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Abstract

In normal everyday viewing, we perform large eye movements (saccades) and minia-
ture or fixational eye movements. Most of our visual perception occurs while we are
fixating. However, our eyes are perpetually in motion. Properties of these fixational
eye movements, which are partly controlled by the brainstem, change depending on
the task and the visual conditions. Currently, fixational eye movements are poorly
understood because they serve the two contradictory functions of gaze stabilization
and counteraction of retinal fatigue.

In this dissertation, we investigate the spatial and temporal properties of time
series of eye position acquired from participants staring at a tiny fixation dot or at a
completely dark screen (with the instruction to fixate a remembered stimulus); these
time series were acquired with high spatial and temporal resolution.

First, we suggest an advanced algorithm to separate the slow phases (named drift)
and fast phases (named microsaccades) of these movements, which are considered to
play different roles in perception. On the basis of this identification, we investigate
and compare the temporal scaling properties of the complete time series and those
time series where the microsaccades are removed. For the time series obtained during
fixations on a stimulus, we were able to show that they deviate from Brownian
motion. On short time scales, eye movements are governed by persistent behavior
and on a longer time scales, by anti-persistent behavior. The crossover point between
these two regimes remains unchanged by the removal of microsaccades but is different
in the horizontal and the vertical components of the eyes. Other analyses target the
properties of the microsaccades, e.g., the rate and amplitude distributions, and we
investigate, whether microsaccades are triggered dynamically, as a result of earlier
events in the drift, or completely randomly. The results obtained from using a
simple box-count measure contradict the hypothesis of a purely random generation
of microsaccades (Poisson process).

Second, we set up a model for the slow part of the fixational eye movements.
The model is based on a delayed random walk approach within the velocity related
equation, which allows us to use the data to determine control loop durations; these
durations appear to be different for the vertical and horizontal components of the eye
movements. The model is also motivated by the known physiological representation
of saccade generation; the difference between horizontal and vertical components
concurs with the spatially separated representation of saccade generating regions.
Furthermore, the control loop durations in the model suggest an external feedback
loop for the horizontal but not for the vertical component, which is consistent with
the fact that an internal feedback loop in the neurophysiology has only been identified
for the vertical component. Finally, we confirmed the scaling properties of the model
by semi-analytical calculations.

In conclusion, we were able to identify several properties of the different parts of



iv

fixational eye movements and propose a model approach that is in accordance with
the described neurophysiology and described limitations of fixational eye movement
control.
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Zusammenfassung

Während des alltäglichen Sehens führen wir große (Sakkaden) und Miniatur- oder
fixationale Augenbewegungen durch. Die visuelle Wahrnehmung unserer Umwelt
geschieht jedoch maßgeblich während des sogenannten Fixierens, obwohl das Auge
auch in dieser Zeit ständig in Bewegung ist. Es ist bekannt, dass die fixationalen
Augenbewegungen durch die gestellten Aufgaben und die Sichtbedingungen verändert
werden. Trotzdem sind die Fixationsbewegungen noch sehr schlecht verstanden,
besonders auch wegen ihrer zwei konträren Hauptfunktionen: Das stabilisieren des
Bildes und das Vermeiden der Ermüdung retinaler Rezeptoren.

In der vorliegenden Dissertation untersuchen wir die zeitlichen und räumlichen
Eigenschaften der Fixationsbewegungen, die mit hoher zeitlicher und räumlicher
Präzision aufgezeichnet wurden, während die Versuchspersonen entweder einen sicht-
baren Punkt oder aber den Ort eines verschwundenen Punktes in völliger Dunkelheit
fixieren sollten.

Zunächst führen wir einen verbesserten Algorithmus ein, der die Aufspaltung
in schnelle (Mikrosakkaden) und langsame (Drift) Fixationsbewegungen ermöglicht.
Den beiden Typen von Fixationsbewegungen werden unterschiedliche Beiträge zur
Wahrnehmung zugeschrieben. Anschließend wird für die Zeitreihen mit und ohne
Mikrosakkaden das zeitliche Skalenverhalten untersucht. Für die Fixationsbewe-
gung während des Fixierens auf den Punkt konnten wir feststellen, dass diese sich
nicht durch Brownsche Molekularbewegung beschreiben lässt. Stattdessen fanden
wir persistentes Verhalten auf den kurzen und antipersistentes Verhalten auf den
längeren Zeitskalen. Während die Position des Übergangspunktes für Zeitreihen
mit oder ohne Mikrosakkaden gleich ist, unterscheidet sie sich generell zwischen
horizontaler und vertikaler Komponente der Augen. Weitere Analysen zielen auf
Eigenschaften der Mikrosakkadenrate und -amplitude, sowie Auslösemechanismen
von Mikrosakkaden durch bestimmte Eigenschaften der vorhergehenden Drift ab.
Mittels eines Kästchenzählalgorithmus konnten wir die zufällige Generierung (Poisson
Prozess) ausschließen.

Des weiteren setzten wir ein Modell auf der Grundlage einer Zufallsbewegung
mit zeitverzögerter Rückkopplung für den langsamen Teil der Augenbewegung auf.
Dies erlaubt uns durch den Vergleich mit den erhobenen Daten die Dauer des Kon-
trollkreislaufes zu bestimmen. Interessanterweise unterscheiden sich die Dauern für
vertikale und horizontale Augenbewegungen, was sich jedoch dadurch erklären lässt,
dass das Modell auch durch die bekannte Neurophysiologie der Sakkadengenerierung,
die sich räumlich wie auch strukturell zwischen vertikaler und horizontaler Kompo-
nente unterscheiden, motiviert ist. Die erhaltenen Dauern legen für die horizontale
Komponente einen externen und für die vertikale Komponente einen internen Kon-
trollkreislauf dar. Ein interner Kontrollkreislauf ist nur für die vertikale Kompoente
bekannt. Schließlich wird das Skalenverhalten des Modells noch semianalytisch
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bestätigt.
Zusammenfassend waren wir in der Lage, unterschiedliche Eigenschaften von

Teilen der Fixationsbewegung zu identifizieren und ein Modell zu entwerfen, welches
auf der bekannten Neurophysiologie aufbaut und bekannte Einschränkungen der
Kontrolle der Fixationsbewegung beinhaltet.
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Chapter 1

Introduction to fixational eye
movements

1.1 Introduction

If we compare a human and a frog, several major physiological and behavioral
differences are immediately obvious. In this dissertation, we focus on one small
difference, which is not visible to the naked eye. We focus on differences in eye
movements, but not the large eye movements, i.e. saccades, which can be seen in
humans and frogs. Instead, we focus on the difference in the movements during
the, at first glance, motionless periods between saccades. While for frogs, the eyes
indeed are not moving [Lettvin et al., 1959], measurements with high spatial and
temporal resolution reveal that the human eye moves perpetually and involuntarily
during these periods. The existence of both possibilities suggests that they both
have their advantages in different situations, and shows that tiny eye movements are
avoidable. For frogs, it seems to be sufficient to perceive the static environment only
during its own movements. It also seems to be advantageous if everything except
the moving fly or stork fades from vision. For humans, who often use parts of the
static environment, it seems beneficial to perceive it in detail - even at rest. The
following dissertation will solely focus on humans.

The investigation of fixational eye movements supplies valuable results for several
scientific disciplines, e.g. psychology, neuroscience and physics [e.g. Engbert, 2006].
From a psychological perspective, fixational eye movements can be seen as a minimal
cognitive process. Evidence for this point of view comes from experiments that
reveal interactions between focusing on a certain task, like performing a saccade
to an appearing stimulus and the occurrence of microsaccades. In neuroscience,
fixational eye movements allow deeper insight into control mechanisms and the
interaction of motoric behavior and visual perception. This is due to the extremely

1
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fast reaction of the oculomotor system to changes of visual stimuli. Furthermore,
the idea of active vision [Findlay and Gilchrist, 2003], the alteration of visual
performance by movements of the eye, allows conclusions to be drawn about the
neurophysiological setup. For the field of physics, especially nonlinear dynamics,
fixational eye movements supply dynamically controlled time series that can be
described by a random walk. Furthermore, they server as a source of information
about possible realizations of control processes on the basis of noisy input. The
investigation of fixational eye movements can further deliver deeper insights into the
information processing of spatio-temporal fields. In paticular, studies on the retina
of salamanders and rabbits [Ölveczky et al., 2003] revealed that already at the level
of the retina object motion is separated from background motion.

In this dissertation, the dynamical properties of fixational eye movements under
different conditions are investigated. We apply several analyses to reveal mechanisms
like dynamical triggering of microsaccades or the scaling behavior of fixational eye
movements. Finally, we construct a dynamical model consisting of a stochastic
delayed difference equation.

Vision has evolved as an exceptionally precise sense organ to perceive accurate
locations and velocities of approaching predators and fleeing prey. Furthermore, it
supplies good feedback about our own position within a diversified environment,
which is mainly important while we are moving. These functional ideas about
vision lead to the assumption that motion detection is one of the most important
components in vision. However, after the first step of seeing a moving object, it is
important to recognize it, and thus a high spatial resolution and the perception of
color are beneficial. All these demands seem to be taken into account looking at the
design of the human eye and the variety of eye movements the human eyes perform.
A short description of the anatomy of the eye can partially explain the different types
of eye movements observed in humans (Figure 1.1A). The exterior of the eye provides
structural stability; it is made up of the transparent cornea, found anteriorly, which
allows light into the inside of the eye, and the opaque sclera. If we follow the path
of the light through the eye after it is refracted through the cornea, we find the lens,
which allows variable focusing, the vitreous body, and the retina, which contains
the photoreceptors and corresponding neural connections to the brain. The highest
density of cone photoreceptors is at the centrally located fovea, which corresponds
to the part of the retina with the highest spatial resolution and color discrimination;
this area has an extent of approximately 1◦ of visual angle. As one moves further
into the retinal periphery, one finds a decreasing number of cones and an increasing
number of rods [Curcio et al., 1990], which are the photoreceptors more adapted to
low light levels; one also finds that the size of the receptive field increases, which
allows better motion detection.

Large eye movements are designed to bring the most interesting stimulus onto
the fovea. To achieve this movement of the visual axis, the eyes are rotated within
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Figure 1.1: (A) Anatomy of the eye. (B) Placement of the eyes in the head and orientation of
the muscles. Images from [Hung, 2001]

the eye socket by six extraocular muscles (Figure 1.1B); two of these are responsible
for rotations along a horizontal axis, while the other four produce combined vertical
and torsional rotations. A pulley allows one of these muscles to exert its force in
such a direction that accurate rotation is possible [Angelaki and Hess, 2004]. All
six muscles are equiped with mechanoreceptors which supply proprioceptive input;
if the signal is used in eye movemente control is still discussed [Donaldson, 2000].
The extraocular muscles are controlled directly or indirectly by motoneurons, tonic
neurons (to maintain the current eye position), burst neurons (to accelerate the
eye), omnipause neurons (to suppress the bursting and stop saccades), and several
other brain stem regions like the superior colliculus, the cerebellum and the cortex
[Moschovakis et al., 1996].

Functionally, the larger eye movements can be separated into vergence and version
[Hung, 2001]. During vergence, the left and right eyes rotate in opposite directions, to
move from a centrally presented object far away to a near object, or vice versa. During
version, the eyes move in the same direction but usually with different velocities.
In normal viewing, the two movements are superimposed. A different classification
of eye movements is the separation into saccades and smooth pursuit; these two
movements are separated by their velocity. While smooth pursuit is a continuous
motion usually driven by locking the gaze to moving objects, saccades are jumps
within the natural scene or to locations of very fast moving objects. Brockmann and
Geisel [2000] investigated the trajectory generated by saccades within a natural scene.
They showed that the saccade amplitudes and directions are much better described
by a Cauchy process (Levy process with µ = 1 [Applebaum, 2004; Bouchaud and
Georges, 1990]) than by a Gaussian process.

While the larger types of eye movements can easily be seen by looking at another
person’s eyes,a third type is usually neglected—the small eye movements during
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fixations called fixational eye movements. Interestingly, by looking at some optical
illusions we can percieve them (Figure 1.2 see also hompage by: Kitaoka) There
are several reasons to take a closer look at fixational eye movements. Firstly, the
eyes normally fixate about 80% of the time. Secondly, the processing of the visual
surroundings is mostly performed during fixations, although the development of
eyes to detect changes and movements in the environment required fast decaying
responses in the photoreceptors to stationary stimuli. To counteract the perceptual
fading of stationary objects, their image on the retina has to be moved across several
photoreceptors. Although our eyes constantly perform these involuntary miniature
movements, we normally do not perceive them. Instead, an image that is completely
stabilized on the retina rapidly vanishes and cannot be perceived afterwards. Like
the larger eye movements, the fixational eye movements can be separated into a low
velocity component called drift and a high velocity component called microsaccades.
A tiny oscillation can be found superimposed on the drift, which is called the micro
tremor.

1.2 General overview of fixational eye movements

Several researchers have been investigating why humans perform small fixational
eye movements and what the impact of these movements is on our capability to
perceive the environment. More than 200 years ago, Robert Darwin [1786] suggested
small perpetual movements of the eye as reason for the lucid edge around centrally
fixated dark objects on a bright background. He stated that these small movements
move fatigued and unfatigued photoreceptors across the boundaries. The unfatigued
photoreceptors perceive the bright background brighter than the fatigued ones
generating the corona. Helmholtz [1867] suggested that the small eye movements
counteract retinal fatigue and that they also may be useful in the resolution of fine
spatial gratings. By the mid 20th century, the eye movement recording techniques had
improved and quantitative analyses of eye movements and fixational eye movements
were applied. As early as 1934, the three different types of fixational eye movements
were described by Adler and Fliegelman [1934]. However, the size of the movements
is given more accurately in [Ratliff and Riggs, 1950]; they described fast jerky
movements occurring one to two times per second called microsaccades, a slower
random walk like motion called drift and a tiny oscillatory movement superimposed
onto the drifting movement called tremor. For a recent review, see [Martinez-Conde
et al., 2004].

1.2.1 Drift and tremor

The smaller components of the fixational eye movements are called tremor and drift.
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Tremor is the name of a tiny oscillatory eye movement pattern with amplitudes of
less than 30′′ visual angle and frequencies of 30–100 Hz. The first measurements
that led to values around the given ones were made by [Adler and Fliegelman, 1934]
with values recalculated in [Ratliff and Riggs, 1950]. Ratliff and Riggs [1950] also
reported similar amplitudes in own measurements. Later on, there were several more
measurements that confirmed these values, summarized in [Martinez-Conde et al.,
2004]. To measure tremor, one needs to use techniques with extremely high spatial
resolution; this has meant that most of the measurements of tremor are made with
piezoelectric devices that are in direct contact with the eye. However, tremor can
be measured without contact by the use of double Purkinje eye trackers or by laser
interferometry. Tremor has been measured under several conditions like fixation
on a stimulus, instructed ceasing to fixate, fixations at an eccentric position, while
sitting and lying down, in darkness and with added inertia [Bengi and Thomas,
1973]. It has been found that the spectral power at several frequencies is higher in
fixations compared to the ceasing condition, that the power is more widely spread
over frequencies for eccentric fixation positions, that increased inertia reduced the
frequencies, that lying down reduced the power in the horizontal component while
increasing it in the vertical component and that in darkness the spectral maxima are
narrower. Another large investigation of the tremor was performed by Michalik [1987],
who compared the tremor of 61 healthy subjects with 79 patients with diagnosed
brain herniation. In his study, the well pronounced spectral maxima around 80 Hz
vanish for small herniations and the more severe the herniations were, the more the
frequencies tended to lower values. Both of these studies suggested that the origin of
tremor is located within the brain stem; explicitly, the reticular pontine formation is
suspected as the origin. Using a detailed analysis of the obtained power spectrum for
intervals of drift and tremor between microsaccades, Eizenman et al. [1985] identified
two frequency components; the data were collected with a non-contact technique. For
lower frequencies (0–40 Hz), the power declines with frequency as 1/f2, suggesting
an underlying Poisson process damped by friction and inertia of the eye ball in the
socket. For the second component (40–100 Hz), a clock-like firing of motoneurons
was proposed as origin. The clock-like firing could also explain the spreading of
power to neighboring frequencies in eccentric fixation tasks. The question if tremor is
conjugate in both eyes is still being discussed: Spauschuss et al. [1999] show evidence
for small correlations between the eyes in the high frequency components.

Tremor is superimposed on the slow component called drift, which resembles a
random walk. In addition to tremor and microsaccades drift was investigated in
several studies [Helmholtz, 1867; Adler and Fliegelman, 1934]. The temporal behavior
was initially described as a completely random process generated by instabilities
in the tonic behavior of extraocular muscles. This was motivated by a coarse-
grained analysis of the drift by Cornsweet [1956]. The author took intervals of 0.5 s
approximately every 2 s from recordings of 45 s, discarded intervals with obvious



6 CHAPTER 1. INTRODUCTION TO FIXATIONAL EYE MOVEMENTS

microsaccades, and used the difference between initial and final position as measure
for the amount of drift. He further stated that drift changes its direction seldom
enough that almost all intervals were without direction change. On the basis of this
measure, he concluded that the disappearance of visual stimuli does not influence
drift and that drift is typically not corrective to displacements and therefore “that
drift ins not under direct visual control” (p. 991). However, Ditchburn and Ginsborg
[1953] and Nachmias [1961, 1959] pointed out that drift is not completely random in
direction. Nachmias further wrote that drift is substantially greater during fixations
in darkness, and that the median direction of drift, computed as the difference in
position between onset and offset of intervals of 0.2 s, changes between fixations on
stimulus and in darkness for most participants; in this experiment, all fixations had
a length of 3 s. Especially, the findings of Boyce [1967] and St.Cyr and Fender [1969]
strongly emphasize control processes acting within the drift movement. St.Cyr and
Fender [1969] showed that drift and microsaccades are comparable in their ability
to correct for errors; but while drift mainly corrects vergence errors, microsaccades
seem to have a stronger version correcting function. Recently, Møller et al. [2006]
confirmed that 30 % of microsaccade end points were closer to the center of the most
frequently used retinal area during fixation and 53 % of the drift interval end points
were closer to the fixation center. The study by Steinman et al. [1967] revealed a
difference between the two instructions “hold eyes still” and “fixate” on the same
stimulus in the rate of microsaccades while the fixation error was approximately
the same. This already suggests the existence of a slow control system. Collewijn
and van der Mark [1972] investigated fixations in rabbits, which do not perform
microsaccades but are able to maintain fixations by slow control while visual input
feedback is supplied.

Further evidence for control mechanisms acting within the drift came from Stein-
man et al. [1973], who instructed their two participants to suppress microsaccades as
effectively as possible. They reported that after 3 minutes of training with feedback
about the number of microsaccades made, both participants were extremely good in
maintaining their fixation position for 15 s without performing microsaccades. One
of the participants showed a slight tendency to drift to the right. As a result, the
authors suggested that some people correct errors in eye position resulting from an
unintended directed drift with microsaccades. Generally, the ability to maintain a
prior fixation position is strongly reduce in darkness [Skavenski, 1972; Goltz et al.,
1997].

The first analyses that looked at the drift, investigating its resemblance to
Brownian motion, were performed by Matin et al. [1970]. They investigated the
distributions of the distances the drift progresses within certain time intervals. In
this way, they were able to investigate systematic displacements and the deviation
from a normal distribution. Since the random walking of the eyes is one of the
cornerstones of this dissertation, we describe the analyses made by Engbert and
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Kliegl [2003], which were motivated by the analysis of postural control data by
Collins and De Luca [1993], in more detail in the analysis section.

1.2.2 Microsaccades

The fast components of the fixational eye movements are called microsaccades, since
they resemble their larger counterparts, the saccades. Again, first measurements
on their size were made by Adler and Fliegelman [1934]. In the numerous articles
published since, the amplitude of microsaccades varies in the range of 1–120 minutes
of arc, but the mean of the amplitude is mostly in the range of 6–20 minutes of arc.
The large range occurs because the detection of a microsaccade strongly depends on
velocity criteria and microsaccades in the early articles were detected by eye and
marked by hand. The frequency of microsaccades is more consistently reported, and
is mostly in the range of 1–2 Hz. Most of the literature is summarized by Martinez-
Conde et al. [2004]. Microsaccades are reported to be, like saccades, occurring closely
linked in time in both eyes, with similar amplitude and direction [Møller et al., 2002,
2006; Schulz, 1984].

The discussion rages on about the role of microsaccades. Some suggest that
microsaccades reset the gaze point to the intended fixation position after error-
producing periods of drift, while others argue that they move a stimulus from one
fatigued region of photoreceptors to an unfatigued one. It has also been suggested
that at least two types of microsaccades exist [Boyce, 1967]: larger ones that move a
stimulus onto a new local region of receptors, and smaller ones that occur within the
local regions. For the smaller ones they reported that they are directed toward the
center of the small regions but not the center of the whole fixation. They further
reported that microsaccades are most likely horizontally or vertically oriented. In
1980, Kowler and Steinman [1980] strongly argued against a functional role of
microsaccades. Their leading argument was the ability to maintain fixation at a
intended location while suppressing microsaccades. They further added arguments
that microsaccades are a laboratory artifact due to exceptionally long fixations
with a restrained head. On the other hand, Ditchburn [1980] argued that drift and
tremor display mainly random behavior and that microsaccades are the major error
correcting movement of the eye. Up to now, the importance or microsaccades in
the process of image stabilization is unclear. Especially, as slow control processes
in the drift is corrective by itself [Nachmias, 1959; Boyce, 1967; Møller et al., 2006].
Nevertheless, effects of attention on the rate and direction of microsaccades have
been found [Kohama and Usui, 2002; Engbert and Kliegl, 2003; Laubrock et al., 2005;
Betta and Turatto, 2006; Hafed and Clark, 2002], which suggesting a functional role
of microsaccades to visual perception.

When we look at the two-dimensional eye movement trajectories of microsaccades,
they seem to resemble Levy flights [Applebaum, 2004; Bouchaud and Georges, 1990;



8 CHAPTER 1. INTRODUCTION TO FIXATIONAL EYE MOVEMENTS

Shlesinger et al., 1995], but in [Engbert, 2006], it was shown that they have a power
law tail with too large an exponent. We reinvestigate this behavior by looking at
the scaling properties of the amplitude distributions.

1.3 Functional role of fixational eye movements

Ever since the discovery of the fixational eye movements, their functional roles have
been the theme of numerous publications and many heated exchanges. The two major
roles attributed to fixational eye movements are the prevention of retinal fatigue
and the enhancement of perceptual acuity. To investigate their functions, Riggs
and Ratliff [1952]; Riggs et al. [1953] and Ditchburn and Ginsborg [1952] stabilized
stimuli on the retina by attaching a small suction device to the eyeball, which moved
the seen image to compensate for eye movements. Thus, the image always remained
on the same photoreceptors. In these studies, they found out that stabilized images
fade and cannot be perceived any more afterwards. In detail the effects of the three
types of fixational eye movements on visibility were investigated by Ditchburn et al.
[1959]. They concluded that large amplitude tremor, drift and microsaccades all are
necessary to counteract retinal fading. The fading in these early studies took several
seconds, but later, using a less invasive technique, where the eye is tracked and
the stimulus is moved by the measured eye movement, [Rucci and Desbordes, 2003]
found that the fading occurs within several hundred milliseconds. This discrepancy
can be explained by slippage of the contact lenses [Barlow, 1963], thus validating the
smaller values. The fading of entoptic images [Coppola and Purves, 1996] is even
faster and occurs within 80 ms. The first function, the prevention of retinal fatigue,
is widely accepted; while the second function, the better resolution of fine gratings,
is still hotly debated.

As early as 1867, Helmholtz [1867] suggested fixational eye movement as a source
for hyperacuity, the capability to resolve gratings that are smaller than the projected
size of the photoreceptors. Investigations on hyperacuity were also performed by
Riggs and Ratliff [1952]. They found out, using exceptionally short presentation times
of 70 ms, that acuity is higher if the eyes perform a small, but not a large, amount
of movement. Another hypothesis explaining hyperacuity uses spatial pooling over
several receptors. To investigate this hypothesis, Tulunay-Keesey [1960] built an
experiment presenting vernier offsets, single fine lines and oriented gratings for time
intervals between 0.02 s and 1.28 s while stabilizing the image. In his experiment,
he did not find differences between stabilized and unstabilized images, though he
found a large effect of the presentation time, leading to his conclusion that spatial
pooling better explains hyperacuity. Later on, a comparison of different stabilization
techniques [Kelly, 1979] suggested that his stabilization was imperfect and that better
stabilization strongly decreases acuity. Non-contact stabilization techniques have
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been recently improved to allow stabilization along one dimension [Rucci et al., 2007];
use of these improved techniques have shown that the capability to recognize the
orientation of gratings with a high spatial frequency, and consequently resolve them,
is strongly reduced if fixational eye movements perpendicular to the orientation of
the grating are suppressed by stabilization. Interestingly, this effect did not take
place for gratings with low spatial frequencies.

During the 1970s, the question arose, how much the fixational eye movements
under laboratory conditions differ from fixational eye movements under natural
conditions. Laboratory conditions included strongly restraining heads by using
bite boards or forehead and chin rests, and using heavy contact lenses. The main
argument fueling the discussion was that head movement could suffice to counteract
retinal adaption, and that during head movements, the eye movements have to
have a head movement correcting component [Skavenski et al., 1979]. Investigations
of fixations while the head can be moved strongly depend on the vestibulo-ocular
reflex, and therefore include the performance and measurement of the vestibular
system. Additionally, [Steinman et al., 1973], who conducted experiments where
microsaccades were voluntarily suppressed, questioned their role in perception and
gaze stabilization, and rather emphasized that drift plays a major role. In [Steinman
et al., 2003], it has been shown that the accuracy of the fixation, in this case
measured as the gaze error (the angle between the gaze vector for a given eye and
the vector from the sighting center of the eye to the target), is significantly lower if
the task demands accurate fixations on a distant target than if the fixations are on
a near target that has the same physical extent. Currently, it is still unclear how
much fixational eye movements are changed during fixations, where head and body
movements have to be compensated.

1.4 Control of fixational eye movements

Going along with the question about the purpose of the fixational eye movements,
the question arises, how are the fixational eye movements controlled; or are they
controlled at all? Again, contradicting hypotheses have been suggested. On the one
hand, there is the hypothesis that fixational eye movements are generated by random
flexing of the extraocular muscles. In this hypothesis, flexing of the whole muscle
generates drift and microsaccades, while actions of single muscle fibers generate
the tremor component [Eizenman et al., 1985]. On the other hand, there is the
hypothesis that drift and microsaccades are controlled by cortex and cerebellum
or at least by brain stem areas [Spauschuss et al., 1999]. The control of fixational
eye movements then needs to be separated in the slow drift/tremor component and
the fast microsaccade component. While there is currently almost no literature on
tremor control except the discussion of brain stem control in general [Michalik, 1987],
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Figure 1.2: When looking at the center the inner disc seems to jitter on top of the background.
This is an effect of the mainly horizontally oriented microsaccades. Figure composed by Ouchi
[1977] and taken from [Ölveczky et al., 2003]

other fixational eye movements generate more interest. However, up to now, most
of the control mechanisms for fixational eye movements are motivated by models
for larger eye movements: The control of microsaccades is derived from the control
of saccades, and drift control might be explained as smooth pursuit control with a
target of zero velocity. As the control mechanisms have motivated our model, the
possible control hubs are explained in more detail in Chapter 4.

In this context, the investigation of the control of fixational eye movements
appears to be a missing link in eye movement control and qualifies as an interesting
research field. The investigation of the control mechanisms is therefore chosen as the
major research topic for this dissertation. Time series analyses are applied to reveal
dynamical properties and a model for fixational eye movement control, based on the
obtained properties, is suggested.



Chapter 2

Experiments

The basis for the following analyses and the model building are fixational eye
movement data sets acquired with the EyeLink-II video based eye tracker (SR-
Research, Osgoode, ON, Canada). The setup of the eye tracker is shown in Figure 2.1.
There are three cameras sensitive to infrared light. One camera designated to detect
the head movements, is directed towards the stimulus presentation screen, measuring
displacements against the position of four fixed infrared markers (880 nm infrared)
at the corners of the stimulus presentation computer screen. Two cameras are
mounted on arms below the eyes. On the same arms, there are two types of infrared
diodes illuminating the eyes: 925 nm infrared diodes for pupil detection and 880 nm
infrared diodes for corneal reflex detection. Within the recorded videos, the pupils,
as they appear much darker than their surrounding, are detected using a reflection
threshold adjusted to the individual level necessary for each participant. The center
of the darker area in the horizontal and vertical directions then represents the
center of the pupil. Dilation and contraction of the pupil, e.g. pupillary fluctuations
(hippus) [Beatty and Lucero-Wagoner, 2000] could only marginally effect the position
meassurement, as dilation and contraction occur mainly with a radial symmetry and
on much slower time scales than displacements, e.g. hippus occur with a frequency
lower than 0.04 Hz. The corneal reflex can be used additionally to obtain better
absolute position of the fixations. But the noise level is doubled for combined
measurements. In the pupil only mode, the one used for the measurements, the
EyeLink-II system measures with 500 Hz and a spatial resolution better than 0.01◦

visual angle. During the recording process, a heuristic filter was applied, which is
based on [Stampe, 1993] and filters for random outliers. It can be used in a lower
stage filtering for outliers that are one sample long (stage 1) and a higher stage
which additionally reduced the data by outliers two samples long (stage 2).

The direction of the gaze corresponding to a certain position of the pupil was
calibrated by presentation of a nine point grid, four points close to the corners, four
points half the distance between these points along the edges, and one in the center

11
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of the screen. Except for the center point, which was presented at the beginning and
the end of the calibration routine, the points were presented in random order. For
each point within an interval of 1 s, a fixation of at least 300 ms was expected. As
soon as a fixation of 300 ms was found, the last 100 ms were used to average the pupil
position and to match it to the gaze position at the center of the calibration stimulus.
Saccades of at least 2.5◦ visual angle had to be performed between fixations. After
the calibration was completed, its accuracy was checked by a validation routine,
performed in the same way as the calibration. The calibration was considered to be
sufficiently good for the measurements if the sum of squared error distances for the
nine points of the validation was below 1◦ visual angle.

The experimental software performing the stimulus presentation was run in
MATLAB (Version 6.5 for Apple Macintosh, Mathworks Natick, Massachusetts,
USA) and based on the Psychophysics [Brainard, 1997; Pelli, 1997] and the EyeLink
[Cornelissen et al., 2002] toolboxes. The participants were seated at a distance
of 50 cm from the screen (Iiyama Vision Master Pro 514, 40 × 30 cm, 100 Hz,
1024 × 768 pixels) with their head resting on a chin rest. The height of the table
could be adjusted to allow a comfortable seating position.

All participants in the experiments had normal or corrected to normal eye sight.
In case of corrected to normal sight the participants were wearing their own glasses
but not contact lenses.

2.1 Experiment 1: Simple fixation task

In the first experiment, a naive group of participants were asked to perform excep-
tionally long fixations (20 s) on a black fixation dot (2 × 2 pixels, equivalent to 0.09◦)
on a white background. Further, a check for blinks, which the EyeLink represents as
missing data samples, was implemented to reduce the loss of data. As soon as the
participants performed a blink the trials were restarted. Prior to the measurement
period, a fixation check (lasting 0.5 s within a box of 1◦ × 1◦) was performed on a
fixation cross (composed of two rectangles, 10 × 2 pixels and 2 × 10 pixels wide)
centered at the same location as the later fixation point. After the 20 s of fixation,
the participants were presented a photograph of a natural scenes for 10 s, and were
instructed that they should relax and blink. All participants performed 30 successful
trials and were received either 7 Euro or 1.5 hours of study credit. The heuristic
filter was at stage 1.

We measured 24 naive participants in this experiment. 23 were between 19 and
26 years with a mean of 22 years and one participant was 51 years old. Some of the
participants had frequently participated in different types of eye tracking experiments
within the same laboratory. In Figure 2.2 a typical trajectory is shown.
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Figure 2.1: Setup of the EyeLink2 system, Image adapted from EyeLink2 Manual

2.2 Experiment 2: Simple fixations and fixations

in darkness

The second experiment was based on the first one and again consisted of fixations
of 20 s, Again a fixation check was performed and after the fixation duration, a
natural scene was shown. In this experiment, we had two conditions. One was again
a fixation at a fixation dot of the same size as in the first experiment, but now with
inverted colors, i.e., a white dot on a dark background. In the second condition, the
participants saw the fixation cross, but after a successful fixation check, the screen
became completely dark. The participants were instructed to stay fixated on the
memorized position of the fixation cross. Again, a total of 30 trials was performed,
15 in each condition. They were grouped into groups of 5 and half of the participants
started with trials of the darkness condition, while the other half started with trials
of the stimulus condition. During the entire experiment, a box was placed around
the screen and the participant to exclude external light sources. The screen was
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Figure 2.2: (upper) Six graphs depicting the 2d-trajectory within 500, 1000, 2000, 5000, 10000,
15000 ms. (lower) horizontal component of the same data set

invisible in the darkness condition. The rest of the setup was the same as in the first
experiment.

In this experiment, we measured 20 experienced participants, most of them who
had already taken part in fixational eye movement experiments. They were between
20 and 30 years old with a mean of 24.4 years. Ten were measured with the heuristic
filter at stage 1 (participant 1 and 12-20) and ten were measured with the heuristic
filter at stage 2 (participant 2-11).



Chapter 3

Time series analysis

In this chapter, we perform several analyses on the time series acquired from measure-
ments of fixational eye movements. Part of the analyses investigate the local scaling
of the entire eye movement data, while the rest look at parts of the trajectories
separated by a microsaccade detection algorithm. The first analysis described in
Section 3.1 is the detection of microsaccades, which is based on finding eye move-
ments that surpass a velocity threshold. In Section 3.2, the analyses of the temporal
local scaling of fixational eye movements are performed. They were used on the full
time series and on time series where the microsaccades are removed. The analyses
of the microsaccades, like the determination of microsaccade rate and amplitude are
described in Section 3.3 and Section 3.4 respectively. Finally, interactions between
drift prior to a microsaccade and the occurrence of the microsaccade (Section 3.5)
and microsaccade amplitude (Section 3.6) are investigated. The central results dis-
cussed in Section 3.1, Section 3.3, and Section 3.4 are presented in [Mergenthaler
and Engbert, subm]. Results from Section 3.2 are published in [Mergenthaler and
Engbert, 2007]. Results from Section 3.5 are published in [Engbert and Mergenthaler,
2006].

3.1 Detection of microsaccades

Microsaccades are classified as fast directed events during fixations. In the early
articles [e.g. Adler and Fliegelman, 1934; Ratliff and Riggs, 1950; Nachmias, 1959],
microsaccades were detected by looking at the data and marking apparently fast
directed events. Later, microsaccades were detected by various automated procedures.
As one of the first authors using automated detection, [Boyce, 1967] used a three stage
threshold algorithm: The first stage is the detection of velocities above 1◦/s visual
angle; then, a saccade onset is detected if the velocity within the next two samples
exceeds 2◦/s visual angle; finally, a saccade is stopped if two successive samples are

15



16 CHAPTER 3. TIME SERIES ANALYSIS

−0.4 −0.2 0 0.2
−0.3

−0.2

−0.1

0

0.1

hor. Position [°]

ve
rt.

 P
os

itio
n 

[°]

−20 0 20

−10

0

10

20

hor. Velocity [°/s]
ve

rt.
 V

el
oc

ity
 [°

/s
]

(a) (b)

Figure 3.1: Illustration of the microsaccades and the microsaccade detection algorithm. (a) The
microsaccades (red) as part of the fixational eye movement trajectory. (b) Velocity of the eye
movement. The randomness of the direction of the movement centers it around zero. The green
ellipse illustrates the detection threshold (λ = 5.5). The detected microsaccades are marked in red.

below 1◦/s visual angle again. Another method is described in [Martinez-Conde
et al., 2000], which is again based on the velocity but in this case in polar coordinates.
In this method, two different measures are checked to determine the existence of a
microsaccade: Velocity samples belong to a microsaccade as long as their “amplitude”
value is above 3◦/s visual angle and the angular value does not change more than
15◦ between consecutive samples. Widespread are also algorithms using thresholds
within velocity and acceleration [e.g. Møller et al., 2002; Kohama and Usui, 2002].
One disadvantage of these methods is the use of rigid thresholds, independent of
the participant, although different participants have different drift and microsaccade
velocity ranges. To counteract this disadvantage, Engbert and Kliegl [2003] suggested
an algorithm that takes the mean velocity of the trial into account. That algorithm
is the basis for the following method to detect microsaccades.

The microsaccade detection algorithm consists of several steps. The first step
is the generation of a smoothed two-dimensional velocity signal ~v from the fixation
data ~x to suppress noise via,

~vi =
~xi+2 + ~xi+1 − ~xi−1 − ~xn−2

6∆t
, (3.1)

with ∆t = 2 ms (sampling rate: 500 Hz). The random orientation of the fixation
data samples leads to a mean value that is effectively zero (Figure 3.1b). As the
microsaccades are events with high velocity, they consist of the data samples with
the largest distance to the origin. In the second step, the median squared distance
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from the median,
σ0.5 =

√
((v − (v)0.5)2)0.5 , (3.2)

which is close to zero, is computed, for both velocity components vh (horizontal)
and vv (vertical) independently; here, (.)0.5 denotes the median estimator. In the
next step, a threshold multiplier λ, chosen to be the same for both coordinates,
determines the threshold which has to be exceeded,

θ = λσ0.5 . (3.3)

We can choose one fixed value for λ by intuition for all participants as in [Engbert
and Kliegl, 2003], or use a theoretically motivated approach on the basis of [Engbert
and Mergenthaler, 2006] as described in the next section. Either way, the choice of
λ substantially affects the number of detected microsaccades (Figure 3.2, blue line):
As λ increases, the number of detected microsaccades decreases. In the next step of
the algorithm, events are detected that surpasses the threshold ellipse (Figure 3.1,
green ellipse) for at least three consecutive samples:(

vh(i)

θh

)2

+

(
vv(i)

θv

)2

> 1 ; (3.4)

here, the i denotes the index of the current sample and the indices v and h denote the
vertical and horizontal components, respectively. θ is obtained from Eqn. (3.3). In
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Figure 3.1b the detection of microsaccades due to the high velocities surpassing the
threshold is illustrated; in Figure 3.1a the microsaccades are superimposed (red) on
the eye position data. Finally, we considered microsaccades to be binocular events,
similar to Ciuffreda and Tannen [1995]; Schulz [1984]; Møller et al. [2002, 2006]. This
means that we kept only those candidate microsaccade epochs that are observed
binocularly with a temporal overlap of at least one data sample.

3.1.1 Choice of threshold multiplier

There are two reasons for the increase in the amount of detected microsaccades when
we diminish the threshold multiplier λ. One reason is that we can detect slower and
therefore smaller (see: main sequence in [Engbert, 2006]) microsaccades if we reduce
the threshold multiplier λ; this result is desired. The other reason is that the number
of false alarms—fast drift events that surpass the threshold by chance—increases,
which is obviously undesired. Therefore, it is necessary to choose the threshold
multiplier in a way that we achieve an optimal balance between correct and falsely
detected microsaccades. Furthermore, a data driven choice of the threshold multiplier
λ allows us to take individual microsaccade shapes and relations between drift and
microsaccade amplitudes into account [Mergenthaler and Engbert, subm].

The algorithm we used to determine the optimal threshold multiplier λ is based
on the idea that the correct rate of microsaccades can be calculated from the actual
rate of microsaccades detected for a chosen threshold multiplier λ by subtracting the
number of wrongly detected microsaccades for the same λ. Therefore, we search for
a way to generate surrogate data that maintains the drift properties but distorts the
microsaccades. Thus we aim at the rejection of the null hypothesis that high-velocity
epochs of fixational eye movements (possible microsaccads) occur by chance due to
autocorrelations in the drift uncorrelated between eyes; if we cannot reject the null
hypothesis, microsaccades do not exist.

A first idea is to randomly permute all the velocity samples of our data and
then, to generate a position time series by xi =

∑i
k=1 vk + x1, where k is the new

index of the shuffled time series (Figure 3.3c) and x1 the initial position of the eye.
This maintains the original distribution of the velocity samples while completely
destroying the existing temporal correlations within the data. As can be seen by
comparison of Figure 3.3a and Figure 3.3c this heavily affects the drift, because
fixational eye movements are characterized by temporal correlations [Engbert and
Kliegl, 2004; Engbert, 2006; Mergenthaler and Engbert, 2007]. Furthermore, this
kind of surrogate data is inappropriate for the rejection of the formerly stated
null hypothesis. To reject the null hypothesis at least the autocorrelation function
within each eye should be approximated. The phase-randomized amplitude-adjusted
surrogate data generation suggested in [Theiler et al., 1992; Prichard and Theiler,
1994] tries to approximate the autocorrelation function, and therefore mimic the
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Figure 3.3: Effects of the surrogate data generation algorithms on data. (a) The original data
set. (b) The amplitude-adjusted phase-randomized surrogates [Theiler et al., 1992] of (a) on the
basis of the velocity are shown. (c) An illustration of an inappropriate surrogate data algorithm:
random shuffling of the velocity samples.

temporal correlations, while shuffling the velocity samples1. It consists of several
steps:

1. Two vectors vs and iv are generated from the velocity time series v, which
must have an odd length N . vs contains the samples of v ordered according to
their size, and the vector iv contains the rank of the data samples of v. Thus,
vs(iv) = v.

2. Generate a vector g of uncorrelated normal distributed random numbers with
the same length as the velocity time series v.

3. Sort the Gaussian vector gs as in the first step.

4. Rearrange the sorted normal distributed random numbers gs using the ranking
vector iv: gr = gs(iv). In this way, we generate a time series gr that is a rescaled
time series of v with the property that the amplitudes of the samples belong
to a normal distribution.

5. Perform the discrete Fourier transform fg = F(gr). The vector fg contains
complex numbers and their complex conjugates which are symmetrically placed
right and left of the zero frequency component at (N + 1)/2.

1The chosen type of surrogate data neglects possible non-linear dependencies within the data
sets. Nevertheless, as we aim to separate microsaccades and drift, the possible separation by only
their linear properties is sufficient.
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6. Generate a random phase vector. This is done by generating a vector φ0(k)
with k ∈ 1, . . . , (N − 1)/2 filled with uniformly distributed random numbers
within the range −π ≤ φ0(k) ≤ π. Using this vector, a full phase vector
φ is constructed so that φ(k) = φ0(k) and φ(N − k + 1) = −φ0(k) for k ∈
1, . . . , (N−1)/2 and φ(k) = 0 for k = (N+1)/2. This routine is used to ensure
that in the next step the values right of the 0 Hz frequency are the complex
conjugate values of the values to the left. The complex conjugate values are
necessary to obtain surrogate data consisting of real values.

7. The phase of the Fourier transformed Gaussian samples is randomized: fgr =
fge

iφ.

8. The inverse Fourier transform returns a shuffled version of the Gaussian time
series: gf = F−1(fgr).

9. The shuffled Gaussian time series gf is sorted according to the size of the
samples and a ranking vector ig of gf is achieved.

10. Finally, the sorted original time series vs is rearranged using the ranking vector
ig: vr = vs(ig).

The vector vr contains the surrogate data that is built from the original data samples
that have been shuffled by random phase shifts of their Fourier transform. This
has the effect that the distribution function of the original data is maintained and
the autocorrelation function is slightly changed by fringe effects due to finite data
size. Therefore, these surrogates were termed amplitude-adjusted phase-randomized
(AAFT) surrogate data. The similarity between Figure 3.3a and Figure 3.3b corrob-
orate our belief that this is an appropriate surrogate data method. Note that the
surrogates cannot contain microsaccades by construction, but can exhibit fluctuations
of velocity resembling microsaccades due to their non-vanishing autocorrelations.

With the AAFT surrogate data now available, we are able to compute the
rate of microsaccades for the original data rO(λ) and the rate of false alarms for
the surrogate data rAAFT(λ) and investigate the effect of the chosen threshold
multiplier to both rates. In both time series the number of detected microsaccades
increase with decreasing λ. However, the speed of the increase differs. We can then
compute the rate of detectable proper microsaccades rC(λ) (Figure 3.2, red line)
by subtracting the rate of false alarms from the rate of events in the original data,
rC(λ) = rO(λ)− rAAFT(λ). In the following, we will refer to rC(λ) as the corrected
microsaccade rate. The maximum in the corrected rate rC(λ) at λmax gives the
maximal number of detectable proper microsaccades. While λmax is the point where
the maximal number of proper microsaccades can be identified, it is not the point
where only proper microsaccades are found, i.e., rAAFT(λmax) can be large. Taking
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this into account the optimal threshold multiplier (λ0) is the threshold multiplier λ
where the rate in the original data corresponds to the maximum of the corrected
rate, rO(λ0) = rC(λmax) (denoted in Figure 3.2 by the arrows targeting the x-axis).
Thus, λ0 is always larger than λmax. The maximum corrected rate rC(λmax) and
the optimal threshold multiplier (λ0) are determined for each participant separately
within a range of 2 ≤ λ ≤ 12. The high variety of the optimal threshold multipliers
λ0 (see arrows in Figure 3.2) is caused by varying relationships between drift and
microsaccade velocity. The larger values of λ0 observed in some participants derive
from microsaccades that have a very high speed compared to the participants drift
velocity. Later on, if we talk about a data set where the microsaccades are removed,
the microsaccades used are those detected at the optimal threshold multiplier λ0.
Effects of experimental condition, individual differences and the absolute values of
the rate are discussed in Section 3.3.

3.2 Temporal local scaling of fixational eye move-

ments

To better understand the apparently erratic movement of the eye, we investigate its
temporal local scaling, since temporal scaling classifies the type of random walk. For
classical Brownian motion [Einstein, 1905], the mean square displacement 〈x(t)2〉,
where 〈.〉 in this case denotes the ensemble mean, increases proportionally to t:

〈x(t)2〉 = 2Dt . (3.5)

For ergodic processes, the sample mean is equivalent to the temporal mean. An
analytical generalization of the classical Brownian motion was supplied by Mandelbrot
and van Ness [1968], which was motivated by the work of Hurst [1951] on the outflow
of large reservoirs like the lake Alberta which feeds the Nile river. The generalization
allows scaling proportional to t within a range of 0 < H ≤ 1 leading to:

〈x(t)2〉 ∝ t2H . (3.6)

This so-called Hurst exponent describes tree types of random behavior characterized
by the dependence of single time points on earlier points in time. The random
walk is either a classical Brownian motion H = 0.5 or a fractional random walk
for H 6= 0.5. Fractional random walks can further be separated in sub-diffusive
H < 0.5 and super-diffusive H > 0.5 processes. The major difference between
classical Brownian motion and fractional Brownian motion is the correlation between
increments. For classical Brownian motion, consecutive increments are uncorrelated
while for fractional Brownian motion, the correlation function C is described by
[Feder, 1988]:

C = 2(22H−1 − 1) . (3.7)
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For H = 0.5, Eqn. (3.6) is the same as Eqn. (3.5) and C = 0. For 0 < H < 0.5,
the signal is anti-persistent, which means negative correlations (C < 0) between
consecutive increments or the current and following data points. For 0.5 < H < 1 the
signal is persistent, which means positive correlations (C > 0) between consecutive
increments or the current and following data points. Thus, random walks of these
types have the tendency to move against (0 < H < 0.5), independently of (H = 0.5),
or in (0.5 < H < 1) the direction of the current movement. An investigation
of the local scaling behavior of data sets can be performed with several analyses,
summarized in [Scafetta and Grigolini, 2002]. The first was suggested by Hurst
[1951]; Hurst et al. [1965] and is called rescaled range analysis. The second, called
standard deviation analysis (SDA), is even more directly connected to the variance of
the underlying signal and was used in a two-dimensional version for the investigation
of the center of pressure trajectory in [Collins and De Luca, 1993, 1994; Delignièrs
et al., 2003]. A third possibility, developed by Peng et al. [1994] with the emphasis
on the analysis of non-stationary time series, is detrended fluctuation analysis (DFA).
A fourth way to obtain the local scaling behavior of a given time series is spectral
wavelet analysis. It decomposes the time series variance on a scale-by scale level
[Percival and Walden, 2000]. There are several other local scaling exponent analyses,
e.g., diffusion entropy analysis [Scafetta and Grigolini, 2002].

For theoretical models of fractional Brownian motion, the scaling can be found
independently of the absolute scale chosen, as they are fully scale invariant. This
does not hold for most biological systems, which commonly show scaling within a
range of scales, but also can show different local scaling behaviors within different
local scaling regimes [Liebovitch and Yang, 1997]. The transitions between local
scaling regions are commonly called crossovers and have been found for several
biological systems, e.g., center-of-pressure trajectories [Collins and De Luca, 1993,
1994], voltage difference across the cell membrane of human T-lymphocyte cell lines
[Churilla et al., 1996], and fixational eye movements [Engbert and Kliegl, 2004;
Mergenthaler and Engbert, 2007]. All these biological systems share the property
that the transition occurs from persistent behavior at small scales to anti-persistent
behavior at large scales. We apply two of the scaling analyses to the data acquired
from the experiments.

3.2.1 Rescaled range analysis

In this analysis, the time series xt of length N is divided into non-overlapping
time intervals of length n. For each interval, the deviations from the mean 〈x〉n =
1
n

∑n
t=1 x(t) are summed up:

X(n, τ) =
τ∑
t=1

(xt − 〈x〉n) . (3.8)
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Then, the range R(n) is computed as the difference between the maximum and
minimum of the summed series:

R(n) = max
1≤τ≤n

X(n, τ)− min
1≤τ≤n

X(n, τ) . (3.9)

To normalize the acquired values, they are divided by the standard deviation within
the time intervals S(n) =

√
1/n

∑n
t=1(xt − 〈x〉n)2. Hurst [1951]; Hurst et al. [1965]

showed that the water storage of the Nile river followed the scaling behavior described
by the scaling relation:

R(n)

S(n)
∝ tH . (3.10)

Thus, the scaling exponent can be acquired from a linear fit to the log-log plot of
R(n)/S(n) vs. n.

3.2.2 Standard deviation analysis

With this method we are following the example of Collins and De Luca [1993, 1994],
who also investigated erratic physiological data. Their research was performed on
the trajectories of center-of-pressure data of humans during quiet standing. The
method is directly based on the computation of the diffusion constant on the basis
of the mean displacement within a given time interval. However, biological systems
show crossover phenomena between different scales, so it is not possible to talk about
a diffusion constant, which would be independent of the chosen scale. To obtain the
Hurst exponent at a certain scale, we compute the lagged standard deviation given
by the expression:

D2(l) =
1

2(N − 1)

N−l∑
i=0

[x(i− l)− x(i)− x(l)]2 , (3.11)

where x(i) denotes the ith data point of the time series. The mean value for the
distance is denoted by x(l) = 1/N

∑N
i x(i − l) − x(i). x could also denote a two

dimensional data set as in [Collins and De Luca, 1993, 1994; Delignièrs et al., 2003];
which is illustrated in Figure 3.4. To investigate power-law behavior of the form
D2(l) ∝ l2α, we analyze log-log plots of D(l) vs. l (Figure 3.5a) and the slope of
D(l) (Figure 3.5b). The local slope is computed by fitting a linear function to five
consecutive points of log(D(l)) vs. log(l); this corresponds to a running average.
Thus, we can read off the local scaling exponent at the chosen scale directly from
Figure 3.5b. As i can be every single point within 0 and N − l, the windows overlap,
and thus, the trajectory parts are not totally independent. Another possibility would
be the choice of non-overlapping windows by dividing the original trajectory into
parts and perform the analysis within these windows. The disadvantage of this
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Figure 3.4: Illustration of the two-dimensional standard deviation analysis. The black arrows
show the displacements during a time interval l1 from the start positions i = 1, 5, 12, 18. Their mean
gives us the mean displacement within a time interval l1. The red arrows show the displacements
during a larger interval l2.

approach is that only a few intervals remain and the statistical power is strongly
diminished. The two-dimensional version is used for the investigation of the center of
pressure trajectory in [Collins and De Luca, 1993, 1994; Delignièrs et al., 2003]. This
two-dimensional version D2(l) is not reduced by the mean x(l) as in Eqn. (3.11).

3.2.3 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was introduced by Peng et al. [1994], and
was primarily developed to investigate local scaling properties in DNA nucleotides,
which contain coding and non-coding regions. With this method, they were able
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Figure 3.5: (a) D(l) computed via SDA is plotted in a log-log plot. The black line denotes the
mean over all participants and the red lines denote the within participant means for horizontal
fixational eye movements. (b) The slope of the functions in (a) is plotted. The green horizontal
line at 0.5 separates persistent and anti-persistent behavior.

to show that the patchiness (mixed coding and non-coding regions) of the DNA by
itself cannot account for long-range power law correlations found in DNA dominated
by non-coding regions. Later, they applied the method to heartbeat data [Peng
et al., 1995], which is highly non-stationary. It was unclear if the non-stationarity
arises from external environmental changes or if the changes arise from an underlying
complex nonlinear system. With this method, they were able to distinguish a healthy
subject from one with congestive heart failure. DFA was further applied to fixational
eye movement data [Liang et al., 2005; Mergenthaler and Engbert, 2007]. The major
difference to the earlier methods is the assumption that the data is not uniquely
governed by stochastic forces but additionally is influenced by local trends. These
local trends, as long as they are polynomial, can be removed by using DFA. DFA-p
is capable of removing polynomial trends of order p− 1. An illustration of DFA can
be found in Figure 3.6. To compare the results of DFA with those from SDA, DFA
is performed on the velocity v(i) = Ts(x(i + 1) − x(i)) of the eye movement data;
Ts = 500 Hz denotes the sampling frequency. DFA consists of five steps:

1. Perform a cumulative sum of the investigated data. Instead of performing this
first step, we could also use the direct position data instead of the velocities.

2. The time series, with length N , is cut in Nl = bN/lc segments ν of length l.
In DFA, l is the parameter that determines the scale that the scaling exponent
analysis works on. For DFA, reliable results can be obtained within the range
2p + 1 ≤ l ≤ N/10. The lower boundary arises from the fitting criterion for
polynomials, that at least 2p+ 1 points are necessary for a polynomial trend
of order p. The upper boundary is a bit more flexible, arising from the fact
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Figure 3.6: In DFA, the mean of the squared distance from the polynomial trend within a chosen
window is computed. In the illustration, this translates to the squared distance of the blue dot
from the polynomial trends within the windows, i.e. from the blue curve for 30 ms windows.

that the larger the intervals are, the less values are available to compute their
mean.

3. In each of the segments ν, the polynomial trend yν of order p is determined
using linear least-squares.

4. The mean of the mean squared deviation of the data with the trends removed
is computed:

F 2(l) =
1

Nl

Nl∑
ν=1

1

l

l∑
i=1

[v((ν − 1)l + i)− yν ]
2 . (3.12)

5. In the last step, the local scaling exponent can be determined as the slope of
the log-log plot of F (l). The local slope is computed as in the description of
SDA as the slope of five consecutive data points.

There are two important points concerning the application of DFA to eye movement
data, one concerning the time series with microsaccades, and the other relating
to the time series with the microsaccades removed. In the two cases, we have
nonstationarities of different types. For the data containing microsaccades, which
are regions within the drift data with different local scaling properties, the entire
signal is composed of regions with different local scaling behavior. In the case where
the microsaccades are removed, we have nonstationarities due to the removal of
time intervals. Both types of nonstationarities influence the local scaling of the
entire data [Chen et al., 2002]. Cutting segments from the data does not affect
persistent behavior but strongly affects anti-persistent behavior. This cutting results
in a crossover separating the short timescales, which is still anti-correlated, from
the large timescales where the local scaling yields an uncorrelated process. For the
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data containing the microsaccades, we have to take their effects on different scales
into account. For systems with a scale-independent scaling exponent and injected
intervals with a different scaling, a superposition rule is supplied [Chen et al., 2002;
Hu et al., 2001] that contains the scaling properties of the two processes, as well as
effects generated by the number, the distance and the length of the injected intervals.

3.2.4 Spectral wavelet analysis

Spectral wavelet analysis (SWA) [Percival and Walden, 2000; Scafetta and Grigolini,
2002] is another method for the determination of the local scaling. In SWA, the
separation of scales is performed via a wavelet transform, which uses wavelets ψτ,t(u)
that are localized in time and frequency. The parameters of the wavelet are: τ , the
chosen width of the wavelet determining further its frequency; t, the position in time
of the wavelet; and u, the time variable. To determine the local scaling properties,
we perform several steps:

1. Compute the wavelet transform of the data set x(u) via:

W (τ, t) =

∫ ∞

−∞
ψτ,t(u)x(u)du . (3.13)

2. Compute the wavelet spectral density function Sw(τ ), which returns how much
energy is contributed at timescale τ via:

Sw(τ) =
1

Cψτ 2

∫ ∞

−∞
W 2(τ, t)dt ; (3.14)

here, Cψ is a wavelet-dependent constant. Equation (3.14) is a result of the
wavelet equivalent of Parceval’s theorem in Fourier analysis.

3. For the wavelet spectral density function Sw(τ) for the given data set, we
obtain the scaling law:

Sw(τ) ∝ τ 2H−1 . (3.15)

3.2.5 Application to fixational eye movement data

SDA applied to the data–method

The SDA is applied to several data sets obtained from the left eye in the two
experiments. We apply the method to horizontal (Figure 3.5 and Figure 3.7a, b),
vertical (Figure 3.7c, d) and two-dimensional (Figure 3.7e, f) eye movements. While
Figure 3.5 shows the means of single participants (red) and the mean over all (black)
for the horizontal component, Figure 3.7 shows the means over all participants for
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all investigated data sets. In addition, we investigate the influence of microsaccades
on the local scaling behavior. This is done by removing microsaccades detected
with the optimal threshold (Section 3.1); as a control condition, we removed random
intervals2from the original data. Microsaccades and random intervals were removed
from the difference of consecutive data points v(i) = x(i+ 1)− x(i), afterwards the
cumulative sum was computed: xMSrem.(k) =

∑k
1 v(i). For all three types of data:

full data (black, gray), microsaccades removed (blue, light blue) and random intervals
removed (red, orange), the mean of the slopes of all participants is plotted. The
last separation can be only made for Experiment 2 as it is the separation between
fixations with a stimulus and fixations in darkness.

The local scaling behavior is investigated for lags within the range 2 < l < N/4,
where N denotes the length of the data; instead of choosing every possible lag, the
lags are scaled by 1.09k with k ∈ N in such a way that l < bN/4c, where b.c denotes
the resulting of rounding down to the nearest integer. The choice of 1.09 supplies
high resolution at the short time scale and a comparable resolution at the long time
scale, as the obtained plots are in logarithmic units. Furthermore, it strongly reduces
the computation time without affecting the results of the analyses.

SDA applied to the data–results

We start out by describing the results obtained for the fixations on the stimulus;
with this condition, we can expect visual control to be present. During fixations on
a stimulus (Experiment 1 and Condition 1 in Experiment 2), the slope of the log-log
plots for horizontal (Figure 3.7a, b), vertical (Figure 3.7c, d)), and two-dimensional
(Figure 3.7e, f) SDA show persistent behavior for short timescales up to 30 ms. The
removal of the microsaccades from the horizontal component allows us to deduce
that microsaccades generate persistent behavior on the shortest timescales of up to
15 ms, but between 15–40 ms, the main contribution to persistent behavior is due
to drift. For the vertical component, the influence of microsaccade removal is small,
which is in accordance to the observation that microsaccades are mainly horizontal,
and therefore apply their influence mainly to the horizontal component.

At intermediate timescales (40–150 ms, 30–100 ms, and 30–150 ms for the
horizontal, vertical and two-dimensional analyses respectively), we find a trough in
the local scaling behavior. The minimum of the trough is located at a lag of 100 ms

2The random intervals are determined in the following way. Let x(i) be the data points
of a fixation with their indices i = 1, · · · , N where N is the length of the data. Fur-
ther say that r microsaccades of individual length l1, l2, · · · , lr were detected at the indices
j1, j1 + 1, · · · , j1 + l1; j2, · · · , j2 + l2; · · · ; jr, · · · , jr + lr. While during microsaccade removal the
data points v(j1, · · · , jr + lr) are excluded. During the removal of random intervals the values at:
N − j1, L− (j1 + 1) · · · , N − (j1 + l1), · · · are discarded. Thus the choice of the “random” intervals
maintains the inter-microsaccade intervals and the length of microsaccades; but removed different
trajectory parts—most likely drift.
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Figure 3.7: All the figures show the mean over all participants of the slope obtained via SDA for
different data sets: (a), (b) the horizontal, (c), (d) the vertical and (e), (f) the two-dimensional
slope. Visual fixation data are marked by bold lines (left: Experiment 1, right: Experiment 2,
Condition 1). Fixations in darkness (Experiment 2, Condition 2) were marked with dotted lines .
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for the horizontal component, and at a lag of 60 ms for the vertical component; for
the combined signal, the trough is between these values at around 80 ms. At the
trough the local scaling exponent goes down to αD < 0.2. When microsaccades are
removed the trough is even deeper. Unlike the depth, the position of the trough
remains unchanged. We exploit the location of the trough to adjust of the delay
parameter in our model in Chapter 4.

At long timescales, for both, the horizontal and the two-dimensional analysis, we
find a large influence of the microsaccades on the local scaling. A removal of the
microsaccades strongly reduces the correlations in the process: The analyses show
that the local scaling exponent for the full data and the data with random intervals
removed is αD ≈ 0.25, while for the data where the microsaccades are removed,
αD ≈ 0.4 (horizontal) or αD ≈ 0.5 (two-dimensional). Here, it is important to
note that the combined signal of microsaccades and drift, and also the introduction
of nonstationarities due to the microsaccade removal, influence the long timescale
suggesting that the values from DFA (Subsection 3.2.3) are more reliable.

The removal of random intervals, from the data obtained during fixations on
a stimulus, only slightly affects the local scaling properties, while the removal of
microsaccades reveal a strong impact of microsaccades on the local scaling properties.

A quite different picture is obtained in the darkness condition. The major
difference is the lack of the trough in horizontal and two-dimensional analyses on
the complete data set. When we remove the microsaccades, the trough reappears.
However, the removal of the microsaccades in darkness also leads to a disappearance
of the persistent short timescale, and αD drops to approximately 0.5. For long
timescales, the complete data set shows an anti-persistent behavior, while the data
set without microsaccades shows a persistent behavior. The full data set of the vertical
component in darkness reveals a strong persistence at short timescales followed by a
long timescale with a local scaling exponent of αD ≈ 0.4. As soon as microsaccades
are removed the behavior is changed: The persistence at short timescales vanishes
and is replaced by anti-persistence, the trough at the intermediate scale reappears
and persistent behavior is also found at long timescales. An unexpected result is
observed, when random intervals are removed from data sets collected in darkness.
The removals has a much stronger effect than in the stimulus condition. For the
horizontal component the removal of random intervals has the effect of a general
reduction of correlations on all time scales. For the two-dimensional analysis the
effect is even stronger leading to an almost fully uncorrelated process. For the vertical
component the effect of random interval removal is as if microsaccades were removed.

DFA applied to the data

The description of the results when we apply DFA to eye movement data closely
resembles the description after SDA. The biggest difference is that we did not use a
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Figure 3.8: DFA for the two experiments. (a), (c) are from Experiment 1 and show the horizontal
and vertical eye movements, respectively. (b), (d) are from Experiment 2, and again, the upper is
for horizontal eye movements, while the lower one is for vertical eye movements.

two-dimensional version of DFA. At the level of the data, we again investigate the
influence of microsaccades and experimental condition (fixation on stimulus and in
darkness) on the vertical and horizontal components (Figure 3.8).

For fixations on a stimulus in the horizontal component, we again find that
on short timescales up to 200 ms, the eye movements are persistent and that for
timescales up to 60 ms, the microsaccades generate the persistence. For time
lags between 60 ms and 200 ms, the persistent behavior is caused by drift. For the
horizontal component a crossover point to anti-persistent behavior is found at 210 ms.
The crossover point is not shifted when intervals, microsaccades or random intervals
are removed. The observed shift of the crossover point towards larger values in the
DFA with respect to the SDA is a well-known effect of the DFA [Kantelhardt et al.,
2001]. On long timescales of above 300 ms, we again find anti-persistent behavior
(αF ≈ 0.3). The anti-persistent behavior between 300 ms and 900 ms mainly derive
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from the drift. For lags larger than 900 ms the anti-persistence weakens when
microsaccades are removed, which suggests a strong influence of microsaccades at
time scales larger than 900 ms.

The vertical component during fixations on a stimulus shows again that microsac-
cades do not influence the vertical local scaling behavior. The vertical local scaling
behavior shows a region with αF ≈ 0.5 up to lags of 40 ms, which is followed for
larger lags by a peak of strong persistent behavior up to lags of 160 ms. For higher
lags, the local scaling exponent remains around αF ≈ 0.4.

In the darkness condition, the results of DFA on the horizontal component
resemble the results of the fixations on stimulus condition. However, the persistence
on short timescales is stronger, while on longer timescales, the data does not show
anti-persistent behavior, but rather uncorrelated behavior. Furthermore, the effect
of interval removal is stronger. For data sets with removed microsaccades, the local
scaling behavior is very similar to the one of the fixations on stimulus data with
microsaccades removed; the only difference is the shallower peak around 100 ms. For
the vertical component in darkness the effect of interval removal is extremely strong.
A strong persistent behavior on short time scales in the full data set vanishes and
the uncorrelated or slightly anti-persistent behavior on long timescales is replaced
by a strong anti-correlation up to 1000 ms.

3.3 Microsaccade Rate

While the analyses on the local scaling behavior use the entire time series, the
following analyses only look at the small intervals called microsaccades. As described
in Section 3.1, the corrected microsaccade rate is computed separately for every
participant of Experiment 1 (only fixations on stimulus) (Figure 3.9, Table 3.1) and
within the two experimental conditions in Experiment 2 (fixations on stimulus and
in darkness) (Figure 3.10, Table 3.2). The different positions of the maxima within

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
λ0 5.50 7.00 4.50 3.75 4.50 5.75 5.50 5.75 4.00 4.00 9.00 4.50
rate 1.91 2.64 3.39 1.80 1.19 2.21 2.81 2.61 1.10 4.07 0.91 2.57

S13 S14 S15 S16 S17 S18 S20 S21 S22 S23 S24 S25
λ0 4.00 4.75 5.50 5.00 4.00 11.50 8.50 8.50 4.00 9.75 6.25 9.75
rate 1.04 1.70 2.10 2.06 2.91 1.81 2.33 1.90 0.92 1.62 1.91 1.41

Table 3.1: Listed are all participants in Experiment 1 with their individual optimal threshold
multiplier λ0 and the rate of microsaccades.

the corrected rates (Figure 3.9, Figure 3.10) show the necessity to determine the
optimal threshold multiplier λ0 individually for each participant and experimental
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condition. In Experiment 2, we have the stage of the heuristic filter as an additional
change, as participant 1 and 12 to 20 were measured with the heuristic filter at stage
1 and 2 to 11 with the heuristic filter at stage 2 . It significantly changes the rate of
detected microsaccades according to a two way analysis of variance with repeated
measures for every subject.

In Experiment 1, we find a mean rate of microsaccades of 2.0± 0.8 Hz over all
participants.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Cond. 1: λ0 4.50 9.25 3.50 3.75 7.75 6.75 3.75 6.75 5.00 4.25
Visual rate 1.91 1.91 3.34 2.41 1.90 1.34 2.26 1.87 2.44 1.63
Cond. 2: λ0 6.50 9.50 3.50 3.75 17.00 4.50 3.75 18.25 5.50 3.75
Dark rate 0.93 2.12 2.80 1.79 1.26 1.86 1.40 1.07 1.23 2.40

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
Cond. 1: λ0 5.00 4.50 8.00 6.50 5.00 20.00 4.25 7.75 5.00 7.50
Visual rate 1.92 1.40 1.80 1.57 1.94 0.44 1.28 1.75 1.61 1.59
Cond. 2: λ0 4.00 7.50 18.25 8.25 16.25 3.50 18.75 28.50 15.75 5.00
Dark rate 2.65 0.62 1.14 1.22 0.87 1.27 0.54 0.86 0.46 1.04

Table 3.2: Listed are all participants in Experiment 2 with their individual optimal threshold
multiplier λ0 and the rate of microsaccades.

3.3.1 Difference between experimental conditions

As early as 1955, the influence of visual condition on fixational eye movements, espe-
cially on the rate of microsaccades, was being discussed [Ditchburn, 1955; Cornsweet,
1956]. This discussion was fueled by the proposed mechanisms of microsaccade con-
trol and the questioned necessity of visual feedback. It was unclear which properties
of visual input, e.g., luminance, are relevant. If, for example, the superior colliculus
(see: Section 4.1) plays an important role for microsaccade as well as saccade gen-
eration, there should be a delayed effect of color changes on microsaccades, since
the retinotectal pathway to the superior colliculus is supposed to be color-blind
[Schiller and Stryker, 1972], and information carried by color is only available to the
superior colliculus at a later point in time [McPeek and Keller, 2002; Rolfs et al.,
2008]. In fact it has been found that effects on the microsaccade rate in complex
tasks are delayed for isoluminant stimuli [Valsecchi and Turatto, 2007]. In the two
early articles [Ditchburn, 1955; Cornsweet, 1956] visual feedback for the control
of eye movements was reduced by stabilizing the image via a mirror placed on a
contact lens that was attached by suction to the cornea. In [Cornsweet, 1956], pe-
ripheral information was still available. Nevertheless, they found a strongly reduced
rate of microsaccades in the stabilized condition compared to normal viewing; this
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Figure 3.9: For every participant, the threshold multiplier λ dependent rate is computed. Using
the maxima the optimal threshold multipliers λ0 (denoted by the arrows targeting the x-axis) are
computed as illustrated in Figure 3.2.

contradicted the results in [Ditchburn, 1955], where in stabilized viewing, the eye
movements were unchanged. Later, in [Skavenski and Steinman, 1970; Nachmias,
1961; Fiorentini and Ercole, 1966], the rate of microsaccades in darkness compared to
microsaccades during fixations was investigated. While [Nachmias, 1961] reported a
reduced rate of microsaccades in darkness, [Fiorentini and Ercole, 1966] found exactly
the opposite, an increased rate in darkness. Already in [Skavenski and Steinman,
1970], as one of their two subjects showed a behavior in accordance with [Nachmias,
1961] and the other with [Fiorentini and Ercole, 1966] it was suggested that the
change in the rate of microsaccades can strongly differ between participants. All
three studies had the drawback of using only two participants. The results presented
for 20 participants in Table 3.2 and Figure 3.10 are consistent with this view that
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Figure 3.10: The maximal rate and the optimal threshold multipliers λ0 (denoted by arrows
targeting the x-axis) are chosen individually for each participant within both conditions.

changes in the microsaccade rate happen at the level of the individual and can differ
in their directionality. For the 20 participants, we obtain a mean microsaccade
rate of 1.8 ± 0.6 Hz for the visual fixation condition and a rate of 1.4 ± 0.7 Hz
for the darkness condition. The rate between the two experimental conditions do
significantly (p < 0.01) differ in a two-way repeated measures analysis of variance.
This clearly shows that the properties of the visual input strongly influence the
microsaccade rate. Nevertheless, 5 out of 20 participants showed an inverse effect:
The rate of microsaccades increased when visual input was absent. Which states
that the reduction of the microsaccade rate without visual input is not systematic.
Along with the significant effect of the visual condition the stage of the heuristic
filter affects the rate of detected microsaccades significantly (stage 1: 1.2 Hz and
stage 2: 2.0 Hz).

The total number of detected microsaccades for all participants in each experiment
are as follows: In Experiment 1, we found 25620 microsaccades; in Experiment 2 with
visual fixation (Condition 1), we found 6687 microsaccades; and in Experiment 2 in
darkness (Condition 2), we found 4923 microsaccades. Analyses on microsaccade
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amplitude (Section 3.4) and local box count (Section 3.5) were applied to these
microsaccades.

3.4 Microsaccade Amplitude

One of the properties that the microsaccades have in common with large directly
visible saccades is the so-called main sequence [Zuber et al., 1965; Bahill et al., 1975;
Harris and Wolpert, 2006; Engbert, 2006]. It describes the linear dependence that
saccades and microsaccades have between the maximal velocity of the saccade and
its amplitude for small saccades, and the saturation of velocity for saccades larger
than 10◦ visual angle. This relation is also present in our data, which can be seen
when combining the results shown in the upper and lower graphs of Figure 3.11.

3.4.1 Difference between experimental conditions

Alongside the investigations of the rate of microsaccades under different visual
conditions, we investigated changes in the amplitude and maximum velocity of mi-
crosaccades. The really interesting finding was that, unlike the well-known unimodal
distribution of the microsaccades during visual fixations, we found a bimodal distri-
bution for the microsaccades in darkness (Figure 3.11 lower). The maximum of the
unimodal distribution is centered around 0.15◦ of visual angle. The same maximum
can be found as one of the peaks of the bimodal distribution in the darkness con-
dition, although it is slightly shifted to smaller values around 0.08◦ of visual angle.
The second maximum, which was unexpected and has an unclear functional role, is
centered around 1◦ visual angle. In the peak velocity we find again one maximum
for the visual condition and two maxima for the darkness condition. (Figure 3.11
upper). We initially checked if the bimodality is an effect of aggregating participants
that have a single maximum at one of the two peaks. This investigation revealed
that this is not the case as even single participants show the bimodality within their
microsaccade amplitudes in darkness. We also checked statistically if the distribution
is really bimodal by using the dip test, a non-parametric test for multimodality
[Hartigan and Hartigan, 1985; Hartigan, 1985], on the logarithm of the microsaccade
amplitude. The dip test looks for a difference between the empirical distribution
function given by the data and the unimodal distribution function that minimizes
the maximum difference between these two distributions. For unimodal distributions,
the dip test asymptotically reaches zero, while for bimodal distributions, it asymp-
totically reaches a positive value. This positive value shows that the distribution
has more modes than one. The significance of the test depends on the number of
data points used. We obtained a value of 0.0129 for 5821 microsaccades, which is
significant (p < 10−5) as it is larger than 0.0121, which is the minimal value for the



3.4. MICROSACCADE AMPLITUDE 37

10 100
0

0.02

0.04

0.06

Peak velocity [°/s]

H
is

to
g

ra
m

m

0.1 1
0

0.01

0.02

0.03

0.04

Amplitude [°]

H
is

to
g

ra
m

m

 

 

Cond 1 (visual fixation)

Cond 2 (darkness)

Figure 3.11: Normalized histograms of the logarithms of the peak velocity and the amplitude
of the microsaccades. Upper panel: Microsaccade peak velocity, which is connected via the main
sequence to the amplitude of the microsaccades. Lower panel: Microsaccade amplitude: It can be
clearly seen that the distribution for the darkness condition is bimodal (peaks around 0.1◦ and 1◦

visual angle) while the microsaccades during fixation are not (peak around 0.2◦).

used significance level. With our finding of larger microsaccades in darkness, we are
in accordance with the results of [Ditchburn, 1955]. For the microsaccades obtained
during fixations on a stimulus, we did not find any significant bimodality.

3.4.2 Large amplitude tail of the microsaccades

Another analysis that we perform on the amplitudes is to investigate the tail of the
microsaccade amplitude distribution for a power law scaling. Firstly, we followed the
approach suggested in [Viswanathan et al., 1996] which searches for linear trends in
the log-log plots of the large amplitude tail within the histogram of the microsaccade
amplitudes. These values are then compared to the later suggested, more theoretically
driven approach described in [Edwards et al., 2007]; in this approach, log-likelihoods
log[Li(.)] for two models fi of the tail, a power-law tail

f1(x) = (µ− 1)aµ−1x−µ for x > a , (3.16)
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and an exponential tail

f2(x) = λe−λ(x−a) for x > a , (3.17)

are computed. For the power-law tail the log-likelihood is determined by

log[L1(µ|~x)] = n log(µ− 1) + n(µ− 1) log a− µ
n∑
j=1

log xj , (3.18)

and for an exponential tail by

log[L2(λ|~x)] = n log λ+ nλa− λ

n∑
j=1

xj , (3.19)

where ~x = (x1, x2, · · · , xn) is the long tail data set, and a is the value at which the
tail starts. The maximum likelihood estimators Newman [2005] for the two unknown
parameters µ and λ are given for the power law tail by:

µ̂ = 1− n

n log a−
∑n

j=1 xj
, (3.20)

and for the exponential tail by:

λ̂ =
1

1
n

∑n
j=1 xj − a

. (3.21)

Additionally, an Akaike’s information criterion (AICi) and Akaike weights (wi) are
supplied in Edwards et al. [2007]. AICi is found to be

AICi = −2 log[Li(θ̂|~x)] + 2 (3.22)

for both models, with i = 1, 2 and θ̂ = µ̂ for the power law trend and θ̂ = λ̂ for
the exponential trend. The Akaike weights (wi) are relative likelihoods of the two
models and based on the difference of the models AIC (∆i = AICi − AICmin) from
the best model (AICmin):

wi =
e−

∆i
2

e−
∆1
2 + e−

∆2
2

. (3.23)

For the microsaccades in Experiment 1 and the microsaccades during visual fixations
(Condition 1) in Experiment 2, the Akaike weights favor power law tails (w1 = 1,
w2 = 0) with exponents of µ̂ = 3.4 for Experiment 1 and µ̂ = 2.5 for Condition 1,
Experiment 2. The values are smaller than the value µ = 4.4 computed for mi-
crosaccades in [Engbert, 2006] although the tails started around the same amplitude
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a = 10−0.5 degrees of visual angle. The values µ̂ observed in the tails of the mi-
crosaccade amplitudes of Experiment 1 (µ̂ = 3.4) and Condition 1 of Experiment 2
(µ̂ = 2.5) are quite different. While the value for Experiment 1 lies outside the range
of possible Levy-flights (1 ≤ µ ≤ 3) [Shlesinger et al., 1995; Metzler and Klafter,
2004; Shlesinger, 2006], we cannot exclude, that microsaccades in Condition 1 of
Experiment 2 derive from a Levy-walk. For the microsaccade amplitudes in darkness,
it is difficult to talk about power law scaling in the tail; even if we started the tail
at the secondary maximum, the tail would not cover one order of magnitude, which
is extremely short for the investigation of power laws. For completeness, however,
for amplitudes larger than a = 100 degrees of visual angle, µ̂ = 2.7 and the Akaike
weights are in favor of power law scaling (w1 = 0.999, w2 = 0.001). As soon as we
consider longer tails, though, the Akaike weights suggest more and more that the
tail is better described by an exponential tail in darkness.

3.5 Local box count

Based upon the investigations of Hartline [1940] on information transmission in the
visual pathways, Ditchburn [1955] discussed the influence of fixational eye movements
on the images perceived by the retina. It is argued there that in the nerve fibers
transmitting visual information, responses are much stronger if rapid changes occur
for the receptive fields of cones than if low changing stimuli or steady inputs were
applied. It is further argued that even the tremor movements increase our ability to
perceive boundaries between dark and bright regions; this was confirmed by Ditchburn
et al. [1959]. Recently, another successful experiment following this idea has been
performed by Rucci et al. [2007], who were able to show the influence of fixational
eye movements on the ability to detect the direction of blurry high frequency Gabor-
patches3. The functional role of micro-movements of perception enhancement
led us to the question: Contains the drift movement preceeding a microsaccade
information, which could serve as a triggering signal for the microsaccade? Therefore,
in [Engbert and Mergenthaler, 2006], we proposed a simple box-count measure that
should estimate the number of cone receptive fields stimulated during small time
intervals. As described in Engbert and Mergenthaler [2006] variation of ε yields
a powerlaw for the box-count Nb(ε) ∝ ε−fD [Mandelbrot, 1967] with a range from
fD = 1.35 to fD = 1.65 for different participants. The box-count measure is simple
to calculate; the method is illustrated in Figure 3.12a. One only has to count the
boxes Nb of a chosen size ε in a chosen time window τ ; as the cone receptive field is
approximately 0.01◦ of visual angle in diameter [Ölveczky et al., 2003], we choose
boxes with a vertical and horizontal extent of ε = 0.01◦. The time window has a fixed

3Gabor patches are: Patches consisting of a combination of a two-dimensional Gaussian bright-
ness distribution, with a superimposed sinusoid along one direction.
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Figure 3.12: (a) Illustration of the box-counting. The number of boxes used to cover the trajectory
of 50 ms length is counted. (b) Difference between the box count for the control condition (randomly
chosen intervals) and box count locked to a microsaccade. Box-count is reduced independent of
visual condition.

length of 50 ms (or 25 data points) and is non-overlapping. Further, the windows
are locked to the microsaccade onset with lags between −750 ms and −100 ms in
steps of 50 ms, following the idea that microsaccades might be triggered visually to
counteract retinal fatigue due to slow retinal image slip. We further ensured that
no further microsaccades occurred within the the box-count window and between
the box-count window and the following microsaccade. To compare the box count
preceding a microsaccade with the general box count during the drift, we chose
random points in time, at which we locked box-count window with the chosen lag
(control condition). The random points had to be within inter-microsaccade intervals
that were at least 250 ms longer than the time span composed of time window and
lag. Additionally, they had to be chosen to be located at least 250 ms away from
the following microsaccade. Furthermore, we made sure that none of the random
intervals contains microsaccades. We computed the local box count preceding the
microsaccades for Experiment 1 [Engbert and Mergenthaler, 2006] and Experiment
2 [Mergenthaler and Engbert, subm]. Due to the result that the local box count is
significantly reduced in the time span from −400 ms to −150 ms the first analyses
for Experiment 1 suggested that microsaccades are triggered by low retinal image
slip via visual feedback. The same analyses were performed on Experiment 2 for
both conditions independently. For Condition 1 (visual fixation) we find as we
expected a reduction in box count for lags between −400 ms and −150 ms prior
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to microsaccade onset (Figure 3.12b). The suggestion that the reduction in retinal
image slip is based on visual feedback control is difficult to support due to the
astounding finding that the local box count prior to microsaccades in Condition 2 (in
darkness) is also reduced. Thus, visual input is not the origin of the feedback leading
to microsaccade triggering after reduced prior box count. The reduced box count
prior to microsaccades could be explained by internal representations of position, e.g.
through path integration or an efference copy. Otherwise, it could also mean that
microsaccade and saccade preparation generates the reduced box count at an earlier
point in time.

3.6 Triggering of microsaccades

The observation of the reduced box-count prior to a microsaccade offers the chance
to investigate if the number of boxes preceding a microsaccade is linked to its
amplitude. To investigate this, we plot the mean of the box count preceding a
microsaccade with lags between −400 ms and −200 ms against the logarithm of the
microsaccade amplitude (Figure 3.13) for both conditions (Condition 1, fixations on
stimulus; Condition 2, fixations in darkness). For Experiment 1, where we only have
Condition 1, the result is the same as for Condition 1 in Experiment 2. Interestingly,
we find that when we use quantile regression to separate influences of different
parts of the clouds of dots that for the microsaccades in darkness, two populations
with different behavior exist. A first indicator for the existence of two types of
microsaccades is the bimodality in the amplitude distribution. It concurs with
the observations of different types of microsaccades by Boyce [1967]; Møller et al.
[2002].An additional finding is that in darkness, small microsaccades with amplitude
up to 0.3◦ increase with an increasing prior box count, while larger microsaccades
with amplitude larger than 0.3◦ are unaffected by prior number of crossed boxes. For
the microsaccades from Condition 1, we find a similar division into large and small
microsaccades, but in this case, there is no less populated region in-between.

3.7 Summary of results

The advanced microsaccade detection algorithm, which determines the optimal
threshold (see: Section 3.1) on the basis of the median squared distance from the me-
dian of the eye velocity and amplitude-adjusted phase-randomized surrogates, allows
the comparison of individual microsaccade properties within differently shaped micro
eye movements. This allows better comparability between different participants and
between the two conditions in Experiment 2. The detected microsaccades were then
used to determine microsaccade properties, both independently and in interaction
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Figure 3.13: Scatterplot of the logarithm of the microsaccade amplitude vs. the box count
preceding the same microsaccade between −400 ms and −200 ms. The red lines are quantile
regression lines. In the darkness condition, the separation into two populations is verified by the
lines. The lower population appear to be affected by the prior box count while the upper one is not.

with drift. The temporal local scaling analyses performed on the complete data set
and on the data remaining after microsaccade removal revealed that the horizontal
component of the eyes is governed by persistent local scaling on short timescales
and anti-persistence on long timescales. Between the short and long timescales, at a
lag of 100 ms, there is a trough in the SDA with a local scaling exponent around
α ≈ 0.2. This trough will be exploited along with the local scaling exponents for the
drift model in the next chapter. We found that the microsaccade rate is around 2 Hz
during visual fixations and that during darkness, the rate of microsaccades is signif-
icantly reduced. Nevertheless, the reduction is not systematic for all participants
as 5 of 20 participants showed a higher microsaccade rate in darkness. Under all
conditions, the microsaccade amplitude distribution has a maximum at 0.1◦ visual
angle, and gains a secondary maximum at 1◦ visual angle in darkness. The last
analysis, namely the box count, revealed that −400 to −200 ms before microsaccade
onset, the number of cones crossed by the stimulus is significantly reduced under all
experimental conditions; this suggests either an internal representation of fixational
eye movements or a pre-motor activity. Further, we found that the amplitude of
small microsaccades in darkness increases with an increasing prior box count, the
amplitude of large microsaccades remains unchanged.



Chapter 4

Toward a theoretical model of
fixational eye movements

In general, dynamical models are built to improve our understanding of the underlying
mechanisms, as dynamical models allow us to make strong and specific predictions. A
model should naturally be consistent with the data that the model is based upon, but
should also allow predictions that go beyond the data. The testability of dynamical
models can help to classify the type of control mechanisms and to investigate the
functions of fixational eye movements.

In neuroscience, two modeling approaches are in use. One approach is based on
the neurophysiological structure. The modeling occurs at different scales. At the
lowest level, single complex neurons or even single synapses are modeled. These
are then combined into microcircuits consisting of several neurons. At the next
level up are models of large networks, usually composed of simpler models of the
single neurons within brain areas. The highest level consists of networks made of
connected areas, each of which could then be networks of connected neurons or
dynamical systems motivated by the dynamical behavior of the area. This approach
is motivated by the question of how an observed behavior can be generated by a
neuronal structure, and what the underlying neuronal mechanisms are.

In the other approach, modeling is not started at the lowest level, the neurons
or ion channels, but at the highest level, the observed behavior. At this level, we
are interested in why the behavior has evolved in this way? Modeling observed
behavior has to be constrained by assumptions, like minimal effort or minimal energy
to maximize the benefit [Harris and Wolpert, 2006]. This approach is usually further
motivated by evolution, as the fittest survive within the constraints of their inhabited
niche. This leads to the assumption that the observed behavior is purposeful and
beneficial.

The purpose and benefits of fixational eye movements have already been men-
tioned in the introduction. Summarized, fixational eye movements allow the constant
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perception of an unchanging environment with a sensory organ that has the detec-
tion of changes and movements as their primary purpose. Another function is the
maintenance of a steady fixation position on a selected position. One benefit of
fixational eye movements is a resolution that is higher than the spatial resolution of
the sense.

Our approach to model of fixational eye movements is motivated by the explana-
tion of observed behavior on the basis of a minimal control loop within the known
neurophysiology. Thus, we use the information acquired in the previous chapter
about fixational eye movements to implement a model for fixational eye movements
[Mergenthaler and Engbert, 2007]. The model is based on the neurophysiology but
does not trying to take all the possible sources, which will be shortly described
in Section 4.1, into account. Instead, it tries to reproduce the observations found
within the data while using only a small amount of neurophysiology, especially since
it would have been unlikely that all the existing pathways would contribute to the
simple tasks that the participants had to perform.

4.1 Physiological background

The knowledge about the physiological background of fixational eye movements is
quite sparse as the signals are weak compared to signals that are generating saccades.
Most of the physiological background is adapted from the knowledge about large
saccades. For microsaccades, there is already strong evidence that they are generated
by the same generation process as saccades. For the smaller movements composed
of drift and tremor, the common origin with saccades has not been proven, but some
evidence suggests that it is not unlikely. In general, many separated regions, mainly
in the brain stem, contribute to the generation of saccades. Another possibility that
has to be taken into account is the common generation of drift and smooth pursuit.

4.1.1 Saccades

The neurological basis for the generation of saccades is described in detail by
Moschovakis et al. [1996] and summarized by Sparks [2002]. According to
Moschovakis et al. [1996], several large brain areas have been identified that partici-
pate in the generation of saccades, including areas in the cerebral cortex, cerebellum,
brain stem; those in the brain stem are found in the basal ganglia, thalamus, superior
colliculus (SC), the paramedian pontine reticular formation (PPRF) the rostral
interstitial nucleus of the median longitudinal fasciculus (riMLF), and the interstitial
nucleus of Cajal (NIC); this list is however not exhaustive. While the cortex and
cerebellum mainly affect the targeting of saccades [Girard and Berthoz, 2005; Lefévre
et al., 1998] and the integration of complex visual stimuli, the brain stem supplies
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Figure 4.1:
Topographic map
of the two superior
colliculi. The colored
dots denote horizontal
saccades of 5 to 20
degrees of visual angle.
Taken from [Sparks,
2002]

low level integration of simple visual stimuli and the triggering of saccades. The
brain stem further links reflexes, e.g., the vestibulo-ocular or cervico-ocular reflex,
to eye movements.

The superior colliculi contribute most to the saccade generation, although lesion
studies have shown that saccades can be performed with nonfunctional or even
removed superior colliculi [Aizawa and Wurtz, 1998; Quaia et al., 1998; Schiller
et al., 1980]. The superior colliculi are spatially organized according to function.
Horizontal saccades are initiated in the contralateral superior colliculus, and small
saccades are triggered when the peak activation is close to the rostral pole (see:
Figure 4.1). When the distance of the peak activation to the rostral pole is increased,
the amplitude of the saccade becomes larger. Oblique and vertical saccades are
expressed very similarly, while the deviation from the rostral-caudal mid-line codes
the vertical component. At the rostral pole, so-called fixation neurons Bergeron and
Guitton [2000] are found. These fixation neurons cannot be distinguished, e.g., by
their discharge pattern, from neurons that cause the smallest saccades.

The common origin of microsaccades and saccades is still under discussion,
although there is much evidence for at least a large share of common neurophysiology
[Zuber et al., 1965; Martinez-Conde et al., 2004; Bergeron and Guitton, 2000]. An
extensive chart of connections within the brain stem is given in Appendix A. In
[Girard and Berthoz, 2005], most of the existing saccadic burst generator models
are compared. Further, criteria are given there, which at least should be fulfilled
by models of saccadic burst generators: Saccadic burst generator models should be
able to produce saccades that belong to the main sequence (peak velocity amplitude
relation), generate straight oblique saccades, resume the execution of a saccades
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after interruption by omnipause neurons, generate staircase saccades in the case
of continuous input simulation SC stimulation, generate small bursts within the
antagonistic burst generators at the end of the saccade (counteracting the overshoot),
and coactivate horizontal and vertical saccadic burst generators during purely vertical
or horizontal saccades.

4.1.2 Horizontal and vertical saccadic control mechanisms

Although the movements our eyes perform vertically and horizontally do not seem
to differ, they are affected by separated nuclei within the brain stem [Moschovakis
et al., 1996]. While the cortex, cerebellum and superior colliculus supply saccadic
control for both vertical and horizontal saccades, several lower areas in the brain
stem can be assigned to either horizontal or vertical saccades, but not both. This
dichotomy provides an explanation for the displaced trough in the SDA and the
crossover point in the DFA obtained in Section 3.2.

Horizontal saccadic control in the brain stem (Figure 4.2) is mediated by the SC,
which directly projects excitatory connections to the PPRF, the nucleus paragigan-
tocellularis dorsalis (PGD) and the nucleus raphé interpositus (RIP). The PPRF
houses the excitatory burst neurons for the horizontal component of saccades. These
propagate directly to the motoneurons in the abducence nucleus (VI N), to horizontal
neural integrator neurons in the nucleus prepositus hypoglossi (PH), to the inhibitory
burst neurons in the PGD, and back to the RIP. The inhibitory burst neurons inhibit
the areas on the contralateral side.

The vertical saccadic control centers in the brain stem (Figure 4.3) again receive
inputs from higher brain areas, but interestingly, these neurons involved can be
divided into two separate groups, one lot producing upward movement and the
others producing downward movement. The excitatory burst neurons for vertical
eye movements are located in the riMLF and can be separated into inhibitory and
excitatory burst neurons. As well as projecting to the oculomotor complex, they
project to upward and downward integrator neurons in the interstitial nucleus of
Cajal (NIC), to the downward inhibitory feedback neurons in the NIC, and upward
resettable integrator neurons in the contralateral nucleus posterior commissure (nPC).
The last two connections close short range negative feedback circuits.

In patients with cerebellar ataxia, there is an increase in the amplitude of fixational
eye movements [Hotson, 1982]. For four patients of the patients, this increase was
especially pronounced for microsaccades. One of the patients mentioned that his
subjective perception during fixations was unstable. The author suggested that the
cerebellum has a suppressive influence on saccade generation.

The most important information that we carry across from the neurophysiology to
the model building are the transmission delays between the participating areas. The
transmission delays have been measured in rhesus monkeys and cats, but we expect
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Figure 4.2: Horizontal saccadic control loops. In alphabetical order, the abbreviations are: III N:
oculomotor nucleus; VI N: abducens nucleus; EBN: excitatory burst neuron; HNI: Horizontal neural
integrator; IBN: inhibitory burst neuron; IN: internuclear neuron; L: lateral neurons of the Superior
colliculus (SC); LC: local circuit neuron of the SC; LR: lateral rectus; MR: medial rectus; OPN:
omnipause neuron; PGD: nucleus paragigantocellularis dorsalis; PH: nucleus prepositus hypoglossi;
PPLLB: pontopontine long lead burst neurons; PPRF: paramedian pontine reticular formation;
Qv: Quasivisual neurons; RIP: nucleus raphé interpositus; RSLLB: reticulospinal long lead burst
neurons; TLLB: thalamic long lead burst neurons.

that the values for humans are in approximately the same range. The delay between
stimulus onset and reactive saccade has been measured in behavioral experiments
and is around 180–220 ms; however, express saccades with latencies around 130 ms
and down to 80 ms have also been reported. A rough indication of the path distance
between the thalamus and the burst generators (see Appendix A) is provided by the
observation that the latency of saccades evoked from the thalamus (60–80 ms) is
longer than the latency of saccades evoked in response to the electrical stimulation
of other saccade related areas [Moschovakis et al., 1996]. For electrically evoked
saccades in the frontal eye field (FEF), the latency is around 25 ms which is half
the latency for stimulation in the supplementary eye field (SEF). Strong electrical
stimulation of the posterior parietal cortex (PPC) leads to saccades with a latency
of 120–140 ms. The cerebellum contributes a much shorter latency of 15–40 ms.
Furthermore, stimulation of cells in the SC generates an eye movement around 20 ms
later [Sparks, 1986]. Within the brain stem, the latencies are shorter. In general,
LLB activity precedes EBN activity, which precede motoneuron (MN) activity, but
the ranges of the latencies to saccade generation overlap (LLB: 10–14 ms; EBN:
8–12 ms but up to 32 ms; MN: 5–10 ms). Nevertheless, the LLBs precede the EBN
by 3–20 ms. In general, the inhibitory neurons (IBN) discharge 13± 7 ms, but up to
35 ms before saccade onset. Latencies of IBN and EBN cannot be distinguished.
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Figure 4.3: Vertical saccadic control feedback loops. In alphabetical order, the abbreviations are:
DIFN: downward inhibitory feedback neuron; DLLB: downward long lead burst neuron; DMLBe:
excitatory downward medium lead burst neuron; DMLBi: inhibitory downward medium lead burst
neuron; DNI: downward neural integrator; IO: inferior oblique; IR: inferior rectus; NIC: interstitial
nucleus of Cajal; nPC: nucleus of posterior commissure; OPN: omnipause neuron; riMLF: rostral
interstitial nucleus of the median longitudinal fasciculus; SO: superior oblique; SR: superior rectus;
ULLB: upward long lead burst neuron; UMLBe: excitatory upward medium lead burst neuron;
UMLBi: inhibitory upward medium lead burst neuron; UNI: upward neural integrator; URIN:
upward resettable integrator neuron.

For the vertical component, the execution of the saccade follows the activity of
DLMBes with delays in the range of 4–16 ms with a mean of 5 ms. For the inhibitory
feedback connections between the DLLBs and the DIFNs, as well as between the
ULLBs and URINs, the delays are unknown.

For the feedback loop from the retina via the SC to the MN on the basis of visual
information entering the retina, we further need the latency of visual input to the SC.
This information is supplied in [Guitton, 1992] and is given with a value of around
40–50 ms. Therefore, a lower bound for a visually guided or external control loop is
τhor = 60 ms.

4.1.3 Smooth pursuit

Although the smooth pursuit and the saccadic systems have different latencies, there
is more and more evidence of a common neurological pathway [Keller and Missal,
2003]. However, the higher brain regions like the frontal eye field (FEF) and the
supplementary eye field (SEF) as parts of the premotor cortex and the cerebellum
play a more important role in smooth pursuit generation than in saccadic generation.
Additionally, the medial superior temporal (MST) region and the medial temporal
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(MT) area contribute to smooth pursuit but not to saccadic generation. MST cells
mainly process target motion as compared to background motion and are supplied
with an efference copy of eye velocity during pursuit movements, while the MT
contains cells that process the direction and speed of motion [Pack et al., 2001].
Neuronal activity close to the rostral pole in the SC is also suspected of playing an
important role in smooth pursuit. This region sends signals to the omnipause neurons
in the RIP. The common pathways of saccades and smooth pursuit within the brain
stem suggest that it is not too far-fetched to assume that fixational eye movements
are mediated by the same areas. Nachmias [1961]; Murphy et al. [1975]; de Bie and
van den Brink [1986] suggested a common source of fixational eye movement control
and smooth pursuit.

4.1.4 Drift

As already mentioned, fixational eye movements are small signals and therefore
their neuronal correlates are weak, which makes localization of hubs difficult. There
are regions in the brain that fire tonically during fixations [Bergeron and Guitton,
2000; Munoz and Wurtz, 1993a,b; Hanes et al., 1998]. One of the major regions
with strong tonic activity is the rostral pole of the SC; the neurons there have been
called the fixation neurons of the SC. They project mainly to the omnipause neurons
(OPN) in the RIP, which, by itself, fires tonically. Unfortunately, the role of the
tonic nodes and the way they interact is not understood [Bergeron and Guitton,
2000]. Furthermore, it is unclear how these regions interact with saccadic generation.
Probably, variations within the tonic activity could be an origin of fixational eye
movements—even the slower ones, like drift and tremor. The localization of fixational
eye movement hubs can be done by relying on data for larger eye movements like
smooth pursuits and saccades. This is supported by studies on patients with brain
stem lesions who lack certain kinds of fixational eye movements.

For tremor, the maxima of the energy in the power spectrum are influenced by
the oculomotor nuclei [Bengi and Thomas, 1973], suggesting brain stem control.
Spauschuss et al. [1999] found further evidence for a central origin of ocular mi-
crotremor and drift: Specifically, they found correlations between the two eyes that
remain after a sophisticated removal of components generated by head movements.
Moreover, measurement of microtremor in patients with known brain stem damage or
sedated but not paralyzed patients show a reduction in tremor frequency [Michalik,
1987]. However, it is still under discussion whether tremor is conjugate; the study by
Spauschuss et al. [1999] suggests that only weak correlations can be found within the
frequency band around 70 Hz, which has the most power. Likewise, the discussion
continues about the combined control of drift in the two eyes. Two early studies
[Ditchburn and Ginsborg, 1953; Riggs et al., 1954] proposed conjugacy between the
eyes during drift, but in a later study [Krauskopf et al., 1960], no conjugate drift
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movement could be found.

4.2 Position dependent model

Along with the investigation of the origin of fixational eye movements, arose the
question how accurate is the eye position information for motor control. Several
experiments, like fixations on targets with differences in target size and luminance
[Rattle, 1969; Steinman, 1965], sequences of saccades performed in radom directions
[Wyman and Steinman, 1973; Timberlake et al., 1972], maintained fixations during
dark periods [Hansen and Skavenski, 1977], and hitting movements with a tool
directed to the actual fixation position, were performed to quantify the accuracy
. The result summarized by Hansen and Skavenski [1977] was that the spatial
representation of eye position is highly accurate (below 0.1◦ visual angle) and that
spatial memory of location is a lot poorer (1–2◦ visual angle).

In an almost completely unnoticed paper, Vasudevan et al. [1972] proposed a
first quantitative model for the generation of fixational eye movements. It is mainly
based on the description of fixational eye movements by Boyce [1967], who separated
the fixational eye movements into movements within local areas composed of drift,
and small microsaccades and slightly larger microsaccades which move the stimulus
to new regions on the retina. All local areas were located within the fovea. In their
model, they already described the fixational eye movements by a stochastic model,
with a white noise tremor component and microsaccades generated by a Poisson
process with an intensity λ. The model further took into account the findings
of Boyce [1967] that long fixations can be separated into shorter fixation periods.
During these, the eye remains within sometimes overlapping regions. The separation
is caused by larger microsaccades that propagate the stimulus to a new local region
with unfatigued receptors. The within-region motion is described by:

θ̇(t) = −βθ(t) +G1(t) +G2(t) ; (4.1)

here, G1(t) is the driving force applied by the tremor and is modeled by white noise
with 〈G1〉 = 0 and 〈G1(t)G1(t

′)〉 = Dδ(t− t′); and G2(t) describes the input of inter-
region microsaccades, which are modeled by a stochastic point process composed of
temporal triggering via a Poisson process and a size drawn from a bimodal probability
density function of the form:

φ(y) =
α2

2
|y| e−α|y|.

The parameter α for the microsaccade generation is obtained from experiments. In
this model, drift represents a compensatory movement due to the position control
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loop. Finally, they end up with a description of the first two moments of the
movement θ:

〈θ(t)〉 = 0 〈θ2(t)〉 =
D

2β
(1− e−2βt) +

λ

β

2

α2
(1− e−2βt)

Further, they added large microsaccades, which move the eye to a new location and
separate short fixation periods.

Another fixation model that is also able to produce fixations is given in [Seung,
1996]. In this model, the main question is if a two-layer neuronal network, with
one layer storing the eye position information and the other reading it out and
projecting it to the oculomotor nuclei, is capable of generating a linear attractor. In
the memory layer the position is governed by a line attractor, while the read out
network is governed by a state space with a single fixed point. The model is further
based on a linear superposition rule for the contribution of recurrent and feedforward
connections. It gives the total synaptic current ui in neuron i as:

τs
dui
dt

+ ui =
N∑
j=1

Tijνj + hi , (4.2)

where νj ≈ gjuj + νpj is the firing rate; hi, the feedforward term, is constant without
head movements; νpi is the spontaneous pacemaker activity; Tij is the synaptic
strength, and τs = 150 ms. The fixed point equation for the firing rate νi has the
form:

νi =
N∑
j=1

Wijνj + fi ,

where Wij = giTij is the synaptic weight matrix, and the rate of firing without input
is fi = gihi + vpi . If Wij is chosen to have one single unity eigenvalue and fi is chosen
to be orthogonal to the left eigenvector of the unity eigenvalue, the solutions lay on
a straight line. The proper choice for the parameters is obtained by a learning rule,
as describe by Seung [1996].

4.3 Velocity dependent model

The two described models are based on feedback control of eye position. The question
of whether the control of fixational eye movements is performed at the level of position
or velocity signals was investigated in detail by Epelboim and Kowler [1993]. They
found that fixation control has to be implemented on the velocity to explain the
results of their experiments. This contradicts the two earlier described models of
fixational eye movement control. Thus, we suggest a model based on control of the
velocity of the signal.
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We formulated a delayed random-walk model for FEMs that is motivated by
the delayed random-walk models for postural sway proposed by Ohira and Milton
[1995] and Yao et al. [2001] and the assumption that the anti-persistent behavior for
long time scales (see Section 3.2) arises from a neural control mechanism. For our
model, we can exploit the fact that the activity of oculomotor neurons [Sparks, 2002;
Moschovakis et al., 1996] is given as the sum of excitatory burst neurons (EBNs) and
tonic units (HNIs) (see Figure 4.2 and Figure 4.3). The firing rate of the EBNs is
related to active movements independent of eye position, and therefore, EBN activity
determines eye velocity. The activity of the HNIs is proportional to the fixation
position relative to the center of the visual field (eccentricity), which means that the
HNIs serve a function in gaze-holding. During FEMs, however, changes in absolute
eye position are negligible (i.e., less than 1◦). As a consequence, we do not expect
systematic variations in HNI activity. The contribution to our FEM model of HNI
activity is given by an additional noise source added to eye position.

We implement our model as a discrete map. First, we use an autoregressive
term for EBN activity wi+1 = (1− γ)wi to generate the persistent correlations on
short time scales created by the inertia of the eye. The second term, a noise term
ξi, represents EBN baseline activity, where ξi are uncorrelated Gaussian random
numbers with 〈ξi〉 = 0 and 〈ξiξj〉 = σ2δij and σ is the standard deviation of the noise.
A third term −λ tanh(εwi−τ ) introduces negative feedback (with a delay) in order to
stabilize the FEMs and to generate anti-persistent behavior on long time scales [Yao
et al., 2001]. The parameters are the physiological delay, τ ; the feedback strength, λ;
and a parameter to allow variation of the steepness of the control function, ε. The
influence of the EBNs is added to the HNI activity as an additive noise term ηi,
with 〈ηi〉 = 0 and 〈ηiηj〉 = ρ2δij, where ρ is the standard deviation. Taking all these
terms together, we can write our model as:

wi+1 = (1− γ)wi + ξi − λ tanh (εwi−τ ) , (4.3)

xi+1 = xi + wi+1 + ηi .

In this model, all eye positions xi are stable because of the lack of a systematic
variation of HNI activity with eccentricity (see above). It is important to note that
all parameters of our model have a direct physiological interpretation.

4.3.1 Delayed random walk without oscillations

Systems with delayed negative feedback typically produce oscillatory behavior
[Longtin et al., 1990; Ohira and Yamane, 2000; Ohira, 1997; Yao et al., 2001]. As we
do not find persisting dominant periodicity in the slow fixational eye movement part,
but only sometimes regions which show slight oscillations, we have to remain in a
parameter range where oscillations are non-dominant. This region is also called the
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Figure 4.4: The histogram of the velocity simulated with fixed parameters γ = 0.25, λ = 0.15,
σ = 0.075, ρ = 0.35, and τ = 70 (see Subsection 4.3.2 while increasing ε. The bifurcation at ε ≈ 2
from a fixed point to a oscillatory solution is clearly visible.

low-gain regime [Eurich and Milton, 1996; Moreau and Sontag, 2003]. Nevertheless,
it could be that the system enters the high gain regime under several conditions,
e.g., nystagmus. Now, we investigate the behavior of the model while changing the
parameter ε, searching numerically for transitions between regimes (Figure 4.4). If
all other parameters are fixed to the values described in Subsection 4.3.2, we observe
a bifurcation at ε ≈ 2. Different from postural sway data, we did not find a third
time scale, where the local scaling exponent tends to zero. Such a time scale with a
slope of zero is related to the high-gain regime, which we do not enter here.

4.3.2 Parameter estimation: horizontal

Naturally, we would like our model to reproduce the properties of real data. Therefore,
we look for a parameter set which leads to the best agreement in the scaling exponent
analyses between the model and the data. We simulated time series of length 200,000
in our numerical simulations (where one iteration step corresponds to 1 ms), and
analyzed only the last 20,000 data points, to exclude potential transient effects.
The SDA is computed directly on the basis of the position signal xi. The DFA for
the model is based on the velocity time series generated from the position xi of
(4.3) as described for the eye position data. A parameter set that is appropriate
to reproduce the local scaling behavior of the FEM data is γ = 0.25, λ = 0.15,
σ = 0.075, ρ = 0.35, and ε = 1.1. For the horizontal component of the FEMs, a
time delay of τhor = 70 ms leads to the best match between the experimental data
and the model simulations (Figure 4.5). This result is in good agreement with our
current knowledge of the oculomotor circuitry (Subsection 4.1.2 and [Sparks, 2002;
Moschovakis et al., 1996]) Visual information entering the retina needs tp = 40 ms
along the retinotectal pathway to reach the SC [Guitton, 1992], the top-level control
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Figure 4.5: Scaling exponent analyses for the model with γ = 0.25, λ = 0.15, σ = 0.075, ρ = 0.35
and ε = 1.1. To mimic individual variations we added normally distributed parameter variations
with standard deviations of 0.1 for ρ and ε and standard deviations of 0.02 for σ, γ and λ. Black
lines denote the mean of 100 model simulations. (a) The slope of the estimated local scaling
behavior via SDA for the model of horizontal FEMs (τ ≈ 70 with deviations drawn from a binomial
distribution with p = 0.54 and N = 20). (b) The slope of the local scaling estimated via DFA for
the model of horizontal FEMs. (c) The slope of the estimated local scaling behavior via SDA for
the model of vertical FEMs (τ ≈ 40, the rest of the parameters a as for horizontal FEMs). (d) The
slope of the local scaling via DFA for the model of vertical FEMs.

structure for saccadic eye movements in the brainstem. Furthermore, stimulation of
cells in the SC generates an eye movement tm = 20 ms later [Sparks, 1986]. Therefore,
a lower bound for the (visually guided or external) control loop is τhor = 60 ms.

4.3.3 Parameter estimation: vertical

Additionally to the horizontal component, we investigated the vertical component of
the eye movements (Figure 4.5). Again, we simulated model (4.3). The estimates
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for the parameters, γ = 0.25, λ = 0.15, σ = 0.075, ρ = 0.35, and ε = 1.1, are
the same as for the horizontal component. Interestingly, though, we obtained a
smaller delay of τvert = 40 ms for vertical FEMs. This smaller numerical value is
highly compatible with the existence of an internal (i.e., not visual) physiological
control loop for vertical saccades (Subsection 4.1.2 and Moschovakis et al. [1996])
and suggests independence between the vertical and horizontal FEM components.

4.3.4 Semi-analytic local scaling investigation

Next, we present analytical approximations for the correlations on the short and long
time scales. We assume that the local scaling exponent H is linear for the chosen
range between lag t1 and t2.

2H =
logD2(t2)− logD2(t1)

log t2 − log t1
. (4.4)

The estimation of the diffusion term D2(ti) for a distinct lag ti relies on the relation

D2(ti) = 〈(xk+ti − xk)
2〉 . (4.5)

For the short time scales, we estimate the local scaling behavior from the slope of
the graph between lags 1 and 2, i.e.,

Hs =
1

2 log 2
log

D2(2)

D2(1)
. (4.6)

For the diffusion term with lag ti = 1, we exploit the fact that the noise term ηk and
velocities wk+1 are statistically independent, which gives

D2(1) = 〈(xk+1 − xk)
2〉 = 〈(wk+1 + ηk)

2〉 = 〈w2
k+1〉+ ρ2 . (4.7)

For the calculation of D2(2), we iterate (4.3) and replace γ′ = 1− γ,

D2(2) = 〈(xk+2 − xk)
2〉 = 〈(wk+2 + ηk+1 + wk+1 + ηk)

2〉
= 〈[(1 + γ′)wk+1 + ξk+1 − λ tanh(εwk+1−τ ) + ηk + ηk+1]

2〉
= (1 + γ′)2〈w2

k+1〉+ λ2〈tanh2(εwk+1−τ )〉
−2(1 + γ′)λ〈wk+1 tanh(εwk+1−τ )〉+ σ2 + 2ρ2 .

As we would like to investigate the model behavior for different values of its parame-
ters, we now introduce two approximations: (i) the linearization

tanh(εwk) ≈ εwk ,
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Figure 4.6: (A) The autocorrelation function of wk with lags −1000 ≤ l ≤ 1000 and λ between
0 ≤ λ ≤ 0.28. (B) The cross-correlation function 〈ξkwk+τ 〉 between wk + l and ξk. Positive lags
denote that wk + l is later than ξk.

and (ii) a relation within the autocorrelation function:

〈wkwk+τ 〉 ≈ −2λε〈w2
k〉 ,

which is obtained from numerical calculations around l = 0, τ, 2τ, · · · in the cross-
correlation function (see Figure 4.6). The use of approximation (ii) also leads
to another approximation: (iii) the relation between consecutive lags within the
autocorrelation function:

〈wkwk+1〉 = 〈γ′w2
k + wkξk + λwk tanh(εwk−τ )〉 = (γ′ + 2λ2ε2)〈w2

k〉 .

For simplicity and due to stationarity we write: 〈w2
k〉 ≡ 〈w2〉. Here, we see already

one fact which will help us later on: The term 〈wkξk〉 with lag l = 0 does not
contribute. When we now apply the approximations to D2(1) and D2(2), D2(1)
remains unchanged but D2(2) ends up as:

D2(2) =
[
(1 + γ′)2 + λ2ε2 + 4(1 + γ′)λ2ε2

]
〈w2〉+ σ2 + 2ρ2 . (4.8)
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Putting together Eqs. (4.6), (4.7) and (4.8), our approximation for short time scales
can be written as

Hs =
1

2 log 2
log

(
[(1 + γ′)2 + λ2ε2 + 4(1 + γ′)λ2ε2] 〈w2〉+ σ2 + 2ρ2

〈w2〉+ ρ2

)
. (4.9)

For long time scales, we consider additional effects of the delay term. Thus, we
calculate the slope between lags τ and 2τ , i.e.,

2Hl =
1

log(2τ/τ)
log

D2(2τ)

D2(τ)
. (4.10)

The choice of t1 = τ and t2 = 2τ fulfills the requirement that D2(ti) can be linearly
approximated (see Figure 4.7); this would not be the case for, e.g., t1 = τ/2 and
t2 = 3τ/2. Generally, iteration of (4.3) within (4.5) gives

D2(ti) =

〈( ti∑
l=1

γ′wk+l + ξk+l − λ tanh(εwk+l−τ ) + ηk+l

)2
〉
. (4.11)

In Figure 4.7, the dependence of D2(ti) on ti and λ is illustrated. While for λ = 0,
D2(ti) is linearly increasing, as for simple diffusive processes, an increasing λ amplifies
the diffusion on timescales up to τ , which generates a local maximum around ti = τ in
D2(ti). For values of ti around 2τ the influence of λ is inverse: it reduces the diffusion.
We now expand Eqn. (4.11) by using stationarity 〈wkwk+j〉 = 〈w0w0+j〉 = 〈wwj〉
and removing all terms that do not contribute, e.g., 〈w0ξl〉 = 0 for all l ≥ 0. This,
and the approximation tanh(εwk) ≈ εwk, leads to

D2(ti) = (γ′2+λ2ε2)

[
(ti + 1)〈w2〉+2

ti∑
l=1

(ti+1− l)〈wwl〉

]
+ (ti + 1)

(
σ2 + ρ2

)
+2γ′

ti∑
l=1

(ti + 1− l)〈ξ0wl〉 − 2λε

ti∑
l=τ+1

(ti + 1− l)〈ξ0w−τ+l〉 (4.12)

−2λεγ′

[
ti∑
l=0

(ti + 1− l)〈ww−τ+j〉+

ti∑
j=1

(ti + 1− j)〈w−τwl〉

]
.

The major contribution to D2(ti) of the auto- and cross-correlation functions arises
from lags which are close to nτ with n ∈ N0. Thus, for the approximation, we restrict
the analysis to terms with the lags l = 0, 1, τ, τ + 1, τ + 2, 2τ . The restriction reduces
D(τ) to:

D2(τ) = (γ′2 + λ2ε2)
[
(τ + 1)〈w2〉+ 2τ〈ww1〉+ 2〈wwτ 〉

]
+(τ + 1)

(
σ2 + ρ2

)
+ 2γ′τ〈w1ξ0〉 (4.13)

−2λεγ′
[
(τ + 1)〈ww−τ 〉+τ〈ww1−τ 〉+〈w2〉+τ〈w−τw1〉+〈w−τw+τ 〉

]
.
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ti

Figure 4.7: D2(ti) for ti < 3τ is shown; the third component illustrates the dependence of D2(ti)
on λ. The black lines denote, on the one hand, the choice of λ = 0.15 in accordance with the
behavior found in the measured data, and on the other hand, the values ti = τ and ti = 2τ used in
the approximation.

For D(2τ), additional terms remain and D(2τ) has the form:

D2(2τ) = (γ′2 + λ2ε2)
[
(2τ + 1)〈w2〉+ 4τ〈ww1〉+ 2(τ + 1)〈wwτ 〉

]
+(γ′2 + λ2ε2) [2τ〈ww1+τ 〉+ 2(τ − 1)〈ww2+τ 〉+ 2〈ww2τ 〉]
+2γ′ [2τ〈w1ξ0〉+ τ〈wτ+1ξ0〉+ (τ − 1)〈wτ+2ξ0〉]
−2λε [τ〈w1ξ0〉+ (τ − 1)〈w2ξ0〉] + (2τ + 1)

(
σ2 + ρ2

)
(4.14)

−2λεγ′
[
(2τ + 1)〈ww−τ 〉+ 2τ〈ww1−τ 〉+ (τ + 1)〈w2〉

]
−2λεγ′ [τ〈ww1〉+ (τ − 1)〈ww2〉+ 〈wwτ 〉]
−2λεγ′ [2τ〈w−τw1〉+ (τ + 1)〈w−τwτ 〉+ τ〈w−τwτ+1〉]
−2λεγ′ [(τ − 1)〈w−τwτ+2〉+ 〈w−τw2τ 〉] .

Furthermore, the approximation that projects lags l > 0 of the auto-correlation
function down to lag l = 0, 〈ww−τ 〉 ≈ −2λε〈w2〉, and the resulting dependence
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〈ww1〉 ≈ (γ′ + 2λ2ε2)〈w2〉 were applied. Additionally, we use τ + 1 ≈ τ in (4.13),

D2(τ) = τ
(
γ′2 + λ2ε2 + 4λ2ε2γ′

) (
1 + 2γ′ + 4λ2ε2

)
〈w2〉 (4.15)

−2λε(γ′ + 2λ2ε2)(1 + 2γ′)〈w2〉+ τ
[
(1 + 2γ′)σ2 + ρ2

]
.

For (4.14), we obtain:

D2(2τ) = 2τ
(
γ′2 + λ2ε2 + 4λ2ε2γ′

) (
1 + 2γ′ + 4λ2ε2

)
〈w2〉

−2τλε(γ′ + 2λ2ε2)(1 + 2γ′)
[
1 + γ′ + 2λ2ε2 + (γ′ + 2λ2ε2)2

]
〈w2〉

+4λ2ε2(γ′ + 2λ2ε2)(1 + 2γ′)〈w2〉 (4.16)

+2τ
[
(1 + 2γ′)σ2 + ρ2

]
− τλε [2 + 2γ′]σ2 .

As τ is far larger than 1, the terms without τ are at least one order of magnitude
smaller and can be neglected. Using the substitutions,

∆ = (γ′2 + λ2ε2 + 4λ2ε2γ′)(1 + 2γ′ + 4λ2ε2)〈w2〉+ (1 + 2γ′)σ2 + ρ2 ,

Λ = 2λε(γ′+2λ2ε2)(1+2γ′)
[
1 + γ′ + 2λ2ε2 + (γ′+2λ2ε2)2

]
〈w2〉+ 2λε(1 + γ′)σ2 ,

we can write the mean square displacements in Eqns. (4.15) and (4.16) as D2(τ ) = τ∆
and D2(2τ) = 2τ∆− τΛ, respectively. Finally, for Eqn. (4.10), we obtain:

Hl =
1

2 log 2
log

(
2τ∆− τΛ

τ∆

)
(4.17)

One last question remains: How can we find an approximation of the mean square
of wk+1? To answer this, as a first step, we assume stationarity. Then, for the mean
square of the velocity-related process, we replace wk+1 according to the iteration rule
in Eqn. (4.3):

〈w2
k+1〉 = 〈wk+1 [γ′wk + ξk − λ tanh(εwk−τ )]〉 . (4.18)

The next step is the approximation of the terms containing the tanh(wk−τ ) terms.
Here, we again apply the approximations tanh(εwk) ≈ εwk, 〈wk−τwk〉 ≈ −2λε〈w2

k〉
and 〈wk+1wk〉 = (γ′ + 2λ2ε2) 〈w2

k〉 to obtain

〈w2〉 = γ′
(
γ′ + 2λ2ε2

)
〈w2〉+ σ2 + 2λ2ε2

(
γ′ + 2λ2ε2

)
〈w2〉 ,

= (γ′ + 2λ2ε2)2〈w2〉+ σ2 .

Reordering the terms of this equation results in an approximation for the second
moment of w, i.e.,

〈w2〉 =
σ2

1− (γ′ + 2λ2ε2)2
. (4.19)
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Equation (4.19) is used in the calculations of the local scaling exponents for the
short Hs (4.19) and long time scale Hl (4.9) in dependence of λ and γ. The validity
is checked by comparison with numerical simulations of Eqn. (4.3) for different λ
and γ. In Figure 4.8A, we show the comparison of values of Hs for short time scales
as a function of γ and in Figure 4.8C as a function of λ. Around the chosen values
γ = 0.25 and λ = 0.15, the analytical approximation is in good agreement with the
SDA. For the long time scales, we plot the dependence of Hl on γ (Figure 4.8B) and
Hl on λ (Figure 4.8D). Here, the agreement between the analytic approximation and
the DFA is better than with the SDA. Qualitatively, the analytical approximation
and the numerical results agree, however, the analytical results are closer to the
results obtained via DFA. Thus, the analytical calculations confirm the parameter
dependence of the local scaling exponents observed in the numerical simulations.

4.4 Summary of the model

We are able to reproduce the local scaling behavior of fixational eye movements
acquired in the analysis section with a model motivated by the known physiology.
The model is set up to incorporate knowledge about the control mechanism: control
of velocity, and feedback connections. Furthermore, the proposed model is closely
associated with the motoneuron activity within the brain stem while reproducing
the local scaling behavior, which is observed noninvasive by eye tracking.

The modeling approach on the basis of a delayed random walk proved to be very
successful. One of the major successes of the model is that the delays obtained in
the model through comparison of model simulations and real data lie in the range
of physiological plausible delays. Additionally, the different delays observed for
the horizontal and vertical components are in good agreement with the spatially
separated physiological representations in the brain stem. We were able to suggest,
by the comparison of known signal propagation times, the presence of an external
feedback loop, which runs from the retina through the superior colliculus to the
eye muscles for horizontal fixational eye movements. The delay obtained for the
vertical component is smaller than this external feedback loop would account for,
which suggests that the presence of internal feedback loops for fixation control in
the vertical but not the horizontal component exists. Finally, we presented a semi-
analytical investigation of local scaling. The investigation confirms the local scaling
behavior for short and long time scales along two of the model parameters.

However, there are still many things which could be incorporated in the model.
Currently, the model does not contain microsaccades; also, the reduction of the box
count before microsaccades is not part of the model.
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Figure 4.8: Comparison of analytical approximation (black dashed-dotted line) with numerical
values (blue solid line), SDA (green dotted line), and DFA (red dashed line). (A): Short time scales:
Hs vs. γ analytically from Eqn. (4.9), SDA for l = 1 to 20, and DFA for l = 6 to 100. (B): Long
time scales: Hl vs. γ analytically from Eqn. (4.17), numerically from Eqn. (4.10), SDA for l = 70
to 210, and DFA for l = 400 to 2000. (C): Like (A), but Hs vs. λ. (D): Like (C), but Hl vs. λ





Chapter 5

Discussion

Fixational eye movements pose several challenging but promising questions in dif-
ferent scientific disciplines, i.e., psychology, neuroscience and physics. For psycholo-
gists, the link between attentional modulation of microsaccade rate and orientation
[Laubrock et al., 2007; Engbert, 2006; Hafed and Clark, 2002] and effects of awareness
on the same modalities [Betta and Turatto, 2006; Martinez-Conde and Macknik,
2007] make fixational eye movement a very interesting topic. Their interest is further
boosted by possible explanations for numerous visual illusions, e.g., illusory motion of
static patterns [Fermüller et al., 1997] (“Enigma” [Leviant, 1996; Kumar and Glaser,
2006; Martinez-Conde, 2006], Ouichi illusion Figure 1.2 [Ouchi, 1977], “Rotating
Snakes” [Kitaoka and Ashida, 2003]), or brightness illusions (Hermann grid [Her-
mann, 1870]). Numerous illusions have been collected by Kitaoka. In neuroscience,
fixational eye movements play a major role in the explanation of hyperacuity [Rucci
et al., 2007] and visual discrimination of orientation of tiny bars [Pitkow et al.,
2007]. Furthermore, it has been reported that microsaccades trigger visually evoked
activity in visual cortex neurons [Martinez-Conde et al., 2000, 2002] and supply
an explanation for Troxler fading (fading of a light blue annulus around a fixation
dot) and reappearance [Martinez-Conde et al., 2006]. For physicists, fixational eye
movements are generated by a dynamical system with feedback [Mergenthaler and
Engbert, 2007] with distinct statistical properties. The tiny movements can also be
used to go below the spatial optical acuity limits of CCD cameras by integrating
temporal information [Wei et al., 2007]. In general, one could say that fixational eye
movements are a research area which would greatly benefit from interdisciplinary
work between cognitive neuroscience and nonlinear sciences.

The amount of research on fixational eye movements, especially on microsaccades,
is currently growing strongly (Figure 5.1). At least three content related reasons for
the growing interest should be mentioned. In the period before 1980, the amount
of interest was increasing, but between 1980 and 2000, the number of publications
remained roughly constant. The reason for the reduced interest is possibly due to
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Figure 5.1: The number of publications found by a search of “microsaccad*” and “fixational eye”
in ISI Web of Knowledge is strongly increasing.

the publication of two articles Kowler and Steinman [1979, 1980], which stated that
microsaccades serve no useful purpose. The first reason for the resumed increase
in interest starting around 2000 derives from the neurophysiological finding that
microsaccades evoke activity in numerous areas of the cortex, e.g., striate cortex
[Leopold and Logothetis, 1998; Martinez-Conde et al., 2000], lateral geniculate
nucleus, and primary visual cortex [Martinez-Conde et al., 2002]. The second reason
for the increase in publications arises from results published around 2002 that found
a link between covert attention and microsaccades [Hafed and Clark, 2002; Kohama
and Usui, 2002; Engbert and Kliegl, 2003]. The third, which is a current issue and
will likely lead to several more publications, is that microsaccades evoke activity and
generate ocular artifacts that are measurable by EEG [Yuval-Greenberg et al., 2008;
Dimigen et al., subm]. In particular, the activity in the gamma-band Yuval-Greenberg
et al. [2008] of the EEG can fuel new research as several earlier publications about
gamma-band activity suffer from the problem that the effect of microsaccades was
neglected, as usually the eyes are not tracked during EEG measurements. All three
reasons are in contradiction to the statement that microsaccades serve no useful
purpose, and thus led to revived interest in the field. Another, more technical, reason
for the increase in publications is that video-based eye trackers allow much more
convenient measurement than those setups where one needs to affix contact lenses by
suction onto the cornea. Furthermore, the automatized detection of microsaccades
and the ease of access to computer-based statistical packages that can handle large
data sets, encourages the research on fixational eye movements.

5.1 Analyses on fixational eye movements

With improved analyses, much more information can be obtained, which will allow
deeper insights into visual processing and motor behavior required for optimal visual
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perception. Furthermore, questions about the interaction and organization of the two
different and competing functions of fixational eye movements, i.e., the refreshing of
fatigued receptors through movement and gaze stabilization during head movements,
can be pursued by using the applied measures presented in this dissertation. Earlier
analyses used for the characterization of fixational eye movements were rather
primitive, e.g., the calculation of the direction of the eye movement caused by drift
or microsaccades by comparison of start and end point of the intervals. While
this measure of direction (sometimes used to classify if microsaccades and drift are
corrective [Møller et al., 2006]) is useful for microsaccades, it poorly reflects the
behavior of the drift. Therefore, the implementation of better measures characterizing
the drift movement are necessary.

However, before the investigation of drift and microsaccade properties, it is
crucial to classify whether a given sample of the eye movement trajectory belongs
to a drift or microsaccade interval. Common microsaccade detection algorithms
[Martinez-Conde et al., 2000, e.g., used in], do not take into account differences in
the relationship between drift and microsaccade across participants and experimental
conditions. We proposed an improved version of the two-dimensional velocity-based
microsaccade detection algorithm (Section 3.1) [Mergenthaler and Engbert, subm]
described by Engbert and Kliegl [2003]. The algorithm takes into account the
individual differences that participants show. This also means that it allows the
reinvestigation of results concerning changes in the rate of microsaccades between
different visual conditions. Furthermore, the microsaccade rate within certain time
windows is frequently investigated [Martinez-Conde et al., 2006; Valsecchi et al., 2007;
Rolfs et al., 2006], but the rate is directly based on the detection of microsaccades
and therefore directly affected by the detection algorithm.

Although fixational eye movements can now be separated in microsaccades and
drift, it is unclear which role these different types of movements play. As a first
approach to the separation of the function, we performed an experiment with two
different visual conditions, fixations on a stimulus and in darkness, and we showed
that microsaccade rate and amplitudes do change under different visual conditions. In
darkness, the microsaccades became larger and less frequent, which is possibly related
to the enhanced use of the peripheral part of the retina in low light conditions. These
findings concur with the suggestion by Martinez-Conde [2006] that microsaccades
and drift fulfill the role of retinal refresh for different receptive field sizes: drift for
small receptive fields in the fovea and microsaccades for larger receptive fields in the
periphery. They reported that the rate of microsaccades is reduced before Troxler
fading [Martinez-Conde et al., 2006]) and increased before the reappearance of the
peripheral stimulus. The effect of microsaccades was less strong when the annulus
became smaller (tested diameters: 18◦, 12◦, and 6◦).

After successful detection of the microsaccades, the local scaling behavior can be
determined and compared to the behavior of the full time series. We tested for local
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scaling properties by DFA and SDA and found persistent behavior on short timescales
and anti-persistent behavior on long timescales [Mergenthaler and Engbert, 2007].
The trough on intermediate scales in the SDA suggests that fixational eye movements
are controlled by a delayed feedback loop [Ohira, 1997], as the SDA is linked to the
auto-correlation function. This strongly contradicts an earlier hypothesis that drift
is a simple uncontrolled noise process.

Recently, Pitkow et al. [2007] proposed a Markov decoder model for visual input,
which incorporates the drift movement as a random process with a distinct diffusion
constant on a grid of neurons with a multiplicative update of the firing rates of a
neuron by use of the firing rate in adjacent neurons. The decoder was able to detect
the orientation of tiny bars (1× 2 arcmin.) as long as the bars performed a random
walk across the decoder. They further describe that the investigated persistence on
short time scales [Mergenthaler and Engbert, 2007] is beneficial for such a decoder
model. Nevertheless, they argue that the anti-persistence on long time scales is due
to the microsaccades, which contradicts the results presented in Section 3.2 and
[Mergenthaler and Engbert, 2007]. This could be one of the reasons why humans
still perform better than the Markov decoder model.

Generally, detailed investigation of drift is commonly neglected. However, Stein-
man et al. [1973] have shown that the role of microsaccades can be at least partially
carried over to the drift, which suggests that drift by itself plays a role for both
described functions of fixational eye movements. Thus, the specific investigation of
periods of drift contains additional information that reveals properties like feedback
control [Mergenthaler and Engbert, 2007]. Nevertheless, the analyses investigating
local scaling inquire global properties of the eye movement trajectories. Such analyses
cannot be used to detect possible local triggering mechanisms for microsaccades.
With the box-counting algorithm (Section 3.5), we supply an new tool to characterize
the drift during small time windows [Engbert and Mergenthaler, 2006] that could
possibly address the question of microsaccade triggering. Microsaccades can be
generated by a random process, by locking to brain activity, e.g., phase locking to
alpha rhythms [Gaarder et al., 1966; Lehmann et al., 1965], or by a dynamical process
on the basis of certain properties of the drift [Engbert and Mergenthaler, 2006; Mer-
genthaler and Engbert, subm]. With the box-counting approach, we could at least
detect if microsaccades are preceded by a reduction in the box count, and clearly they
are: Around 300 ms before microsaccade onset, the number of boxes necessary to
cover the trajectory is reduced. We still cannot decide if microsaccade programming
reduced the drift before the microsaccade or if microsaccades are triggered by the
reduced drift. Furthermore, we cannot decide if the reduced drift coincides with a
certain phase in the alpha rhythm. Nevertheless, the box-counting approach appears
to be a analysis that could reveal several interesting properties concerning relations
between brain activity, drift behavior and microsaccade occurrence.



5.2. THEORETICAL MODEL OF FIXATIONAL EYE MOVEMENTS 67

5.2 Theoretical model of fixational eye move-

ments

For larger eye movements like saccades and smooth pursuit, numerous computational
models exist [Girard and Berthoz, 2005]. This is different for fixational eye movements
where only two earlier models are available (Section 4.2), which were based on direct
control of the eye position [Vasudevan et al., 1972; Seung, 1996]. However, it
was pointed out by Epelboim and Kowler [1993] that the control of fixational eye
movements has to be at the level of velocity control. We proposed the first model
based on velocity control (Section 4.3, [Mergenthaler and Engbert, 2007]). It is set
up as a stochastic model motivated by Ohira [1997] and Yao et al. [2001], with a
delayed feedback term, a noise source, and an autoregressive term in the velocity
related variable. This is summed up with an additional noise source to represent
motoneuron activity (Eq. (4.3)). Currently, the model nicely reproduces the local
scaling properties within the data for the vertical and horizontal drift movements.
The largest success of the model is that the estimated delays for the feedback
control in the horizontal component concur with the duration of a physiological
feedback loop from the retina trough the brain stem to the eye muscles [Sparks,
2002; Moschovakis et al., 1996]. For the vertical component, the delays are shorter;
this could indicate that an internal feedback loop, which has only been reported
for the vertical component, replaces the external feedback control. The model as
proposed in this dissertation is generally diffusive, due to the added noise in the
position related equation. This is in accordance with the lack of a decay to zero
of the scaling exponent for towards the largest scales [Moreau and Sontag, 2003].
Nevertheless, the longest timescale could be missed by the relatively short (20 ms)
fixations. The existence of such a third timescale coincides with a stable dynamic
within the position related equation; it is still not yet clear whether, in addition to
velocity related feedback, control mechanisms within the position related activity
are active. Finally, we were able to corroborate the local scaling properties by a
semi-analytic approximation of the scaling properties on long and short timescales.

5.3 Outlook

The experiments, analyses and modeling presented in this dissertation offer numerous
possibilities to advance the research on fixational eye movements.

Experiments which would strongly contribute to the knowledge of fixational eye
movement control are experiments with different stimuli and with more natural
postures. The experiments with different stimuli could contain experiments that
investigate how strongly the control of fixational eye movement is governed by
luminance or contrast information. It could be that fixations on a spot that is
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isoluminant to the background [Valsecchi and Turatto, 2007] are controlled with
longer feedback delays due to the color-blind retinotectal pathway. Further, it
would be useful to perform experiments where the visual information that is used
for fixation control is only available in the periphery, e.g., a light blue annulus as
in the Troxler fading experiments [Martinez-Conde et al., 2006]. Another batch of
experiments could target the two counteracting functions of fixational eye movements,
the stabilization of stimuli and the counteraction of retinal fatigue. This issue can
be addressed by experiments with different postures like sitting with a free head
and standing, where the influence of head movements is increased, which shifts
the emphasis towards stabilization. However, further experiments should also be
performed that could reveal more about the possible microsaccade triggering by
properties of the drift [Engbert and Mergenthaler, 2006], or by locking to alpha
activity in the EEG [Gaarder et al., 1966]. It is still unclear if microsaccades are
generated fully randomly by a point process or by a triggering mechanism like retinal
image slip; in the first case, it would be necessary to explain the reduction of retinal
image slip before microsaccades. Experiments where subjects are instructed to
produce reactive saccades with the same small amplitudes as microsaccades could
be a useful tool to explain the mechanisms of microsaccade generation.

The presented analyses could then be performed on different data sets. Never-
theless, the advancement of the presented analyses and the application of further
analyses are exptected to contribute to the understanding of fixational eye move-
ments. The separate investigation of the box count in inter-microsaccade intervals
of different lengths could supply evidence for control mechanisms. In addition, the
use of wavelet-based methods to classify fixational eye movements into drift and
microsaccades [Holschneider et al., 2006] would be beneficial. Another necessary
analysis is direct delay estimation to confirm the indirect estimated delays via com-
parison of model and data. For linear systems, the method by Ohira and Sawatari
[1997] (see also: Appendix B) could be applied; for fixational eye movements, the
approach by Siefert [2007] could be pursued.

A first next step to develop our model is to incorporate microsaccades; this can
also be used to evaluate the triggering of microsaccades. The model has to follow the
observed behavior of reduces retinal image slip before a microsaccade. The properties
of microsaccades, i.e., amplitude, rate, and direction, should then be incorporated.
However, alternative approachs to the modeling will be developped. For example on
the basis of self-avoiding random walks as introduced by Freund and Grassberger
[1992]. Such a model would be motivated by the exhaustion of re-growing resources
and inherently prevents the fatigue of photoreceptors.



Appendix A

Map of connections between
oculomotor nuclei

For completeness, and to integrate the smaller figures for horizontal (Figure 4.2)
and vertical (Figure 4.3) into the circuitry of the brainstem, we give a full picture
of the known connections that contribute to the saccade generation (Figure A.1).
The figure is adapted from [Moschovakis et al., 1996]. It shows the excitatory and
inhibitory connections in the brain stem. The brain stem areas receive input input
from the retina, the cortex, and the cerebellum and propagate to the three pairs of
motoneurons, which directly actuate the extraocular muscles.
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Figure A.1: The full control loop for saccadic eye movements [Moschovakis et al., 1996]. A clear
physiological separation of vertical (blue: up and red: down) and horizontal (green) in the brain
stem is made. Connections ending with an arrow head are excitatory while connections ending with
a bullet are inhibitory. The light gray boxes denote the higher order brain structures in the upper
part and the different nuclei in the lower part. The smaller black or colored boxes describe smaller
areas of brain structures in the upper part and areas of neurons with a certain firing property in
the lower part. For abbreviations see next page.
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III N oculomotor nucleus
VI N abducens nucleus
Cd caudate
CbLLB cerebellar long lead burst neurons
cMRF central mesencephalic reticular formation
cMRFLLB long lead burst neurons of the cMRF
DIFN downward inhibitory feedback neuron
DLLB downward long lead burst neurons
DMLBe excitatory downward medium lead burst neurons
DMLBi inhibitory downward medium lead burst neurons
DNI downward neural integrator
EBN excitatory burst neuron
FaLLB fastigial long lead burst neurons
FEF frontal eye field
GC granule cells of the oculomotor vermis
HNI horizontal neural integrator
IBN inhibitory burst neuron
IN internuclear neuron
IO inferior oblique
IR inferior rectus
L lateral neurons of the superior colliculus
LC local circuit neuron
LR lateral rectus
MD mediodorsal nucleus of the thalamus
MR medial rectus
NIC interstitial nucleus of Cajal
nPC nucleus of posterior commissure
NRTP nucleus reticularis tegmenti pontis
OPN omnipause neuron
pCbLLB precerebellar long lead burst neurons
PC posterior commissure
PGD nucleus paragigantocellularis dorsalis
PH nucleus prepositus hypoglossi
PPLLB pontopontine long lead burst neurons
PPRF paramedian pontine reticular formation
Qv quasivisual neurons
riMLF rostral interstitial nucleus of the median longitudinal fasciculus
RIP nucleus raphé interpositus
RSLLB reticulospinal long lead burst neurons
RTLLB reticulotectal long lead burst neurons
SEF supplementary eye fields
SNR substantia nigra pars reticulata
SO superior oblique
SR superior rectus
TLLB thalamic long lead burst neurons
ULLB upward long lead burst neurons
UMLBe excitatory upward medium lead burst neurons
UMLBi inhibitory upward medium lead burst neurons
UNI upward neural integrator
URIN upward resettable integrator neuron
VA nucleus ventralis anterior of the thalamus
VCx vestibular complex
VL nucleus ventralis lateralis of the thalamus.





Appendix B

Delay estimation - Ohira method

The delay estimation for the model was performed indirectly by fitting the parameters
to the data. A more direct way to estimate control delay would be preferable. A
possibility of performing a delay estimation is proposed in [Ohira and Sawatari,
1997]. The method is described to be applied to time series that are approximately
generated by a noisy linear feedback system. Nevertheless, as delayed random walk
models seem the appropriate choice of model type for fixational eye movements, we
applied the method to the data of horizontal, vertical eye movements, and simulations
of our model.

The analysis, described in [Ohira and Sawatari, 1997], consists of several steps:

1. Compute the autocorrelation function C(u) from the time series. It should
be oscillating with some C(u) < 0. Otherwise the method is not directly
applicable.

2. A “normalized set” is built from the autocorrelation function C(u).

K(u) =
C(u)

2[C(0)− C(1)]
(B.1)

3. Identify τi, the first point where K(u) ≈ 0.

4. Choose a τe which is close to τi and evaluate its quality according to the next
steps.

5. With the chosen τe, compute:

y1(u) =
K(u)

K(|τe − u|)
, z1(u) =

K(u+ 1)

K(|τe − u|)
(B.2)

y2(u) =
K(|τe − u|)

K(u)
, z2(u) =

K(u+ 1)

K(u)
(B.3)
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Figure B.1: Horizontal eye movements: The diamonds at the upper edge denote the τi estimated
from the first zero crossing of the autocorrelation function. The triangles denote the individual
local minimum of EN (τe) closest to τi. Their horizontal position gives the individual τe. Each
colored line corresponds to the mean of one participant. The black diamond and triangle denote
the means over all.

6. For a linear system and optimal choice of τe, the values y1, z1, y2, z2 should
obey the following linear relations:

z1(u) = (1− α)y1(u)− β, z2(u) = −βy2(u)− (1− α). (B.4)

For choices that are less optimal, the values should deviate more from the
linear relation. The parameters α and β can be estimated via linear regression.

7. To quantify the deviation from the linear relation, compute the χ2 error of the
two relations and define:

E(τe) = χ2
1 + χ2

2. (B.5)

8. The best estimate of the intrinsic delay is the one that minimizes E(τe).

The described procedure (step 1 to 8) is performed on the velocity signals obtained
from Experiment 1 separately for horizontal (Figure B.1) and vertical (Figure B.2)
eye movements and on the velocity signal obtained by model simulations (Figure B.3)
with the optimized parameters for the horizontal component (see Subsection 4.3.2).
For the linear regression a robust fit procedure is used to minimize the effect of
extreme outliers. In step 7 the two obtained χ2 errors are summed up via (B.5). In
addition to the described procedure for obtaining the E(τe) a normalized EN(τe) is
computed via EN(τe) = (E(τe)− E(τe))/σE(taue), where E(τe) denotes the mean of
E(τe) over all τe and σE(τe) give the standard deviation of E(τe) over all τe. The
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Figure B.2: Vertical eye movements: The diamonds at the upper edge denote the τi estimated
from the first zero crossing of the autocorrelation function. The triangles denote the individual
local minimum of EN (τe) closest to τi. Their horizontal position gives the individual τe. Each
colored line corresponds to the mean of one participant. The black diamond and triangle denote
the means over all.

computation of the normalized errors EN(τe) does not change the position of the
minimum, which are detected in step 8, but it allows a better comparison across
participants and allows the plotting in a single graph.

In simulations with the linear model proposed in [Ohira and Sawatari, 1997], we
find that noise sources which are added to the feedback system, but are not feedback,
i.e. measurement noise, leads to delay estimations which strongly underestimates the
intrinsic delay. The simulations further suggest that in principle the noise dependent
displacement of the minimum could be evaluated for the linear system. But if the
displacement obeys a manageable relation to the noise strength has to be investigated.
While for models the evaluation of the displacement is possible, as the parameters
including the delay are known, for the eye movement data the displacement and
therefore the underlying delay could not be accessed by the method described above.
Thus, we argue that the appraisal of the delay via comparison of the location of
the trough in SDA and DFA between the data and the model gives a more stable
estimate than the method proposed by Ohira and Sawatari.
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Figure B.3: Modeling horizontal data: The diamonds at the upper edge denote the τi estimated
from the first zero crossing of the autocorrelation function. The triangles denote the local minimum
of EN (τe) closest to τi. Their horizontal position gives the τe. Each colored line corresponds to
one model simulation. The black diamond and triangle denote the mean over all simulations.



Appendix C

Publications and conference
presentations

Publications

Engbert, R. and Mergenthaler, K. (2006). Microsaccades are triggered
by low retinal image slip. Proceedings of the National Academy of Sciences of
the United States of America, 103(18), 7192-7197.
Even during visual fixation of a stationary target, our eyes perform rather erratic
miniature movements, which represent a random walk. These ”fixational” eye
movements counteract perceptual fading, a consequence of fast adaptation of the
retinal receptor systems to constant input. The most important contribution to
fixational eye movements is produced by microsaccades; however, a specific function
of microsaccades only recently has been found. Here we show that the occurrence
of microsaccades is correlated with low retinal image slip approximate to 200 ms
before microsaccade onset. This result suggests that microsaccades are triggered
dynamically, in contrast to the current view that microsaccades are randomly
distributed in time characterized by their rate-of-occurrence of 1 to 2 per second.
As a result of the dynamic triggering mechanism, individual microsaccade rate can
be predicted by the fractal dimension of trajectories. Finally, we propose a minimal
computational model for the dynamic triggering of microsaccades.

Mergenthaler, K. and Engbert, R. (2007). Modeling the control of
fixational eye movements with neurophysiological delays. Physical Review
Letters, 98, 128104.
We propose a model for the control of fixational eye movements using time-delayed
random walks. Fixational eye movements produce random displacements of the
retinal image to prevent perceptual fading. First, we demonstrate that a transition
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from persistent to antipersistent correlations occurs in data recorded from a visual
fixation task. Second, we propose and investigate a delayed random-walk model and
get, by comparison of the transition points, an estimate of the neurophysiological
delay. Differences between horizontal and vertical components of eye movements
are found which can be explained neurophysiologically. Finally, we compare our
numerical results with analytic approximations.

Mergenthaler, K. and Engbert, R. (submitted). Microsaccade detection
and its impact on rate and amplitude under different visual conditions.
Miniature (or fixational) eye movements are performed involuntarily during visual
fixation. Microsaccades represent the fastest component of fixational eye movements
which are modulated by visual stimulus type, experimental instructions, and visual
attention. Therefore accurate detection of microsaccades is crucial for basic research
on fixational eye movements. Here we propose an improved microsaccade detection
algorithm taking into account individual differences. We show that the influence of
the choice of the detection algorithm on scientific questions, i.e. the rate and the
amplitude of binocular microsaccades in two visual conditions is strong. We found
a significant difference between visual fixations on a stimulus (condition 1) and
fixations in darkness (condition 2). Additionally, using our new statistical procedure
we reject the hypothesis of the existence of monocular microsaccades.

Selected presentations

Mergenthaler, K. and Engbert, R. (2005). A model of fixational eye
movements. Poster at: DYBIO 05, 20th June - 15th July 2005, Dresden.

Mergenthaler, K. and Engbert, R. (2007). Control principles under-
lying the generation of fixational eye movements. Talk at: ECEM 07, 19th -
22th August 2007, Potsdam.

Mergenthaler, K. and Engbert, R. (2007). Control mechanisms of
fixational eye movements. Poster at: ESF-EMBO Symposium: Three Dimen-
sional Sensory and Motor Space: Perceptual Consequences of Motor Action, 6th -
10th October 2008, Sant Feliu de Guixols, Spain.

Mergenthaler, K. and Engbert, R. (2008). Precursory retinal image
motion before small-amplitude saccades. Poster at: ECVP 08, 24th - 28th
August 2008, Utrecht, Netherlands.
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Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme
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Ölveczky, B. P., Baccus, S. A., & Meister, M. (2003). Segregation of object and
background motion in the retina. Nature, 423 (6938), 401–408. Cited on page:
2, 10, 39

Ouchi, H. (1977). Japanese Optical and Geometrical Art . Dover, New York. Cited
on page: 10, 63

Pack, C., Grossberg, S., & Mingolla, E. (2001). A neural model of smooth pursuit
control and motion perception by cortical area MST. Journal of Cognitive
Neuroscience, 13 (1), 102–120. Cited on page: 49

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Trans-
forming numbers into movies. Spatial Vision, 10 , 437–442. Cited on page:
12

Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger,
A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E ,
49 (2), 1685–1689. Cited on page: 22, 24

Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time
series. Chaos , 5 (1), 82–87. Cited on page: 25

Percival, D. B., & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis .
Cambridge, University Press, Cambridge, England. Cited on page: 22, 27

Pitkow, X., Sompolinsky, H., & Meister, M. (2007). A neural computation for visual
acuity in the presence of eye movements. Public Library of Science Biology ,
5 (12), 2898–2911. Cited on page: 63, 66

Prichard, D., & Theiler, J. (1994). Generating surrogate data for time-series with
several simultaneously measured variables. Physical Review Letters, 73 (7),
951–954. Cited on page: 18

Quaia, C., Aizawa, H., Optican, L. M., & Wurtz, R. H. (1998). Reversible inactivation
of superior culliculus. II. Maps of saccadic deficits. Journal of Neurophysiology ,
79 , 2097–2110. Cited on page: 45

Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular
fixation. Journal of Experimental Psychology , 40 (6), 687–701. Cited on page:
4, 5, 15



88 BIBLIOGRAPHY

Rattle, J. D. (1969). Effect of target size on monocular fixation. Optica Acta, 16 ,
183–192. Cited on page: 50

Riggs, L. A., Armington, J. C., & Ratliff, F. (1954). Motions of the retinal image
during fixation. Journal of the Optical Society of America, 44 , 315–321. Cited
on page: 49

Riggs, L. A., & Ratliff, F. (1952). The effect of counteracting the normal movements
of the eye. Journal of the Optical Society of America, 42 , 872–873. Cited on
page: 8

Riggs, L. A., Ratliff, F., Cornsweet, J. C., & Cornsweet, T. N. (1953). The disap-
pearance of steadily fixated visual test objects. Journal of the Optical Society
of America, 43 (6). 11. Cited on page: 8

Rolfs, M., Kliegl, R., & Engbert, R. (2008). Towards a model of microsaccade
generation: The case of microsaccadic inhibition. Journal of Vision, 8 (11),
1–23. Cited on page: 33

Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade
latencies following microsaccades. Experimental Brain Research, 169 , 369–376.
Cited on page: 65

Rucci, M., & Desbordes, G. (2003). Contribution of fixational eye movements to
the discrimination of briefly presented stimuli. Journal of Vision, 3 , 852–864.
Cited on page: 8

Rucci, M., Iovin, R., Poletti, M., & Santini, F. (2007). Miniature eye movements
enhance fine spatial detail. Nature, 447 (7146), 851–855. Cited on page: 9, 39,
63

Scafetta, N., & Grigolini, P. (2002). Scaling detection in time series: Diffusion
entropy analysis. Physical Review E , 66 , 036130. Cited on page: 22, 27

Schiller, P. H., & Stryker, M. (1972). Single-unit recording and stimulation in
superior colliculus of the alert rhesus monkey. Journal of Neurophysiology , 35 ,
915–924. Cited on page: 33

Schiller, P. H., True, S. D., & Conway, J. L. (1980). Deficits in eye movements follow-
ing frontal eye field and superior colliculus ablation. Journal of Neurophysiology ,
44 , 1175–1189. Cited on page: 45

Schulz, E. (1984). Binocular micro-movements in normal persons. Graefe’s Archive
Clinical Experimental Optalmology , 222 , 95–100. Cited on page: 7, 18

Seung, H. S. (1996). How the brain keeps the eyes still. Proceedings of the National
Academy of Sciences of the USA, 93 , 13339–13344. Cited on page: 51, 67

Shlesinger, M. F. (2006). Search research. Nature, 443 , 281–282. Cited on page: 39

Shlesinger, M. F., Zaslavsky, G. M., & Frisch, U. (Eds.) (1995). Lévy Flights and
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Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses.
Nature, 381 (6581), 413–415. Cited on page: 37

Wei, L., Levi, D. M., Li, R. W., & Klein, S. A. (2007). Feasibility study on
a hyperacuity device with motion uncertainty: Two-point stimuli. IEEE
Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics , 37 (2),
385–397. Cited on page: 63

Wyman, D., & Steinman, R. M. (1973). Small step tracking: Implications for the
oculomotor ”dead zone”. Vision Research, 13 (11), 2165–2172. Cited on page:
50

Yao, W., Yu, P., & Essex, C. (2001). Delayed stochastic differential model for quiet
standing. Physical Review E , 63 (2), 021902. Cited on page: 52, 67

Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008).
Transient induced gamma-band response in EEG as a manifestaion of miniature
saccades. Neuron, 58 , 429–441. Cited on page: 64

Zuber, B. L., Stark, L., & Cook, G. (1965). Microsaccades and velocity-amplitude
relationship for saccadic eye movements. Science, 150 (3702), 1459. Cited on
page: 36, 45


	Front page
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction to fixational eye movements
	Introduction
	General overview of fixational eye movements
	Drift and tremor
	Microsaccades

	Functional role of fixational eye movements
	Control of fixational eye movements

	Experiments
	Experiment 1: Simple fixation task
	Experiment 2: Simple fixations and fixations in darkness

	Time series analysis
	Detection of microsaccades
	Choice of threshold multiplier

	Temporal local scaling of fixational eye movements
	Rescaled range analysis
	Standard deviation analysis
	Detrended fluctuation analysis
	Spectral wavelet analysis
	Application to fixational eye movement data

	Microsaccade Rate 
	Difference between experimental conditions

	Microsaccade Amplitude
	Difference between experimental conditions
	Large amplitude tail of the microsaccades

	Local box count
	Triggering of microsaccades
	Summary of results

	Model of fixational eye movements
	Physiological background
	Saccades
	Horizontal and vertical saccadic control mechanisms
	Smooth pursuit
	Drift

	Position dependent model
	Velocity dependent model
	Delayed random walk without oscillations
	Parameter estimation: horizontal
	Parameter estimation: vertical
	Semi-analytic local scaling investigation

	Summary of the model

	Discussion
	Analyses on fixational eye movements
	Theoretical model of fixational eye movements
	Outlook

	Appendix
	Map of connections between oculomotor nuclei
	Delay estimation - Ohira method
	Publications and conference presentations

	Bibliography



