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Abstract

We investigate operators on manifolds with edges from the point of view of
the symbolic calculus induced by the singularities. We discuss new aspects
of the quantisation of edge-degenerate symbols which lead to continuous
operators in weighted edge spaces.
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Introduction

This paper is aimed at studying a number of new properties of edge ampli-
tude functions belonging to the calculus of operators on a manifold with edges.
(The notation ‘manifold’ is used here for convenience; in general our spaces are
manifolds only outside their subspaces of singularities). The investigation is
motivated by the program of establishing operator algebras on configurations
with higher singularities, e.g., when the cones of local wedges have cross sec-
tion with singularities. The expectation is that the ideas of the cone and edge
pseudo-differential calculus with smooth model cones, cf. [8], [9], are more or
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less iterative. However, the symbolic structures in the higher floors of the cal-
culus are by no means straightforward. Recall that already for manifolds with
smooth edges there are different ways of constructing quantisations of corre-
sponding edge-degenerate symbols; they reflect different aspects of the calculus
. Compared with [11] an alternative quantisation is given in [4]; remainders
belong to the class of flat Green edge symbols. The result of [4] is applied in
[6] and [5] to the construction of holomorphic representatives of corner Mellin
symbols.

Here we study edge symbols in another way, namely, with an additional
localisation near the diagonal with respect to the cone axis variable, depending
on the edge covariable. In higher corner algebras localisations of a similar kind
seem to be necessary, cf. [1], [2].

The (operator-valued) symbols of the edge algebra from [7] or [9] are specific
families of pseudo-differential operators on infinite cones X∧ := R+×X � (r, x)
with r → 0 representing the tip and r →∞ a conical exit to infinity, where the
cross section X (in the simplest case) is a closed compact C∞ manifold. These
symbols may be interpreted as a specific parameter-dependent quantisation of
edge-degenerate scalar symbols (or, alternatively, of an edge-degenerate family,
of classical pseudo-differential operators on X). Quantisations are usually not
canonical, even in simpler situations. The shape of the edge quantisation that
was established in the above mentioned expositions (and that we briefly recall
below) gives rise to an algebra of continuous operators in weighted edge spaces,
with all the desirable features, such as ellipticity with respect to a principal
symbolic hierarchy and existence of a parametrix within the calculus. However,
some aspects of the theory remained complicated, for instance, the rigorous
proof of the composition behaviour and other necessary elements. For that
reason the authors of [4] proposed another edge quantisation which entails the
composition result in a very simple way. The hope was that a similar strategy
might work also for manifolds with singularities of higher order. Unfortunately,
the attempt to generalise [4], for instance, for singularities of order 2 (i.e., when
the baseX of the model cone itself has singularities of conical or edge type) leads
to an enormous blow-up of technicalities, and the construction of corresponding
alternative quantisations along the lines of [4] compared with the ‘usual’ ones
seems to be more complicated than a direct approach. Moreover, the analogue
of the usual edge quantisation for the edge calculus of second generation as
studied in [1] gives rise to difficulties; so there was to be invented a modified
approach. Since this is new in an analogous form also in the edge calculus
of first generation, it is desirable to have a look at such an edge quantisation
and to characterise the remainders compared with the former one. This is one
of the points of the present paper, and we prove that the remainders are flat
Green symbols. Moreover, we give a new relatively elementary proof for the
composition theorem of edge symbols of the first generation.

By a manifold with corners we understand a topological space M that con-
tains a subspaceM ′ of singularities such that M \M ′ is a C∞ manifold, and near
every m ∈M ′ the space M is modelled on a cone XΔ := (R+ ×X)/({0} ×X)
or a wedge XΔ ×Ω, for an open set Ω ⊆ R

q, where X is again a manifold with
corners (of ‘lower order’ than M). In addition we require specific properties of
the transition maps belonging to different such local representations.

Examples are manifolds with conical singularities or edges; in this case we
assume the base spaces X of the model cones to be closed, compact C∞ mani-
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folds. Manifolds with higher singularities can be obtained by iteratively forming
cones or wedges and pasting them together to corresponding global spaces.

A well known example is the case of differential operators on a manifold B
with conical singularities. Assume, for convenience, that B has one conical point
v, and let B denote the associated stretched manifold which is a C∞ manifold
with compact boundary ∂B ∼= X and int B ∼= B \ {v}. Then B is equal to the
quotient space B/∂B (with ∂B collapsed to the point v), and B is locally near
∂B identified with R+ ×X .

A differential operator A with smooth coefficients on intB is said to be of
Fuchs type, if locally near ∂B in the splitting of variables (r, x) ∈ R+ ×X the
operator has the form

A = r−μ
μ∑
j=0

aj(r)
(
− r ∂

∂r

)j
(1)

with coefficients aj ∈ C∞(R+,Diffμ−j(X)) (here Diffν(·) denotes the space of
all differential operators of order ν with smooth coefficients on the C∞ manifold
in the brackets). In this case the principal symbolic structure consists of a pair

σ(A) = (σψ(A), σc(A)),

where σψ(A) is the standard homogeneous principal symbol of order μ and

σc(A)(z) :=
μ∑
j=0

aj(0)zj (2)

the principal conormal symbol. The function (2) is operator-valued and acts
between the standard Sobolev spaces on X as a family of continuous operators

σc(A)(z) : Hs(X)→ Hs−μ(X)

depending on the variable z ∈ C.
Another example is the case of a C∞ manifold with boundary, locally near

the boundary modelled on R+ × Ω � (r, y), Ω ⊆ Rq open. Then, if A is a
differential operator of order μ with smooth coefficients up to the boundary, the
principal symbolic hierarchy of A is a pair

σ(A) = (σψ(A), σ∂(A)).

The first component is again the standard homogeneous principal symbol of
order μ. Moreover, writing A near the boundary as

A =
∑
|α|≤μ

aα(r, y)Dα
(r,y), (3)

we set
σ∂(A)(y, η) :=

∑
|α|=μ
α=(k,γ)

aα(0, y)Dk
rη
γ , (4)

(y, η) ∈ T ∗Ω \ 0, called the homogeneous principal boundary symbol of A. The
symbol (4) is operator-valued and acts between the standard Sobolev spaces on
R+ as a family of continuous operators

σ∂(A)(y, η) : Hs(R+)→ Hs−μ(R+), (5)
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depending on (y, η) ∈ T ∗Ω \ 0; here Hs(R+) := Hs(R)
∣∣
R+

.
A third category of examples are operators on manifolds with edges (cf.

also Section 1 below). Manifolds with (smooth) edges can be regarded as a
generalisation of manifolds with (smooth) boundary. In this case the local model
near the edge is equal to XΔ × Ω for a closed compact C∞ manifold X . A
manifold with boundary just corresponds to the case dimX = 0.

We often employ the stretched manifolds rather than the manifolds with
singularities themselves. In the case of a wedge XΔ×Ω the associated stretched
space is equal to R+×X×Ω. In the corresponding splitting of variables (r, x, y)
the typical differential operators A are assumed to be of the form

A = r−μ
∑

j+|α|≤μ
ajα(r, y)

(
− r ∂

∂r

)j
(rDy)α, (6)

with coefficients ajα ∈ C∞(R+ ×Ω, Diffμ−(j+|α|)(X)). Such operators will also
be called edge-degenerate. Their symbolic hierarchy is then a pair

σ(A) = (σψ(A), σ∧(A)) (7)

with σψ(A) being the homogeneous principal symbol. Moreover,

σ∧(A)(y, η) := r−μ
∑

j+|α|≤μ
ajα(0, y)

(
− r ∂

∂r

)j
(rη)α (8)

is the so-called homogeneous principal edge symbol which represents a family
of continuous operators

σ∧(A)(y, η) : Ks,γ(X∧)→ Ks−μ,γ−μ(X∧), (9)

(y, η) ∈ T ∗Ω \ 0, acting between weighted Sobolev spaces on the (open infinite
stretched) cone X∧ := R+ ×X , cf. Section 1.3 below. Comparing (8) with (1)
we see that there is a family of subordinate conormal symbols

σcσ∧(A)(y, z) =
μ∑
j=0

aj0(0, y)zj (10)

from the interpretation of (9) as an operator of Fuchs type for every fixed (y, η) ∈
T ∗Ω \ 0. In the case of ellipticity the adequate weights γ ∈ R for (9) are to be
fixed in connection with the non-bijectivity points of (10) in the complex plane.
The difference between the notation ‘boundary’ and ‘edge’ symbol is motivated
by the fact that the choice of spaces is different. If we write the operator (3)
in edge-degenerate form (6) (with coefficients ajα(r, y) ∈ C∞(R+ ×Ω)) we also
obtain an edge symbol (9).

In the present paper we concentrate on edge-degenerate operators (6) and
their pseudo-differential versions. The analogy with boundary value problems
will not play a major role, but it is worth to recall that the edge calculus for
dimX = 0 corresponds to the pseudo-differential calculus of boundary value
problems without the transmission property at the boundary, cf. [10].
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1 Operators on manifolds with edges

1.1 Manifolds with conical singularities and edges

Let X be a topological space. As in the introduction we set

X∧ := (R+ ×X)/({0} ×X) and X∧ := R+ ×X.

In the following discussion, for convenience, topological spaces are assumed to
be countable unions of compact sets; C∞ manifolds are assumed to be oriented
and equipped with a Riemannian metric.

The definition of a manifold W with edge Y is based on a certain kind of
(locally trivial) XΔ-bundles L over Y ; here Y and X are C∞ manifold.

In order to describe the specific structure we first consider a (locally trivial)
R+ ×X-bundle L over Y , the stretched space associated with L.

The transition maps

l : R+ ×X × Ω→ R+ ×X × Ω̃

between trivialisations of L, Ω, Ω̃ ⊆ Rq open, q = dimY , are asssumed to be
restrictions of transition maps R×X×Ω→ R×X× Ω̃ belonging to an R×X-
bundle 2L over Y to R+ ×X × Ω. Then L contains a subspace Lsing which is
an X-bundle over Y , represented by the trivialisations {0}×X ×Ω. Let us set
Lreg := L \ Lsing; this is an X∧-bundle over Y with the trivialisations X∧ × Ω.

From the construction of L and Lsing it follows that we obtain an XΔ-bundle
L by passing to the quotient space R+ ×X → XΔ = (R+ ×X)/({0} ×X) in
every fibre of L. The bundle L contains Y as a subspace, interpreted as an edge,
and L \ Y is a C∞ manifold which can be identified with Lreg in a natural way.
More precisely, we have a projection

π : L→ L, (11)

fibrewise defined by R+ ×X → XΔ, and π restricts to the bundle projection

πsing : Lsing → Y (12)

and to an isomorphism of X∧-bundles

πreg : Lreg → L \ Y. (13)

Definition 1.1 Let W be a topological space and Y ⊂W a subspace. Then W
is called a manifold with edge Y , if

(i) W \ Y and Y are C∞ manifolds;

(ii) there exists a neighbourhood V of Y in W and a homeomorphism

χ : V → L

to an XΔ-bundle L over Y for a C∞ manifold X, such that χ restricts to
diffeomorphisms

χ0 : V ∩ Y → Y, χreg : V \ Y → L \ Y.
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Incidentally we will write
W ′ = Y (14)

From W we can pass to a so called stretched manifold W when we first replace
V by the stretched set V that is defined to be a C∞ manifold with boundary,
diffeomorphic to L, such that V\∂V is identified with V \Y and ∂V isomorphic
to Lsing as an X-bundle over Y .

In other words, W is a C∞ manifold with boundary ∂W =: Wsing which is
an X-bundle over Y . Let us set W \ ∂W =: Wreg. We then have a canonical
continuous map

π : W→W

which restricts to the bundle projection

πsing : Wsing → Y

and to a diffeomorphism

πreg : Wreg →W \ Y.
With W we can associate the double 2W which is a C∞ manifold (without
boundary) by gluing together two copies W± of W along the common boundary
∂W.

Example 1.2 For W = XΔ×Ω we have W = R+×X×Ω and 2W = R×X×Ω.

Remark 1.3 In the case dimY = 0 we speak about manifolds with conical
singularities.

Remark 1.4 Let W be a manifold with edge Y . Then for every C∞ manifold
M the Cartesian product W ×M is a manifold with edge Y ×M .

Definition 1.5 Let Wi be manifolds with edges Yi, i = 1, 2, and let Xi be the
base of the model cone for Wi, i = 1, 2. A continuous map

T : W1 →W2

is called an M1-morphism if there is a differentiable map

T : W1 →W2

between the respective stretched manifolds as manifolds with C∞ boundary such
that

T
∣∣
∂W1

: ∂W1 → ∂W2

is a homomorphism between the corresponding Xi-bundles (in particular, T
∣∣
Y1

:
Y1 → Y2 is then a differentiable map). T : W1 → W2 is called an M1-
isomorphism if there is an M1-morphism T−1 : W2 → W1 which is a two
sided inverse to T .

In this case we also write W1
∼=M1 W2.

In this way, the manifolds with edges form a category M1 with the subcat-
egory of manifolds with conical singularities.

Let W be a manifold with edge Y of dimension q > 0. Then the above
mentioned bijection V→∼= L allows us to define stretched wedge neighbourhoods

U ⊂ V that correspond to a trivialisations of L, i.e.,

U ∼=M1 R+ ×X × Ω (15)

for open sets Ω ⊆ Rq. Set Ureg := U \ ∂W.
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1.2 The typical differential operators

Let W be a manifold with edge Y and W its stretched manifold. By

Diffμdeg(W )

we denote the space of all differential operators A ∈ Diffμ(W \ Y ) such that
for every (stretched) wedge neighbourhood Ureg in the splitting of variables
(r, x, y) ∈ R+ ×X × Ω the operator A has the form

A = r−μ
∑

j+|α|≤μ
ajα(r, y)

(
− r ∂

∂r

)j
(rDy)α (16)

with coefficients ajα ∈ C∞(R+ × Ω, Diffμ−(j+|α|)(X)).
In local cooradinates (r, x, y) ∈ R+ × Σ × Ω, Σ ⊆ Rn, Ω ⊆ Rq open (n =

dimX , q = dimY ) the homogeneous principal symbol σψ(A) of A of order μ
has the form

σψ(A)(r, x, y, 	, ξ, η) = r−μσ̃ψ(A)(r, x, y, r	, ξ, rη)

for a function σ̃ψ(A)(r, x, y, 	̃, ξ, η̃) that is smooth up to r = 0 (and homogeneous
of order μ in (	̃, ξ, η̃)). In addition, as noted in the introduction, we have the
homogeneous principal edge symbol σ∧(A)(y, η), (y, η) ∈ T ∗Y \ 0, the second
component of the principal symbolic hierarchy (7). Note that for

a(y, η) := r−μ
∑

j+|α|≤μ
ajα(r, y)

(−r ∂
∂r

)j(rη)α,
and (κλu)(r, x) := λ

n+1
2 u(λr, x), λ ∈ R+, we have

σ∧(A)(y, η) = lim
λ→∞

λ−μκλa(y, λη)κ−1
λ ,

and
σ∧(A)(y, λη) = λμκλσ∧(A)(y, η)κ−1

λ ,

for all λ ∈ R+.

1.3 Weighted Sobolev spaces

We now formulate Sobolev spaces on stretched cones X∧ = R+×X � (r, x) and
wedges X∧ ×Rq � (r, x, y), first for the case of a smooth compact manifold X .
To this end we first consider the cylindrical Sobolev space

Hs(R×X)

defined as the set of all u(t, .) ∈ Hs
loc(Rt ×X) such that

(ϕu) ◦ (1× χ)−1 ∈ Hs(Rt × R
n)

for every chart χ : U → Rn on X and every ϕ ∈ C∞
0 (U); here (1 × χ)(r, .) :=

(r, χ(.)). Let
(Sβu)(t) := e−( 1

2−β)tu(e−t), t ∈ R
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for any β ∈ R. Then we set

Hs,γ(X∧) :=
(
Sγ−n

2

)−1
Hs(R×X)

for n = dimX .
Let us interpret these spaces in connection with the Mellin transform on

R+ � r,
Mu(z) =

∫ ∞

0

rz−1u(r)dr.

For u ∈ C∞
0 (R+) the function, Mu(z) is an entire function, and we have

Mu
∣∣
Γβ
∈ S(Γβ) for

Γβ := {z ∈ C : Rez = β} (17)

for every β ∈ R, uniformly in compact intervals. Here and in the sequel the
‘weight line’ Γβ is treated as a real axis if the spaces, e.g., the Schwartz space,
Sobolev spaces, etc., or amplitude functions are given with respect to the cor-
responding variable.

The Mellin transform will also be applied to vector- or operator-valued func-
tions depending on r ∈ R; then the covariable z will often vary on a certain
weight line. We have −r ∂∂r = M−1zM , and Hs,γ(X∧) for s ∈ N is equal
to the subspace of all u(r, x) ∈ r−

n
2 +γL2(X∧) such that (−r∂r)kDα

xu(r, x) ∈
r−

n
2 +γL2(X∧) for all k+ |α| ≤ s. Here Dα

x runs over all elements of Diff |α|(X),
and L2(X∧) refers to the measure drdx. From this definition we can recover
Hs,γ(X∧) for arbitrary s ∈ R by duality and interpolation. It will be adequate
to modify the spaces Hs,γ(X∧) at infinity by setting

Ks,γ(X∧) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∧) v ∈ Hs
cone(X

∧)}
for a space Hs

cone(X
∧) that is defined as follows.

Set B := {x ∈ Rn : |x| < 1} and B∨ := {(r, rx) ∈ R1+n : (r, x) ∈ R+ × B }
which is a conical set in R1+n. Let χ : U → B be a chart on X , and consider
1× χ : R+ × U → R+ ×B. Together with

β : (r, x)→ (r, rx), R+ ×B → B∨

we have the composition

β ◦ (1 × χ) : R+ × U → B∨.

Then Hs
cone(X

∧) is defined to be the subspace of all u ∈ Hs
loc(R × X)|R+×X

such that (1 − ω)ϕu ◦ (1 × χ)−1 ◦ β−1 ∈ Hs(R1+n) for every chart χ : U → B
and arbitrary ϕ ∈ C∞

0 (U). Another equivalent characterisation of Hs
cone(X

∧) is
given in Remark 2.1 below.

Let us introduce some convenient terminology in connection with the variety
of spaces that will occur in our calculus.

If E0, E1 are Fréchet spaces, embedded in a Hausdorff topological vector
space H , we set

E0 + E1 = {e0 + e1 : e0 ∈ E0, e1 ∈ E1}. (18)

There is then an algebraic isomorphism E0+E1
∼= E0⊕E1/Δ for Δ := {(e,−e) :

e ∈ E0∩E1}, and we endow (18) with the Fréchet topology of the quotient space.
We then call (18) the non-direct sum of E0 and E1.
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Moreover, let E be a Fréchet space that is a left module over an algebra A.
Then [a]E for a ∈ A will denote the closure of the space {ae : e ∈ E} in E. In a
similar sense we employ the notation E[b] or [a]E[b] for a, b ∈ E if E is a right
or two-sided A-module.

Example 1.6 The spaces Hscone(X∧) are two sided modules over the algebra of
all ϕ(r, x) ∈ C∞(R+×X) that do not depend on r for r > R for some R > 0. In
particular, for every cut-off function ω(r) we can form the spaces [ω]Hs,γ(X∧)
and [1− ω]Hs

cone(X∧), and we have

Ks,γ(X∧) = [ω]Hs,γ(X∧) + [1− ω]Hs
cone(X

∧). (19)

Clearly the space (19) is independent of the specific choice of ω.

Remark 1.7 If E0 and E1 are Hilbert spaces also E0 + E1 becomes a Hilbert
space by the identification with the orthogonal complement of Δ in E0 ⊕ E1.

Thus, if we fix the cut-off function ω, we get a Hilbert space structure in
Ks,γ(X∧) via (19). For s = γ = 0 we take the scalar product from the identifi-
cation

K0,0(X∧) = r−
n
2 L2(R+ ×X),

where L2(R+×X) refers to drdx with dx being connected with a fixed Rieman-
nian metric on X .

For purposes below we tacitly identify a coordinate neighbourhood U on X
with B ⊂ Rn, with the coordinates x via a chart χ : U → B. Then, the above
characterisation of the space Hs

cone(X
∧) for large r cone it is enough to look at

(1− ω)ϕHs
cone(B

∧) vor any ϕ ∈ C∞
0 (B) and a cut-off function ω.

We then have

u ∈ (1− ω)ϕHs
cone(X

∧)⇐⇒ (β∗u)(r,
x̃

r
) ∈ Hs(R1+n

r,x̃ ) (20)

for the map β : B∧ → B∨ ⊂ R1+n.

Remark 1.8 Let A ∈ Diffμdeg(R+ ×X × Ω) be given in the form (16), and set

a(y, η) := r−μ
∑

j+|α|≤μ
ajα(r, y)

(
− r ∂

∂r

)j
(rη)α. (21)

Assume that there is an R > 0 such that the coefficients ajα are independent of
r for r > R. Then

Dα
yD

β
ηa(y, η) : Ks,γ(X∧)→ Ks−μ+|β|,γ−μ+|β|(X∧),

(y, η) ∈ Ω × R
q, is a family of continuous operators for every s, γ ∈ R and

α, β ∈ Nq.

In fact, writing a(y, η) = ω̃a(y, η) + (1− ω̃)a(y, η), for some cut-off function
ω̃(r) we first have

ω̃a(y, η) : Hs,γ(X∧)→ ω̃Hs−μ,γ−μ(X∧)

which is fairly obvious. On the other hand, to obtain

(1 − ω̃)a(y, η) : Hs
cone(X

∧)→ (1− ω̃)Hs
cone(X

∧) (22)
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we express a(y, η) in local coordinates on X via a chart χ : U → B. If we write

ajα(r, y) =
∑

|γ|≤μ−(j+|α|)
ajα;γ(r, x, y)Dγ

x

with coefficients ajα;γ ∈ C∞(R+ × U × Ω) for a coordinate neighbourhood
U ⊂ X , it suffices to consider the summands

r−μajα;γ(r, x, y)Dγ
x

(
− r ∂

∂r

)j
(rη)α (23)

separately. For simplicity, let us interpret x as coordinates in the unit ball
B ⊂ Rn. Then (23) is a family of operators in R+ × B � (r, x). Applying
the substitution x̃ = rx and the characterisation (20), for (22) it is enough to
observe that

(1− ω̃)ϕ
( x̃
r

)
r−μajα

(
r,
x̃

r
, y

)
r|γ|Dγ

x̃

(
−r ∂

∂r

)j
(rη)α

for ϕ(x) ∈ C∞
0 (U) respects the standard Sobolev spaces up to r =∞.

1.4 Abstract edge spaces and symbols with twisted homo-
geneity

A Hilbert space E is said to be equipped with a group action if there is given
a strongly continuous group of isomorphisms κλ : E → E, λ ∈ R+, such that
κλκλ′ = κλλ′ for all λ, λ′ ∈ R+. An example is the space E = Ks,γ(X∧) with

(κλu)(r, x) = λ
n+1

2 u(λr, x), λ ∈ R+

for n = dimX . More generally, if E is a Fréchet space, written as a projective
limit lim←−j∈N

Ej of Hilbert spaces Ej with continuous embeddings Ej+1 ↪→ Ej

for all j, and if {κλ}λ∈R+ is a group action on E0 which restricts to group
actions on Ej for every j we say that E is equipped with a group action.

An example is the space

Sγε (X∧) := lim←−
j∈N

Ej (24)

for Ej := 〈r〉−jKj,γ+ε−(1+j)−1
(X∧), ε > 0. Let us define

SO(X∧) := lim←−
ε>0

Sγε (X∧) (25)

(the notation indicates that the left hand side is independent of γ).

Definition 1.9 Let E be a Hilbert space with group action {κλ}λ∈R+ . Then
Ws(Rq, E) (the ‘abstract’ edge Sobolev space on Rq of smoothness s ∈ R) is
defined to be the completion of S(Rq , E) with respect to the norm

{∫
〈η〉2s∥∥κ−1

〈η〉û(η)
∥∥2

E
dη

} 1
2
;

here û(η) = Fy→ηu(η) is the Fourier transform in Rq, and κ−1
〈η〉 acts on the

values of û(η) for every η.

10



Definition 1.10 (i) Let E and Ẽ be Hilbert spaces with group actions {κλ}λ∈R+

and {κ̃λ}λ∈R+ , respectively. Then the space of (operator-valued) symbols
Sμ(U × Rq;E, Ẽ) for an open set U ⊆ Rp, μ ∈ R, is defined to be the set
all a(y, η) ∈ C∞(U × Rq,L(E, Ẽ)) such that

sup
{
〈η〉−μ+|β|∥∥κ̃−1

〈η〉
{
Dα
yD

β
ηa(y, η)

}
κ〈η〉

∥∥
L(E,Ẽ)

: (y, η) ∈ K × R
q
}

is finite for every K � U and all multi-indices α ∈ Np, β ∈ Nq.

(ii) S(μ)(U × (Rq \ {0});E, Ẽ) denotes the set of all functions f(μ) ∈ C∞(U ×
(Rq \ {0}), L(E, Ẽ)) such that

f(μ)(y, λη) = λμκ̃λf(μ)(y, η)κ
−1
λ

for all (y, η) ∈ U × (Rq \ {0}), λ ∈ R+.

(iii) The space Sμcl(U × Rq;E, Ẽ) of classical symbols is defined as the set of
all a(y, η) ∈ Sμ(U × Rq;E, Ẽ) such that there are elements a(μ−j)(y, η) ∈
S(μ−j)(U × (Rq \ {0});E, Ẽ), j ∈ N, such that

a(y, η)−
N∑
j=0

χ(η)a(μ−j)(y, η) ∈ Sμ−(N+1)(U × R
q;E, Ẽ)

for every N ∈ N. Here χ(η) is any excision function, i.e., χ ∈ C∞(Rq),
χ(η) = 0 for |η| < c0, χ(η) = 1 for |η| > c1 for certain 0 < c0 < c1.

In the case E = C we always set κλ = idC for every λ ∈ R+. Then for
E = Ẽ = C the Definition 1.10 reproduces the standard spaces of scalar symbols.
If a notation or a relation is valid both in the classical and the general case we
also write ‘(cl)’ as subscript. Let Sμ(cl)(R

q;E, Ẽ) denote the corresponding spaces
of symbols a(η) that are independent of y, i.e., with constant coefficients.

Example 1.11 Let us set

E := Ks,γ(X∧)⊕ C
j− , Ẽε := Sγ−με (X∧)⊕ C

j+

and
F := Ks,−γ+μ(X∧)⊕ C

j+ , F̃ε := S−γε (X∧)⊕ C
j−

for γ, μ ∈ R and ε > 0. A family of operators

g(y, η) : Ks,γ(X∧)⊕ C
j− → K∞,γ(X∧)⊕ C

j+

(continuous for every s ∈ R) is called a Green symbol if there is an ε = ε(g) > 0
such that

g(y, η) ∈ Sμcl(U × R
q;E, Ẽε), g∗(y, η) ∈ Sμcl(U × R

q;F, F̃ε) (26)

for all s ∈ R. A Green symbol is flat (of infinite order) if the conditions
(26) hold for all ε > 0. Especially, if g(y, η) is an upper corner, that means
g(y, η), g∗(y, η) ∈ Sμcl(Ks,β(X∧),SO(X∧)) for all s, β ∈ R.

11



Remark 1.12 The operator of multiplication by a function ϕ ∈ C∞
0 (R+) be-

longs to S0(Rq;Ks,γ(X∧),Ks,γ(X∧)) for every s, γ ∈ R. If g(y, η) is a Green
symbol in the sense of Example 1.11 also

diag(ϕ, 1)g(y, η)diag(ϕ̃, 1)

is a Green symbol for every ϕ, ϕ̃ ∈ C∞
0 (R+)

Parallel to the spaces of symbols of Definition 1.10 we have vector-valued
analogues of Sobolev spaces, based on a Hilbert space E with group action
{κλ}λ∈R+ . Recall the corresponding Definition from [7]. By Ws(Rq, E) we
denote the completion of S(Rq , E) with respect to the norm{∫

〈η〉2s‖κ−1
〈η〉û(η)‖2Edη

}1/2

,

û(η) := (Fy→ηu)(η). For an open set Ω ⊆ R
q we also have the spaces

Ws
comp(Ω, E) and Ws

loc(Ω, E)

of vector-valued analogues of the spaces Hs
comp(Ω) and Hs

loc(Ω), respectively.

1.5 Conical exits to infinity

In this section we want to deepen the information of Remark 1.8 in the sense
of a more systematic discussion between edge symbols, standard operators in
polar coordinates, and symbols within the exit pseudo-differential calculus.

Let us first consider R
n+1
x̃ regarded as a space with ‘conical exit’ to infinity

|x̃| → ∞.

Definition 1.13 The space

Sμ;ν(Rn+1
x̃ × R

n+1

ξ̃
), (27)

μ, ν ∈ R, is defined to be the set of all a(x̃, ξ̃) ∈ C∞(Rn+1
x̃ × R

n+1

ξ̃
) such that

sup
{〈x̃〉−ν+|α|〈ξ̃〉−μ+|β||Dα

x̃D
β

ξ̃
a(x̃, ξ̃)| : (x̃, ξ̃) ∈ R

n+1 × R
n+1

}
<∞

for every α, β ∈ Nn+1. We also say that a symbol a(x̃, ξ̃) ∈ Sμ(Rn+1 × Rn+1)
has the exit property, if it belongs to the space (27); then μ is called the pseudo-
differential order, ν the exit order of a.

More generally,
Sμ;ν,ν′

(Rn+1
x̃ × R

n+1
x̃′ × R

n+1

ξ̃
)

denotes the set of all a(x̃, x̃′, ξ̃) ∈ C∞(R3(n+1)
x̃,x̃′,ξ ) such that

sup{〈x̃〉−ν+|α|〈x̃′〉−ν′+|α′|〈ξ̃〉−μ+|β||Dα
x̃D

α′
x̃′ a(x̃, x̃′, x̃)| : (x̃.x̃′, ξ̃) ∈ R

3(n+1)} <∞
for every α, α′, β ∈ Nn+1.

Moreover, we set

Sμ;ν
clξ̃,x̃

(Rn+1
x̃ × R

n+1

ξ̃
) := Sνcl(R

n+1
x̃ )⊗̂πSμcl(Rn+1

ξ̃
)

which is the space of classical symbols in ξ̃ and x̃.

12



Example 1.14 Let ω(t) ∈ C∞
0 (R+) be a cut-off function such that ω(t) = 1 for

t < 1
2 , ω(t) = 0 for t > 2

3 , and set

ψ(r, r′) := ω

(
(r − r′)2

1 + (r − r′)2
)
.

Then ψ represents an element of S0;0,0(Rr×Rr′ ×R
) (which is independent of
the covariable 	).

Let us set
Hs;g(Rn+1) := 〈x̃〉−gHs(Rn+1).

Theorem 1.15 For every a(x̃, ξ̃) ∈ Sμ;ν(Rn+1 × Rn+1) the associated pseudo-
differential operator Op(a) induces continuous operators

Op(a) : Hs;g(Rn+1)→ Hs−μ;g−ν(Rn+1)

for all s, g ∈ R.

Remark 1.16 By virtue of

S(Rn+1) = lim←−
N∈N

HN ;N (Rn+1)

it follows that Op(a) also induces a continuous operator

Op(a) : S(Rn+1)→ S(Rn+1).

Let us set

Lμ;ν
(cl)(R

n+1) :=
{
Op(a) : a(x̃, ξ̃) ∈ Sμ;ν

(clξ̃;x̃)(R
n+1 × R

n+1)
}
.

As is known, Op(·) induces an isomorphism

Op : Sμ;ν
(clξ̃;x̃)(R

n+1 × R
n+1)→ Lμ;ν

(cl)(R
n+1) (28)

for every μ, ν ∈ R, including μ = −∞ or ν = −∞. Note that L−∞;−∞(Rn+1 =⋂
μ,ν L

μ;ν(Rn+1) is equal to the space of all integral operators with kernel in
S(Rn+1 × Rn+1).

Definition 1.17 An element a(x̃, ξ̃) ∈ Sμ;ν(Rn+1 × Rn+1) is called elliptic, if
there exists a p(x̃, ξ̃) ∈ S−μ;−ν(Rn+1 × Rn+1) such that

a(x̃, ξ̃)p(x̃, ξ̃) = 1 mod Sμ−1;ν−1(Rn+1 × R
n+1).

An operator A ∈ Lμ;ν(Rn+1) is called elliptic if the associated symbol a(x̃, ξ̃) ∈
Sμ;ν(Rn+1 × R

n+1) is elliptic (cf. the bijection (28)).

For classical symbols a(x̃, ξ̃) ∈ Sμ;ν
clξ̃;x̃

(Rn+1 × R
n+1) we have a triple of ho-

mogeneous components,

σ(a) := (σψ(a), σe(a), σψe(a))

13



given on Rn+1×(Rn+1\{0}), (Rn+1\{0})×Rn+1, and (Rn+1\{0})×(Rn+1\{0}),
respectively. The homogeneous principal symbol σψ(a)(x̃, ξ̃) in ξ̃ order μ is as
usual,

σψ(a)(x̃, λξ̃) = λμσψ(a)(x̃, ξ̃) for all (x̃, ξ̃) ∈ R
n+1 × (Rn+1 \ {0}), λ ∈ R+.

Analogously, the principal exit symbol σe(a)(x̃, ξ̃) in x̃ of order ν has the prop-
erty

σe(a)(δx̃, ξ̃) = δνσe(a)(x̃, ξ̃) for all (x̃, ξ̃) ∈ (Rn+1 \ {0})× R
n+1, δ ∈ R+.

The third component is the homogeneous principal part of σe(a)(x̃, ξ̃) in ξ̃
of order μ and has the homogeneity

σψe(a)(δx̃, λξ̃) = δνλμσψe(a)(x̃, ξ̃) for all (x̃, ξ̃) ∈ (Rn+1\{0})×(Rn+1\{0}), λ, δ ∈ R+.

Remark 1.18 A symbol a(x̃, ξ̃) ∈ Sμ;ν
clξ̃;x̃

(Rn+1 × Rn+1) is elliptic in the sense
of Definition 1.17 if and only if

σψ(a)(x̃, ξ̃) �= 0 for all (x̃, ξ̃) ∈ R
n+1 × (Rn+1 \ {0}),

σe(a)(x̃, ξ̃) �= 0 for all (x̃, ξ̃) ∈ (Rn+1 \ {0})× R
n+1,

σψe(a)(x̃, ξ̃) �= 0 for all (x̃, ξ̃) ∈ (Rn+1 \ {0})× (Rn+1 \ {0}).
These three conditions are independent.

Theorem 1.19 Let A ∈ Lμ;ν(Rn+1), μ, ν ∈ R. Then the following conditions
are equivalent:

(i) the operator A is elliptic;

(ii) A induces a Fredholm operator

A : Hs;g(Rn+1)→ Hs−μ;g−ν(Rn+1) (29)

for some fixed s = s0, g = g0 ∈ R.

Theorem 1.20 (i) Let A ∈ Lμ;ν
(cl)(R

n+1) be elliptic. Then A has a parametrix

P ∈ L−μ;−ν
(cl) (Rn+1) in the sense

PA− 1, AP − 1 ∈ L−∞;−∞(Rn+1).

(ii) The Fredholm property of the operator (29) for some s = s0, g = g0 ∈ R

entails the Fredholm property of (29) for all s, g ∈ R.

(iii) Let A ∈ Lμ;ν(Rn+1) be elliptic. Then kerA and cokerA of the Fredholm
operator (29) is independent of s, g, and there are subspaces of finite di-
mension V,W ⊂ S(Rn+1) such that kerA = V and

imA+W = Hs−μ;g−ν(Rn+1), W ∩ imA = {0}.
We now interpret the stretched cone X∧ � (r, x) as a space with conical exit

r → ∞. In order to avoid clumpsy precautions for r → 0 we first pass to the
cylinder R×X and later on localise the operators on the plus side.
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Definition 1.21 We say that the cylinder R×X is equipped with the structure
of a manifold with conical exits r → ±∞ if there is given a locally finite atlas
of charts

χι : R× Uι → Γι, ι ∈ I,
for coordinate neighbourhoods Uι on X and open sets Γι ⊂ Rn+1 such that for
a constant R > 0 independent of ι for every ι, ι̃ ∈ I we have:

(i) Γι ∩ {x̃ ∈ Rn+1 : |x̃| ≥ R} = {λx̃ : x̃ ∈ Γι,R, λ ≥ 1} for Γι,R := Γι ∩ {|x̃| =
R};

(ii) χι(λr, x) = λχι(r, x) for every λ ≥ 1, |r| ≥ R;

(iii) the transition maps

τι̃,ι := χι̃χ
−1
ι : χι(R× (Uι ∩ Uι̃))→ χι̃(R× (Uι ∩ Uι̃))

have the property
τι̃,ι(λx̃) = λτι̃,ι̃(x̃)

for every |x̃| ≥ R, λ ≥ 1.

If R×X is equipped with a structure in that sense we also write X
 instead
of R×X.

Let us fix a locally finite partition of unity {ϕ′
ι}ι∈I on X subordinate to

{Uι}ι∈I , moreover, let {ψ′
ι}ι∈I be a system of functions ψ′

ι ∈ C∞
0 (Uι) such that

ψ′
ι ≡ 1 on suppϕ′

ι. Moreover, set

ϕι(r, x) = ϕ′
ι(x), ψι(r, x) = ψι(x)

for all (r, x) ∈ R×X .
Let us endow X
 with a Riemannian metric that is equal to a cone metric

gX� := dr2 + r2gX for |r| > R for a Riemannian metric gX on X . If dx denotes
a corresponding measure on X the associated measure on X
 for |r| > R is of
the form

|r|ndrdx (30)

for n = dimX .
Now let Lμ;ν

(cl)(Γι) denote the restriction of Lμ;ν
(cl)(R

n+1) to Γι (in the sense of
operators A : C∞

0 (Γι)→ C∞(Γι)), and let

Lμ;ν
(cl)(X
)

denote the space of all operators
∑
ι∈I ϕι

{
(χ−1
ι )∗Aι

}
ψι + C for arbitrary Aι ∈

Lμ;ν
(cl)(Γι) and C having a kernel in S((R×X)×(R×X)) := S(R×R, C∞(X×X)).

The concept of operators on manifolds with conical exits to infinity will be
necessary also in the set-up of operator-valued symbols, cf. Definition 1.1. Let
us recall some basic technicalities (the formulations will be slightly more general
than in the scalar case; so we also give additional information for E = Ẽ = C

and trivial κλ = κ̃λ).
Let E and Ẽ be Hilbert spaces with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ ,

respectively. Then
Sμ;ν,ν′

(Rq × R
q × R

q;E, Ẽ) (31)
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for μ, ν, ν′ ∈ R denotes the set of all a(y, y′, η) ∈ C∞(Rq × Rq × Rq,L(E, Ẽ))
such that∥∥∥κ̃−1

〈η〉
{
Dα
yD

α′
y′D

β
ηa(y, y

′, η)
}
κ〈η〉

∥∥∥
L(E,Ẽ)

≤ c〈η〉μ−|β|〈y〉ν−|α|〈y′〉ν′−|α′| (32)

for all (y, y′, η) ∈ R3q and α, α′, β ∈ Nq, with constants c = c(α, α′, β) > 0.
Similarly we have spaces of the kind

Sμ;ν(Rq × R
q;E, Ẽ) (33)

where the elements a(y, η) satisfy analogues of the estimates (32) (obtained by
simply omitting y′).

Elements of (31) are regarded as double symbols of corresponding pseudo-
differential operators Op(a). There are then unique left and right symbols

aL(y, η) and aR(y′, η)

belonging to Sμ;ν+ν′
(Rq × Rq;E, Ẽ) such that Op(a) = Op(aL) = Op(aR).

For instance, aL(y, η) can be calculated as an oscillatory integral aL(y, η) =∫∫
e−izζa(y, y + z, η + ζ)dzd̄ζ; a similar expression holds for aR(y′, η). Setting

Lμ;ν(Rq;E, Ẽ) := {Op(a) : Sμ;ν(Rq × R
q;E, Ẽ)}

we have an isomorphism

Op : Sμ;ν(Rq × R
q;E, Ẽ)→ Lμ;ν(Rq;E, Ẽ).

2 Edge quantisation

2.1 Pseudo-differential edge symbols

We now pass to the algebra of pseudo-differential edge symbols. These will be
parameter-dependent families of operators on the infinite (stretched) cone X∧

with a specific dependence on edge variables and covariables (y, η) ∈ Ω×R
q. In

this section X is assumed to be a closed compact C∞ manifold.
In order to model families of edge-degenerate pseudo-differential operators

we start from the space
Lμcl(X ; R1+q


,η ) (34)

of classical parameter-dependent pseudo-differential operators on X which is a
Fréchet space in a natural way. With p(r, y, 	, η) ∈ C∞(R+ × Ω, Lμcl(X ; R1+q


,η )
we can associate a family of pseudo-differential operators

opr(p)(y, η) ∈ C∞(Ω, Lμcl(X
∧; Rq)).

Remark 2.1 Let p̃(	̃, η̃) ∈ Lμcl(X ; R1+q

̃,η̃ ) be parameter-dependent elliptic of or-

der μ and set
b(r, 	, η) := r−μp̃(r	, rη).

Then for every η �= 0 there is an R(η) > 0 such that

b(r, 	, η) : Hs(X)→ Hs−μ(X)
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is a family of isomorphisms for all r ∈ R, r ≥ R and 	 ∈ R. In addition for a
suitable choice of cut-off functions ω(r) and ω̃(r) the expression

‖u‖Hs
cone(X

∧) := ‖ω|η|u‖Hs(R+×X) + ‖(1− ω|η|)opr(b)(η)(1 − ω̃|η|)u‖L2(R+×X)

is an equivalent norm in the space Hs
cone(X

∧).

Incidentally the parameter 	 plays the role of Imz for a complex variable
z = β + i	 with fixed β ∈ R. In this case instead of (34) we also write

Lμcl(X ; Γβ × R
q), (35)

cf. also the notation (17). Elements f(r, y, z, η) ∈ C∞(R+ × Ω, Lμcl(X ; Γ 1
2−γ ×

Rq)) will be regarded as amplitude functions of Mellin pseudo-differential oper-
ators

opγM (f)(y, η)u(r) :=
∫ ( r

r′
)−( 1

2−γ+i
)
f(r, y,

1
2
− γ + i	, η)u(r′)

dr′

r′
d̄	, (36)

d̄	 = (2π)−1d	. Also in this case we have

opγM (f)(y, η) ∈ C∞(Ω, Lμcl(X
∧; Rq)).

Definition 2.2 By Lμcl(X ; Cz×Rqη) we denote the space of all operator families
f(z, η) ∈ A(C, Lμcl(X ; Rqη)) such that

f(β + i	, η) ∈ Lμcl(X ; R1+q

,η )

for every β ∈ R, uniformly in compact β-intervals. Moreover, letM−∞(X ; Γδ)ε
for any β ∈ R, ε > 0, denote the set of all

f(z) ∈ A({δ − ε < Rez < δ + ε}, L−∞(X))

such that
f(β + i	) ∈ L−∞(X ; R
)

for every β ∈ (δ − ε, δ + ε), uniformly in compact β-intervals. Finally, we set

M−∞(X ; Γδ) := ∪ε>0M−∞(X ; Γδ)ε.

The spaces Lμcl(X ; C×Rq) andM−∞(X ; Γδ)ε are Fréchet with natural semi-
norm systems that immediately follow from the definition.

Remark 2.3 (i) If ω(r), ω̃(r) are arbitrary cut-off functions and f(y, z) ∈
C∞(Ω), M−∞(X ; Γn+1

2 −γ)), Ω ⊆ Rq open, we have

m(y, η) := r−νω[η]opγ−
n
2

M (f)(y)ω̃[η] ∈ Sνcl(Ω×R
q;Ks,γ(X∧), K∞,γ−ν(X∧))

(37)
for every s ∈ R. For the principal part of order ν we have

σ∧(m)(y, η) = r−νω|η|opγ−
n
2

M (f)(y)ω̃|η|. (38)
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(ii) Let h(r, y, z, η) := h̃(r, y, z, rη) for h̃(r, y, z, η̃) ∈ C∞(R+ ×Ω, Lμcl(X ; Cz ×
R
q
η̃)), and let ϕ0(r), ϕ1(r) ∈ C∞

0 (R+), and ϕ1 ≡ 0 on supp ϕ0 (e.g., ϕ1

may be a cut-off function, ϕ0 ∈ C∞
0 (R+)). Then

g(y, η) := ϕ1(r[η])r−μopγ−
n
2

M (h)(y, η)ϕ0(r[η])

is a flat Green symbol of order μ.

The following result may be interpreted as a Mellin quantisation.

Theorem 2.4 For every p(r, y, 	, η) of the form

p(r, y, 	, η) = p̃(r, y, 	̃, η̃)
∣∣

̃=r
,η̃=rη

for a p̃(r, y, 	̃, η̃) ∈ C∞(R+ ×Ω, Lμcl(X ; R1+q

̃,η̃ )) there exists an h(r, y, z, η) of the

form
h(r, y, z, η) = h̃(r, y, z, η̃)|η̃=rη

for an h̃(r, y, z, η̃) ∈ C∞(R+ × Ω, Lμcl(X ; C× Rq)) such that

opr(p)(y, η) = opγM (h)(y, η) mod C∞(Ω, L−∞(X∧; Rq)),

for every γ ∈ R, and h̃(r, y, zη̃) is unique modC∞(R+ × Ω, L−∞(X ; C× Rq)).
Moreover, setting

p0(r, y, 	, η) := p̃(0, y, r	, rη), h0(r, y, z, η) := h̃(0, y, z, rη) (39)

we also have

opr(p0)(y, η) = opγM (h0)(y, η) mod C∞(R+ × Ω, L−∞(X∧; Rq))

for every γ ∈ R.

A proof may be found in [8], see also [9], or [4].
Let us fix cut-off functions

ω(r), ω̃(r)

such that ω̃ ≡ 1 on suppω; in that case we write ω ≺ ω̃. Set

χ(η) = 1− ω(r), χ̃(η) = 1− ˜̃ω(r) (40)

for another cut-off function ˜̃ω(r) such that ˜̃ω ≺ ω. Moreover, choose cut-off
functions σ(r), σ̃(r).

Let
p(r, y, 	, η), h(r, y, z, η) (41)

be operator families related to each other as in Theorem 2.4, and set

a(y, η) := r−μσ
{
ω[η]opγ−

n
2

M (h)(y, η)ω̃[η] + χ[η]opr(p)(y, η)χ̃[η]

}
σ̃ (42)

n = dimX , where ωc(r) := ω(rc), χc(r) := χ(rc), etc., for any c > 0.
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Remark 2.5 Let a(y, η) be an operator function of the form (42). Then we
have

a(y, η) ∈ C∞(Ω, Lμcl(X
∧; Rq)).

The parameter-dependent homogeneous principal symbol of a(y, η)

σψ(a)(r, x, y, 	, ξ, η) ∈ C∞(T ∗(R+ ×X × Ω× R
1+n+q \ 0))

has the form

σψ(a)(r, x, y, 	, ξ, η) = σ(r)σ̃(r)r−μ p̃(μ)(r, x, y, r	, ξ, rη),

where p̃(μ)(r, x, y, 	̃, ξ, η̃) denotes the parameter-dependent homogeneous princi-
pal symbol of p̃(r, y, 	̃, η̃) ∈ C∞(R+ × Ω, Lμcl(X ; R1+q


̃,η̃ )) of order μ.

Theorem 2.6 We have

a(y, η) ∈ Sμ(Ω× R
q;Ks,γ(X∧),Ks−μ,γ−μ(X∧))

for every s ∈ R. Moreover, for every ε > 0 we have

a(y, η) ∈ Sμ(Ω× R
q;Sγε (X∧),Sγ−με (X∧)).

A proof of Theorem 2.6 may be found in [3, Section 2.1.3].
Theorem 2.6 can be regarded as a quantisation for edge-degenerate families

of pseudo-differential operators as in Theorem 2.4. In fact, Theorem 2.6 gives
rise to continuous operators

Opy(a) :Ws
comp(Ω,Ks,γ(X∧))→Ws−μ

loc (Ω,Ks−μ,γ−μ(X∧)) (43)

for all s, γ ∈ R. In other words, the correspondence p→ a → Op(a) represents
an operator convention that associates with p continuous operators (43).

Let us set

σ∧(a)(y, η) := r−μ
{
ω|η|opγ−

n
2

M (h0)(y, η)ω̃|η| + χ|η|opr(p0)(y, η)χ̃|η|
}

for the families h0 and p0 as in Theorem 2.4 and (y, η) ∈ T ∗Ω\0. Then we have

σ∧(a)(y, λη) = λμκλσ∧(a)(y, η)κ−1
λ (44)

for all λ ∈ R+.

2.2 A new edge quantisation

The new quatisation of edge degenerate symbols consists of taking an operator
family of the form

a(y, η) := r−μσ
{
ω[η]opγ−

1
2

M (h)(y, η)ω̃[η] + χ[η]ψ[η]opr(p)(y, η)
}
σ̃ (45)

instead of (42), where ω, ω̃, ω̃, σ, σ̃ and p, h are as before, while

ψ[η](r, r′) := ψ(r[η], r′[η]),

with the function ψ(r, r′) of Example 1.14.
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In order to compare (42) and (45) we analyse operator families associated
with

p(r, 	, η) := p̃(r, r	, rη)

for an element p̃(r, 	̃, η̃) ∈ C∞(R+, L
μ
cl(X ; R1+q


̃,η̃ )) (it is enough to assume the
y-independent case). We assume that

p̃(r, 	̃, η̃) is independent of r for r ≥ R

some constant R > 0.

Theorem 2.7 Let σ, σ̃, χ, χ̃ be as in (42) and form

g(η) := r−μσ(r)χ[η](r)(1 − ψ[η](r, r′))opr(p)(η)χ̃[η](r′)σ̃(r′).

Then we have
g(η), g∗(η) ∈ Sμcl(Rq;Ks,γ(X∧),SO(X∧)) (46)

for every s, γ ∈ R, i.e., g(η) is a flat Green symbol of order μ, (cf. Example
1.11 and the notation (25)).

Proof. We first show the property

g(η), g∗(η) ∈ C∞(Rq,L(Ks,γ(X∧),SO(X∧)).

Let us consider g(η); the corresponding relation for g∗(η) can be obtained in an
analogous manner. It is enough to show

g(η) ∈ C∞(Rq,L(Ks,γ(X∧)U ,SO(X∧)U )) (47)

for every coordinate neighbourhood U on X where

Ks,γ(X∧)U := {u(r, x) ∈ Ks,γ(X∧) : suppu ⊆ R+ × U}, (48)

SO(X∧)U := {u(r, x) ∈ SO(X∧) : suppu ⊆ R+ × U}. (49)

Here we use the fact that there is an a tlas {U1, . . . , UN} on X in such a way that
for every two indices 1 ≤ j, k ≤ N also Uj ∪ Uk is a coordinate neighbourhood
on X . Without loss of generality we may assume that the coordinate neigh-
bourhood U in (48), (49) are contained in other coordinate neighbourhoods Ũ
such that U are compact subsets. Now, if we pass to local coodinates on X we
can write

g(η)u(r, x) = r−μσ(r)χ[η](r)
∫∫

ei(r−r
′)
+i(x−x′)ξ

p̃(r, x, x′, r	, ξ, rη)(1 − ψ[η](r, r′))χ̃[η](r′)σ̃(r′)
u(r′, x′)dr′dx′d̄	d̄ξ,

(50)

where suppu(r, x) is contained in R+ ∈ K for a compact set K ⊂ Rn. Here
p̃(r, x, x′, 	̃, ξ, η̃) is a classical symbol in (	̃, ξ, η̃) ∈ R

1+n+q of order μ. After mul-
tiplying p̃(r, x, x′, 	̃, ξ, η̃) from the left and the right by localising functions ϕ0(x)
and ψ0(x′), respectively, belonging C∞

0 (K), we can assume that p̃(r, x, x′, 	̃, ξ, η̃)
has compact support with respect to (x, x′).
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We want to compute the distributional kernel of (50). To this end we choose
an N and write ei(r−r

′)
 = |r − r′|−2ND2N

 ei(r−r

′)
. Inserting this in (50) and
integrating by parts under the integral givces us

g(η)u(r, x) =r−μσ(x)χ[η](r)
∫∫
|r[η]− r′[η]|−2N (1− ψ[η](r, r′))

ei(r−r
′)
+i(x−x′)ξ(r[η])2N (D2N


̃ p̃)(r, x, x′, r	, ξ, rη)

χ̃[η](r′)σ̃(r′)u(r′, x′)dr′dx′d̄	d̄ξ.

The kernel of this operator can be written as

K(g)(r, r′, x, x′; η) = r−μσ(r)χ[η](r)
∫∫
|r[η] − r′[η]|2N (1 − ψ[η](r, r′))

ei(r−r
′)
+i(x−x′)ξ(r[η])2N (D2N


̃ p̃)

(r, x, x′, r	, ξ, rη)χ̃[η](r′)σ̃(r′)d̄	d̄ξ.

(51)

By virtue of the symbolic estimates

|D2N

̃ p̃(r, x, x′, r	, ξ, rη)| ≤ c〈r	, ξ, rη〉μ−2N (52)

for all x, x′ ∈ K and r ∈ suppσχ[η] we see that the integral (51) converges,
together with all derivatives in r, r′, x, x′ up to some order M when N = N(M)
is chosen sufficiently large. This shows that for every fixed η ∈ R

q the kernel of
(51) belongs to C∞

0 (R+ ×Rn ×R+×Rn), and this remains true if η varies in a
compact set ⊂ Rq. It is also clear that the kernel smoothly depends on η ∈ Rq.
Thus we have verified the relation (47). For the formal adjoint we can argue in
a similar manner.

For the proof of (46) we first generate the homogeneous principal symbol of
order μ

σ∧(g)(η) = lim
λ→∞

λ−μκ−1
λ g(λη)κλ for η �= 0.

In local coordinates on X it takes the form

σ∧(g)(η)u(r, x) = r−μχ|η|(r)
∫∫

ei(r−r
′)
+i(x−x′)ξ(1− ψ|η|(r, r′))

p̃(0, x, x′; r	, ξ, rη)χ̃|η|(r′)u(r′, x′)dr′dx′d̄	d̄ξ.

Integration by parts gives us again

σ∧(g)(η)u(r, x) = r−μχ|η|(r)
∫∫
|r|η| − r′|η||−2N (1− ψ|η|(r, r′))

ei(r−r
′)
+i(x−x′)ξ(r|η|)2N (D2N


̃ p̃)(0, x, x′, r	, ξ, rη)χ̃|η|(r′)

u(r′, x′)dr′dx′d̄	d̄ξ

for every N ∈ N. Using the estimate

|r − r′|−2N (1− ψ(r, r′)) ≤ 〈r〉−N 〈r′〉−N (53)

and the symbolic estimate (52) we can easily verify that σ∧(g)(η) has a ker-
nel in SO(X∧)U ⊗̂πSO(X∧)U . Assuming for the moment that p̃ = p̃(	̃, η̃) is
independent of r we have

g(η)− χ(η)σ∧(g)(η) ∈ S−∞(Rq;Ks,γ(X∧),SO(X∧))
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for any excision function χ(η) ∈ C∞(Rq). Otherwise, we can successively com-
pute the lower order terms by a Taylor expansion

p̃(r, 	̃, η̃) =
L∑
l=0

rlp̃l(	̃, η̃) + rL+1p̃(L+1)(r, 	̃, η̃).

The above process applied to rlp̃l(	̃, η̃) then gives us the homogeneous compo-
nents of g(η) of order μ−l. Another elementary calculation with rL+1p̃(L+1)(r, 	̃, η̃)
yields a remainder in Sμ−(L+1)(Rq;Ks,γ(X∧),SO(X∧)) which shows that our
symbol is classical. For the formal adjoints we can do the same.

Proposition 2.8 Let p̃(r, 	̃, η̃) ∈ C∞(R+, L
−∞(X ; R1+q


̃,η̃ )) be independent of r
for r ≥ R for some R > 0. Then

g(η) := r−μσ(r)χ[η](r)opr(p)(η)χ̃[η](r′)σ̃(r′) (54)

is a flat Green symbol of order μ; in particular, it satisfies the relations (46).

Proof. It is evident that g(η) has the property (46). It remains to show that
g(η) is a classical symbol. Let us first consider the case that p̃ = p̃(	̃, η̃) is
independent of r. Then for η �= 0 we can set

g(μ)(η) := r−μχ|η|(r)opr(p)χ̃|η|(r′).

Write

g(μ)(η) = r−μχ|η|ψ|η|(r, r′)opr(p)(η)χ̃|η| + r−μχ|η|(1− ψ|η|(r, r′))opr(p)(η)χ̃|η|
(55)

with the function ψ(r, r′) of Example 1.14, and ψ|η|(r, r′) := ψ(r|η|, r′|η|). Ob-
serve that we have

ψ(r, r′)ϕ(r) ∈ S(R × R) (56)

for every ϕ ∈ S(R). The first summand on the right of (55) is a Schwartz
function in r, r′ with values in L−∞(X). In fact, χ|η|(r)p̃(	̃, rη) belongs to
S(Rr , L−∞ (X ; R
̃)) for every fixed η �= 0; then applying a relation of the kind
(56) gives us this property. For the second summand on the right of (55) we
can proceed in a similar manner as in the proof of Theorem 2.7.

We obtain altogether that the kernel of g(η)(η) belongs to SO(X∧)⊗̂πSO(X∧)
for every η �= 0. Thus

f(η) := r−μχ[η]opr(p)(η)χ̃[η] (57)

is a Green symbol, since f(η), f∗(η) have the property (46) (with f instead of
g) and f(η) = g(μ)(η) for large |η|. Applying Remark 1.12 to ϕ := |η|, ϕ̃ := σ̃
we obtain the (54) itself has the desired property.

In the case of an r-dependence of p̃(r, 	̃, η̃) we assume that p̃(r, 	̃, η̃) is in-
dependent of r for large r; otherwise we subtract p̃(∞, 	̃, η̃) which is constant
in r and can be treated as before and then consider the difference p̃(r, 	̃, η̃) −
p̃(∞, 	̃, η̃). Then we can write

p̃(r, 	̃, η̃) =
∞∑
j=0

λjϕj(r)p̃j(	̃, η̃)
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with λj ∈ C,
∑ |λj | < ∞, ϕj ∈ C∞

0 (R+), p̃j(	̃, η̃) ∈ L−∞(X ; R1+q

̃,η̃ ) tending to

0 in the respective spaces as j → ∞. This easily reduces the general case to
r-indeplendent p̃ when we apply other standard arguments, in particular, that
r−μχ[η]opr(pj)(η)χ̃[η] tends to zero for j → ∞ in the space of Green operators
of the kind discussed before.

2.3 Edge symbols as parameter-dependent cone operator
families

By an edge amplitude function of order μ, referring to the weight data g =
(γ, γ − μ), we understand an operator family of the form

a(y, η) = r−μσ{ω[η]opγ−
n
2

M (h)(y, η)ω̃[η]+χ[η]opr(p)(y, η)χ̃[η]}σ̃+m(y, η)+g(y, η),

where the first expression on the right hand side is as in (42), moreover, m(y, η)
is a smoothing Mellin edge symbol and g(y, η) a Green symbol as in Example
1.11 (for j− = j+ = 0).

Let Rμ(Ω× Rq; g) denote the space of all those a(y, η). Let us set

σ(a) := (σψ(a), σ∧(a)), (58)

where σψ(a) is defined as in Remark 2.5; we take into account that σψ(m+g) =
0. Moreover, we set

σ∧(a)(y, η) := r−μ{ω|η|opγ−
n
2

M (h0)(y, η)ω̃|η|
+ χ|η|opr(p0)(y, η)χ̃|η|}+ σ∧(m+ g)(y, η)

with the notation (39) and σ∧(m+g)(y, η) as the homogeneous principal symbol
of (m+ g)(y, η) as a classical symbol, cf. also (38) for μ = ν.

Theorem 2.9 Let a(y, η) ∈ Rμ(Ω×Rq, g) and assume that σ(a) = 0. Then we
have

a(y, η) ∈ Sμ−1(Ω× R
q;Ks,γ(X∧),Ks−μ,γ−μ(X∧)),

for every s ∈ R, and a(y, η) takes values in the space of compact operators
Ks,γ(X∧)→ Ks−μ,γ−μ(X∧), s ∈ R.

Proof. The relation σψ(a) = 0 implies that

σ(r)σ̃(r)p(r, y, 	̃, η̃) ∈ C∞(R+ × Ω, Lμ−1
cl (X ; R1+q


̃,η̃ ))

and

σ(r)σ̃(r)h̃(r, y, z, η̃) ∈ C∞(R+ × Ω, Lμ−1
cl (X ; C× R

q
η̃)).

This yields

p̃(0, y, 	̃, η̃) ∈ C∞(Ω, Lμ−1
cl (X ; R1+q)), h̃(0, y, z, η̃) ∈ C∞(Ω, Lμ−1

cl (X ; C× R
q)).

Now σ∧(a)(y, η) = 0 implies that

r−μ{ω|η|opγ−
n
2

M (h0)(y, η)ω̃|η| +χ|η|opr(p0)(y, η)χ̃|η|} = −σ∧(m+ g)(y, η). (59)

23



Both sides of the latter relation are operators in the cone algebra on X∧. That
means their subordinate symbols (interior, conormal, exit) symbols coincide. In
particular, we have

σc(r−μω|η|opγ−
n
2

M (h0)(y, η)ω̃|η|)(z) = h̃0(0, y, z, 0) = −σcσ∧(m(y, η))(z).

In other words, setting h00(y, z) := f̃(0, y, z, 0), we have

h00(y, z) = −f(y, z) (60)

(when m(y, z) is given as r−μω[η]opγ−
n
2

M (f)(y)ω̃[η] for an f ∈ C∞(Ω,M−∞

(X ; Γn+1
2 −γ)ε) which we assume without loss of generality). In addition we

may assume that σ ≡ 1, σ̃ ≡ 1 on suppω[η] and supp ω̃[η]. It follows that

δ(η){r−μ{ω[η]opγ−
n
2

M (h0 − h00)y, η)ω̃[η] + χ[η]opr(p0)(y, η)χ̃[η]}+ g(y, η)} (61)

is a Green symbol of order μ− 1 for every excision function δ(η) in Rq. In fact,
the relation (59) shows that

r−μ{ω|η|opγ−
n
2

M (h0 − h00)ω̃|η| + χ|η|opr(p0)(y, η)χ̃|η|} = −σ∧(g)(y, η).

This entails the identity (61) for all η with |η| ≥ const for a constant > 0. On
the other hand, using the technique of proving Theorem 2.9 we see that the left
hand side of (61) is an operator-valued symbol, even classical in this situation,
with −σ∧(g)(y, η) as the homogeneous principal symbol. Then the same is true
of

g0(y, η) =: r−μσδ(η){ω[η]opγ−
n
2

M (h0 − h00)(y, η)ω̃[η] + χ[η]opr(p0)(y, η)χ̃[η]}σ̃
+ δ(η)g(y, η),

cf. Remark 1.12.
Now the symbol a(y, η) can be written in the form

r−μσ{ω[η]opγ−
n
2

M (h− h0)(y, η)ω̃[η] + χ[η]opr(p− p0)(y, η)χ̃[η]}σ̃
+ δ(η){r−μσ{ω[η]opγ−

n
2

M (h0 − h00)(y, η)ω̃[η] + χ[η]opr(p0)(y, η)χ̃[η]}σ̃}
+ g(y, η) + (1− δ(η)){r−μσ{ω[η]opγ−

n
2

M (h0 − h00)(y, η)ω̃[η]

+ χ[η]opr(p0)(y, η)χ̃[η]}σ̃ + g(y, η)}
= r−μσ{ω[η]opγ−

n
2

M (h− h0)(y, η)ω̃[η] + χ[η]opr(p− p0)(y, η)χ̃[η]}σ̃
+ g0(y, η) + (1 − δ(η)){r−μσ{ω[η]opγ−n/2M (h0 − h00)(y, η)
+ χ[η]opr(p0)(y, η)χ̃[η]}σ̃}

(62)

The summand g0(y, η) is a Green symbol of order μ− 1 and takes values in
compact operators. Also

r−μσ{ω[η]opγ−
n
2

M (h− h0)(y, η)ω̃[η]}σ̃ (63)

is compact for every (y, η), since we can write h − h0 = rh̃(1)(r, y, z, rη) for an
h̃(1)(r, y, z, η̃) ∈ C∞(R+×Ω, Lμ−1

cl (X ; C×R
η

ξ̃
)) which yields an improvement of
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the weight at r = 0, together with the improvement of the order. For a similar
reason also

r−μσ{χ[η]opr(p− p0)(y, η)χ̃[η]}σ̃ (64)

is compact for every (y, η). Finally, (63) and (64) are operator-valued symbols
of order μ − 1, by similar arguments as for the proof of Theorem 2.6, and the
last summand on the right of (62) takes values in compact operators and is of
order −∞ in η.

3 Composition properties

3.1 Composition of edge symbols

In this section we analyse the composition properties of edge amplitude functions
of the form (42). It will be more convenient here to employ the cut-off functions
ω(r), ω̃(r), ˜̃ω(r) rather than the excision functions (40).

Moreover, since the presence of the variables y ∈ Ω only causes minor mod-
ifications of the arguments, we content ourselves with the y-independent case.
Let

a(η) := r−μσ{aM (η) + aψ(η)}σ̃,
b(η) := r−νσ{bM (η) + bψ(η)}σ̃,

where σ(r) and σ̃(r) are arbitrary cut-off functions, and

aM (η) := ω[η]opγ−ν−
n
2

M (h1)(η)ω̃[η], aψ(η) := (1− ω[η])opr(p1)(η)(1 − ˜̃ω[η]),

bM (η) := ω[η]opγ−
n
2

M (h2)(η)ω̃[η], bψ(η) := (1 − ω[η])opr(p2)(η)(1 − ˜̃ω[η]).

Here pj(r, ρ, η) = p̃i(r, rρ, rη) for families p̃i(r, ρ̃, η̃) ∈ C∞(R+, L
μi

cl (X ; R1+q
ρ̃,η̃ ))

with μ1 = μ, μ2 = ν and hi(r, z, η) = h̃i(r, z, rη) for elements h̃i(r, z, η̃) ∈
C∞(R+, L

μi

cl (X ; C×Rq)), i = 1, 2, where we assume that hi is the Mellin quan-
tisation of pi in the sense of Theorem 2.4.

Theorem 3.1 We have (with respect to the pointwise composition of operator
functions)

(ab)(η) = σr−(μ+ν){cM (η) + cψ(η)}σ̃ + g(η)

where

cM (η) = ω[η]opγ−
n
2

M (h)(η)ω̃[η] + (1− ω[η])opr(p)(η)(1 − ˜̃ω[η])

for operator functions p(r, ρ, η) and h(r, z, η) which are of the same nature as
those in Theorem 2.4, now of order μ + ν, and g(η) is a flat Green symbol of
order μ+ ν. We have

σψ(ab) = σψ(a)σψ(b), σ∧(a)(η)σ∧(b)(η) = σ∧(ab)(η). (65)

Proof. For the proof we employ the abbreviations a = a(η) for

a = ωa0ω̃ + (1− ω)a1(1 − ˜̃ω),
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where the cut-off functions ω, ω̃, ˜̃ω are have the meanning ω = ω[η], etc., and

a0 := σr−μopγ−ν−
n
2

M (h1)σ̃, a1 := σr−μopr(p1)σ̃,

and, similarly,
b = ωb0ω̃ + (1 − ω)b1(1− ˜̃ω)

for
b0 := σr−νopγ−

n
2

M (h2)σ̃, b1 := σr−μopr(p2)σ̃.

In the following computations we systematically employ the properties ˜̃ω ≺ ω ≺
ω which implies ωω̃ = ω, ˜̃ωω = ˜̃ω. We then obtain ab = P +

∑6
k=1Gk after

elementary rearrangements of summands in the composition ab for

P := ωa0ω̃b0ω̃ + (1− ω)a1(1− ˜̃ω)b1(1 − ˜̃ω)

and

G1 := ˜̃ωa0(ω̃ − ω)b1(1− ˜̃ω) + (ω − ˜̃ω)a0(ω̃ − ω)b1(1− ω̃),

G2 := (1− ω̃)a1(ω − ˜̃ω)b0ω̃ + (ω̃ − ω)a1(ω − ˜̃ω)b0 ˜̃ω,
G3 := (ω − ˜̃ω)a0(ω − ω̃)b0 ˜̃ω + ˜̃ωa0(ω − ω̃)b0ω̃,

G4 := (1− ω̃)a1(˜̃ω − ω)b1(1 − ˜̃ω) + (ω̃ − ω)a1(˜̃ω − ω)b1(1− ω̃),

G5 := (ω̃ − ω)a0(˜̃ω − ω)(b1 − b0)(ω̃ − ˜̃ω),

G6 := (ω − ˜̃ω)(a1 − a0)(ω̃ − ω)b0(ω̃ − ˜̃ω).

We now write

P = ωa0b0ω̃ + (1− ω)c1(1− ˜̃ω) +G7 +G8

for

G7 := ωa0(ω̃ − 1)b0ω̃, G8 := (1 − ω){a1(1 − ˜̃ω)b1 − c1}(1− ˜̃ω),

and
c1(η) = σr−(μ+ν)opr(p)(η)σ̃ (66)

for an operator function p(r, ρ, η) = p̃(r, rρ, rη) which is defined by an element

p̃(r, ρ̃, η̃) ∈ C∞(R+, L
μ+ν
cl (X ; R1+q

ρ̃,η̃ )), (67)

obtained by computing the Leibniz product #r with respect to r,

r−(μ+ν)p̃(r, rρ, rη) = r−μp̃1(r, rρ, rη)�r σ̃(r)σ(r)r−ν p̃2(r, rρ, rη).

In particular, p̃(r, ρ̃, η̃) can be chosen to be smooth up to r = 0. Moreover, we
have

a0b0 = σr−μopγ−ν−
n
2

M (h1)(η)σ̃σr−νopγ−
n
2

M (h2)(η)σ̃

= σr−(μ+ν)opγ−
n
2

M (T νh1)(h)opγ−
n
2

M (σσ̃h2)(η)σ̃.

We therefore obtain a Mellin symbol h(r, z, η) = h̃(r, z, rη) for an h̃(r, w, η̃) ∈
C∞(R+, L

μ+ν
cl (X ; C× Rq)) such that

a0b0 = σr−(μ+ν)opγ−
n
2

M (h)(η)σ̃. (68)
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Summing up it follows that

ab = ωc0ω̃ + (1− ω)c1(1 − ˜̃ω) + g,

where c0(η) and c1(η) are given by (65) and (66), respectively, and

g =
8∑
j=1

Gj . (69)

It turns out that (69) is a flat Green symbol. This will be verified in the following
section.

The relation (65) follows from the fact that we can apply the above compu-
tations for the compositions to corresponding operator functions, where [η] is
replaced by |η|, η �= 0, and all the first r-variables are frozen at zero.

3.2 Characterisation of remainders

In order to characterise (69) as a flat Green symbol we consider the summands
separately. Let us write G1 := G′

1 +G′′
1 for

G′
1 := ˜̃ωa0(ω̃ − ω)b1(1− ˜̃ω), G′′

1 := (ω − ˜̃ω)a0(ω̃ − ω)b1(1 − ω̃).

We have
G′

1 = CD for C := ˜̃ωa0(ω̃ − ω), D := ϕb1(1− ω̃)

for any ϕ ∈ C∞
0 (R+) that is equal to 1 on supp(ω̃ − ω). The function ϕ is

interpreted (similarly as the cut-off functions) as an η-dependent factor, i.e.,
ϕ = ϕη for ϕη(r) := ϕ(r[η]). The family of operators C is a flat Green symbol,
see Example 1.11 and Remark 2.3. It is then easy to verify that the composition
with D gives again a Green symbol.

For G′′
1 we choose another cut-off function ω0 that is equal to 1 on suppω

and such that ω̃ is equal to 1 on suppω0 (this is always possible). Then we can
write G′′

1 = H + L for

H := (ω − ˜̃ω)a0(1− ω0)(ω̃ − ω)b1(1− ω̃),

L := (ω − ˜̃ω)a0ω0(ω̃ − ω)b1(1 − ω̃).

For any ϕ ∈ C∞
0 (R+) such that ϕ ≡ 1 on supp(ω̃ − ω) we have H = CD for

C := (ω − ˜̃ω)a0(1− ω0)ϕ,D := (ω̃ − ω)b1(1− ω̃),

(in this proof, C and D occur in different meaning which will be clear by the
context). Since (1 − ω) vanishes on supp(ω − ω̃), the factor C is smoothing
and can be treated in a similar manner as the corresponding factor occurring in
G′

1. As above it is agin easy to verify that then also H is a flat Green symbol.
Moreover, taking some ϕ ∈ C∞

0 (R+), ϕ ≡ 1 on supp(ω̃ − ω), we can write
L = DC for

D := (ω − ˜̃ω)a0(ω̃ − ω), C := ω0ϕb1(1− ω̃).

Since 1 − ω̃ vanishes on suppω0, the family C is smoothing and a flat Green
symbol. This implies the same for L.

The argument for Gk, 1 < k ≤ 8, are similar and left to the reader.
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