, the initial conditions were chosen such that
their energy is close to the band center. The corresponding eigenmodes most likely have
comparably large localization length which supports the spreading.
So in our next study, many localized initial conditions with energies throughout the whole
spectrum are chosen and their spreading behavior is investigated. In contrast to the former
simulations, numerics are done for short lattices of N = 16 . . . 64 and the nonlinear index is set
to 1 (normal DANSE) throughout this part. The main reason is to keep simulation time small
as many runs for different energies are necessary. Additionally, we only distinguish between
spreading and non-spreading states without addressing the spreading exponent. Spreading,
non-spreading respectively, is identified roughly by the fraction of excited sites after a specific
time – if the state was spreading, almost the whole lattice should be excited, otherwise only a
small part of it. We will be using the term thermalization in this regard, which is introduced
in the next chapter. Note, however, that the formal analogies to thermodynamics are not
necessarily of physical relevance.





8 Thermalization

Originally, the term “thermalization” is used to describe the tendency of a system to establish
a state in thermal equilibrium. In thermal equilibrium, energy is shared equally in its various
forms. To reach this from arbitrary initial conditions, energy exchange between all of the
energy-forms must be possible within the system. Usually, this is ensured if the system is
ergodic. Ergodicity means that the probability of a typical trajectory to visit a certain phase
space volume is proportional to the volume size. One might also say, that most1 of the phase
space points are visited with equal probability by typical trajectories.

8.1 Thermalization of Coupled Oscillators

These aspects will be applied to a disordered chain of coupled oscillators. Taking the eigen-
mode base, the various forms of energy are just the excited eigenmodes. From this, it immedi-
ately becomes clear that linearly coupled harmonic oscillators will not thermalize, because the
amount of excitation of eigenmodes is constant in time and no energy transfer between them
is possible. Adding nonlinear coupling of eigenmodes (using nonlinear oscillators), ergodicity
might be created. Generally, it is very difficult to strictly show that a system is ergodic, but
it is understood that the presence of chaos is a good hint to expect ergodicity as well, at
least in some parts of the phase space. Chaos can be identified by calculating the largest
Lyapunov exponent λ1 of the system (e.g. [Ott93]). Fig. 8.1 shows the results of a numerical
study on the Lyapunov exponent for short disordered lattices with the same parameters as
chosen in the later chapters of this part, that is N = 16, 32, 64, W = 4.0, β = 1.0. The values
are averaged over 12 disorder realizations and we found positive Lyapunov exponents λ1 > 0
for all considered lattice sizes. Chaos in those chains is, however, rather weak and for larger
lattice sizes, λ1 even decreases further. Because chaos is so weak, it remains interesting to
study thermalization itself. So whereas chains of linearly coupled harmonic oscillators do not
thermalize, the nonlinear coupling might induce thermalization.

Note, that due to the energy conservation within the system, a thermalized state is generally
not given by a uniform excitation of eigenmodes |Cm|2 ∼ 1/N . In fact, one finds Boltzmann-
distributions by searching for states with maximal entropy for a given energy. This will be
shown in the next section.

8.2 Maximum Entropy

How should thermalization be measured? To answer this, one first has to explain what
thermalization means. In thermodynamics, a state is called to be in thermal equilibrium if

1Most means all except a subset of zero measure.
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8 Thermalization

Figure 8.1: Left: Lyapunov exponents of disordered nonlinear lattices. Different colors mean different
lattice sizes – top to bottom: N = 16 (red). N = 32 (blue) and N = 64 (green). The
values are time averages starting from t = 2.5 · 105 and also averaged over 12 disorder
realizations. Parameters were W = 4.0 and β = 1.0. We see positive Lyapunov exponents
for all three cases, but λ1 decreases with lattice size. However, chaos, although weak, is
present in these systems. Right: Time evolution of the entropy of initially localized states
with different energies E = 0.04 (top, orange), E = 2.01 (second, red), E = 2.15 (third,
black), E = 2.49 (fourth, blue), E = 2.58 (last, green – order at t = 107) for a large lattice
of size N = 1024, W = 4.0, β = 1.0. States close to the band center seem to spread more
than those at the band edges.

it has maximal entropy. This concept will be used here as well and so our tool to measure
thermalization is the usual entropy:

S =
∑
m

|Cm|2 ln |Cm|2. (8.1)

In chapter 5, different methods to measure localization were introduced and the Participation
Number was presented as the first choice. Later, it was numerically observed that the dif-
ference Sstr = S − lnP remains constant for spreading states in disordered nonlinear chains.
We now stress this result and conclude that the entropy S is not only useful to measure
thermalization, but also gives an idea on the spreading behavior.

The usage of S gives us the ability to apply well known results for states in thermal equilibrium
– thermalized states. As said above, a system is known to have reached thermal equilibrium
if its entropy is maximal. This can be mathematically formulated as a variational problem
and we will shortly present the calculation for a linear chain of random oscillators. As we
have two conserved quantities, the norm N =

∑
|Cm|2 = 1 and the energy E =

∑
εm|Cm|2,

the equations of variation for the entropy read(
∂S

∂|Cm|2
+ λ

∂N
∂|Cm|2

+ κ
∂E

∂|Cm|2

)
δS = 0 ∀m = 1 . . . N. (8.2)

As δS is arbitrary, the term in brackets must be zero for each m separately. λ and κ are
Langrange parameters of the variation. This is solved by the Gibbs distribution, which is
sometimes also called Boltzmann distribution:

|Cm|2 =
1
Z

e−κεm , with Z =
∑
m

e−κεm . (8.3)
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8.3 Averaging

Z is called partition function and ensures the normalization. This result has a formal analogy
to a thermodynamic system with N microstates with energies εm connected to a heat bath
and described by a canonical ensemble (see any textbook on statistical physics, e.g. [bac99]).
The parameter κ would represent the (inverse) temperature of the heat bath in that case.
However, this analogy is only formal and should not be considered as physically relevant.
A real thermodynamic approach to a system of coupled oscillators in a heat bath would be
mathematically more challenging.

The εm are the eigenenergies of the system and are randomly distributed within some interval
[−∆, ∆], as shown in eq. (2.10), and with the mean value of approximately zero ε ≈ 0. Note
that εm can be negative in our system, hence the state energy E might also be negative which
requires negative κ as well.

Given such a thermalized state, the entropy can be calculated as

S = κE + lnZ. (8.4)

Keep in mind that κ, Z and E are not independent. Given κ, we can uniquely compute the
energy E and Z, while for a given E the values for κ and Z are also determined.

The above result for a thermalized state (8.3) was calculated without the nonlinear term.
If one wants find a solution for the whole system including nonlinearity, one has to use the
complete expression for the energy where the nonlinear term appears. But for thermalized
states that are spread over many eigenmodes, we find that the nonlinear energy is small and
we neglect it in our discussion. This is not true at the edges of the energy band, where basicly
only a few eigenmodes are effectively excited and the nonlinear energy might be large.

Now we have the following situation: given a specific disorder realization for the usual DANSE
system, we can compute the eigenenergies by diagonalization and obtain the entropies of
thermalized states for a given κ from the above calculations. From κ, we also can compute
the energy of this state and obtain the curve S(E) – entropy in dependence of energy for
thermalized states – implicitely, by ranging κ from −∞ to ∞. After adding nonlinearity,
thermalized states close to the band center still follow the Boltzmann distribution because
nonlinear corrections are small in this case.

8.3 Averaging

However, our goal is to find nonrandom properties that are independent of the disorder
realization. To get those, an averaging over potential realizations has to be done. Let us
first compute the averaged partition function 〈Z〉. Z is a function of N random variables
ε1, ε2, . . . , εN . So the integration has to be done over those N variables:

〈Z 〉Ω =

〈
N∑
m=1

e−κεm
〉

Ω

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

p(ε1, . . . , εN )
N∑
m=1

e−κεmdε1 . . . dεN . (8.5)

〈·〉Ω denotes the averaging over disorder realizations ω and p(ε1, . . . , εN ) is the probability of
the set of random variables {ε1, . . . , εN}. To proceed further, we have to make two assump-
tions: Firstly, we assume that the εm are independent random variables. It follows that the
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8 Thermalization

cumulative probability function can be written as a product

p(ε1, . . . , εN ) = p(ε1) · . . . · p(εN ) =
∏
m

p(εm). (8.6)

Secondly, we assume p(εm) = const = 1/(2∆) if −∆ < εm < ∆ and 0 otherwise, which means
a constant density of states for the system. This assumption is supported by the results of
section 2.3.2, but only valid for large disorders W & 4.0 (see Fig. 2.1) and neglects the Lifshitz
tails at the band edges. Using these assumptions, we can calculate the integrals and get:

〈Z 〉Ω =
1

(2∆)N

∫ ∆

−∆
. . .

∫ ∆

−∆

∑
m

e−κεmdε1 . . . dεN

=
1

(2∆)N
N

∫ ∆

−∆
. . .

∫ ∆

−∆
e−κε1dε1 . . . dεN

= − 1
(2∆)N

N

κ
(2∆)N−1

(
e−κ∆ − eκ∆

)
=

N

2κ∆
(
eκ∆ − e−κ∆

)
. (8.7)

In the second step, we used that each term in the sum gives the same value after the integration
and so we can drop the sum against a factor N . But to calculate S, 〈lnZ 〉Ω is required rather
than 〈Z 〉Ω. We will now argue that 〈lnZ 〉Ω ≈ ln〈Z 〉Ω: Consider the partition function of one
particular disorder realization ω and write it as the expectation value plus some deviation:

Zω = 〈Z 〉Ω + δZω where 〈δZ 〉Ω = 0. (8.8)

Assuming 〈Z 〉Ω � δZω, we can expand the logarithm ln(x+ δx) ≈ lnx+ δx/x and obtain:

〈lnZ 〉Ω = 〈ln(〈Z 〉Ω + δZω)〉 ≈ ln〈Z 〉Ω +
〈
δZω
〈Z 〉

〉
Ω

= ln〈Z 〉Ω. (8.9)

The error of this approximation is of order (δZ/〈Z 〉)2 and thus small if 〈Z 〉 is large, which
is, again, true in the band center, but might not be at the edges.

To get the entropy (8.4), we also have to average the energy E over disorder realizations. But
an easier way is to use a relation between E and Z that is well known from thermodynamics:

〈E 〉Ω =
〈
− ∂

∂κ
lnZ

〉
Ω

= − ∂

∂κ
〈lnZ 〉Ω ≈

∂

∂κ
ln〈Z 〉Ω = − 1

〈Z 〉Ω
∂

∂κ
〈Z 〉Ω

≈ 1
κ
−∆

eκ∆ + e−κ∆

eκ∆ − e−κ∆
. (8.10)

Using 〈E 〉 and 〈Z 〉, eventually the averaged entropy can be obtained:

〈S〉Ω = κ〈E 〉Ω + 〈lnZ 〉Ω ≈ 1− κ∆
eκ∆ + e−κ∆

eκ∆ − e−κ∆
+ ln

(
N

eκ∆ − e−κ∆

2κ∆

)
. (8.11)

These values still depend on the Lagrange parameter κ ∈ (−∞, ∞). To get the real 〈S(E)〉
dependence, one should try to eliminate κ, which obviously leads to transcendent equations.
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Figure 8.2: Left: Comparison of the entropy of the thermalized state 〈S(E)〉 obtained by different
averaging methods. The red curve represents a numerical averaging over 1,000 disorder
realizations. The blue curve is given by equations (8.10) and (8.11) as the results of
approximative analytic averages. The black dashed curve represents the result for an
equidistant energy distribution. Disorder strength is W = 4.0 and lattice size N = 32.
Right: Energy E in dependence of the Lagrange parameter κ (inverse temperature). The
colors are different averaging methods as in the left plot. For κ → ±∞ the band edges
are reached, while small κ correspond to energies in the band center.

However, the curve 〈S(E)〉 is given implicitly from the equations above taking κ as the
curve parameter. The last remaining unknown is ∆, the borders of the energy spectrum. In
section 2.3.2, an analytical expression for these band edges found by Thouless [Tho74] was
presented (2.10). For the disorder strength W = 4.0 and coupling strength A = 1.0, we find
∆(W = 4.0) ≈ 3.0.

To check the quality of the above result, we plotted S(E) parametrically for N = 32 and
W = 4.0 and compared it with the result of numerical averaging. This numerical averaging
was done by taking 1,000 disorder realizations, computing the eigenvalues for each realization
and then calculating E(κ) and S(κ). Both were then averaged over the 1,000 realizations
resulting in 〈E(κ)〉 and 〈S(κ)〉. Fig. 8.2 shows both curves and they nicely coincide at the
band center −2 < E < 2. At the band edges, a small deviation is observed which is expected
as some of the above approximations are not valid in this region. We conclude that the
approximation given by (8.10) and (8.11) is sufficiently good and it will be used later as
reference for thermalization.

Additionally, we applied an even simpler approximation for the averaged entropy and energy.
This bases on the assumption that the average energy distribution {〈εm〉} is equidistant:
〈εm〉 = ε0 +m · δ. For this distribution, E and S can be obtained exactly – see appendix A.2
for calculation details – and the averaging is completely avoided by using this averaged dis-
tribution. The results are also shown in Fig. 8.2 and they are also remarkably good – at
the band edges even better than the averaging done above. However, we stick to the result
from “real” averaging, as its derivation seems more reasonable than assuming an equidistant
energy distribution.

We have investigated thermalized states in a linear disordered lattice. The entropy of those
states was found to be dependent on the energy. This immediately follows from energy con-
servation in the system: A state with high energy can only be constructed by mainly exciting
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high energy modes, while for states with energies in the band center all eigenmodes can con-
tribute. In the next chapters, it will be investigated if nonlinearity leads to thermalization
of the linear lattice by comparing the entropy of a time evolved, initially localized state with
the theoretical expectation for thermalized states from above.
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9 Numerical Results

9.1 Setup

The numerical simulations were done for short random lattices of different sizes N = 16, 32, 64
with periodic boundary conditions. The disorder strength was always W = 4.0. The nonlin-
earity index was set to α = 1 (usual DANSE model) and the nonlinear strength was also fixed
to β = 1.0, except for section 9.4. First, we used each eigenmode (delta peaks in eigenmode
basis) separately as an initial condition for the simulation. So for each disorder realization,
N time evolutions with different initial states were done. Each initial condition corresponds
to a different energy and by choosing the eigenmodes, the whole energy spectrum could be
reached. Moreover, several disorder realizations were used. The number of realizations was
chosen such that in total 256 initial conditions were used for each lattice size N – that is for
N = 16 we used 16 realizations, for N = 32 eight and for N = 64 four. The time evolutions
were done via the Crank-Nicolson integration scheme (see section 4.4) using a step size of
∆t = 0.1, and we simulated the system up to time t = 107 (108 steps). Additionally, initial
single site excitations (delta peaks in position basis) were simulated as well, but only for four
disorder realizations for each lattice size N .

At the end of simulation time t = 107, the entropy in eigenmode representation was com-
puted and averaged over a time window T = 105. Assuming that the simulation time was
large enough to overcome transient motion, this entropy was compared to the expections for
thermalized states. The results are presented in the next sections.

9.2 Spectrum Shifting

Before getting to the actual results, one important fact should be mentioned: By diagonal-
ization of the Hamilton operator of a random lattice of size N , one finds N eigenenergies εm.
The disordered potential is chosen uniformly random to have an expected mean value of zero
〈V ω〉Ω = 0. V ω here means the mean value for one disorder realization and the average 〈·〉 is
carried out over the realizations. In the limit N → ∞, the mean value for one realization is
already zero V ω(N → ∞) = 0, but for small N , it is not. To ensure a better comparability
between different realizations of short lattices, we artificially shifted each potential realization
such that its mean value becomes V ω = 0. Technically, the spectrum {εm} was shifted such
that εm = 0, but this is basically the same. This does not change the physics, because any
term V ψn in the DNLS disappears after a transformation ψn 7→ ψn exp(−iV ψt), as already
shown in section 4.1. So whenever speaking of energies of a state within these chapters, we
implicitly mean the shifted energy according to these considerations.
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9 Numerical Results

Figure 9.1: Comparison of the entropies from time evolution with the maximal entropies found for
the linear chain from thermodynamic arguments. The energies are shifted such that the
mean energy

∑
εm = 0 for each disorder realization separately. The points represent

the results from the time evolution of the nonlinear problem, while the solid lines are
the theoretical results from the averaging given by equations (8.10) and (8.11). Different
colors are different lattice sizes: red (bottom) is N = 16, blue (middle) is N = 32 and
green (top) corresponds to N = 64. Left plot shows initially excited eigenmodes (peaks in
eigenmode base), while on the right initially excited lattice sites (peaks in position base)
are shown. The black box on the left indicates the values considered as non thermalized
states at the band center. A simple counting gave about 20% - 30% non-thermalized states
at the band center.

9.3 Thermalized Entropy

Fig. 9.1 shows the final entropy at t = 107 for lattice sizes N = 16, N = 32 and N = 64
according to the time evolution of inital eigenmode peaks (left panel) and spatial lattice site
peaks (right panel). The solid lines are the analytical results given by equations (8.10) and
(8.11). Let us focus on the band center (−2 < E < 2) of the left plot first. Many of the
initially excited eigenmodes do show high entropies close to the possible maximum for the
respective energies (lines). The maximum is not reached exactly due to random fluctuations
in the state, but the entropies are reasonably close for being called thermalized. However,
there are states in the band center which did not thermalize, indicated by the black box in
Fig. 9.1. Their entropy remains low during the whole time evolution up to t = 107. A simple
counting of those states showed that about 20% to 30% of the eigenmodes in the band center
did not thermalize.

To our understanding, the non-thermalized modes might be breathers as described in sec-
tion 4.3.1. Remember that those structures are obtained by continuation of the linear eigen-
modes for increasing nonlinearity β > 0. It seems to happen that some of the eigenmodes
induce stable breathers up to β = 1.0, which are stable, localized objects that can not ther-
malize. But this is just a conjecture. It is also possible that the non-thermalized modes just
have a very long transient motion and will eventually also reach thermalization after a time
beyond our simulation.

In contrast, the initially excited lattice sites shown in the right panel exhibited complete
thermalization for all states. This supports the theory of breathers, as those are only existing
for eigenmodes, but not for excited lattice sites so they cannot appear for excited lattice sites.
Note that by exciting single lattice sites, not the whole spectrum width can be reached with
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9.4 Fraction of Thermalized States

Figure 9.2: Wavefunctions for N = 32. Left plot are the wavefunctions obtained from time evolution
at time t = 107. Right plot shows completely thermalized wavefunctions obtained from
a Boltzmann distribution for the linear random lattice. Each vertical line represents
an averaged wavefunction in eigenmode basis. The y-axis corresponds to the indices
of eigenmodes (ordered by their eigenenergy) and each square represents the amount of
excitation of this eigenmode |Cm|2 from high (red ≈ 1) to low (blue ≈ 0). The x-axis is
the index of the initially excited eigenmode (also ordered by eigenenergy). In the linear
case we would just see red squares on the diagonal as the excitation of initial eigenmodes
would not change with time. With nonlinearity, as considered, we see that states near the
edges of the energy band remain localized (red squares), while states in the band-middle
spread across the eigenmodes. Each square represents a wavefunction value averaged over
6 disorder realizations and small time windows. The left plot is obtained using exactly
the same realizations and states as in Fig. 9.1

the initial energies. The asymmetry of the points comes from the nonlinear term, which shifts
the energy by β/2 for lattice site peaks.1

Fig. 9.2 shows the wavefunctions at time t = 107 as density plots (left) compared to Boltzmann
distributions (right). Without nonlinearity, the left plot would just show red squares on the
diagonal while everything else would be blue. But due to nonlinearity, the states spread
and the plot looks similar to the right one where Boltzmann distributions as completeley
thermalized wavefunctions are shown. The entropies of those Boltzmann distributions are
located on the lines in Fig. 9.1. Comparing the two density plots left and right, one recognizes
similarities in the band center. Despite some remaining peaks, most of the eigenmodes spread
out and thermalize indicated by the green region in the center similar to the appearance for
the Boltzmann distributions. This is consistent with the results from Fig. 9.1 indicating
thermalization for a majority of eigenmodes.

9.4 Fraction of Thermalized States

In the preceding section, we saw that a fraction of the eigenmodes did not thermalize during
our integration and we interpreted this with the existence of breathers in the lattice. Now the
natural question to ask would be if and how this fraction depends on the nonlinear strength β.

1For excited eigenmodes, the nonlinear energy is usually smaller than . β/10 and so we do not see those
effects as clearly in the left plot.
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9 Numerical Results

Figure 9.3: Fraction of thermalized states ftherm = Ntherm(t)/Ncenter against the nonlinear strength
β for different times t. Lattice size again was N = 32 and disorder strength W = 4.0.
Like before, all eigenmodes were chosen as initial conditions for eight disorder realizations,
but time evolution was done for many values of β this time. For the data analysis, only
states with energy in the band center |E| < 2 contributed, where those with entropy
S > 1 after time t were considered as being thermalized (compare box in Fig. 9.1). As
expected, the number of thermalized states grows for increasing nonlinear strength and
also for increasing time t. (Graph created by Karsten Ahnert)

This was addressed by another simulation. Again, we used a lattice of size N = 32 with eight
disorder realization of the random potential and with the disorder strength W = 4.0. The
nonlinear strength β was ranged from 0 . . . 2.5 and for each β the time evolution of initially
excited eigenmodes were obtained. But this time only those eigenmodes lying in the band
center −2 < E < 2 were considered. At times t = 103, 104, 105, 106 and 107 the fraction of
thermalized states ftherm = Ntherm(t)/Ncenter was computed. Ncenter is the total number of
eigenmodes in the band center and Ntherm(t) is the number of states having an entropy S > 1
at time t, which we interpreted as thermalized states.

The results of these simulations are shown in Fig. 9.3. As one naturally expects, ftherm

increases with both β and time t. This is consistent with the breather conjecture. For larger
nonlinearity, less breathers should exist and more modes should thermalize. We found that
for β . 0.2 almost no states thermalized at all even for t = 107 and for β & 2.2 nearly all
states thermalized already at t = 105. For values of β between those borders, the fraction of
thermalized states shows a clear increase with time. Unfortunately, our simulation does not
show a saturation of this increase, but we suspect such a saturation curve ftherm(β, t → ∞)
to exist and from the relatively small increase from t = 106 to t = 107 we conclude that it
should not be far from the points at 107.
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9.5 Thermalization at the Band Edges

9.5 Thermalization at the Band Edges

In the band center, the entropy is very useful to distinguish between thermalized and non-
thermalized states. However, on the band edges, the maximal entropy is so low that a
determination of thermalized states is hardly possible. Anyhow, to learn something about
those states as well, additional numerical simulations under slightly different conditions were
carried out. We again used short disordered lattices of size N = 32, but started only with
an excitation of the second eigenmode, that is, the mode with second lowest energy.2 Now,
thermalization is measured by means of the excitation of the first eigenmode |C1|2. That
is reasonable because a thermalized state would have |C1|2 & |C2|2. So we initialized with
|C2|2 = 1, simulated up to t = 107 and then checked the excitation |C1|2 – this was done
for 265 different disorder realizations. From simple perturbation theory for two nonlinear
coupled oscillators (C1 and C2), one would expect |C1|2 ∼ (V1222)2, as this is the highest
order coupling term that can induce probability transfer. Note that the coupling term V1122

does not induce probability flows as shown in appendix A.3.

The result of the simulation is shown in Fig. 9.4. We considered states to be thermalized
if |C1|2 ≈ 1 (black box), while states close to the expectation from perturbation theory
are not thermalized. The dashed line simply shows the slope (V1122)2 as a guide to the
eye. Qualitatively, the situation is similar to the one in the band center: some states did
thermalize (black box in the graph), while others did not. In contrast to the band center,
non-thermalizing states are the majority at the band edges: more than 80% of the initial
modes did not thermalize within integration time. To stress the breather explanation again,
that can be understood by keeping in mind that high energy modes have short localization
lengths which makes them generally more stable than modes in the band center. From Fig. 9.4,
one also can conclude that modes with larger overlap V1222 are more likely to thermalize than
those with small overlaps. But the large amount of states lying between the two cases leads
to the suspicion that our simulation time was to short. Many states are still “on the way”
to thermalization – that means the thermalization progress is much slower at the band edges
than in the center.

To our understanding, the main result from this simulation is that states at the band edges
can thermalize, too. However, a quantitative measurement on the number of non-thermalized
states was not really possible as it requires for longer integration time.

2Note, that β was 1.0, thus positive, which shifts the energy of the initial state more towards the band center
and not out of the spectrum.
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9 Numerical Results

Figure 9.4: Thermalization at the edge of the energy band. The excitation of the the first mode |C1|2
at time t = 107 is plotted vs. the nonlinear coupling strength V1222. Each point represents
a time evolution of an initially excited second mode (second lowest energy value in the
spectrum) for a different disorder realization of length N = 32 and fixed β = 1.0. In
total, 256 realizations were simulated resulting in 256 points in this figure. The dotted
line is a simple (V1222)2 graph representing the expected results for two coupled nonlinear
oscillators with coupling strength V1222. Points close to that line are not thermalized in
our sense, while points with |C1|2 ≈ 1 are. The black box at the top indicates the states
which we considered to be thermalized (states with |C1|2 & 0.5). We see that even for very
small coupling, thermalization is reached for some disorder realizations. The number of
thermalized states increases with increasing strength of the coupling, but in total a much
smaller fraction of states seems to thermalize at the band edges than in the band center.
So we found only 40 of 256 states ending up thermalized after t = 107, while in the center
about 70 of 100 states exhibit thermalization
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Part IV

Summary and Conclusions





Summary

In part II, a generalized version of the DANSE model with a new parameter α – the nonlinear-
ity index – was investigated. Former results on the spreading exponent γ ≈ 0.30− 0.35 were
recapitulated for initially localized wavefunctions. A derivation for the spreading exponent
in the generalized DANSE model was presented and the results were compared with numer-
ical runs showing good correspondence with the assumptions of “weak” and “very weak”
stochasticity. Overall, the spreading behavior for different nonlinear indices followed our
expectations. The mathematical considerations using a nonlinear diffusion equation seems
fruitful. However, there still remain some unclear aspects about the spreading mechanisms.
The exact relation between a and α found by the numerical simulations is not yet understood
completely. It might be, that the downscaling supposed by Flach et al. is induced by a de-
crease of chaoticity during the spreading which might lead to a spreading exponent according
to the “very weak” stochasticity. More research on this is required for more understanding
of the interplay between disorder and nonlinearity.

Furthermore, the structural entropy Sstr as a measure for the peak structure of probability
distributions was introduced. Numerical simulations on Sstr for spreading wavefunctions in
disordered lattices showed that their peak structure remains unchanged. Hence, the spreading
mechanism does not prefer peaks nor background noise, but preserves the complex structural
properties of the wavefunctions. This result is not surprising, but still remarkable, as, to our
knowledge, structural properties of wavefunctions in this setup have not been studied up to
now.

In part III, thermalization in short disordered nonlinear lattices was numerically investigated
for the usual DANSE model (α = 1). Thermalization was defined by maximization of the
entropy. Analytical results on the energy dependence of the entropy of thermalized states were
obtained and good approximations for averages over disorder realizations could be found. The
energy dependence of spreading was investigated numerically and the results were compared
to the analytical approximations. It was found that most of the states with energy in the
band center do thermalize. Those which don’t are believed to be breather solutions that
don’t spread at all and their number depends on the nonlinear strength β. Above a critical
value of nonlinear strength, complete thermalization was observed while below another critical
nonlinear strength, no thermalization at all took place. It was also found that states near
the edges of the energy band are more likely to not thermalize compared with those close to
the band center. Furthermore, the thermalization process itself is much slower, which comes
from the smaller localization length of the high energetic modes.

Note that thermalization implies spreading as a state that does not thermalize also remains
spatially localized due to the localized character of the eigenmodes. From the fact that close
to the edges of the energy band the thermalization is slow and rare, we conclude that states in
this energy regime would also hardly spread in large lattices. Initial conditions in the center
of the energy band, on the other hand, do show thermalization and hence, they should also
exhibit spreading in large lattices. However, our simulations with initially excited lattice sites
always showed thermalization, which means that position peaks should always spread in large
lattices as well.
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Outlook

For further knowledge about the spreading in the gDANSE model, a closer investigation of the
mechanisms of diffusion seems required. One could, for example, try to observe the spreading
in eigenmode base, but the numerical effort would be huge as the basis-transformations are
quite expensive in terms of computation time. Another idea could be to calculate finite
time Lyapunov exponents during the spreading which might lead to an explanation of the
downscaling by showing a reducing chaoticity.

Additionally, a detailed analyzation of the breather solution and their stability might give
more insights on the fraction of thermalized states observed in short lattices. Also the be-
havior for different lattice sizes and disorder strengths could be of interest. It would also be
interesting to investigate the relation between thermalization and spreading by analyzing the
spreading behavior of high energy modes in large lattices. Furthermore, thermalization for
different nonlinear indices α should be studied and compared with the spreading results. Our
findings on thermalization may also provide a link to the scattering problem [TP08] and the
question of thermoconductivity in disordered chains. Further numerical simulations on this
topic are planned.
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A Mathematical Calculations

A.1 gDANSE in Eigenmode Representation

Starting with the generalized Discrete Anderson Nonlinear Schrödinger Equation (gDANSE)
in normal position representation (dots mean time derivatives):

iψ̇n = Vnψn + ψn−1 + ψn+1 + β|ψn|2αψn, (A.1)

we introduce eigenmodes of the linear part φm,n where m is the index of the eigenfunction
and n is the spatial index. So φm,n is the complex value of the m-th eigenfunction at lattice
site n. The eigenmodes form a basis and accordingly, they are orthonormal∑

n

φm,nφ
∗
m′,n = δmm′ , (A.2)

and are defined to solve the time independent, linear eigenvalue problem:

Vnφm,n + φm,n−1 + φm,n+1 = εmφm,n. (A.3)

We can now expand the values ψn into this eigenmode basis

ψn =
∑
m

Cmφm,n, (A.4)

with expansion coefficients Cm. We will now derive an equation for the time dependence of
the Cm by substituting the expansion (A.4) into the gDANSE (A.1):

i
∑
m

Ċmφm,n = Vn
∑
m

Cmφm,n +
∑
m

Cmφm,n−1 +
∑
m

Cmφm,n+1

+ β
∣∣∑
m

Cmφm,n
∣∣2α ·∑

m

Cmφm,n

=
∑
m

Cm(Vnφm,n + φm,n−1 + φm,n+1︸ ︷︷ ︸
=εmφm,n

) + β
∣∣∑
m

Cmφm,n
∣∣2α ·∑

m

Cmφm,n.

Now we multiply both sides of the equation by φ∗m′,n from the right and apply a summation
over the spatial index n. From the orthonormalization of the eigenmodes (A.2), the linear
part of the equation becomes trivial:

iĊm′ = εm′Cm′ + β
∑
n

[∣∣∣∑
m

Cmφm,n

∣∣∣2αφ∗m′,n +
∑
m

Cmφm,nφ
∗
m′,n

]
︸ ︷︷ ︸

=:S

. (A.5)

As expected, the linear term produces a linear phase growth Cm ∼ exp(iεm), while the non-
linear on-site potential is transformed to a rather complicated nonlinear multi-mode coupling.
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A Mathematical Calculations

This coupling term, named S here, has to be investigated further. We expand the absolute
square to a product of complex conjugates, change the indices m→ m̂, m̃, m̄ in the remaining
summations and replace m′ with m.

S =
∑
n

[(∑
bm Cbmφbm,n

)α
·

(∑
em C∗emφ∗em,n

)α
·

(∑
m̄

Cm̄φm̄,nφ
∗
m,n

)]
.

Now the terms with power α can be written as product of α summations:

(∑
bm Cbmφbm,n

)α
=

∑
bm1

Cbm1
φbm1,n

 · · ·
∑

bmα Cbmαφbmα,n
 ,

and accordingly for the second term with m̃. If this is reentered into the above equation, we
can reorganize and combine the summations obtaining:

S =
∑

bm1...bmαem1...emα
m̄

Vbm1...bmαem1...emα
m̄,m

Cbm1
· · ·Cbmα · C∗em1

· · ·C∗emαCm̄, (A.6)

where the (2α+ 2) – eigenmode overlap integral V is introduced:

Vbm1...bmαem1...emα
m̄,m

:=
∑
n

φbm1,n · · ·φbmα,n · φ∗em1,n
· · ·φ∗emα,nφm̄,n · φ∗m,n. (A.7)

It has to be noted that the reorganization done in this last step is only allowed for finite
summations and this calculation is thus restricted to finite lattices.1 Eventually, the equations
of motions for the eigenmode coefficients Cm(t) are:

iĊm = εmCm + βS = εmCm +
∑

bm1...bmαem1...emα
m̄

Vbm1...bmαem1...emα
m̄,m

Cbm1
· · ·Cbmα · C∗em2

· · ·C∗emαCm′ . (A.8)

For the usual choice α = 1, the equation takes a simpler form with only 3 summation indices:

iĊm = εmCm + β
∑

bm,em,m′ Vbm,em,m′,mCbmC∗emCm′ , (A.9)

where Vbm,em,m′,m is the 4-wavefunction overlap according to (A.7).

Note that the above calculation seems to demand α ∈ N+, but we only need (2α+ 2) ∈ N+

to ensure an integer valued number of indices in (A.8). So α = 0.5 as used in numerical
simulations is not causing problems here.

1From the exponentially localized character of the eigenmodes φm it is surely possible to argue that the infinite
summation can be truncated because the remaining terms are exponentially small and the argumentation
also should hold for infinite lattices.
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A.2 Entropy of Equidistant Energy Levels

A.2 Entropy of Equidistant Energy Levels

Suppose we have a system with N energy levels En in the interval −∆/2 . . .∆/2 with constant
spacing δ = ∆/(N − 1):

En = −∆
2

+ n · ∆
N − 1

= E0 + nδ, n = 0 . . . N − 1, (A.10)

where we introduced the lower boundary of the spectrum E0 = −∆/2 for simplicity. Moreover,
suppose the system is populated by one particle spread across all energies. The probability
to find the particle in level n is defined to be pn, where normalization

∑
pn = 1 should hold.

It is well known that the entropy, defined as

S = −
N−1∑
n=0

pn ln pn (A.11)

reaches its maximal value for the Boltzmann (or Gibbs) distribution

pn =
1
Z

e−βEn , (A.12)

where β is the Lagrange parameter connected with energy conservation and is usually in-
terpreted as the inverse temperature. Z ensures normalization and thus can be computed
as:

Z(β) =
N−1∑
n=0

e−βEn =
N−1∑
n=0

e−β(E0+nδ) = e−βE0

N−1∑
n=0

(e−βδ)n

= e−βE0
1− e−βNδ

1− e−βδ
=
eβδN/2 − e−βδN/2

eβδ/2 − e−βδ/2
. (A.13)

It is called the partition function. In the last step we substituted E0 = −δ(N − 1)/2. The
energy of a Boltzmann distribution can be computed as follows

E(β) =
N−1∑
n=0

pnEn =
e−βE0

Z

N−1∑
n=0

(E0 + nδ)e−βnδ

= E0 +
δe−βE0

Z

N−1∑
n=0

n(e−βδ)n

= E0 +
δe−βE0

Z

(N − 1)e−β(N+1)δ −Ne−βδ(1− e−βNδ)
(e−βδ − 1)

(A.13)
= E0 −

δ

1− e−βNδ
(N − 1)e−β(N+1)δ −Ne−βNδ + e−βδ

e−βδ − 1

= E0 − δ
(
Ne−βNδ

1− e−βNδ
+

eβδ

e−βδ − 1

)
= E0 + δ

(
N

1− eβNδ
+

1
eβδ − 1

)
=

∆
N − 1

(
N

1− eβNδ
+

1
eβ δ − 1

)
− ∆

2
. (A.14)
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Using these results, the entropy gives

S(β) = −
N−1∑
n=0

pn ln pn = − 1
Z
−
N−1∑
n=0

e−βEn(ln e−βEn − lnZ)

= βE + lnZ

=
β∆
N − 1

(
N

1− eβδN/(N−1)
+

1
eβδ/(N−1) − 1

)
+ ln

(
1− e−β∆N/(N−1)

)
− ln

(
1− e−β∆/(N−1)

)
. (A.15)

Thus, for each β ∈ (−∞,∞) 2 a corresponding energy and entropy can be calculated from
equations (A.14) and (A.15). This implicitly gives the relation between energy and entropy
S(E) depending on the width of the energy spectrum ∆ and the number of energy levels N .

A.3 Probability Flow for Symmetric Coupling

Here, it will be briefly shown that the symmetric coupling term V1122 in the DANSE equation
in eigenmode representation can not lead to a probability flow between two oscillators. We
start with the DANSE in eigenmode base (4.1) for two lattice sites and take only the coupling
term V1122 into consideration and set β = 1.0. Assuming that only the second oscillator is
initially excited C2 = 1, C1 = 0, the equation of motion for C1 reads:

iĊ1 = ε1C1 + V1122C1C2C
∗
2 . (A.16)

From this, the time derivative of the norm |C1|2 can be computed:

d
dt
|C1|2 = Ċ∗1C1 + C∗1 Ċ1 = −i(ε1C∗1 + V1122C

∗
1C
∗
2C2)C1 + i(ε1C1 + V1122C1C2C

∗
2 )C∗1

= i(ε1|C1|2 + V1122|C1|2|C2|2)− i(ε1|C1|2 + V1122|C1|2|C2|2)
= 0

So no probability will be transferred via the symmetric coupling term V1122.

2β can be negative as we have negative energies in our system.
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B Spreading Exponent

In this chapter, the calculations of Flach et al. [FKS09] on the spreading law are recapitulated
in a generalized form for the gDANSE model. At first, arguments assuming highly chaotic
modes are shown and then some reasons for the downscaling are presented. The results are
equivalent to the cases of strong and very weak stochasticity given in section 7.1.

B.1 Highly Chaotic Modes

Again, it is convenient to use the basis of localized eigenmodes from eq. (4.5) for calculation.
First of all, note that if a state is spatially spread over, say, ∆n lattice sites, then from the
localized character of the eigenmodes, it is very natural to assume it is also spread across
roughly ∆n eigenmodes. Moreover, it is possible to assign a spatial index to each eigenmode,
e.g. by taking its highest peak or the position expectation value. In the following, we assume
that the eigenmodes are ordered spatially, that is eigenfunction m and m± 1 are localized at
neighboring lattice sites, which on the other hand means that their energy distance is random
and generally of the order of half the spectrum width.

So imagine a state Cm being spread over ∆n sites/eigenmodes and the plateau, which we
assume of rectangular shape, is starting at eigenmode m∗. Thus, we have the following
situation: Cm ≈ 0 for m ≤ m∗,m > m∗ + ∆n and |Cm| ≈ 1/

√
∆n for m∗ < m < m∗ + ∆n.

We completely neglected phases which are assumed to be random for this ansatz. This
assumption would be true if all modes show chaotic behavior. Now we are interested in the
time evolution of the m∗-th eigenmode as given by the gDANSE:

iĊm∗ = εm∗Cm∗ + β
∑

bm1...bmαem1...emα
m′

Vbm1...bmαem1...emα
m′,m∗

Cbm1
· · ·CbmαC∗em1

· · ·C∗emαCm′ . (B.1)

Again, from the localization of the eigenmodes, we find that the overlap V drops exponentially
with increasing spatial distance of the modes, thus also with increasing distances of the index
values. The most dominant term in the sum above is the one with all indices m̂1...α = m̃1...α =
m′ = m∗ + 1. So we get, dropping constant factors and using m instead of m∗, the following
relation for Ċm

iĊm ∼ (Cm+1C
∗
m+1)αCm+1.

Taking the modulus of both sides and using |Cm+1| ≈ 1/
√

∆n we obtain

|iĊm| ∼ (∆n)−(α+1/2). (B.2)

This leads to an excitation of the exterior mode Cm as following:

|Cm|2 ∼ (∆n)−(2α+1)t. (B.3)
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B Spreading Exponent

From this, the momentary diffusion rate D can be calculated from the inverse time that is
needed to excite mode m up to the plateau |Cm(T )|2 ≈ 1/∆n:

D = 1/T ∼ (∆n)−2α. (B.4)

If we finally take the diffusion equation (∆n)2 ∼ Dt we end up at an estimation for the time
dependence of ∆n:

(∆n)2 ∼ tγT , with γT =
1

α+ 1
. (B.5)

For the usual case α = 1, (B.5) recapitulates the result found in [FKS09], which was γT = 0.5.
This is equivalent to the case of “strong stochasticity” discussed in section 7.1. Unfortu-
nately, previous numerical simulations disagree with this result as a spreading exponent of
γnumerics ≈ 0.35 was found, see [PS08,She93] for example.

B.2 Downscale of Spreading

To get a better description of the numerical results, Flach et al. presented some calculations
assuming the existence of non-chaotic modes which do not contribute to the spreading result-
ing in a downscale of the spreading law [FKS09]. The existence of those modes is supported
by numerical results shown in Fig. B.1. This plot was obtained from our own numerics, which
closely follow those from Flach.

Consider a wavefunction plateau of size ∆n with average excitation |Cm|2 ≈ 1/(∆n). For-
mally, we can use a perturbation approach to the gDANSE and find that this normal mode
will excite other modes Cm′ in first order as:

|Cm′ | = β(∆n)−αR−1
m,m′ |Cm|, Rm,m′ ∼

∣∣∣ εm − εm′
Vm′,m...m

∣∣∣. (B.6)

Vm′,m...m means all 2α+2 index values of V arem, except the first one.Now ifRm,m′ < β(∆n)−α

the perturbation approach breaks down and resonances set in resulting in chaotic motion. To
find out how often, if at all, this might happen, a numerical analysis was performed. Again
following the ideas of [FKS09] we obtained Rm,min = minm′ 6=m{Rm,m′} for each eigenmode of
a lattice of size N = 1024. To improve statistics, we repeated this for 1,000 different disorder
realizations and found a probability distribution w(Rm,min) which is shown in fig. B.1 for differ-
ent nonlinear indices α. In agreement to [FKS09] we found that w(Rν,min → 0)→ B(α) 6= 0.
Furthermore, the probability P for a mode excited to the level 1/(∆n) to be in resonance
with (at least) one other mode is

P =

β(∆n)−α∫
0

P(x)dx. (B.7)

For β(∆n)−α � 1 it follows that

P ≈ B(α)β(∆n)−α, (B.8)

which can also be understood as the average fraction of chaotic modes in the plateau.
Assuming that only this fraction shows chaotic motion and contributes to further excitation,
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B.2 Downscale of Spreading
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Figure B.1: Probability distribution for resonances of eigenmodes P(Rν,min) for different nonlinear
indices α = 0.5, α = 1, α = 2, α = 3 (order top to bottom) and W = 4. Main result is
that P(Rν,min → 0)→ B(α) 6= 0.

we correct eqn. (B.3) and find that exterior modes are excited as

|Cm|2 ∼ (∆n)−(4α+1)t. (B.9)

Similar calculations as presented in appendix B.1 lead to a new spreading law:

(∆n)2 ∼ tγn , with γn =
1

2α+ 1
. (B.10)

We, again, want to note that this reasoning is arguable. As a matter of fact, we are not
convinced by the explanation which states the existence of non-chaotic modes within the
spreading plateau of the wavefunction. It seems very unnatural to assume some mode excita-
tions Cm behave regularly while the surrounding ones are chaotic. It’s also unclear why the
“unchaotic” modes can get excited by chaotic excitations and then show regular motion.
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