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Abstract. We develop an approach to the problem of optimal recovery of

continuous linear functionals in Banach spaces through information on a finite

number of given functionals. The results obtained are applied to the problem
of the best analytic continuation from a finite set in the complex space Cn,

n ≥ 1, for classes of entire functions of exponential type which belong to the
space Lp, 1 < p < ∞, on the real subspace of Cn. These latter are known as

Wiener classes.
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Introduction

The theory of optimal recovery is a part of approximation theory devoted to the
reconstruction of functions, functionals and operators through incomplete informa-
tion (precise or bearing errors) by means of the so-called optimal algorithms. The
best general references here are the monographs [TW80, MR76, MR85] and survey
[Tik87].

This domain of investigations is intensively developed, cf. for instance [MO02,
MO03]. We will restrict our discussion to a popular problem of the theory of optimal
recovery which is closely related to the problem of extrapolation of entire functions
of exponential type from a finite set. This is the problem of reconstruction of delta
type functionals.

Let V be a normed space of functions with domain D, U a subset of V and
Lx : U → C a delta-functional defined by Lx(f) = f(x) for f ∈ U , where x ∈ D
is a fixed point. The problem consists of recovering the functional Lx through an
available information.

For example, let a finite number of functionals Lxk
(f) = f(xk), f ∈ U , be given,

for k = 1, . . . , N , where xk ∈ D. In this case the information space is W = CN and
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the information operator I : U → W has the form

I(f) = (f(x1), . . . , f(xN )) (0.1)

for f ∈ U .
Any mapping A : W → C is called an algorithm. By the optimal error of

reconstruction of the functional Lx is meant the number

Ω(x, U) = inf sup {|f(x)−A ◦ I(f)| : f ∈ U}, (0.2)

the infimum is over all mappings A : W → C.
A mapping A0 : W → C is called the optimal algorithm if the infimum in (0.2)

is achieved for A = A0. An element f0 ∈ U is said to be extremal, if

Ω(x,U) = |f0(x)−A0 ◦ I(f0)|

holds.
In the case of real space V S.A. Smolyak proved that one can always choose the

mapping A in (0.2) linear, if U is a convex circled set and I : U → W an information
operator of the form (0.1). Recall that U is called circled if λf ∈ U for all f ∈ U
and all λ with |λ| ≤ 1.

In [Osi76, MO91] this result is generalised to all complex normed spaces. If e.g.
U = {f ∈ V : ‖f‖ ≤ R} is a ball about 0, then Ω(x,U) = inf {E(a;x,U) : a ∈ CN},
where

E(a;x,U) = sup
{
|f(x)−

N∑
k=1

ak f(xk)| : f ∈ U
}

. (0.3)

If U is a normed space of analytic functions in a domain D ⊂ Cn, then Ω(x,U)
is actually the unremovable error of the best analytic continuation (also optimal
extrapolation) of functions f ∈ U from the finite set S = {x1, . . . , xN} to the point
x ∈ D \ S. For the space V of all bounded functions in a simply connected domain
D of the complex plane, Osipenko [Osi76] evaluated the error Ω(x, U) in the case,
where U = {f ∈ V : ‖f‖L∞(D) ≤ R} is a ball around the origin, and found the
optimal algorithm of analytic continuation from the set S to a fixed point x of its
complement D \ S.

In [Mae97, Mae00] conditions for optimal extrapolation of Wiener class W 2
σ of

entire functions are studied. For simplicity we formulate the main result in the case
n = 1.

Let σ > 0. By W 2
σ is meant the space of all entire functions f ∈ L2(Rn) which

are of exponential type ≤ σ, i.e., satisfy

|f(z)| ≤ Cf exp(σ|=z|) (0.4)

for all z ∈ C.
Let S = {z1, . . . , zN} be a set of pairwise different points in C and z0 an arbitrary

point of C \ S. Let moreover U = {f ∈ W 2
σ : ‖f‖2 ≤ R} be a ball of radius R > 0,

and Z the space of all functions f ∈ W 2
σ which vanish on S. The following theorem

is proved in [Mae97].

Theorem 0.1. Let G and G0 be the Gram matrices of the systems of functions
{exp (ızkx)}N

k=1 and {exp (ızkx)}N
k=0 on the interval [−σ, σ], respectively. Then

holds:
1) The elements of G and G0 are precisely (exp (ızjx) , exp (ızkx)) = h(zj , zk)

for j, k = 0, . . . , N , where (·, ·) is the scalar product in L2[−σ, σ] and

h(z, w) =

 2
sinσ(z − w)

z − w
, if z 6= w;

2σ, if z = w.
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2) The unremovable error Ω(z0, U) of analytic continuation of functions in U
from the finite set S = {z1, . . . , zN} to the point z0 is given by

Ω(z0, U) = sup
f∈U∩Z

|f(z0)| = R

√
det G0

detG
.

Moreover, the equality Ω(z0, U) = |f(z0)| holds only for those f ∈ U ∩ Z which are
of the form

f(z) = Reıθ 1√
detG detG0

det


h(z, z0) h(z, z1) . . . h(z, zN )
h(z1, z0)

. . . G
h(zN , z0)


on all of C.

3) The value f(z0) of any function f ∈ U satisfies |f(z0)−A0 ◦I(f)| ≤ Ω(z0, U),
where

A0 ◦ I(f) = −

det


0 f(z1) . . . f(zN )

h(z1, z0)
. . . G

h(zN , z0)


det G

is the optimal linear algorithm.

In the paper [FM01] Theorem 0.1 is extended to arbitrary Hilbert spaces of
holomorphic functions with reproducing kernel. Moreover, the data need not be
precise.

In the one-dimensional case conditions for the best analytic continuation from a
finite set are also derived for a generalised Wiener class W p

σ of entire functions of
exponential type ≤ σ whose restrictions to the real axis belong to the space Lp(R),
with 1 < p < 2. See [Mae06].

In the present paper we bring together two areas in which the problem of the
best analytic continuation from a finite subset of the complex space is of standing
interest. The first of the two is approximation theory, more precisely, best approx-
imation in normed spaces by elements of vector subspaces, cf. [Sin70, Tik87]. The
second area is complex analysis, namely the theory of entire functions. The results
obtained apply to present Theorem 0.1 in the context of Banach spaces W p

σ , where
1 < p < ∞, also in many dimensions.

1. Optimal recovery of linear functionals

Let T : V → B be an algebraic isomorphism of a vector space V onto a normed
space B, both V and B being over the same field K where K = R or C. We give a
norm to V by setting ‖f‖V := ‖Tf‖B for f ∈ V , thus making V a normed space,
too.

It is easy to verify that ‖L‖V ′ = ‖L◦T−1‖B′ for each continuous linear functional
L on V Here, B′ stands for the dual space for B, which is Banach under functional
norm. This enables one to reduce extremal problems in the dual space of V to those
in B′.

Suppose U is a closed ball of radius R > 0 about the origin in V . Given a
finite number of independent functionals L1, . . . , LN on U , we consider the problem
of recovering any fixed functional L on U through L1, . . . , LN . For instance, in
Theorem 0.1 the original space is V = W 2

σ , B = L2[−σ, σ] and T = F is the Fourier
transform. As L1, . . . , LN and L one takes the evaluation functionals at the points
z1, . . . , zN and z0, respectively.

The extreme case is when the data I(f) = (L1(f), . . . , LN (f)) determine f ∈ U
uniquely, i.e., f = M(I(f)), with M being a map of CN to U . Then the formula
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L(f) = L ◦M(I(f)) would uniquely restore L through the functionals L1, . . . , LN

on U . For instance, any polynomial ℘ of one variable of degree N − 1 over K is
uniquely determined by its values at N fixed points. In other words, the value of ℘
at any other point is uniquely determined through the information on the values of
℘ at N given points.

Consider the main characteristics of optimal recovery which generalise those men-
tioned in the introduction. In general there might be diverse algorithms A recovering
L on U through L1, . . . , LN . We restrict our attention to those algorithms A which
are linear, i.e.,

A = `(a;L1, . . . , LN ) :=
N∑

k=1

akLk

for a = (a1, . . . , aN ) ∈ KN .
By the error E(a;L,U) of an algorithm A is naturally meant the supremum of

|L(f)−A ◦ I(f)| over all f ∈ U .
The optimal (unremovable) error Ω(L,U) of reconstruction of the functional L

is defined to be the infimum of E(a;L, U) over all a ∈ KN . If the infimum is
achieved for some a = α of KN , i.e., Ω(L,U) = E(α;L, U), then the algorithm
A0 = `(α;L1, . . . , LN ) is called the optimal linear algorithm of recovery for the
functional L.

It is clear that the optimal algorithm need not be unique. We will need a fun-
damental result of approximation theory in normed spaces, see for instance [Lyu92,
p. 146].

Lemma 1.1. Let B′ be a normed space over K and {e1, . . . , eN} a linearly indepen-
dent system in B′. Then, for each element v ∈ B′ there is a vector α = (α1, . . . , αN )
of CN , such that ∥∥∥v −

N∑
k=1

αkek

∥∥∥ = inf
a∈KN

∥∥∥v −
N∑

k=1

akek

∥∥∥.

If moreover B′ is strictly convex then there is only one vector α ∈ KN with the
mentioned property.

The element

`(α; e1, . . . , eN ) =
N∑

k=1

αkek

is called the least deviating element in the linear span of {e1, . . . , eN} for v, cf. also
Chebyshev polynomial. We will write it simply `(α) when no confusion can arise.
For Hilbert spaces B′, a constructive formula for `(α) is known, cf. Theorem 0.1.

Note that the spaces Lq(X , µ) with 1 < q < ∞ are known to be strictly convex,
see [Lyu92, p. 130].

Given an optimal algorithm A0 = `(α;L1, . . . , LN ), an element f0 ∈ U is said to
be extremal if E(α;L, U) = |L(f0)−A0 ◦ I(f0)|.

Let L0 ∈ B′ be a non-zero functional. Consider a set

∂‖L0‖B′ = {F ∈ B : ‖F‖B = 1, L0(F ) = ‖L0‖B′}

which has a simple geometric meaning. More precisely, this is the face of the closed
unit ball in B lying in the support hyperplane {F ∈ B : L0(F ) = ‖L0‖B′} of the
ball.

The set ∂‖L0‖B′ may be empty. This is impossible if, e.g., the closed unit ball in
B is compact in the weak topology. In particular, this is the case if B is a reflexive
Banach space, which is due to the Banach-Alaoglu theorem, see e.g. [KA77, p. 241].
In this case the set ∂‖L0‖B′ is called the subdifferential of the norm L 7→ ‖L‖B′ at
L0, see [Phe88].
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Write G for the group of elements of modulus 1 in K. In the general case the
set of all extremal elements is defined by means of the set G ∂‖L0‖B′ for some L0

depending on A0. The juxtaposition of two sets means their ‘element by element’
product.

Theorem 1.2. Let

`(α) =
N∑

k=1

αk Lk ◦ T−1 (1.1)

be a least deviating element in the linear span of {L1 ◦ T−1, . . . , LN ◦ T−1} for
L ◦ T−1. Then:

1) The optimal error of recovering the functional L through finitely many func-
tionals L1, . . . , LN on U is Ω(L,U) = R ‖L ◦ T−1 − `(α)‖B′ .

2) The optimal linear algorithm of reconstruction of the functional L on U is
given by A0 = `(α;L1, . . . , LN ), cf. (1.1). Moreover, it is unique provided that the
space B′ is strictly convex.

3) If L0 = L ◦ T−1 − `(α) is non-zero and ∂ ‖L0‖B′ 6= ∅, then any extremal
element f0 ∈ U has the form RT−1F0, where F0 ∈ G ∂‖L0‖B′ .

It readily follows from 1) that Ω(L,U) = 0 if and only if L is a linear combination
of L1, . . . , LN .

Proof. Fix a ∈ KN . Consider the difference

∆(a)(f) = L(f)−
N∑

k=1

akLk(f)

for f ∈ V .
Using the formula f = RT−1F , with F = T (f/R) ∈ B, and the definition of the

norm of a continuous linear functional, we get

E(a;L,U) = sup
f∈U

|∆(a)(f)|

= R sup
‖F‖B≤1

∣∣∆(a) ◦ T−1(F )
∣∣

= R
∥∥∆(a) ◦ T−1

∥∥
B′

,

for f ∈ U if and only if ‖T (f/R)‖B ≤ 1.
Hence it follows that

Ω(L, U) = R inf
a∈KN

‖L ◦ T−1 − `(a;L1 ◦ T−1, . . . , LN ◦ T−1)‖B′

= R ‖L ◦ T−1 − `(α;L1 ◦ T−1, . . . , LN ◦ T−1)‖B′ , (1.2)

the infimum is attained at some α ∈ KN by Lemma 1.1. Moreover, Lemma 1.1
implies that the extremal element α ∈ KN is unique, if the space B′ is strictly
convex.

By (1.2), the optimal error Ω(L,U) is equal to zero if and only if the functional
L0 = L ◦ T−1 − `(α) is zero. Then L = α1L1 + . . . + αNLN on all of V . In this
case the coefficients α1, . . . , αN are uniquely determined by L since L1, . . . , LN are
linearly independent elements of V ′.

So the assertions 1) and 2) of the theorem are true. It remains to consider the
case where L0 is different from zero.

If ∂‖L0‖B′ 6= ∅, then by the very definition of the subdifferential of a norm we
see that

Ω(L,U) = R ‖L0‖B′

= |L0(RF )|
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for all F ∈ G ∂‖L0‖B′ . Denote by E the set of all elements f ∈ U , such that
f = RT−1F for some F ∈ G ∂‖L0‖B′ . Then

Ω(L,U) = |L(f)−A0 ◦ I(f)|

for all f ∈ E, i.e., E is the set of all extremal elements in U . We have thus proved
the assertion 3). �

As but one application of Theorem 1.2 we mention the main result of [Mae06]
on extrapolation in Wiener classes W p

σ with 1 < p < 2.

Example 1.3. Let B = Lq[−σ, σ], where σ > 0 and 1 < q < ∞. We identify
B with the subspace of Lq(R) consisting of all functions with support in [−σ, σ].
Denote by V the vector space of all tempered distributions f on R, such that
F−1f ∈ Lq[−σ, σ], F−1 being the inverse Fourier transform. Then T = F−1 defines
an algebraic isomorphism of V onto B, the inverse map being the Fourier transform
itself. We topologise V under the norm f 7→ ‖F−1f‖B , thus obtaining a Banach
space. By the Hausdorff-Young theorem, the space V contains W p

σ , 1/p + 1/q = 1,
provided that 1 < p < 2. The norm on W p

σ induced from V is weaker than that
induced by the embedding to Lp(R). Theorem 1.2 applies in this setting, thus
recovering Theorem 5 of [Mae06].

2. The Paley-Wiener theorem

Let σ > 0. The classical Paley-Wiener theorem states that the space W 2
σ may

be equivalently characterised as F−1L2[−σ, σ], where L2[−σ, σ] is thought of as the
subspace of L2(R) consisting of all functions with support in [−σ, σ], and F−1 the
inverse Fourier transform,

F−1F (x) =
1
2π

∫
R

eıxξF (ξ)dξ

for F ∈ L2[−σ, σ].
Since F extends to a topological isomorphism of S ′(R), the element F ∈ L2[−σ, σ]

is uniquely determined by F−1F . Moreover, the norm of an element f = F−1F
in W 2

σ , i.e., in L2(R), just amounts to the (1/
√

2π -multiple of the) norm of F in
L2[−σ, σ], which is due to the Plancherel theorem.

By the Hausdorff-Young theorem, the Fourier transform of a function f ∈ Lp(R)
belongs to Lq(R), provided that 1 ≤ p ≤ 2. Here, 1/p + 1/q = 1. Moreover,
‖f̂‖Lq(R) ≤ (2π)1/q‖f‖Lp(R). For p > 2 the Fourier transform of a function in Lp(R)
may be a distribution of positive order. More precisely, if p > 2 and o satisfies
o > 1/2− 1/p, then f̂ is a distribution of order ≤ o in R, and the bound cannot be
relaxed, cf. [Hoe83, 7.6.6].

We thus conclude that any function f ∈ W p
σ with 1 < p < ∞ possesses an

integral representation

f = F−1f̂ , (2.1)

where f̂ ∈ E ′[−σ,σ] is the Fourier transform of f . However, the Fourier transforms of
functions in W p

σ can hardly be characterised in E ′[−σ,σ] in terms of their regularity.
As some suggestive evidence to this fact we mention that in [Mae06] a function
F ∈ Lq[−σ, σ] with q > 2 is constructed, such that F−1F does not belong to W p

σ

with any 1 ≤ p ≤ 2.
To characterise the Fourier transforms of functions in W p

σ we invoke Banach
spaces lp(Z).
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3. Characterisation of Wiener classes

There is no less of generality in assuming that σ = π, for f(x) ∈ W p
σ if and only

if f((π/σ)x) ∈ W p
π .

Let p ≥ 1. Denote by lp(Z) the set of all two-sided sequences c = (cn)n∈Z of
complex numbers, such that

‖c‖lp(Z) :=
( ∑

n∈Z
|cn|p

)1/p

is finite. If given the norm c 7→ ‖c‖lp(Z), this vector space is well-known to be
Banach.

To motivate the next definition, we observe that if f is an entire function of
exponential type ≤ π, such that Ff ∈ L1[−π, π], then for any smooth function ϕ
on [−π, π] we get

〈Ff, ϕ〉 =
∑
n∈Z

f(n)ϕ̂(n),

where ϕ̂(n) =
∫ π

−π

e−ınxϕ(x)dx.

Each sequence c ∈ lp(Z) defines a linear functional Tc on the space C∞(R) by
the formula

〈Tc, ϕ〉 :=
∑
n∈Z

cnϕ̂(n) (3.1)

for ϕ ∈ C∞(R).

Lemma 3.1. Suppose 1 < p < ∞. As defined above, Tc is a distribution on the
real axis with a support in [−π, π].

Proof. If ϕ ∈ C∞(R) then partial integration yields

ϕ̂(n) =
1
−ın

(
(−1)n (ϕ(π)− ϕ(−π))−

∫ π

−π

e−ınxϕ′(x)dx
)

whence

|ϕ̂(n)| ≤ 1
|n|

(
4π sup

x∈[−π,π]

|ϕ′(x)|
)

for all n 6= 0. Using the Hölder inequality, we therefore obtain

|〈Tc, ϕ〉| ≤ |c0|
(
2π sup

x∈[−π,π]

|ϕ(x)|
)

+
∑
n 6=0

|cn|
|n|

(
4π sup

x∈[−π,π]

|ϕ′(x)|
)

≤ ‖c‖lp(Z)

(
2π sup

x∈[−π,π]

|ϕ(x)|+
( ∑

n 6=0

1
|n|q

)1/q

4π sup
x∈[−π,π]

|ϕ′(x)|
)
.

This shows that Tc is a distribution of order ≤ 1 on R with a support in [−π, π], as
desired. �

Given a function f ∈ L1[−π, π], we set

c(f̌) = (f̌(n))n∈Z (3.2)

where f̌(n) =
1
2π

∫ π

−π

eınxf(x)dx. Obviously, c(f̌) ∈ l∞(Z) and

‖c(f̌)‖l∞(Z) ≤
1
2π

‖f‖L1[−π,π].

Lemma 3.2. Assume that f ∈ L1(R) is supported in [−π, π]. Then Tc(f̌) = f in
the sense of distributions on R.
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Proof. If ϕ ∈ C∞(R), then

〈Tc(f̌), ϕ〉 =
∑
n∈Z

f̌(n)ϕ̂(n)

= lim
N→∞

∫ π

−π

f(x)
( N∑

n=−N

1
2π

ϕ̂(n)eınx
)
dx.

The sums in the parentheses are actually partial sums of the Fourier series of the test
function ϕ restricted to [−π, π]. By the Dini theorem, this series converges to ϕ(x) at
each point x of the interval [−π, π] with the possible exception of x = ±π. Moreover,
the partial sums of this series are bounded on the interval [−π, π] uniformly in N .
Indeed, the restriction of ϕ to [−π, π] can be written in the form ϕ(x) = `(x)+r(x),
where `(x) = ax is a linear function and r(x) is a smooth function in [−π, π]
satisfying r(−π) = r(π). It suffices to take a = (ϕ(π) − ϕ(−π))/2π. The partial
sums of the Fourier series of `(x) are bounded in [−π, π] uniformly in N , as is
immediately checked. On the other hand, the Fourier series of r(x) converges to r(x)
uniformly on [−π, π], hence its partial sums are bounded in this interval uniformly in
N . Summarising, we conclude by the Lebesgue theorem on majorised convergence
that

〈Tc(f̌), ϕ〉 =
∫ π

−π

f(x)
(

lim
N→∞

N∑
n=−N

1
2π

ϕ̂(n)eınx
)
dx

=
∫ π

−π

f(x)ϕ(x)dx,

as desired. �

Denote by E ′p[−π,π] the space of all distributions of the form Tc on R, where
c ∈ lp(Z).

To identify E ′p[−π,π] with the Fourier image of the Wiener space W p
π , we invoke

the classical Plancherel-Pólya theorem.

Theorem 3.3. Suppose 1 < p < ∞. Then:
1) For any sequence c ∈ lp(Z), the series

f(z) =
∑
n∈Z

cn(−1)n sinπz

π(z − n)
(3.3)

converges in the Lp(R) -norm (and uniformly on each compact set in C) to a function
f ∈ W p

π which is actually the unique solution of the interpolation problem f(n) = cn,
n ∈ Z.

2) Conversely, for every function f ∈ W p
π , the sequence c(f) := (f(n))n∈Z belongs

to lp(Z).

Proof. See [PP38] and elsewhere. �

The equality (3.3) gains in interest if we realise that Ff = Tc, and so it just
amounts to saying that

f = F−1Tc(f),

cf. (2.1). Indeed, Lemma 3.1 states that Tc ∈ E ′[−π,π], hence the inverse Fourier
transform of Tc is well defined in S ′(R). In fact, it is an entire function of exponential
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type ≤ π given by

F−1Tc =
1
2π
〈Tc, e

ızξ〉

=
∑
n∈Z

cn
1
2π

∫ π

−π

eı(z−n)ξdξ

=
∑
n∈Z

cn
1
2π

∫ π

−π

cos(z − n)ξ dξ

=
∑
n∈Z

cn(−1)n sinπz

π(z − n)
,

as desired.

Theorem 3.4. For p > 1, the Fourier transform defines an algebraic isomorphism
of the space W p

π onto E ′p[−π,π].

Proof. By the Plancherel-Pólya theorem, if f ∈ W p
π then the sequence (f(n))n∈Z

belongs to lp(Z) and f is represented by formula (3.3). It follows that Ff = Tc(f)

lies in E ′p[−π,π], i.e., the Fourier transform maps W p
π into E ′p[−π,π]. Since W p

π ↪→ S ′(R),
this map is injective. It remains to prove that it is surjective. To this end, fix
a distribution Tc ∈ E ′p[−π,π], i.e., let c ∈ lp(Z). Define f by formula (3.3), then
f ∈ W p

π and c(f) = c, which is due to the Plancherel-Pólya theorem. By the above,
Ff = Tc, as desired. �

If 1 < p ≤ 2, then the distributions of E ′p[−π,π] are functions of class Lq[−π, π]
while they do not exhaust all of Lq[−π, π]. For p > 2, the distributions of E ′p[−π,π] are
no longer functions and even measures on [−π, π], as it will be shown in Section 4.

4. A counterexample

We make use of the following well-known theorem, see for instance Theorem 6.4
on p. 326 in [Zyg59, Vol. 1].

Theorem 4.1. Let
∞∑

k=1

ak cos(nkx) + bk sin(nkx), x ∈ [−π, π],

be a gap trigonometric series, i.e.,
nk+1

nk
≥ q > 1. If it is summable by some linear

summation method (e.g., by the Abel-Poisson method) on a set of positive measure,

then
∞∑

k=1

a2
k + b2

k < ∞.

Consider the entire function

f(z) =
∞∑

k=1

1√
k

sinπz

π(z − 2k)
,

z ∈ C. By Theorem 3.3, f is in W p
π for each p > 2. The trigonometric series of the

Fourier transform of f on [−π, π] is
∞∑

k=1

1√
k

(
cos(2kξ)− ı sin(2kξ)

)
, (4.1)

as is easy to see. Theorem 4.1 shows that this series fails to be summable by the
Abel-Poisson summation method almost everywhere in [−π, π].
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Since the Fourier series of a measure in [−π, π] is for all that summable by the
Abel-Poisson summation method almost everywhere, we deduce that (4.1) cannot
be the Fourier series of any measure in the interval [−π, π].

Thus, c(f) belongs to all spaces lp(Z) with p > 2. However, the distribution
Tc(f) fails to be a measure 1.

5. Estimates in Wiener spaces

Theorem 3.4 actually gives rise to two natural norms in the Wiener space W p
π ,

where p > 1. The first of the two is the genuine norm of W p
π , i.e., that induced

by embedding to Lp(R). The second norm is pulled back from lp(Z) under the
algebraic isomorphism f 7→ Ff = Tc(f). Under both the norms W p

π is complete,
i.e., Banach.

Theorem 5.1. Let 1 < p < ∞. The norms f 7→ ‖f‖Lp(R) and f 7→ ‖c(f)‖lp(Z) on
W p

π are equivalent.

Proof. Let the space W p
π be given the norm f 7→ ‖f‖Lp(R), and the space E ′p[−π,π] be

given the norm Tc 7→ ‖c‖lp(Z). Then E ′p[−π,π] is a Banach space, for so is the space
lp(Z).

Theorem 5.1 just amounts to the fact that the Fourier transform maps W p
π contin-

uously into E ′p[−π,π]. Indeed, since the Fourier transform is an algebraic isomorphism
of these spaces, it follows by the open mapping theorem that the inverse Fourier
transform maps E ′p[−π,π] continuously onto W p

π . Therefore, the norms f 7→ ‖f‖Lp(R)

and f 7→ ‖Ff‖E′p[−π,π]
on W p

π are equivalent. It remains to recall that Ff = Tc(f)

for all f ∈ W p
π .

To prove that the mapping F : W p
π → E ′p[−π,π] is continuous, we invoke the closed

graph theorem. Pick a sequence {fν}ν∈N in W p
π , such that fν converges to f ∈ W p

π

in the Lp(R) -norm and Ffν converges to Tc in E ′p[−π,π]. Our objective is to show
that Ff = Tc.

By formula (3.3),

fν(z) =
∑
n∈Z

fν(n)(−1)n sinπz

π(z − n)
(5.1)

for all z ∈ C, whenever ν = 1, 2, . . .. Let ν → ∞. By passing to a subsequence of
{fν} we may actually assume that fν(z) → f(x) for almost all x ∈ R. On the other
hand, the sequence

sn(z) = (−1)n sinπz

π(z − n)
(5.2)

belongs to lq(Z) for each fixed z ∈ C. Hence it follows that we can pass on the left
hand side of (5.1) to the limit under the sum sign, when ν →∞. This yields

f(z) =
∑
n∈Z

cn(−1)n sinπz

π(z − n)

for all z ∈ R, and so for each z ∈ C. Arguments similar to those after Theorem 3.3
show that Ff = Tc, which is the desired conclusion.

Hence, the graph of F : W p
π → E ′p[−π,π] is closed, and so the mapping F continu-

ous, as desired. �

Theorem 5.1 goes back at least as far as [PP38], where a direct proof is given. A
proof using techniques of Hardy spaces can be found in [Lev96]. This book contains
an explicit estimate

‖c(f)‖lp(Z) ≤ (4/π)1/pe2π ‖f‖Lp(R)

1This example is a slight modification of an example given in [PP38].
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for all f ∈ W p
π . The advantage of our proof lies in the fact that it, being in

the framework of an operator-theoretic approach, extends to many other integral
representations.

Since the norm f 7→ ‖c(f)‖lp(Z) in W p
π is essentially easier to handle, from now

on we endow the space W p
π with this norm.

Corollary 5.2. Suppose f ∈ W p
π , where 1 < p < ∞. Then the value of f at each

z ∈ C is estimated by

|f(z)| ≤
( ∑

n∈Z

∣∣∣ sinπz

π(z − n)

∣∣∣q)1/q

‖c(f)‖lp(Z).

Proof. For the proof, it is sufficient to represent f by formula (3.3) and apply the
Hölder inequality. �

Given an entire function f of exponential type in Cn, we can inductively apply
Theorem 3.3 in each variable to f , thus extending this theorem to functions of
several variables. We omit obvious formulations, referring the reader to [PP38].
Theorem 5.1 remains valid, too.

6. Optimal estimate of extrapolation

In this section we extend Theorem 0.1 to extrapolation from a finite set in Wiener
spaces W p

π . Pick a finite set S = {z1, . . . , zN} of pairwise distinct points in C and
a point z0 ∈ C \ S.

Theorem 6.1. Suppose p > 1 and let

`n(α) =
N∑

k=1

αk sn(zk) (6.1)

be the sequence that is nearest to the sequence sn(z0) in the lq(Z)-metric, where
1/p + 1/q = 1. For U = {f ∈ W p

π : ‖c(f)‖lp(Z) ≤ R} with R > 0, the following is
true:

1) The unremovable error Ω(z0, U) of optimal extrapolation of functions f ∈ U
from the finite set S = {z1, . . . , zN} to the point z0 is

Ω(z0, U) = R ‖s(z0)− `(α)‖lq(Z).

2) The optimal linear algorithm of analytic continuation from the set S to the
point z0 is defined by

A0 ◦ I(f) =
N∑

k=1

αk f(zk)

for f ∈ U , cf. (6.1).
3) The extremal functions f0 ∈ U have the property that their values at the points

n ∈ Z are given by

f0(n) = λe−ı arg δn

( |δn|
‖δ‖lq(Z)

)q−1

,

where δn = sn(z0)− `n(α) and |λ| = R.

Proof. Consider the linear map T : W p
π → lp(Z) given by Tf = c(f). By Theorem

3.3, this is an algebraic isomorphism. Our choice of the norm in W p
π implies that this

isomorphism is actually an isometry. We are now in a position to apply Theorem 1.2,
which readily yields assertions 1) and 2). To show assertion 3) it suffices to combine
Theorem 1.2, 3) with familiar properties of spaces lp(Z), which we formulate in the
general case.
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Lemma 6.2. Let (X , µ) be a space with measure, 1 < p ≤ ∞ and 1/p+1/q = 1. If

g ∈ Lq(X , µ), then l(f) =
∫
X

f(x)g(x) dµ defines a continuous linear functional on

Lp(X , µ), such that |l(f)| ≤ ‖f‖Lp(X ,µ) ‖g‖Lq(X ,µ) for all f ∈ Lp(X , µ). Equality

holds if and only if f(x) = λeı arg g(x)
( |g(x)|
‖g‖Lq(X ,µ)

)q−1

for almost all x ∈ X , where

|λ| = ‖f‖Lp(X ,µ).

Proof. See for instance [KA77, pp. 185, 257]. �

Hence it follows that the norm of the functional l on Lp(X , µ) just amounts to
‖g‖Lq(X ,µ). Moreover, the subdifferential of the norm ‖ · ‖Lp(X ,µ)′ at l consists of
the only element

f(x) = eı arg g(x)
( |g(x)|
‖g‖Lq(X ,µ)

)q−1

.

This completes the proof of Theorem 6.1. �

7. Algebraic formulas

Theorem 0.1 still makes sense in purely algebraic context. Namely, let V be a K -
vector space and {L1, . . . , LN} a linearly independent system of linear functionals
on V . We consider the problem of recovering a linear functional L on a subset U
of V through L1, . . . , LN .

Set Z := kerL1 ∩ . . . ∩ ker LN . This is a vector subspace of codimension N in
V , and so complemented. We fix an algebraic complement C of Z in V , so that
V = C ⊕ Z. Note that this decomposition is actually topological if V is a Fréchet
space.

Lemma 7.1. Let {f1, . . . , fN} be a basis in C. The Gram matrix

G =

 L1(f1) . . . LN (f1)
. . .

L1(fN ) . . . LN (fN )


is invertible, i.e., the determinant of G is different from zero.

Proof. This is an easy exercise in linear algebra. �

The following formulas make the decomposition V = C ⊕ Z explicit. They are
known in the case of Hilbert spaces, cf. [Gan66, p. 228].

Lemma 7.2. Let {f1, . . . , fN} be a basis in C. Then each f ∈ V can be uniquely
written in the form

f =
−1

det G
det


0 L1(f) . . . LN (f)
f1

. . . G
fN

 + πZ(f), (7.1)

where πZ(f) ∈ Z.

Proof. Indeed, there are unique constants c1, . . . , cN ∈ K and an element πZ(f) ∈ Z,
such that f = c1f1 + . . . + cNfN + πZ(f). Applying the functionals L1, . . . , LN to
this equality, we get a linear system for the unknown coefficients c1, . . . , cN . More
precisely,

L1(f) = c1L1(f1) + . . . + cNL1(fN ),
. . .

LN (f) = c1LN (f1) + . . . + cNLN (fN ).
Solving this system by Cramer’s rule and using the expansion theorem for determi-
nants gives (7.1). �
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From (7.1) we easily deduce that

πZ(f) =
1

detG
det


f L1(f) . . . LN (f)
f1

. . . G
fN

 (7.2)

for every f ∈ V .
Denote by A the set of all algorithms A : KN → K recovering L on U through

L1, . . . , LN . The error E(A;L, U) of an algorithm A is the supremum of |L(f) −
A ◦ I(f)| over all f ∈ U . This definition does not assume any topology in the space
V . One needs a topology in V , when applying methods of functional analysis.

By the dual problem for the problem of recovering a fixed linear functional L on
U through linear functionals L1, . . . , LN is meant the problem of evaluating

sup
f∈U∩Z

|L(f)|.

Our basic assumption on the geometry of the set U is that U is circular. Recall
that U is called circular if λf ∈ U for all f ∈ U and all λ ∈ K with |λ| = 1. For
instance, the closed ball of radius R > 0 about the origin in a normed space V is a
circular set.

As mentioned in the introduction, the assertion 1) of the following theorem goes
back at least as far as [Osi76]. Since it of great importance, we give an explicit
version of this result.

Theorem 7.3. Suppose U is a circular set in V invariant under πZ , and G the
Gram matrix (Lj(fi)) i=1,...,N

j=1,...,N
introduced in Lemma 7.1. Then:

1) There is a linear algorithm A0 = `(α;L1, . . . , LN ) with the property that
Ω(L,U) = E(A0;L,U). Moreover,

Ω(L, U) = sup
f∈U∩Z

|L(f)|.

2) The optimal error of recovering the functional L through L1, . . . , LN on U is
given by

Ω(L,U) = sup
f∈U

∣∣∣ 1
detG

det


L(f) L1(f) . . . LN (f)
L(f1)
. . . G

L(fN )

 ∣∣∣.
3) The value L(f) at any element f ∈ U satisfies |L(f)− A0 ◦ I(f)| ≤ Ω(L,U),

where

A0 ◦ I(f) =
−1

detG
det


0 L1(f) . . . LN (f)

L(f1)
. . . G

L(fN )


is the optimal linear algorithm.

Proof. We first prove that

sup
f∈U∩Z

|L(f)| = inf
c∈K

sup
f∈U∩Z

|L(f)− c|. (7.3)

For this purpose, fix f ∈ U ∩Z with L(f) 6= 0, and c ∈ K different from zero. Since
L1, . . . , LN are linear, the set U ∩ Z is still circular. From this it follows that the
element

fc = −f exp ı(arg c− arg L(f))
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belongs to U ∩ Z. After elementary transformations we get

|L(f)− c| ≤ |L(f)|+ |c|
= |L(fc)− c|
≤ |L(fc)|+ |c|,

whence
sup

f∈U∩Z
|L(f)− c| = sup

f∈U∩Z
(|L(f)|+ |c|) .

This establishes (7.3).
If A : KN → K is an algorithm recovering L in U through L1, . . . , LN , then

|L(f)−A ◦ I(f)| = |L(f)−A(L1(f), . . . , LN (f))|
= |L(f)−A(0, . . . , 0)|

for all f ∈ U ∩ Z. Combining this with equality (7.3) yields

Ω(L, U) ≥ inf
A∈A

sup
f∈U∩Z

|L(f)−A(0, . . . , 0)|

= inf
c∈K

sup
f∈U∩Z

|L(f)− c|

= sup
f∈U∩Z

|L(f)|. (7.4)

The equality in the second line is due to the fact that among all algorithms A there
are those with A(0, . . . , 0) = c for any given c ∈ K.

Our next objective is to prove the inverse inequality. To do this, we denote by
A0 the set of all linear algorithms A = `(a;L1, . . . , LN ), where a ∈ KN . As usual,
we start with evaluating the residual functional. Pick any f ∈ V . Writing f in the
form

f = c1f1 + . . . + cNfN + πZ(f),

cf. (7.1), we obtain∣∣∣L(f)−
N∑

k=1

akLk(f)
∣∣∣ =

∣∣∣ N∑
j=1

cj

(
L(fj)−

N∑
k=1

akLk(fj)
)

+ L(πZ(f))
∣∣∣,

for Lk(πZ(f)) vanishes for each k = 1, . . . , N . Hence it follows that∣∣∣L(f)−
N∑

k=1

akLk(f)
∣∣∣ ≤ ∣∣∣ N∑

j=1

cj

(
L(fj)−

N∑
k=1

akLk(fj)
)∣∣∣ + |L(πZ(f))| (7.5)

for all f ∈ U .
We are interested in finding the optimal algorithm rather than the errors of

particular algorithms. Hence we choose a1, . . . , aN in such a way that the part of
f lying in C would not contribute to the residual function. Namely, we determine
α = (α1, . . . , αN ) ∈ KN from

L(f1)−
N∑

k=1

αkLk(f1) = 0,

. . .

L(fN )−
N∑

k=1

αkLk(fN ) = 0.

(7.6)

By Lemma 7.1, this system has a unique solution α ∈ K. To this element
there corresponds the linear algorithm A0 = `(α;L1, . . . , LN ). Therefore, (7.5)
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immediately implies

Ω(L,U) ≤ inf
A∈A0

sup
f∈U

|L(f)−A ◦ I(f)|

≤ E(A0;L,U)
≤ sup

f∈U
|L(πZ(f))|

= sup
f∈U∩Z

|L(f)|, (7.7)

since πZ(f) ∈ U ∩Z for all f ∈ U . The inverse inequality is proved in (7.4) whence
the assertion 1) follows.

By Cramer’s rule, (7.6) yields

A0 ◦ I(f) =
N∑

k=1

αkLk(f)

=
−1

detG
det


0 L1(f) . . . LN (f)

L(f1)
. . . G

L(fN )


for all f ∈ V . This is precisely the formula of assertion 3).

By (7.7),
Ω(L,U) = sup

f∈U
|L(πZ(f))|

which establishes the assertion 2) when combined with (7.2). Furthermore, if f ∈ U
then

|L(f)−A0 ◦ I(f)| = |L(πZ(f))|
≤ Ω(L,U),

completing the proof of 3). �

If V is a Hilbert space and the decomposition V = C⊕Z is orthogonal, then any
closed ball about the origin in V is obviously invariant under πZ . This is no longer
the case if V is Banach. However, given any fixed decomposition V = C ⊕ Z, it is
easy to show an equivalent norm on V , for which any closed ball about the origin
is πZ -invariant. This is simply c + z 7→ ‖c‖V + ‖z‖V , which is equivalent to the
genuine norm c+z 7→ ‖c+z‖V by the open map theorem. The invariance condition
is thus not particularly restrictive.
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