On Existence of Solutions for Some Hyperbolic-Parabolic Type Chemotaxis Systems*

Hua CHEN and Shaohua WU
School of Mathematics and Statistics
Wuhan University, China

Abstract

In this paper, we discuss the local and global existence of week solutions for some hyperbolic-parabolic systems modelling chemotaxis.

Key words: Hyperbolic-parabolic system, KS model, Chemotaxis.
2000 MR Subject Classification 35A07, 35K50, 35M10, 35L10, 47D03

1 Introduction

The earliest model for chemosensitive movement has been developed by Keller and Segel [$1,2,3]$, which we call it as KS model. Assume that in absence of any external signal the spread of a population $u(t, x)$ is described by the diffusion equation

$$
\begin{equation*}
u_{t}=d \Delta u, \tag{1}
\end{equation*}
$$

where $d>0$ is the diffusion constant. We define the net flux as $j=-d \nabla u$. If there is some external signal s, we just assume that it results in a chemotactic velocity β. Then the flux is

$$
\begin{equation*}
j=-d \nabla u+\beta u . \tag{2}
\end{equation*}
$$

To be more specific, we assume that the chemotactic velocity β has the direction of the gradient ∇s and that the sensitivity χ to the gradient depends on the signal concentration $s(t, x)$, then $\beta=\chi(s) \nabla s$.

We use this modified flux in (2) to obtain the parabolic chemotaxis equation

$$
\begin{equation*}
u_{t}=\nabla(d \nabla u-\chi(s) \nabla s \cdot u) . \tag{3}
\end{equation*}
$$

If $\chi(s)$ is positive, which means that the chemotactic velocity is in direction of s, we call it positive bias, whereas $\chi<0$ is called negative bias.

To our general knowledge, the external signal is produced by the individuals and decays, which is described by a nonlinear function $g(s, u)$. We assume that the spatial spread of the external signal is driven by diffusion. Then the full system for u and s reads

[^0]\[

$$
\begin{gather*}
u_{t}=\nabla(d \nabla u-\chi(s) \nabla s \cdot u) \tag{4}\\
\tau s_{t}=d \Delta s+g(s, u) \tag{5}
\end{gather*}
$$
\]

the time constant $0 \leq \tau \leq 1$ indicates that the spatial spread of the organisms u and the signal s are on different time scales. The case $\tau=0$ corresponds to a quasi-steady state assumption for the signal distribution. When we assume that the spatial spread of external signal is driven by wave motion, then the equation (5) would be replaced by

$$
\begin{equation*}
s_{t t}=d \Delta s+g(s, u) \tag{6}
\end{equation*}
$$

The full system for u and s becomes

$$
\begin{gather*}
u_{t}=\nabla(d \nabla u-\chi(s) \nabla s \cdot u) \tag{7}\\
s_{t t}=d \Delta s+g(s, u) \tag{8}
\end{gather*}
$$

which is called as hyperbolic-parabolic chemotaxis system.

2 Main Results

Let us consider the following problem:

$$
\begin{align*}
& u_{t}=\nabla(\nabla u-\chi u \nabla v) \quad \text { in } \quad(0, T) \times \Omega \\
& v_{t t}=\Delta v+g(u, v) \quad \text { in } \quad(0, T) \times \Omega \tag{9}\\
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0, \quad \text { on } \quad(0, T) \times \partial \Omega
\end{align*}
$$

with initial data

$$
u(0, \cdot)=u_{0}, \quad v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi \quad \text { in } \quad \Omega
$$

where $\Omega \subset \mathbf{R}^{n}$, a bounded open domain with smooth boundary $\partial \Omega, \chi$ is a nonnegative constant.

Choose a constant σ, which satisfies

$$
\begin{equation*}
1<\sigma<2 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
n<2 \sigma<n+2 \tag{11}
\end{equation*}
$$

It is easy to check that (10) and (11) can be simultaneously satisfied in the case of $1 \leq n \leq 3$.

Our main results are
Theorem 4.1. Under the conditions (10) and (11), if $g(u, v)=-\gamma v+f(u)$ and $f \in$ $C^{2}(\mathbf{R})$, then for each initial data $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}, \varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=\right.$ 0 on $\partial \Omega\}, \psi \in H^{1}(\Omega)$, the problem (9) has a unique local solution $(u, v) \in X_{t_{0}} \times Y_{t_{0}}$ for some $t_{0}>0$.

Theorem 5.1. Let $n=1$ and $\sigma=\frac{5}{4}$, if $g(u, v)=-\gamma v+f(u)$ and $f \in C_{0}^{2}(\mathbf{R})$, then for each initial data $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $u_{0} \geq 0, \varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=\right.$ 0 on $\partial \Omega\}$ and $\psi \in H^{1}(\Omega)$, the problem (9) has a unique global solution $(u, v) \in X_{\infty} \times Y_{\infty}$.

Where we define

$$
\begin{gathered}
X_{t_{0}}=C\left(\left[0, t_{0}\right], H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \\
Y_{t_{0}}=C\left(\left[0, t_{0}\right], H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \cap C^{1}\left(\left[0, t_{0}\right], H^{1}(\Omega)\right)
\end{gathered}
$$

3 Some Basic Lemmas

For $g(u, v)=-\gamma v+f(u)$, and γ is a constant, $f(x) \in C^{2}(\mathbf{R})$. We divide the system (9) into two pars:

$$
\left\{\begin{array}{lr}
u_{t}=\nabla(\nabla u-\chi u \nabla v) \quad \text { in } & (0, T) \times \Omega \tag{12}\\
\frac{\partial u}{\partial n}=0 \text { on }(0, T) \times \partial \Omega & \\
u(0, \cdot)=u_{0} & \text { in } \Omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
v_{t t}=\Delta v-\gamma v+f(u) \quad \text { in } \quad(0, T) \times \Omega \tag{13}\\
\frac{\partial v}{\partial n}=0 \quad \text { on } \quad(0, T) \times \partial \Omega \\
v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi \quad \text { in } \Omega .
\end{array}\right.
$$

We have
Lemma 3.1. For any $T>0$, and

$$
\varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}, \psi \in H^{1}(\Omega), f(u(t, .)) \in C\left([0, T] ; H^{1}(\Omega)\right)
$$

then (13) has a unique solution v, satisfying

$$
v \in C\left([0, T] ; H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}\right), v_{t} \in C\left([0, T] ; H^{1}(\Omega)\right), v_{t t} \in C\left([0, T] ; L^{2}(\Omega)\right)
$$

and

$$
\begin{align*}
\|v(t, \cdot)\|_{H^{2}(\Omega)}+\left\|v_{t}(t, \cdot)\right\|_{H^{1}(\Omega)} & \leq e^{c T}\left(\|\varphi\|_{H^{2}(\Omega)}+\|\psi\|_{H^{1}(\Omega)}\right. \tag{14}\\
& \left.+\int_{0}^{T}\|f(u(\tau, \cdot))\|_{H^{1}(\Omega)} d \tau\right), \quad \forall t \in[0, T],
\end{align*}
$$

where $c>0$ is a constant which is independent of T.
Proof: Set $v_{t}=w$, we have following system

$$
\left\{\begin{array}{l}
v_{t}=w \tag{15}\\
w_{t}=\triangle v-\gamma v+f(u)
\end{array}\right.
$$

Thus we can write it in a abstract form:

$$
\left\{\begin{array}{l}
U_{t}=L U+F(U) \quad \text { in } \quad X=H^{1}(\Omega) \times L^{2}(\Omega) \tag{16}\\
U_{0}=U(0, x)=(\varphi, \psi)
\end{array}\right.
$$

where $L(v, w)=(w, \Delta v-v)$ for $(v, w) \in D(L), D(L)=H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\} \times H^{1}(\Omega)$ and $F(v, w)=(0,(1-\gamma) v+f(u))$.

Define the inner product in X as

$$
<(v, w),\left(v^{\prime}, w^{\prime}\right)>_{X}=\left(v, v^{\prime}\right)_{H^{1}}+\left(w, w^{\prime}\right)_{L^{2}}
$$

where $(\cdot, \cdot)_{H^{1}}$ and $(\cdot, \cdot)_{L^{2}}$ represent the inner products in H^{1} and L^{2} respectively, then X is a Hilbert space.

For $U=(v, w) \in D(L)$, we have

$$
\begin{align*}
& <L U, U>_{X}=<(w, \Delta v-v),(v, w)>_{X} \\
& =(w, v)_{H^{1}}+(\Delta v-v, w)_{L^{2}} \\
& =(w, v)_{H^{1}}+(\Delta v, w)_{L^{2}}-(v, w)_{L^{2}} \tag{17}\\
& =(w, v)_{H^{1}}-(\nabla v, \nabla w)_{L^{2}}-(v, w)_{L^{2}} \\
& =0
\end{align*}
$$

Otherwise, for $U=(v, w) \in D(L), U^{\prime}=\left(v^{\prime}, w^{\prime}\right) \in X$,

$$
\begin{align*}
& <L(v, w),\left(v^{\prime}, w^{\prime}\right)>_{X} \\
& =<(w, \Delta v-v),\left(v^{\prime}, w^{\prime}\right)>_{X} \tag{18}\\
& =\left(w, v^{\prime}\right)_{H^{1}}+\left(\triangle v-v, w^{\prime}\right)_{L^{2}} \\
& =\left(w, v^{\prime}\right)_{H^{1}}+\left(\triangle v, w^{\prime}\right)_{L^{2}}-\left(v, w^{\prime}\right)_{L^{2}}
\end{align*}
$$

If $<L(v, w),\left(v^{\prime}, w^{\prime}\right)>_{X}$ is bounded for each $(v, w) \in D(L)$, then $\left(w, v^{\prime}\right)_{H^{1}},\left(\triangle v, w^{\prime}\right)_{L^{2}}$ and $\left(v, w^{\prime}\right)_{L^{2}}$ are bounded for each $(v, w) \in D(L)$, which means that

$$
\begin{equation*}
v^{\prime} \in H^{2} \cap\left\{\frac{\partial v}{\partial n}=0 \quad \text { on } \quad \partial \Omega\right\}, \quad w^{\prime} \in H^{1} \tag{19}
\end{equation*}
$$

that implies $D\left(L^{*}\right) \subset D(L)$. On the other hand, from (17) and the lemma in [6, p9], we know that

$$
L^{*}=-L
$$

Thus we know that L is a generator of a unitary operator group. It is easy to check that for $f(u(t, \cdot)) \in C\left([0, T], H^{1}(\Omega)\right)$,

$$
F: X \rightarrow X
$$

and

$$
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|_{X} \leq c\left\|U_{1}-U_{2}\right\|_{X} \quad U_{i} \in X, \quad i=1,2
$$

where $\|(v, w)\|_{X}^{2}=\|v\|_{H^{1}}^{2}+\|w\|_{L^{2}}^{2}$.
Now we can declare that (16) has a unique solution

$$
\begin{equation*}
U \in C^{1}([0, T], X) \cap C([0, T], D(L)) \text { for each } U_{0} \in D(L) \tag{20}
\end{equation*}
$$

which means that for each $(\varphi, \psi) \in D(L)$, (13) has a unique solution $v \in C\left([0, T], H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.\right.$ on $\left.\left.\partial \Omega\right\}\right), v_{t} \in C\left([0, T], H^{1}(\Omega)\right)$ and $v_{t t} \in C\left([0, T], L^{2}(\Omega)\right)$.

Next, we estimate the norm of v. By using the semigroup notation $T(t)=e^{t L}$, we have

$$
\begin{equation*}
U=T(t) U_{0}+\int_{0}^{t} T(t-s) F(U) d s \tag{21}
\end{equation*}
$$

Since $L=-L^{*}$, and in terms of (17), we have that

$$
<L U, U>_{X}=0 \quad \text { for each } U \in D((L),
$$

and

$$
<L^{*} U, U>_{X}=<-L U, U>_{X}=0 \text { for each } U \in D(L) .
$$

Hence L generates a strongly continuous contractive semigroup on Hilbert space X (cf. $[4,5]$), in other words, we have

$$
\begin{equation*}
\left\|e^{t L}\right\|=\|T(t)\| \leq 1 \tag{22}
\end{equation*}
$$

So we know that

$$
\begin{align*}
& \|U(t)\|_{H^{2} \times H^{1}} \leq\left\|T(t) U_{0}\right\|_{H^{2} \times H^{1}}+\int_{0}^{t}\|T(t-s) F(U(s))\|_{H^{2} \times H^{1}} d s \\
& \leq\left\|U_{0}\right\|_{H^{2} \times H^{1}}+\int_{0}^{t}\|F(U)\|_{H^{2} \times H^{1}} d s \\
& =\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t}\|(1-\gamma) v+f(u)\|_{H^{1}} d s \tag{23}\\
& \leq\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c \int_{0}^{t}\|v\|_{H^{1}} d s+\int_{0}^{t}\|f(u)\|_{H^{1}} d s \\
& \leq\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c \int_{0}^{t}\|U\|_{H^{2} \times H^{1}} d s+\int_{0}^{T}\|f(u)\|_{H^{1}} d s, \quad 0 \leq t \leq T .
\end{align*}
$$

From Gronwall's inequality, we know that

$$
\begin{array}{ll}
\|U\|_{H^{2} \times H^{1}} \leq e^{c t}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{T}\|f(u)\|_{H^{1}} d s\right) & 0 \leq t \leq T, \tag{2}\\
\leq e^{c T}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{T}\|f(u)\|_{H^{1}} d s\right),
\end{array}
$$

which implies the estimate (14) and the uniqueness follows.
If Ω is a bounded open domain with smooth boundary, in which we can consider the Neumann boundary condition. As we known that the $e^{t \Delta}$ defines a holomorphic semigroup on the Hilbert space $L^{2}(\Omega)$, so we have that

$$
\begin{equation*}
f \in L^{2}(\Omega) \Rightarrow\left\|e^{t \triangle} f\right\|_{H^{2}(\Omega)} \leq \frac{c}{t}\|f\|_{L^{2}(\Omega)} \tag{25}
\end{equation*}
$$

where $D(\Delta)=\left\{u \in H^{2}(\Omega), \frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$.
Applying interpolation to (25), it yields

$$
\begin{equation*}
\left\|e^{t \triangle} f\right\|_{H^{\sigma}(\Omega)} \leq c t^{-\frac{\sigma}{2}}\|f\|_{L^{2}(\Omega)} \quad \text { for } 0 \leq \sigma \leq 2,0<t \leq 1 . \tag{26}
\end{equation*}
$$

Take $Y=H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $Z=L^{2}(\Omega), \Phi(u)=-\chi \nabla v \nabla u-\chi \Delta v \cdot u$. Then For $v \in Y_{t_{0}}$, and from the lemma in [4, p273], we can declare that

Lemma 3.2. For each $u_{0} \in Y$ and $v \in Y_{t_{0}}, \sigma$ and n satisfy the conditions (10) and (11), then the problem (12) has a unique solution

$$
u \in X_{t_{0}}=C\left(\left[0, t_{0}\right], H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right) .
$$

Proof: If we can show that $\Phi: Y \rightarrow Z$ is a locally Lipschitz map, then the lemma 3.2 is true. In fact, for arbitrary $u_{1}, u_{2} \in Y$ and $v \in Y_{t_{0}}$, the difference

$$
\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)=-\chi \nabla v \nabla\left(u_{1}-u_{2}\right)-\chi \Delta v \cdot\left(u_{1}-u_{2}\right) .
$$

That is

$$
\begin{aligned}
& \left\|\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right\|_{Z}=\left\|\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right\|_{L^{2}} \\
& \leq\left\|\chi \nabla v \nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}}+\left\|\chi \triangle v \cdot\left(u_{1}-u_{2}\right)\right\|_{L^{2}} .
\end{aligned}
$$

By Sobolev imbedding theorems, we have

$$
\begin{gathered}
H^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega), \text { for } n=1 \\
H^{1}(\Omega) \hookrightarrow L^{q}(\Omega), \quad 1<q<\infty, \text { for } n=2 \\
H^{1}(\Omega) \hookrightarrow L^{\frac{2 n}{n-2}}(\Omega), \text { for } n=3
\end{gathered}
$$

Thus in terms of (10) and (11), we know that $H^{1}(\Omega) \hookrightarrow L^{\frac{n}{\sigma-1}}(\Omega)$ and $H^{\sigma-1}(\Omega) \hookrightarrow$ $L^{\frac{2 n}{n-2(\sigma-1)}}(\Omega)$ for $n=2,3$.

Firstly we estimate $\left\|\chi \nabla v \nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}}$. If $n=1$, then

$$
\begin{aligned}
& \left\|\chi \nabla v \nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}} \\
\leq & \chi\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}}\|\nabla v\|_{L^{\infty}} \\
\leq & c\left\|u_{1}-u_{2}\right\|_{H^{1}}\|\nabla v\|_{H^{1}} \\
\leq & c\left\|u_{1}-u_{2}\right\|_{H^{\sigma}}\|v\|_{H^{2}} .
\end{aligned}
$$

If $n=2,3$, then

$$
\begin{aligned}
& \quad\left\|\chi \nabla v \nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}} \\
& \leq \chi\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{L^{\frac{2 n}{n-2(\sigma-1)}}\|\nabla v\|_{L^{\frac{n}{\sigma-1}}}}^{\leq c\left\|u_{1}-u_{2}\right\|_{H^{\sigma}}\|v\|_{H^{2}}} .
\end{aligned}
$$

Hence for $n=1,2,3$, we have that

$$
\left\|\chi \nabla v \nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}} \leq c\left\|u_{1}-u_{2}\right\|_{H^{\sigma}}\|v\|_{H^{2}} .
$$

Similarly, we have

$$
\begin{aligned}
& \left\|\chi \triangle v \cdot\left(u_{1}-u_{2}\right)\right\|_{L^{2}} \\
\leq & c\|v\|_{H^{2}}\left\|u_{1}-u_{2}\right\|_{L^{\infty}} \\
\leq & c\left\|u_{1}-u_{2}\right\|_{H^{\sigma}}\|v\|_{H^{2}}
\end{aligned}
$$

Thus we have proved that

$$
\left\|\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right\|_{Z} \leq c\left\|u_{1}-u_{2}\right\|_{Y}\|v\|_{H^{2}}
$$

as required.
Lemma 3.3. Under the conditions (10) and (11), if $u \in X_{t_{0}}$ is a solution of (12), the there exists a constant c which is independent of t_{0}, such that

$$
\begin{equation*}
\|u\|_{X_{t_{0}}} \leq c\left\|u_{0}\right\|_{\sigma, 2}+c t_{0}^{1-\frac{\sigma}{2}}\|v\|_{Y_{t_{0}}} \cdot\|u\|_{X_{t_{0}}} \tag{27}
\end{equation*}
$$

where $\|\cdot\|_{k, p}$ is the norm of Sobolev space $W^{k, p}$.
Proof: Let $T(t)=e^{t \Delta}$, then

$$
u(t)=T(t) u_{0}-\chi \int_{0}^{t} T(t-s) \nabla v \nabla u d s-\chi \int_{0}^{t} T(t-s) \Delta v \cdot u d s
$$

By (26), we have $T(t): L^{2}(\Omega) \rightarrow H^{\sigma}(\Omega)$ with norm $c_{\sigma} t^{-\frac{\sigma}{2}}$. Thus

$$
\left\|\int_{0}^{t} T(t-s) \nabla v \nabla u d s\right\|_{\sigma, 2} \leq c_{\sigma} t^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t}\|\nabla v(s, \cdot) \nabla u(s, \cdot)\|_{2}
$$

where we use $\|\cdot\|_{p}$ as the norm of L^{p}.
By Sobolev imbedding theorem, $H^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for $n=1$, we have

$$
\begin{aligned}
\|\nabla v \nabla u\|_{2} & \leq\|\nabla v\|_{\infty} \cdot\|\nabla u\|_{2} \\
& \leq c\|v\|_{2,2} \cdot\|u\|_{1,2} \\
& \leq c\|v\|_{2,2} \cdot\|u\|_{\sigma, 2}
\end{aligned}
$$

For $n=2,3$, we have $H^{1}(\Omega) \hookrightarrow L^{\frac{n}{\sigma-1}}(\Omega), H^{\sigma-1}(\Omega) \hookrightarrow L^{\frac{2 n}{n-2(\sigma-1)}}(\Omega)$, thus $f^{2} \in$ $L^{\frac{n}{2(\sigma-1)}}, g^{2} \in L^{\frac{n}{n-2(\sigma-1)}}$ if $f \in H^{1}$ and $g \in H^{\sigma-1}$. By using Cauchy inequality, we get

$$
\left\|f^{2} g^{2}\right\|_{1} \leq\left\|f^{2}\right\|_{\frac{n}{2(\sigma-1)}} \cdot\left\|g^{2}\right\|_{\frac{n}{n-2(\sigma-1)}}
$$

which implies $\|f g\|_{2} \leq\|f\|_{\frac{n}{\sigma-1}} \cdot\|g\|_{\frac{2 n}{n-2(\sigma-1)}}$. Thus

$$
\begin{aligned}
& \|\nabla v \nabla u\|_{2} \leq\|\nabla v\|_{\frac{n}{\sigma-1}} \cdot\|\nabla u\|_{\frac{2 n}{n-2(\sigma-1)}} \\
& \leq c\|\nabla v\|_{1,2} \cdot\|\nabla u\|_{\frac{2 n}{n-2(\sigma-1)}} \\
& \leq c\|v\|_{2,2} \cdot\|\nabla u\|_{\sigma-1,2} \leq c\|v\|_{2,2} \cdot\|u\|_{\sigma, 2} .
\end{aligned}
$$

Now we obtain that, for $0 \leq t \leq t_{0}$,

$$
\begin{aligned}
& \left\|\int_{0}^{t} \tau(t-s) \nabla v \nabla u d s\right\|_{\sigma, 2} \leq c_{\sigma} t^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t}\|\nabla v \nabla u\|_{2} \\
& \leq C t^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t}\|v\|_{2,2} \cdot\|u\|_{\sigma, 2} \leq C t_{0}^{1-\frac{\sigma}{2}}\|u\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}}
\end{aligned} .
$$

Meanwhile

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s) \Delta v \cdot u\right\|_{\sigma, 2} \\
& \leq c_{\sigma} t^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t}\|\Delta v \cdot u\|_{2} \\
& \leq c_{\sigma} t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t_{0}}\|u\|_{L^{\infty}} \cdot\|\Delta v\|_{L^{2}} \\
& \leq C t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq s \leq t_{0}}\|u\|_{\sigma, 2} \cdot \sup _{0 \leq s \leq t_{0}}\|v\|_{2,2} \\
& \leq C t_{0}^{1-\frac{\sigma}{2}}\|u\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}} .
\end{aligned}
$$

Finally we can deduce that

$$
\begin{aligned}
& \|u(t)\|_{\sigma, 2} \leq\left\|T(t) u_{0}\right\|_{\sigma, 2}+\chi\left\|\int_{0}^{t} T(t-s) \nabla v \nabla u d s\right\|_{\sigma, 2} \\
& \quad+\chi\left\|\int_{0}^{t} T(t-s) \Delta v \cdot u d s\right\|_{\sigma, 2} \\
& \leq C\left\|u_{0}\right\|_{\sigma, 2}+\chi c c_{\sigma} t_{0}^{1-\frac{\sigma}{2}}\|u\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0}
\end{aligned}
$$

which implies

$$
\|u\|_{X_{t_{0}}} \leq C\left\|u_{0}\right\|_{\sigma, 2}+C t_{0}^{1-\frac{\sigma}{2}}\|u\|_{X_{t_{0}}}\|v\|_{Y_{t_{0}}}
$$

Lemma 3.3 is proved.

4 Local Existence of Solutions

In this section, we establish the local solution of the system (9). Our main result is as follows:
Theorem 4.1. If σ and n satisfy the conditions (10) and (11), $g(u, v)=-\gamma v+f(u)$ and $f \in C^{2}(\mathbf{R})$, then for each initial data $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}, \varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=\right.$ 0 on $\partial \Omega\}, \psi \in H^{1}(\Omega)$, the problem (9) has a unique local solution $(u, v) \in X_{t_{0}} \times Y_{t_{0}}$ for some $t_{0}>0$.

Proof: Consider $w \in X_{t_{0}}, w(0, x)=u_{0}(x)$ and let $v=v(w)$ denote the corresponding solution of the equation:

$$
\begin{align*}
& v_{t t}=\Delta v-\gamma v+f(w) \text { in }\left(0, t_{0}\right) \times \Omega \\
& \frac{\partial v}{\partial n}=0 \tag{28}\\
& v(0)=\varphi \text { in } \Omega \\
& v_{t}(0)=\psi \text { in } \Omega
\end{align*}
$$

By Lemma 3.1, we have $v \in Y_{t_{0}}$, and

$$
\begin{align*}
\|v(t)\|_{H^{2}(\Omega)} & \leq e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}(\Omega)}+\|\psi\|_{H^{1}(\Omega)}\right. \tag{29}\\
& \left.+\int_{0}^{t_{0}}\|f(w(\tau, \cdot))\|_{H^{1}(\Omega)} d \tau\right), \quad \forall t \in\left[0, t_{0}\right]
\end{align*}
$$

Secondly, for the solution v of (28), we define $u=u(v(w))$ to be the corresponding solution of

$$
\begin{align*}
& u_{t}=\nabla(\nabla u-\chi u \nabla v) \quad \text { in } \quad\left(0, t_{0}\right) \times \Omega, \\
& \frac{\partial u}{\partial n}=0 \quad \text { on } \quad\left(0, t_{0}\right) \times \partial \Omega, \tag{30}\\
& u(0, x)=u_{0}(x)=w(0, x) \quad \text { in } \Omega
\end{align*}
$$

If we define $G w=u(v(w))$, then Lemma 3.2 shows that

$$
G: \quad X_{t_{0}} \rightarrow X_{t_{0}}
$$

Take $M=2 c\left\|u_{0}\right\|_{\sigma, 2}$ and a ball

$$
B_{M}=\left\{w \in X_{t_{0}} \mid w(0, x)=u_{0}(x),\|w(t, \cdot)\|_{\sigma, 2} \leq M, 0 \leq t \leq t_{0}\right\}
$$

where the constant $c \geq 1$ is given by (27). Then we combine the estimates (27) and (29) to obtain

$$
\begin{aligned}
& \|G w\|_{X_{t_{0}}} \leq c\left\|u_{0}\right\|_{\sigma, 2}+c t_{0}^{1-\frac{\sigma}{2}}\|v\|_{Y_{t_{0}}} \cdot\|G w\|_{X_{t_{0}}} \\
& \leq c\left\|u_{0}\right\|_{\sigma, 2}+c t_{0}^{1-\frac{\sigma}{2}} e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right. \\
& \left.\quad+\int_{0}^{t_{0}}\|f(w(\tau, \cdot))\|_{H^{1}} d \tau\right) \cdot\|G w\|_{X_{t_{0}}} .
\end{aligned}
$$

Since $\|w\|_{1,2} \leq\|w\|_{\sigma, 2} \leq M$, and $f \in C^{2}(\mathbf{R})$, we can deduce that

$$
\|f(w(\tau, \cdot))\|_{1,2} \leq\|f\|_{C^{2}[-M, M]} \cdot M+\|f(0)\|_{L^{2}},
$$

which shows that $\|G w\|_{X_{t_{0}}} \leq 2 c\left\|u_{0}\right\|_{\sigma, 2}$ for $t_{0}>0$ small enough.

Thus we have proved that, for $t_{0}>0$ small enough, G maps B_{M} into B_{M}. Next, we can prove that, for t_{0} small enough, G is a contract mapping. In fact, let $w_{1}, w_{2} \in X_{u}$, and v_{1}, v_{2} denote the corresponding solutions of (28). Then the difference $G w_{1}-G w_{2}$ satisfies:

$$
\begin{aligned}
& G g_{1}-G g_{2}=u_{1}-u_{2} \\
& =-\chi \int_{0}^{t} T(t-s) u_{1} \Delta v_{1} d s-\chi \int_{0}^{t} T(t-s) \nabla u_{1} \nabla v_{1} d s \\
& +\chi \int_{0}^{t} T(t-s) u_{2} \nabla v_{2} d s+\chi \int_{0}^{t} T(t-s) \nabla u_{2} \nabla v_{2} d s \\
& =-\chi \int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) d s-\chi \int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) d s .
\end{aligned}
$$

Next, we have

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq\left\|\int_{0}^{t} T(t-s) u_{1}\left(\Delta v_{1}-\Delta v_{2}\right) d s\right\|_{\sigma, 2}+\left\|\int_{0}^{t} T(t-s)\left(u_{1}-u_{2}\right) \Delta v_{2} d s\right\|_{\sigma, 2}
\end{aligned}
$$

Since

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s) u_{1}\left(\Delta v_{1}-\Delta v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|u_{1}\left(\Delta v_{1}-\Delta v_{2}\right)\right\|_{2} \tag{31}\\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|u_{1}\right\|_{L^{\infty}} \cdot\left\|\Delta\left(v_{1}-v_{2}\right)\right\|_{2} \\
& \leq C M t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|v_{1}-v_{2}\right\|_{2,2}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s)\left(u_{1}-u_{2}\right) \Delta v_{2} d s\right\|_{\sigma, 2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\left(u_{1}-u_{2}\right) \Delta v_{2}\right\|_{2} \tag{32}\\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|v_{2}\right\|_{2,2} \cdot\left\|u_{1}-u_{2}\right\|_{L^{\infty}} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}}\left\|v_{2}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}} .
\end{align*}
$$

Thus we have that

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}} \tag{33}\\
& +C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{2}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}, \quad 0 \leq t \leq t_{0}
\end{align*}
$$

Similarly, we have

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) d s\right\|_{\sigma, 2} \\
& +\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{2} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) d s\right\|_{\sigma, 2}
\end{aligned}
$$

Here

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) d s\right\|_{\sigma, 2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\nabla v_{1} \cdot \nabla\left(u_{1}-u_{2}\right)\right\|_{2}, \quad 0 \leq t \leq t_{0}
\end{aligned}
$$

As we have done in Lemma 3.3, we can deduce that

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) d s\right\|_{\sigma, 2} \tag{34}\\
& \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}, \quad 0 \leq t \leq t_{0}
\end{align*}
$$

And we have similarly that

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{2} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\nabla u_{2} \cdot \nabla\left(v_{1}-v_{2}\right)\right\|_{2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}}\left\|u_{0}\right\|_{X_{t_{0}}} \cdot\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}} \tag{35}\\
& \leq c M t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

Then

$$
\begin{align*}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) d s\right\|_{\sigma, 2} \\
& \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}+C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0} \tag{36}
\end{align*}
$$

Combining the estimates (33) and (36), we have

$$
\begin{aligned}
& \left\|G w_{1}-G w_{2}\right\|_{\sigma, 2}=\left\|u_{1}-u_{2}\right\|_{\sigma, 2} \\
& \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}+C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{2}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}} \\
& +C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}+C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}},
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \left\|G w_{1}-G w_{2}\right\|_{X_{t_{0}}} \\
& \leq 2 C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}+C t_{0}^{1-\frac{\sigma}{2}}\left(\left\|v_{2}\right\|_{Y_{t_{0}}}+\left\|v_{1}\right\|_{Y_{t_{0}}}\right) \cdot\left\|G w_{1}-G w_{2}\right\|_{X_{t_{0}}} .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\left\|v_{1}-v_{2}\right\|_{2,2} & \leq e^{c_{1} t_{0}} \int_{0}^{t_{0}}\left\|f\left(w_{1}\right)-f\left(w_{2}\right)\right\|_{H^{1}} d \tau \\
& \leq e^{c_{1} t_{0}}\|f\|_{C^{2}[-M, M]}^{t_{0}}\left\|w_{1}-w_{2}\right\|_{H^{\sigma}} d \tau
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|v_{1}\right\|_{2,2} & \leq e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\left\|f\left(w_{1}(\tau)\right)\right\|_{H^{1}} d \tau\right) \\
& \leq e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c \int_{0}^{t_{0}}\left(\left\|w_{1}(\tau)\right\|_{H^{\sigma}}+\|f(0)\|_{H^{1}}\right) d \tau\right) \\
& \leq e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c t_{0}\left(M+\|f(0)\|_{L^{2}}\right)\right) \\
& \left\|v_{2}\right\|_{2,2} \leq e^{c_{1} t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c t_{0}\left(M+\|f(0)\|_{L^{2}}\right)\right) .
\end{aligned}
$$

Thus for $t_{0}>0$ small enough, G is contract.
From process above, we have proved the existence of solution for the problem (9). Since G is contract, then the solution is unique.

5 Global existence of Solutions for $n=1$

In this section, we establish the global existence and uniqueness of the solution $(u, v) \in$ $X_{\infty} \times Y_{\infty}$ of (9) in the case of $n=1$ and $g(u, v)=-\gamma v+f(u)$. Here we suppose that

$$
\begin{equation*}
f(x) \in C_{0}^{2}(\mathbf{R}), \quad \sigma=\frac{5}{4} . \tag{37}
\end{equation*}
$$

Observe that, for $n=1, \sigma=\frac{5}{4}$ can simultaneously satisfy the condition (10) and (11). So from the result of Theorem 4.1, the problem (9) has a unique local solution $(u, v) \in X_{t_{0}} \times Y_{t_{0}}$ for some $t_{0}>0$ small enough.

Actually we can obtain following more strong result:
Theorem 5.1. If $n=1, g(u, v)=-\gamma v+f(u)$ and σ and f satisfy the condition (37), then for each initial data $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $u_{0} \geq 0, \varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=\right.$ 0 on $\partial \Omega\}$ and $\psi \in H^{1}(\Omega)$, the problem (9) has a unique global solution $(u, v) \in X_{\infty} \times Y_{\infty}$.

If $u_{0} \geq 0$, then from the first equation of (9), we can deduce that the local solution (u, v) satisfies

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{1}}=\left\|u_{0}\right\|_{L^{1}} \tag{38}
\end{equation*}
$$

Next, we have
Lemma 5.2. Let $s \leq 2$, the local solution $(u, v) \in X_{t_{0}} \times Y_{t_{0}}$ of (9), for $g(u, v)=$ $-\gamma v+f(u)$, satisfies

$$
\begin{equation*}
\|v(t, \cdot)\|_{H^{s}} \leq e^{c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{s-1}} d \tau\right), \quad 0 \leq t \leq t_{0} \tag{39}
\end{equation*}
$$

where $c_{0}=\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}$ and c is independent of t_{0}.
Proof: For $U=(v, w)$ and $F(U)=(0,(1-\gamma) v+f(u))$, in terms of (21), we know that

$$
U=T(t) U_{0}+\int_{0}^{t} T(t-\tau) F(U(\tau)) d \tau
$$

where $w=v_{t}$ and (u, v) is the solution of (9).
By using (22), we know that

$$
\begin{align*}
& \|U(t)\|_{H^{1} \times L^{2}} \leq\left\|T(t) U_{0}\right\|_{H^{1} \times L^{2}}+\int_{0}^{t}\|T(t-\tau) F(U(\tau))\|_{H^{1} \times L^{2}} d \tau \\
& \leq\left\|U_{0}\right\|_{H^{1} \times L^{2}}+\int_{0}^{t}\|F(U(\tau))\|_{H^{1} \times L^{2}} d \tau \\
& =\|\varphi\|_{H^{1}}+\|\psi\|_{L^{2}}+\int_{0}^{t}\|(1-\gamma) v+f(u)\|_{L^{2}} d \tau \tag{40}\\
& \leq\|\varphi\|_{H^{1}}+\|\psi\|_{L^{2}}+c \int_{0}^{t}\|v\|_{L^{2}} d \tau+\int_{0}^{t}\|f(u)\|_{L^{2}} d \tau \\
& \leq\|\varphi\|_{H^{1}}+\|\psi\|_{L^{2}}+c \int_{0}^{t}\|U(\tau)\|_{H^{1} \times L^{2}} d \tau+\int_{0}^{t_{0}}\|f(u)\|_{L^{2}} d \tau, \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

So the Gronwall's inequality indicates

$$
\begin{align*}
& \|U(t)\|_{H^{1} \times L^{2}} \leq e^{c t}\left(\|\varphi\|_{H^{1}}+\|\psi\|_{L^{2}}+\int_{0}^{t_{0}}\|f(u)\|_{L^{2}} d \tau\right) \tag{41}\\
& \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\|f(u)\|_{L^{2}} d \tau\right), \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

Since $H^{s} \times H^{s-1} \subset H^{1} \times L^{2}$ for $s>1$, we denote $\left.T(t)\right|_{H^{s} \times H^{s-1}}$ as the restriction of $T(t)$ on $H^{s} \times H^{s-1}$, the norm of $\left.T(t)\right|_{H^{s} \times H^{s-1}}$ satisfies also the estimate (22). Thus, by similar process of (40) and (41), we can deduce that

$$
\begin{equation*}
\|U(t)\|_{H^{s} \times H^{s-1}} \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\|f(u)\|_{H^{s-1}} d \tau\right), \quad 0 \leq t \leq t_{0} . \tag{42}
\end{equation*}
$$

If $s<1$, then $H^{1} \times L^{2} \subset H^{s} \times H^{s-1}$, we use Hahn-Banach theorem to get that the operator $T(t)$ can be continuously extended on $H^{s} \times H^{s-1}$ and the norm of $T(t)$ is invariable. Thus for $s<1$, we have also that

$$
\begin{equation*}
\|U(t)\|_{H^{s} \times H^{s-1}} \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\|f(u)\|_{H^{s-1}} d \tau\right), \quad 0 \leq t \leq t_{0} \tag{43}
\end{equation*}
$$

Lemma 5.2 can be deduced directly by (41), (42) and (43).

Proof of theorem 5.1:

For the unique local solution $(u, v) \in X_{t_{0}} \times Y_{t_{0}}$ of (9), if we take $\mathrm{s}=1 / 2$ in (39), then

$$
\begin{equation*}
\|v(t, \cdot)\|_{H^{\frac{1}{2}}}^{2} \leq c e^{t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{-\frac{1}{2}}}^{2} d \tau\right), \quad 0 \leq t \leq t_{0} \tag{44}
\end{equation*}
$$

Since $n=1$, then from Sobolev imbedding theorems, we can deduce that $W^{0,1}(\Omega) \hookrightarrow$ $H^{-\frac{1}{2}}(\Omega)$. Hence we have

$$
\begin{align*}
& \|v(t, \cdot)\|_{H^{\frac{1}{2}}}^{2} \leq c e^{t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{-\frac{1}{2}}}^{2} d \tau\right) \\
& \leq c e^{t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{L^{1}}^{2} d \tau\right) \tag{45}\\
& \leq c e^{t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\left(M_{1}\|u\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)^{2} d \tau\right) \\
& =c e^{t_{0}}\left(c_{0}+t_{0}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)^{2}\right), \quad 0 \leq t \leq t_{0},
\end{align*}
$$

where $M_{1}=\|f\|_{C^{2}}$.
On the other hand, for each $s \leq \sigma$ and $0 \leq \sigma_{0}<2$, we have that

$$
\begin{align*}
& \|u(t, \cdot)\|_{H^{s}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}}\|\nabla(u \nabla v)\|_{H^{s-\sigma_{0}}} \tag{46}\\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}}\|u \nabla v\|_{H^{s-\sigma_{0}+1}}, \quad 0 \leq t \leq t_{0}
\end{align*}
$$

Especially for $s=-\frac{1}{2}+\frac{1}{4}$ and $\sigma_{0}=2-\frac{1}{8}$, we have

$$
\begin{equation*}
\|u(t, \cdot)\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{6}}\|u \nabla v\|_{H^{-1-\frac{1}{8}}}, \quad 0 \leq t \leq t_{0} \tag{47}
\end{equation*}
$$

By Sobolev imbedding theorems and (45),

$$
\begin{align*}
& \|u \nabla v\|_{H^{-1-\frac{1}{8}}} \leq c\|u\|_{H^{-1-\frac{1}{8}}} \cdot\|\nabla v\|_{W^{-1-\frac{1}{8}, \infty}} \\
& \leq c\|u\|_{H^{-1}} \cdot\|\nabla v\|_{H^{-\frac{1}{2}}} \tag{48}\\
& \leq c\|u\|_{L^{1}} \cdot\|v\|_{H^{\frac{1}{2}}} \\
& \leq c\left\|u_{0}\right\|_{L^{1}} \cdot e^{\frac{1}{2} t_{0}}\left(c_{0}^{\frac{1}{2}}+t_{0}^{\frac{1}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right), \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

Thus

$$
\begin{align*}
& \|u(t, \cdot)\|_{H^{-\frac{1}{4}}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\|u \nabla v\|_{H^{-1-\frac{1}{8}}} \tag{49}\\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\left\|u_{0}\right\|_{L^{1}} \cdot e^{\frac{1}{2} t_{0}}\left(c_{0}^{\frac{1}{2}}+t_{0}^{\frac{2}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right), \quad 0 \leq t \leq t_{0}
\end{align*}
$$

Take $s=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ in (39), then (39) and (49) give

$$
\begin{align*}
& \|v(t, \cdot)\|_{H^{\frac{3}{4}}}^{2} \leq c e^{t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{\frac{3}{4}-1}}^{2} d \tau\right) \\
& \leq c e^{t_{0}}\left(c_{0}+t_{0}\left(M_{1} \sup _{0 \leq \tau \leq t_{0}}\|u(\tau, \cdot)\|_{H^{-\frac{1}{4}}}+\|f(0)\|_{H^{-\frac{1}{4}}}\right)^{2}\right) \\
& \leq c e^{t_{0}}\left(c_{0}+t_{0}\left(M _ { 1 } \left(c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\left\|u_{0}\right\|_{L^{1}} \cdot e^{\frac{1}{2} t_{0}}\left(c_{0}^{\frac{1}{2}}\right.\right.\right.\right. \tag{50}\\
& \left.\left.\left.\left.+t_{0}^{\frac{1}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right)+\|f(0)\|_{H^{-\frac{1}{4}}}\right)\right)^{2}\right), \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

Take $s=-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=0$ and $\sigma_{0}=2-\frac{1}{8}$ in (46) again, we obtain that

$$
\begin{align*}
& \|u(t, \cdot)\|_{L^{2}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}}\|\nabla(u \nabla v)\|_{H^{-\sigma_{0}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{10}}\|u \nabla v\|_{H^{-\sigma_{0}+1}} \tag{51}\\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\|u \nabla v\|_{H^{-1+\frac{1}{8}}}, \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

Since we know that

$$
\begin{align*}
& \|u \nabla v\|_{H^{-1+\frac{1}{8}}} \leq c\|u\|_{H^{-1+\frac{1}{8}}} \cdot\|\nabla v\|_{W^{-1+\frac{1}{8}, \infty}} \\
& \leq c\|u\|_{H^{-\frac{1}{4}}} \cdot\|\nabla v\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \leq \| \leq t_{0} . \tag{52}\\
& \leq c\|u\|_{H^{-\frac{1}{4}}} \cdot\|v\|_{H^{\frac{3}{4}}}, \quad 0 \leq t \leq{ }^{2}
\end{align*}
$$

We can get that

$$
\begin{align*}
& \|u(t, \cdot)\|_{L^{2}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}}\|\nabla(u \nabla v)\|_{H^{-\sigma_{0}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c c_{0}^{\frac{1}{16}}\|u \nabla v\|_{H^{-1+\frac{1}{8}}} \tag{53}\\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \cdot\|u\|_{H^{-\frac{1}{4}}} \cdot\|v\|_{H^{\frac{3}{4}}}, \quad 0 \leq t \leq t_{0} .
\end{align*}
$$

From (49) and (50), we have obtained that $\|u(t, \cdot)\|_{L^{2}}$ grows by a bounded manner in time.

Again we take $s=\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$ in (39), then (39) and (53) imply that $\|v(t, \cdot)\|_{H^{1}}$ grows also by a bounded manner in time.

Taking $s=-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}$ and $\sigma_{0}=2-\frac{1}{8}$ in (46) once more, since $\|v(t, \cdot)\|_{H^{1}}$ grows by a bounded manner in time, similar to which we have done in (51), (52) and (53), we can deduce that $\|u(t, \cdot)\|_{H^{\frac{1}{4}}}$ grows by a bounded manner in time.

Let us repeat processes above four times, we can prove that $\|u(t, \cdot)\|_{H^{\frac{5}{4}}}$ and $\|v(t, \cdot)\|_{H^{2}}$ grow by a bounded manner in time, as required.

References

[1] E. Keller, Mathematical aspects of bacterial chemotaxis, Antibiotics and Chemotherapy, 19, 79-93, (1974).
[2] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415, (1970).
[3] E.F. Keller and L.A. Segel, Travelling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30, 235-248, (1971).
[4] M.E. Taylor, Partial Differential Equations III, Springer, New York, (1996).
[5] B. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer, New York, (1985).
[6] Alain Haraux, Nonlinear Evolution Equations Global Behavior of Solutions, Springerverlag

[^0]: *Research supported by the NSFC

