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1 Introduction.

In this paper we deal with compact supported Banach-valued functions F of a
single variable satisfying the general linear functional equation

PF :=
n+1∑

j=1

cj(x)F
(
aj(x)

)
= H(x)

for all points x in a bounded domain D ⊂ Rn, n ≥ 2. The problem of its stability
goes back to Ulam (see [U]) and since then was considered from various points of view
in innumerable papers mainly related to the operator P with constant coefficients cj

and aj being linear functions. To be more exact almost all these papers dealt with
the Cauchy operator

C : F → F (x + y)− F (x)− F (y), (x, y) ∈ R2;

the simplest form of the Jensen operator

J : F → F
(x + y

2

)
− 1

2

(
F (x) + F (y)

)
, (x, y) ∈ R2;

the quadratic operator

Q : F → F (x + y) + F (x− y)− 2F (x)− 2F (y), (x, y) ∈ R2,

and with slight modifications of them. The original Hyer’s idea (see [HIR]) of con-
structing the desired solution to the corresponding homogeneous equation PF = 0
continues to play a crucial role in almost all these works. Our approach to the sta-
bility problem is novel in two essential ways. The first is that, under quite general
conditions, the stability problem for P as formulated in [U] is overdetermined: as
will be shown, the smallness of H only on a one-dimensional submanifold Γ ⊂ D

(but not on the whole D) implies the nearness of F to a solution of the above
homogeneous problem.

The second is a functional analytic point of view. We consider the linear oper-
ator PΓ - the restriction of P to Γ - between appropriate function spaces and give
conditions of its surjectivity. The stability then follows from functional analytic
consideration.

The realization of this program in a general form for an arbitrary operator P
seems to be an unrealistic problem at present. That’s why in this publication we
restrict ourselves to a subclass of operators P that on the one hand is sufficiently
large (and have never been considered earlier), and on the other hand, makes it
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possible to demonstrate all advantages of the new approach. We also ignore here
the noncompact case mainly because the compact case from different reasons have
never been studied appropriately even for the triple of the above model operators.

All needed notions and notations are introduced in the next section. In the same
place we introduce and shortly discuss some new types of stability. The main results
of this work are formulated in Sec. 3, and we prove all of them in Sec. 4.

2 The main notations and notions.

In the course of the work we denote by D an arbitrary connected domain in
Rn consisting of points x. All considered operators L are supposed to be linear.
The domain, the kernel and the range of L are denoted by D(L), kerL and R(L),
respectively. We denote by IT the interval {t | 0 ≤ t ≤ T}, using the notation
I in the case of T = 1. Given a Banach space B with the norm | · |B, we denote
by C(IT , B) the space of all continuous functions F : IT → B with the norm
|F |〈0〉B = sup

t∈IT

|F (t)|B. The following spaces play a crucial role in the following. By

definition,
C〈1〉(IT , B) = {f | f(t) = a0 + tϕ(t)}

with a0 ∈ B and ϕ being continuous function: IT → B. With the norm

|f |〈1〉B = |a0|B + |ϕ|〈0〉B

the space C〈1〉(IT , B) becomes a Banach space. Also, if 0 < r < 1, then

C〈1+r〉(IT , B) = {f | f(t) = a0 + a1t + t1+rϕ(t)}

with the same ϕ as above. The space C〈1+r〉(IT , B) endowed by the norm

|f |〈1+r〉
B = |a0|B + |a1|B + |ϕ(t)|〈0〉B

is also a Banach space.
The space C〈1+r〉(D, B) is defined analogously: a function f : D → B is an

element of the above space if

f(x) = a0 + a1x1 + . . . + anxn + |x|1+rϕ(x).

Here all aj are elements of the space B and ϕ is a continuous function: D → B.

Remark. Alternatively (and intuitively more clear) the space C〈1+r〉(IT , B) can be
defined as {f | (f(t)−a0

t − a1)/tr = ϕ(t)} with some elements a0, a1 from B and a
continuous function ϕ from C(IT , B). Such a definition clarifies the nature of this
space: its elements are all B- continuous functions on IT differentiable at the point
t = 0 whose derivatives satisfy the Hölder condition of order r.

It can be directly verified that if all the functions cj(x) and aj(x) lie in some
space C〈1+r〉(D, IT ), then the operator P maps continuously this space into itself.

Let us fix some space B = C〈1+r〉(IT , B) and consider P as the operator: B → B.
The following definition is due to S.Ulam [U].
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Definition 1. The operator P is called B - stable if the relation

|PF |B < δ (1)

implies the relation
|F − f |B < ε (2)

for an arbitrary positive ε and positive δ = δ(ε) with some f ∈ ker P.

By misuse of language, this definition admits the following formulation: every
approximate solution to the equation PF = 0 is a near solution of the same equation.
As will be seen, condition (1) is extremely restrictive for the inequality (2) to be
fulfilled.

The following definitions relate with a weakening condition (1). Let Γ be a one-
dimensional submanifold (curve) in D, and let aΓ and PΓ denote the restrictions to
Γ of an arbitrary function a on D and the operator P, respectively.

Definition 2. Given an above Γ, the operator P is called strongly B- stable (along
Γ) if for an arbitrary ε > 0 there is a δ = δ(ε) such that the relation

|PΓF |B < δ, F ∈ B,

implies the relation
|F − f |B < ε

for an arbitrary ε > 0 and δ = δ(ε) > 0 with some f ∈ ker P.

It is clear that the condition of the stability is considerably more restrictive than
that of the strong stability. In turn, the latter stability is more restrictive then the
weak stability defined as follows.

Definition 3. An operator P is called weakly B - stable (along Γ) if it satisfies
Definition 2 with f ∈ ker PΓ.

The distinction between strong and weak stability is determined by the fact that
kerP ⊆ ker PΓ for any curve Γ.

3 Statement of results

We begin with a functional analytic proposition forming an operator basis in our
approach to all the above stability problems. Let L : E1 → E2 be a closed linear
operator, and K = ker L.

Proposition 1. If the range R(L) is closed, then there is a positive constant c such
that the a priori estimate

inf
ϕ∈K

|F − ϕ|E1 < c|LF |E2 (3)

holds for all elements F ⊂ D(L).
Moreover, there is an element Φ ∈ K for which

|F − Φ|E1 < c|LF |E2 .
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In the presence of estimate (3) establishing stability of any operator L is reduced
to two routine procedures in the framework of classical functional analysis (each,
possibly, requires a very serious work):

1) proving the closedness of the range R(L);
2) a description of the kernel K(L).

In this work we follow precisely this scheme.
As an overwhelming majority of results related to the Ulam stability grouped

around operators C, J, and Q, no classification of the general linear functional
operators P has been considered until now . The following class of such operators
P is studied in the present work.

Definition 4. Let

PF = F
(
a(x)

)−
N∑

j=1

F
(
aj(x)

)
, x ∈ D ⊂ Rn, (4)

with F ∈ C(IT , B) and a, aj ∈ C(D, IT ). We call P Cauchy type operator, if

a =
N∑

j=1

aj everywhere in D.

If for a subset Γ ⊂ D the condition

aΓ =
N∑

j=1

ajΓ (5)

holds, the operator P is called weak Cauchy type operator (along Γ). It is clear that
the operator C is the simplest model for both Cauchy type and weak Cauchy type
operators.

Before formulating the main result of this work, Theorem 2, we describe those curves
Γ ⊂ D playing an essential role in questions of stability.

Definition 5. Given an operator P of form (4), a curve Γ ⊂ D is called P -
admissible if the function aΓ maps Γ one-to-one onto IT , and the inverse function
lies in C〈1+r〉(IT ).

Theorem 2. Let D ⊂ Rn be a connected bounded domain and Γ ⊂ D a nonsingular
P - admissible C〈1+r〉 - curve with 0 < r < 1. Assume that all the functions a and
aj lie in the space C〈1+r〉(D, IT ) and satisfy the condition

∑

k 6=j

∂

∂Γ′
aj(x0)

∂

∂Γ′
ak(x0) 6= 0 if a(x0) = 0. (6)

If P is a Cauchy type operator (along Γ), then it is strongly stable (along Γ), and if
P is a weak Cauchy type operator (along Γ), then it is weakly stable (along Γ).

To prove this theorem we have to prove (following to the above scheme) first the
closedness of the range of the operator PΓ in C〈1+r〉(IT , B). This is a direct corollary
of the following theorem.
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Theorem 3. Let P, D, Γ and r are the same as in Theorem 2. Then the operator

PΓ : C〈1+r〉(IT , B) → C〈1+r〉(IT , B)

is surjective.

The second step when proving Theorem 2 consists in describing the kernel of the
above operator PΓ. It is done in the following theorem.

Theorem 4. Let P, D, Γ are the same as in Theorem 2 but r = 0. Then the
kernels kerP and kerPΓ consist of only additive functions F (z) = zF (1), z ∈ I.

This result generalizes considerably the results of the work [P3] devoted to the
overdeterminedness of several classical functional equations. The term ”overdeter-
minedness” should be understood in the sense that to reconstruct a solution F of
the homogeneous equation PF = 0 it suffices that the equality PF (x) = 0 is fulfilled
not in the whole domain D ⊂ Rn but only at points x of some submanifold D′ ⊂ D
of positive codimension.

In [P3] the overdeterminedness of equation (C), (J), (Q), and generalized Cauchy
equation

F (x1 + . . . + xn)− F (x2 + . . . + xn)− . . .− F (x1 + . . . + xn−1)+

+ F (x3 + . . . + xn) + . . . + (−1)n+1
n∑

j=1

F (xj) = 0

has been established.

Remark. It is trivial that ker P ⊆ ker PΓ for an arbitrary set Γ. However, the
relation ker P = ker PΓ is far from being true.

Example. Let P be a weak Cauchy operator, so that aΓ =
∑

ajΓ but a 6≡ a1 +
. . . + an. Then, by Theorem 2, kerPΓ = {λz}λ∈R, but no function F = λz, λ 6= 0
solves the F (a)−∑

F (aj) = 0.

The concluding theorem is a trivial corollary of the main Theorem 2, and, there-
fore, it does not require any proof. We formulate this corollary as an independent
theorem with the only goal: to make possible for the reader to compare the infor-
mation supplied by Theorem 2 with the initial Ulam’s question [U]. This question
having completely analytic nature and being answered by Hyers [HIR], in approxi-
mately 30 years suddenly has risen up to a level of a significant problem. Hundreds
of papers concerning various modifications (not only analytic but also algebraic) of
the Ulam question were published until now and majority of these papers deal with
the operator C and continue to make use the Hyers formula (see [HIR]).

Theorem 5. Let P be a weakly Cauchy operator along Γ being an admissible C〈1+r〉
- curve in D. Given a function H(x) ∈ C〈1+r〉(D,B), assume a function F ∈
C〈1+r〉(IT , B) to be a solution of the equation PF = H. If the function H satisfies
the inequality

|HΓ|〈1+r〉
B < ε,

then, for an additive function f : IT → B, the estimate

|F − f |〈1+r〉
B < cε,

holds with a constant c > 0 not depending on F or ε.
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Remark. The value of the constant c can be easily estimated from above with the
help of the explicit formula (14).

Remark. It is worth noting that, by this theorem, neither the function f nor the
constant c depend on behavior of the right-hand side H outside Γ. This emphasizes
again that the Ulam’s restriction on the smallness of H everywhere is not required
when establishing the stability of P.

4 Proofs of the main results.

We begin with the proof of the fact which has probably the nature of folklore.

4.1 Proof of Proposition 1

Along with the operator L : E1 → E2 consider the operator

L̂ : E1/K → E2

associated an arbitrary element {F} of the factor space generated by F ∈ E1 with
the element LF from E2. It is clear that this operator is injective and closed. Thus
by the Banach closed graph theorem, the inverse operator L̂−1 is bounded. This
leads to the a priori estimate

|{F}|E1/K < c|LF |E2 , F ∈ E1,

where c is a constant. To complete the proof of relation (3) it suffices to note that

|{F}|E1/K = inf
ϕ∈K

|F − ϕ|B1 .

To prove the concluding assertion of Proposition 1 denote

m(ϕ) = |F − ϕ|E1 ,

and let
µ = inf

ϕ∈K
m(ϕ)

If µ = m(Φ) for some Φ ∈ K, then the proof is completed. Assume that µ < m(ϕ)
for all elements ϕ ∈ K. Let

µ = c|LF |E2 − ε

for some positive ε. Then, by definition of µ, there is an element Φ ∈ K such that

µ < m(Φ) < µ + ε = c|LF |E2

This completes the proof of Proposition 1.

4.2 Proof of Theorem 3.

Without loss of generality we will consider the following situation: the origin
0 ∈ Rn lies in D and is one of the boundary points of the curve Γ, so that

a(0) = 0 and aj(0) = 0, j = 1, . . . , n. (7)
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The curve Γ admits a parametric representation of the form

Γ = {x ∈ D | xj = αj(t), j = 1, . . . , n, t ∈ I} = {x | x = α(t)},

where all the functions αj(t) belong to the space C〈1+r〉(I) and αj(0) = 0, j =
1, . . . , n. In this case the relation PΓF = HΓ takes the following form:

F
(
a
(
δ(t)

))−
N∑

j=1

F
(
aj

(
δ(t)

))
= H

(
δ(t)

)
, t ∈ I, (8)

where, by hypothesis (5),

a
(
δ(t)

)−
N∑

j=1

aj

(
δ(t)

)
= 0, t ∈ I. (9)

By conditions of the theorem, the function a
(
δ(t)

)
is invertible. Let β : IT → I be

the inverse function to the a ◦ δ, so that

(a ◦ δ)
(
β(z)

)
= z, z ∈ IT .

Then relation (8) becomes

F (z)−
N∑

j=1

F
(
ρj(z)

)
= h(z), z ∈ IT , (10)

where
ρj(z) = (aj ◦ δ ◦ β)(z), h(z) = H(δ ◦ β)(z).

By (9), we find that
N∑

j=1

ρj(z) = z (11)

and, due to (6), ∑

j 6=k

ρ′j(0)ρ′k(0) 6= 0. (12)

We are now going to solve equation (10) for an arbitrary function h(z) ∈ C〈1+r〉(IT ),
and, thus, to complete the proof of Theorem 3. To this end, note first that differen-
tiating relation (10) at the point z = 0 and combining the result with the relation

N∑

j=1

ρ′j(z) = 1,

following (11), we arrive at the necessary condition

h′(0) = 0.

On the other hand, by (10) and (7),

h(0) = (1−N)F (0).
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Therefore, the problem is reduced to the solvability of the equation

F̃ (z)−
N∑

j=1

F̃
(
ρj(z)

)
= h̃(z), z ∈ IT , (13)

where F (z) = F (z)− F (0) and the right-hand side h̃ satisfies the conditions

h̃(0) = 0, h̃′(0) = 0.

But this makes it possible to apply Theorem 1 from [P2], taking into account that
condition (5) in the cited paper is nothing but the above relation (12). This leads
to the relation

F (z) =
1

1−N
h(0) +

∞∑

|J |=0

h̃
(
ρJ(z)

)
, (14)

where Jn = (j1, . . . , jn) is a multi-index of the length |Jn| = n, jk = 1, . . . , N for an
arbitrary k = 1, 2, . . . , n, and ρJn = ρjn ◦ . . . ◦ ρj1 . The series in the right-hand side
converges in the topology of C〈1+r〉(IT ), and, therefore, belongs to C〈1+r〉(IT ).

This completes the proof of Theorem 3.

4.3 Proof of Theorem 4

Let us return to equation (10) with h = 0. Dividing both parts of the equation
obtained by a

(
δ(t)

)
we arrive at the equivalent functional equation

Φ
(
a
(
δ(t)

))−
N∑

j=1

ρj(t)Φ
(
aj

(
δ(t)

))
= 0, t ∈ I, (15)

where

Φ(z) =
F (z)

z
, ρj(t) =

aj

(
δ(t)

)

a
(
δ(t)

) , t ∈ I \ {0}

Φ(0) = F ′(0), ρj(0) =
a′j(0)
a′(0)

, j = 1, . . . , N,

and all functions aj ◦ δ, ρj ,Φ are continuous on the interval I. Show that any con-
tinuous solution Φ of equation (15) is a constant. Indeed, let M = maxI Φ and
let t0 = inf{ t | Φ

(
a
(
δ(t)

))
= M}. Assume that t0 > 0. Then, by continuity,

Φ
(
a
(
δ(t0)

))
= M, and, therefore, the relation

Φ
(
a1

(
δ(t1)

))
= Φ

(
a2

(
δ(t1)

))
= M

is valid for an arbitrary point t1 from the nonempty subset {t | a
(
δ(t)

)
= t0}, as

ρ1(t) + ρ2(t) = 1 for all values t ∈ I. This, however, contradicts to the definition of
the point t0, as a1

(
δ(t1)

)
< t0 (by Definition 5). Thus, we have proved that t0 = 0,

and hence, Φ(0) = M. Repeating literally these arguments with respect to the point
of minimum of the function Φ, we arrive at the relation Φ(0) = minI Φ. This proves
that Φ(z) is a constant, and therefore F is additive.

Now everything is ready for proving the main Theorem 2.
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4.4 Proof of Theorem 2.

By Theorem 3 and by Proposition 1 (applied to the operator PΓ in the space
B = C〈1+r〉(IT , B)) , the a priori estimate

|F − Φ|B < c|PΓF |B, F ∈ B, (16)

is valid with a function Φ for which PΓΦ = 0. By Theorem 4, this function is
additive, and hence, it satisfies the condition PΦ = 0, if P is a Cauchy type operator.
Therefore, in this case the operator P is strongly stable (along Γ). If P is a weak
Cauchy type operator, then the only additive function satisfying the equation PΦ =
0 is Φ = 0 (which means, by the way, that P is an invertible operator). However,
there is no possibility to establish, whether the function Φ in (16) coincides with
zero. Thus, in the case of a weakly Cauchy type operator P, Theorem 2 guarantees
only the additivity of the function Φ. This completes the proof of Theorem 2.
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