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Abstract

The aim of this paper is to explain the notion of subspace defined by means
of pseudodifferential projection and give its applications in elliptic theory. Such
subspaces are indispensable in the theory of well-posed boundary value problems
for an arbitrary elliptic operator, including the Dirac operator, which has no classical
boundary value problems. Pseudodifferential subspaces can be used to compute the
fractional part of the spectral Atiyah—Patodi—Singer eta invariant, when it defines a
homotopy invariant (Gilkey’s problem). Finally, we explain how pseudodifferential
subspaces can be used to give an analytic realization of the topological K-group
with finite coeflicients in terms of elliptic operators. It turns out that all three
applications are based on a theory of elliptic operators on closed manifolds acting
in subspaces.
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Introduction

Pseudodifferential subspaces and boundary value problems. A subspace (of some
space of functions) is said to be pseudodifferential if it is determined by a projection that
is a pseudodifferential operator.

!The work is partially supported by RFBR grants NN 05-01-00982, 03-02-16336



The notion of pseudodifferential projections (and subspaces) goes back to the work
of Hardy, who defined the celebrated Hardy space as the range of a pseudodifferential
projection in the space of square integrable functions on the circle; since then, pseudod-
ifferential subspaces were used in the theory of Toeplitz operators (Gohberg—Krein [37]),
in the proof of the finiteness theorem for classical boundary value problems (Calderén,
Seeley [26, 67, 69]), in the construction of asymptotics of eigenvalues (Birman—Solomyak
[14]) and in other places.

Subspaces also have significant applications in studies related to topology. Let us give
some examples. In the paper of Wojciechowski [73] (an extended account of the results
can be found in [18]) it was shown that the space of projections that differ from a fixed
(say, pseudodifferential) projection by a compact operator is a classifying space for K-
theory. This result is similar to the Atiyah—Jénich theorem [6], which gives a realization
of the classifying space for K-theory in terms of Fredholm operators. Subspaces defined
by pseudodifferential projections served as a prototype for the definition by Kasparov [42]
and Brown-Douglas—Fillmore [25] of the odd analytic K-homology.

Pseudodifferential subspaces are also important in modern elliptic theory. Indeed, it
is well known that by no means all elliptic operators on a manifold with boundary have
well-defined (Fredholm) boundary value problems. In other words, for a general elliptic op-
erator one cannot impose boundary conditions such that the so-called Shapiro—Lopatinskii
condition is satisfied (e.g., see [41]). Unfortunately, the class of operators for which such
conditions do not exist includes many important operators such as Cauchy—Riemann,
Dirac, signature operators and others. The following question emerges naturally: is there
a natural extension of elliptic theory which enables one to define Fredholm boundary value
problems for geometric operators?

The answer to this question is contained in this paper. Let us explain it here in a few
words. The simplest examples like the Cauchy—Riemann operator show that although
these operators do not have Fredholm problems in Sobolev spaces, Fredholm problems
do exist if the boundary values belong to some subspaces of the Sobolev spaces, e.g., the
Hardy space (for the Cauchy—Riemann operator).

Important examples of well-defined boundary value problems were defined for Dirac
operators in the series of papers by Atiyah, Patodi, and Singer [2, 3, 4] on spectral
asymmetry. In particular, it was shown that for a suitable choice of the subspace the
boundary value problem has the Fredholm property and its index was calculated. Actually,
a closer look shows that pseudodifferential subspaces appear already in classical boundary
value problems as the so-called Calderén—Seeley subspaces. In this case, the Shapiro—
Lopatinskii (Atiyah-Bott) condition requires this subspace to be isomorphic to a Sobolev
space. Of course, this is a very restrictive condition. Calderén—Seeley subspaces rarely
satisfy it. On the other hand, in the framework of pseudodifferential subspaces this
restrictive condition is absent and the existence of well-defined boundary value problems
for arbitrary operators is a trivial statement: it suffices to take the Calderén—Seeley
subspace as the space of boundary values of the problem.



Homotopy invariants of pseudodifferential subspaces and the Atiyah—Patodi—
Singer n-invariant. The question of finding homotopy invariants of pseudodifferential
subspaces is very important and interesting. It turns out that such invariants can be
obtained from suitable index formulas for elliptic operators acting in subspaces. For suf-
ficiently large classes of operators, the index is the sum of contributions of the principal
symbol and of the subspaces. More precisely, there are index formulas [64, 65]

ind(D, Ly, Ly) = f(0) + d(L1) — d(L), (1)

where the triple D, Zl, Zg defines an elliptic operator in subspaces Zl and Zg, o is the
principal symbol of D, d is the dimension functional defined on the class of pseudodiffer-
ential subspaces, and f is a functional on the set of principal symbols of elliptic operators.
If the subspaces L; o satisfy the so-called parity condition (see below), d(L) is equal to
the n-invariant of a self-adjoint operator having L as its positive spectral subspace.

Let us note that the functional d is not a homotopy invariant of the principal symbol
of the projection defining the subspace. However, one can show that the fractional part
of this functional is homotopy invariant. Thus we have the problem of computing this
fractional part in topological terms.

The interest in this problem originates from the fact that, as we mentioned earlier, if
the parity condition is satisfied, then the functional d coincides with the n-invariant of
Atiyah, Patodi, and Singer. The computation of the fractional part of the n-invariant has
important applications (see below).

It is well known that the n-invariant of an elliptic self-adjoint operator is only a spectral
invariant. However, in some classes of operators its fractional part defines a homotopy
invariant. If the n-invariant is a homotopy invariant, one obtains the problem of computing
it in topological terms. The first computation of the n-invariant was made in [3, 4], where
operators with coefficients in flat bundles were considered.

Another interesting class of operators with homotopy invariant n-invariants was found
by P. Gilkey [35]. This class consists of differential operators with the parity of their order
opposite to the parity of the dimension of the manifold (Gilkey’s parity condition). The
homotopy invariant fractional part of the n-invariant is computed in this case in terms of
subspaces (see [60], [62]). Such computations have important applications in geometry.
Here we confine ourselves to a brief survey of results directly related to the present paper.
For other aspects of the n-invariant, we refer the reader to remarkable surveys [70], [15],
[52], [58].

For example, in the theory of pin® bordisms (the distinctive feature of this theory is
that the bordism group has elements of all arbitrary large orders 2") there is a natural
question: what numerical invariants can be used to detect torsion elements of high order?
It turns out that the answer can be given in terms of the n-invariant. The point is that
odd-dimensional pin®-manifolds bear the natural Dirac operator [33]. The fractional part
of the n-invariant of this operator gives a (fractional) genus of pin®manifolds. It is proved
in [12] that the Stiefel-Whitney numbers and this fractional genus classify pin°-manifolds
up to bordism.



We would like to note that formulas like (1) hold for many more operators than those
specified by the parity condition. However, the invariants appearing in such formulas may
not coincide with the n-invariant. Their determination is a very interesting question. For
instance, an analog of the index formula (1) for the Dirac operator (its positive spectral
subspace does not satisfy Gilkey’s condition) involves the Kreck—Stolz invariant [45] and
the Eells-Kuiper invariant [29] (see section 3 of the present paper). Let us recall that
the former distinguishes homotopy classes of positive scalar curvature metrics, while the
latter deals with the 28 exotic 7-spheres of Milnor.

Pseudodifferential subspaces and mod n index theory. The K-group of the
cotangent bundle T* X of a closed manifold classifies elliptic operators on X up to stable
homotopy. It follows, in particular, that any element of the K-group K.(7*X) can be
realized as an elliptic operator on X. Does the same statement hold for the K-groups
with finite coefficients Z,,? We show (see also [60]) that the answer is “yes”: on a smooth
manifold, the elements of the K-group with coefficients are realized by pseudodifferential
operators in subspaces.

We would like to mention that a similar problem appeared earlier. For instance, in
the theory of spectral boundary value problems or b-pseudodifferential operators, Freed
and Melrose studied so-called “modulo n” index theory in [30, 31], where manifolds with
Z,-singularities appear as a geometric model [55, 71, 50]. Topological aspects of such
manifolds were also studied. Mironov [49] defined the product of Z,-manifolds, which is
again a Z,-manifold (the classification problem for products in the smooth situation is
studied, for example, in [22]). From this point of view, the following problem suggested by
Buchstaber is of interest: when is the index (modulo n) of elliptic operators multiplicative
under Mironov’s product? We note that for the signature operator the answer is “yes”
[50].

Outline of the paper. In the first section, we explain the theory of elliptic operators
in subspaces of Sobolev space on a closed manifold without boundary. Here we give
two important results. The first concerns the necessary and sufficient conditions for the
decomposition of the index of an elliptic operator into the sum of homotopy invariant
contributions of the principal symbol and the subspaces in which it acts. The second
result is the index formula for elliptic operators in pseudodifferential subspaces. Let us
note one important fact: the index of an elliptic operator in subspaces is not determined
by the principal symbol of the operator, but also depends on the subspaces.! In the
second section, we discuss the theory of boundary value problems for elliptic operators in
subspaces. We show how pseudodifferential subspaces appear in classical boundary value
problems (i.e., boundary value satisfying the Shapiro-Lopatinskii condition), Atiyah—
Patodi-Singer spectral boundary value problems [2], and boundary value problems for
general elliptic operators [66]. We give index formulas for general operators and for specific
operators. The third section explains the application of pseudodifferential subspaces to
the problem of computation of the fractional part of the n-invariant for the case in which
the latter has the homotopy invariance property. We give formulas for the n-invariant

In fact, even the complete symbols of the operator and the projections defining the subspaces are
insufficient to determine the index.



in terms of Poincaré duality in K -theory. Finally, in Section 4 we explain index theory
“modulo n” of Freed and Melrose on Z,-manifolds and index theory “modulo n” on
manifolds without boundary.

We are grateful to Prof. V.M. Buchstaber and the referee for a number of valuable
remarks.

1 Elliptic theory in subspaces on a closed manifold

In this section, we introduce elliptic operators acting in subspaces on a closed manifolds.
We use this theory (which is very simple from the analytic point of view) to illustrate the
main topological aspects of index theory in subspaces.

1.1 Statement of problems in subspaces

Subspaces and symbols. Let E be a complex vector bundle over a closed manifold M.

Definition 1 [13] A linear subspace L C C* (M, E) is said to be pseudodifferential if it
can be represented as the range

-~

L=ImP
of a projection P : C*®(M,E) — C*(M,E), P? = P, that is a classical (see [43])

pseudodifferential operator of order zero.

Just as pseudodifferential operators are distinguished in the set of all linear operators
by the property that they have symbols (which is a function on the cotangent bundle of
the manifold), pseudodifferential subspaces also have symbols.

Definition 2 The symbol L of a pseudodifferential subspace L is the vector bundle
L=Imo (P)Cn"E, L€ Vect(S*™M)

over the cosphere bundle S*M, defined as the range of the principal symbol of P. Here
m:S*M — M is the natural projection.

The symbol of a subspace does not depend on the choice of a projection.

Example 1 The Hardy space HC O (S') of boundary values of holomorphic functions
in the unit disc D? C C is pseudodifferential. Indeed, the orthogonal projection P onto
the Hardy space is a pseudodifferential operator of order zero with principal symbol equal
to (e.g., see [56])

o (P)(¢,€) = { é: gi El, (p,6) € §"St =L USL. (2)

This gives us _
R ~moPe.9 - { o 7Y
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To put this another way, the symbol is one-dimensional on the first component of the
cosphere bundle and zero-dimensional on the second component. However, in higher
dimensions the space of boundary values of holomorphic functions is no longer pseudodif-
ferential. The projections defining such subspaces are called Szegd projections. The notion
of symbol of such operators and subspaces requires more subtle techniques (see [23]) and
goes beyond the scope of the present paper.

Example 2 The space of sections of a vector bundle FE is defined by the identity projec-
tion, and the symbol coincides with the pullback of E to S*M.

Subspaces and self-adjoint operators. There is a convenient way to construct
subspaces starting from self-adjoint elliptic operators. If A is an elliptic self-adjoint oper-
ator of order > 0 on M, then the nonnegative spectral subspace denoted by L, (A) is the
subspace generated by eigenvectors of A with nonnegative eigenvalues.

For example, the nonnegative spectral subspace of —id/dy on the circle is the Hardy
space. It turns out that in the general case the spectral subspace is pseudodifferential and
its symbol can be identified easily.

Proposition 1 The symbol of the spectral subspace is equal to
Ly (A)=Li(0(4)), (3)

where Ly (o(A)) € Vect(S*M) is the subbundle in 7" E generated by eigenvectors of o(A)
with positive eigenvalues.

Formula (3) can be obtained if we rewrite the projection I1; (A) defining E+(A) as

Al + A
L () = 5 A=V

(we assume that A is invertible). By a theorem of Seeley [68], the symbol of the absolute
value of an operator is equal to the absolute value of the symbol. Hence II; (A) is a
pseudodifferential operator with symbol

o (A +0(4)

=111 (0 (4)).

This implies (3). O

Example 3 The space of closed forms of degree k on a compact manifold M without
boundary is pseudodifferential, since it is the spectral subspace of the elliptic self-adjoint
operator dj — dd of order two (§ is the adjoint of the exterior derivative d).

It follows from Proposition 1 that an arbitrary smooth subbundle L. C 7*F is the
symbol of a pseudodifferential subspace [13]. To prove this, it suffices to define an elliptic
self-adjoint operator A with L, (0(A)) = L. This is obviously possible.
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The infinite Grassmannian and the relative index of subspaces. We point
out that there are many subspaces with the same symbol. For example, we do not change
the symbol if we add any finite-dimensional subspace to a given subspace.

It is useful to make a comparison with the usual operators. Here the space of operators
with a given symbol is contractible. In the case of subspaces, the corresponding space has
a nontrivial topology. In more detail, let us fix the symbol L of a subspace. Let Gry be
the (infinite) Grassmannian of subspaces with symbol equal to L.

Theorem 1 (Wojciechowski [73]) Suppose that 0 < dim L < dim E. Then the Grassman-
nian Gry, is a classifying space for K-theory; i.e., the set of homotopy classes of maps
[X, Gry| is isomorphic to the group K (X) for any compact space X .

The classifying map can be given explicitly in terms of one very important invariant of
subspaces [24]. The relative index of a pair of subspaces Ly with the same principal
symbol is the index of the following Fredholm operator:

ind(fl, 22) = ind(P;, L — Z2) € Z,

where P; is the orthogonal projection onto Eg. The relative index is sometimes referred
to as the relative dimension of subspaces, since if one of the subspaces is inside another,
then it coincides with the corresponding codimension.

Now we use the relative index to give an explicit formula for the isomorphism in the
theorem of Wojciechowski: the map takes a family {L,}.cx of subspaces to the relative
index ind(zx, E) € K (X) with some given subspace L. Tt follows from this theorem that
the Grassmannian has countably many connected components and two subspaces are
homotopic if and only if their relative index is zero.

Operators in subspaces.

Definition 3 [64] A pseudodifferential operator of order m in subspaces is a triple (D, L, Zg),
where R R
D: L1 — L2

is a linear operator acting between pseudodifferential subspaces. We assume that D is
a restriction of a pseudodifferential operator of order m acting in the ambient spaces of
sections.

For operators in subspaces, it is easy to prove most of the analytic facts of elliptic
theory, such as the symbolic calculus, ellipticity, smoothness of solutions and so on.

Definition 4 The symbol of an operator in subspaces is the vector bundle homomor-
phism
o(D): Ly — Ls. (4)



The symbol is well de/z\ﬁned, since the condition Dzl C Eg can be restated in terms of the
projections defining Ly, as P,DP, = DP;. If we consider the symbols of operators, the
latter equality gives (4). Note finally that an arbitrary homomorphism (4) is the symbol
of some operator in subspaces.

Elliptic operators.

Definition 5 An operator in subspaces is elliptic if its principal symbol (4) is an isomor-
phism.

Theorem 2 An elliptic operator D of order m has the Fredholm property as an operator
D:H*(M,E) > Ly — Ly C H*™ (M, E),
in the closures of the subspaces 2172 C C®(M, E, 5) in the Sobolev norm.

To prove the theorem, it suffices to take as a regularizer an arbitrary operator from Eg
to Ly with symbol o (D)™ : Ly — L;. The desired properties of the regularizer follow
from the standard composition formulas. U

The index does not depend on the Sobolev smoothness exponent s and is denoted by
iIld(D, Ll, Lg)

As opposed to analytical aspects, the topological aspects of index theory in subspaces
have new effects compared with the Atiyah—Singer theory. We will describe these effects
in the next section.

1.2 Index decompositions and dimensions of infinite-dimensional
subspaces

The most important property of the index of pseudodifferential operators is its homotopy
invariance, i.e., constancy for continuous deformations of operators. For operators in
subspaces, the index remains constant also for deformations of the subspaces.

Proposition 2 For a continuous family of Fredholm operators
Dt:ImPt—>ImQt, tG[O,l], ImPtGHl,ImQtGHQ

in subspaces Im Py, Im Q); of some fized Hilbert spaces, the index remains constant. By
continuity we mean the continuity of the family D, : Hy — Hy and continuity of the
families Py, Q.

Proof of this proposition can be obtained if we reduce our family to a family in
fixed spaces. A reduction can be done by virtue of the following well-known fact: for a
continuous family of projections, there exists a continuous family of invertible operators
U, realizing the equivalence of projections P, = U, PyU; " (e.g., see [17]). O



As soon as the index is homotopy invariant, we arrive at the index problem: the
index has to be computed in topological terms. However, unlike the index of the usual
elliptic operators in sections of vector bundles, the index of operators in subspaces is not
determined by the principal symbol of the operator. For example, all finite-dimensional
operators have zero principal symbol, but their index can be any number. A closer look
at the problem shows that the index is determined if we fix the the principal symbol and
the subspaces

ind (D,Zl,22> =f <0 (D),El,22> )

Index decomposition problem. Thus there are two sorts of contributions to the
index: of the finite-dimensional data of the problem (the principal symbol) and infinite-
dimensional (the subspaces). A natural question arises: is the index equal to the sum

ind <D, El,fg> = fi(o (D)) + fo <Z1, zz) ; (5)

of these two contributions? If such a decomposition of the index is possible, then how to
obtain the corresponding index formula? Since the index is a homotopy invariant, we will
also require that both contributions are homotopy invariant.

Let us analyze the index decomposition (5). We first make an obvious remark. If
the subspaces were of finite dimension, then the index would be equal to zero plus the
difference of dimensions of the spaces. This observation enables us to give the following
important reformulation of the index decomposition problem.

Dimension functionals.

Definition 6 A homotopy invariant functional d on the set of subspaces is a dimension
functional if it has the following property: for two subspaces with equal symbols,

d(Ly) — d(Ly) = ind(Ly, Ly).

Remark 1 Usually dimension functionals are defined in terms of trace functionals. Namely,
if T: A — C is a trace functional (this means that 7" is linear and T'(ab) = T'(ba)) on
an operator algebra A that extends the usual operator trace on finite-rank operators.
Then a dimension functional of a subspace L = Im P defined as the range of projection
P € Ais defined as d(L) := T(P). Such extensions of the operator trace were studied by
Kontsevich-Vishik [44] for algebras of pseudodifferential operators on smooth manifolds.
We would also like to refer the reader to [38, 39, 46, 48, 51, 54| for some of the studies of

traces on more general operator algebras and applications.

Lemma 1 There exists an index decomposition (5) for operators in subspaces D : L —
C>®(M, F) if and only if there exists a dimension functional on the set of subspaces.

For the proof, it suffices to show that the difference ind(D, L) — d(L) does not depend on

the choice of the subspaces and is a homotopy invariant of the symbol. This is proved
using the logarithmic property of the index in subspaces: if we take an elliptic operator
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and replace a subspace by a different subspace with the same principal symbol, then the
index is changed by the relative index of subspaces. 0

The assumption in the lemma that one of the subspaces is the space of vector bundle
sections does not restrict generality, since an arbitrary operator D : L; — Ly can be
reduced to such a form by adding the identity operator in the orthogonal complement
i

Obstruction to index decomposition. As a rule, pseudodifferential subspaces
are infinite-dimensional (in the usual sense). Hence it is no wonder that there is an
obstruction to the existence of dimension functionals. It is most convenient to describe
this obstruction using self-adjoint operators.

Suppose that the desired dimension functional exists. Consider a family of elliptic
self-adjoint operators A, t € [0, 1]. Let us examine what happens with the corresponding
family of spectral subspaces Z+(At). This family may have discontinuities for smooth
variations of the parameter: if some eigenvalue changes its sign, then the spectral subspace
changes by a jump (a finite-dimensional subspace is either added to it if the sign changes
from minus to plus, or subtracted in the opposite case. Thus the value of the dimension
functional of spectral subspaces has to change by the algebraic number of eigenvalues of
the family that cross zero during the homotopy:

(6)

-~ -~ B algebraic number of eigenvalues
d(L+(Ar)) = d(L(Ao)) = { crossing zero during the homotopy } ’

It turns out that there exist periodic homotopies of operators (Ag = A;) for which the
number on the right-hand side in (6) is nonzero (simple examples can be found in [59]).
Thus we arrive at a contradiction. This shows that a universal dimension functional does
not exist.

In other words, to define a dimension functional, one cannot consider the entire Grass-
mannian; rather one has to search for a dimension functional on some smaller classes of
subspaces. It is not hard to give a criterion for the existence of such decompositions. Be-
fore we formulate the corresponding result exactly, let us introduce one notion appearing
in this criterion.

Spectral flow [4]. Let At € [0,1] be a continuous family of elliptic self-adjoint
operators. Then the number on the right-hand side of (6) is called the spectral flow of
the family and denoted by sf {A;} ;-

Note that this definition makes sense only in the case of general position, when the
graph of the spectrum of the family is transversal to the line A = 0. A well-defined formula
for the spectral flow can be obtained if we put the objects in general position (see [47],
[57]). In our situation, this can be done explicitly: we take a small perturbation of the
straight line A = 0 that makes it a broken line, see Fig. 1, with alternating horizontal
and vertical segments. We only assume that the horizontal segments do not meet the
spectrum of the family.

11



@ Spec A,

sfid} =-1

7€10,1]

Figure 1: Spectral flow.

Denote the coordinates of vertices of our broken line as {(7;, ;) }i—o.n. Let us use this
broken line to compute? the spectral flow as the net number of eigenvalues passing the
broken line from below. In terms of relative indices, the corresponding formula is the sum

over vertices
N-1

st {AT}TG[O,H = Z ind(Im HM‘ (Aﬂ')> Im H)\i—l (ATZ))’ (7)
i=1
where IT,(+) is the spectral projection of a self-adjoint operator corresponding to eigenval-
ues greater than or equal to A\. One can show that the spectral flow is well defined; i.e.,
this number does not depend on the choice of a broken line.
Using this formula as the definition of the spectral flow, it is not hard to obtain
Eq. (6). Let us now state the necessary and sufficient conditions of the existence of index
decompositions.

Criterion of index decompositions [59]. Let us fix a subspace ¥ in the space of
symbols of all pseudodifferential subspaces on M, and let Gry be the Grassmannian of
all pseudodifferential subspaces with symbols in .

Theorem 3 There exists a dimension functional on the Grassmannian Gry, if and only
if for every periodic family {A;},est of elliptic self-adjoint operators one has

Sf{AT}Tegl =0

whenever the symbols of the spectral projections of the operators A; belong to Y for all t.

20r, speaking rigorously, define.
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Sketch of proof. The necessity of the vanishing of the spectral flow follows from (6).

Sufficiency. For each connected component ¥, C 3, let us choose one elliptic operator
A, with the symbol of the spectral subspace L (A,) in 3,. We shall consider these
operators as reference points; in particular, we define the dimension functional to be zero
on them.

Let now A be an elliptic operator on M. Then its principal symbol is an element of
some Y,. Hence there is a homotopy {A;}icp,1] between A and A,. Now we can define
the dimension functional to be equal to the spectral flow of the homotopy:

@ (L4(4)) “ st{Abepo

4

The assumptions of this theorem can be verified effectively. Indeed, the spectral flow
of a periodic family A = {A;},.q: of elliptic self-adjoint operators on a closed manifold
M is computed by the Atiyah—Patodi-Singer formula [4]

st {Ai},cqn = (chL (A)Td (T*M ® C), [S*M x S]). (8)
Here ch L, (A) € H® (S*M x S') is the Chern character of the bundle
Li(A) € Vect (S*M x S')

defined by the principal symbol of the family, Td is the Todd class, and (, [S*M x S'])
stands for the pairing with the fundamental class.

Thus as a corollary we obtain the following criterion for the existence of index decom-
positions.

Theorem 4 (on index decompositions) There exists an index decomposition for elliptic
operators in subspaces of the Grassmannian Gry, if and only if for an arbitrary periodic
family of elliptic self-adjoint operators whose spectral subspaces have symbols in ¥ the
spectral flow is zero.

Let us consider examples in which this condition is satisfied.

Example 4 (Gilkey’s parity condition) Let 3 be the set of symbols of spectral subspaces
of elliptic self-adjoint differential operators. The spectral flow of periodic families of
elliptic operators from this class will be zero if the so-called parity condition is satisfied
[35]:

ordA + dim M = 1(mod 2).

For example, for first-order operators the spectral flow of a periodic family A; is equal to
the index of the differential operator 9/9t + A; on the odd-dimensional manifold M x S
It is well known that such indices are trivial (e.g., see [56]).

Actually, the “differentiality” of operators in the parity condition has a geometric
origin. Namely, the principal symbol of a differential operator of even order is invariant

13



under the involution a : (x,&) — (x, —&). Therefore, the symbol of the spectral subspace
is also invariant

a'L=1L, L& Vect(S*M). (9)

Such symbols are called even. Similarly, the symbols of spectral subspaces of odd-order
differential operators are called odd. Odd symbols satisfy the condition

o L L=1"FE,

where E stands for the ambient bundle (L C n*E). In other words, the fibers of an
odd symbol L are complementary subspaces at antipodal points of the cosphere bundle.
This explains why the natural analog of Gilkey’s parity condition for pseudodifferential
operators requires that the symbol is even in odd dimensions and odd otherwise.

Let us restrict ourselves to these classes ¥ (further examples and explicit index for-
mulas will appear later in the paper, see also [59]).

1.3 Example. Index under Gilkey’s parity condition

In this section, we obtain index decompositions for operators in even and odd subspaces.
We first consider the even case. o

Dimension of even subspaces. Let Even (M) be the set of even pseudodifferential
subspaces on a manifold M. The Grothendieck group of the semigroup of homotopy

classes of even subspaces is denoted by K (@1 (M)).

Proposition 3 [64] On an odd-dimensional manifold, one has
(Z& K(M))®Z[1/2] ~ K (Even (M)) ® Z[1/2]. (10)

Here Z.[1/2] is the ring of dyadic numbers k/2", k,n € Z. The map takes each natural
number k to a projection of rank k and each vector bundle E € Vect(M) to a projection
that defines E as a subbundle in a trivial bundle.

Corollary 1 In odd dimensions, there exists a unique dimension functional (see Defini-
tion 6)
d: Even (M) — Z[1/2]

that is additive and satisfies the normalization condition
d(C*(M,FE)) =0. (11)

The starting point of the proof is the exact sequence
0 — 7 — K(Even(M)) — K(P*M) — 0, (12)

where P*X = S*X/Z, is the projectivization of the cosphere bundle. The first map
corresponds to the embedding of finite-dimensional subspaces in the even subspaces. The
second is induced by the symbol map.
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This sequence admits further simplification. Namely, the projection P*M — M in-
duces an isomorphism on K-groups modulo 2-torsion if dim M is odd [35]. Thus taking
the tensor product of (12) by Z[1/2] (the product preserves the exactness!) we obtain the
exact sequence

0 — Z[1/2] — K(Even(M)) ® Z[1/2] — K (M) ® Z[1/2] — 0.
The latter sequence is easy to split. The splitting map
K°(M)®7Z[1/2] — K (Even (M)) @ Z[1/2].

takes each vector bundle to the projection onto the space of its sections. The splitting
gives the desired isomorphism (10). O

Index formula. To obtain an index formula for operators in even subspaces, it is
also necessary to define a homotopy invariant of the principal symbol of the operator.

It turns out that the principal symbol of an elliptic operator in even subspaces defines
the usual elliptic symbol, i.e., the symbol of elliptic operator in vector bundle sections.
Indeed, for a symbol (L; and L, are even)

o(D): Ly — Lo,
the composition a* (671 (D)) o (D) takes L to itself. Thus one defines the elliptic symbol
o« (67" (D)o (D)®d1:7*E — 7°E, (13)
where we make use of the decomposition 7*F = L; @ Li into complementary bundles.

Theorem 5 [64] The following index formula holds:

~

ind(D, L1, L) = gindfa* (o7 (D)) o (D) & 1] + () — d(L) (14)

provided that the subspaces are even and the dimension of the manifold is an odd number.
Here ind; is the topological index of Atiyah and Singer.

Proof (sketch). 1) Let us take the contributions of the subspaces to the left-hand side
of (14). Then we interpret the formula as an equality of two homotopy invariants of the
principal symbol. Thus it is sufficient to verify the formula for one representative in each
homotopy class of principal symbols. 2) The simplest representative can be obtained by
Proposition 3. Namely, in geometric terms this proposition claims that the direct sum
of 2V copies of the symbol of the subspace is homotopic to the symbol lifted from the
base. Such a homotopy can be lifted to a homotopy of operators in subspaces. 3) For an
operator acting in spaces of vector bundle sections, both sides of (14) are computed by
the Atiyah—Singer formula. They turn out to be equal. 0
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Figure 2: The blow-up PT*M of the cotangent bundle

Remark 2 The contribution of the principal symbol to the index is of course computed
by the Atiyah—Singer formula. However, there is a direct geometric realization of this con-
tribution. Namely, consider the so-called blow-up PT*M (e.g., see [19]) of the cotangent
bundle T* M along the zero section M C T*M

PT*M = {(z,7,§) € PPM x T*M|§ € ~}.

In other words PT™M is obtained from the cotangent bundle by two operations: we first
delete a tubular neighborhood of the zero section and then identify antipodal points on
the boundary (see Fig. 2).

The principal symbol of an operator in even subspaces defines a virtual vector bundle
over the blow-up, and the contribution of the principal symbol to the index is expressed
by the cohomological formula [64]

ind; [0 (¢7" (D)) o (D) ® 1] = (ch[o (D)] Td (I"M & C), [PT*M]).

Thus at the cohomology level the only difference of this topological expression from the
Atiyah—Singer formula is a different domain of integration.

Odd theory [65]. The main results of elliptic theory in even subspaces, like the
dimension functional and the index formula, have analogs in elliptic theory in odd sub-
spaces modulo some modifications: on an even-dimensional manifold, there exists a unique
additive dimension functional of odd subspaces subject to the normalization

d(L) + d(L*Y) =0,

16



where L is the complementary bundle. The index formula in odd subspaces is (cf. (14))
SN 1 ~ ~
iIld(D, Ll, Lg) = iindt[a*a (D) Do (D)] + d(Ll) - d(Lg)

Note that the proofs in the odd case are technically more complicated, since the symbols
of odd subspaces cannot be interpreted as vector bundles over the projective space. For
example, one has the following interesting fact.

Proposition 4 The dimension of an odd bundle L C 7" E over a manifold M of dimen-
sion n satisfies
n =2k

- ST k-1
n— 2%+ 1 } = dim L is divisible by 2" ". (15)

The proof is based on the well-known property of odd functions [34]: an odd function on
S™ defines a section of the Hopf bundle

7=S" X (C/{([B,t) ~ (—ZB, —t)},

while an invertible vector-valued function defines a trivialization [y ~ C'. On the other
hand, the Hopf bundle gives the generator of

K (RP*) ~ K (RP*™") ~ Zy

(the Adams theorem). Therefore, 21"/2 divides dim £, and we obtain the desired relation
(15), since an odd vector bundle defined by the projection p(§) gives us an invertible odd
function

i+ (2p (&) —1)I¢]-

2 Boundary value problems and subspaces

2.1 Classical boundary value problems

Let D
D:C*(M,E) — C*(M,F)

be an elliptic differential operator of order m > 1 on a manifold M with boundary
X = OM. Such operators are never Fredholm: the kernel is infinite-dimensional. To
define a Fredholm operator, D should be equipped with boundary conditions.
Boundary conditions. It is convenient to define the boundary conditions using the
boundary operator
R C® (M E) — C (X, E™|y),
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which is defined in terms of the trivialization X x [0,1) C M of a neighborhood of the
boundary with normal coordinate t. The operator
X)

a m—1
ey | —1= U
o i)

takes each function u to the value at the boundary of its jet in the normal direction.

gty = | ul —igu
X X ot

Definition 7 A classical boundary value problem (see [41]) for a differential operator D
is a system of equations of the form

{Du:f7 UGHS(MwE)vfGHSim(MuF)? (16)
Bj?‘lu:g, g€ H° (X,G),
where ,

B: P H (X, E|ly) — H° (X,G) (17)

k=0

is a pseudodifferential operator at the boundary; here we assume that the orders of the
components By, : H*™Y*>7% (X E|,) — H (X,G) are s — 1/2 — k — 0.

If the smoothness exponent of the Sobolev space is sufficiently large, s > m — 1/2,
then the operator (D, B) is well defined.

Ellipticity of boundary value problems and the Calderén subspace.

The ellipticity condition for classical boundary value problems, known as the Shapiro—
Lopatinskii condition, can easily be obtained with the use of the following result (see [67],

[41]).

Theorem 6 (on the Calderén—Seeley subspace) Let D be an elliptic differential operator
on a manifold with boundary. Then the following assertions hold.

1. The cokernel of D 1is finite-dimensional.

2. The Calderon—Seeley space j% ' (ker D) of jets at the boundary of the elements of
the kernel is a pseudodifferential subspace. The boundary operator is Fredholm

vt i ker D — j% Vker D.

Denote the Calderén—Seeley subspace by Z+(D). Its symbol L, (D) is a vector bundle
over S*X.

Definition 8 (Shapiro—Lopatinskii condition) A Boundary value problem is elliptic if the
restriction of the principal symbol of the boundary condition B to the Calderén subspace
is an isomorphism

o(B): Ly (D) — 7"G. (18)
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In other words, the ellipticity of the boundary value problem is equivalent to the ellipticity
of the boundary operator as an operator in subspaces. O

Theorem 7 A boundary value problem (D, B) for an elliptic operator D has the Fredholm
property if and only if it is elliptic.

This finiteness theorem follows directly from the properties of the Calderén subspace
and the finiteness theorem for operators in subspaces.

The symbol of the Calderén—Seeley subspace can be computed easily. Let (z,{') €
S*X be a point on the cosphere bundle of the boundary. Let

L+ (D);U,f’ - E;n7

be the subspace of Cauchy data of solutions u (t) of the ordinary differential equation

d
o (D) (x,O,ﬁ/, —z%) u(t) =0, (z,&') e S*X
with constant coefficients on the half-line {¢ > 0}, that are bounded as t — +o0. Globally,
this family of subspaces defines the smooth vector bundle

L. (D)cCw* E™|, T:5"X — X.
It can be proved [67] that this bundle is the symbol of the Calderén—Seeley subspace.

Example 5 For the Laplace operator, the bundle L, (A) coincides with the image of the
diagonal embedding C € C & C. For the Cauchy—Riemann operator 9/0z in the unit
disk, L, is not constant:

0 0
s ()=o)

The Atiyah—Bott obstruction and index theorem for boundary value prob-
lems. The Shapiro-Lopatinskii condition (18) is a restrictive condition on the class of
operators D, for which one can define elliptic boundary conditions. Indeed, if an elliptic
boundary condition for D exists, then the bundle L, (D) € Vect (5*X) is a pullback of
some bundle on the base X. Such a pullback exists by no means for all operators (the
simplest example for which the pullback does not exist is given by the Cauchy-Riemann
operator).

The essence of this restriction was uncovered by Atiyah and Bott [7]. They showed
that, up to a certain stabilization, the operators possessing elliptic boundary conditions
are precisely those with symbols at the boundary homotopic to the symbols independent
of the covariables. The situation can be represented by the following K-theory exact
sequence:

=0, where S*S! = Si USt.
st

— K (T*(M \ 0M)) — K (T*M) -2 K (0T*M) — ...
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Namely, elliptic symbols o(D) on M define elements of the group in the center (via the
difference construction). On the other hand, the elements of the leftmost group correspond
to symbols that are independent of the covariables in a neighborhood of the boundary.
Thus the Atiyah—Bott result says that the existence of an elliptic boundary value problem
is equivalent to the property that our element comes from K .(T*(M \ OM)), while the
element obtained by the boundary map 0 is the obstruction to the existence of elliptic
boundary conditions (the Atiyah—Bott obstruction). Moreover, Atiyah and Bott showed
that the choice of an elliptic boundary condition B explicitly determines some specific
element in K .(T*(M \ OM)).

Let us note that there is a well-defined topological index map on K .(7%(M \ OM)),
which, together with the Atiyah—Bott construction, gives an index formula for classical
boundary value problems. The reader can find the proof of the index theorem for boundary
value problems in [41].

Example 6 Consider the Euler operator
d-+6: A (M) — A (M) (19)

on a compact manifold with boundary. Here A®/°% (M) are the spaces of even (odd)
differential forms. As elliptic boundary conditions, we can take the absolute boundary
conditions

J ) =g, §T T AM(M) — AM(X) (20)

(where * is the Hodge star operator). By Hodge theory on manifolds with boundary (e.g.,
see [36], [28]), the index of (19), (20) is equal to the Euler characteristic of M:

ind (d+ 0, 7%%) = x (M).

However, the classical theory has one very significant drawback. Among the classical
operators considered in index theory, only the Euler operator admits classical elliptic
boundary value problems. The Dirac, Hirzebruch and Todd operators do not admit elliptic
boundary conditions: even at a point x € M the principal symbol of these operators is a
rational generator of K. (T M) ~ Z (e.g., see [56]) and hence is by no means homotopic
to a constant symbol.

2.2 Spectral problems of Atiyah, Patodi, and Singer and general
boundary value problems in subspaces

We saw in the previous section that many elliptic operators (e.g., Dirac and signature
operator) do not have elliptic boundary conditions, since the Atiyah-Bott obstruction for
these operators does not vanish. Since these operators are very important in applications,
there naturally emerges a question of defining a class of elliptic boundary value problems
for general elliptic operators, in particular those with a nontrivial Atiyah—Bott obstruc-
tion. Such a class of boundary value problems is naturally constructed using the following
reasoning.
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Recall that the ellipticity condition for a boundary value problem (D, B) requires the

isomorphism
o(B)

L, (D) — "G (21)
defined by the principal symbol of the boundary condition B. Meanwhile, the obstruction
explained by the asymmetry of (21): the a priori general bundle Ly (D) over S*X must
be isomorphic to a bundle of a very special form, i.e., a bundle lifted from X. Hence it
is clear that the obstruction will disappear if we manage to make a generalization of the
notion of boundary conditions such that we could insert an arbitrary vector bundle on
S*X into the right-hand side of (21). The simplest realization of this idea is given by the
so-called spectral boundary value problems.

Atiyah—Patodi—Singer spectral boundary value problems [2]. Let D be an
elliptic differential operator of order one. We shall assume that near the boundary it has
a decomposition

ot

where A is an elliptic self-adjoint operator on X = OM. The spectral boundary value
problem for D is the system of equations

0
Dlanxjon) =7 <— + A) ;

{ Du = f, we H*(M,E), f e H"(M,F), 22

L (A) uly =g, g€ Imll (A).

This boundary value problem has the Fredholm property. The reader can prove the
coincidence of the bundles L (D) and Imo (IL, (A)). Hence (21) is the identity map in
this case. The statement of spectral problems for differential operators of any order can
be found in [53].

General boundary value problems [18, 66]. For an elliptic operator D, consider
the boundary value problems

{ Du = f, uwe H*(M,E),feH"™(M,F), 23)

Bjvlu =g, gelmPC H (X,Q),

which differ from classical boundary value problems (16) in the space of boundary data
Im P, which is a subspace of the Sobolev space at the boundary and is determined by a
pseudodifferential projection P of order zero.

Definition 9 Boundary value problem (23) is said to be elliptic if the principal symbol
of the operator of boundary conditions defines a vector bundle isomorphism

o(B): Ly (D)—1Imo(P),
i.e., the restriction of B to the Calderén subspace is an elliptic operator in subspaces.

The following finiteness theorem holds.
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Theorem 8 Boundary value problem (23) defines a Fredholm operator if and only if it
18 elliptic.

The proof can be obtained from the theorem on the Calderén—Seeley subspace. 0

Order reduction of boundary value problems. It is possible to reduce orders
of boundary value problems. For classical boundary value problems, one can reduce the
boundary value problem using order reduction to a pseudodifferential operator which is
a multiplication operator near the boundary and does not require boundary conditions
(see [41] or [61] for the description of the reduction procedure; note that the index of such
zero-order operators is computed by the Atiyah—-Singer formula [9], cf. [27]). For bound-
ary value problems in subspaces, the same method enables one to reduce an arbitrary
boundary value problem to a spectral problem for a first-order operator [61]. In addition,
the pseudodifferential subspace of the spectral problem can be chosen to coincide with
subspace of boundary data of the original problem. For this reason, we consider only
spectral problems in the rest of this section.

2.3 Index of boundary value problems in subspaces

We have seen that subspaces are useful if we study analytical properties of spectral prob-
lems. In this section, we show that subspaces are also important in the study of topological
aspects of these problems: many index formulas for operators in subspaces on closed man-
ifolds (see Section 1) have natural analogs for boundary value problems. To save space,
we will give only the formulations of the results.

The index of spectral boundary value problems is not determined by the principal
symbol of the operator D. To have a definite index, we have to fix the principal symbol
and the spectral subspace. It is impossible to decompose the index as a sum of homotopy
invariant contributions of the symbol and the subspace. A decomposition exists if and only
if for the class of spectral subspaces at the boundary there exists a dimension functional.
Let us give two examples when explicit index formulas can be obtained.

2.4 Examples. The index of operators with parity condition.
The index of the signature operator

The index of spectral problems in even subspaces. Consider spectral boundary
value problems (D, I, (A)) on an even-dimensional manifold M and suppose additionally
that the spectral subspace Im I1, (A) is even. Finally, we assume that the principal symbol
of A is an even function of the covariables.

It turns out that in this case o(D) has a natural continuation to the double of M.
Recall that the double

oM =M M
oM

is obtained by gluing two copies of M along the boundary.
To construct the desired continuation, we consider two copies of the manifold. We take
the symbol o(D) on the first copy and a*o (D) on the second copy. Here a : S*M —
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S*M is the antipodal involution of M. Near the boundary, the symbols ¢(D) and a*o (D)
are
iT+a(r,§) and —it + a(z,§).

It is clear that they are mapped one into another as we glue neighborhoods of the bound-
ary:

r—xz, t— —t.
Thus the two symbols define an elliptic symbol o(D) U a*c (D) on the double of M. This
symbol defines the difference element

[o(D)U a*o(D)] € K(T*2M).

in the K-group with compact supports of the cotangent bundle of the double. We define
the topological index of D to be half the usual topological index of the element on the
double

ef 1.
ind, D & §1ndt[a(D) Ua*a(D)].
Theorem 9 [64] For spectral boundary value problems in even subspaces, one has
ind(D, 1, (A)) = ind; D — d(Im 11, (A)).

The proof is by analogy with the proof in the case of closed manifolds: one uses homotopies
to reduce the spectral problem to the simplest form. In this case, the simplest spectral
problem is a classical boundary value problem; i.e., its spectral subspace is the space of
sections of a vector bundle. 0

Remark 3 A similar index formula is valid for operators in odd subspaces. In this case,
one defines the operator DUa*D~! on the double with symbol equal to a*o (D)_1 on the
second copy of the manifold.

The index of the signature operator [2]. On a 4k-dimensional oriented manifold
M, consider the signature operator

d+d" : AT (M) — A~ (M),
where the A* (M) are subspaces of forms invariant under the involution
a: A (M) — A (M), alypon = (—1)10(172714]C * .

On the boundary of M, we have A (M)|,,, ~ A* (OM). If we take a product metric in
a neighborhood of the boundary, then the signature operator is equal to

9
9.4
o
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modulo vector bundle isomorphisms (see [2]). The tangential signature operator A acts
on the boundary

AN (OM) — A (OM), Aw = (—1)"P(d* —e xd) w,

where for a form w € A% (OM) of even degree we have ¢ = 1, while for w € A**~1 (M)
— ¢ = —1. This operator is elliptic and self-adjoint.
The index of the spectral boundary value problem can be computed by de Rham-—
Hodge theory:
ind (d + d*,I1;) = signM — dim H* (0M)/2,

where signM is the signature of a manifold with boundary.
We will obtain the index decomposition for the Dirac operator later in Section 3.8,
since it involves a new invariant — the n-invariant of Atiyah, Patodi, and Singer.

3 The spectral n-invariant of Atiyah, Patodi, and
Singer

3.1 Definition of the n-invariant

Let A be an elliptic self-adjoint operator of a positive order on a closed manifold M. Let
us define the spectral n-function

n(4,5) = Z sgn\; [A\;| 7T =Tr (A (AQ)_S/2—1/2) '
AjESpecA,\;#0

It is analytic in the half-plane Re s > dim M /ordD (for these parameter values, the series
is absolutely convergent).

Definition 10 [2| The n-invariant of the operator A is

n(A) == (n(A,0)+dimker A) € R. (24)

1
2
Remark 4 The spectral n-invariant can be understood as a kind of infinite-dimensional
analog of the notion of signature of a quadratic form, since in finite dimensions a self-
adjoint operator defines a quadratic form and the n-invariant of an invertible operator is
equal to the signature modulo the factor 1/2.

Of course, for (24) to make sense, it is necessary to have the analytic continuation of
the n-function to s = 0.

Theorem 10 [4],[32] The n-function extends to a meromorphic function on the complex

plane with possible poles at s; = Ofn?ﬂ_/jj, JjE€Zy. At s =0, the function is analytic.
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Let us note that the meromorphic continuation is a consequence of the expression of the
n-function in terms of the (-function

C(As)= > A
A;E€SpecA
of positive operators:

CAns)=CAys) o BlAI£A)

25 —1 ’ 2

n(A,s) =

The meromorphic continuation for the (-function is well known (e.g., see [68]).
However, the analyticity of the n-function at the origin is more intricate. More pre-
cisely, the residue is equal to

C(A+,O) _C(A*?O)‘

Resn (4, s) = o

(25)
The (-invariants in this formula can be expressed as integrals over M of some complicated
expressions in the complete symbol of A. The integrand is in general nonzero! Neverthe-
less, Atiyah, Patodi, and Singer proved for odd-dimensional manifolds [4] and Gilkey [32]
proved for even-dimensional manifolds that the residue is zero. Hence the n-function is
holomorphic at the origin and the n-invariant is well defined.

Rather surprisingly, up to now there is no purely analytic proof of the analyticity of the
n-function at the origin. The results cited earlier all rely on global topological methods.
However, the triviality of the residue is proved by an explicit analytic computation for
Dirac type operators in [16].

Example 7 On a circle of length 27 with coordinate ¢, consider

d

dip
Here t is a real constant. Let us compute the n-invariant. The spectrum of A is the
lattice t 4+ Z. Thus the n-invariant is a periodic function of ¢ (with period 1). Assume that
0 <t < 1. Gathering the eigenvalues in pairs, we obtain

N(Ans) =Y [n+t)"—=n—t)""]+t.

n>1

This series is absolutely convergent on the semiaxis s > 0, and the limit as s — 40 is
—2t 4+ 1 (we use the Taylor expansion for the expression in the brackets); hence

1 (A, 0) + dim ker A 1
n(ay = 1A dmker ALy

where {} € [0,1) is the fractional part. Thus we see that for our smooth elliptic family
A; the family of n-invariants is only piecewise smooth. Moreover, the jumps (they are
integral) happen as some eigenvalue of the operator changes its sign.
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The behaviour of the n-invariant under deformations of the operator. In the
last example, we observed the piecewise smooth variation of the n-invariant for smooth
variation of operators. It turns out that the p-invariant has similar properties in the
general case. More precisely, the following result holds.

Proposition 5 [4] Let A;,t € [0,1], be a smooth family of elliptic self-adjoint operators.
Then the function n(A;) is piecewise smooth. It decomposes as the sum
t/

0 (Av) = 1(Ag) = 5f (A) oo + / w (to) dio, (26)

0

of a locally constant function, the spectral flow of Section 1.2, and the smooth function

d

w (to) = —C(Brs,)

10,1
. € C>[0,1],

t=to

where we use the (-invariant of the auziliary family By, = |Asy| + Prer Ay T (t — to)Ato-
Here Py 4 1s the projection onto the kernel of A.

Proof (sketch). If the family is invertible, then one can easily write out the derivatives
of the n- and (-functions:

4 (B, s) = —sTr (Bt Bt_s_1> , in (Ag,8) = —sTr <At (Af)fé(sﬂ)) )
dt dt
It is clear now that (26) holds for s =t = 0.

If the family is not invertible, then the decomposition (26) can be obtained making use
of broken lines from the definition of spectral flow (see Fig. 1). This technique reduces
us to the case of invertible families. O

Remark 5 (Singer) These properties motivate an interesting interpretation of the n-
invariant, which is similar to the interpretation of index as the invariant labelling the
connected components of the space of Fredholm operators. Consider the space of self-
adjoint Fredholm operators. Atiyah and Singer [10] proved that this space consists of
three connected components. Two components correspond to semibounded operators
and are contractible. However, the third component (containing operators with spectrum
unbounded in both directions) has a nontrivial topology. Let us denote it by F,. This
space is a classifying space for odd K-theory:

(X, F] ~ K'(X).

In particular, its first cohomology is H! (F,) ~ Z. The generator of this group is given
by the spectral flow of periodic families

[sf] € H' (F,),
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more precisely, the value of the cocycle sf on a loop (Ay),.q: is equal to the spectral flow
along the loop. It turns out that the n-invariant provides a de Rham representative of
this cohomology class (at least on the subspace of pseudodifferential operators). More
precisely, let us define the 1-form: for the loop (A;) | C F, in the space of pseudodif-
ferential operators, we set

te(0,e

o(4) = G n(A}|

Proposition 5 gives the equality of cohomology classes — [w] and [sf], in other words, one

has
- / w = sf (A¢),eqn -

(At)tesl

3.2 How to make n homotopy invariant?

The n-invariant for general operators is not homotopy invariant and takes arbitrary real
values. However, for special classes of operators it is possible to define homotopy invariants
using the n-invariant. To this end, it is necessary to require that both components in (26)
are equal to zero. The triviality of the spectral flow sf can be achieved in two ways: either
we consider only the fractional part of the n-invariant {n(A)} € R/Z (this is used in [4]
when considering invariants of flat bundles, see also Section 3.3) or by requiring that the
spectral flow is trivial for the operators considered (such situation appears for the signature
operator or for the Dirac operator under the positive scalar curvature assumption, e.g., see
[21]). To prove the vanishing of the smooth component of the variation, it is necessary to
have a formula for the derivative of the (-function. R. Seeley [68] proved (see also [1] and
[40]) that the value of the (-function at zero can be computed in terms of the principal
symbol of the operator. Let us proceed to the formula. Let A be an elliptic self-adjoint
nonnegative operator with complete symbol

g (A) ~ Qm + AQp—1 + Qpp—2 + ...
Let us introduce the following recurrent family of symbols b_,,_;, j > 0:
b—m—j (‘Tv 57 )‘) (am (‘Tv 5) - /\) +

) 5 (—i0)* b, (2,6, X) (—i05)" @y (2,€) = 0. (27)

k+i+ ol =3,
>0

The symbols depend on auxiliary parameter A\. Then the (-invariant is

‘ | 1 [
2< (A) d:f C (Aa O) + dim ker A= dim M / d.’ﬂdf / b dim M —ord A ([L’, 67 _)\) dA.
(2m) ordA
5*M 0
(28)
Analyzing the symmetries of this formula, one can find a number of operator classes for
which the derivative of the n-invariant is zero. Two such classes are considered in the

next sections.
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3.3 n-invariants and flat bundles

Recall that a vector bundle v € Vect (M) is flat if it is defined by locally constant
transition functions. Consider an operator

A:C*(M,E) — C™ (M, F).
Then we can define the operator A with coefficients in the flat bundle:
AR1,: C* (M,E®y) — C* (M,F®7).

It can be defined by patching together local expressions in coordinate charts for the direct
sum of dim~ copies of A using the transition functions. To preserve the self-adjointness,
one requires additionally that the transition functions for the flat bundle are unitary.
Finally, if A is a pseudodifferential operator, then the operator with coefficients is well
defined modulo infinitely smoothing operators.

Example 8 On the circle, the operator —id/dp+t is isomorphic to the operator —id/dp®
1., with coefficients in v, where the line bundle ~ is defined by the transition function e*™.

The isomorphism
et —ii e = —ii +1
dip dip

uses the trivialization e of .

Proposition 6 [4] The fractional part of the n-invariant is homotopy invariant in the
class of direct sums
A®1, @ (—dimyA)

with a given flat vector bundle ~.

To prove the proposition, one notes that A ® 1, and dim~yA are locally isomorphic.
Therefore, we obtain

S 1)} = % m(4))

by means of the locality of these derivatives, see (28). O

p-invariant [3]. Consider an oriented Riemannian manifold M of dimension 4k — 1.
There is a self-adjoint Hirzebruch operator

A‘AQP(M) = (_1)k+p (d*—x*d), A A (M) — A" (M).
In this case, the difference
n(A®1l,) —dimyn(A) € R

defines a homotopy invariant. Indeed, by Hodge theory the kernels of A and A ® 1,
coincide with the corresponding cohomology of M (with a local coefficient system v in
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the second case); hence their dimensions do not depend on the choice of metric on M.
This difference is called the p-invariant of manifold M and flat bundle ~.

Operators with coefficients in flat bundles have been thoroughly studied already in
the classical paper of Atiyah, Patodi, and Singer. Thus, in this paper, we recall only the
index formula pertaining to this case.

The index formula in trivialized flat bundles [4]. Suppose that the flat bundle

v is trivial ~y ~ C" and 4 is an elliptic self-adjoint operator as above.
Then the triple (v, a, A) defines an elliptic operator in subspaces:

I (nA)(1®a”) : ImIl (A® 1,) — ImII  (nA). (29)

Let us fix the flat bundle with its trivialization and consider the index decomposition
problem for operators (29) into the sum of contributions of the principal symbol of the
operator and the contribution of subspaces. It is not difficult to see that the necessary con-
dition for such decompositions (Theorem 4) is satisfied. Then we can take the difference
of the n-invariants

n(A®1,) —nn(A)

as the contribution of the subspaces. This difference is called the relative n-invariant. The
corresponding index theorem in trivialized flat bundles was obtained by Atiyah, Patodi,
and Singer.

Theorem 11 One has

ind(Il4 (nA) (1 ® a*) : ImII{ (A® 1,) — Im 11} (nA)) =
(chLi (A)ch(vy,a)Td(T*M ® C), [S*M]) + n(A®1,) —nn(A), (30)

where ch(vy,a) € H*(M,Q) is the Chern character of the trivialized flat bundle.

The proof uses the heat equation method.

As a corollary, let us take the fractional part of the index formula. Then we obtain
an expression of the fractional part of the relative n-invariant in topological terms. For
nontrivial flat bundles, the relative n-invariant was also computed in [4], but the formula
in this case is written in K -theoretic terms and is less explicit.

3.4 n-invariant and parity conditions

One more class of examples of n-invariants without continuous component of the variation
is related to parity conditions.

Theorem 12 [35] The fractional part of the n-invariant of an elliptic self-adjoint differ-
ential operator A on a manifold M is invariant under homotopies if the following parity

condition s satisfied:
ordA + dim M = 1(mod?2).
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Idea of the proof. The homogeneous components of the complete symbol of a differential
operator are polynomials. Hence they are even or odd with respect to the involution
¢ — —¢ acting on the covariables. An accurate account of this symmetry in (28) shows
that the local expression for the derivative of the n-invariant is zero. O

The n-invariant as a dimension functional. It is clear that if the continuous
component of the variation of the n-invariant is missing, then the n-invariant can be
considered as a dimension functional (compare (6) with (26)).

Theorem 13 [64] Let A be an elliptic self-adjoint differential operator of a positive order.
Then the n-invariant is equal to the value of the dimension functional of Section 1.3 on
the spectral subspace L, (A)

n(4) =d(Ly(4))
provided that ordA + dim M = 1(mod?2).

To prove the theorem, it suffices to check the normalization condition.

This result shows that we can substitute the n-invariant for the functional d in the
indez formulas of Section 1.3 provided that the pseudodifferential subspace is defined as
the spectral subspace of a differential operator.

Remark 6 To prove Theorem 13, one has to work with n-invariants in the broader con-
text of pseudodifferential operators, for which the statement of Theorem 12 is true. We
refer the reader to [64] for the precise statement of the parity condition for this case.

Computation of the fractional part of the n-invariant. If the parity condition is
satisfied, then the fractional part {n (A)} is topologically invariant and can be computed
in topological terms. It turns out that this invariant strongly depends on the orientation
bundle A™(M).

Theorem 14 [63] The fractional part of twice the n-invariant is equal to the pairing

1) = (lr (] 1~ onl) ez 3] 2

of the difference element of the operator with the orientation bundle A" (M), n = dim M,
where the brackets denote the (nondegenerate) Poincaré duality

(,): TorK!(T*M) x TorK° (M) — Q/Z
in K -theory for the torsion subgroups.

Let us make a couple of remarks concerning this formula.

1. The computation is based on the following property of symbols of subspaces with
parity conditions. For N sufficiently large, the sum 2V L can be lifted from the base M. If
we choose an isomorphism o : 2V, — 7*F, where F € Vect(M), then the index formula
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in subspaces expresses the fractional part of the n-invariant in terms of the index of the

corresponding operator R
0:L— C*(M,F),

as a residue modulo 2V. Such an index-residue can be computed in K-theory with co-
efficients in the group Zs~ (the corresponding index theory modulo n is discussed in
Section 4.2). Finally, the expression in terms of Poincaré duality is none other than a
short way of expressing the corresponding K-theoretical formula.

2. The orientation bundle appears naturally in the problem, since the involution
(1,€) < (z,—¢) acts on K*(T*M) as a product with the element (—1)%™M[A"(M)] (see
[62]).

Corollary 2 If the parity condition is satisfied, then the n-invariant on an orientable
manifold is half-integer. On a nonorientable manifold M of dimension 2k or 2k + 1, the
following estimate of the denominator of the n-invariant holds:

{25 (4)} =o. (31)

Indeed, the orientation bundle A™ (M™) has the structure group Zs. Hence it is induced
by the canonical bundle over RP". The reduced K-groups of the projective spaces are the
torsion groups K (RP*) ~ K (RP**") ~ Zy. Hence

2F (1 — [A™ (M™)]) = 0.

Substituting this equality into the formula for the n-invariant, we obtain the desired
assertion. (l

Remark 7 The formula for the fractional part of the n-invariant can be rewritten, by
analogy with the Atiyah—Singer formula, in terms of the direct image map

{2n(A)} = Alo(A)],

where f : M — RP*' is the map classifying the orientation bundle. Here we assume the
identification K'(T*RP*") = Zon C Q/Z.

Examples of first-order operators. We have seen that the properties of the n-
invariant for operators with Gilkey’s parity condition substantially depend on the prop-
erties of the manifold. In the orientable case, one can obtain a half-integral n-invariant
at most. This possibility is easy to realize, e.g., by the operators d + § on all forms:

ta+ oy = {452}

The computation is based on the fact that this operator is isomorphic to the matrix

( l())* g ) with the Euler operator D = d + ¢ acting from even to odd forms. The
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eigenvalues of this matrix are symmetric with respect to the origin. Therefore, the n-
function is zero identically.
It turns out that on nonorientable manifolds there exist operators with arbitrary
dyadic n-invariants. Examples of such operators were first constructed by P. Gilkey [33].
An operator on RP?" with a very fractional n-invariant. Let us define a Dirac
type operator on an even-dimensional real projective space RP?". To this end, we consider
a set of Hermitian Clifford 2™ x 2" matrices eqg, eq, ..., €a,:

€kE; + €€k = 2(5@

For a vector v = (vp, . . ., Ua,) € R¥* "1 we define a linear operator
2n
n n
e(v) = E vie; : C — C¥.
=0

It is invertible if v # 0. Consider the Hermitian symbol

n

o (D) (2,€) = ie () e (€) : € — C?

on the unit sphere S$?* C R?"*! where £ is a tangent vector at x € S?*. The symbol is
invariant under the involution (z,¢) — (—x, —¢). Thus it defines a symbol on RP *".

Theorem 15 [33] X
(D)} = s (32)

For simplicity, we will only compute the denominator of the n-invariant.
The reduced K-group of RP?" is a cyclic group K (]RIP’Q”) ~ Zon, and the generator is
given by the orientation bundle

1 - [A* (RP™)] € K (RP™").
On the other hand, the symbol defines the generator of the isomorphic group
[0 (D)] € K} (T*RP*") = TorK}! (T*RP*") =~ Zgn.

Hence, by Poincaré duality for torsion groups (see above) the pairing of the generators is
nonzero and has the largest possible denominator

(2 [0 (D)1~ [A (RP™)]) = £ € Q/Z.

It remains now to express the pairing in terms of the n-invariant. We have
n 1
(D)} =3,
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3.5 Examples of second-order operators with nontrivial n-invariants

The problem of nontriviality of the n-invariant for second-order operators was stated by
P. Gilkey [35]. For a long time, the main difficulty of the problem was the absence of
nontrivial elliptic operators of order two. There was essentially one nontrivial operator
dd — dd acting on differential forms. However, its n-invariant turned out to be integer-
valued [64]. From a different point of view, this operator is generated by the operators of
de Rham-Hodge theory and is in some sense an analog of the Euler operator. To obtain
more interesting operators, one has to define the analog of the Dirac operator.
Such an operator was constructed in [63].

Example 9 We define a second-order differential operator D on RP 2" x S'. To this
end, we denote the coordinates by z,¢, the dual coordinates by &, 7. On the cylinder
RP *" x [0, 7] we define

2sin @ <—i%) D —icospD Ae % + <—i%) ot <—i%)

D =
A$ei@ + <—Z%) el <—Z%) QSiIIQO <z%) D + i cos (,OD

, (33)

where D is the pin® Dirac operator on the projective space (see previous section), and
A, = D? is its Laplacian. The operator D’ is symmetric and elliptic. The ellipticity
follows from the following formula for the principal symbol

o (D) (&7) = (€+77).

(In other words, the operator D’ is the square root of the square of the Laplacian.) Let F
be the vector bundle over the product RP 2" x S', obtained by twisting the trivial bundle
C?" @C? with the matrix-valued function

0 1
-1 0
defined on the base RP ** x {0}. Then (D)’ can be considered as acting in F:
o(D): " F — m*F, 7:S*(RP? xS') — RP* x S".

Denote by
D:C® (RP*" xS, F) — C* (RP*" x S', F)
the elliptic self-adjoint differential operator obtained by smoothing the coefficients of D’.

The topological formulas for the n-invariant obtained earlier enables us to prove the
following result, solving the problem of nontriviality of n-invariants for even-order opera-
tors.

Theorem 16 [63] One has

21(D)} = 5y
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The idea of the proof is to interpret the operator D as an exterior tensor product of
an operator on the projective space by an elliptic operator on the circle. Then the n-
invariant is also a product of the n-invariant on RP" and the index on S'. Unfortunately,
the operator itself does not have this product structure. But K-theoretically such a
representation holds:

[0 (D)] = [0 (D)]-[o(Dy)] € K, (T* (RP*" x S")) (34)
with an elliptic pseudodifferential operator of index two

D= [ @ IQ) e (01 Q) Q=i

de
on S'. To obtain the theorem, it now suffices to substitute (34) in the formula for the

n-invariant in terms of Poincaré duality and use the multiplicative property of the pairing.
O

3.6 Applications to bordisms and embeddings of manifolds

n-invariants on pin‘-manifolds and bordisms.

The operator on the projective space constructed in Section 3.4 is a specialization of
the Dirac operator on a (nonorientable) pin°-manifold. The definition of this operator can
be found in [33]. We note only that the group pin®(n) is defined in terms of the extension

0 — Zy — pin®(n) —O (n) x U (1) — 0.

This sequence defines a natural projection pin°(n) — O(n). Finally, a manifold M of
dimension n is a pin®-manifold if its structure group is reduced to pin®(n).

On even-dimensional pin®~-manifolds, the Dirac operator, denoted by D, is self-adjoint.
Therefore, on such manifolds the fractional topological invariant

1
moyezly
is well defined. Moreover, one can also show that this fractional part is invariant under

bordisms of pin°-manifolds.

Theorem 17 [12] pin®-manifolds My and My are bordant if and only if they have equal
Stiefel-Whitney numbers and the fractional parts of the n-invariants

{n(Dar)} = {n(Das)} -

Note that the characteristic property of the theory of pin°-bordisms is that the bordism
group QP has nontrivial elements (represented by the projective spaces RIP)%) of arbi-
trarily large order 2. To distinguish these elements, the fractional analytic invariant is
indispensable.
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Application to embeddings. A natural geometric setting when one can consider
second-order operators of Section 3.5 was found by P. Gilkey [32]. Let us describe the
situation in more detail.

Suppose N is a submanifold with trivial normal bundle in a closed manifold M. Then
one can define an elliptic self-adjoint second-order operator that is concentrated in a neigh-
borhood of the submanifold in the following sense. This operator is a sum of Laplacians
outside a neighborhood of N. We shall consider for simplicity the codimension one case.

Let us introduce coordinates in a tubular neighborhood U of the boundary, x tangent
to the submanifold, and ¢ € [0, 27| normal to the submanifold. The dual coordinates are

& T.

Consider the quadratic transformation
h(r,§) = (72 —52,75) : S*M|,;, — S*M|,

over U. At a point (x,¢) € U, this map is a two-sheeted covering of the sphere. Tt
takes big circles passing through the North pole to big circles passing through the North
pole being run through with double speed. Let us define the family of vector bundle
homomorphisms

S, T"M|y — Ra T*M|

parametrized by ¢ € [0, 27]:

(cosip (€% +7%) ,sinph (7,€)) v € [0,
(cos (24 72),sinp (2 +7%),0,...), ¢ € [r,27].

(I)so (7_7 6) = {

Suppose that N x [0,27] is equipped with a pin“-structure. Consider the corresponding
Clifford module
¢: Cl(R® T*M|,) — End (E),

where CI(V') is the bundle of Clifford algebras of a real vector bundle and E is the spinor
bundle of N x [0, 27]. The symbol o (D) of order two is defined in a neighborhood of N
as the composition

def
o (D) (e, 7,8) = c(Dy(7,9)).
On the boundary of the neighborhood, the symbol is

7 (D) (@7, &)l pmpr = ¢ (1,0,...,0) (£ +77).

It coincides with the direct sum of the symbols of Laplacians. Thus, o (D) extends outside
U as the direct sum of symbols of Laplacians.

Second-order operators associated with submanifolds with trivial normal bundles en-
able one to construct some topological invariants.

Proposition 7 Let M be a closed smooth manifold, dim M = 2k + 1. A necessary con-
dition for an embedding
RP* c M
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of the projective space RP** with trivial normal bundle is the surjectivity of the direct
image map
fi: TorK} (T*M) — Zox C Z[1/2]/ Z,

induced by the map f : M — BZy = RIP™ classifying the orientation bundle A***1 (M) .
In particular, K} (T*M) has to have nontrivial torsion elements of order 2F.

The proposition can be proved if one notes that on M we have a second-order operator
with the n-invariant having denominator 2**!. On the other hand, the n-invariant is
computed by the direct image map corresponding to the classifying space. 0

3.7 The Atiyah—Patodi—Singer formula

An expression for the index of spectral boundary value problems was found in [2]. Namely,
using the heat equation method [8], the relation

d(D,IL,(4)) = [ a(D) = n(4) (35)

X
was obtained for the index of a spectral boundary value problem on a manifold X for an
elliptic operator of order one that has the decomposition 0/t + A near the boundary.
Here a(D) is by definition the constant term in the local asymptotic expansion

tr(e P P (z,2)) — tr(e PP (2, 2))

as t — 0. It is defined (as in the case of operators on closed manifolds) as some algebraic
expression in the coefficients of the operator and their derivatives. The second term is
the n-invariant of the tangential operator A.

In the general case, the formula for a(D) is extremely cumbersome. However, for the
classical operators (Euler operator, signature operator, etc.) it is described by explicitly
computable formulas. For example, if D is the signature operator with coefficients in a
bundle F equipped with a connection, we have

a(D) = L(X)chE,

where L(X) € A®’(X) stands for the Hirzebruch polynomial [56] in the Pontryagin forms
of the Riemannian manifold and chE € A®(X) is the Chern character of the bundle
computed in terms of the connection via Chern—Weil theory.

A similar expression for the form is valid for the remaining classical operators; one
has only to substitute polynomials corresponding to the operators in place of the L-
polynomial.

The Atiyah—Patodi—-Singer formula has numerous applications ranging from algebraic
geometry [5] to quantum field theory [72]. As an explanation of this phenomenon,
M. Atiyah points out that for the signature operator the formula (35) relates three ob-
jects of entirely different nature: a topological invariant (the signature) on the left-hand
side and a metric invariant (the integral of the Pontryagin forms) as well as the spectral
n-invariant on the right-hand side.
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3.8 The index decomposition of the Dirac operator (Kreck-Stolz
invariant)

Consider the Dirac operator on a 4k-dimensional manifold M. In this section, we obtain,
following [45], a decomposition of the index of this operator. Strikingly enough, it turns
out that the index defect can be defined using the signature operator! The decomposition
is made under the assumption that the boundary has trivial Pontryagin classes.

Denote the Dirac operator by D and its tangential operator by A. By Atiyah-Patodi-
Singer theorem, the sum ind D + n(A) is equal to the integral over the manifold with
boundary of the A polynomial in the Pontryagin forms

/M A(p).

Hence to construct an index decomposition we have to decompose this integral into a
geometric invariant determined by the boundary and the remainder homotopy invariant
term. Such a decomposition is obtained for all decomposable components of the A-
polynomial (except the top component pi!) by the following lemma.

Lemma 2 Let o, B be positive degree forms on M whose restrictions to the boundary are
exact. Then

Jans= [ ans+ (5 aluisn v 00m),

where da = |gnr, 77 el is an arbitrary preimage of the cohomology class [o] € H*(M)
under the restriction map j : H*(M,0M) — H*(M), and (-,[M,0M]) is the pairing with
the fundamental class. Moreover, the terms on the right-hand side of the relation do not
depend on the choices.

The proof uses integration by parts. 0

Denote the first term in the formula of the lemma by

/8Md1(a/\ﬂ) déf/aMaAﬁ.

It only remains now to decompose the integral of the top Pontryagin class. Here
we make use of the signature operator: for this operator, the Atiyah-Patodi-Singer for-
mula contains the integral of the L-class. In turn, the L-class also includes the top
Pontryagin class. A standard computation shows that the sum A(p) + axL(p), where
ap = (227122521 _ 1))~ in degrees < 4k, contains only products of Pontryagin classes
of positive degrees, i.e., does not contain the top class py. For example, for an 8-manifold

one has
1

)= e )= 25T~ (01)?)

Further, by rewriting the sum ind D + a;ind D by Atiyah—Patodi-Singer theorem, we
obtain

AM TP —4py), L(M

ind D + 5(A) — axn(A) — /8 A+ al)(p) = (01),
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where t(M) denotes the following topological invariant of manifolds with boundary:
HM) = (A + apL)(5'p(M)), [M,0M]) — azind D.

The contribution of the boundary is called the Kreck-Stolz invariant s(OM,g) of the
manifold OM with metric g.

Theorem 18 [45] The index of the Dirac operator on a manifold with boundary having
trivial Pontryagin classes has the decomposition

indD = t(M) + s(0M, g),

where the Kreck-Stolz invariant s(OM,g) is a homotopy invariant of the metric in the
class of metrics of positive scalar curvature.

4 Elliptic theory “modulo n”

Another field of applications of elliptic theory in subspaces concerns so-called theories
with coefficients in finite groups Z,. The characteristic feature of such theories is that,
for some reason, the index in such theories makes sense only as a residue.

In this section, we briefly discuss two versions of this theory: on Z,-manifolds and on
closed manifolds.

4.1 The Freed—Melrose theory on Z;-manifolds

Definition 11 A Zg-manifold is a compact smooth manifold M with boundary 0M,
which is a disjoint union of k£ copies of some manifold X

OM = My U... UM, MZ%EX
with fixed diffeomorphisms g;.

Zi-manifolds naturally define the singular spaces

— gflgi
M = M/{M; "~ M;}, (36)

identifying points on the components of the boundary (see Fig. 3).

Zy-manifolds were introduced by Sullivan [71]. One of the motivations indicating the
interest in this class of singular spaces is the fact that (in the orientable case) a singular
manifold M carries a fundamental cycle in homology with coefficients Z,

[M] € H,, (M,Z),  m=dimM.

These singular manifolds were also used as a geometric realization of bordisms with coef-
ficients in Zj. For further research in this direction, we refer the reader to [20].
On a Zy-manifold, we fix a collar neighborhood of the boundary

Uanr = [0,1) x X x {1,....k}. (37)
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N

Figure 3: Manifold with singularities

Definition 12 An operator on a Zi-manifold is an operator D on M, which is invariant
under the group of permutations of the components of the collar neighborhood (37) of
the boundary.

We equip elliptic operators D on Zg-manifolds with spectral boundary conditions.

Proposition 8 The index residue modk-ind(D,I1(A)) is constant for homotopies of
the operator D.

Indeed, for a continuous homotopy {D;}+cjo,1) the change of the index is equal to the
spectral flow of the family of tangential operators on the boundary

ind(Dl, H+(A1)) — ind(Do, H+(A0)) = _Sf{At}tE[O,l}-
On the other hand, the family A; at the boundary is by assumption the direct sum of k

copies of some family on X. Therefore, the spectral flow is divisible by k. [l

This homotopy invariant index residue was computed in terms of the principal symbol
by Freed and Melrose. Let us briefly recall their result.

Theorem of Freed and Melrose. The cotangent bundle T*M is a noncompact
Zy-manifold, and the principal symbol of operator D defines an element in the K-group

(0 (D)] € K. (T°3).

(Here we use identification (36).) It turns out that the direct image mapping in K-theory
extends to the category of Zi-manifolds (the morphisms are by definition those embed-

dings which map boundary to boundary preserving the Z-structure). More precisely, for
an embedding f : M — N one has

fi: K. (T°M) — K, (T°N) .
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On the other hand, one can construct a universal space for such embeddings (i.e., the space
into which any Z; manifold can be embedded). The universal space can be obtained from
R by deleting k disjoint disks of a sufficiently small radius. We obtain the Z;-manifold
M), whose boundary is the union of k spheres (diffeomorphisms of spheres are given by
parallel translations). It is easy to compute the K-group of the cotangent bundle of this
space

Ko (T*My,) ~ Zy.

Freed and Melrose proved the following index theorem.

Theorem 19 [31] One has
mod k-indD = fi [0 (D)],

where the direct image map fi : K. (T*M) — K, (T*Mk) ~ 74 15 induced by an embed-
ding f: M — M.

The proof models the K-theoretic proof of the Atiyah—Singer theorem based on embed-
dings. The main part of the proof is the statement that the analytical index is preserved
for embeddings, i.e., for an embedding of M in N the following diagram commutes

K(T°M) I K.(T°N)

N .
L.

4.2 Index modulo n on closed manifolds

Index-residues also arise on a closed manifold. Consider the following question: what
objects of elliptic theory correspond to the elements of K-group K.(T*M,7Z,) with coef-
ficients Z,,"

The answer is given in terms of operators in subspaces

D:nL — C™(M,F). (38)

Leu us show how symbols of such operators define elements of the K-group with
coefficients. To this end, we recall the definition of the latter.
K-theory with coefficients is defined as

K. (T*"M,Zy) = K. (T*M x M,,, T"M x pt); (39)

where M, is the so-called Moore space of the group Z,. An explicit construction of this
space can be found in [3]. We will only use the fact that the reduced K-groups of the
Moore space is Z, and generated by the difference 1 — [y], where 7 is a line bundle. We
will also fix a trivialization

ny £ c".
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Geometric construction of elements of K-groups with coefficients. It follows
from definition (39) that elements of K. (T7*M,Z,) can be realized in terms of families
of elliptic symbols® on M. The family is parametrized by the Moore space. It is easy to
define such a family as a composition:

c (M, F) 25 nl,
~ g1 ~ o~
nL "2t gl (40)

yonl "%y @ 0® (M, F),

where D! is an almost inverse and the last family is obtained by twisting with v. The
family of symbols corresponding to this composition defines the desired element in the
K-group with coefficients. Denote it by

o (D)] € K.(T"M,Zy,) .

In [60], it is shown that the K-group with coefficients is actually isomorphic to the group
of stable homotopy classes of operators (38). Let us conclude this section with an index
theorem.

Index theorem. Note that the index of operator (38) as a residue modulo n

mod n-ind D € Z,

is a homotopy invariant of the principal symbol of the operator. The following theorem
gives an expression for this index in topological terms.

Theorem 20 One has

mod n-ind D = p, [o (D)], (41)
where the direct image map p : K (T*M,Z,) — [?(pt,Zn) = Zy in K-theory with
coefficients 1s induced by p : M — pt.

Let us apply the Atiyah—Singer index formula for families to compute the index of the
composition (40). This formula expresses the index as the right-hand side of (41). On
the other hand, the index of the composition can be computed directly as

indD([y] — 1) e K(M,,),

i.e., it coincides with the modulo n index of the operator in subspaces in the group

K (pt,Z,) = Zn. O

3Here we use the difference construction for families [11]. It associates element [¢] € K (T*M x X)
with a family o (z), z € X of elliptic symbols on M parametrized by space X:

o(z):7"E — 7*F, E,FeVect M xX), n:5S"MxX —MxX.
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