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Abstract

Microfabricated solid-state surfaces, also called ‘atom chip’, have become a well-established

technique to trap and manipulate atoms. This has simplified applications in atom interferom-

etry, quantum information processing, and studies of many-body systems. Magnetic trapping

potentials with arbitrary geommetries are generated with atom chip by miniaturized current-

carrying conductors integrated on a solid substrate. Atoms can be trapped and cooled to µK

and even nK temperatures in such microchip trap. However, cold atoms can be significantly

perturbed by the chip surface, typically held at room temperature. The magnetic field fluctu-

ations generated by thermal currents in the chip elements may induce spin flips of atoms and

result in loss, heating and decoherence. In this thesis, we extend previous work on spin flip

rates induced by magnetic noise and consider the more complex geometries that are typically

encountered in atom chips: layered structures and metallic wires of finite cross-section. We

also discuss a few aspects of atom chips traps built with superconducting structures that have

been suggested as a means to suppress magnetic field fluctuations. The thesis describes calcu-

lations of spin flip rates based on magnetic Green functions that are computed analytically and

numerically. For a chip with a top metallic layer, the magnetic noise depends essentially on the

thickness of that layer, as long as the layers below have a much smaller conductivity. Based on

this result, scaling laws for loss rates above a thin metallic layer are derived. A good agreement

with experiments is obtained in the regime where the atom-surface distance is comparable to

the skin depth of metal. Since in the experiments, metallic layers are always etched to sepa-

rate wires carrying different currents, the impact of the finite lateral wire size on the magnetic

noise has been taken into account. The local spectrum of the magnetic field near a metallic

microstructure has been investigated numerically with the help of boundary integral equations.

The magnetic noise significantly depends on polarizations above flat wires with finite lateral

width, in stark contrast to an infinitely wide wire. Correlations between multiple wires are

also taken into account. In the last part, superconducting atom chips are considered. Magnetic

traps generated by superconducting wires in the Meissner state and the mixed state are stud-

ied analytically by a conformal mapping method and also numerically. The properties of the

traps created by superconducting wires are investigated and compared to normal conducting

wires: they behave qualitatively quite similar and open a route to further trap miniaturization,

due to the advantage of low magnetic noise. We discuss critical currents and fields for several

geometries.
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Zusammenfassung

Mikrotechnologische Oberflächen, sogenannte Atomchips, sind eine etablierte Methode zum

Speichern und Manipulieren von Atomen geworden. Das hat Anwendungen in der Atom-

Interferometrie, Quanteninformationsverarbeitung und Vielteilchensystemen vereinfacht. Mag-

netische Fallenpotentiale mit beliebigen Geometrien werden durch Atomchips mit miniatur-

isierten stromfhrenden Leiterbahnen auf einer Festkörperunterlage realisiert. Atome können

bei Temperaturen im µ K oder sogar nK-Bereich in einer solchen Falle gespeichert und gekhlt

werden. Allerdings können kalte Atome signifikant durch die Chip-Oberfläche gestört wer-

den, die sich typischerweise auf Raumtemperatur befindet. Die durch thermische Strme im

Chip erzeugten magnetischen Feldfluktuationen knnen Spin-Flips der Atome induzieren und

Verlust, Erwärmung und Dekohärenz zur Folge haben. In dieser Dissertation erweitern wir

frühere Arbeiten ber durch magnetisches Rauschen induzierte Spin-Flip-Ratenund betrachten

kompliziertere Geometrien, wie sie typischerweise auf einem Atom-Chip anzutreffen sind:

Geschichtete Strukturen und metallische Leitungen mit endlichem Querschnitt. Wir disku-

tieren auch einige Aspekte von Aomchips aus Supraleitenden Strukturen die als Mittel zur

Unterdrückung magnetischer Feldfluktuationen vorgeschlagen wurden. Die Arbeit beschreibt

analytische und numerische Rechnungen von Spin-Flip Raten auf Grundlage magnetischer

Greensfunktionen. Fr einen Chip mit einem metallischen Top-Layer hängt das magnetische

Rauschen hauptsächlich von der Dicke des Layers ab, solange die unteren Layer eine deut-

lich kleinere Leitfähigkeit haben. Auf Grundlage dieses Ergebnisses werden Skalengesetze für

Verlustraten über einem dünnen metallischen Leiter hergeleitet. Eine gute bereinstimmung mit

Experimenten wird in dem Bereich erreicht, wo der Abstand zwischen Atom und Oberfläche

in der Grössenordnung der Eindringtiefe des Metalls ist. Da in Experimenten metallische

Layer immer geätzt werden, um verschiedene stromleitende Bahnen vonenander zu trennen,

wurde der Einfluss eines endlichen Querschnittsauf das magnetische Rauschen berücksichtigt.

Das lokale Spektrum des magnetischen Feldes in der Nähe einer metallischen Mikrostruk-

tur wurde mit Hilfe von Randintegralen numerisch untersucht. Das magnetische Rauschen

hängt signifikant von der Polarisierung über flachen Leiterbahnen mit endlichem Querschnitt

ab, im Unterschied zu einem unendlich breiten Leiter. Es wurden auch Korrelationen zwischen

mehreren Leitern berücksichtigt. Im letzten Teil werden supraleitende Atomchips betrachtet.

Magnetische Fallen, die von supraleitenden Bahnen im Meissner Zustand und im gemischten

Zustand sind werden analytisch durch die Methode der konformen Abbildung und numerisch

untersucht. Die Eigenschaften der durch supraleitende Bahnen erzeugten Fallen werden er-

forscht und mit normal leitenden verglichen: Sie verhalten sich qualitativ sehr ähnlich und
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iv Zusammenfassung

öffnen einen Weg zur weiteren Miniaturisierung von Fallen, wegen dem Vorteil von geringem

magnetischem Rauschen. Wir diskutieren kritische Ströme und Felder für einige Geometrien.
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Introduction

There has been a rapid development of trapping and manipulation of atoms on microfabricated

solid-state surfaces, so called ‘atom chips’, in the past few years. Magnetic chip traps are

now being implemented as the building blocks of the future quantum computers. Atom chips

integrated with optical circuits also distribute coherent matter waves for interferometric and

nanolithographic applications. Bose-Einstein condensation has been demonstrated on atom

chips. Recently, trapped cold atoms have been investigated as new probes for electron current

patterns and vortex dynamics.

Atom chip have opened novel directions by downscaling magneto-optical traps for ultra-

cold atoms from the centimeter range to size of tens of microns and below. Quite arbitrary

trap geometries can be designed with the help of miniaturized current-carrying wires on a chip

that provide robust and steep magnetic potentials. These microfabricated conductors can carry

large transport currents through small wire cross-sections, significantly increase magnetic field

gradients and curvatures, leading to tighter confinements, large trap level spacing and small

ground state size of atomic matter waves. In addition, they bring atoms closer to the conduc-

tors, which is helpful for miniaturization and integration. However, the proximity to the chip

surface introduces additional decay channels. Magnetic field fluctuations lead to loss (decreas-

ing the number of the trapped atoms), heating (increasing the temperature of the atoms) and

decoherence (randomizing phases in superposition states). In particular, magnetic field fluctu-

ations induced by thermally excited currents (Johnson noise) are most harmful at atom-surface

distances of a few microns and limit the applications of atom chips, especiall when the long

lifetime and coherence are required. Efforts have been taken on estimation, observation and

reduction of these thermal noise. This is also the main theme of this thesis.

This thesis is built on previous work on thermal magnetic noise near solid surfaces. On

theoretical side, Henkel et al. (1999) investigated the spin flip rate, as well as the heating,

due to the thermal magnetic noise above a metallic surface (half-space). Decoherence due to

magnetic field fluctuations has been estimated by Henkel et al. (2003). Rekdal et al. (2004)

studied the thermal magnetic noise around a cylindrical conductor. Henkel (2005); Scheel

et al. (2005) developed estimates for a thin conducting layer. On the experimental side, the

loss induced by thermal currents in the conductors was observed by Jones et al. (2003); Harber

et al. (2003). Lin et al. (2004); Zhang et al. (2005) performed experiments to study the loss

rate due to thermal noise above a thin metallic layer. This thesis develops the theory for layered

chips in a broader region of parameters. In additon, we address the important issue of metallic

conductors with a finite lateral size, since these generically occur in real chip experiments.

vii



viii Introduction

Finally, we study in some detail superconducting wire structures and the magnetic traps that

can be built from them. Superconducting chips have been proposed as a way to avoid thermal

magnetic noise (Skagerstam et al., 2006; Hohenester et al., 2007), and technical noise can be

reduced as well by using persistent currents, as shown experimentally by Mukai et al. (2007).

In the first chapter, we review the basic concepts of magnetic atom traps and guides and

introduce a few simple atom devices such as beam splitter and interferometer. The miniatur-

ization and integration of atom devices on a solid-state surface result in the ‘atom chip’. We

summarize the relevant parameter regions and outline the calculation of trap loss, heating, and

decoherence rates and summarize previous results for the relevant magnetic noise spectra. Both

thermal (Johnson) noise originating in the metallic chip components and technical noise from

the supplies exterior to the chip are estimated.

In the second chapter, we focus on the lifetime of atoms trapped above a layered structure.

The loss rate due to spin flips induced by the thermal magnetic noise depends on both the atomic

dipole moment and magnetic field fluctuation sprectrum. We first simplify the internal matrix

elements and then study the thermal magnetic noise. For comparison, we review the properties

and scaling laws for atoms trapped above a bulk metal. The skin depth of the materials is

identified as a characteristic scale. The lifetime of atoms trapped above layered structures are

computed semi-analytically by means of the exact magnetic Green function and multi-layer

reflection coefficients. The impact of a finite thickness of the metallic layer and the properties

of sublayers on the trap lifetime are considered. The scaling laws for atoms trapped above

a thin metallic layer are developed, providing a simple analytical approximations for the loss

rate. Finally, we discuss a relevant experiment performed in the group of Jörg Schmiedmayer

and compare our results with the experimental data.

In the third chapter, the impacts of the finite width of conductors on the magnetic noise are

considered within a two-dimensional model. Magnetic noise around a metallic conductor with

arbitrary cross-section is computed with the help of boundary integral equations. The singulari-

ties of the integral kernels are extracted and estimated. The magnetic noise around a cylindrical

metallic wire is computed numerically as an example and compared with analytical results to

validate our numerical method. We then compute the magnetic noise around a rectangular wire

to see the impact of the finite width. We find that the finite width reduces magnetic noise and

makes it strongly dependent on polarization. Finally, the interactions between multiple wires

are studied.

In the last chapter, superconducting chips are investigated as an promising way to signifi-

cantly reduce the magnetic noise. A self-consistent numerical calculation of magnetic field and

supercurrents around superconductors in the Meissner state is derived. The supercurrent distri-

butions in a superconducting wire with rectangular cross section are also computed analytically

by means of conformal mapping. Properties of magnetic traps produced by superconducting

wires with different shape are studied. We identify additional potential barriers near the wire

edges induced by the screnning currents, that may have an impact on loading and manipula-

tion atoms. The critical values of the transport current and external magnetic field are roughly

estimated for a few geometries.

We conclude our work and outline our future interests at the end of the thesis.
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Chapter 1

Magnetic traps for ultracold atoms

In this chapter we first give a basic description of magnetic traps and guides with arbitrary ge-

ometries, then go to atom chips where these traps are integrated onto a solid surface. Finally we

discuss the interaction between atoms and the surfaces of atom chips, which plays an important

role for trap lifetimes.

1.1 Introduction

Static magnetic fields were first applied to trap neutral particles by Krugler et al. (1978); Paul

(1990). This technique then developed for trapping and manipulating atoms in magnetic poten-

tials generated by a normal conductor (Migdall et al., 1985) and by superconducting electro-

magnets (Hess et al., 1987). Magnetic trapping potentials may act as simple Dewar container

for storing cold atoms at microkelvin temperatures and even below. Gases of alkali-metal

atoms have been trapped and cooled below the critical temperature for Bose-Einstein conden-

sation in magnetic traps (Cornell & Wieman, 2002; Ketterle, 2002). The miniaturization and

integration of magnetic traps and other devices on solid-state surface result in the ‘atom chip’

(Folman et al., 2000). It can provide magnetic potentials of almost arbitrary geometries with

microfabricated conducting wires. Steeper magnetic traps can be obtained on atom chips, since

the microfabricated wires can carry larger current density through smaller cross sections and

bring atoms closer to the chip surface where the field gradients are larger. Atom chips signifi-

cantly simplify the trap setup (Reichel et al., 1999) and effectively accelerate the condensation

process (Hänsel et al., 2001) compared to typical experiments and all-optical BEC (Barrett

et al., 2001). In addition, microfabrication techniques make it possible to integrate complex

systems of multiple microscopic traps, wave guides and other atom optical devices on a single

trapping chip (Folman et al., 2002; Fortágh & Zimmermann, 2007). It makes atom chips at-

tractive for a wide range of applications including quantum information processing with neutral

atoms (Schmiedmayer et al., 2002), integrated atom optics, matter-wave interferometry, com-

pact atomic clocks (Treutlein et al., 2004) precision force sensing, and studies of the interaction

between atoms and surfaces.

However, magnetic field fluctuations do perturb the atoms trapped close to the chip surface

at short distances and give rise to loss (reduction of the number of the atoms), heating (increas-

1



2 Chapter 1. Magnetic traps for ultracold atoms

ing the temperature of the atoms) and decoherence (inducing a phase shift). Most of all, the

magnetic noise arising from the thermally excited currents in the chip surface has a dominant

impact on the trap lifetime and coherence and imposes ultimate limit to the trap-surface dis-

tance (Henkel et al., 1999; Zhang et al., 2005). These magnetic field fluctuations are stopping

miniaturization and should be controlled for certain applications of atom chips (Harber et al.,

2003) which require long trap lifetime and coherence. In this chapter, we first introduce some

basic magnetic atom guides and traps, atom devices and atom chips, then give some estimations

of trap loss, heating and decoherence due to the magnetic field fluctuations. The material has

been extracted from the review papers by Folman et al. (2002) and Fortágh & Zimmermann

(2007).

1.2 Magnetic interaction

An atom with total spin F and magnetic moment µ = gFµBF in a magnetic field B experi-

ences the Zeeman interaction

VZ = −µ · B = −gFµBmFB , (1.1)

where µB is the Bohr magneton, gF the Landé factor of the atomic hyperfine state, and mF the

magnetic quantum number. In the second equality, we use an adiabatic approximation where

the magnetic moment µ follows the direction of the magnetic field B adiabatically andmF is a

constant of motion. This is appropriate when discussing a trap in a static magnetic field. Then

the potential VZ is proportional to the modulus of the magnetic field B = |B|. If the magnetic

moment is parallel to the magnetic field and in the same direction, the magnetic potential VZ
is negative and minima of the potential energy are given by the maxima of the magnetic field

modulus. An atom prefers the lowest energy state, and is therefore drawn towards the maxima

of the field: this atom is in a strong-field-seeking state. In order to trap atoms in the strong-

field-seeking state, a source of the magnetic field, such as a current-carrying wire, has to be

located inside the trapping region, which is inconvenient for trapping and manipulating atoms

(Schmiedmayer, 1995; Denschlag et al., 1999). In contrast, if the magnetic moment is in the

opposite direction to the magnetic field, the magnetic potential VZ is positive and minima of the

potential are also the minima of the field. An atom is then drawn towards the lowest magnetic

field: it is in a weak-field-seeking state (Folman et al., 2002). These traps are most common

for neutral atoms because atoms can be trapped at a finite distance from the source of magnetic

field.

1.3 Atom guides

1.3.1 Kepler guide

A simple trap for an atom in the strong-field-seeking state can be formed by a current-carrying

wire, which makes the atom orbit around it (Vladimirskii, 1961; Schmiedmayer, 1992, 1995)

(see Fig. 1.1).
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Figure 1.1: Guiding the atoms in their strong-field-seeking state as they circle around the wire. Left:

current-carrying wire and magnetic field. Middle: magnetic potential. Right: typical trajectories of

atoms. From Folman et al. (2002).

The adiabatic interaction potential is given by

VZ = −µ · B = −µ0gFµBmF

2πr
Iw , (1.2)

where Iw is the transport current through the wire, r the distance from the wire center, and µ0

the vacuum permeability. VZ corresponds to a two-dimensional scalar Coulomb (1/r) poten-

tial, in which atoms move in Kepler orbits. Hence this kind of guide is called ‘Kepler guide’.

If a thin wire carries a current Iw = 1A and a Rb atom in the |F = 2,mF = 1〉 state is trapped

at 1mm away from the center of the wire, typically the trap depth has a magnitude of 100µK,

sufficiently deep to trap atoms.

1.3.2 Side guide

trap center line
B

current−carrying wire
substrate

z

x
b

y

Figure 1.2: Guiding the atoms in their weak-field-seeking state along the dashed line above the current-

carrying wire in a homogeneous bias field.

It was first pointed out by Frisch & Segrè (1933) that a straight current-carrying wire

Iw = Iwey placed in a homogeneous bias field Bb = Bbex in a direction perpendicular to

the wire can generate a quadrupole field with a well-defined two-dimensional field miminum,

as shown in Fig. 1.2. This idea provides the basic concept for most of the magnetic microtraps

implemented with atm chips. We assume , to begin with, that the guiding wire is a infinitesi-

mally thin cylinder (the radius is much smaller than the trap height) and infinitely long. The

total magnetic field is

B(x, z) = Bb +
Iwµ0(xez − zex)

2πr2
, (1.3)
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where r =
√
x2 + z2 is the distance from the origin (the center of the wire) to the evaluation

point, axes as in Fig. 1.2. The magnetic field vanishes at a line parallel to the wire at the position

(x, z) = (0, Iwµ0/2πBb) and forms a magnetic guide. Weak-field-seeking atoms are trapped

radially in the xz plane around this line. For convenience, we use cylindrical coordinates

(r′, ϕ) with the origin at the field minimum to describe the magnetic field modulus (Fortágh &

Zimmermann, 2007):

B(r′, ϕ) =
Iwµ0

2πd

r′
√

r′2 + d2 + 2r′d cos(ϕ)
. (1.4)

The angle ϕ is defined relative to the z axis, ϕ = 0 parallel to the z axis in Fig. 1.2. d denotes

the distance between the wire and trap center. The gradient at the trap center is independent of

ϕ (Fortágh & Zimmermann, 2007):

dB

dr

∣

∣

∣

r=0
=
Bb
r0

=
µ0Iw
2πr20

. (1.5)

At the trap center, the spin states of the atoms may flip due to Majorana transitions, weak-field-

seeking atoms change into strong-field-seeking atoms and escape from the trap (Sukumar &

Brink, 1997). Adding a small magnetic field Bip along the wire (y) direction can circumvent

this loss mechanism by lifting the energetic degeneracy between the trapped and untrapped

states. The resulting potential is conventionally called a Ioffe-Pritchard trap (Pritchard, 1983).

At the same time, this samll magnetic field Bip turns the linear trapping potential into a har-

monic one. The harmonic guide is then characterized by the curvature in the transverse direc-

tions (Folman et al., 2002)

d2B

dr2

∣

∣

∣

r=0
=

B2
b

r20Bip
=

µ2
0I

2
w

4π2Bipr40
=

4π2B4
b

µ0BipI2
w

. (1.6)

The harmonic oscillation frequency is

ω =

√

µBgFmF

M

(

d2B

dr2

)

∝ B2
b

Iw
, (1.7)

Where M is the mass of the atom.

1.3.3 Two-wire guides

Co-propagating currents

The magnetic fields formed by two parallel wires carrying equal co-propagating currents van-

ishes along the central line between the wires and increases and changes direction like a two-

dimensional quadrupole. It can guide atoms around curves as shown in Fig. 1.3. A small

horizontal (vertical) bias magnetic field displaces this waveguide vertically (horizonally). Such

a configuration was used by Müller et al. (1999) to transport atoms between two vacuum cham-

bers along a total guiding distance of 10cm.
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Figure 1.3: Two wires with co-propagating currents. Atoms can be guided around curves along the

central line between the two wires. From Müller et al. (1999)

By adding an additional magnetic field parallel to the plane of the wires, different guides

can be formed according to the modulus of the bias field Bb (Hinds et al., 2001). There is a

critical field B0

B0 =
µ0Iw
πd

, (1.8)

where d is the distance between the two wires. In the regime Bb < B0, there are two lines of

vanishing magnetic field in the symmetry plane between the wires, i.e., two linear quadrupole

waveguides which can be made harmonic by superimposing an axial offset field. Taking the

origin at the center of the two wires, the positions of the guide centers are given by

x = 0, z =
dB0

2Bb



1 ±

√

1 −
(

Bb
B0

)2


 . (1.9)

The two-wire guide shown in Fig. 1.3 does apply the lower trap position defined by the above

equation. The corresponding gradient amounts to

b =
2B0

d

√

1 −
(

Bb
B0

)2


1 ∓

√

1 −
(

Bb
B0

)2


 . (1.10)

Bb

x
d

coalescence point (0, d/2)

current−carrying wires

z

Figure 1.4: Two wires carry co-propagating currents in a lateral bias field. When Bb < B0, two atom

guides are on the z axis; if Bb increases, the two guides get closer, and merge into one when Bb = B0

at point (0, d/2), d is the distance between the two wires; if Bb continuously increases, the atom guide

seperates into two again along the dashed semicircle.

If Bb = B0, the two waveguides merge and form a hexapole waveguide. In the regime

Bb > B0, the hexapole waveguide falls apart into two quadruple ones again, each approaching
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one of the wires on a semicircular trajectory, as shown in Fig. 1.4. The coordinates of the

waveguide centers are

x = ±dB0

2Bb





√

(

Bb
B0

)2

− 1



 , z =
dB0

2Bb
. (1.11)

In this case, the field gradient is identical in both waveguides:

b =
2Bb
d

√

(

Bb
B0

)2

− 1 . (1.12)

This configuration has been used to split Bose-Einstein condensates (Shin et al., 2005).

Counter-propagating currents

In contrast, two parallel wires carrying counter-propagating equal current Iw with a bias field

perpendicular to the plane of the wires, also form similar guides (Thywissen et al., 1999). Now

the critical field becomes

B0 =
2µ0Iw
πd

. (1.13)

In the regime Bb < B0, the two linear quadrupole atom guides are on the z axis

z = ±d
2

√

B0

Bb
− 1 . (1.14)

Bb

x
d

coalescence point (0,0)

z

current−carrying wires

Figure 1.5: Two wires with counter-propagating currents guide atoms in a perpendicular bias field. d
is the distance between the two wires. Again if Bb < B0, there are two atom guides on the z axis; if

Bb increases, the two guides move together along the z axis and merge into a single one at the middle

point, then if Bb increases continuously, the guide seperates into two again and each moves in the wire

plane towards the wire.

They approach the wire plane along the z axis as shown in Fig. 1.5 by increasing the bias

field Bb and merge at z = 0 when Bb = B0. In the regime Bb > B0, the atom guide separates
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into two again and each one moves in the wire plane towards one of the wires. The positions

of the guide centers are given by

x = ±d
2

(

1 −
√

1 − B0

Bb

)

, z = 0 . (1.15)

Guiding of ultracold atoms using this scheme on an atom chip was demonstrated in Dekker

et al. (2000). The advantage of this configuration and Fig.1.4 is that they can bring atoms close

to the chip surface between the wires in a controlled way.

1.3.4 Guides with integrated bias field

It is convenient if the bias fields used in the above configurations can be generated on the

chip. For the side guide formed by a current-carrying wire and an external field as described in

Sec.1.3.2, the homogeneous bias field can be formed by two additional wires on the each side

of the guiding wire. The direction of the currents in these wires has to be opposite to the current

in the guiding wire. Three wires can be mounted on the same chip to get a self-sufficient guide

(Cassettari et al., 2000a), as shown in the left of Fig. 1.6. Similarly, the guides, as described

in Sec.1.3.3, formed by two parallel wires carrying counter-propagating currents and a bias

field, can be also formed by four wires in one plane, as shown in the right of Fig. 1.6. The two

outer wires contribute the bias field. This configuration provides a tighter confinement than the

former one. Guiding of atoms in a four-wire guide on a chip was demonstrated by Dekker et al.

(2000).

Figure 1.6: Magnetic potential above integrated wires. Upper left: a side guide formed by a current-

carrying wire and a bias field perpendicular to the wire. The bias field can be replaced by two wires

carrying opposite currents as lower left. Upper right: a side guide formed by two wires with counter-

propagating currents in a bias field penpendicular to the wire plane. Similarly, the external bias field

can be replaced by two wires carrying currents opposite to the neighbour one. From Cassettari et al.

(2000b)
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1.4 Atom traps

An easy way to create a magnetic trap is adding some ‘endcaps’ to the above atom guides. For

example, a three-dimensional magnetic trap can be made by bending the current-carrying wire

of the side guide described in Sec.1.3.2 (Reichel et al., 1999; Haase et al., 2001). The magnetic

field from the bent leads creates pot barriers for the wire guide, confining the atoms along the

central part of the wire (see Fig. 1.7). The size of the trap along this axis is then determined by

the distance between the endcaps. There are two different geometries, ‘U’ and ‘Z’ traps, which

are used in a large number of experiments for the axial termination of magnetic guides and for

intermediate trapping as part of the loading procedure of microtraps.

1.4.1 U trap

Bending the both ends of a current-carrying wire in the same direction to form a ‘U’, as shown

in the left of Fig. 1.7, creates a magnetic field that in combination with a homogemeous bias

field forms a three-dimensional quadrupole trap. The bend leads result in a field configuration

where a rotation of the bias field displaces the trap center but the field always vanishes com-

pletely at this position. A thermal gas can be stored in such a trap; however, a Bose-Einstein

condensate would rapidly decay because of Majorana spin flips.

Figure 1.7: Left: ‘U’ trap with a zero minimum in the trapping center. Right: ‘Z’ trap with a nonzero

minimum in the trapping center (Ioffe-Pritchard trap). From Folman et al. (2002)

1.4.2 Z trap

Bending both ends of a current-carrying wire in opposite directions to form a ‘Z’, as shown

in the right of Fig. 1.7, creates a nonzero minimum at the trap center. When the bias field is

parallel to the leads, this configuration creates a Ioffe-Pritchard trap. The potentials for the ‘U’
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and ‘Z’ trap scale similarly as for the side guide, but the finite length of the center bar and

directions of the bending leads have to be taken into account. Simple scaling laws only hold as

long as the distance of the trap center from the centeral wire is small compared to the length of

the central bar (Cassettari et al., 2000b; Haase et al., 2001). Bending both ‘Z’ leads once more

results in three parallel wires, which generate a self-sufficient ‘Z’ trap (Folman et al., 2002).

1.5 Beam splitters

By combining two of the atom guides described in Sec.1.3, it is possible to design potentials

where at some point two different paths are available for the atoms.

1.5.1 Y splitter

Figure 1.8: Magnetic potential at different points of a Y splitter. (a) A Y splitter is realized by a single

wire which is split into two and placed in a horizontal bias field. (b) A Y spliter is realized by two

parallel wires carrying current in opposite directions and placed in a vertical bias field. The input and

output guides have identical characteristics. From Cassettari et al. (2000b)

Two side guides are merged into one to form a Y-shape beam splitter as shown in Fig. 1.8a.

This has been investigated theoretically and experimentally by Cassettari et al. (2000a); Müller

et al. (2000). This Y-shape splitter has one main input guide, which is the central wire of the

Y, and two output guides corresponding to the left and right wires. On the input side a fourth

‘blind’ guide emerges out of the plane of the wires, i.e. from the surface of the chip, and joins

the other three guides at the splitting point. The distances of the input and blind guides from

the surface are

z± =
1

2

(

dsplit ±
√

d2
split − d2

)

, (1.16)
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where d is the distance between the outgoing wires and

dsplit =
µ0Iw
πBb

. (1.17)

The input and blind guides merge at d = dsplit where the atom beam is split. By controlling

the currents in the wires, atoms can be directed to the output arms of the Y with any desired

ratio. It is the simplest beam splitter. The blind guide can be avoided by using the configuration

shown in Fig. 1.8b. This double-wire geometry combined with a bias field perpendicular to the

plane of the wires has a better symmetry than the one shown in Fig. 1.8a.

1.5.2 X splitter

Figure 1.9: Magnetic potential at different points of a X splitter or coupler. (a) A two-wire X splitter.

The two wires carry co-propagating currents and get closer, but do not touch each other in a horizontal

bias field. (b) A four-wire X splitter formed by two two-wire counter-propagating side guides. From

Cassettari et al. (2000b)

Another splitter geometry is based on the tunneling effect: two wires approach but not

touch each other in a parallel bias field as shown in Fig. 1.9a. If the distance between the wires

d is as small as dsplit, the two waveguides above the wires merge and form a junction with

four ports. Otherwise, if the closest separation between the wires is slightly larger than dsplit,
the atoms may tunnel between the guides similar to optical couplers in fiber optics. Similar

atom splitter can be constructed with pairs of wires as shown in Fig. 1.9b, which has a better

symmetry. In both cases, the wire currents and the bias field govern the splitting ratio in the

output wires. And the potential shape in the inputs and outputs keeps exactly the same all over

the splitting region compared to Y-shape splitters.
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1.6 Interferometers

Using the above multiple-guide potentials and time dependent potentials which are able to split

minima in two and recombine them as described in Sec.1.3.3, several kinds of chip-based atom

interferometers have been investigated recently (Hänsel et al., 2001; Andersson et al., 2002;

Negretti, 2005). We give two examples here.

1.6.1 Spatial interferometers

Figure 1.10: Sketch of a spatial interferometer. The simplest interferometer is realized by two Y

splitters joined back to back. The first acts as splitter, and the second acts as recombiner. The output

transverse states depend on the phase shift during transport along the two paths.

Two Y-beam splitters can be joined back to back as shown in Fig. 1.10 to form a multimode

atomic interferometer (Andersson et al., 2002). The first Y acts as splitter and the second as

recombiner. The transverse modes in the input channel can be classified by their parity. Neigh-

boring states with different parity become degenerate in that part of the interferometer where

the two paths are well separated. For an adiabatic transport through the interferometer without

any asymmetric perturbations, no transitions between the transverse states occur and the inter-

ferometer can be decomposed into independent two-state interferometers. The occupation of

the two states in the output channel of each interferometer depends on the relative phase shift

accumulated during the transport. An even phase shift of 2nπ recovers the incoming states

while an odd one of (2n+ 1)π swaps the population of the two incoming states.

1.6.2 Temporal interferometers

A time-dependent atomic interferometer can be realized by using two parallel wires with co-

propagating currents (Hinds et al., 2001) as discussed in Sec.1.3.3. Changing the bias field one

can split and recombine the potential minima as shown in Fig. 1.11. Starting with Bb < B0

and an atom cloud in the ground state of the upper minimum, the corresponding wave function

can be coherently split when Bb becomes larger than B0. Then two spatially separated parts

are obtained. If Bb is lowered again to Bb = B0, the two parts are recombined. The result

depends on the relative phase shift between the two spatially separated parts. If the phase shift

is 2nπ, the ground state is recovered; otherwise, if the phase shift is (2n+1)π, the first excited

state is achieved. Other value of the phase shift results in a superposition of the ground and

first excited states.
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Figure 1.11: Equipotential lines of a temporal interferemeter formed by a two-wire side guide. The

currents in both wires run in the same direction, the bias field is parallel to the wire plane. Denote

B = Bb/B0, when B < 1, there are two guides on y axis; increasing the bias field Bb, the two guides

move towards each other vertically, and get together when B = 1; when B > 1, it is split into two

laterally; then if lower the bias field to B = 1 again, two guides are recombined again. The final states

depend on the phase shift of the two parts. From Folman et al. (2002)

1.7 Atom chips

To achieve versatile and highly controlled atom manipulation one would like to confine atoms

in steep traps or guides which are small and precisely located. It turns out that this is possible

in the near field of miniaturized complex structures, integrated into a solid-state surface, a

concept that has been known as ‘atom chips’. Microfabricated current-carrying wires on the

chip surfaces can be designed to provide arbitrary magnetic trapping potential. In addition,

these microscale wires can carry much higher current density, which is the key factor in creating

a steep trap, with reasonable energy consumption, in contrast to free-standing current-carrying

wires. The chip substrate is quite helpful to sustain high current densities, because it also serves

as a heat sink. Together with the small cross-section, the microfabricated wires may produce

larger magnetic field gradient and curvatures, hence a tighter confinement. To illustrate this,

let us consider a side guide potential based on a flat guiding wire with a width 2w and carrying

a current I . The magnetic field gradient increases as the atom-surface distance decreases till

it is comparable to the wire width 2w. The further reduction of the atom-surface distance will

not significantly increases the magnetic field gradient. The required bias field for such a side

guide trap at height ∼ w is proportional to I/2w (Fortágh & Zimmermann, 2007), hence to the

current density j at fixed thickness. Consequently, the largest possible field gradient depends

on the ratio j/2w which favours small wires, such as microfabricated wires on atom chips.

In conclusion, the smaller the width and the shorter the atom-surface distance, the larger the

field gradients and curvatures are. The drive for smaller width is stopped at a distance of about

100nm where surface decoherence effects and Van der Waals forces become so strong that

they destabililize the trap. Ground-state sizes smaller than 10nm (Folman et al., 2002) can

be obtained in such steep chip traps. The resulting large trap level spacings help to suppress

heating processes since the trapped particles decouple from low-frequency fluctuations.

Thanks to precise micro- and nanofabrication technology, conducting wires can be mounted

on chips with an accuracy of < 100nm. This, together with the small ground state size, allows

one to know the exact positions of atoms on the chip surface, which may help to better control

and manipulate atoms. In addition, microoptical devices and other devices can be integrated

on the same monolithic chip, which opens a wide range of applications from matter wave



1.8. Electromagnetic field fluctuations 13

optics to quantum information processing. This high degree of integration unavoidably leads

to multilayer atom chips, we study a simple example in Chap.2.

1.8 Electromagnetic field fluctuations

The shorter the atom-surface distances, the larger the magnetic field gradients, and the tighter

the confinement that can be obtained for atoms. Cold atoms are therefore expected to be trapped

and manipulated a few microns above a ‘hot’ chip surface. However, at such short distances,

cold atoms are strongly disturbed by the surface through fluctuating electromagnetic fields.

These may give rise to loss (reduction of the number of trapped atoms), heating (increasing

of the temperature of atoms) and decoherence (inducing an uncertain phase). The electromag-

netic field fluctuations limit the atom confinement and the atom-surface distance, they must be

taken care of in applications of atom interferometry, quantum information processing and other

atomic devices. This is a main theme of this work.

The fluctuating electromagnetic fields near the chip surface may induce atomic energy

shifts and give rise to forces between atoms and surfaces, which is known as Van der Waals

and Casimir-Polder forces. The energy shift due to the electric dipole polarizability leads to an

attractive force between atoms and surfaces. It has been measured recently at distances of a few

microns where it represents only a weak perturbation of the trapping potential (Harber et al.,

2005). At shorter distances, its magnitude increases as 1/z3 (Grimm & Ovchinnikov, 2000)

and plays an important role at distances of the order of 100nm. It is difficult to trap atoms closer

than 100nm to the chip surface, because at this short distance Van der Waals forces become

larger enough to attract the atoms to the chip surfaces. An energy shift due to the magnetic

dipole polarizability exists as well and generates a repulsive force between atoms and surfaces,

but its magnitude is much smaller than the electric one and does not modify significantly the

trapping potentials (Henkel et al., 2005).

In most recent atom chip experiments, atoms are trapped and manipulated at a few mi-

crons away from the chip surfaces. Let us focus on the traps at this distance. Van der Waals

forces become so small that they are negligible. However, magnetic field fluctuations in the

trap strongly perturb the trapped atoms. They induce transitions between internal spin states,

leading to loss of atoms and decoherence of the internal states, and drive transitions between

vibrational states of the trap, leading to heating and decoherence of the center-of-mass motion.

In this section, we focus on the evaluation and comparison of these harmful effects of magnetic

field fluctuations.

1.8.1 Trap loss

In free space, magnetic field fluctuations duo to thermal blackbody radiation at low frequency

are too weak to induce a transition between atomic internal spin states on laboratory time

scale. The presence of a dielectric or metallic surface significantly enhances magnetic field

fluctuations (Purcell et al., 1946), opens additional decay channels and increases the transition

rate. In atom chips, this magnetic noise is induced by the thermal currents in the chip elements

(Johnson noise) and dominates over magnetic noise in free space. In this section, we consider
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magnetic field fluctuations produced by Johnson noise in the metallic substrate and also by

technical noise in the wire currents. Recall the Zeeman interaction of an atom in a magnetic

field Eq.(1.1),

VZ(r, t) = −µ · (Bs(r) + Bfl(r, t)) , (1.18)

where µ is the magnetic dipole moment and r its (center of mass) position, Bs(r) is the static

field which provides a trap for cold atoms, Bfl(r, t) the fluctuating field which represents

the magnetic noise. For a trapped atom in a weak-field-seeking state, a loss process occurs

when the fluctuating field Bfl(r, t) induces a transition |i〉 → |f〉 of the atom to a strong-

field-seeking state (magnetic moment parallel to the trapping field Bs(r)) (see Fig. 1.12). The

magnetic potential then has the opposite sign, and the atom is rapidly expelled from the trap.

These spin flips are described by the interaction Hamiltonian (1.18), and are induced by fields

with a frequency around the Larmor frequency ωL = (Ef − Ei)/~. A calculation of the

transition rate based on Fermi’s Golden Rule yields

Γi→f (r) =
∑

αβ

〈i|µα|f〉〈f |µβ |i〉
~2

SαβB (r;−ωL) , (1.19)

where SαβB is the magnetic field fluctuation spectrum evaluated at the transition frequency.

SαβB (r, ωL) =

∫ +∞

−∞
dτ 〈Bα

fl(r, t+ τ)Bβ
fl(r, t)〉eiωLτ . (1.20)

Only the fluctuating field Bfl(r, t) is relevant, here, as the static field has no contribution to

the magnetic field fluctuation spectrum at nonzero frequency. The spectrum is taken at the trap

center r, assuming that the spatial extension of the trap is sufficiently small, compared to the

scale on which SB varies.

Γ i f
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Figure 1.12: An atom is trapped at a certain distance away from a surface. The trap potential

depends on the internal atomic states. If the state is changed due to the fluctuating field, the

atom may be strongly perturbed and lost from the trap.
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Surface noise

Since the effect of blackbody radiation is small enough to be negligible, the near field gener-

ated by the surface gives the dominant contribution to the magnetic noise, hence the transition

rate. Here we focus on the magnetic noise induced by a metallic surface at a room tempera-

ture. Henkel et al. (1999) have investigated the loss rate of atoms above a half space due to

the magnetic near-field noise. The loss rate increases rapidly as the atom-surface distance de-

creases. The magnetic field fluctuation spectrum depends on the imaginary part of the complex

permittivity ǫ(r, ω) ≈ 2i/k2δ2, where k is the wave vector and δ =
√

2ǫ0̺ω/k the skin depth,

a characteristic length scale on which an electromagnetic field entering a metal is damped. (̺
is the conductivity of the metal.) Typically, for a gold surface ̺ = 1.7 × 10−6Ω cm and

δ = 70µm, when we consider a Larmor frequency ωL/2π = 5MHz. In the high temperature

limit (kBTs ≫ ~ωL) and at low trap height (z ≪ δ), the thermal magnetic field spectrum above

a half space is given by (Henkel et al., 1999)

SαβB (ωL, z) =
µ0kBTs

16πωLδ2z
sαβ , (1.21)

where z is the atom-surface distance, kB is the Boltzmann constant, Ts the temperature of the

substrate and ~ the Planck constant, sαβ is a diagonal tensor with the elements sxx = syy =
1, szz = 2. The strength of thermal noise depends on the atom-surface distance and the skin

depth. In the opposite region z ≫ δ, the magnetic field fluctuation spectrum must be multiply

with a factor (δ/z)3, and become much smaller. This limit also describes a superconductor (δ
becomes small). When an atom is trapped at 10µm away from the surface, the magnetic noise

power is
√
SB ∼ (pT/

√
Hz). For a magnetic moment being of the order of the Bohr magneton

µB , this translates into a loss rate of a magnitude 10s−1 (Folman et al., 2002).

The loss rate above a planar surface induced by the thermal current noise has been observed

experimentally by (Jones et al., 2003; Harber et al., 2003). Loss rates for other geometries

have been studied also: Rekdal et al. (2004) have computed the thermal magnetic noise around

a cylindical wire; Scheel et al. (2005) have predicted the trap lifetime above a thin film, while

Lin et al. (2004) have done the relevant experiment. A thin metallic layer can help to reduce

the thermal noise and increase the trap lifetime (Zhang et al., 2005). We discuss this in more

detail in Chap.2.

Technical noise

Current fluctuations in the chip wires due to the instability of the supply can generate mag-

netic field fluctuations and induce loss processes. The noise spectrum of the driving current

Iw is denoted by SI(ωL). Neglecting the finite wire size, the magnetic field at distance z is

Bw = µ0Iw/2πz. Within the low frequency approximation wLz/c ≪ 1, the magnetic field

fluctuation spectrum is given by (Henkel et al., 2003)

SαβB =
( µ0

2πz

)2
SI(ωL)tαβ , (1.22)

where tαβ is a diagonal tensor with the elements txx = 1, tyy = tzz = 0, and SI(ωL) is the

noise spectrum of the current in the guiding wire. For convenience, we take the shot noise of a
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current Iw, SSN = eIw ≈ 1.6 × 10−19(Iw/1A)A2/Hz as a reference value. Typically, at trap

height 10 µm and SI(ωL)/SSN = 100, the loss rate has a magnitude of 1 s−1 (Folman et al.,

2002). Stable current supplies are hence required for atom chips. It may be necessary to reduce

current noise even below the shot-noise level, which can be achieved with superconducting

wires or permanent magnets (Hinds & Hughes, 1999). We discuss superconducting atom chips

in Chap.4.

1.8.2 Trap decoherence

If the fluctuating magnetic field has a nonzero component along the static trapping field, it may

shift the Larmor frequency randomly and hence perturb the relative phase in a superposition

of two (trapped) spin states. Folman et al. (2002); Henkel et al. (2003) predicted that the

decoherence rate depends on the spectrum of the frequency fluctuations S∆ω(ω) at the low-

frequency limit

Γ =
S∆ω(ω → 0)

4
. (1.23)

The shift of the Larmor frequency induced by magnetic field fluctuations at the trap center

along the trapping field (B
‖
fl) is

∆ωL(t) = −
〈i|µ‖|i〉

~
B

‖
fl(r, t) , (1.24)

where µ‖ is the magnetic moment in the direction of the trapping field. The decoherence rate is

proportional to the spectrum of the magnetic field fluctuations along the trapping field. Since

the thermal magnetic noise in this field component has the same order of the magnitude as in

the component perpendicular to the trapping field (Henkel et al. (1999), see also in Chap.2),

hence the decoherence rate due to magnetic noise is comparable to the loss rate (Eq.(1.21)).

Here, we also use that the frequency dependence of surface-induced noise is flat (Henkel et al.,

2003). Typically, at the same parameters we discussed for the loss rate, the decoherence rate is

of the order of 10 s−1 (Folman et al., 2002).

Similarly, the decoherence rate due to current fluctuations in the wire can be computed and

it is in the same order of spin flip loss rate due to technical noise (Eq.(1.22)). The impact of the

wire current fluctuations on the coherence is somewhat less than that of the thermal magnetic

noise. Hence the thermal magnetic noise is a dominant harmful source for decoherence of the

trapped atoms as well as for trap loss.

1.8.3 Trap heating

Magnetic field fluctuations also give rise to transitions between the motional states of the

trapped atoms, leading to trap heating (Gehm et al., 1998; Turchette et al., 2000). Magnetic

noise due to fluctuations of the wire current turns out to give the dominant contribution to the

heating rate. Fluctuations of the equilibrium trap position excite transitions to neighboring both

higher and lower quantum states, from n to n±1 (Folman et al., 2002; Fortágh & Zimmermann,

2007).
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Heating rate may be investigated with help of harmonic oscillator model (Henkel et al.,

1999). For simplicity, we take a one-dimensional harmonic trap potential with angular fre-

quency ω and with a ground-state size a0 = (~/2Mω)1/2, where M is the mass of the vi-

brating atom and assume that the atom is initially prepared in the osscillator ground state |0〉.
Fluctuations in the trap position induced by a force F acting on the atom excite the atom from

the ground state to the first excited vibrational state, with a rate given by (Gehm et al., 1998;

Henkel et al., 1999)

Γ0→1 =
a2

0

2~2
SF (ω) =

SF (ω)

4~ωM
(1.25)

where SF (ω) is the noise spectrum of the force acting on the atom and defined in the same way

as SB(ω) in Eq.(1.20). Magnetic field fluctuations arising from both thermally excited currents

and technical currents lead to this transition.

Technical noise

Heating may result from fluctuations of the driving currents on the atom chip, which randomly

shift the location of the trap center. The fluctuations of the trap center ∆z are generated by

the force F = Mω2∆z (Folman et al., 2002). From Sec.1.3.2, a fluctuation ∆Iw in the wire

current shifts the side guide trap by ∆z = µ0∆Iw/2πBb where Bb is the (constant) bias field.

The force spectrum required for the heating rate Eq.(1.25) is proportional to the current noise

spectrum SI(ω)

SF (ω) =

(

µ0Mω2

2πBb

)2

SI(ω) . (1.26)

Again for Rb atoms at a trap frequency of 100 kHz, SI(ωL)/SSN = 100 and Bb = 50G, the

heating rate has a magnitude of 1 s−1 (Folman et al., 2002). Comparing with the other sources

of noise, the technical noise is probably the dominant source of the heating on the atom chip

(Henkel et al., 2003), even for very stable current supply used in experiments. This probably

explains the BEC lifetime in the experiment of Reichel (2002).

Thermal fluctuations

Magnetic field fluctuations generated by thermally excited currents in the substrate are equiv-

alent to a force given by the gradient of the Zeeman interaction FZ = ∇(µ · B), and give

rise to fluctuations of the trap position, leading to heating. The force spectrum is dependent on

the magnetic gradient noise. Considering a planar substrate (half space) and a short distance

between the atom and surface z ≪ δ, the force spectrum is (Henkel et al., 1999)

SαβF (ω) =
µ2

0kBTs
32π̺

〈µ2〉 + 〈µ2
‖〉

z3
(1.27)

where µ is the magnetic moment and µ‖ the component of the magnetic moment parallel to the

static trapping field and z distance between the atom and surface. Typically for lithium atoms

at a trap frequency of 100 kHz and a height of z = 10 µm and Au surface at 300K, the heating

rate has the order of 10−4 s−1 (Folman et al., 2002). It is much smaller than the heating rate

due to technical noise.
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1.9 Conclusion

Over the last few years, rapid progress has been achieved on trapping and manioulating atoms

on atom chips. The atoms can be controlled and manipulated through variation of the mag-

netic confinement potential provided by current-carrying wires integrated on atom chips. Con-

sequently, atom chips are attractive for various applications, including atom interferometry

(Hänsel et al., 2001c; Hinds et al., 2001), realization of BEC (Reichel, 2002) and coherent

atom transport (Hänsel et al., 2001). The trap lifetime and coherence of trapped atoms are re-

quired to be maintained as long as possible in most applications. In the proximity of atoms close

to the chip surface, magnetic field fluctuations introduce additional dacay channels, leading to

loss, heating and decoherence (Henkel et al., 1999; Folman et al., 2002; Henkel et al., 2003;

Fortágh & Zimmermann, 2007). At a trap height of a few microns, magnetic noise arising from

thermally excited currents in metallic conducting wires exceeds all other harmful influences on

the atoms (technical noise, residual gas collisions and so on) and imposes dominant limit on

the trap lifetime and coherence. Efforts of controlling and reduction of magnetic noise gen-

erated by the metallic components on the atom chips have to be made to increase the lifetime

and coherence of trapped atoms. This is the main theme and emphasis of this thesis. Chap.2 is

devoted to loss (decoherence has a comparable magnitude) induced by thermal magnetic noise

which is generated by planar metallic chips. Chap.3 discusses the impact of finite lateral size

of the conducting element on the thermal magnetic noise. Superconductors are impromising to

significantly reduce the thermal noise and technical noise (Skagerstam et al., 2006; Hohenester

et al., 2007). Magnetic traps provided by superconducting chips are investigated in Chap.4.



Chapter 2

Lifetime of magnetically trapped

atoms in a layered chip

In this chapter we investigate the lifetime of magnetically trapped atoms above layered struc-

tures. For comparison, we first review the main properties of trap lifetimes above a metallic

half-space. Magnetic field fluctuations generated by thermal currents in a metallic layered

chip are computed numerically and asymptotically identifying scaling laws for the lifetime

of trapped atoms. Finally, we introduce the relevant experiments performed by the group

of Jörg Schmiedmayer, and compare theory and experiment. The materialof this zharpter is

adapted from the paper “Relevance of sub-surface chip layers for the lifetime of magnetically

trapped atoms”, B. Zhang, C. Henkel, E. Haller, S. Wildermuth, S. Hofferberth,P. Krüger and

J. Schmiedmayer.

2.1 Magnetic dipole moment

As we introduced in Sec.1.8.1 that thermal magnetic field fluctuations are main sources of loss

and decoherence of trapped atoms above atom chips. Recall Eq.(1.19)

Γi→f (r) =
∑

αβ

〈i|µα|f〉〈f |µβ |i〉
~2

SαβB (r;−ωfi) . (2.1)

The loss rate depends on both the atom dipole moment and the magnetic field noise spectrum.

Let us first review some basic formulas of the matrix elements 〈i|µα|f〉 (Henkel et al., 1999).

The total magnetic moment operator of an atom is generally given by

µ = −µB(gLL + gSS + gI
me

mp
I) , (2.2)

with µB the Bohr magneton, L the total orbital angular momentum operator, S the electronic

spin operator, I the nuclear spin operator and gL, gS and gI the corresponding g-factors. Since

the proton mass mp is larger than the electron mass me by three orders of magnitude, we can

19
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neglect the contribution of the nuclear magnetic moment. Furthermore, the reasonable restric-

tion to an atom ground state with L = 0 simplifies the problem to the calculation of matrix

elements of only electronic spin operator. Because the magnetic field fluctuation spectrum SαβB
above the planar structure is diagonal as we will see in Sec.2.2, we can focus on the following

terms

|〈f |µα|i〉|2 = µ2
Bg

2
S |〈f |Sα|i〉|2 . (2.3)

It is convenient to use the raising and lowering operators

S±|mi〉 =
√

S(S + 1) −mi(mi ± 1)|mi ± 1〉 , (2.4)

Sx =
1

2
(S+ + S−) ,

Sy =
i

2
(S− − S+) , (2.5)

to calculate the matrix elements (Sakurai, 1994).

The trapped atom is subjected to a constant offset magnetic field in the center of the trap,

assuming it is not moving. Without loss of generality we can assume the magnetic field to be

lying within the xz plane, since the diagonal tensor of magnetic field correlation is invariant

under rotations of the xy plane (see Fig. 2.1). It is convenient to choose the quantization axis

parallel to the magnetic field and denote the basis states by |m〉θ, if the magnetic field forms an

angle θ with respect to the z axis. Rewrite the above Eq.(2.3), we get

|〈f |µα|i〉|2 = µ2
Bg

2
S |θ〈f |Sα|i〉θ|2 . (2.6)

z

x
y

dielectric

B

vacuum

Figure 2.1: Coordinate system. The upper half space is vacuum, the lower part is filled with a

dielectric. We choose the z axis perpendicular to the surface and the xy plane parallel to the

surface. The magnetic field has symmetry in the xy plane.

By expanding the spin vector components in a rotated coordinate system (denoted by

primes) adapted to the trap basis and using raising S′
+ and lowering S′

− operators in the trap
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basis, the matrix elements are evaluated as following (Henkel et al., 1999)

θ〈mf |Sx|mi〉θ =
(

θ〈mf |S′
+|mi〉θ +θ 〈mf |S′

−|mi〉θ
) cos θ

2
+θ〈mf |S′

z|mi〉θ sin θ ,

θ〈mf |Sy|mi〉θ =
i

2

(

θ〈mf |S′
−|mi〉θ −θ 〈mf |S′

+|mi〉θ
)

,

θ〈mf |Sz|mi〉θ =
(

θ〈mf |S′
+|mi〉θ +θ 〈mf |S′

−|mi〉θ
) − sin θ

2
+θ〈mf |S′

z|mi〉θ cos θ , (2.7)

where S′
z is the z component of the spin operator. Let us first consider the case of an electronic

spin S = 1/2, an atom transits from a trapped level |mi〉θ = | − 1/2〉θ to an untrapped level

|mf 〉θ = |1/2〉θ. The spin matrix elements Eq.(2.7) are

θ〈1/2|Sx| − 1/2〉θ =
cos θ

2
,

θ〈1/2|Sy| − 1/2〉θ = − i

2
,

θ〈1/2|Sz| − 1/2〉θ = −sin θ

2
. (2.8)

If we take into account of the nuclear spin states, we may need the Clebsch-Gordan coefficients

CmsmI

Fm , since

|Fm〉 =
∑

mS ,mI

CmsmI

Fm |msmI〉 . (2.9)

For example, considering the transition from |Fi,mi〉 = |2, 2〉 to |Ff ,mf 〉 = |2, 1〉 and

θ = π/2, the required the squares of the matrix elements in Eq.(2.1) are |〈2, 1|Sx|2, 2〉|2 =
|〈2, 1|Sy|2, 2〉|2 = 1 and |〈2, 1|Sz|2, 2〉|2 = 0. Together with the magnetic field spectrum we

discuss below, we can evaluate the lifetime according to Eq.(2.1).

2.2 Magnetic field correlations

According to the fluctuation-dissipation theorem (Sidles et al., 2003), the spectral density of

the magnetic field fluctuations SαβB (r, ω) is proportional to the imaginary part of the field’s

Green function Hij(r, r
′;ω)

SijB (r, r′;ω) =
2~

1 − e−~ω/kBT
ImHij(r, r

′;ω) , (2.10)

where T is the temperature of the surface and kB the Boltzmann constant. In terms of the

Bose-Einstein mean occupation number nth = 1/(e~ω/kBT − 1) and for ω > 0, the above

equation can be rewritten as (Henkel et al., 1999),

SijB (r, r′;ω) = 2~(n+ 1)ImHij(r, r
′;ω) ,

SijB (r, r′;−ω) = 2~nImHij(r, r
′;−ω) . (2.11)
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As an example, let us consider the ratio of transition rates for the spin flips |i〉 → |f〉 and

|f〉 → |i〉. It is given by

n

n+ 1
= e

− ~ω
kBT (2.12)

in agreement with the principle of detailed balance. At zero temperature, n = 0, and the second

line in Eq.(2.11) vanishes. The relaxation dynamics is then entirely due to spontaneous decay1,

induced by the vacuum fluctuations of the magnetic field. At high temperature, n ≫ 1, the

fluctuation spectrum becomes independent on the sign of ω. Therefore, decay and excitation

rates are then nearly the same.

Recall that the Green function describes the magnetic field radiated by a point magnetic

moment. This field is the sum of the magnetic field in free space plus the field reflected from

the surface. The free space field leads to a term Hvac
ij (r, r′;ω) in the Green function that is

actually independent of the trap position r and gives the spectral density of the blackbody field

(the Planck law):

S
(vac)ij
B (r;ω) = S

(vac)
B (ω)δij , (2.13)

S
(vac)
B =

~µ0ω
3

3πc3(1 − e−~ω/kBT )
. (2.14)

To calculate the field reflected from the surface, we expand the free-space magnetic field in

plane waves and apply the reflection coefficients rs,p(u) for each wave incident on the surface.

Here, s and p label the two transverse field polarizations and u is the sine of the angle of

incidence. The corresponding spectral density depends only on the distance z to the surface

and may be written in terms of a dimensionless tensor hij(kz) (Agarwal, 1975)

S
(ref)ij
B (r, ω) = S

(vac)
B (ω)hij(kz) , (2.15)

where k ≡ ω/c. hij is diagonal with elements hxx = hyy = h‖ and hzz = h⊥ given by

(Henkel et al., 1999)

h‖(kz) =
3

4
Re

∫ +∞

0

udu√
1 − u2

e2ikz
√

1−u2

(rp(u) + (u2 − 1)rs(u)) , (2.16)

h⊥(kz) =
3

2
Re

∫ +∞

0

u3du√
1 − u2

e2ikz
√

1−u2

rs(u) . (2.17)

The range u > 1 corresponds to the evanescent part of the angular spectrum a magnetic dipole

generates in free space. The square roots occurring in Eqs.(2.16) and (2.17) are chosen with

positive imaginary part.

1the only process that survives in Eq.(2.1), if −ωfi > 0
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2.2.1 Half space

For a half-space structure, the reflection coefficients in Eq.(2.16 and 2.17) are given by the

Fresnel formulas at the surface,

rs(u) =

√
1 − u2 −

√
ε− u2

√
1 − u2 +

√
ε− u2

, (2.18)

rp(u) =
ε
√

1 − u2 −
√
ε− u2

ε
√

1 − u2 +
√
ε− u2

, (2.19)

where ε is the relative dielectric function of the material. It is often described by the Drude

model. In our case, the dielectric function is dominated by the zero-frequency pole, we use the

approximation

ε =
i

ε0̺ω
=

2i

k2δ2
, (2.20)

where ε0 the permittivity in vacuum, ̺ is the metallic resistance. For metals with good con-

ductivity (small resistance), the second term in Eq.(2.20) is much larger than 1, so that we only

take the first term in the following calculations. The skin depth δ is the chraracteristic length

scale on which an electromagnetic wave entering a metal is damped. It is given by (for ω > 0)

(Jackson, 1975)

δ =
1

k

√

2ε0̺ω . (2.21)

We will see that the skin depth is an important parameter in scaling laws for spin flip transitions

above planar structures.

For typical trap frequencies the corresponding electromagnetic wavelength is much larger

than z, so we can restrict our calculations to the quasi-static limit z ≪ λ and find analytical

expressions for the tensor elements Eqs.(2.16) and (2.17). The inspection of Eqs.(2.16) and

(2.17) shows that the exponential e2ikz
√

1−u2 ≈ e−2kzu provides a cutoff only for very large

value u ≫ 1/(kz) ≫ 1. On the other hand, the other factors in the integrands increase as

powers of u. The value of the integral is thus dominated by values u ∼ umax around the

maximum umax ∼ 1/(kz). It is therefore accurate to use asymptotic expansions of the Fresnel

coefficients for large u ≫ 1. According to Eqs.(2.18) and (2.19). The asymptotic form of the

coefficients depends on whether u2
max is much smaller or larger than the magnitude |ε| of the

dielectric constant. According to the relation Eq.(2.20) between ε and δ, these two regimes

correspond to whether z is larger or smaller than δ.

The limit 1 ≪ |ε|1/2 ≪ u corresponds to a distance small compared to the skin depth,

z ≪ δ ≪ λ. In this regime, we get the following asymptotic expressions for the Fresnel

coefficients (2.18 and 2.19)

rs(u) → ε− 1

4u2
,

rp(u) → ε− 1

ε+ 1
. (2.22)

Insert Eq.(2.22) into the integrals Eq.(2.16), and notice that rp(u) ≈ 1, (u2 − 1)rs(u) =
(ε − 1)/4 ≫ 1, so the contribution of rp(u) is negligible. Then the integrals Eqs.(2.16) and
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(2.17) for the tensor elements are evaluated to

h‖(kz) ≈ 3

32kz
Im

(ε− 1)

4
=

3

16k3δ2z
,

h⊥(kz) ≈ = 2h‖(kz) . (2.23)

In the opposite limit of a small skin depth δ ≪ z ≪ λ, the Fresnel coefficients should be

expanded in the regime 1 ≪ u≪ |ε|1/2

rs(u) → −1 +
2iu√
ε
,

rp(u) → 1 +
2i

u
√
ε
. (2.24)

This corresponds to nearly perfect conductors. In this region, Im rs(u) is also much larger than

Im rp(u) by a factor u2, rp(u) is then again negligible in Eq.(2.16). So the integrals Eqs.(2.16)

and (2.17) for the tensor elements are evaluated to

h‖(kz) ≈ 9

16(kz)4
Im

1√
ε

=
9δ

32k3z4
,

h⊥(kz) ≈ 2h‖(kz) . (2.25)

To summarize, in both regions we have Im rs(u) ≫ Im rp(u), and Eq.(2.16) can be sim-

plified by cancelling rp(u). The integrals Eqs.(2.16) and (2.17) are therefore only dependent on

rs(u), and the perpendicular element h⊥ is double of the parallel element h‖. With Eqs.(2.23)

and (2.25), we can compute the magnetic field spectrum Eq.(2.15) and the loss rate which is

simplified to

Γ− 1

2
→ 1

2

=
µ2
Bg

2
S sin θ2

4~2
h‖S

(vac)
B . (2.26)

Eqs.(2.23) and (2.25) also show that the skin depth determines the spectral distribution of the

elctromagnetic near field above bulk substrates.

2.2.2 Layered chip

For a layered chip, rλ (λ = s, p) are the effective reflection amplitudes from the multilayer

structure, as illustrated in Fig. 2.2. At the lowest interface, the Fresnel reflection coefficients

apply and are given by

r′s,n =

√
εn − u2 −

√

εn+1 − u2

√
εn − u2 +

√

εn+1 − u2
(2.27)

r′p,n =
εn+1

√
εn − u2 − εn

√

εn+1 − u2

εn+1

√
εn − u2 + εn

√

εn+1 − u2
(2.28)

where εn is the permittivity of the nth layer. The effective reflection coefficient of the nth layer

is (Yeh, 1988)

rλ,n =
r′λ,n + rλ,n+1e

iτn+1

1 + r′λ,nrλ,n+1eiτn+1
(2.29)
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Figure 2.2: A chip with two layers on top of a semi-infinite substrate. hn is the thickness of

the n’th layer, δn denotes the optical path length for a single down and up ray in the n’th layer.

r′λn are the Fresnel reflection coefficients at the interface between the layers no. n and n + 1
(λ = s, p), while rλn are the effective (multilayer) reflection coefficients from the nth layer.

where r′λ,n is the Fresnel coefficient Eq.(2.28 or 2.27) and rλ,n+1 the amplitude for the layered

structure below; τn is the complex phase shift in the layer:

τn = 2hnk
√

εn − u2 , (2.30)

hn is the layer thickness and the square root is chosen with positive imaginary part. In the

case of Fig. 2.2, the lowest layer is n = 3 and we put rλ,3 ≡ r′λ,3. We then apply Eq.(2.29)

recursively for the next layers, until the reflection from the topmost layer, rλ,1 = rλ,1(u), is

found. This is the coefficient we need in Eqs.(2.16) and (2.17). The integral over u is computed

numerically. The singularity 1/
√

1 − u2 at the point u = 1 can be removed with change of

variable

v =

{
√

1 − u2 0 < u < 1

i
√
u2 − 1 u > 1 .

(2.31)

2.3 Discussion of trap lifetime

2.3.1 Impact of subsurface layers

We discuss here the relevance of the subsurface layers on the lifetime.

We plot in Fig. 2.3 the trap lifetime above a gold layer deposited on a substrate with varying

resistivity ̺3 normalized to a gold layer suspended in vacuum (̺3 = ∞). The subsurface layer

hardly has an impact on the trap lifetime, as long as the topmost layer has a resistance that is

smaller by at least two orders of magnitude. We now give an analytical argument to understand

this more clearly. As mentioned in Sec.2.2.1, it is reasonable to use the asymptotic expansion

of the reflection coefficients Eqs.(2.27) ∼ (2.29) for large u ≫ 1. Let us focus on a distance

comparable to the skin depth in the gold layer (subscript 2) at the transition frequency, and a

sub-surface layer with a much smaller conductivity. We check that the integrands in Eqs.(2.23)

and (2.25) peak around u2
max ∼ |ε2| ≫ |ε3| ≫ 1. If we consider the first order expansion in
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Figure 2.3: Trap lifetime vs. resistivity of sub-surface layer, normalized to a single layer

suspended in vacuum (gold, 3.1µm thick, resistivity 2.2µΩcm). The distance from the

trapped atom to the surface is 10µm. The layer permittivities are ε0εn = i/(ω̺n) and

ω/2π = 1.1 MHz.

this regime, we get

rs,1 =
(1 − ∆2

s)(1 − eiτ2)

(1 − ∆s)2 − (1 + ∆s)2eiτ2
, (2.32)

with

∆s = i
√

ε2 − u2/u . (2.33)

And

rp,1 = −1 + ∆p
1 + eiτ2

1 − eiτ2
, (2.34)

where

∆p = 2i
√

ε2 − u2/(ε2u) . (2.35)

Note that |∆p| ≪ 1 around umax, while |∆s| ∼ 1. From the equations above, we see that ε3
has cancelled from the multilayer coefficients. This means that the sub-surface layer has no

effect on the trap lifetime as long as its resistance is larger than the topmost (metallic) layer

and the trap is at a distance comparable to the skin depth in the metal or smaller. This result is

important for us to get further simplified expression of reflection coefficients, and then the trap

lifetime: we can assume that there is a single metallic layer in vacuum when the sub-surface

resistance is larger than the topmost (metallic) layer.

In Fig. 2.4, we plot the lifetime (normalized to the lifetime above a gold half-space) for

varying thickness of the topmost layer. The black solid line is the asymptotic result obtained

by inserting Eqs.(2.32) and (2.34) into the integrals for the Green functions. The triangles and

squares mark calculations for a gold/silicon and gold/vacuum structure, using the full mul-

tilayer reflection coefficients Eq.(2.29). We see that the three situations give the same trap

lifetime. For these chip parameters, reducing the gold layer thickness thus improves the trap-

ping conditions. This happens because the layer being much thinner than the skin depth at the

relevant frequency (δ ≡ (2̺/(µ0ω))1/2), it is a thermal radiation source across its whole thick-

ness. The dashed (red) curve in the figure gives the result of the quasi-static approximation
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Figure 2.4: Trap lifetime vs. thickness t of the top layer (gold), normalized to a gold half-space;

distance of trapped atoms to the surface: z = 10µm. Triangles: gold/silicon structure; boxes:

gold layer in vacuum. For these two, the full multilayer reflection coefficients are used. Black

solid line: based on the asymptotic expansion Eqs.(2.32) and (2.34) of the reflection coefficients

in the magnetic Green tensor. Dashed (red) line: prediction (t+ z)/t of the quasistatic theory,

valid when z is much smaller than the skin depth. The arrow marks the skin depth in gold at

the transition frequency 1.1 MHz. The layer resistivities are given in Fig. 2.3.

introduced in (Henkel & Pötting, 2001); it is valid for a trap distance z ≪ δ and gives a good

approximation for the chosen parameters.

2.3.2 Asymptotic expansion

Based on Sec.2.3.1, we can simplify the layered chip into a single layer suspended in vacuum

as long as the layers below have a much smaller conductivity. Then Eq.(2.29) is simplified to

rλ = r′λ
1 − eik0h

√
ε−u2

1 − r′2λ eik0h
√
ε−u2

, (2.36)

where ε is the permittivity of the metal, h is the thickness of metallic layer, λ denotes the polar-

izations s and p, r′λ is Fresnel coefficient. As we discussed in Sec.2.2.1, for a bulk substrate the

magnetic filed spectrum is only dependent on rs(u). We assume that this is still true for layered

structures and only focus on the reflection coefficeint of s polarization and the parallel compo-

nent of magnetic noise spectrum h‖. Insert the asymptotics of Fresnel coefficients Eqs.(2.22)

and (2.24) into Eq.(2.36) respectively, we get the asymptotics for reflection coefficient rs in

different regimes as listed in Table 2.1. In fact when the thickness h becomes comparable to

the skin depth δ, the reflection coefficients above layer structure have the same expressions as

those above half space.

The parallel component of the magnetic noise spectrum h‖ is computed based on the

asymptotics in Table 2.1 and listed in Table 2.2. Recall that the perpendicular component

of the magnetic noise spectrum is the double of the parallel one h⊥ = 2h‖. We plot the life-

time 1/Γ of trapped atoms (based on Eq.(2.26)) above the metallic layer in Fig. 2.5. The trap
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layer k0u≪ 1/δ h/δ2 ≪ k0u≪ 1/h 1/h≪ k0u

Im rs(u) Im
−1 + (1 + i)k0uδ

1 + ik0δ2/h

h

k0uδ2
1

2k2
0u

2δ2

Table 2.1: Asymptotic approximations to the reflection coefficients from a layer. The limit

k0u≫ ω/c is taken throughout.

z ≪ δ δ ≪ z

half space h‖
3

16k3
0δ

2z

9δ

32k3
0z

4

z ≪ h≪ δ h≪ z ≪ δ2/h δ2/h≪ z

layer h‖
3

16k3
0δ

2z

3h

16k3
0δ

2z2

9δ2

32k3
0hz

4

Table 2.2: Approximations for the parallel component of the magnetic noise spectrum h‖ above

a half space and a metallic layer. The perpendicular component can be obtained by h⊥ = 2h‖.
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Figure 2.5: Lifetime vs. trap height above a thin layer. Solid line: numerical results based

on Eqs.(2.27) and (2.30). Dashed lines: asymptotic approximations based on Table 2.2. The

layer is 7µm thick, and the skin depth is 70µm. The atom transits from |Fi,mi〉 = |2, 2〉 to

|Ff ,mf 〉 = |2, 1〉, the transition (Larmor) frequency being ωfi/2π = 1.1 MHz.

lifetime decreases as the thin layer is approached, but has different power laws in the different

regions. When the trap height is smaller than the thickness of the layer, the bulk and the thin

layer behave the same (see the first colume in Table 2.2. In the region h ≪ z ≪ 3δ2/2h,

the spin flip rate is proportional to the volume of metallic layer, hence to the layer thickness

(Henkel et al., 1999; Folman et al., 2002). The power law is reversed for z ≫ 3δ2/2h, in this

region the lifetime is proportinal to the layer thickness and the lifetime above a thick layer is

longer than that above a thinner one (Scheel et al., 2005). This can also be also seen in Fig. 2.6.
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2.3.3 Dependence on skin depth

Fig.2.6 illustrates how the lifetime depends on the skin depth of the material, The atom is

trapped at 60µm away from the surface, and the spin loss is due to the transition |Fi,mi〉 =
|2, 2〉 to |Ff ,mf 〉 = |2, 1〉. The solid curve corresponds to the bulk substrate (half space),

the dashed lines and circles both correspond to a 1µm thick layer. The dashed lines show the

lifetime in the different regions as listed in Table 2.2. The circles are computed numerically.

The approximations are in a good agreement with the exact results, they only slightly under-

estimate the lifetime in the transition region. When the skin depth is less than the thickness

1µm, the bulk metal and the thin layer produce almost the same noise, because the source of

the noise mainly lies within one skin depth of the metal. In this region, the lifetime scales as

1/δ. Increasing the skin depth but keeping it less than
√
hz for the thin layer and less than z

for the bulk metal, the lifetime above the bulk metal still scales as 1/δ, whereas the lifetime

above the thin layer is proportinal to h/δ2, shorter than above bulk maetal. Similar result is

observed by Varpula & Poutanen (1984); Scheel et al. (2005). The asymptotic formula for the

region δ ≪
√
hz (the third colume in Table 2.2), has not be given before, to our knowledge. In

the region
√
hz ≪ δ for the thin layer and z ≪ δ for the bulk metal, both lifetimes inrease as

δ2. The thin layer gives a longer lifetime than the bulk metal by a factor of z/h. The minimal

lifetime is obtained at δ ≃
√
hz above a thin layer or δ = z above a bulk metal. When an atom

is trapped above a thin layer, we should avoid the atom-surface distance z = δ2/h. For a bulk

metal, we should avoid the atom-surface distance z = δ. The atom suffer the strongest noise

in these two cases.
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Figure 2.6: Lifetime vs. skin depth. The atom-surface distance is 60µm. Solid line: bulk

substrate (half space). Dashed lines and circles: 1µm thick layer. The dashed lines show the

approximations in Table 2.2, the circles are computed numerically.
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2.4 Experiment

Over the last three years, the reduction of lifetimes in traps close to conducting surfaces has

been investigated in a number of experiments. Both the influence of technical noise (Leanhardt

et al., 2003) and thermal noise near bulk conductors of different materials (Harber et al., 2003;

Fortágh et al., 2002; Jones et al., 2003) have been found to be in quantitative agreement with

the theory presented above. Layered structures, which promise to reduce loss rates due to

thermal currents, have been explored in one experiment by the Vuletic group (Lin et al., 2004)

which investigated the loss above a 2µm thick and 10µm wide Cu wire and a Si substrate. Here

we introduce an experiment done by Schmiedmayer group, which allows to investigate the loss

due to spin flips over a thin metal layer in a configuration where the contributions of technical

noise can be kept constant and the thermal noise sources can be studied over a wide range of

distances near a multilayer structure.

2.4.1 Experimental setup

The experiments were performed with the standard atom chip setup in Heidelberg and de-

scribed by Krüger (2004); Wildermuth et al. (2004). One starts with more than 108 87Rb atoms

accumulated in a mirror magneto-optical trap (MOT) a few mm from the chip surface. The

atoms are subsequently transferred to a purely magnetic Z-wire trap and cooled to ∼ 10µK by

radio frequency (RF) evaporation. Both the MOT and the magnetic trap are based on copper

wire structures mounted directly underneath the chip. The resulting sample of > 106 atoms is

then loaded to the selected chip trap, where a second stage of RF evaporative cooling creates

either a BEC or thermal cloud just above the condensation temperature.

2.4.2 Atom chip setup

Chip holder (MACOR)

Reflection layer (Au)

Isolation layer (SiO2)

Substrate (Si)

Z-wire (Au)

5mm

3.1 mm

700 mm

500nm
1.8 mm

Figure 2.7: Layer structure of the chip. The resistivities of the layers are ̺ > 106Ωcm (MA-

COR), ̺ = 1.7µΩcm (copper), ̺ = 17mΩcm (doped silicon), ̺ > 104Ωcm (SiO2) and

̺ = 2.2µΩcm (gold). From Zhang et al. (2005)
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The atom chip incorporates various different layers (see Fig. 2.7). The chip itself was

fabricated using our standard method described by Groth et al. (2004). It is grown on a 700µm

thick silicon substrate covered with an insulation layer of SiO2 (500nm) and a Ti adhesion layer

(35nm). The gold layers with the desired wire patterns are created using a nano-lithographic

lift-off technique adapted for thick (> 1µm) layers. The major area in this chip is covered with

a 1.8µm thick reflection layer containing gaps (width 10µm) to isolate the current carrying

wires. The thicker Z-wire structures were fabricated with a two layer technique allowing a

thickness of 3.1µm (wire cross section 3.1 × 100µm2). The atom chip structure is placed on

top of a 5mm thick ceramics chip holder (MACOR).

2.4.3 Lifetime measurements

I

Atom cloud

B
wire

B
horz

h

Reflection layer (Au)

d

B
horz

B
vert

Atom cloud

-B
wire

Figure 2.8: Lateral trap displacement. An external horizontal magnetic field Bhorz cancels the

circular magnetic field Bwire of a current carrying wire directly over the wire. By applying an

additional vertical field Bvert perpendicular to the chip surface, the trap can be positioned at a

distance d from the wire and a height z above the chip surface. From Zhang et al. (2005)

The lifetimes of trapped ultra cold 87Rb atoms were measured in a Ioffe-Pritchard type

microtrap generated by currents flowing through the Z-shaped wire. The measurements are

done with ∼ 1 · 105 thermal atoms at ∼ 1µK in a trap created with a current of 2 A and a

Larmor frequency of ωfi/2π = 1.1 MHz at the trap minimum (corresponding to a field of

1.5 G).

The microtraps on the chip are created in the side guide configuration described in Sec.1.3.2.

In the standard configuration the trap center lies directly above the center of the Z wire (see

Fig. 2.8). By adding a vertical magnetic field component Bvert, the trap minimum is rotated

around the central wire of ‘Z’. By adjusting the strength and orientation of the bias field the

trap minimum can be positioned at a given distance d from the current carrying wire and at a

given height z above the 1.8µm thick gold layer of the chip (Fig. 2.8).

Placing the trap a significant distance away from the Z-wire permits us to keep the trap

parameters nearly constant for each height above the surface. The further away one moves,
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the easier it is to keep the traps equal, independent of the height for the same wire current.

But the traps get shallower at larger distance from the trapping wire. A shallow trap cannot be

brought close to the surface for the lifetime measurements, because the trap depth is reduced

due to the atom-surface interaction potential. Atoms are thus lost not only by spin flip but also

by evaporation across the potential barrier towards the chip surface. This leads to a significant

cooling of the sample: in a dense cloud, evaporation leads typically to a final temperature of

about 1/10th of the trap depth.

For each lifetime measurement the trapped atoms are imaged either in situ or after a time-

of-flight expansion. The former allows measurements down to lower atom number, the latter

allows us to determine both the number of atoms and the temperature of the atoms. Both

measurements of atom number agree, and both are used to determine the lifetime of the trapped

clouds.

The independent measurement of the temperature is crucial because it permits to see if

There are additional losses due to surface induced evaporation. A decrease in temperature

is a direct indication that in addition to spin flips, atoms cross the lowered potential barrier

towards the surface. It is observed that the decay of the atom number is then generally non-

exponential. The height at which this becomes important varies from z = 3µm for moderately

confining traps directly over the wire up to z = 40µm for very shallow traps at a lateral

distance d = 520µm from the trapping wire.

In the following comparison between calculation and experiment we only consider data

where the temperature stays constant so that the main loss mechanicms are surface-induced

spin flips and background collisions.

2.4.4 Comparison theory–experiment

To investigate the influence of the thermal noise we choose a distance d = 280µm as a com-

promise between being dominated by technical noise for small d and losing atoms due to evap-

oration towards the surface at large d.

In order to make a comparison between theory and experiment, we plot in Fig. 2.9 both

experimental data (symbols) and numerical calculations (lines). A fair agreement is found

down to distances of a few microns when the theory takes into account (i) the finite thickness

of the topmost (gold) layer and (ii) a distance-independent loss rate (red line). We stress that

the latter rate is taken from the experimental data (saturation at large distance) so that the theory

has no adjustable parameters. The figure shows that the lifetime above a thin (few µm thick)

gold layer is significantly enhanced compared to a gold half space. We have checked that

adding a MACOR or copper substrate below the thick silicon wafer does not change the results

of the calculation. We attribute the discrepancy between experiment and theory to atom-surface

potentials that lower the potential barrier towards the surface, as also suggested by the Vuletic

group (Lin et al., 2004). As mentioned above, this mechanism becomes more important at

short distance (below a few micron).
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Figure 2.9: Experimental data and theoretical predictions for the trap lifetime in a miniatur-

ized magnetic Ioffe-Pritchard type trap. Symbols: Life time data for a trap laterally displaced

by 280µm with respect to the current-carrying wire structure. Below 10µm distance, sur-

face evaporation decreases the lifetime. Lines: theoretical predictions with different level

of detail for loss processes (spin flips) induced by thermal surface noise. The atom tran-

sits from |Fi,mi〉 = |2, 2〉 to |Ff ,mf 〉 = |2, 1〉, the transition (Larmor) frequency being

ωfi/2π = 1.1 MHz. Black lines: bulk substrate (gold half-space). Green lines: layered chip

(thin gold layer, doped silicon substrate, see parameters in Fig. 2.7). The thin SiO2 isolation

layer is neglected. Solid and dashed lines: calculation including trap lifetime at large distance.

2.5 Conclusion

We have studied the lifetime of magnetically trapped atoms above a layered atom chip. Nu-

merical calculations have been performed for the loss rate due to spin flips induced by thermal

magnetic near fields, taking into account multiple reflections in the layers. The magnetic noise

depends essentially on the thickness of the topmost metallic layer, as long as the the layers

below have a much smaller conductivity. The same magnetic noise would be obtained with a

metallic membrane suspended in vacuum. A thin layer helps to increase the trap lifetime if its

thickness is substantially thinner than the skin depth at the Larmor frequency, inversely it gives

a shorter lifetime than a bulk metal when its thickness is comparable to the skin depth. Our

results are in a good agreement with the experiment performed by Schmiedmayer group. Trap

loss at a large lateral distance from the wire is dominated by thermally induced spin flips. At

shorter distance, atom-surface potentials of the van der Waals-Casimir-Polder type lower the

trap barrier and open additional loss channels.





Chapter 3

Magnetic noise around 2D metallic

microstructures

We investigated lifetimes of trapped atoms above infinite planar structures in three spatial di-

mensions in the former chapters. However actual experiments often use metallic wires of finite

lateral size, for example, in atom chips where a continuous metallic layer is etched to define

wires that can be addressed with different currents. Considering the finite lateral size, we re-

strict to two spatial dimensions(2D) geometries to simplify the calculations. And because it is

not convenient to interpolate atom trap lifetimes in 2D directly, we focus on the local spectrum

of the magnetic field near a 2D metallic microstructure at finite temperature. This is a first

step towards an accurate estimate of lifetimes of trapped atoms near 3D structures with finit

lateral size. In order to see the impact of finitely lateral size on the magnetic field, we derive

the magnetic field above infinite planar wires and study its properties first, then investigate the

magnetic field around arbitrary geometries with boundary integral equations and with an ap-

proximation based on incoherent summation of local current elements. We compare the infinite

planar wire with a rectangular wire to find the impact of finite lateral size. The magnetic field

around multiwires are discussed. This chapter is based on paper Zhang & Henkel (2007).

3.1 Magnetic dipole radiation

Recall the fluctuation-disspation theorem, the fluctuations of the thermal magnetic field B(r;ω)
can be given by

Bij(r;ω) =
2~

e~ω/kBT − 1
ImBij(r, r

′;ω) , (3.1)

where the temperature-dependent prefactor is the Bose-Einstein occupation number, and the

Green function G(r, r′;ω) gives the magnetic field generated at r by a point magnetic dipole

located at r′ and oscillating at the frequency ω, Bi(r, t) = Gij(r, r′;ω)µj e−iωt + c.c.. We

are thus led to solve the following electrodynamic problem: find the complex magnetic field

amplitude B(r;ω|µ) created by a monochromatic point dipole µ(t) = µ e−iωt + c.c. located

35
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at position r′. We then compute

Bij(r, r
′;ω) =

∂Bi(r;ω|µ)

∂µj
(3.2)

In the limit r → r′ this field becomes the singular ‘self field’ and requires a cutoff in wavevec-

tor space. Its imaginary part is cutoff-independent, however, and given by ImB(r′;ω) =
µ0ω

2
µ/(8c2) in two-dimensional free space (µ0ω

3
µ/(6πc3) in 3D).

The field B = B(r;ω|µ) can be found from the vector potential A that solves the inhomo-

geneous Maxwell equation

∇×∇× A − k2
0ε(r)A = µ0∇× µδ(r − r′), (3.3)

where k0 = ω/c. The right-hand side is the current density corresponding to the magnetic

dipole. There is no free charge density and we work in the gauge E = iωA.

We now focus on the following geometry (Fig. 3.1, right): the position r′ of the source

(i.e., where the magnetic noise spectrum is actually needed) is located in vacuum, and the

metallic microstructures are filling a domain D where Im ε(r;ω) = σ(r;ω)/(ε0ω) is nonzero

(and large). The outside domain is called D′. There, the vector potential satisfies an inho-

metal

vacuum:

:

j(r)

metal:
σ(r)

µ

DD

D’ vacuum:D’

( )r’B
B(r’)x

h

d

w

y

Figure 3.1: Sketch of the considered geometry: (left) current fluctuations in a microstruc-

ture generate magnetic field fluctuations B(r′) at a position position r′ outside it. (right) The

magnetic noise spectrum is calculated from the magnetic field radiated by a point magnetic

dipole µ located at r′. D and D′: domains where the conductivity σ(r;ω) is nonzero or zero,

respectively.

mogeneous Helmholtz equation with wavenumber k0. All length scales we consider (distance

dipole–microstructure d, object size) are much shorter than the wavelength so that k0 is actu-

ally very small and can be neglected in a first approximation. This is the magnetostatic regime.

(The finite value of k0 is, of course, at the origin of the nonzero magnetic LDOS in free space.)

We cannot make the magnetostatic approximation in D because there, we have a wavenumber

k0

√

ε(r;ω) = (1 + i)/δ(r), and the (local) skin depth δ(r) is one of the characteristic length

scales at hand. The fields in the domains D and D′ are connected by the usual matching con-

ditions: the components of A tangential to the boundary are continuous, and B is continuous

(the material is non-magnetic).
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Eq.(3.3) provides a unique solution subject to the boundary condition that at infinity, the

field behaves like an outgoing wave. In two [three] dimensions, this corresponds to a vector

potential proportional to eik0s/
√
s [eik0s/s] in the free space domain D′ when the distance

s = |r − r′| → ∞ to the source becomes large compared to λ. In the magnetostatic limit

k0 → 0, the free space asymptotics is actually never reached at finite distances. The relevant

boundary condition is then the same as for the scalar potential of an electric dipole: the vector

potential goes to zero like 1/s [like 1/s2] in two [three] dimensions, respectively.

Since we deal with a metallic object with |ε| ≫ 1, it is tempting to perform the calculation

based on the surface impedance boundary condition. The latter links the tangential components

of magnetic field and vector potential byBt = −iωZAz , where ωZ = (1+i)/δ. Note that this

is a local relation that can only hold if the scale of variation of the fields on the object surface

is much larger than the skin depth δ. In the present study, a point-like source illuminates the

object with its near field [Abulk(r − r′) in Eq.(3.5)], and this field shows a typical extension

of the order of the object-source distance d. The surface impedance approximation is hence

expected to break down for d ≪ δ. We shall confirm this explicitly for the planar structures

discussed in the following Sec.3.2.

3.2 Infinite planar layer

3.2.1 Wave equation in 2D

The magnetic moment is chosen in the computational plane (the xy-plane), as shown in Fig. 3.11.

Adapting the wave equation (3.3) to two dimensions, we find that the vector potential has a sin-

gle nonzero component that points out of the plane. We then work with a scalar function

A(r) = A(x, y) that solves

∇2A+ k2
0ε(r)A = µ0

(

µy∂x′ − µx∂y′
)

δ(r − r′) (3.4)

In a homogeneous medium (‘bulk’), the solution with the appropriate boundary conditions is

Abulk(r − r′) =
iµ0

4

(

µy∂x′ − µx∂y′
)

H0(k0

√
ε|r − r′|) (3.5)

where H0 is the Bessel function of the third kind (Hankel function), usually denoted H
(1)
0 =

J0 + iY0. From this, we get the magnetic field by taking the ‘curl’, Bx = ∂yA, By = −∂xA.

The resulting self field in free space is

ImB(r′|µ) = 1
8µ0k

2
0 µ (3.6)

provided the dipole µ is real. In the magnetostatic limit, this field is negligibly small. The bulk

solution Eq.(3.5) then goes over into

Abulk(r − r′) ≈ −µ0

2π

(x− x′)µy − (y − y′)µx
|r − r′|2 (3.7)

1If the magnetic moment is on the z direction, then the magnetic field only has a nonzero z-component. Its

normal derivative jumps on the boundary. εHn(r ∈ ∂D = Hn(r ∈ ∂D. We compute the magnetic field by solving

the wave equation 3.3 too, but replace the vector potential by a scalar magnetic field Hz .
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This equation describes the field with which the dipole ‘illuminates’ the sample. Note that it

is scale-free: the typical ‘spot size’ on the microstructure is only determined by the distance d
between dipole and top surface.

3.2.2 Reflected field

In this section, we consider that the boundary of the medium is the plane y = 0; the field at the

source point r′ = (0, d) is then related to the (Fresnel) reflection coefficients from the surface.

We expand the solution to Eq.(3.4) in plane waves (wavevector k parallel to the boundary) and

have above the medium (y > 0):

A(x, y) = µ0(µx∂y′ − µy∂x′)

+∞
∫

−∞

dk

2π

eik(x−x′)

2κ

×
(

e−κ|y−y
′| + r(k)e−κ(y+y

′)
)

(3.8)

where κ =
√

k2 − k2
0 . (The square root is chosen such that Reκ ≥ 0 and Imκ ≥ 0.) The

coefficient r(k) describes the reflection of the field from the medium boundary, which is dis-

cussed in Chap.2. Here in order to find out how the reflection coefficient, hence the magnetic

field, depends on wave vector k and skin depth δ, we rewrite Eqs.(2.19) and (2.18) as function

of k and δ

r(k) = rhalf space(k) ≡
κ− κm

κ+ κm
, κm =

√

k2 − 2i/δ2 (3.9)

for a medium with skin depth δ filling the half-space y < 0. For a layer (thickness h) on top of

a substrate, we have

rlayer(k) =
rtop + rbottome−2κmh

1 − rtoprbottome−2κmh
(3.10)

where rtop = rhalf space is given by Eq.(3.9) and rbottom describes the reflection from the

layer–substrate interface. It is given by Eq.(3.9) with the replacements κ 7→ κm, κm 7→ κs =
(k2 − εsk

2
0)

1/2 where εs is the substrate permittivity, details see Sec.2.2.2.

All the relevant information for the magnetic noise power is contained in the reflection co-

efficient r(k). In fact, when the integral in Eq.(3.8) is performed and the imaginary part taken,

it turns out that the reflected waves (second term) dominate over the free space contribution

(first term) by at least a factor λ2δ/d3 ≫ 1. This is connected to the fact that the relevant

wavenumbers k for our problem are of the order of 1/(y + y′) = 1/(2d) which is much larger

than k0. We can hence apply the approximation κ ≈ |k|. The reflection coefficient Eq.(3.9) for

the metallic half-space then depends only on the parameter kδ. For the metallic layer geometry,

we focus for simplicity on a substrate whose conductivity is much smaller than in the metal.

The influence of the substrate has been studied by Zhang et al. (2005): already a ratio of 10

to 100 between the substrate and layer conductivities is sufficient to make the substrate behave

like vacuum. We then have rbottom ≈ −rtop in Eq.(3.10).
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3.2.3 Polarization dependence

Let us analyze first the dependence on the orientation of the source dipole. If µ is perpendicular

to the medium (only µy 6= 0), the reflected field is given by

By(r|µy) = µ0µy

∞
∫

−∞

dk

2π

k2

2κ
r(k)eik(x−x′)e−κ(y+y

′) (3.11)

The limit r → r′ yields an imaginary part

ImBy(r
′|µy) = µ0µyIm

∫

dk

2π

k2

2κ
r(k)e−2κd. (3.12)

Repeating the calculation for a parallel dipole, we find for ImBx(r
′|µx) the same expression as

Eq.(3.12), and consequently the noise spectrum is isotropic, Bxx = Byy. This is a remarkable

property of a laterally infinite structure in 2D. (In 3D, the polarization perpendicular to a planar

interface has a noise power twice as large as the parallel polarization (Varpula & Poutanen,

1984; Henkel et al., 1999).) We show below that a significant polarization anisotropy arises

above a metallic wire of finite width.

3.2.4 Wavevector dependence
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Figure 3.2: Reflection coefficients Eqs.(3.9) and (3.10) for thin and thick metallic layers. We

plot the imaginary part only. The dashed lines represent the formulas of Table 3.1. The

wavenumber is scaled to the inverse skin depth 1/δ. For the thick layer, h = ∞. We take

the conductivity of gold at room temperature and a frequency ω/2π ≈ 1.1 MHz in all figures.

This leads to the value δ = 71µm and a vacuum wavelength λ ≈ 3.8 × 106δ.

The reflection coefficient Eq.(3.10) is plotted in Fig. 3.2 for typical layers. Consider first a

thickness larger than a few skin depths. One observes a maximum value of its imaginary part

(relevant for the magnetic LDOS) when the decay constant κ ≈ k is matched to 1/δ. This is
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confirmed by an asymptotic analysis whose results are given in Table 3.1. (See (Henkel et al.,

1999; Biehs et al., 2007) for details on the asymptotic expansion.) One of the two limiting

cases (namely k0 ≪ k ≪ 1/δ) corresponds precisely to the surface impedance approximation

where the reflection coefficient Eq.(3.9) is approximated by

r(k) ≈ −1 + (1 + i)|k|δ (3.13)

Here, the skin depth is much smaller than the lateral period and the field barely penetrates into

the material. Fig. 3.2 and Table 3.1 show strong deviations in the opposite regime k ≫ 1/δ
that is relevant at distances d≪ δ.

Consider now a layer much thinner than the skin depth. From Fig. 3.2, different regimes can

be read off that are separated on the k-axis by the scales h/δ2 ≪ 1/h, as can be seen in Fig. 3.2.

It is worth noting that for small k, thin layers show even larger losses [Im r(k)] than thick ones;

the maximum is shifted towards the smaller value k ∼ h/δ2 and has a larger amplitude. This

behaviour has been recognized before in magnetic noise studies in the kHz range (Varpula &

Poutanen, 1984). In the infrared range, it is also well known that the absorption by a metallic

layer can be optimized at a specific thickness. (See, e.g., (Bauer, 1992) for incident far-field

radiation where |k| ≤ k0.) Conversely, for a given thickness h and dipole distance d, the

magnetic noise power shows a maximum as the skin depth is changed (Varpula & Poutanen,

1984; Scheel et al., 2005). This ‘worst case’ occurs when the characteristic wavevector 1/d is

matched to h/δ2.

k ≪ 1/δ 1/δ ≪ k

Im rhalf space(k) kδ
1

2k2δ2

k ≪ 1/δ h/δ2 ≪ k ≪ 1/h 1/h≪ k

Im rlayer(k) Im
−1 + (1 + i)kδ

1 + ikδ2/h

h

kδ2
1

2k2δ2

Table 3.1: Asymptotic approximations to the reflection coefficients from a half-space and a

layer. We distinguish between thin (thickness h ≪ δ) and thick layers (h ≥ δ, ‘half space’).

The first and second columns (thin layer) overlap in an intermediate k-range (see Fig. 3.2). The

magnetostatic limit k0 ≪ k is taken throughout. These formulas are plotted as dashed lines in

Fig. 3.2.

3.2.5 Distance dependence

The asymptotics in k-space translate into power laws for the dependence of the magnetic power

spectrum Bii(d;ω) on distance d, as shown in Fig. 3.3. In fact, the integrand in Eq.(3.12) peaks

around k ∼ 1/(2d), and the result of the integration is determined, to leading order, by the

behaviour of r(k) in this range. We thus find the power laws summarized in Table 3.2 and

visible in Fig. 3.3. We use as convenient unit in all the plots the noise level µ0kBT/(ωδ
2).

Normalized to blackbody radiation (in 2D free space), this level is (2/(k0δ))
2 ∼ 1.5 × 1012 at
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1.1 MHz for gold at room temperature, a striking illustration of the Purcell effect (Purcell et al.,

1946). A common trend is that the magnetic noise power increases as the metallic medium is

approached. As the distance d is getting much smaller than the thickness h, thin and thick layers

behave the same, as expected. At larger distances, but still smaller than the skin depth, the noise

power is proportional to the volume of metallic material, hence to the layer thickness (Henkel

& Pötting, 2001; Folman et al., 2002). This trend is reversed for d > δ
√

δ/2h where thin

layers give a larger noise level than thick ones (Varpula & Poutanen, 1984; Scheel et al., 2005).
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Figure 3.3: Local magnetic noise power Bii(d;ω) vs. distance from metallic layer in double

logarithmic scale (2D calculation). Top curve [blue]: thick layer; bottom curve [red]: thin layer.

The dashed lines give the leading order power laws of Table 3.2. The thick curves arise from the

numerical integration of Eq.(3.8), the thin curves are an interpolation formula described in the

text. The magnetic noise power is isotropic above a planar structure in 2D (the perpendicular

and parallel field components have the same power). It is scaled to µ0kBT/(ωδ
2), and the

distance is scaled to the skin depth δ. Thin [thick] layer: h = 0.01 δ [3 δ].

d≪ δ δ ≪ d

Bii,half space(d)
(unit: SB)

log(δ/d)

2π

δ3

4πd3

d≪ h≪ δ h≪ d≪ δ2/h δ2/h≪ d

Bii,layer(d)
(unit: SB)

log(h/d)

2π

h

2πd

δ4

4πhd3

Table 3.2: Power laws for the magnetic noise spectrum in two dimensions above a half space

and a thin metallic layer (dashed lines in Fig. 3.3). The noise spectrum is given in units of

SB = µ0kBT/(ωδ
2).

A reasonably accurate approximation that interpolates between these power laws can be

found by performing the k-integral using the asymptotic formulas of Table 3.1 in their re-

spective domains of validity. The result is a sum of incomplete gamma functions Γ(n, x, x′)
(n = 0, 1, 2) that is plotted as thin lines in Fig. 3.3 (for details see the appendix). We have
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checked that the asymptotics of the gamma function reproduce the power laws summarized

in Table 3.2. There are regimes where the sub-leading terms give significant corrections, in

particular in the transition regions between the power laws.

Finally, the surface impedance approximation gives a magnetic noise that is represented in

Fig. 3.3 by the dashed line close to the ‘thick layer’ for d > δ. The agreement with the full

calculation in this range is expected: the ‘illuminating field’ is getting more and more uniform

on the scale of the skin depth. At shorter distances, the surface impedance approximation

severely overestimates the noise level because it cannot describe properly field variations on

scales smaller than δ. For the thin layer, the conventional surface impedance approach gives

a wrong result even if d > δ because top and bottom surfaces do not decouple from each

other. This can be repaired using effective (thickness-dependent) surface impedances, see, e.g.,

Tuncer & Neikirk (1993) and citations therein.

3.3 Boundary integral equations

We now describe numerical calculations that we have performed to estimate the importance

of the finite lateral size of the metallic structure. This is particularly relevant, for example, in

atom chips where a continuous metallic layer is etched to define wires that can be addressed

with different currents (Folman et al., 2002; Reichel, 2002; Fortágh & Zimmermann, 2007). It

is actually desirable to minimize the amount of metallic material, leaving just a few wires to

create the fields for atom trapping. In fact, it has been argued that the magnetic noise power

roughly scales with the metallic volume as long as the characteristic distances are smaller than

the skin depth (Henkel & Pötting, 2001; Folman et al., 2002). For laterally finite structures,

this claim as well as other calculations have been based so far on approximate methods that fail

to reproduce even the planar layer to within a factor of two or three (Henkel & Pötting, 2001;

Lin et al., 2004; Henkel, 2005; Dikovsky et al., 2005). The numerical results we describe here

are a first step toward an accurate estimate of magnetic noise power near structures of finite

size.

3.3.1 Integral equations

Within the assumption of near field radiation being in equilibrium with the metallic object, we

compute the noise power from the magnetic Green function in Eq.(3.1). The magnetic field

radiated by a point source and reflected by the object solves the wave Eq.(3.4). We reformulate

the wave equation in terms of boundary integral equations using Green theorem. This has

been described elsewhere (Nieto-Vesperinas, 1991; Harrington, 1993; Rockstuhl et al., 2003;

Rogobete & Henkel, 2004). We review the basic formulas and outline the main difficulties
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here.

r ∈ D′ : A(r) = Abulk(r − r′) −
∮

∂D
da(x)

[

G1(r − x)F (x) − ∂G1

∂n
(r − x)A(x)

]

, (3.14)

r /∈ D : A(r) =

∮

∂D
da(x)

[

Gε(r − x)F (x) − ∂Gε
∂n

(r − x)A(x)

]

. (3.15)

where Abulk(r − r′) is given in Eq.(3.5), da(x) the (scale) surface element at the integra-

tion point x. The nonzero component A of the vector potential and its normal derivative

F = ∂A/∂n ≡ n · ∇A on the object surface ∂D (n is the outward unit normal to ∂D) are

both continuous. Actually, F is equal to the tangential magnetic field. G1 and Gε are Green

functions in free space and object respectively, ie.

Gε(r) =
i

4
H0(k0

√
ε|r|) . (3.16)

The integral runs over the ‘inner face’ ∂D and the ‘outer face’ ∂D of the boundary of the

wire respectively. From Eqs.(3.14) and (3.15), we see that once the vector potential and its

normal derivative on the boundary are known, we can compute the vector potential everywhere.

Thus we are led to the question: find out the vector potential and its normal derivatives on the

boundary. The idea is to approach the evaluate point r in Eqs.(3.14) and (3.15) on the boundary,

so that one gets a self-consistannnt system.

3.3.2 Singularity

We must take care of the singularity of the Green function and its normal derivative when

we evaluate Eqs.(3.14) and (3.15) on the boundary. If we would take the magnetostatic limit,

G1(r) → −(2π)−1 log |r|, the Green functions in vacuum and in the medium would differ (in

sub-leading order) by a constant, leading to inconsistencies. We avoid this by retaining the

finite value of k0 even for the vacuum Green function. Using the short-distance asymptotics

for the Hankel function, we have

r → 0 : Gε(r) ≃ − 1

2π
log(k0

√
εr) +

1

2π
(log 2 − γ) +

i

4
, (3.17)

where γ is the Euler constant. We take the integral over a small surface element σ which is

centered around the point r. We assume that F (x) = ∂A(x)/∂n(x) varies slowly with x and

replace it by its value F (r) at the center of the surface element. We get the approximation of

the integral

I(r) =

∫

σ
da(x)Gε(r − x)F (x)

≃ F (r)σ
1

4π

(

−2γ + iπ − 2(log(k0σ
√
ε/4) − 1

)

, (3.18)

with this approximation the error of the numerical scheme scales as σ2.
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Figure 3.4: The evaluation point r = (x0, y0) approches the boundary, the singularity of

∂G(r,x)/∂n(x) under the integral has to be taken into account. c(r) is a small surface ele-

ment centered aroun r, o the origin, x = (x, y) the surface point, n the outward normal unit

vector.(left) c(r) is supposed to be flat. (right) c(r) is curvature, R the radius of curvature, φ
the angle corresponding to the surface element.

Now let us consider the second term in Eqs.(3.14) and (3.15).

∮

da(x)
∂Gε
∂n

(r − x)A(x) . (3.19)

Similarly, when the point r approaches the boundary, the singularity of ∂G(r,x)/∂n(x) under

the integral has also to be taken into account. We extract a small neighbourhood c(r) centered

around the point r = (x0, y0) (See Fig. 3.4). c(r) is so small that we suppose it is flat or the

radius of this small surface is infinity. The normal derivative of the Green function at short-

distance is approximately given by

∂Gε(r,x)

∂n(x)
≃ −n(x) · (r − x)

2π|r − x|2

=
1

2π

n · (△xt + △yn)

(△x)2 + (△y)2

= ± 1

2π

|△y|
(△x)2 + (△y)2 , (3.20)

where x = (x, y), △x = x − x0, △y = y − y0 and t is the tangential unit vector, the

sign depends on whether the point r approaches the boundary from inside (−) or outside (+).
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Integrating Eq.(3.20) over the surface element c(r) leads to

∫

c(r)
da(x)

∂Gε
∂n

(r − x)A(x) ≈ ± 1

2π
lim

|△y|→0
A(r)

∫ c/2

−c/2

|△y|
(△x)2 + (△y)2 d△x

= ± 1

2π
A(r) lim

|△y|→0
arctan

△x
|△y|

∣

∣

∣

∣

∣

c/2

−c/2

= ±1

2
A(r) . (3.21)

The above approximations are sufficient for objects with flat boundary, but for objects with

curved boundary as shown in Fig. 3.4 a faster convergence can be obtained by taking into

account the finite radius of the extracted small surface element c(r). Recalling the asymptotic

for the normal derivative of the Green function at the short-distance limit (the first line in

Eq.(3.20)) and considering r on the curved boundary (as shown in the right of Fig. 3.4), we

have

n(x) · (r − x) = −2R sin2

(

φ(r)

4

)

, (3.22)

|r − x|2 = 4R2 sin2

(

φ(r)

4

)

, (3.23)

where R is the radius of curvature, φ the angle corresponding to the observation point r. R and

φ are both finite for a curved surface element; butR→ ∞ and φ→ 0 for a flat one. Integrating

∂G(r,x)/∂n(x) over the small neighborhood c(r) gives
∫

c(r)
−n(x) · (r − x)

2π|r − x|2 da(x) =

∫

c(r)

1

4πR
da(x)

=
φ(r)

4π
, (3.24)

If R → ∞, the boundary is flat, n · (r − x) = 0, then the above integral is zero. That is why

we can ignore it for objects with flat boundaries. Note that if the evaluation point approaches

the curved boundary from outside or inside, then the δ-function implied by Eq.(3.21) has to be

taken into account too

A(r)

∫

c(r)

∂G(r,x)

∂n(x)
da(x) =

(

±1

2
+
φ(r)

4π

)

A(r) . (3.25)

Applying Eq.(3.25) in Eqs.(3.14) and (3.15) and denoting the rest of the surface integral (ex-

cluding c) by P
∫

, we get
(

1

2
+
φ(r)

4π

)

A(r) = Abulk(r − r′) −

P
∫

∂D
da(x)

[

G1(r − x)F (x) − ∂G1

∂n
(r − x)A(x)

]

, (3.26)

(

1

2
− φ(r)

4π

)

A(r) = P
∫

∂D
da(x)

[

Gε(r − x)F (x) − ∂Gε
∂n

(r − x)A(x)

]

. (3.27)
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φ 6= 0, when the above two Eqs.(3.26) and (3.27) are applied for curved objects for example

cylindrical superconducting wires or the round smooth corner of a rectangular wire; wheras

φ = 0 for flat boundaries, for example the flat parts of a rectangle and a strip. Both the

observation point r and the integration points x are taken on the object boundary ∂D here. The

unknowns in the above two equations are just the vector potential and its normal derivatives.

Note that extracting the singularities results in a different prefactor in the left of the equations.

In the next Sec.3.4, we will see that for a circular wire with the same disrcetized element

(300 elements) on the boundary, applying the curvature coorection (Eq.3.24) leads to a faster

convergence.

3.3.3 Reflected field

Once the fields A, F are known on the surface, the reflected field at the source position (r′) can

be found from Eq.3.40 without the first term

Aref(r
′) = −

∮

∂D
da(x)

[

G1(r
′ − x)F (x) − ∂G1

∂n
(r′ − x)A(x)

]

. (3.28)

Note that G1 and ∂G1/∂n are both essentially real here (the imaginary parts scale with k0).

The magnetic noise, via ImB(r′), is thus determined by the imaginary parts of A and F on the

object boundary. This is not surprising since the induced current density is σE = iωσA.

3.3.4 Numerics

For numerical solution, we discretize Eqs.(3.26) and (3.27) on a finite element decomposition

of the object boundary and approximate the integrals by Riemann sums. This is the so called

“method of moments” (Rogobete & Henkel, 2004; Bancroft, 1996). The integrals are evalu-

ated at discrete points centered in the decomposition elements, and each point ri carries two

unknowns Ai = A(ri) and Fi = F (ri). Eqs.(3.26) and (3.27) are transformed into a linear

system, which can be solved with standard numerical tools.

3.4 Circular wire

In this section we check accuracy of numerics by evaluating the magnetic field around a circular

wire surrounded by vacuum (see Fig. 3.5) numerically, and then comparing with the analytical

results. A magnetic dipole µ = (µ, 0) is placed at the center of the circle, the radius of the

circle isR = 10µm. We compute the magnetic field at r = 20µm from the originO. ϕ denotes

the polar angle between the evaluation point r and the dipole µ. First we deduce the analytical

formulas for magnetic field at r, then compute the magnetic field using the boundary integral

Eqs.(3.26) ∼ (3.28) numerically. Finally, we compare the results to validate our numerical

method.
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Figure 3.5: A circular wire in vacuum. A unit magnetic dipole µ = (1, 0) is placed at the

origin O, the radius is R = 10µm, r = |r| = 20µm is the distance between the origin and the

observation point r, ϕ the polar angle between r and the dipole µ.

3.4.1 Analytics

The magnetic field caused by the magnetic dipole µ = (µ, 0) can be discribed with a vector

potential A = ezA, which can be given in polar coordinates inside and outside the circle

inside : A(r) = Aεdip + β
iµ0k0

√
ε sinϕ

4
J1(k

√
εr)µ , (3.29)

outside : A(r) = γA1
dip , (3.30)

where Aεdip and A1
dip are the vector potentials produced by a dipole in object with permetivity

ε and vacuum (ε = 1) respectively,

Aεdip = µ
iµ0k0

√
ε sinϕ

4
H1(k0

√
εr) , (3.31)

A1
dip =

iµ0k0 sinϕ

4
H1(k0r) . (3.32)

Here sinφ = y/r as defined in Fig. 3.5 and H1 is the first order of Hankel function; J1 the

first order of Bessel function, β corresponds to the field reflected from the boundary of the

circular wire, γ determines the transmitted field out of the wire. β and γ can be fixed by the

boundary conditions. Because A and its radial derivative ∂A/∂r are both continous across the

boundary and we use H ′
1 and J ′

1 denote the deviatives of H1 and J1 respectively, we have on

the boundary

√
εH1(k0

√
εR) + β

√
εJ1(k0

√
εR) = γH1(k0R) , (3.33)

εH ′
1(k0

√
εR) + βεJ ′

1(k0

√
εR) = γH ′

1(k0R) . (3.34)



48 Chapter 3. Magnetic noise around 2D metallic microstructures

Using the Wronskian for the Bessel functions that occurs in the determinant of the linear sys-

tem, we get

γ =
2i
√
ε/πk0R√

εJ ′
1(k0

√
εR)H1(k0R) − J1(k0

√
εR)H ′

1(k0R)
, (3.35)

J ′
1(k0r) =

1

2
(J0(k0

√
εr) − J2(k0

√
εr)) , (3.36)

H ′
1(k0r) =

H1(k0r)

k0r
−H2(k0r) , (3.37)

where H2 is the second order of Hankel function, J2 the second order of Bessel function.

Apply Eq.(3.35) in Eq.(3.29), the magnetic field outside the circular wire can be computed

everywhere. The x component of the magnetic field (denoted byBxx) created by this magnetic

dipole µ = (µ, 0) can be found by taking the y derivative of A

Bxx(r) = γ∂yA
I
dip(r)

= −γµµ0
i

4
k0

∂

∂y
(sinϕH1(k0r))

= γµµ0
i

4
k0(−

1

r
H1(k0r) + k0

y2

r2
H2(k0r)) (3.38)

3.4.2 Numerics
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Figure 3.6: (left) Magnetic niose spectra Bxx vs. the evaluation angle φ with fixed r = 20µm.

The radius of the circular wire is R = 10µm. (right) Magnetic niose spectra Bxx vs. R at

the fixed eveluation point r = 40µm, φ = 5π/8. In both plots the noise is produced by a

unit dipole µ = (1, 0) at the center of the circle and it is normalized by SB = µ0kBT/(ωδ
2).

Circles: based on Eq.(3.38). Solid line: based on the boundary integral equations Eqs.(3.26)

and (3.27). The surface is discretized into 300 elements. The skin depth is δ = 70µm.

Note in this section the dipole source is inside the circle and along the x direction, the

incident field Abulk is still given by Eq.(3.5), but we need move it from Eq.(3.26) to Eq.(3.27).

As described in Sec.3.3, evaluate Eqs.(3.26) and (3.27) on the boundary of the circular object

to fix the vector potential A and its normal derivative F on the boundary, then apply Eq.(3.28)
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to evaluate the vector potential outside Aout, finally get the magnetic field Bxx created by this

dipole by taking the y derivative of Aout. We discretize the circle shown in Fig. 3.5 into at

least 300 elements which leads to a linear system with 9 × 104 matrix elements. The normal-

ized noise power Bxx at r = 20µm is plotted in the left of Fig. 3.6, it periodically varies as

the angle φ defined in Fig. 3.5. We plot the magnetic noise Bxx at the fixed eveluation point

r = 40µm, φ = 5π/8 versus varying radius in the right of Fig. 3.6. The noise increases as

the radius increases and the evaluation point gets closer to the surface. It can be seen that the

numerical results are in a good agreement with analytical results.
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Figure 3.7: Relative error of the vector potential A vs. the surface elements normalized by

2πR. ǫψ is computed by Eq.(3.39). Circles: Anum in Eq.(3.39) is computed with curvature

correction by taking into account the finite radius of the surface element (φ 6= 0). Crosses:

Anum in Eq.(3.39) is computed without curvature correction, the boundary element is supposed

to be flat (φ = 0). The error scales as the surface element σ (solid lines). For a circular wire, a

faster convergency can be obtained by applying curvature correction. We discretize the surface

into 300 uniform elements.

The convergence can be improved by taking into account the finite radius of the discretized

surface element (curvature correction, φ 6= 0). We define the relative error of the vector poten-

tial as

ǫA =

(
∮

|Anum(x) −Aana(x)|2dx
∮

|Aana(x)|2dx

)1/2

, (3.39)

where Aana is given by Eq.(4.23), Anum is defined by Eq.(3.26) or (3.27). We plot the rel-

ative error of the scalar potential ǫA vs the discretized surface element in Fig. 3.7. Circles

are computed with curvature correction, crosses are computed without curvature correction. It

is obvious that a faster convergence can be obtained by applying the curvature correction in

the boundary integral equations. We discretize the boundary into uniform elements through-

out this chapter. One can also discretize the boundary into non-uniform elements and use

‘Galerkin method’: expand the integrands in Eq.(3.26) or (3.27) in terms of ‘basis functions’

(eg. δ-function); then project the vector potential A onto the same basis as ‘test functions’ to

find the expension coefficients. This will leads to similar convergence to the numerics we used.
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3.5 Incoherent summation

We outline here the adaptation of the incoherent summation method of (Dikovsky et al., 2005;

Henkel & Pötting, 2001; Varpula & Poutanen, 1984) to two dimensions. The thermal spectrum

of the current density is given at low frequencies (~ω ≪ kBT ) by (Landau et al., 1984)

〈j∗(x;ω)j(x′;ω′)〉 = 2πδ(ω − ω′)2kBTσ(x;ω)δ(x − x′) . (3.40)

This spectrum is already integrated over a unit length in the z-direction (parallel to the current)

along which the current density is assumed to be uniform (two-dimensional geometry). In this

formulation, σ is (the real part of) the 3D conductivity that we assume local, as reflected by

the spatial δ-correlation. We only take into account currents parallel to the z-direction. Each

current element generates a magnetic field in the xy-plane that we compute in the magnetostatic

approximation and ignoring the presence of the embedding metal. The latter point is the key

approximation made. This gives a magnetic noise spectrum (integrated over a unit length along

z)

Bij(x;ω) =
SB
π2

(δij(trY ) − Yij) (3.41)

Yij(x) =

∫

V

d2x′ (xi − x′i)(xj − x′j)

|x − x′|4 (3.42)

SB =
µ0kBT

ωδ2
, (3.43)

where V is the 2D volume occupied by the metal. The ‘geometrical tensor’ Yij is dimension-

less (a specific 2D property) and depends only on the ratio of observation distance and object

size. The skin depth only enters via the scalar factor SB .

For a microstructure with rectangular cross section, an observer located above the center of

the structure sees a noise power

Bxx(d;ω)

SB
=

1

2π2

[

[

arctan(
x′

y − y′
)

]w
2

x′=−w
2

]0

y′=−h

+
1

2π2

[

[

ImLi2(
ix′

y − y′
)

]w
2

x′=−w
2

]0

y′=−h
(3.44)

Byy(d;ω)

SB
=

1

2π2

[

[

arctan(
y − y′

x′
)

]w
2

x′=−w
2

]0

y′=−h

+
1

2π2

[

[

ImLi2(
ix′

y − y′
)

]w
2

x′=−w
2

]0

y′=−h

where Lin(·) is the polylogarithm and we have used the notation

[

[f(u, v)]bu=a

]d

v=c
≡ f(a, c) − f(a, d) − f(b, c) + f(b, d) (3.45)
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By symmetry, Bxy = Byx = 0.

3.6 Finite lateral wire

3.6.1 Single rectangular wire

We have solved the integral equations for rectangular wires of thickness h and width w. In

a first step, we have validated our numerical scheme by comparing flat, wide wires (w ≫ h)

to the infinite layer results of Sec.3.2. Typical plots are shown in Fig. 3.8 where the magnetic

noise power (symbols) is plotted vs. the distance d above the wire centre. Good agreement

with the analytical results for an infinitely wide wire (solid lines) is only obtained at short

distance, where for geometrical reasons the wire appears wider. At distances above 20µm,

the deviations start to grow. In all the plots, we take a skin depth δ = 70µm. The slow

convergence in the limit w → ∞ can be attributed to the long-range behaviour of the fields;

this is more pronounced in two dimensions compared to three. Note in particular the strong

splitting between the two polarization directions for the thick wire that does not occur above

an infinitely wide wire in 2D (Sec.3.2.3). Interestingly, the y-component (crosses) shows more

noise above a thick wire while this tendency is reversed above a thin wire. This polarization

anisotropy could provide a tool to improve the lifetime in a magnetic trap: one orients the

static trapping field parallel to direction of the strongest noise. (In fact, trap loss and spin flips

are induced by magnetic fields perpendicular to the static trap field.) The choice of a trapping

field along the weak noise direction is favorable if one wants to reduce the dephasing rate of

the trapped spin states (generated by fluctuations of the Larmor frequency, see (Folman et al.,

2002)).
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Figure 3.8: Magnetic noise spectra Bii(d) vs. distance d above the centre of thin (left) and thick

(right) metallic wires. Symbols + (×): numerical calculation for the Byy (Bxx) component.

Solid lines: infinitely wide wire (layer), as computed in Sec.3.2. Dashed lines: incoherent

summation (thin layer only, upper curve: Bxx), see Sec. 3.5. Thin wire: width and thickness

200 × 7µm; thick wire: 200 × 160µm. The skin depth is δ = 70µm.

Another finite-size effect is shown in Fig. 3.9 where the position is varied parallel to the

top surface of a thin wire. Above the centre of wide wires, the noise levels are nearly constant
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Figure 3.9: Magnetic noise spectra Bii(d) vs. lateral position, at a fixed distance d. The arrows

mark the edges of the wires. Symbols × [+]: spectrum Bxx [Byy] parallel [perpendicular] to

the top face of the wire. Skin depth: δ = 70µm.

Left panel: thickness and width are 20 × 200µm (wide wire) and 20 × 20µm (narrow wire).

Distance d = 10µm. Right panel: thickness and width are 1 × 20µm, distance d = 3µm
(see dotted line of inset). Inset: illustration of anisotropic noise near the wire edge. The

crosses are oriented along the polarization vectors that show maximum and minimum noise,

the ‘arm lengths’ being proportional to the rms noise. The magnetic field noise is dominantly

azimuthal, with field lines circling around the wire. The dotted line (d = 3µm) shows the

positions scanned through in the right panel.

(not shown). Beyond the wire edges, one observes a sharp drop in Bxx, with a characteristic

scale fixed by the distance. The y-component shows a broad maximum near the edge that is

more pronounced for narrow wires. This is due to a gradually changing direction of maximum

noise that is ‘azimuthal’ with respect to the object, as expected for magnetic fields generated

by currents flowing perpendicular to the computational plane (see inset of Fig. 3.9). We find

the direction of maximum noise by looking for the eigenvectors of the symmetric 2× 2 matrix

Bij . 2

In Figs. 3.10 and 3.11, the thickness of the wire is changed with the observation point

remaining above the centre. We observe an approximately linear increase with the width that

saturates slowly. We also note that Bxx (left) levels off faster than Byy (right). The difference

between Fig. 3.10 and Fig. 3.11 is the distance of observation: at short distance (Fig. 3.10),

the largest widths show a noise power fairly close to the planar layer limit (cf. the symbols at

the right end). At distances comparable to the skin depth (Fig. 3.11), the deviations from the

planar layer limit (symbols) are still large. Note also that the noise has dropped in amplitude

and that the increase with width is slower.

This behaviour can be qualitatively understood using the ‘incoherent summation’ approx-

imation The solid lines in Fig. 3.10 demonstrate that incoherent summation gives a reliable

2 In Fig. 3.9, careful look shows that the eigenvectors are not orthogonal very near to the wire’s corner. This is

due to an artefact of our numerical method that converges very slowly at these points.
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approximation if the skin depth is the largest length scale (not true for the thick wire). The

noise power always increases with the metallic volume within this approximation, however,

and it may also happen that a wider wire produces a slightly weaker noise (x-polarized curve

for a thin wire in Fig. 3.10). This is qualitatively similar to the trend of Fig. 3.3 where a

thick layer can produce less noise than a thin one at distances larger than the skin depth. The

polarization anisotropy is also qualitatively reproduced by the incoherent summation method,

although Bxx is overestimated (Fig. 3.10 left). In fact, due to damping on the scale of δ, not

the entire volume of the thick layer contributes to the noise. The dashed lines in Fig. 3.8 and

further calculations show that the quantitative agreement is systematically better for the field

component perpendicular to the nearest metal surface (here, Byy).
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Figure 3.10: Magnetic noise spectra vs. the width of a rectangular wire. (left) x-polarization,

parallel to the top face; (right) y-polarization. Symbols: numerical calculations; solid lines:

incoherent summation approximation (see Sec.3.5). The symbols on the right margin give the

values for an infinitely wide wire (layer). The observation point is located above the wire

centre, at a distance d = 10µm. The wire thickness is 7µm (thin) and 160µm (thick). Skin

depth: δ = 70µm.
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Figure 3.11: Same as Fig. 3.10, but at an observation distance d = 75µm. Results from the

incoherent summation are not shown, as they strongly deviate.
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3.6.2 Multiple wires
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Figure 3.12: Noise power generated by three wires, as a function of distance (see inserted

sketch, with the dashed line illustrating the observation points). The wires have a quadratic

cross section 20µm × 20µm and are separated by a gap of 20µm. The noise is measured

above the center of the central wire. Left panel: horizontal polarization, right panel: vertical

polarization. Symbols: numerical result; solid line: incoherent summation. For comparison is

shown: a single wire of same cross section (dashed line) and a wide wire 20µm× 80µm with

approximately the same volume (dash-dotted line). Skin depth δ = 70µm.

This is the generic situation in miniaturized magnetic traps (‘atom chips’) with wires being

defined by etchings in a metallic layer. We consider three wires of identical cross section and

smaller than the skin depth. We show in Fig. 3.12 the dependence on the vertical distance,

above the central wire. Our results interpolate smoothly between a single narrow wire (d≪ w)

and a single wide wire (d ≫ 2w), as could have been expected. In fact, the three geometries

give nearly the same noise in the azimuthal (Bx) polarization. While for By, larger differences

can be seen in the right of Fig. 3.12. The incoherent summation approximation overestimates

Bx noise component (similar to Fig. 3.10). We attribute this to correlations between the current

fluctuations in neighboring wires that are not captured by incoherent summation. On the other

hand, this approximation gives an excellent agreement for the weaker noise component By.

When we shift the observation point laterally, along the axis connecting the wire centres,

we get Fig. 3.13. The stronger Bx-polarization shows maxima of noise above each wire, as

expected. In the By-polarization, a maximum occurs in the gap between the wires. This

conforms to the general trend of ‘azimuthal noise’ illustrated in Fig. 3.9 (inset). It is also

interesting that above the central wire (x = 0), three wires generate less noise than only one and

also less than a single wide wire (approximately a merger of the three). This observation goes

into the same direction as the experiments reported by Nenonen et al. (1996) where a reduction

of thermal magnetic fields was achieved by cutting a metallic film into stripes. We attribute this

behaviour to negative correlations between the currents in neighboring wires brought about by

the propagation of the magnetic field between them. In fact, the noise could only increase if

the wire currents were strictly uncorrelated.

The performance of the incoherent summation approximation (solid lines) can be clearly
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Figure 3.13: Same as Fig. 3.12, but at fixed distance d = 10µm, scanning the lateral position.

x = 0 is above the center of the central wire.

seen, the trends being similar to Fig. 3.12: good agreement for the By-polarization, overesti-

mation of the perpendicular case due to the neglect of correlation effects.

3.7 Conclusion

We have described in this chapter numerical and analytical results for the thermal fields sur-

rounding a two-dimensional metallic object of arbitrary cross-section. The role of the skin

depth δ as a characteristic length scale has been highlighted. At distances smaller than δ, the

spectral noise power roughly scales with the volume of the metallic material (Figs. 3.3, 3.10,

3.11). We have reviewed a simple method based on this idea, the ‘incoherent summation ap-

proximation’. It systematically overestimates the noise power in one of the two field polar-

izations, but otherwise reproduces the main features as long as the skin depth is the largest

scale. The strong polarization anisotropy that we have found suggests strategies to minimize

loss or decoherence due to thermal magnetic fields, that has been observed in recent experi-

ments (Harber et al., 2003; Lin et al., 2004; Zhang et al., 2005): this can be done by suitably

choosing the direction of the static trapping fields. We have also shown that the noise power

can be significantly non-additive when dealing with multiple objects. This could be relevant for

the discrepancy between experiment and theory observed in (Zhang et al., 2005), although our

method (restricted to 2D) does not permit quantitative predictions of trap lifetimes. Estimation

of trap lifetimes (in 3D) above conductors with arbitrary cross-section is our next aim.

Appendix

Uniform approximation

We give here the example how we get the power laws for magnetic noise spectrum listed in

Table 3.2 from Eq.(3.12). The integral over k in Eq.(3.12) can be performed analytically if

the power-law approximations of Table 3.1 are used for the reflection coefficients. We split
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the integration range at the crossing points between the power laws and sum the contributions.

The full expression is cumbersume, and we quote here only the most complicated case, the thin

layer in the range k0 ≪ k ≪ 1/δ (first column of Table 3.1). The integral can be handled with

the formula

k2
∫

k1

dk
(−1 + (1 + i)kδ)k e−2kd

1 + ikt

= (1 − i)
δ

4td2
Γ(2, 2k1d, 2k2d) (3.46)

+
f

2d
Γ(1, 2k1d, 2k2d)

+
i f

t
e−2id/tΓ(0, 2k1d− 2id/t, 2k2d− 2id/t)

where t = δ2/h and f = (1 + i)δ/t2 + i/t. In this case, k1 = k0 and k2 = (tδ)−1/2. The

incomplete gamma function is defined by

Γ(n, b, a) = Γ(n, b) − Γ(n, a) (3.47)

Γ(n, a) =

∞
∫

a

dt tn−1e−t (3.48)

Using the asymptotics of the gamma function Abramowitz & Stegun (1972), we get the power

laws in Table 3.2. The logarithmic behaviour arises from

a≪ 1 : Γ(0, a) ≈ − log a. (3.49)



Chapter 4

Magnetic traps with superconducting

wires

Recently superconducting atom chips have been suggested as a perspective way to improve

lifetimes and coherence of the trapped atoms, because the thermal noise and technical noise

can be significantly reduced by using superconductors, especially those in the Meissner state.

In this chapter, we investigate magnetic traps formed by superconducting wires carrying a

transport current and placed in a bias field. The trapping field and distribution of supercurrents

around superconducting wires with arbitrary cross-sections are computed numerically and an-

alytically. Properties and Parameters of magnetic traps based on superconducting chips are

discussed. Critical magnetic field and transport current are considered and estimated approax-

imationally. This chapter is based on the work collaborated with the group of Ron Folman,

which leads to the paper Dikovsky et al. (2008).

4.1 Superconducting atom chips

Compared to a normal metal, a superconductor (SC) has several advantages for atom chips.

Due to the infinite conductivity, superconducting wires significantly reduce Johnson noise,

which is the dominant source of atom loss especially when the trap distance is less than 10µm.

And there is practically zero voltage drop across the superconducting elements, whereas in

normal metallic chips the relatively high electrical field across wires leads to deformation and

shift of the potential well on atom chips (Fortágh & Zimmermann, 2007). Besides, technical

noise can be reduced by using persistent currents, which are carried in closed loops without

any damping. These persistent currents allow one to disconnect superconducting wires from

current supplies during the experiments, avoiding the noise caused by the instability of the

current supplies. These unique properties of superconductors make them popular for atom

chips.

Atom chips with superconducting (SC) elements have been realized first by Nirrengarten

et al. (2006); Mukai et al. (2007). Both groups trapped 87 Rb atoms with ‘U’ and ‘Z’ traps

formed by superconducting wires. Nirrengarten et al. (2006) trapped up to 8.2×105 atoms in a

57



58 Chapter 4. Magnetic traps with superconducting wires

Ioffe-Pritchard trap at a distance of 440µm from the chip surface, with a temperature of 40µK.

The current-carrying wires were made of niobium and the chip was operated at a temperature of

4.2K. The lifetime was observed to be about 115s, which is slightly longer than that of trapped

atoms above normal metallic atom chips. Based on this work, a BEC has been first observed

on a superconducting niobium atom chip by Roux et al. (2008). 1 × 104 Rb atoms trapped at

a distance of 85µm from the chip surface below 100nK. The atom cloud can be compressed

and brought as close as 50µm from the chip surface. Mukai et al. (2007) applied a persistent

current in a ‘Z’ wire by making it part of a closed loop to remove the technical noise due to

the current supply. The ‘Z’ trap was made of a 100µm wide molecular-beam epitaxy-grown

MgB2 strip carrying a supercurrent of 2.5A. The atom chip was also operated at a temperature

of 4.2K.

On the theoretical side, Hohenester et al. (2007) estimated that the lifetime of Rb atoms

trapped at 1µm from a superconducting niobium chip at 4.2K can exceed 1000s, whereas,

the lifetime drops below 1s at the same distance from a normal metallic chip at the same

temperature. They also predicted that at higher distances from a niobium chip, the lifetime

of Rb atoms can be much longer up to 1011s. Skagerstam et al. (2006) also computed the

magnetic noise caused by superconductors in the Meissner state and predicted that compared

to atoms trapped above a normal metallic chip, the enhancement of lifetime of atoms above a

superconducting chip could be millions.

4.2 Properties of superconductors

It is well known when the temperature T , the current I and the external magnetic field B are

less than the critical values Tc1, Ic1 and Bc1(T ), the resistivity of superconductor decreases

to zero and the magnetic field is expelled from the superconductor —— the Meissner effect

(Landau et al., 1984). In the Meissner state the magnetic field can only penetrate into a su-

perconductor over a small depth λL from the surface —— the London penetration depth. It

increases with temperature as λL(T ) = λL(T = 0) × [1 − (T/Tc1)
4]−1/2, where λL(T = 0)

has an order of 40nm (eg. niobium). The supercurrents only flow within the London penetra-

tion depth λL, they screen the external magnetic field so that there is no magnetic field beyond

the London penetration depth in the superconductors. When the thickness t of the supercon-

ducting wire is much larger than the the London penetration depth λL, we can suppose that

the currents are only on the surface (sheet current approximation) and denote the critical sheet

current by Jc1.

Superconducting materials are classified as type I and type II according to their different

behavior when the magnetic field is increasing. Type I superconductors (pure metals as Pb, Al,

Hg) only have the first critical values Tc1, Ic1 and Bc1(T ). When the temperature, the current

and the external magnetic filed are all below the critical values, type I superconductors are in the

Meissner state, otherwise, they behave the same as the normal metal. Type II superconductors

(Nb and its compound, Mg2) have the first and second critical values, when the temperature, the

current and the magnetic filed are all below the first critical values, they are also in the Meissner

state and behave as well as type I superconductors. If any parameters (T, I, B), exceed the first

critical values, but still remain below the second critical values Tc2, Ic2 and Bc2(T ), the type
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type I Tc1 (K) λ (nm, 0 K) Bc1 (mT) Jc1 = Bc1/µ0 (A/m)

Pb 7.2 37 55 4.4 × 104

type II Tc2 (K) λ (nm, 0 K) Bc1 (mT) Bc2 (T) jc2 ( A/m 2)

Nb 9.3 39 140 0.28 5 × 1010

MgB2 40 140 30 15 > 1011

Table 4.1: Critical values of some typical superconductors. The penetration depth λL are given

at zero temperature, the critical magnetic field and critical (sheet) current density are given at

4.4K. Data collected from Larbalestier et al. (2001); Blatter et al. (1994); Finnemore et al.

(1966); Nirrengarten et al. (2006) and references therein.

II superconductors transist into the mixed state where the magnetic flux particially penetrates

into the superconductors in terms of vortices. These vortices arrange themselves in a regular

structure, so called Abrikosov lattice. In an isotroptic Type II superconductor, each vortex

looks like a cylindrical tube with a radius ΛL. In such a tube, supercurrents circulate around

a normally conduting core of a size ∼ ξ (superconducting coherence length) and decay on a

distance about λL from the core. The magnetic flux induced by the circulating supercurrents

in each tube (vortex) equal to a single flux quantum Φ0 = π~/e = 2.07−15T m2 (e is the

electron charge). In most type II superconductors ξ < λL. If the temperature, the current or

the magnetic field become larger than the second critical value, the vortex cores merge and

the type II superconductor transits into a normal conductor where the current density becomes

uniform in the whole volume. Typically the second critical values are much higher the first

ones. We list the critical values of some typical type I superconductors and some type II

superconductors which are used in the experiments in Table 4.1. Type II superconductors in

the mixed state can freeze a magnetic flux, which makes them different from both the normal

metal and the superconductors in the Meissner state. And they produce higher noise than those

in the Meissner state.

4.3 Basic equations for SC in the Meissner state

To study the trapping field around a superconductor in the Meissner state, we simplify the

structure to two spatial dimensions by assuming invariance along the y direction and we apply

the boundary integral method described in Sec.3.3 for superconducting wires also. We focus

on the following configuration in this chapter: a pure superconducting wire with a transport

current I is placed in an external bias magnetic field Bb. The bias magnetic field is in the

xz plane and the transport current flows along the y direction. For a superconducting wire

made of niobium at temperature 4.2K, the penetration depth λL ∼ 40nm is infinite small

compared to the thickness of the wire t & 0.8µm. We make in this chapter the approximation

that the supercurrents flow only on the surface of the wire. These surface currents prevent

the magnetic field from penetrating the superconducting wire. Thus there is no magentic field

inside the superconductor (the meissner effect). Outside the superconductor, the screening
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current induced by the bias field Bb (in the y direction) produces a magnetic field in the xz
plane; on the other hand the magnetic field produced by the transport current I lies in the xz
plane too, therefore the total magnetic field (the bias field and field generated by the transport

current) is in the xz plane and independent on y due to the symmetry. We describe the total

magnetic field outside of the wire in terms of a scalar potential ψ and a vector potential A =
eyA

B(x) = −∇ψ(x) + ∇× A(x) . (4.1)

We shall prove below that the scalar potential ψ describes the field caused by the external field

and the vector potential A gives the field caused by the transport current in the superconducting

wire.

The magnetic field normal to the superconductor surface is continuous because ∇ ·B = 0.

The magnetic field inside the superconductor is zero, the normal magnetic field must then

vanish on the surface

n(xs) · B(xs) = 0 , (4.2)

where n(xs) is the outward normal at the point xs which is on the superconductor surface.

Apply Eq.(4.1) in the above equation, we have

n(xs) · B(xs) = −n(xs) · ∇ψ(xs) − (n(xs) × ey) · ∇A(xs)

= −∂ψ(xs)

∂n(xs)
− ∂A(xs)

∂t(xs)
= 0 , (4.3)

where ∂/∂n(xs) and ∂/∂t(xs) are the normal and tangential derivatives at xs. (The local

tangent vector is t = n × ez .) We construct the potentials ψ and A such that both terms

∂ψs/∂n and ∂As/∂t in Eq.(4.3) are zero. Note that ∂As/∂t = 0 indicates that A(xs) is a

constant on the surface which we denote by A0.

Considering that outside the wire, both divergence and curl of the magnetic field are zero,

we get

∇2ψ(r) = 0 ∇2A(r) = 0 (4.4)

where ∇2 is the two-dimensional Laplace operator and r is the evaluation point. These Laplace

equations can be solved with the help of the Green function

G(x, r) = − 1

2π
log |x − r| , (4.5)

where r is the evaluation point and x is the source point, given the values of the potentials and

their derivatives on the wire surface, and an asymptotic condition at large distance. This Green

function is the static analogue of the outgoing wave required by the Sommerfeld radiation

condition.

The two potentials behave differently with respect to the current I transported by the su-

perconductor. To see this, recall the Ampère-Maxwell law (in the static limit)

I =

∫

F
d2f(x)∇× H(x) =

∮

S
H(x) · da(x) , (4.6)
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where F is an area including the cross-section of the superconducting wire (area element

d2f(x)), I the total current flowing through F , and S the closed curve bounding F (oriented

line element da(x)). Inserting Eq.(4.1) in the above equation, we see that

∮

S
∇ψ · da = 0 (4.7)

and

I =

∮

S
∇× A · da = −

∮

S

∂A

∂n
da . (4.8)

where ∂/∂n is the derivative normal to the curve S and pointing ‘outside’. Eqs.(4.7) and

(4.8) indicate that the current only determines the vector potential A, but does not provide

any constraint for the scalar potential. We can thus split the problem in two parts. The scalar

potential ψ asymptotically describes the external magnetic field (homogeneous bias Bb). The

vector potential is fixed by the imposed supercurrent and asymptotically, it increases at most

like log |x|, providing a magnetic field proportional to I/|x|. Since both potentials satisfy the

boundary condition Eq.(4.3) on the wire surface, the full field is given by the sum Eq.(4.1).

In this chapter we only consider superconductors in the Meissner state with thickness much

larger than penetration depth (eg. the niobium wire is 1µm thick which is much larger than its

penetration depth 40nm), then the currents are supposed to be only on the surface. The interior

of the superconductor is screened from the field by the surface current; while the tangential

magnetic field is nonzero at the outer surface of the superconductor. The surface current density

is given by (Landau et al., 1984)

g(xs) =
n(xs) × B(xs)

µ0
, (4.9)

where µ0 is the permeability in the vacuum. In our case n and B are both in the xz plane, and

the surface current g(xs) is obviously along ey. Apply Eq.(4.1) in the above equation, we get

g(xs) =
1

µ0
(−n(xs) ×∇ψ(xs) + n(xs) ×∇× eyA(xs))

=
1

µ0

(

∂ψ(xs)

∂t(xs)
ey −

∂A(xs)

∂n(xs)
ey

)

. (4.10)

To be sure that the superconductor is in the Meissner state, the surface current density g should

remain below the critical sheet current density Jc1, for a type I superconductor, eg. Pb, this

value is 4.4 × 104A/m, for a type II superconductor, eg. Nb, this value is 11.14 × 104A/m.

A superconducting wire with a transport current, placed in an external magnetic field is

applied to provide a magnetic trap above the wire. Since the scalar and vector potentials (ψ, A)

in Eq.(4.1) describe the field produced by the external field and transport current respectively,

in the rest of this section we discuss the surface current density and magnetic field generated

by the bias field and the transport current respectively first, and then combine them to make a

magnetic trap.
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4.3.1 Magnetic trap based on SC in the Meissner state

A magnetic trap can be formed by a superconducting wire in the Meissner state carrying a

transport current and placed in a bias magnetic field. The trapping field and the current distri-

bution can be computed as the superposition of a current-carrying wire in vacuum and a wire

with zero transport current in a nonzero bias field.

4.3.2 Bias field

Let us consider a superconducting wire carrying zero transport current in a bias field Bb. Be-

cause of the Meissner effect there will be currents within the London depth λL which screen

the superconductor from the external field so that the magnetic field inside the superconductor

below the London depth is zero. The outside magnetic field (the field created by the screen

current and bias field) is described only by

B(x) = −∇ψ(x) . (4.11)

The induced surface current is determined by the tangential derivative of ψ(xs), the first term

in Eq.(4.10)

g(xs) =
−n(xs) ×∇ψ(xs)

µ0
=

ey

µ0

∂ψ(xs)

∂t(xs)
. (4.12)

The total current created by the external field can be obtained by integrating the current density

on the whole surface
∮

ey · g(xs)da(xs) =
1

µ0

∮

S

∂ψ(xs)

∂t(xs)
da(xs) , (4.13)

where in two spactial dimensions S is the circumference of the wire, and da(x) the scalar line

element. As the integration of a gradient field over a closed curve is zero, the above integral

vanishes. It again proves that the scalar potential ψ has no contribution to the total current.

The solution of Eq.(4.4) for the scalar potential ψ is given in terms of a surface integral

equation

ψ(r) = ψb(r) −
∮

S
da(x)

(

G(x, r)
∂ψ(x)

∂n(x)
− ∂G(x, r)

∂n(x)
ψ(x)

)

= ψb(r) +

∮

S
da(x)

∂G(x, r)

∂n(x)
ψ(x) , (4.14)

where r is the evaluation point outside the wire, ∂/∂n the normal derivative points outside the

wire, ψb the external potential corresponding to the bias field ψb(r) = −Bb · r. We applied

∂ψ(xs)/∂n(xs) = 0 (according to Eq.(4.3)) in the last term. Thus ψ(x) on the surface is the

only unknown in Eq.(4.14). It can be obtained by letting r → xs, then the singularitiy of the

normal derivative of the Green function ∂G(x,xs)/∂n(x) under the integral has been touched.

We extract the singularity as discussed in Sec.3.3.2 and get

(

1

2
− φ(xs)

4π

)

ψ(xs) = ψb(xs) + P
∫

S
da(x)

∂G(x,xs)

∂n(x)
ψ(x) , (4.15)
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where P
∫

denotes the principal integral and φ(xs) describes the angle subtended by the surface

element centered at xs, it is zero for a flat surface element, but nonzero for a curved one.

Eq.(4.15) is self-consistent and fixes ψ(xs) and g(xs). ψ(r) can be computed everywhere

outside wire with Eq.(4.14), and the total magnetic field can be obtained by Eq.(4.11).

4.3.3 Transport current

Let us now consider a superconducting wire with a transport current I placed in vacuum. The

magnetic field outside the wire is described completely by the vector potential A (the second

term of Eq.(4.1))

B(x) = ∇× A(x) . (4.16)

Again due to the Meissner effect the current flows only on the surface. The surface current

density is given by the normal derivative of the vector potential on the surface (the second term

of Eq.(4.10))

g(xs) = −ey

µ0

∂A(xs)

∂n(xs)
. (4.17)

The total current can be computed by integrating the surface current density over the whole

surface

Iey =
ey

µ0

∮

S

∂A(x)

∂n(x)
da(x) . (4.18)

We see again that the transport current I only contributes to the vector potential A, but has no

relevance to the scalar potential ψ. Similar to Eq.(4.14), the vector potential outside the wire

can be computed with

A(r) = −ey

∮

S
da(x)

(

G(r,x)
∂A(x)

∂n
− ∂G(r,x)

∂n
A(x)

)

, (4.19)

where we can set under the integral A(x) = A0, constant on the surface according to Eq.(4.3).

Other symbols are defined as in Eq.(4.14). Note that the integral of the second term in the

bracket vanishes. Again we choose the evaluation point r to be on the surface and get a self-

consistent equation

A0 = −
∮

S
da(x)

(

G(x,xs)
∂A(x)

∂n(x)

)

. (4.20)

Note that the singularity of the Green function G(xs,x) under the integral has to be taken into

account here also. Integrating the Green function over a small surface element c(xs) of length

σ centered around xs, we get
∫

c(xs)
− 1

2π
log(|xs − x|)∂A

∂n
(x)da(x) ≈ σ

2π

∂A

∂n
(xs)

(

1 − log
σ

2

)

. (4.21)

We always choose A0 = 1 in Eq.(4.20) at the beginning of the numerical calculation.

Eq.(4.20) then fixes ∂A(x)/∂n(x) and g(xs). We compute the total current by Eq.(4.18) and

re-scale A(x) and ∂A(x)/∂n(x) to get the desired current. Finally the surface current density

g, vector potential A and magnetic field B outside the wire can be obtained by Eqs.(4.17),

(4.19) and (4.16) respectively.
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4.4 Trap based on SC cylinder in the Meissner state

A cylindrical superconducting wire with a transport current I is placed in a homogeneous bias

field Bb as shown in Fig. 4.1. The wire is infinite long along the y axis. R denotes the radius

of the cylindrical wire, α the angle between the evaluation point r and the bias field Bb along

the x direction. We calculate first the surface current density and then compute the magnetic

field outside the wire by the Biot-Savart law. A quadruple trap can be obtained at α = π/2 by

choosing the bias field such that it cancels the magnetic field created by the transport current

there.

Bb

α

r I

xo

R

z

trap

Figure 4.1: A cylindrical superconducting wire carrying a current I is placed in a homogeneous

bias field Bb parallel to the x axis. o is the origin; R the radius of the wire; r the evaluation

point; α the angle between r and Bb. We consider the superconducting wire in the Meissner

state here. A quadrupole magnetic trap can be formed by choosing the bias field such that it

cancels the magnetic field created by the transport current above the center (α = π/2).

4.4.1 Transport current

When there is a transport current I in the cylindrical superconducting wire (see Fig. 4.1),

according to the discussion in Sec.4.3, the magnetic field outside the superconductor produced

by this current can be described by the vector potential A, which is given by Eq.(4.19). Due

to the Meissner effect and the cylindrical symmetry, the surface current density is constant

I/2πR, it should below the critical Jc1 = jc1λL: for example, a niobium cylinder with R =
10µm at 4.2K in a zero magnetic field, the transport current should not exceed Ic1 = 2πRJc1 =
7.16A. While for a normal cylindrical wire with a transport current I , the current density is

uniform in the whole volume. The magnetic field around the superconducting and the normal

cylinder at the evaluation point r are both given by

B(I, r) =
µ0I

2πr
er . (4.22)

But the magnetic fields outside of superconducting and normal wires with other identical

shapes such as rectangle and strip are different. We will see below that the current density

is uniform all over the volume in a normal rectangle and strip, but it concentrates at corners of
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a superconducting rectangle or the edges of a superconducting strip, which results in different

trapping fields at short distances from the superconductors.

We plot the magnetic field produced by the imposed current along the cylindrical supercon-

ducting wire in Fig. 4.2 to validate our numerics for a superconducting wire with a transport

current.
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Figure 4.2: Magnetic field |B| created by the transport current in the cylindrical superconduct-

ing wire vs distance from the surface. Circles: exact values computed by Eq.(4.22); Solid line:

numerical results given by Eqs.(4.16) and (4.19). We normalize the distance by the radius R of

the cylinder.

4.4.2 Bias field

Let us consider now the magnetic field and the surface current produced by the bias field

Bb. The magnetic field outside the superconductor (the bias field and field produced by the

surface current) is described by the scalar potentialψ (see Eq.(4.11)) which satisfies the Laplace

equation Eq.(4.4). The magnetic field coincides with the external one Bb at infinity and its

normal component is zero at the boundary of the superconductor. The exact solution of Eq.(4.4)

then can be written in polar coordinates

ψ(Bb, r, α) = −Bb(r +
R2

r
) cosα , (4.23)

where r = |r| = R + d, and d is the distance from the surface to the evalution point. The

normal component of the magnetic field is

Bn(Bb, r, α) = −∂ψ
∂r

= Bb(1 − R2

r2
) cosα , (4.24)

and the tangential component of the magnetic field is

Bt(Bb, r, α) = −1

r

∂ψ

∂α
= Bb(1 +

R2

r2
) sinα . (4.25)
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Figure 4.3: Left: current density on the surface of a superconducting cylinder placed in a

bias field. Solid line: numerical results computed with Eq.(4.12). Circles: analytical results

computed with Eq.(4.25). Right: sketch of the surface current density on the cylindrical wire.

The currents are in the opposite directions on the upper half face and the lower half face. The

total current is zero.

g(R,α) = −Bt(Bb, r = R,α)/µ0 is the surface current density caused by the bias field ac-

cording to Eq.(4.12), which screens the superconductor from the external field. Because the

superconductor is in the Meissner state, we require |g(R)max| = 2Bb/µ0 ≤ Jc1. For a niobium

cylindrical wire at 4.2K,Bb should below µ0Jc1/2 ≈ 0.069T . The surface current density pro-

duced by the bias field is plotted in Fig. 4.3(left). It shows that the currents on the upper and

lower semicircles are in the opposite directions so that the total current is zero as described by

Eq.(4.13).

The magnetic field |B| at α = π/2 at different distances from the surface is plotted in

Fig. 4.4. It can be seen that the magnetic field |B| is significantly larger than the bias field

|Bb| at α = π/2 in the region d < 3R, and it then goes to the bias field Bb with increas-

ing d. This is due to the different current distribution compared to the normal cylinder. It

is not easy to see the difference between the numerical results with curvature correction and

without this correction in Fig. 4.4. In fact, the scale potential A is only proportional to the in-

tegral of ∂G(x,xs)/∂n(x), so the curvature correction significantly improve the convergence

of Eq.(4.20), as can be seen in Fig. 4.5.

4.4.3 Magnetic trap

Consider a ‘side guide trap’ formed by a superconducting cylinder carrying a transport current

Iey and placed in a bias field Bbex. The magnetic field created by the transport current I has

only nonzero x-component at α = pi/2 (above the center of the wire). Choose the bias field

Bb such that the magnetic field generated by it cancles the field at α = pi/2 created by the

transport current I . A quadruple magnetic trap is then obtained above the center of the cylin-

der. For example, we choose Bb = 0.4µ0I/2πR and plot the modulus of the total magnetic

field above the wire in Fig. 4.6. A quadrupole magnetic field can be seen at α = π/2 near the
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Figure 4.4: Magnetic field Bt normalized by Bb vs distance from the surface d at α = π/2.

Solid line is computed with the exact expression Eq.(4.25); circles are computed with the

boundary integral equations with curvature correction Eqs.(4.15) and (4.20); Stars are com-

puted with the boundary integral equations without curvature correction φ(xs) = 0 ; . Our

numerical results are in a good agreement with the exact one. The impact of curvature correc-

tion is not obvious in this figure, we show the details in Fig. 4.5.
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Figure 4.5: Relative error of the scalar potential ǫψ vs the surface elements. ǫψ is defined by

replacing Anum and Aana in Eq.(3.39) by ψnum (Eq.(4.15) and ψana (Eq.(4.23)). (left) ψnum
is computed with φ(xs) = 0. The error has the magnitude around ∼ 10−1 and scales as σ
(solid line). (right) ψnum is computed by taking into account the nonzero φ(xs) . The error is

of a magnitude about ∼ 10−14. It scales also as σ (solid line). This small error is at the level

of machine precision. In both figures we discretize the surface into uniform elements.
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Figure 4.6: Magnetic trap created by a superconducting wire with a transport current I in a

bias field Bb = 0.4µ0I/2πR. We plot the total magnetic field |B| around the superconductor.

|B| is computed with Eq.(4.1) and normalized to µ0I/2πR. We discretize the wire boundary

into 300 elements. Left: 3D plot of |B|. Right: equipotential lines.

trap height d ∼ R. We should check that the total surface current density, the current produced

by the bias field and the transport current, should remain below the critical values. If the cylin-

der in Fig. 4.6 is made of niobium and the operating temperature is 4.2K, the maximal surface

current density caused by the bias field is 2× 0.4I/2πR, the surface current density caused by

the transport current is I/2πR. Therefore, the total current density 1.8 × I/2πR should not

exceed the critical sheet current density Jc1 = 11.14 × 104A/m. Then the transport current

should not exceed 3.98A.

We know that the transport current I creates the same magnetic field outside of the super-

conducting and normal cylinder. The normal cylinder does not influence the bias field, whereas

the superconducting one increases the external field in the region close to the superconductor

(see Fig. 4.4). For a normal cylinder with transport current I , the required bias field at trap

height d is

normal : Bb(I, r) =
µ0I

2π(d+R)
. (4.26)

For a superconducting cylinder with transport current I , the required bias field at the trap height

d is

SC : Bb(I, r) =
µ0I(d+R)

2π ((d+R)2 +R2)
. (4.27)

We plot the required bias field at different trap heights above the superconducting and nor-

mal cylinders with identical geometry and transport curent in Fig. 4.7. In the region d ≤ 2.5R,

a superconducting wire needs a smaller bias field than a normal one. When the trap center

approaches the surface of the cylinder, a superconducting wire only need one half of the bias

field required by a normal one. On the other hand, applying the same bias field, the trap is

closer to the superconducting one than the normal one. This is helpful for miniaturization and
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Figure 4.7: External fieldBb vs the trap height above a cylindrical wire. HereBb is normalized

by µ0I/2πR, the trap height d is normalized by the radiusR. Dashed line: analytical results for

the normal cylinder computed with Eq.(4.26). Circles: analytical results for the superconduct-

ing cylinder evaluated with Eq.(4.27). Solid line: numerical results for the superconducting

cylinder evaluated with Eqs.(4.14) and (4.19). We apply 300 surface elements in the numerics.

integration with other devices as mentioned in chap.1. It is another advantage of superconduct-

ing atom chips compared to normal ones.

4.5 Trap based on SC rectangule and strip in the Meissner state

Bb

t

2w

I

z

x
y

Figure 4.8: A superconducting rectangular wire is carrying a current I and placed in a bias

magnetic field Bb. The wire is infinitely long along the y axis, and has a width 2w along x
and a thickness t along z. If t is much smaller than the width 2w and the distance between the

trap center and the top surface of the wire denoted by d, we do not taken into account the finite

thickness and the side faces, the rectangule transits into a strip (infinite thin rectangle). The

current flows along the y axis, while the bias field Bb lies in the xz plane. A quadrupole trap

can be created above the wire center by choosing the transport current and the bias field such

that the fields generated by the transport current and the bias field cancel each other above the

wire center.

In this section we focus on a ‘side guide’ trap realized by a superconducting rectangle

or strip which are the usual shape for lithographically fabricated atom chips. Here, a strip
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means an infinite thin rectangle (t ≪ 2w) without side faces. The wire is carrying a current

I and placed in a horizontal bias field Bb as shown in Fig. 4.8. We assume that the wire

is in the Meissner state and its thickness t and width 2w are much larger than the London

penetration depth λL. We will see that properties and parameters of the magnetic trap formed

by a superconducting rectangular wire are different from those of the magnetic trap formed

by a superconducting cylindrical wire or a normal conductor one due to the different surface

current distributions.

4.5.1 Side guide trap
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Figure 4.9: (top) Magnetic trap (“side guide”) created by a superconducting rectangular wire

with a transport current, placed in a bias field parallel to the wire surface. We plot the modulus

of the magnetic field, normalized to µ0I/(2π
2w). (left) infinite thin rectangular wire (strip,

analytical calculation); (right) rectangular wire considering the finite thickness and side faces

(numerical calculation). (bottom) cross-sections along the z axis and x axis through the trap

centre. Solid lines: analytical result for a strip in the sheet current approximation; dotted lines:

numerical calculation for a rectangle. Due to the finite thickness and the side faces, the trap is

shifted closer to the wire (distance 0.76w → 0.64w).

The bias field is Bb = −2.5µ0I/(2π
2w). The numerical calculations are for a thickness

t = 0.081w, with screening currents flowing along all wire surfaces. The corners of the wire

are rounded (radius 0.031w). Only data points with distances larger than 0.031w are plotted

in the top row.
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A magnetic trap can be formed by a superconducting rectangular wire or a superconduct-

ing strip carrying a transport current I and placed in a bias field along the x axis as shown

in Fig. 4.9, details of calculations for supercurrents and fields in superconducting wires are

given in Sec.4.6. In the adiabatic approximation, a low-field-seeking atom is confined in the

minimum of the modulus of the total field |B|, which we plot in Fig. 4.9. By symmetry, the

minimum modulus of the total field lies above the center of the wire, where the parallel bias

field is canceled by the field created by the transport current I . The field above a strip cen-

ter generated by a transport current is parallel to the x axis and can be obtained by applying

Bio-Savart law (Brandt & Indenbom, 1993)

SC : B(I, x = 0, z) =
µ0I

2π(w2 + z2)1/2
. (4.28)

In order to compare with the field above a normal strip, let us recall that the current distribution

in a normal strip is uniform and the Biot-Savart law leads to (Reichel, 2002)

normal : B(I, x = 0, z) =
µ0I

2πw
arctan

w

z
. (4.29)

The magnetic fields created by the transport current above the center of a superconducting

strip and a normal one as well as the fields above superconducting rectangular wires with two

thickness/width ratios are shown in Fig. 4.10(left). Recall that the magnetic fields created by

transport currents outside of a superconducting cylinder and a normal cylinder are exactly the

same as shown in Fig. 4.2, although the current distribution is uniform in the whole volume

inside the normal one wheares there is no current inside and the current is only uniform on

the surface od the superconducting cylinder. But the magnetic field and current distribution

generated by a transport current around a superconducting rectangular wire and a normal con-

ducting rectangular wire are completely different. Fig. 4.10(left) shows that the field caused

by a transport current above the superconducting strip is lower than that above a normal one at

short height due to the different current distribution. The current diverges at the edges of the

superconducting wires (see Sec.4.6). This is different from the cylindrical case. It also can be

seen from Fig. 4.10(left) that at short height the infinite thickness and the side faces make the

fields above a rectangle center a littel lower than that above a strip with the same width.

By adding a homogeneous bias field parallel to the x axis such that the external field

(including the bias field and the field generated by the screening currents) B(Bb, 0, d) =
B(I, 0, d), then a quadrupole magnetic trap is formed above the center at distance d. The re-

quired bias fields at different d are shown in Fig. 4.10(right). We see that the required bias field

for a superconducting strip is smaller than for a normal one by a factor 2/π at low trap height

d ≤ 2.5w. Or we can say that the superconducting strip traps the atoms closer to the surface

than a normal strip in the same bias field. This results from the different current distrobution.

Due to the finite thickness and the side faces, the required bias field above a superconducting

rectangle is even smaller than above a superconducting strip. At larger trap height, all wires

behave practically the same.

Figs. 4.9 and 4.10 together illustrate the impact of the finite thickness and the side faces of

the superconducting wire. The horizontal bias field also induces screening currents on the side
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Figure 4.10: (left) Magnetic field created by a current-carrying wire as a function of the

normalized obsrevation distance z/w. Solid line: superconducting strip; dashed line: normal

metal strip; symbols: superconducting rectangular wires with different thickness. The magnetic

field is normalized to µ0I/(2π
2w). (right) Bias field required to form a trap at height d above

the wire. This plot differs from the left one only for rectangular wires where screening currents

appear on all surface. The trap height is slightly reduced. Field and distances are normalized

as in (left).

faces of the wire which makes the currents on the top and bottom faces in different directions

(see Sec.4.6 below). The effect is so small that the field gradient along the x axis at the trap

center is almost unchanged (see Fig. 4.9 bottom right). The main impact of superconductor

is to make the trap-surface distance shorter at fixed bias field, see Fig. 4.9. Conversely, su-

perconducting wires lower the bias field required to create a trap at small height as shown in

Fig. 4.10(right).

geometry Ic1(Jc1 × µm) for Bb = 0 B′
c1(Bc1) for I = 0

cylindrical wire 64.27 0.49

rectangular wire 10.81 0.44/0.07(horizontal/vertical)

strip 5.39 large (horizontal) < 0.07 (vertical)

Table 4.2: Critical values for niobium wires. The critical sheet current density is Jc1 = 11.14×
104A/m, the critical field is Bc1 = 1400G and the penetration depth is λL = 39nm for

niobium. The critical transport current is given in units of Jc1 ·µm and the critical field in units

of Bc1. The results are evaluated for a cylindrical wire with radius 10µm, a rectangular wire

20µm×2µm and a strip with width 20µm and thickness t > 2λL. For the cylindrical wire, we

give the critical magnetic field in arbitrary direction; for the rectangule, the critical values for

a horizontal and vertical bias field are given respectively. A strip has no effect on a horizontal

bias field. Details about the computations of critical values are given in Sec.4.7.

One should be careful that in order to keep the superconducting wire in the Meissner state,
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the total magnetic field including the bias field, the field created by the transport current and the

field created by the induced screening currents should remain below the first critical magnetic

field Bc1 in any point of the wire. Otherwise, the superconductor may transit into the normal

state (type I superconductors eg. Pb) or the mixed state (type II supercondcutors eg. Nb). We

list some typically critical values for Nb wires in Table 4.2, details are given in Sec.4.7.

4.5.2 Transport of atoms
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Figure 4.11: Magnetic trap shifted to the edge of the rectangular wire by turning the bias

field in Fig. 4.9 in the xz-plane. The wire is carrying a current I . The bias field is Bb =
−2.5µ0I/(2π

2w). The wire is t = 0.08w thick. The corners of the wire are rounded (radius

0.031w). Only data points with distances larger than 0.031w are plotted in left. We discretize

the surface into 424 elements in the numerical calculation. Left: 22.5◦ angle between the bias

field and the x axis. Right: 45◦ angle between the bias field and the x axis.

A simple transport procedure of an atom cloud above a superconducting chip is shown

in Fig. 4.11. A superconducting rectangular wire is carrying a transport current I . Applying

a bias field with the amplitude Bb = −2.5µ0I/(2π
2w) and changing the angle between the

bias field and the x axis (as well as turning the bias field in Fig. 4.9), the minimum of the

total field is shifted, hence the atoms are moved along a curve path. Fig. 4.11 shows the field

profiles at two different angles of the bias field. When the angle between the bias field and

the x axis changes from zero to 45◦, the trap center is moved curvely from the center close

to the edge of the wire. One should be careful that the screening currents induced by the

external field produce potential barriers near the edges of the wire which should be taken into

account for the loading and controlling of the atoms. For this reason, the loading procedure for

a superconducting atom chip is quite different compared to a normal one. In the experiments

the loading procedure of atom chips transports an atom cloud along the x axis by adjusting the

bias field and the transport current. A varying vertical bias field By is often used to load atoms

on a normal atom chip. However, the impact of the field on the screening current distribution

is strongest when the external field is perpendicular to the superconducting wire. The induced

screening currents shield the interior of the superconductor from the external vertical field and
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Figure 4.12: Magnetic potential above superconducting wires placed in a vertical bias field.

We plot the modulus |B(x, z)| normalized to the bias field Bb.
(top) Field distribution above a rectangular wire, numerical calculation. A strip wire (infinitely

thin rectangle) gives slightly sharper peaks at the wire edges x = ±w.

(bottom left) Field above the wire centre, as a function of distance from the top surface. The

difference between an strip (infinitely thin) and wires (finite thickness) is minor. Sheet currents

that flow on the wire surfaces (preferentially near the edges) screen the bias field so that the

field normal to the wire goes to zero at the surface.

(bottom right) Field at fixed distance z = 0.16w from the wire top surface, as a function of

lateral position. The peaks are broadened for a rectangular wire.

Analytical results: infinitely thin strip in the sheet current approximation (see Brandt & Inden-

bom (1993) for details). Numerical calculations: rectangular wire with rounded corners (radius

of curvature 0.031w). Only data points with distances larger than 0.031w from the top surface

are included in the top plot.
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make the external field significantly non-uniform. This effect get maximal for supercondcutors

in the Meissner state. Consequently, different loading procedure is required to be designed for

a superconducting atom chip. For example, if the transport current and the horizontal bias field

are fixed, we need carefully vary the vertical field nonlinearly so that the atom cloud can be

loaded along the x axis.

To show the influence of the screening currents on the external field, we plot the magnetic

field distribution above a superconducting rectangle placed in a vertical bias field in Fig. 4.12.

There are two maxima around the edges and one minimum above the center on the surface,

since the screening currents preferentially flow along the edges. Around the top corners the

fields close to the surface are much larger than the applied bias field (see Fig. 4.12 bottom

right), at the center the field goes to zero on the surface (see Fig. 4.12 bottom left). It can also

be seen that increasing the thickness of the wire broadens the two peaks around the edges (see

Fig. 4.12 bottom right), but has less impact on the field above the wire center (see Fig. 4.12

bottom left). The effect of the screening currents decreases as the distance from the surface

increasing. As can be seen in Fig. 4.12 (bottom left), the effect of the screening currents is only

15% of the applied bias field at the height d = 1.5w. In general, an atom cloud is formed and

loaded into a magnetic trap at the height of 300 ∼ 500µm (Fortágh et al., 2002). This height is

about 1.5w of usual design wires with width less than 200µm. Therefore the screening currents

influence the loading procedure slightly.

4.5.3 Trap parameters

As shown in the above that a side guide trap can be realized by an atom chips based on super-

conductors. The non-uniform current distribution and the nonzero screening currents induced

by the bias field make the trapping field near a superconducting chip much different from that

near a normal one. The transport current concentrates at the edges of the wire (we will show it

in the next sections), which makes the current density in the central part of a superconductiong

wire smaller and the magnetic field near the wire center weaker than that near a normal one

at the same total current. Recall that a superconducting strip has no effect on a parallel bias

field, a side guide trap is closer to the surface of a superconducting strip than to the surface of

a normal one (at fixed horizontal field). The finite thickness and the side faces of the super-

conducting wire slightly decrease the bias field above the wire center and bring the trap even

closer to the top surface of a superconducting rectangular wire (Fig. 4.10).

Before we consider trap parameters of the side guide traps created by a superconducting

wire, we point out that we do not take into account here the bending of the wires such as ‘U’

and ‘Z’ traps and only conside a side guide trap generated by a current-carrying superconduct-

ing wire in an external bias field. Calculation of the current density distributionthe in a bent

superconducting wire is complicated, it requires to solve the integral equations in Sec.4.3 in

three spatial dimensions and take care of the concentration of currents at each sharp corner.

However, our results can be applied at the central part of the guiding wire, where is sufficiently

far away from the bends.

The confinement of atoms in a magnetic trap is described by the two parameters: the mag-

netic field gradient at the trap center and the depth of the trapping potential. The trap depth is

determined by the smaller one of the two potential barriers: one is from the trap center to the
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surface and the other is from the trap cenetr to far away. The gravitational potential is taken

into account for the trap depth. For a fair comparison, the superconducting and normal strips

have the identical geometry; the superconducting rectangle has the same width 10µm as the

strips; the superconducting strip and rectangle are both made of niobium and applied at 4.2µK;

three wires carry the same transport current 20mA.

The field gradients and the trap depthes at different distances are presented in Fig. 4.13.

At larger trap height (d > 2w = 10µm), the field gradient and the trap depth for the three

geometries are essentially the same. At small trap height, the superconducting traps have ob-

viously smaller field gradient and trap depth than the normal one. The parameters of the trap

formed by the superconductng rectangle are slightly smaller than the superconducting strip

due to the impact of the finite thickness and side faces. A reliable trapping of the atoms hav-

ing temperature of 1µK can be obtained when the trap depth is larger than 10µK (the dashed

line in Fig. 4.13right) and the gradient is high enough to avoid the atoms loss by the gravita-

tional effect, for example 15.3G/cm (the dashed line in Fig. 4.13left) for 87Rb atoms in the

|F = 2,mf = 2〉 state (F is the total spin and mF magnetic moment). This reliable trapping

range of the traps formed by niobium superconducting wires can be roughly estimated from

Fig. 4.13 1 ∼ 100µm. It is obviously samller than the trapping range of a normal trap. Al-

though compared to a normal chip trap, a superconducting one has a smaller trapping range

and worse trap parameters at low height d < 6µm, it is still attractive due to the significant

reduction of the magnetic noise, which prolong the trap lifetime and coherence.
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Figure 4.13: Magnetic field gradient (left) and trap depth (right). Black dash-dot lines: normal

strip. Blue dahsed lines: superconducting strip. Red solid lines: superconducting rectangle.

Dot lines: typical criteria for reliable trapping, 15.3G/cm for the magnetic field gradient in the

left and 10µK for the trap depth in the right. The three wires are all 10µm wide and carrying

20mA transport current. The rectangular wire is 0.86µm thick. The superconducting wires are

made of niobium and applied at 4.2µK. The trap depth is corrected by taking into account the

gravitational effect.
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4.5.4 Noise

The motion of the electrons that are not in the superconducting state and participate in ther-

mally induced current fluctuations is the main source of the magnetic noise. Recently, the

magnetic noise has been investigated by means of two-fluid model, Bardeen-Cooper-Schrieffer

(BCS) theory and Eliashberg theory. Compared to normal metallic chips, the magnetic noise

is significantly reduced by several orders of magnitude around a superconducting chip in the

Meissner state. This is benift from the opening of the superconducting gap and the resulting

inability to deposit energy into the superconductor, the highly efficient screening properties and

the small active volume within which current fluctuations can contribute to the noise (Scheel

et al., 2005; Skagerstam et al., 2006; Hohenester et al., 2007; Rekdal & Skagerstam, 2007;

Skagerstam & Rekdal, 2007). However, the magnetic noise can not yet be detected by any

superconducting quantum interference devices (SQUID) or other measurement devices.

4.6 Field and current distribution in the Meissner state

It is well known that in a normal conductor the current density is homogeneous in the whole

volume. However, this is quite different in a superconducting wire due to the Meissner effect.

In the following, we discuss the current density distribution in a superconducting wire by means

of the surface integral equations and conformal mapping respectively. Once the current density

distribution is determined, the megnetic field near the superconducting wire can be obtained by

applying the Biot-Savart law.

4.6.1 Numerical calculation

Let us first consider the magnetic field and screening currents created by a transport current I .

For a superconducting rectangle they are still described by Eq.(4.171 and 4.19) and shown in

Fig. 4.14. The current distributions are the same on the upper and lower surface by symmetry

and concentrate in the four corners with the same direction and amplitude (see Fig. 4.14 left).

In Fig. 4.14(right), the magnetic field above the wire shows two maxima around the corners

and a 2D minimum in the middle at short distance (z ≤ w); in the far field the magnetic field

becomes ‘azimuthal’ with respect to the rectangle, and the superconducting wire behaves as a

normal metallic one.

For a strip (see Fig. 4.15) the integral equations can be simplified and the current density

can be replaced by a sheet current density. Recall the second term in Eq.(4.19), it can be written

as
∂G(r,x)

∂n(x)
= n(x) · sdG(s)

ds

1

s
, (4.30)

where s = r − x and s = |s| which is the distance beween the evaluation point r and source

point x as shown in Fig. 4.15. Because the strip is infinite thin, the source points x and x′ on the

top and bottom surfaces have the same coordinates and the same distances from the evaluation

point, but the normal vectors at x and x′ have opposite signs. The integrals of Eq.(4.30) on the

1We round the edges of the wire with a radius of curvature r ≈ w/32, for the sake of faster convergence.
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Figure 4.14: Superconducting rectangularwire with a transport current. Left: illustration of

the surface current distribution. The supercurrent flows preferentially along the wire corners.

Right: equipotential lines of the magnetic field |B| above the wire, which is 2w = 20.64µm
wide and t = 1.64µm thick. We take the transport current I = 1A and |B| is in unit of T. The

corners are smoothed with a radius of curvature r = 0.32µm. We discretize the boundary into

424 elements.
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Figure 4.15: Sketch of a superconductor strip. The top and bottom surfaces coincide each

other. x(x′) is the source point on the top(bottom) surface. n(n′) is the unit normal vector at

x(x′). o is the origin.

top and bottom surfaces have opposite sign and cancel each other in Eq.(4.19). We have used

here that, similar to a superconducting rectangular wire with a transport current, the surface

current density distributions on the top and bottom surfaces are exactly the same by symmetry.

We write g′(x) = ∂A′
s(x)/∂n to denote the sum of current densities on the top and bottom at

point x, and get from Eq.(4.19) the integral equation of Bancroft (1996)

A0 = −
∫ w

−w
da(x)

(

G(r,x)g′(x)
)

, (4.31)

where A0 is the constant value of the vector potential on the strip surface.

We plot the sheet current density g′(x) in Fig. 4.16. The current, as well as the current in

the superconducting rectangle, diverges at the edges of the strip. For comparison, we include

the analytic results (circles computed by Brandt’s model which is discussed in the following

section) in Fig. 4.16 also. Good agreement between the numerics and the analytics effectively
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Figure 4.16: Left: current density distribution on a superconducting strip with a transport

current. The strip is 20µm wide. Solid line: computed numerically with Eq.(4.31); Circles:

computed with Eq.(4.38). We discretize the strip surface into 200 surface elements. Both

numerical and analytical results show the divergence of the current at the edges. Right: sheet

current density diverges near the edge as
√
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validates our numerical approach. Once we know the sheet current density g′(x) on the strip,

the magnetic field can be evaluated everywhere by Eq.(4.16).
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Figure 4.17: Superconducting rectangular wire placed in a horizontal bias field Bb. Left:

illustration of the surface current distribution. The bias field induces screening currents on the

side faces of the rectangle and makes the currents on the top and bottom sides differ. Right:

equipotential lines of the magnetic field |B| (bias field plus field produced by the screening

current) above the wire. |B| is normalized to bb. The rectangular wire is 2w = 20.64µm wide

and t = 1.64µm thick. The corners are smoothed with a radius of curvature r = 0.32µm. We

discretize the boundary into 424 elements.
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Let us now consider screening currents induced by a horizontal bias field and how they re-

act on the external field. The density distribution of the induced screening current is described

by Eq.(4.12) and shown in Fig. 4.17 (left). The currents concentrate on the four corners: the

currents on the two upper corners flow in the positive direction of the y axis while the currents

on the two lower corners flow in the opposite direction. It is the induced screening currents on

the side faces of the rectangle that make the currents on the top and bottom sides differ. The

magnetic field above the superconducting wire (ie. bias field plus field generated by the screen-

ing current) is described by Eq.(4.14) and presented in Fig. 4.17 (right). At short distances

( z ≤ w), there are two maxima at the two upper corners. In the far field, the magnetic field co-

incides with the bias field, and the impact of the screening current rapidly becomes negligible

because the total screening current is zero.

For a superconducting strip in a horizontal bias field, the thickness is so small that there is

no induced screening current inside the strip and the strip does not change the bias field.

4.6.2 Conformal mapping

Brandt’s model

Brandt & Mikitik (2000a) investigate the surface current distribution in a superconducting rect-

angle in the Meissner state by means of a conformal mapping of the rectangle onto a half plane.

A superconducting wire carrying a current I and placed in a bias field Bb can be computed as

a linear superimposition of the two cases (as mentioned before): a wire with a nonzero current

in a zero bias field (I 6= 0, Bb = 0) and a wire with zero current in a nonzero bias field

(I = 0, Bb 6= 0). Generally, if the bias field Bb forms an angle with the top surface of the

wire, we decompose it into two components parallel and perpendicular to the top surface and

estimate the current density and fields induced by these two components seperately. We recall

some basic formulas here.

In Brandt’s model, a universal mapping function is defined as

f(s,m) = ms

∫ 1

0

√

1 − s2ζ2

√

1 −ms2ζ2
dζ , (4.32)

that can be evaluated as a sum of two incomplete elliptic integrals f(s,m) = E(s,m) − (1 −
m)F (s,m), with 0 ≤ |s|,m ≤ 1:

F (s,m) =

∫ s

0

1 − ζ2

√

1 −mζ2
dζ (4.33)

is the incomplete elliptic integral of the first kind, and

E(s,m) =

∫ s

0

√

1 −mζ2

1 − ζ2
dζ (4.34)

is the incomplete elliptic integral of the second kind, see Abramowitz & Stegun (1972). m is

determined by the ratio of the thickness to the width of the rectangle

t

2w
=

f(1,m)

f(1, 1 −m)
. (4.35)
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For the rectangle with fixed ratio 2w/t (then m is fixed) carrying a current I and placed in a

zero bias field, the surface current J(x, z) has the parametric form

J(x, t/2) =
I

2πw

f(1, 1 −m)
√

(1 −m)(1 − s2)
,

x(s)

w
=
f(s, 1 −m)

f(1, 1 −m)
0 < |s| < 1 ,(4.36)

J(w, z) =
I

πt

f(1,m)
√

m(1 − s2)
,

2z(s)

t
=
f(s,m)

f(1,m)
0 < |s| < 1 . (4.37)

We plot the surface current density induced by the transport current and described by the above

two equations in Fig. 4.18(left), The current density diverges at the corners, but this singularity

is integrable.

Figure 4.18: Surface Current density distribution induced by a transport current (left) and a

bias field (right) on a strip and rectangles with different aspect ratios. Left half: top surface

x = 0...w, z = t/2; right half: side aurface z = t/2...0, x = w, see insert. Red (dot-dashed)

line: strip. Blue (dashed) line: a rectangle with thickness t = 0.26w. Black (solid) line: a

rectangle with thickness t = 6w.

In the limit t≪ 2w, m tends to zero and as shown by Brandt & Mikitik (2000a), Eq.(4.36)

yields

J(x, 0) =
I

2π(w2 − x2)1/2
. (4.38)

Taking into account both the top and bottom surfaces of the wire, 2J(x, 0) gives back the exact

sheet current density for a strip given in Brandt & Indenbom (1993); Zeldov et al. (1994).

We plot Eq.(4.38) in Fig. 4.16 and Fig. 4.18(left). The current distribution on a wire can be

described by the sheet current density as long as the thickness is much smaller than the width,

see Fig. 4.18(left).

Similarly, for a rectangle with fixed ratio t/2w carrying a zero current and placed in a
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vertical field Bb, the surface current J(x, z) is

J(x, t/2) =
Bb
µ0

s√
1 − s2

,
x(s)

w
=
f(s, 1 −m)

f(1, 1 −m)
, 0 < |s| < 1 , (4.39)

J(w, z) =
Bb
µ0

√
1 −ms2

√

m(1 − s2)
,

2z(s)

t
=
f(s,m)

f(1,m)
, 0 < |s| < 1 . (4.40)

The current distribution in a strip which is placed in a vertical field can be obtained by taking

the limit t≪ 2w in Eq.(4.39), see (Brandt & Mikitik, 2000a):

J(x, 0) =
xBb

µ0

√
w2 − x2

(4.41)

Again considering both the top and bottom surfaces, we can use 2J(x, 0) as sheet current

density for a strip. From the above equation, one finds that the currents in the left and right

halves of the top surface are in opposite directions. We plot the current density distribution

on rectangles with different thickness/width ratios and a strip which are placed in a bias field

perpendicular to their top surfaces in Fig. 4.18(right). It can be seen again that the current

diverges at the corner, but this singularity is integrable. For example, integrating the current

density Eq.(4.41) over the half width of a strip, one gets a current Ihalf = 2wBb/µ0.

Zhilichev’s model

In order to avoid the divergence of the fields at the corners, Zhilichev (2003) rounded the sharp

corners by arcs. This approach will be used in Sec.4.7 to estimate critical currents and fields.

Let us first consider a semi-infinite superconducting film with rounded corners and placed in a

horizontal bias field, as shown in Fig. 4.19(left). The film is infinite along the y axis and the

positive x axis and it has thickness t along the z axis. The bias field Bb is parallel to the x axis.

We round the corners with a curvature of ρ, which is normalized by t/2. By symmetry, we only

compute the upper half part of the film by conformally mapping it onto the upper half-plane

(Zhilichev, 2003), as shown in Fig. 4.19(right).

The mapping function between the p and w planes (map w → p) is (Zhilichev, 2003)

p = C

∫ √
w + γ

√
w + β√

w + 1
dw

= C
{

γ
[

√

(w + 1)(w + β) − (1 − β) ln
(√

w + 1 +
√

w + β
)]

−γ
[

√

β − (1 − β) ln
(

1 +
√

β
)]

+
√

w(w + 1) − ln
(√
w + 1 +

√
w
)

}

.

(4.42)

The points a2(w = −1), a1(w = −β) and 0 on the w-plane are mapped to the points A2(p =
−ρ − i), A1(p = −ρ − iρ) and 0 on the p-plane, respectively. w = u, u ≥ −1 corresponds

to the surface of the upper half of the film, from A2 to the rounded corner, and then to the flat
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Figure 4.19: Conformal mapping between the upper half-plane (w = u + iv) and the upper

half of a semi-infinite film with rounded corners (p = x+ iz).

surface, see Fig. 4.19. When β is sufficient small, the following approximations can be used

(Zhilichev, 2003)

γ ≈ 1 +
1

10

(

3πρ

2

)2/3

, C ≈ 2

π
(

2 − 0.9(1.5πρ)2/3
) , β ≈

(

3πρ

2

)2/3

. (4.43)

The field on the surface of the upper half of the superconducting film in the p-plane is given by

B = (1 + γ)Bb

∣

∣

∣

∣

√
1 + u√

u+ γ
√
u+ β

∣

∣

∣

∣

, u ≥ −1 . (4.44)

The field Bρ on the rounded corner (−β ≤ u ≤ 0) can be obtained from the above equation

Bρ ≈ Bb

(

16

3πρ

)1/3

, β ≪ 1 , (4.45)

Bρ is approximately constant and remains finite, unless ρ → 0 (sharp corner). Note that the

rounded corner is not exactly one quarter of a circle, its shape is described by Eq.(4.42) with

−β ≤ u ≤ 0. For example, taking Bb = 0.181[Bc1] and ρ = 0.01, we plot the exact shape

of the rounded corner defined by Eq.(4.42) in Fig. 4.20(left). It shows that the corner is sand-

wiched between arcs of radius 0.01 and 0.011. The field on the surface of the upper half film

is plotted in Fig. 4.20(right). The field behaves similarily to the surface current in Fig. 4.18 de-

scribed by the Brandt’s model, but here the field does not diverge near the corner, see the insert

of Fig. 4.20. The maximal field on the corner is finite and can be even lowered by increasing ρ.
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Figure 4.20: Left: the corner shape for rounding parameter ρ = 0.01[t/2]. Blue solid line:

exact shape of the rounded corner defined by Eq.(4.42) with β ≈ 0.13 (Eq.(4.43)). It is sand-

wiched by two quarter circles of radius 0.01 and 0.011 (dashed lines). Right: field on the

surface of the upper half film. Insert: field around the corner. As can be seen, the magnetic

field gets the maximal value (B = Bc1) at (x = 0, z = 0). x and z are all given in units of t/2,

and the horizontal bias field Bb = 0.181 and the field B on the surface are both given in units

of Bc1.

For a superconducting rectangle, the width along the x axis is finite and denoted again by

2w. Compared to the semi-infinite film above, the field on the rounded corner of the rectangle

Brect
ρ is given by multiplying Eq.(4.45) with a correction factor (Zhilichev, 2001)

Brect
ρ = Bb

(

16

3πρrect

)1/3
√

E(1,m′) − F (1,m′)
E(1,m′) −mF (1,m′)

. (4.46)

where E(1,m′) and F (1,m′) are complete elliptic integrals of the first and second kind and

defined by Eqs.(4.33) and (4.34), corresponding to the complementary parameter m′ = 1−m,

where m is fixed by the aspect ratio of the superconducting rectangle, see Eq.(4.35). Here

ρrect is also normalized by t/2. Returning ρrect into Eq.(4.42), the exact shape of the rounded

corners can be obtained.

4.7 Critical values

We have already listed some typical critical values for superconductors with planar boundaries,

such as bulk or film, in Table 4.1, and approximate critical values for finite size wires in Ta-

ble 4.2. The critical values of a superconducting cylinder have been discussed in Sec.4.4. On

superconducting atom chips, superconducting wires always have the form of rectangle. Tran-

sitions from the Meissner state into normal or the mixed state in a superconducting rectangular
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wire become more involved and are much different from transitions in a superconducting cylin-

der or bulk due to the diverging current near sharp corners. Transitions in a superconducting

rectangle happen in several steps dependent on geometry, transport current and bias field. The

estimation of critical currents and bias fields is challenging for superconducting rectangular

wires and we discuss approximate treatments here.

In Sec.4.6, we have investigated the field and the current density distribution around super-

conducting rectangles under the assumption that the thickness is much larger than the penetra-

tion depth and that there are only currents on the surface of the wires (sheet current approxima-

tion). Near sharp corners the sheet currents show strong divergence, but in actual experiments

the currents, even near sharp corners, should be finite. This can be obtained in two ways: on

the one hand, Zhilichev (2003) regularized the current density near a sharp corner by rounding

the corner with arcs, see Fig. 4.20. On the other hand, one can use the full London theory that

takes into account the finite penetration depth below the surface and gives a finite current den-

sity at sharp corners (Brandt & Mikitik, 2000a). In the following, we roughly estimate the first

critical bias field B′
c1 and transport current I ′c1 for superconducting rectangles in the Meissner

state in the framework of Brandt’s model and Zhilichev’s model.

4.7.1 Brandt’s model

λL

c1J

Figure 4.21: Left: The current density induced by a bias field in a superconducting square

(a = b). λL = 0.025a, 2a is the width and 2b is the thickness. The bias field Bb = µ0H
is vertical to the face along the x axis. The current density j(x, y) is in unit of H/a. Only

a quarter of the cross section is shown, by symmetry. The current density shows a sharp, but

finite peak in the corner. Insert: magnetic field lines. From Brandt & Mikitik (2000a). Right:

qualitative picture: the sheet current density takes its critical value over a region of size λL near

the sharp corner.

Taking into account the finite penetration depth λL, the London equation is used to describe

the exactly current and field distribution around a superconductor of arbitrary cross section

(London & London, 1935),

λ2
L∇2B(x) = B(x) , (4.47)
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where B is the total magnetic field, x is the evaluation point. Brandt & Mikitik (2000a) inves-

tigated superconducting rectangles in the Meissner state by solving the full London equation,

Eq.(4.47), numerically. They found a finite current density at the sharp corners of rectangles,

as shown in Fig. 4.21(left). However, no analytical formulas can be obtained directly from

the London equation (Eq.(4.47)) for rectangular superconductors. We therefore estimate the

critical values for a superconducting rectangle still under the sheet current density approxi-

mation, but taking into account the finite value at the sharp corner. The sheet current density

diverges as l−1/3 at the corners of a rectangle symmetrically, where l is the distance from the

corner. As we know that the field and current penetrate into the superconductors in the Meiss-

ner state on a scale λL, we construct a critical situation by smoothing the current density near

the sharp corners on a scale λL and setting the maximum current density to the first critical

value Jc1 = λLjc1 of the superconducting material (Fig. 4.21, right).

Nonzero transport current and zero external field

Let us consider a superconducting rectangle carrying a transport current. In this section, we al-

ways consider that the thickness t and width 2w are larger than 2λL. Using conformal mapping

techniques, it has been shown that the current density near the sharp corner diverges approxi-

mately as l−1/3 (Brandt & Mikitik, 2000a)

Jcorner(w, l, I) =
I

2πw

(

f(1,m)2

3
√

m(1 −m)

w

l

)1/3

, (4.48)

where I is the transport current, f(1,m) is defined by Eq.(4.32) and m is fixed by the aspect

ratio of the rectangle, Eq.(4.35). We smooth the current density on a scale λL and in order to

keep the rectangle in the Meissner state we assume Jcorner(w, λL, I
′
c1) = Jc1 (see Fig. 4.21,

right), This gives as approximate critical current for the wire:

I ′c1(w, λL, Jc1) ≈ 2πwJc1

(

f(1,m)2

3
√

m(1 −m)

w

λL

)−1/3

. (4.49)

We plot the first critical current I ′c1 as a function of the width in Fig. 4.22(left), where m is

changing with 2w/t. I ′c1 increases as the width of the rectangle at fixed λL, since the rectangle

can carry larger transport currents.

If we ignore the effect of the side faces and consider a width much larger than the thickness,

the rectangle can be treated as a strip. But here we should take into account the finite thickness

of the strip for the critical current and field. Then the current density induced by the transport

current is defined by Eq.(4.38) and diverges at the edges. We smooth the current density near

the edges on the scale λL, as we did for the current density near sharp corners of a rectangle.

Therefore, the currents in the regions of scale λL near the two edges are 4λLJc1, considering

both the top and bottom surfaces. We assume when the transport current increases to the critical

value I ′c1, the sheet current density at x = ±(w− λL) takes its critical value Jc1. We then find

out the sheet current density distribution between x = −(w − λL) and x = (w − λL), it is
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Figure 4.22: Left: the first critical current I ′c1 vs. the width w of a rectangle and a strip. I ′c1 are

computed by Eq.(4.49) for a rectangle and by Eq.(4.51) for a strip, and given in units of Jc1t/2.

Right: the first critical bias fieldB′
c1 (parallel to the surface with the width of 2w) vs. the width

w. B′
c1 are computed by Eq.(4.53) (rectangle) and given in units of Bc1 (critical value of the

material). In both figures, λL = 0.06[t/2]. Blue lines: rectangle, red line: strip. Because a

horizontal bias field has no effect on a strip, we only plot the critical transport current for a strip

in the left. For the rectangle, both I ′c1 and B′
c1 depend on the aspect ratio and the penetration

depth λL. While for a strip, they depend on the width and the penetration depth.

integrable:

J(x) =
Jc1

√
2wλL√

w2 − x2
, |x| ≤ w − λL . (4.50)

The first critical current for a strip can be approximated by taking the sum of the currents near

the edges and the current in the central part from x = −(w − λL) to x = (w − λL). Taking

into account both the top and bottom surfaces, one has

I ′c1 = 4λLJc1 + 4

∫ w−λL

0

Jc1
√

2wλL√
w2 − x2

dx

= 2Jc1(π
√

2wλL − 2λL) . (4.51)

The integral in the above equation is larger than the first term 4λLJc1. This means that although

the current density takes its maximum near the sharp corners, the main contribution to the total

current is from the central part of the surfaces. Eq.(4.51) shows that the first critical current

I ′c1 of a strip increases as its width w at fixed penetration depth λL, this also can be seen in

Fig. 4.22(left). Note that Eq.(4.38) and (4.51) are only correct when the width is much larger

than the thickness (w ≫ t≫ 2λL).

For example, consider a superconducting rectangle made of niobium and applied at 4.2K in

a zero bias field. The penetration depth of niobium is λ = 39nm and the critical sheet current

density is Jc1 = 11.14 × 104A/m. If t = 2µm and w = 10µm, the transport current I should

be less than I ′c1 = 1.2A to keep it in the Meissner state (from Eq.(4.49)). For a niobium strip

(no side face effects) with the same width, this critical value is I ′c1 = 0.636A (from Eq.(4.51)).



88 Chapter 4. Magnetic traps with superconducting wires

Nonzero bias field and zero transport current

Similarly to a superconducting rectangle carrying currents in vacuum, the screening currents

induced by a bias field parallel to the width 2w of a superconducting rectangle also diverge at

the corners as l−1/3 (Brandt & Mikitik, 2000a)

Jcorner(w, l, Bb) =
Bb
µ0

(

1 −m

3
√
mf(1,m)

w

l

)1/3

, (4.52)

where Bb is the parallel bias field. Again, we smooth the current density on a scale λL and in

order to keep the rectangle in the Meissner state, we assume Jcorner(w, λL, B
′
c1) = Jc1. This

gives the first critical bias field

B′
c1(w, λL, Jc1) ≈ Bc1

(

1 −m

3
√
mf(1,m)

w

λL

)−1/3

. (4.53)

We plot the first critical field B′
c1 in Fig. 4.22(right). B′

c1 increases with the aspect ratio 2w/t
of the rectangle at a fixed ratio λL/w, while it also increasees as λL/w at fixed aspect ratio

2w/t. In the region where the aspect ratio is much larger than 1, B′
c1 is the critical value for

the bias field parallel to the wider surface of the rectangle (a flat rectangle in parallel field); in

the opposite region, B′
c1 is the critical value for the bias field vertical to the wider surface (a

flat rectangle in vertical field).
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Figure 4.23: The first critical vertical bias field B′
c1 vs. the ratio w/λL for a rectangle. B′

c1 is

computed with Eq.(4.53) and given in units of Bc1 (critical value of the material). It depends

on the ratio w/λL at fixed 2w/t. Here we take a fixed aspect ratio 2w/t = 10.

4.7.2 Zhilichev’s model

Within the frame of Zhilichev’s model, the sharp corner is rounded by parameter ρ and defined

by Eq.(4.42). The magnetic field takes its maximum at the rounded corner (Fig. 4.20, right)

and scales as (1/ρ)1/3, see Eq.(4.46). In order to keep the rectangle in the Meissner state, this



4.7. Critical values 89

0.01 0.1 1 10 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

w [ t/2 ]
B

’ c
1
 [
 B

c
1
 ]

 

 

ρ=0.01 [ t/2 ]

ρ=0.06 [ t/2 ]

ρ=0.11 [t/2 ]
λ

L
 =0.06 [ t/2 ]

Figure 4.24: The first critical parallel field B′
c1 for a superconducting rectangle. Red line: the

rounding parameter is ρ = 0.01; Blue line: ρ = 0.06; Black line: ρ = 0.11. Blue dashed line:

computed by Brandt’s model, Eq.(4.53) and taking λL = 0.06. At fixed ρ, B′
c1 increases as

the aspect ratio 2w/t and saturates when 2w/t ≥ 10; at fixed aspect ratio, B′
c1 increases as the

rounding parameter ρ. B′
c1 is in units of Bc1, ρ, λL and w are all in units of t/2.

maximum should be below the first critical value Bc1 for superconducting bulk or film listed in

Table 4.1. The bias field which induces a field on the rounded corner equal to Bc1, as the first

critical field for the superconducting rectangle, and denote it by B′
c1. According to Eq.(3.40),

B′
c1 = Bc1

16

3πρ

1/3
√

E(1,m′) − F (1,m′)
E(1,m′) −mF (1,m′)

. (4.54)

The first critical field B′
c1 at different rounding parameters ρ are plotted in Fig. 4.24 as a func-

tion of aspect ratio 2w/t (or w[t/2]). At fixed ρ, B′
c1 increases as the aspect ratio is inreasing

and tends to a constant when 2w/t ≥ 10. While at fixed aspect ratio, the larger the rounding

parameter ρ is, the higher the critical B′
c1 is. For comparison, we include the critical values

computed by Brandt’s model, Eq.(4.53) in Fig. 4.24 (blue dashed line), and modify the data

by a prefactor 2/3 because Brandt’s model slightly overestimates the current density near the

sharp corners. To make a fair comparison, we take a penetration depth λL = 0.06t/2 in

Eq.(4.53), identical to the rounding parameter ρ = 0.06t/2 in Zhilichev’s model Eq.(4.46)

(blue solid line in Fig. 4.24). The blue dashed line computed by Brandt’s model and the blue

solid line computed by Zhilichev’s model in Fig. 4.24 are very close. This suggest that when

we use Zhilichev’s model to regularize the current density at a sharp corner, we may choose the

rounding parameter ρ ≈ λL. And this also implies that the magnetic field and the current may

penetrate into a superconductor in the Meissner state in a shell of depth λL near a sharp cor-

ner. Both Brandt’s and Zhilichev’s models predict that the current density near a sharp corner

diverges as l−1/3, where l is the distance from the corner.

4.7.3 Bean’s model

Fig. 4.25 illustrates how the magnetic field penetrates into a superconducting rectangle ellip-

tically based in Bean’s model (Bean, 1962; Norris, 1970; Brandt & Mikitik, 2000). When



90 Chapter 4. Magnetic traps with superconducting wires

<  λL

(d) mixed state(a) Meissner state (b) intermediate state

λL>  

(c) critical state

Figure 4.25: Magnetic field penetrates into a superconducting rectangle elliptcally—-Bean’s

model. The white spaces are field free region; the shades are filed with currents and fields.

(a) the Meissner state. The currents distribute within the scale λ2
L. (b) an intermedia state.

As the transport current increases, the current density at corner exceeds its critical value. The

magnetic flux penetrates into the rectangle at the corner. The rectanlge partially transits into a

mixed state near the corner. (c) a critical state. The ellipse touches the rectangle, the spaces

between the ellipse and the rectangle are full filed with the magnetic flux. (d) the pure mixed

state.

the current and the bias field are both below the first critical values, the ellipse in which the

magnetic field is completely expelled is larger than the rectangle and the currents mainly con-

centrate in the four corners on a scale smaller than λL, see Fig. 4.25(a). If the current or the

magnetic field exceeds the first critical value in a type II superconductor, the magnetic flux

would penetrate into the superconductor, especially at the corners first, in the form of vortices

and the superconductor partially transits into the mixed state. The current at the corner then

extends over a scale larger than λL, as shown in Fig. 4.25(b). It is an intermediate state where

some parts of the superconductor display the properties of the mixed state while some parts

of the superconductor are still kept in the Meissner state. Bean (1962) assume that the mixed

parts carry a spatially constant current density jc2 (niobium, 510A/m2). If the current or the

bias field continues increasing, more and more magnetic flux penetrates into the rectangle and

the ellipse keeps decreasing. When the ellipse touches the boundary of the rectangle as shown

in Fig. 4.25(c), the shaded part is entirely filled with the current density jc2, the total current is

denoted by I ′c = 2jc2wt(1 − π/4). For a niobium rectangle with a width of w = 10µm and

a thickness of t = 2µm, this distinguish current is I ′c = 0.43A. When the current is larger

than I ′c, the ellipse is smaller than the rectangle (see Fig. 4.25(d)) and the superconductor is in

the mixed state. This state can be described by the Bean-Brandt model that we discuss in the

following section.

4.8 Trap based on SC strip in the mixed state

In the mixed (or Shubnikov) state, the supercurrent distribution differs from the Meissner state

because magnetic flux partically enters into the wire. Qualitatively, a behavior intermediate

between a SC in the meissner state and a normal conductor is found, as is discussed in Sec.4.8.2.

We start with a brief comparison of the side guide trap.
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4.8.1 Side guide trap

A side guide trap can be formed by a strip in the mixed state carrying a transport current I and

placed in a bias field Bb. If the bias field is parallel to the wide surface of the strip (along the

x axis), the trap is above the strip center by symmetry. We plot the trapping potentials above

three strips in Fig. 4.26(right), one is a normal strip (red solid line), one strip is in the mixed

state (black dashed line) and the other one is in the Meissner state with current I = 0.5Ic2
(green dot-dash line). The magnitude of the horizontal bias field is taken as 2.5µ0I/2π

2w. The

trap formed by a strip in the mixed state is between the traps formed by a normal strip and by a

strip in the Meissner state. Inceasing the current I , the parameters of a trap formed by a strip in

the mixed state are coming closer to those of a trap made by a normal one, whereas decreasing

the current makes the parameters come closer to those of a trap made by a strip in the Meissner

state.
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Figure 4.26: Left: magnetic field above the strip center at different current ratio I/Ic2. There

is no bias field. The field get the maximum value µ0I/2π
2w at the surface when I = Ic2. At

fixed distance z, the magnetic field increases nonlinearly as the current ratio. Right: magnetic

potential vs distance z above the strip center. The horizontal bias field is −2.5µ0I/2π
2w.

Red solid line: potential above a normal strip, computed with Eq.(4.29). Black dashed line:

potential above a strip in the mixed state carrying current I = 0.5Ic2, computed based on the

sheet current distribution defined by Eq.(4.55). Green dot-dashed line: potential above a strip

in the Meissner state, computed with Eq.(4.28). The minima of the three curves denote the trap

positions. The trap above the strip in the Meissner state is closest to the surface, while the trap

above a normal strip is furthest away.

We plot the magnetic field above the strip center which is created by the transport current at

different ratios I/Ic2 in Fig. 4.26(left). As can be seen, the magnetic field increases nonlinearly

with the current. This is different from both a normal strip and a strip in the Meissner state.

The nonlinearity is result from the fact that the shape of the current distribution depends on the

ratio I/Ic2, see Fig. 4.27 (computed by Eq.(4.55) below). When I < 0.2Ic2, the nonlinearity is

negligible and the currents are mainly flowing near the edges, as for in a strip in the Meissner

state. In this case, the magnetic field around the strip can be computed in the same way as for
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a strip in the Meissner state. In the opposite case (I ∼ Ic2), the current density all over the

strip equals the second critical value jc2 which makes the strip behave as a normal one with a

spatially uniform current density. Hence the magnetic field around the strip can be computed

as for a normal strip wire.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x [ w ] 

 s
h
e
e
t 
c
u
rr

e
n
t 
J
 [
 J

c
2
 ]

0.2

0.5

0.85

0.95

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 x [ w ]

s
h
e
e
t 
c
u
rr

e
n
t 
J
 [
 J

c
2
 ]

 

 

0.2

0.5

0.85

0.95

Figure 4.27: Sheet current density distribution in a strip in the mixed state vs ratio I/Ic2 (left)

and ratio Bb/Bc2 (right). The current has been increased from zero (vergin state). The four

curves correspond to the ratio I/Ic2, Bb/Bc2 = 0.2, 0.5, 0.85, 0.95 respectively.

4.8.2 Current distribution

Let us first consider a superconducting strip carrying a transport current I in a zero external

field. The Bean critical state model (Bean, 1962) is applied here: the current density (in units

of A/m2
) takes the critical values ±jc2 in the region where the magnetic flux penetrates and is

zero in the free-field region. Brandt & Indenbom (1993); Zeldov et al. (1994); Brandt (1996)

define the sheet current density (in units of A/m) by integrating jc2 over the thickness of the

strip, J(x) = (t+ + t−)jc2, where t+ and t− are the thicknesses of the regions carrying +jc2
or −jc2 respectively. Note that t± also depend on the history of ramping the supercurrent up

and down. Since t+ + t− ≤ t, the sheet current should be less than its critical value Jc2 = tjc2,

which is approached near the strip edges. The current in the central part of the strip is much

smaller because the current-carrying domain shields it from the external field, similarly to the

Meissner state. The sheet current distribution in a strip in the mixed state is given by (Brandt

& Indenbom, 1993) (see Fig. 4.27left)

J(x, I) =

{

2Jc2

π arctan
√

w2−b2
b2−x2 , |x| ≤ b

Jc2 , b ≤ |x| ≤ w
(4.55)

where b = w
√

1 − I2/I2
c2, I is the transport current and Ic2 = 2wJc2 the maximal transport

current. It is achieved when the magnetic field fully penetrates the strip, in that case b = 0 and

the current density everywhere in the strip is Jc2. If the transport current exceeds Ic2, then the
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superconducting strip transits into a normal one. For a niobium strip with a width 2w = 20µm
and a thickness t = 60nm, placed in a zero external field, the transport current should be

smaller than 2wJc2 = 6.19 × 10−2A to keep it in the mixed state.

Let us now consider the case of an external magnetic field, with the transport current being

zero. If the field is parallel to the top surface of the strip, it has no impact on the strip, as

long as the strip is infinitely thin. If the field is perpendicular to the top surface of the strip,

the distribution of the induced sheet current density is given by (Brandt & Indenbom, 1993;

Zeldov et al., 1994)

J(x,Bb) =

{

2Jc2

π arctan x
w

√

w2−b2
b2−x2 , |x| ≤ b

Jc2
x
|x| , b ≤ |x| ≤ w

(4.56)

where b = w/ cosh(Bb/Bc2), Bc2 = µ0Jc2/π is a characteristic field value. te. If the external

field Bb significantly exceeds Bc2, b decreases to 0, and the current density takes a step-like

profile (see Fig. 4.27, right). Taking the same parameters as above (Niobium strip, width

2w = 20µm, thickness t = 60nm) we find a characteristic field Bc2 = 12 G.

We recall that our Eqs.(4.55, 4.56) can be applied only when the transport current I and the

external field Bb have been increased from zero for the first time. The effect of reversing the

current or the bias field, resulting in more complex current distributions that are ‘frozon’ in the

wire, is discussed in detail by Brandt & Indenbom (1993).

4.8.3 Discussion

Compared to a superconducting strip in the Meissner state, a mixed state strip has some advan-

tages and disadvantages. A superconducting strip in the mixed state can carry a higher transport

current due to the higher critical sheet current density Jc2 and consequently provide a tighter

trapping confinement. On the other hand, the mixed state superconductor traps magnetic flux

which may result in higher magnetic noise and corrugation of the trapping potential at low

height. This is due to the motion of trapped votices that produce larger magnetic noise than the

thermal motion of residual normally conducting electrons in the Meissner state (Scheel et al.,

2007). In addition, if the transport current or the external field is increased from zero to a cer-

tain value and then decreased to zero again, there is still some magnetic fields kept inside the

mixed state superconductor. This should be taken into account for loading and controlling of

the atoms as well as the magnetic noise. The magnetic ‘pre-history’ is also relevant, as vortices

may be trapped when the superconductor is cooled through the transition temperature in an

external field. Still, we have good reasons to believe that cold atoms can be maintained long

enough and close enough to a mixed state atom chip so that they can be applied as a sensitive

new probe for the mixed state superconductor. The magnetic noise from the vortex motion in

the mixed state could be detected by the spin dephasing rate of trapped atoms (Scheel et al.,

2007). The high sensitivity of cold atoms to the magnetic trapping field (Wildermuth et al.,

2005; Vengalattore et al., 2007) can be used to image the static disorder produced by frozen

vortices (Scheel et al., 2007). Atom clouds have a highe spatial resolution (3µm), better than

conventional SQUIDs, and their high sensitivity provides a promising alternative to traditional

methods based on the noise of the transport current (Scola et al., 2006).
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4.9 Conclusion

A magnetic trap can be formed above a superconducting wire carrying a current and placed in

a bias field. Compared to a normal metallic chip, a superconducting one significantly reduces

the magnetic noise, especially when it is in the Meissner state. The magnetic noise is less

by 6 orders than that around a normal one (Skagerstam et al., 2006). Technical noises can

be removed by using persistent currents. Besides, a superconducting wire can transport high

currents without the Joule heating. And there is zero voltage drop across a superconducting

wire. For a normal chip, the Joule heating and the high electric field across the wires lead

to deformation and shift of the atom trap and increases the magnetic noise. For a normal

conductor with a cross-section of a size of µm2 and a resistivity of the order of µΩcm, the

electric field across the wire has a magnitude of 104V/m, where a Rb atom may experience an

attractive potential of an order of 102Hz (u = −1/2αE2). The superconducting chip also has

some disadvantagdes. Its trap confinement is not as good as a normal one’s, but it still might

improve the lifetime of trapped atoms due to the significant reduction of magnetic noise.

The magnetic field and supercurrents around a superconducting wire in the Meissner state

have been computed both numerically in a self-consistent way and analytically by conformal

mapping. Bean-Brandt model has been used for the superconducting wires in the mixed state.

The supercurrents become large at sharp corners and near edges. With identical dimensions,

transport currents and bias fields, at low trap height d ≤ 2.5w (reactangle and strip) or d ≤
2.5R (cylinder), the superconducting wire brings the trap center closer to the top surface than a

normal conducting one, especially when it is in the Meissner state. This result is in qualitative

agreement with the recent publication by Cano et al. (2008). It is the supercurrents that make

the trap-surface distance shorter. The finite thickness of a superconducting rectangle makes

the trap even closer to the surface, because of the screening currents on the side faces of the

wire, which are not taken into account for a superconducting strip. The magnetic trap above

a superconducting rectangle or strip in this region has some similarity with the double-wire

trap. The two maxima of the current distribution at the edges play a role of co-propagating

currents in the double-wire trap. On the other hand, in the opposite region the effect of the

screening currents is negligible. The trap based on a superconducting wire is like a ‘side guide’

trap based on a normal metallic wire. The supercurrents strongly shield the superconductor

from the exteranl magnetic field perpendicular to its surface. This effect has to be taken into

account for the loading and controlling cold atoms. The superconducting chip in the mixed

state produces higher magnetic noise than the one in the Meissner state, due to the motion of

votices. But it is still attractive for some advantages. The superconducting wire in the mixed

state can transport higher current due to the high critical values, hance it can provide tighter

confinment. Cold atoms trapped above the superconducting chip in the mixed state can be

applied as a new probe for the study of vortex dynamics. The critical current and external field

strongly depend on geometry and material.

We have studied the magnetic traps produced by superconductors with assumption that the

screening currents only flow on the surface (sheet current approximation). The surface currents

screen the superconductor from the external field. There is no field inside the supconductor.

If we take into account the finite penetration depth, the field and current will be on a scale λL
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below the surface (Brandt & Mikitik, 2000a). The London equations are required inside the

superconductor for more accurate descriptions. This is one of our next work.

We have studied the magnetic trap formed by a superconducting strip in the mixed state

without considering the effect of the side faces. However, the side faces do has impact on the

magnetic field and supercurrent distribution (Brandt, 1996). In addition, for a superconduct-

ing wire with arbitrary cross-sections in the mixed state, Ginzburg-Landau equations may be

required Brandt & Indenbom (1993); Zharkov et al. (2000). This could be our future work.

The superconducting wires we studied in this chapter are all of infinite length. In a real

atom chip design, ‘U’ or ‘Z’ form guiding wires are widely used. In that case, the trapping

field should be studied in three-dimensional setting. Our results can be applied on the central

part of ‘U’ or ‘Z’ wires, as long as it is sufficiently far away from the ends. The effect of the

ends will be investigated in the future.

Multiple current-carrying wires have been miniturized and integrated on atom chips to

provide atom traps, guides and so on. Our next work might also focus on how a current imposed

in one superconducting wire creates currents in the neighboring ones, which might change the

features of the magnetic trap (Cano et al., 2008).





Conclusion

In this thesis, we have studied magnetic microtraps above complex microchip structures, as

well as the thermal magnetic noise surrounding these metallic component. Magnetic traps

formed by superconducting wires have been investigated in the last part, since they can signif-

icantly reduce thermal noise and technical noise.

The lifetime of atoms above a layered chip has been investigated semi-analytically. Nu-

merical calculations have been performed for the loss rate due to spin flips induced by thermal

noise by means of multi-layer reflection coefficients. The magnetic noise depends essentially

on the thickness of the topmost metallic layer, as long as the the layers below have a much

smaller conductivity. The same magnetic noise could be obtained with a metallic membrane

suspended in vacuum. Based on this result, scaling laws for loss rate above a thin metallic layer

have been developed. The skin depth δ is highlighted as a characteristic length scale. At dis-

tances smaller than δ, the thermal magnetic noise power roughly scales with the volume of the

metallic material, hence the thickness of the metallic layer. A thin layer helps to increase the

trap lifetime if its thickness is substantially thinner than the skin depth at the Larmor frequency,

inversely it even gives a shorter lifetime than a bulk metal when its thickness is comparable to

the skin depth. Lifetimes evaluated without adjustable parameters are in a good agreement with

the experiment at a distance of a few microns. At shorter distances, atom-surface potentials of

the van der Waals-Casimir-Polder type might lower the trap barrier and open additional loss

channels. This could be our next work for a more precise description of trapping lifetime.

The impact of finite lateral size (width) of conducting wires on magnetic noise has been

considered in two-dimensional setting. The thermal magnetic noise around a metallic wire of

arbitrary cross-section has been computed with the help of boundary integral equations. At dis-

tances smaller than the skin depth δ, the main property of the infinitely wide wire applies still

for a wire of finite width: the spectral noise power roughly scales with the volume of metallic

material, in consistency with the ‘incoferent summation approximation’. As the wire width in-

creases, the magnetic noise saturates. The main difference beween an infinitely wide wire and

a finitely wide wire is that the magnetic noise components Bxx and Byy (parallel and perpen-

dicular to the wire surface, respectively) are identical above the infinitely wide wire, whereas

the magnetic noise around the finitely wide wire is strongly dependent on the polarization.

Strategies to minimize loss or decoherence due to thermal magnetic fields is suitably choos-

ing the direction of the static trapping fields. Inceasing the width of the wire, the magnetic

noise component Bxx levels off faster than Byy. Byy gets maximum when the trap height is

comparable to the wire width. The incoherent summation approximation systematically over-

97



98 Conclusion

estimates the noise power in one of the two field polarizations, but otherwise reproduces the

main features as long as the skin depth is the largest scale. The noise power can be significantly

non-additive when dealing with multiple objects. Our method is restricted to 2D and does not

permit quantitative predictions of trap lifetimes. Expanding our method into three dimensions

and calculating trap lifetime above wires with finite size may be our next work.

A magnetic trap generated by a superconducting wire has been investigated. The trapping

field and supercurrents around a superconducting wire in the Meissner state and the mixed state

with arbitrary cross sections have been computed both analytically by means of a conformal

mapping and numerically in a self-consistent way. At low trap height, compared to a normal

chip, a superconducting wire with identical dimensions brings the trap center closer to the chip

surface. This results from the distribution of the supercurrent that shield the interior of the su-

perconductor from the magnetic field. Taking into account the supercurrents on the side faces,

the finite thickness of a superconducting rectangular wire makes the trap even closer to the

surface than a superconducting infinitely thin wire (strip). The magnetic trap above a super-

conducting rectangle or strip has some similarity with a double-wire trap: the two maxima of

the current distribution at the edges work like co-propagating currents and produce potential

barriers near the corners. This makes the loading and controlling atoms above a supercon-

ducting chip different from those of a normal one. The confinement potential provided by a

superconducting chip is not as strong as a normal one, but they are still enough for trapping

atoms. However, superconducting chips improve the lifetime of trapped atoms due to the sig-

nificant reduction of thermal magnetic noise, especially when they are in the Meissner state.

In addition, technical noise can be completely removed by using persistent currents. Super-

conducting chips in the mixed (Shubnikov) state are likely to produce higher magnetic noise

than those in the Meissner state, due to the motion of vortices. Tighter confinements can be

obtained in superconducting chips in the mixed state due to the higher critical current. Cold

atoms trapped above superconducting chips in the mixed state can also be applied as a new

probe for the study of vortex dynamics. Critical currents and external fields for a supercon-

ducting rectangle and strip are much smaller than the values for a flat bulk and a cylinder. One

should be careful not to exceed the critical values, especially because the supercurrent becomes

large near a sharp corner.

Our numerical and analytical calculations are both made under the sheet current approx-

imation where the penetration depth λL is much smaller than the thickness and width of the

wire and the screening currents only flow on the surface. A more accurate description needs

to take into account the finite penetration depth λL using the London equations, for example.

This is one of our future works. In the future, we will also investigate magnetic traps produced

by superconducting wires in the mixed state with arbitrary cross-section.

In a real atom chip design, ‘U’ or ‘Z’ form guiding wires are widely used. In that case,

the trapping field should be computed in three dimensions. Our results can be applied on the

central part of ‘U’ or ‘Z’ wires, as long as it is sufficiently far away from the ends. The effects

of the ends could be our next work.
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