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Abstract

We construct a special asymptotic solution for the forced KdV
equation. In the frame of the shallow water model this kind of the
external driving force is related to the atmospheric disturbance. The
perturbation slowly passes through a resonance and it leads to the
solution exchange. The detailed asymptotic description of the process
is presented.
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Introduction

Originally the KdV equation was derived as the fundamental equation gov-
erning the propagation of waves in the shallow water [1]. The same equation
appeared in the theory of nonlinear ion acoustic waves in cold plasmas [2],
[3]. Later it became clear that the KdV equation is a basic model for the
description of internal waves in stratified fluids, propagating in waveguides
which exist naturally in the ocean, or can be created in a laboratory [4],[5],[6].
The reduction of the KdV equation was justified ( see [7]).

In all applications mentioned above the KdV equation arises as an asymp-
totic limit. Taking into account additional physical factors it is easy to obtain
some kinds of small perturbations for the KdV equation

ut + αux + 6uux + uxxx = G. (1)

The explicit asymptotic derivations for the forced KdV equation have been
carried out for the water waves in a channel [8] - [11], internal waves in a
shallow fluid [12] - [15], inertial waves in a narrow tube [16] etc.

In this article we study such kind derived forced KdV (fKdV) equation

Ut + 6UUx + Uxxx = ε2f(εx) cos(
S(ε2x, ε2t)

ε2
), (2)

the right-hand side of (2) is the representation of the external force. This
external force corresponds to the atmospheric disturbance in the frame of the
shallow water model [17]. We suppose that the external force is small and
has order ε2, where ε is a small parameter. The function f(z) is smooth and
rapidly vanishes as |z| → ∞. The phase function of the perturbation S(x, t)
and all its derivatives are bounded.

Our goal is to investigate the influence of the perturbation on a small
forced solution. This special solution corresponds to the forced oscillations
and has order ε2. A distinct feature of the considered problem is slowly
varied frequency of the perturbation. There is a curve when the perturbation
becomes resonant. It leads to the exchange of solution behaviour and change
of the order of our special asymptotic solution. This change of the solution
is typical and it is related to the slow passage through the resonance, see
[18],[19],[20]. Here we present the detailed asymptotic description of the
process.

The paper has a following structure. The second section contains the con-
struction of the asymptotic solution that corresponds to forced oscillations.
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The third section is devoted to the internal resonant reconstruction of the
solution. And we construct the postresonant solution in the forth section.
All mentioned above asymptotics are matched [21].

1 Forced Oscillations

1.1 Formal constructions

In this section we construct an asymptotic solution related to forced oscil-
lations. The solution has order ε2 and oscillates with the frequency of the
perturbation.

It is more convenient for us to use a complex representation of the solution
to (2). The solution has the WKB-form [22]

U(x, t, ε) =
∞∑

n=2

εn
n

U (x, t, ε) + complex conjugate, (3)

where
n

U (x, t, ε) =
∑

ψ∈Ωn

n
uψ (x2, t2, x1) exp{iψ(x2, t2)/ε

2}. (4)

The variables xm = εmx, tm = εmt for m = 1, 2, are slow. The set Ωn of
phase functions depends on the number of the correction term. For example,
Ω2 = {±S}, Ω3 = {±S}, Ω4 = {±S,±2S} and the general formula for the
phase set is

Ωn = {±S,±2S, . . . ,±
[n

2

]
S}.

The validity of this formula can be obtained by direct calculations and taking
into account the nonlinearity of (2).

Substitute expansion (3) into (2) and gather the terms of the same order
with respect to small parameter ε and exponents. It leads to equations for

amplitudes
n
uψ, ψ ∈ Ωn. All these equations are algebraic.

The terms of order ε2 give the equation for the leading-order term

2
uS=

−f

[∂t2S − (∂x2S)3]
. (5)

The terms of order ε3 give equation for
3
uS

3
uS=

−3(∂x2S)2∂x1

2
uS

[∂t2S − (∂x2S)3]
. (6)
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Relations of order ε4 give two equations for the amplitudes. On this step
the solution contains the original phase S related to the forced oscillations
and the phase 2S generated by nonlinearity. Amplitudes are determined as
follows

4
uS =

(
∂t2

2
uS +3i∂x2S∂2

x1

2
uS −3(∂x2S)2∂x2

2
uS

− 3(∂x2S)2∂x1

3
uS −2∂2

x2
S∂x2S

2
uS

)
× [∂t2S − (∂x2S)3]−1. (7)

4
u2S=

−6∂x2S
2
u

2

S

[∂t2S − 4(∂x2S)3]
. (8)

The general formula for the n-th correction term
n
uψ, ψ ∈ Ωn has the form

n
uψ = −

[
− ∂t2

n−2
u −3i∂x2S∂2

x1

n−2
u +3(∂x2S)2∂x2

n−2
u +3(∂x2)

2∂x1

n−1
u

+ 2∂2
x2

S∂x2S
n−2
u +∂3

x1

n−3
u +∂3

x1x1x2

n−4
u +∂3

x1x2x2

n−5
u +∂3

x2x2x2

n−6
u

− 3i∂2
x2

S∂x1

n−3
u −3i∂2

x2
S∂x2

n−4
u −6i∂x2S∂2

x1x2

n−3
u −3i∂x2S∂2

x2

n−4
u

− i∂3
x2

S
n−6
u +6

∑

k1+k2=n−1,

ψ1+ψ2=ψ

∂x1

k1
uψ1

k2
uψ2 +6

∑

k1+k2=n−2,

ψ1+ψ2=ψ

∂x2

k1
uψ1

k2
uψ2

+ 6i
∑

k1+k2=n,

ψ1+ψ2=ψ

∂x2ψ1
k1
uψ1

k2
uψ2

]
× [

∂t2ψ − (∂x2ψ)3
]−1

. (9)

It is easy to see that the power of the expression [∂t2ψ − (∂x2ψ)3] in the
denominator of (9) increases along with the number n. Representation (3)
of the solution for (2) becomes invalid when [∂t2ψ − (∂x2ψ)3] equals zero.

We consider the resonance with the external force. The equation

l[S] ≡ ∂t2S − (∂x2S)3 = 0

determines a curve l on the plane of independent variables (x2, t2). The curve
of such a type is usually called resonant. We also suppose the expression
[∂t2ψ − (∂x2ψ)3] for ψ 6= S does not vanish on it.

1.2 The domain of validity for the forced oscillations
solution (3)

In this subsection we describe the asymptotic behaviour of the coefficients
of (3) as [∂t2S − (∂x2S)3] → 0 and determine the domain of validity for this
asymptotic solution.
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One can see that the solution (3) loses the asymptotic property in a
neighborhood of the curve l = 0. The order of singularity of the coefficients
for (3) as [∂t2S−(∂x2S)3] → 0 grows along with the number n of the correction
term.

The terms with the index S have the maximal order of singularity as
l → 0−.

Lemma 1.1. The terms
n
uS have the asymptotic behaviour

n
uS=

∞∑

k=−(n−1)

n
u k

Sl−k, as l → 0− . (10)

Proof. The validity of this Lemma can be obtained by induction in the num-
ber n of the correction term. The validity of this formula for small n follows
from formulas (5), (6), (7), (8).

The asymptotics of
n
uS as l → 0− can be observed from relation (9). We

suppose that the order of singularity for
n−1
u S is l−(n−2) and then analyze the

terms on right-hand side of (9). The increase of the order of singularities is
caused by differentiation with respect to x2 and t2. The accordance between
the order of differentiation with respect to x2, t2 and the number of correction
terms implies the Lemma.

The order of singularity as l → 0− for the amplitudes
n
uψ, ψ 6= S is smaller

than that for
n
uS. This order can be calculated as in Lemma 1.1.

Asymptotic solution (3) is valid when

ε max
(x2,t2)

| n+1

U | = o

(
max
(x2,t2)

| n

U |
)

, ε → 0.

Lemma 1.1 yields
−l À ε.

2 Inside the resonance

In this section we construct a formal asymptotic solution of equation (2) in
a neighborhood of the resonance curve l = 0. We show the bifurcation of the
solution under the resonant forcing.
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2.1 Asymptotic solution. Derivation of equations

In the previous section we saw that no solution of the form (3) is available
when |l| ∼ ε. It leads to the change of the scale of independent variables.
Here we use the scaled variable λ = l/ε.

We construct a solution of the form

U(x, t, ε) =
∞∑

n=1

εn
n

W (x1, x2, t1, t2, ε), (11)

where
n

W=
∑

ψ∈Ψn

n
wψ (x1, x2, t1, t2) exp{iψ(x2, t2)/ε

2}.

The set Ψn depends on the number n as follows Ψn = {±S, . . . ,±nS}.
Substitute (11) into the original equation and gather the terms of the

same order with respect to ε and with the same exponents.
Terms of order ε2 give us four equations.

[
∂t2S − 4(∂x2S)3

] 2
w2S= −3∂x2S(

1
wS)2,

∂t1

1
wS −3(∂x2S)2∂x1

1
wS +iλ

1
wS= f. (12)

Two of them are equations for the complex conjugate functions.
It is easy to obtain the equations for higher-order correction terms of the

asymptotic solution. The equations for amplitudes
n
wS are differential.

∂t1

n
wS −3(∂x2S)2∂x1

n
wS +λ

n
wS=

n

fS . (13)

Here
n

fS = −∂t2

n−1
w S −6

∑

k1+k2=n+1,

ψ1+ψ2=S

k1
wψ1

[
∂x1

k2−1
w ψ2 +∂x2

k2−2
w ψ2 +i∂x2ψ2

k2
wψ2

]

− ∂3
x1

n−2
w S −3∂3

x1x1x2

n−3
w S −3∂3

x1x2x2

n−4
w S −6i∂x2S∂2

x1x2

n−2
w S

− 3i∂2
x2

S∂x1

n−2
w S −3i∂x2S∂2

x1

n−2
w S +3(∂x2S)2∂x1

n
wS −∂3

x2

n−5
w S

− 3i∂2
x2

S∂x2

n−3
w S −3i∂x2S∂2

x2

n−3
w S +3(∂x2S)2∂x2

n−1
w S −i∂3

x2
S

n−3
w S

+ 3∂x2S∂2
x2

S
n−1
w S . (14)

Functions
n
wψ, ψ 6= S are determined from algebraic equations

i
[
∂t2ψ − (∂x2ψ)3

] n
wψ=

n

fψ

where
n

fψ has the same polynomial structure as that shown in (14).
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2.2 Equations for coefficients of (11)

In this subsection we obtain solutions to the equations for coefficients of
asymptotics.

First, we consider equation (13) for the coefficients of (11) that corre-
sponds to the phase function S of the perturbation. This equation can be
solved by method of characteristics. The characteristics for (13) are deter-
mined by

dt1
dσ

= 1,
dx1

dσ
= −3(∂x2S)2. (15)

and initial conditions

t1|σ=0 = t01, x1|σ=0 = x0
1. (16)

Here we use the notation ξ and σ for characteristic variables. We choose the
point (x0

1, t
0
1) such that ∂x2l|(x0

1,t01) 6= 0 as an origin. The variable σ changes
along the characteristics. We suppose that σ = 0 on the curve λ = 0. The
variable ξ measures the distance along the curve λ = 0 and the value ξ = 0
corresponds to the point (x0

1, t
0
1).

Lemma 2.1. The Cauchy problem for characteristics has a solution when
|σ| < c1ε

−1, c1 = const > 0.

Proof. The Cauchy problem is equivalent to the following system

t1 = t01 + σ, x1 = x0
1 − 3

∫ σ

0

(∂x2S(εx1, εt1))
2 dζ. (17)

After substitution t̃2 = (t1 − t01)ε, x̃2 = (x1 − x0
1)ε we obtain

t̃2 = εσ, x̃2 = −3

∫ εσ

0

(
∂x2S(x̃2 + εx0

1, εζ + εt01)
)2

dζ

The integrand is a smooth bounded function of x2, t2. There is a constant
c1 > 0 such that the integral operator is contraction when ε|σ| < c1.

Lemma 2.2. In the domain |σ| ¿ ε−1 the asymptotics of solutions for
Cauchy problem (15), (16), as ε → 0, have the form

x1(σ, ξ, ε)− x0
1(ξ) = −3σ (∂x2S)2 + 3

N∑
1

εnσn+1gn(εx1, εt1) + O
(
εN+1σN+2

)
,

(18)
t1(σ, ξ, ε)− t01(ξ) = σ, (19)

where

gn = − dn

dσn
(∂x2S)2 |σ=0
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Proof. This lemma can be obtained by integration by parts in (17).

The derivative along (15) has the form

d

dσ
= ∂t1 − 3(∂x2S)2∂x1

In order to obtain the asymptotics of the solution (11) across the resonance
layer we should connect the transversal variable λ and variable σ along the
characteristics.

Lemma 2.3. Let σ ¿ ε−1, then

λ = ϕ(ξ)σ + O(εσ2), ϕ(ξ) =
dλ

dσ
|σ=0 σ →∞.

Proof. For the variable λ we obtain the representation

λ =
∞∑

j=1

λj(x1, t1, ε)σ
jεj−1,

where

λj(x1, t1, ε) =
1

j!

dj

dσj
λ(x1, t1, ε)|σ=0

It yields

λ =
dλ

dσ
|σ=0σ + O(εσ2 d2λ

dσ2
)

Let

|d
2λ

dσ2
| ≥ const, ξ ∈ R

The function dλ/dσ is not equal to zero

dλ

dσ
= ∂t1λ− 3(∂x2S)2∂x1λ 6= 0

It yields

λ = ϕ(ξ)σ + O(εσ2), ϕ(ξ) =
dλ

dσ
|σ=0

as desired.

Along these characteristics the differential equation (13) for functions
n
wS

becomes ordinary differential equation

d
n
wS

dσ
+ iλ

n
wS=

n

fS . (20)
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A solution of this equation with asymptotics (10) has a form

n
wS = exp{−i

∫ σ

0

λ(x1(ζ), t1(ζ), ε)dζ}

×
∫ σ

−∞

n

fS (x1(ζ), t1(ζ), ε) exp{i
∫ ζ

0

λ(x1(µ), t1(µ), ε)dµ}dζ. (21)

The asymptotics of this solution when λ → −∞ can be obtained by integra-
tion by parts

n
wS=

∞∑
j=0

(
∂t1 − 3(∂x2S)2∂x1

iλ

)j



n

fS

iλ


 . (22)

It is easy to see that this internal representation is matched with the part
(10) of the external solution that corresponds to forced oscillations.

2.3 Going out of the resonance. Asymptotics as λ →
+∞

In this subsection we describe the going out of the resonance and obtain the
asymptotic behaviour of internal resonant expansion (11) as λ → +∞.

Here we give two lemmas about the asymptotic behaviour of the coef-
ficients of (11) and the phase function

∫ σ

0
λ(x1, t1, ε)dξ as λ → +∞. The

first lemma allows us to determine the domain of validity for (11), and the
second one shows the oscillations of the leading-order term after the passage
through the resonant layer.

Lemma 2.4. The asymptotic behaviour of
n
wS when 1 ¿ λ ¿ ε−1 has the

form
1
wS= exp{−i

∫ σ

0

λ(x1, t1, ε)dζ}
∞∑

k=0

1
w (k)

S λ−k, (23)

and for n ≥ 2

n
wS= exp{−i

∫ σ

0

λ(x1, t1, ε)dζ}
2n−3∑
j=0

λj

j−1∑

k=0

(
lnk |λ| n

w
(j,k)

S (ξ)

)

+
∞∑

j=0

(
∂t1 − 3(∂x2S)2∂x1

iλ

)j



n

fS

iλ


 . (24)
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Proof. The asymptotics of the coefficients
n
wS are computed recurrently. First,

we obtain the asymptotics for the leading-order term
1
wS

1
wS= exp{−i

∫ σ

0

λ(x1, t1, ε)dζ}
∫ σ

−∞

1

fS (x1, t1, ε) exp{i
∫ ζ

0

λ(x1, t1, ε)dµ}dζ

= exp{−i

∫ σ

0

λ(x1, t1, ε)dζ}
∫ ∞

−∞

1

fS (x1, t1, ε) exp{i
∫ ζ

0

λ(x1, t1, ε)dµ}dζ

− exp{−i

∫ σ

0

λ(x1, t1, ε)dζ}
∫ ∞

σ

1

fS (x1, t1, ε) exp{i
∫ ζ

0

λ(x1, t1, ε)dµ}dζ

By integration by parts we obtain formula (23), where

1
w (0)

S =

∫ ∞

−∞
f(x1) exp{i

∫ ζ

0

λ(x1, t1, ε)dµ}dζ. (25)

To calculate the asymptotics of the higher-order term
n
wS we use the asymp-

totics with respect to σ which were obtained on previous steps. In this case
the representation (21) contains increasing terms with respect to σ. To ob-

tain the asymptotics for
n
wS we eliminate this growing part from the integral

explicitly. The residual integral converges as σ →∞. It can be calculated in
the same manner as it was shown for the leading-order term of the asymp-
totics.

To estimate the order of λ as λ → +∞ it is necessary to note that the
highest order integrand consists in nonlinear term related to UUx. It is easy
to trace the procedure of increasing of singularity for integrand. The first
integration, when n = 1, yields

1
wS∼ const, λ → +∞.

The next integration gives

2
wS∼ λ, λ → +∞.

After substitution and n−2 integrations of the eliminated part of asymptotics
we obtain representation (24).

2.4 The domain of validity for the internal solution

Lemma 2.4 allows us to determine the domain of validity for (11). Represen-
tation (11) is asymptotic when

ε max
x2,t2,x1,t1

| n+1

W | = o

(
max

x2,t2,x1,t1
| n

W |
)

, ε → 0. (26)
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Lemma 2.4 and condition (26) give λ ¿ ε−1/2. In terms of the external
variable l we obtain l ¿ ε1/2.

2.5 Asymptotics of the phase function as λ → +∞
To determine the oscillations after the passage through the resonance we
should investigate the asymptotic behaviour of the phase function as λ →∞.

Lemma 2.5. For λ →∞, we get

∫ σ

0

λdζ =
S

ε2
+

1

ε

[
∂x2S(x1 − x0

1)− (∂x2S)3(t1 − t01)
]

+ O
(
ελ3

)
. (27)

Proof. To obtain (27), we use the asymptotics from Lemma 2.3

∫ σ

0

λdζ =

∫ σ

0

[ (
∂t2l − 3(∂x2S)2∂x2l

)
ζ + O

(
εζ2

) ]
dζ

=
(
∂t2l − 3(∂x2S)2∂x2l

) σ2

2
+ O

(
εσ3

)
.

The asymptotics of the phase function S(x2, t2)/ε
2 in a neighborhood of the

curve l = 0 is represented by a partial sum of the Taylor series

S

ε2
+

1

ε

(
∂x2S(x1 − x0

1) + ∂t2S(t1 − t01)
)

+
1

2

(
∂2

x2
S(x1 − x0

1)
2 + 2∂2

x2t2
S(x1 − x0

1)(t1 − t01) + ∂2
t2
S(t1 − t01)

2
)

+ O
(
ε(|x1 − x0

1|+ |t1 − t01|)3
)
.

Substituting the asymptotic representation of |x1−x0
1| and |t1− t01| in ε from

Lemma 2.2 and combining it with the result of Lemma 2.3 completes the
proof.

The asymptotic representation of (11) as λ → +∞ contains diverse
modes. The leading-order term contains the oscillations with an additional
phase. This result follows from Lemma 2.4. We denote this new phase by
ϕ(x2, t2)/ε

2. The asymptotics of this phase function is obtained in Lemma
2.5. The additional mode and nonlinearity of the original equation lead to
complicated structure of the phase set for higher-order terms of the solution.
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3 After the passage

In this section we construct the asymptotics of the solution after the passage
through the resonance. The constructed solution has order ε and oscillates.
The equations for the coefficients are derived by multiscale method. Initial
conditions for these equations are obtained by matching method.

3.1 Formal constructions. Equations for coefficients

The domain of validity of the internal solution shows that it is necessary to
introduce the new external variable l3 = ε−1/2l. We construct a solution of
the form

U(x, t, ε) =
∞∑

n=1

ε
1+n

2

n

V , (28)

where

n

V =

(n−1)/2∑

k=0

lnk(ε)

[∑
±ϕ

exp{±iϕ/ε2} n,k

Ψ±ϕ +
∑

χ

exp{iχ/ε2} n,k

Ψχ

]
.

The amplitudes
n,k

Ψχ=
n,k

Ψχ (t2, x3, t3) depend on the new scaled variables x3 =
ε3/2x and t3 = ε3/2t.

Substitute (28) into (2) and gather the terms of the same order with
respect to ε.

Terms of order ε give us the equation for ϕ

∂t2ϕ− (∂t2ϕ)3 = 0 (29)

and
ϕ|l=0 = S|l=0. (30)

Terms of order ε3/2 lead to equation (29) also.

Terms of order ε2 allow one to obtain the relations for
3,0

Ψχ, where χ =

S, 2ϕ. The equation for
3,0

ΨS coincides with (5) of Section 1. The coefficient
3,0

Ψ2ϕ is determined by

(∂x2ϕ)2
3,0

Ψ2ϕ=

(
1,0

Ψϕ

)2

. (31)

Note that equation (31) is not yet solved. The coefficient
1,0

Ψϕ is not deter-
mined.
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The terms of order ε5/2 give a homogeneous transport equation for
1,0

Ψ±ϕ

∂t3

1,0

Ψ±ϕ −3(∂x2ϕ)2∂x3

1,0

Ψ±ϕ= 0. (32)

This equation allows one to determine the dependence of the leading-order
term with respect to the variable ζ. Equation (32) along the characteristics

dt3
dζ

= 1,
dx3

dζ
= −3(∂x2ϕ)2 (33)

looks like

d
1,0

Ψ±ϕ

dζ
= 0. (34)

Equation (34) shows that
1,0

Ψ±ϕ does not depend on ζ. Here we denote the
variable along the characteristic by ζ and the transversal variable by ξ. The
variable ξ is defined by

dt3
dξ

= 3(∂x2ϕ)2,
dx3

dξ
= 1 (35)

Terms of order ε3 give us a inhomogeneous equation for
2,0

Ψϕ,

∂t3

2,0

Ψϕ −3(∂x2ϕ)2∂x3

2,0

Ψϕ= −∂t2

1,0

Ψϕ +3∂x2ϕ∂2
x2

ϕ
1,0

Ψϕ +i∂x2ϕ
1,0

Ψ
∗
ϕ

3,0

Ψ2ϕ . (36)

As we showed above, the leading-order term
1,0

Ψϕ does not depend on the
variable ζ. To construct a bounded solution of (36) we require that the
right-hand side of this equation be equal to zero. Using formula (31) we
obtain

∂x2ϕ∂t2

1,0

Ψϕ −3(∂x2ϕ)2∂2
x2

ϕ
1,0

Ψϕ +i| 1,0

Ψϕ |2
1,0

Ψϕ= 0. (37)

It allows one to determine the leading-order term of the asymptotics. The
Cauchy condition for (37) is obtained by a matching procedure. The initial
datum (25) is the leading-order term in asymptotic expansion (23),

1,0

Ψϕ |l=0 =

∫ ∞

−∞
dζf(x1) exp{i

∫ ζ

0

dµλ(x1, t1, ε)}. (38)

The higher-order correction terms are determined by the same manner. The

amplitude
n,k

Ψϕ satisfies to ordinary differential equations and
n,k

Ψχ satisfies to
algebraic equations.
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The differential equations for
n,k

Ψϕ have the form

∂t2

n,k

Ψϕ −3∂x2ϕ∂2
x2

ϕ
n,k

Ψϕ=
n,k

F ϕ, (39)

where

n,k

F ϕ= −∂3
x2

ϕ
n−4,k

Ψ ϕ −3i∂2
x2

ϕ∂x3

n−3,k

Ψ ϕ −3i∂x2ϕ∂2
x3

n−2,k

Ψ ϕ −∂3
x3

n−5,k

Ψ ϕ

−6
∑

n1+n2=n,

k1+k2=k,

α1+α2=ϕ

i∂x2α1

n1,k1

Ψ α1

n2,k2

Ψ α2 −6
∑

n1+n2=n−1,

k1+k2=k,

α1+α2=ϕ

∂x3

n1,k1

Ψ α1

n2,k2

Ψ α2 . (40)

Algebraic equations look like the equation from Section 1,

i
[
∂t2χ− (∂x2χ)3

] n,k

Ψχ=
n,k

F χ, (41)

where the right-hand side
n,k

F χ depends on previous terms of the asymptotic

expansion. The structure of
n,k

F χ is similar to (40) with index ϕ replaced by

χ. When χ = S, the corresponding functions
n,k

Ψχ have singularities on the
resonant curve l = 0. The analysis of these singularities is carried out in
much the same way as in Section 1.

3.2 The domain of validity for postresonant expansion
(28)

As is mentioned above the amplitudes of (28) have singularities on the res-
onant curve l = 0. These singularities appear due to the structure of the
right-hand side of equations (39) and (41). Here we determine the asymp-
totic behaviour of the coefficient of (28) and domain of validity of this rep-
resentation of the solution.

First of all we calculate the order of singularity for amplitudes
n,k

Ψχ with
χ = ±S. It is easy to see that the first appearance of this forced amplitudes
take place when n = 3, k = 0. They are determined from algebraic equations

l[S]
3,0

ΨS= f.

It yields
3,0

ΨS= O(l−1), l → 0 + .

14



The direct calculations give

n,0

ΨS= O(l−[(n+1)/4]), l → 0 + . (42)

It should be noted that the singularities of
n,0

ΨS have the strongest order and
these terms determine the domain of validity for (28).

The asymptotic behaviour for
n,0

Ψχ, χ 6= S and
n,k

ΨS, k > 0 obtained either
from differential equations (39) or algebraic equations (41) shows that their
order of singularity is weaker.

It gives the domain of validity for (28)

l À ε.

4 Numerical simulations

In this section we present a result of the numerical simulations for (2) and ex-
plain the behaviour of the solution. We take S(x2, t2) = t22, f(y) = exp{−y2}
for simplicity. In this case the resonance takes place in a neighborhood of
the line t = 0. Calculations were made under ε = 0.1. The initial datum is
given at t0 = −50. Here we present the 3D picture of the solution and his
profile for x = 0.

We see that the solution has order ε2 and oscillates with the frequency of
perturbation in the preresonant domain. The solution grows up to the value
O(ε) in a neighborhood of the curve t = 0. And after the passage through
the resonance domain it oscillates, too. These oscillations are realized with
the frequency related to the new generated phase ϕ.
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In this case the leading-order term
1,0

Ψϕ is constant and oscillations take place
around the constant value defined by formula (38).
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