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These remarks are due to the similarity of the article from Krupchyk,
Tarkhanov, and Tuomela [5] with parts of Sections 3.2.3.1 and 3.2.3.2 of the
author’s joint monograph with Rempel [6]. The general background are (classi-
cal) pseudo-differential boundary value problems on a smooth manifold M with
boundary in the sense of Boutet de Monvel [2]. Those form an operator algebra
with a principal symbolic structure o = (ojpt, 09), with the interior and bound-
ary symbols oj¢ and oy, respectively. Writing an operator A in that calculus
as a 2 x 2 block matrix, the upper left corner is a pseudo-differential operator
on int M with the transmission property at the boundary, plus a singular Green
operator G which is smoothing over int M. The other entries off the diagonal
signify trace and potential operators, while the lower right corner is a pseudo-
differential operator on OM.

The interior symbol oyt (A) is the standard homogeneous principal symbol of
the upper left corner, and o5(A) the so-called boundary symbol; the latter is a
family of 2 x 2 block matrix operators, acting between Sobolev spaces in normal
direction to the boundary, plus the fibres of involved bundles over the boundary.
The composition of two operators A and B in that framework belongs to the
calculus again (provided that the bundles in the middle fit together, and one of
the factors is properly supported) and we have o(AB) = 0(A)o(B) (the latter
composition is component-wise). Moreover, if A is of order 0, and if the order of
differentiation in the (integral representation of) the Green and the trace oper-
ator, transversal to the boundary, is zero, then the L?-adjoint A* belongs to the
calculus, where o(A*) = o(A)*. Ellipticity of A means the bijectivity of oy, (A)
over T*M \ 0 and of o5(A) over T*(OM)\ 0 (0 represents the corresponding
zero-section). Operators A in Boutet de Monvel’s calculus induce continuous
mappings between standard Sobolev spaces of distributional sections in the in-
volved vector bundles over M and dM, respectively. Ellipticity of A entails the
existence of a parametrix in the calculus and also the Fredholm property when
M is compact (in Sobolev spaces of sufficiently large smoothness). All this is
done in [2].

In [6] we studied the abstract Fredholm complexes in Hilbert spaces (Section
3.2.3.1) and complexes of operators in Boutet de Monvel’s calculus (Section
3.2.3.2). Recall that complexes are sequences of operators Ay, ..., Ay_1 such
that Ay1 A, = 0 for all k£ (for notational purposes we set A; = 0 for j < 0 and
j > N). In the case of operators with a symbolic structure, compatible with
compositions, the relation Ag 1 Ax = 0 entails o(Axy1)o(Ax) = 0. Ellipticity



of a complex is defined as the exactness of the symbolic complex o(Ag). As is
shown in [6], such a complex has a parametrix of operators in the calculus, i.e.,
a sequence Fy, ..., Py_; with P, mapping the spaces in the opposite direction
than Ay and Ay_1P,_1 + P.A, = 1+ C}, for o(Cy) = 0 for all k. In particular,
it follows that o(Ay_1)o(Py_1) + o(Py)o(Ax) =1 for all k.

An elliptic ‘quasi’-complex in the terminology of [5] is a sequence Ay such
that the complexes o(Ax) = (oint(Ax),08(Ax)) are exact but the relations
Agi1Ar = 0 are not required. However, it is an immediate consequence of
the Hodge theory from [6] together with the shape of the operators that furnish
the parametrix of [6] (which is also available for sequences that are only ‘quasi’
for a certain k < N — 1) that an elliptic quasi complex can always be turned to
an elliptic complex when we change A, by a lower order operator. This purely
functional analytic observation (always true in analogous form for operators in
an algebra with a symbolic structure that determines operators modulo lower
order remainders) is mentioned in [5] as Theorem 2.2 with reference to another
paper from Tarkhanov, apparently not treated as something trivial.

The authors of [5] show the same thing once again as Theorem 8.1 with a very
long proof claiming Hodge theory and parametrices for elliptic complexes as
achievements of their paper. The new ideas (results and methods) of [5] are
contained in the complement of the following equivalences.

6], Definition 1, page 282 = [5], Definition 3.1
6], proof of Theorem 2, page 283 contains [5], Theorem 3.2
[6], Theorem 2, page 283 contains [5], Lemma 4.1 and Theorem 4.3

6], constructions of Section 3.2.3.2 entail [5], Corollary 4.4 and Theorem 4.5
as trivial consequences; in particular, [6], Theorem 2, page 283 contains [5],
Theorem 4.5

(6], Theorem 4, page 272 is the same as [5], Lemma 5.1

6], proof of Theorem 3, page 272 coincides with the constructions of [5], The-
orem 5.2 and Lemma 5.3

[6], Proposition 5, page 274 contains [5], Corollary 6.1.

There are other noticeable aspects of the paper [5], for instance, how well known
technical tools on operators in Boutet de Monvel’s calculus are quoted. For in-
stance, in [5], Lemma 1.2 (‘important for us’) the authors recall the continuity
in Sobolev spaces. [5], Lemma 3.1 states such a continuity again, quoting a
witness from 1996. Taking into account Lemma 1.2 and the fact that there
are pseudo-differential order reducing operators of any order on the boundary,
Lemma 3.1 explains that the composition of continuous operators is again con-
tinuous. In any case, continuity in Sobolev spaces is contained in [2] (see also



Eskin’s book [4], Lemma 23.8). Another point is the comments in [5] with
reference to Corollary 6.1 on Dynin’s paper [3]; here it remains unclear why
the authors copied the corresponding observations from [6], pages 274 and 284,
without giving any new, additional information. Let us finally note that there
are other references on elliptic complexes or Fredholm complexes, e.g., the pa-
per of Atiyah and Bott [1] on pseudo-differential complexes on closed manifolds,
which suggests the algebraic structure of useful parametrices also in more gen-
eral cases. In [6] this is combined with isomorphisms of complexes, induced by
reductions of orders in Boutet de Monvel’s calculus (see the second operator in
2], formula (5.10), that can be turned to an isomorphism by adding a finite
rank smoothing operator which belongs to the calculus, only using arguments
known by [2]). This step is crucial for obtaining Laplacians for corresponding
reduced complexes of order 0. Neither [1] nor the latter aspect are cited in [5].
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