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These remarks are due to the similarity of the article from Krupchyk,
Tarkhanov, and Tuomela [5] with parts of Sections 3.2.3.1 and 3.2.3.2 of the
author’s joint monograph with Rempel [6]. The general background are (classi-
cal) pseudo-differential boundary value problems on a smooth manifold M with
boundary in the sense of Boutet de Monvel [2]. Those form an operator algebra
with a principal symbolic structure σ = (σint, σ∂), with the interior and bound-
ary symbols σint and σ∂ , respectively. Writing an operator A in that calculus
as a 2 × 2 block matrix, the upper left corner is a pseudo-differential operator
on intM with the transmission property at the boundary, plus a singular Green
operator G which is smoothing over intM . The other entries off the diagonal
signify trace and potential operators, while the lower right corner is a pseudo-
differential operator on ∂M .

The interior symbol σint(A) is the standard homogeneous principal symbol of
the upper left corner, and σ∂(A) the so-called boundary symbol; the latter is a
family of 2×2 block matrix operators, acting between Sobolev spaces in normal
direction to the boundary, plus the fibres of involved bundles over the boundary.
The composition of two operators A and B in that framework belongs to the
calculus again (provided that the bundles in the middle fit together, and one of
the factors is properly supported) and we have σ(AB) = σ(A)σ(B) (the latter
composition is component-wise). Moreover, if A is of order 0, and if the order of
differentiation in the (integral representation of) the Green and the trace oper-
ator, transversal to the boundary, is zero, then the L2-adjoint A∗ belongs to the
calculus, where σ(A∗) = σ(A)∗. Ellipticity of A means the bijectivity of σint(A)
over T ∗M \ 0 and of σ∂(A) over T ∗(∂M) \ 0 (0 represents the corresponding
zero-section). Operators A in Boutet de Monvel’s calculus induce continuous
mappings between standard Sobolev spaces of distributional sections in the in-
volved vector bundles over M and ∂M , respectively. Ellipticity of A entails the
existence of a parametrix in the calculus and also the Fredholm property when
M is compact (in Sobolev spaces of sufficiently large smoothness). All this is
done in [2].

In [6] we studied the abstract Fredholm complexes in Hilbert spaces (Section
3.2.3.1) and complexes of operators in Boutet de Monvel’s calculus (Section
3.2.3.2). Recall that complexes are sequences of operators A0, . . . , AN−1 such
that Ak+1Ak = 0 for all k (for notational purposes we set Aj = 0 for j < 0 and
j ≥ N). In the case of operators with a symbolic structure, compatible with
compositions, the relation Ak+1Ak = 0 entails σ(Ak+1)σ(Ak) = 0. Ellipticity



of a complex is defined as the exactness of the symbolic complex σ(Ak). As is
shown in [6], such a complex has a parametrix of operators in the calculus, i.e.,
a sequence P0, . . . , PN−1 with Pk mapping the spaces in the opposite direction
than Ak and Ak−1Pk−1 + PkAk = 1 + Ck for σ(Ck) = 0 for all k. In particular,
it follows that σ(Ak−1)σ(Pk−1) + σ(Pk)σ(Ak) = 1 for all k.

An elliptic ‘quasi’-complex in the terminology of [5] is a sequence Ak such
that the complexes σ(Ak) = (σint(Ak), σ∂(Ak)) are exact but the relations
Ak+1Ak = 0 are not required. However, it is an immediate consequence of
the Hodge theory from [6] together with the shape of the operators that furnish
the parametrix of [6] (which is also available for sequences that are only ‘quasi’
for a certain k < N − 1) that an elliptic quasi complex can always be turned to
an elliptic complex when we change Ak by a lower order operator. This purely
functional analytic observation (always true in analogous form for operators in
an algebra with a symbolic structure that determines operators modulo lower
order remainders) is mentioned in [5] as Theorem 2.2 with reference to another
paper from Tarkhanov, apparently not treated as something trivial.
The authors of [5] show the same thing once again as Theorem 8.1 with a very
long proof claiming Hodge theory and parametrices for elliptic complexes as
achievements of their paper. The new ideas (results and methods) of [5] are
contained in the complement of the following equivalences.

[6], Definition 1, page 282 = [5], Definition 3.1

[6], proof of Theorem 2, page 283 contains [5], Theorem 3.2

[6], Theorem 2, page 283 contains [5], Lemma 4.1 and Theorem 4.3

[6], constructions of Section 3.2.3.2 entail [5], Corollary 4.4 and Theorem 4.5
as trivial consequences; in particular, [6], Theorem 2, page 283 contains [5],
Theorem 4.5

[6], Theorem 4, page 272 is the same as [5], Lemma 5.1

[6], proof of Theorem 3, page 272 coincides with the constructions of [5], The-
orem 5.2 and Lemma 5.3

[6], Proposition 5, page 274 contains [5], Corollary 6.1.

There are other noticeable aspects of the paper [5], for instance, how well known
technical tools on operators in Boutet de Monvel’s calculus are quoted. For in-
stance, in [5], Lemma 1.2 (‘important for us’) the authors recall the continuity
in Sobolev spaces. [5], Lemma 3.1 states such a continuity again, quoting a
witness from 1996. Taking into account Lemma 1.2 and the fact that there
are pseudo-differential order reducing operators of any order on the boundary,
Lemma 3.1 explains that the composition of continuous operators is again con-
tinuous. In any case, continuity in Sobolev spaces is contained in [2] (see also



Eskin’s book [4], Lemma 23.8). Another point is the comments in [5] with
reference to Corollary 6.1 on Dynin’s paper [3]; here it remains unclear why
the authors copied the corresponding observations from [6], pages 274 and 284,
without giving any new, additional information. Let us finally note that there
are other references on elliptic complexes or Fredholm complexes, e.g., the pa-
per of Atiyah and Bott [1] on pseudo-differential complexes on closed manifolds,
which suggests the algebraic structure of useful parametrices also in more gen-
eral cases. In [6] this is combined with isomorphisms of complexes, induced by
reductions of orders in Boutet de Monvel’s calculus (see the second operator in
[2], formula (5.10), that can be turned to an isomorphism by adding a finite
rank smoothing operator which belongs to the calculus, only using arguments
known by [2]). This step is crucial for obtaining Laplacians for corresponding
reduced complexes of order 0. Neither [1] nor the latter aspect are cited in [5].
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