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Abstract

Recently, several faint ringlets in the Saturnian ring system were found to maintain a

peculiar orientation relative to Sun. The Encke gap ringlets as well as the ringlet in the

outer rift of the Cassini division were found to have distinct spatial displacements of

several tens of kilometers away from Saturn towards Sun, referred to as heliotropicity

(Hedman et al., 2007). This is quite exceptional, since dynamically one would expect

eccentric features in the Saturnian rings to precess around Saturn over periods of

months.

In our study we address this exceptional behavior by investigating the dynamics

of circumplanetary dust particles with sizes in the range of 1-100 µm. These small

particles are perturbed by non-gravitational forces, in particular, solar radiation pres-

sure, Lorentz force, and planetary oblateness, on time-scales of the order of days. The

combined influences of these forces cause periodical evolutions of grains’ orbital ec-

centricities as well as precession of their pericenters, which can be shown by secular

perturbation theory. We show that this interaction results in a stationary eccentric

ringlet, oriented with its apocenter towards the Sun, which is consistent with obser-

vational findings.

By applying this heliotropic dynamics to the central Encke gap ringlet, we can give

a limit for the expected smallest grain size in the ringlet of about 8.7 microns, and

constrain the minimal lifetime to lie in the order of months. Furthermore, our model

matches fairly well the observed ringlet eccentricity in the Encke gap, which supports

recent estimates on the size distribution of the ringlet material (Hedman et al., 2007).

The ringlet-width however, that results from our modeling based on heliotropic

dynamics, slightly overestimates the observed confined ringlet-width by a factor of 3

to 10, depending on the width-measure being used. This is indicative for mechanisms,

not included in the heliotropic model, which potentially confine the ringlet to its

observed width, including shepherding and scattering by embedded moonlets in the

ringlet region.

Based on these results, early investigations (Cuzzi et al., 1984, Spahn and Wiebicke,
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1989, Spahn and Sponholz, 1989), and recent work that has been published on the

F ring (Murray et al., 2008) - to which the Encke gap ringlets are found to share

similar morphological structures - we model the maintenance of the central ringlet by

embedded moonlets. These moonlets, believed to have sizes of hundreds of meters

across, release material into space, which is eroded by micrometeoroid bombardment

(Divine, 1993).

We further argue that Pan - one of Saturn’s moons, which shares its orbit with

the central ringlet of the Encke gap - is a rather weak source of ringlet material that

efficiently confines the ringlet sources (moonlets) to move on horseshoe-like orbits.

Moreover, we suppose that most of the narrow heliotropic ringlets are fed by a moonlet

population, which is held together by the largest member to move on horseshoe-like

orbits. Modeling the equilibrium between particle source and sinks with a primitive

balance equation based on photometric observations (Porco et al., 2005), we find the

minimal effective source mass of the order of 3 · 10−2MPan, which is needed to keep

the central ringlet from disappearing.

The cover shows the outer part of Saturn’s A ring, including the Encke gap with its

central and inner (only in the left image) dusty ringlets. The right image is composed

out of an A ring image and the central ringlet produced by the annulus model derived

in this study. Notice the circular distortion in the lower right corner of left image,

which is due to an impact of a small particle onto the lens. Both images were taken

by Cassini in 2004 (Credit: ciclops.org).



Acknowledgements

Thanks go to my supervisor F. Spahn and colleagues A. H. Guimaraes, E. Jamrath,

E. V. Neto, M. Makuch, J. Schmidt, M. Seiß, and K.-U. Thiessenhusen for their mo-

tivated guidance in introducing me to scientific work, especially on such a nice topic.

Thanks for your enormous support in various kinds of way. I also acknowledge the

unique spirit of this special group.

Substantial life support - socially as well as financially - came from my parents Chris-

tine and Michael F., which I acknowledge hereby. Also not to forget about my dear

brother Peter F., I am grateful for every minute we spend together!

I express thanks to my band mate Rainer B.- a.k.a. Grandmaster B - for such good

times we have with our band project Erntefest.

There are many other personalities and materials, including the coffee farmers in Cen-

tral America as well as the paper from spruces and pines, that have contributions to

this work. Thank you all.

Finally, my dear darling Sara, thanks for being around.





Contents

Abstract i

Acknowledgements iii

1. Introduction 3

2. Circumplanetary Dust-Dynamics In The Solar System 11

2.1. Extended Newton Kinematics . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. Planetary Oblateness . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2. Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3. Lorentz Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2. Expected Magnitudes Of The Perturbing Forces . . . . . . . . . . . . . 20

2.2.1. Planetary Oblateness . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2. Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3. Lorentz Lorce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. The Annulus Model Of Heliotropic Ringlets 25

3.1. The Equation Of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1. Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2. The Perturbation Equations . . . . . . . . . . . . . . . . . . . . 27

3.2. Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1. Solution For Arbitrary Initial Conditions . . . . . . . . . . . . . 29

3.2.2. Solution For Simplified Initial Conditions . . . . . . . . . . . . . 30

3.3. Annulus Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1. From Orbital Elements To Streamlines . . . . . . . . . . . . . . 33

3.3.2. Heliotropicity - The Peculiar Orientation . . . . . . . . . . . . . 36

3.4. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1. Dynamical Density In The Ringlet Region . . . . . . . . . . . . 37

3.4.2. Photometric Measurements . . . . . . . . . . . . . . . . . . . . 38



2 Contents

3.5. Application To The Central Ringlet In The Encke Gap . . . . . . . . . 43

3.5.1. Apparent Eccentricity Of The Ringlet . . . . . . . . . . . . . . . 44

3.5.2. The Narrow Ringlet-Width . . . . . . . . . . . . . . . . . . . . 47

4. The Sinks And Sources Of Dusty Ringlets 53

4.1. Identification Of Possible Particle Sinks And Sources . . . . . . . . . . 53

4.1.1. Particle Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2. Particle Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2. Feeding The Ringlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1. Simple Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2. Application To The Encke Gap . . . . . . . . . . . . . . . . . . 56

5. Conclusion & Outlook 61

Bibliography 63

Declaration 69

Deutsche Zusammenfassung 71

Erklärung 75



CHAPTER 1

Introduction

Uniqueness in any sense has fascinated human perception of the universe since the

early days of our existence. Creamy, white colored clouds on blue sky embellished

by sunlight that scatters its way through the air. At night, the moon and its various

forms of appearance, as well as the stars and the mystique tone that comes with

them. These sorts of impressions have been - still are and will always be - the main

source of questioning. The journey of search has brought us a long way on such a

diverse field of investigations. This diploma thesis humbly tries to give a contribution

to the understanding of solar system dynamics, with focus on structure formation in

planetary rings.

Since mankind has risen on Earth, celestial bodies have been observed during clear

night sky. Primitively in the beginning by naked eye, and mostly motivated by religious

and cultural interests, observations have continuously advanced in two senses. First

being more scientifically motivated and second technically more advanced. In 1610,

Galileo Galilei discovered Saturn’s rings with an ordinary telescope. By that time, the

rings were thought to be moons, until 45 years later, Huygens correctly identified them

as rings. In the mid to late 70s, the two Pioneer spacecraft marked a new era of space

exploration. A major progress in understanding planetary rings came with Voyager

spacecrafts in the early 80’s. Their detectors, capable of detecting a wide range of wave

length and resolution, supplied fabulous material. Voyager 1/2 have pushed planetary

ring knowledge to an yet unreached level. On top of that, the spacecraft Cassini has

been launched on its way to Saturn and arrived its insertion orbit on July 1, 2004.

Since then, an unbelievable amount of valuable data has been collected, which has

revealed tremendous properties of Saturn’s ring system. By now, Cassini is on its first

extended mission tour until summer 2010. This will give us the chance to uncover even

more of the mysterious ring structures and answer some of the questions in queue.



4 1. Introduction

(a) Rings around Jupiter (b) Rings around Neptune

(c) Rings around Uranus (d) Rings around Saturn

Figure 1.1 The two upper Galileo images (1996) of panel (a) show Jupiter’s main ring
surrounded by an halo (top) and the main ring itself (middle). The bottom image in
panel (a) depicts Jupiter’s main ring as a mosaic of Voyager images (1979), taken from
Jupiter’s shadow looking towards Sun. Jupiter itself is seen by the lightened atmosphere
(circular arcs), the main ring by micron-sized dust scattering light into the camera lens.
Jupiter as well as its shadow separate the main ring into two ring arms, seen on the
left and right from the planet. Panel (b) shows a wide-angle Voyager 2 image (1989) of
Neptune’s two main rings at 135 ◦ phase angle (Sec. 3.4.2). A part of the Uranus ring
system is shown in panel (c), also taken from Voyager 2, in the shadow of Uranus at
a distance of approximately 236000 km from Uranus. A natural color view of Saturn’s
rings was taken by Cassini in summer 2004, nine days before orbit insertion, panel (d).
The B ring is the bright wide part, curving from upper right to lower left in this image.
The dark strand, just right to the B ring, is the Cassini division, separating the B and
outer A ring. Further out, we find an even smaller dark strand, the Encke gap, which is
maintained by Pan, a 25 km sized moon. Credit: www.ciclops.org
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Planetary rings comprise those charming entourages of all the giant planets in our outer

solar system. Jupiter, Neptune, Uranus, and Saturn are blessed by such extremely

flat, but wide add-ons (Fig. 1.1). Besides being beautiful to look at, planetary rings

exhibit a wealth of observable features, providing hints about physical processes and

mechanisms that shape our universe. Almost evolved to thermal equilibrium, ring

material has little random motion apart from its circular orbital motion in a plane

around the central planet. This is the reason for the enormous dimensional contrast

in vertical-to-horizontal extend of planetary rings. The extension of Saturn’s rings for

instance can be visualized by a sheet of paper being spread across a football field.

As shown by Maxwell (1859), and nowadays confirmed by many observational data,

planetary rings are far from being solid objects. They contain a myriad of individ-

ual bodies encircling the central planet, mostly composed of water ice with traces

of silicates. Their size ranges from dust powder of sub-microns up to boulders of

skyscraper-like sizes. Figure 1.2 shows an artist concept of a close-up view of Saturn’s

ring particles.

Figure 1.2 Artist concept of a close-up view of Saturn’s ring particles. Saturn is visible
in the background. The blue particles are composed mostly of ice. Adhesion, gravity
and other mechanism make them clump, to continually form elongated curved aggre-
gates. Under the influence of Keplerian shear and perturbing forces, these aggregates
disperse. Image by M. Peterson, based on a 1984 image by William K. Hartmann.
Credit: www.jpl.nasa.gov
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Usually, rings are found in the Roche zone of their central planet, the region within

tidal forces of the planet’s gravity field prevent ring material to coalesce under their

own gravity into larger objects. However, we find kilometer large satellites as part of

the ring systems, but placed safely outward of the Roche zone. Saturn has more than

60 of them, including Titan and Enceladus. While the former one has just been found

to hold a giant, glassy lake of liquid hydrocarbons (Brown et al., 2008), the latter

rather small moon is well known for its cryovolcanic activities and possibly holds an

ocean of liquid water beneath its surface (Fig. 1.3).

Figure 1.3 Cassini images from the imaging science subsystem (left, 2006), and com-
posite infrared spectrometer (right, 2008). On the left, the icy plume of Enceladus,
enlightened by scattered sunlight, while the moon itself casts a shadow onto the the E
ring of Saturn. To the right, the south polar region of Enceladus, revealing the warm,
150 km long cracks, which are the vents of the plume material. Credit: www.ciclops.org

Figure 1.4 gives a panoramic overview of the Saturn’s ring system. This mosaic is

composed out of 165 images taken by Cassini at the end of 2006. As can be seen, the

rings are more than one homogeneous appendage of Saturn. Depending on the local

material composition, light suffers diffraction, absorption, and scattering to different

amounts. The main rings itself are marked by letters, starting at the very faint D ring,

followed by the C ring, which inhabits some smaller ringlet structures. The widest

and heaviest of all Saturnian rings is the B ring, which in this geometry blocks most

of the sunlight. The Cassini division (CD) connects B and A ring, in which the Encke

gap (EG) is placed in. At the very edge of the main rings, we see the fascinating F

ring. Further out, G and E ring are visible. The latter one being the biggest dust
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complex in the solar system is feed by eruptions of the icy plumes on Enceladus, here

hardly visible in the E ring’s left side edge.

Figure 1.4 This striking panorama of Saturn’s rings shows the main rings in its en-
tire extend. The Sun is directly behind Saturn, whereas Cassini was placed in the
shadow of Saturn to produce this unique viewing geometry. See text for details. Credit:
www.jpl.nasa.gov

The structures being found in the ring system are closely related to the origin of Sat-

urn’s rings. Still a riddle to ring scientist, the origin of Saturn’s rings seems unique

compared to the ones from Jupiter, Neptune, and Uranus. These three system rep-

resent very dark material, which has little mass, and may therefore be easily created

by disrupted small moonlets. In contrast, Saturn’s ring are en gross very brilliant and

quite heavy, i.e., roughly the mass of the moon Mimas (400 km across). Consequently,

the major part of Saturn’s rings seems to be of secondary rather than direct, primor-

dial origin, e.g., dust condensate. Also the mere action of dissipative processes like

cosmic erosion, inelastic particle collisions, drag forces (plasma etc.) vote against a

primordial origin of the rings. Taking this point of view, there are likely two scenarios

in favor of ring formation:

• Rings are remainders of disrupted moons or other fly-by bodies, that could not

bear up against tidal forces of Saturn (Dones, 1991).

• Rings are remainders from locally formed moons, that have been destroyed by

incoming projectiles (Lissauer et al., 1988).
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Figure 1.5 Propellers in the A ring. It is believed, that these propeller like structures
provide the first direct observations of moonlets approximately 100 m in size. The
propellers itself are about 5 km long and remain constant as they orbit Saturn. In the
center image (close up of the A ring), a density wave caused by the moons Janus and
Epimetheus can be seen at the bottom. Credit: www.jpl.nasa.gov

These two scenarios are also supported by reported moonlets (60 - 140 m across),

which are embedded in the main rings. Moonlets of such size produce propeller-like

structures (Tiscareno et al., 2006, Spahn and Schmidt, 2006, Sremčević et al., 2007),

which can be used to identify them (Fig. 1.5). Larger moonlets, are able to evolve

these propellers towards gaps. This is observed in the Encke and Keeler gap (Fig.

1.6). Both gaps are the result of gravitational interactions between ring material and

the embedded moonlets. The Encke gap is swept-free by Pan, whereas the Keeler gap

is carved by Daphnis.

Historically, the Encke gap has been reported by Keeler in 1888 (Keeler, 1889)

as a thick black line in the outer A ring. In 1954 however, its existence has been

questioned by Kuiper, using the 200 inch Hale reflector. It was until the late 1970’s,

that the Encke gap has been seen during an eclipse of the moon Iapetus by the rings

(Reitsema, 1978) and clearly identified by Pioneer 11 (Gehrels et al., 1980). During a

stellar occultation, Ainslie (Ainslie, 1917) has probably been the first to observe what

we now call the Keeler gap. Confusingly, the international nomenclature committee

named Keeler’s discovery after Encke and Ainslie’s discovery after Keeler.

In this work, we focus on the central Encke gap ringlet. Beside being knotted and

kinky (Fig. 1.6), it belongs to a particular family of heliotropic ringlets, including its

inner and outer neighbors in the Encke gap, as well as a ringlet in the outer part of the

Cassini division. Such heliotropic ringlets have been reported to maintain a peculiar

orientation with respect to Sun (Hedman et al., 2007), i.e., their apocenters are shifted



9

Figure 1.6 This image shows the A ring with its two gaps, Encke and Keeler, including
their personal moons, Pan and Daphnis. The close-up view of the Keeler gap reveals
the influence of Daphnis onto the gap edges. A wavy pattern -wakes - is induced via
gravitational interaction. The same mechanism occurs in the Encke gap, see close-up.
The close-up of the outer Encke gap edge reveals regularly spaced dark lanes, 18 ◦
upstream of Pan. This wake structure is induced by Pan. In the Encke gap, there are
several ringlets, which have radial and azimuthal brightness variation, which might come
from embedded moonlets. Notice, the kinky and knotted structures of the Encke gap
ringlets conspicuously resemble structures in the F ring. Credit: www.jpl.nasa.gov

tens of kilometers towards Sun. This is quite remarkable from the dynamical point

of view. Dynamically, one would expect eccentric features in the Saturnian rings to

precess around Saturn over periods of months at a rate mainly determined by Saturn’s

oblateness.

A sharp radial confinement of the ringlets can be seen in Fig. 1.6, and has been

reported by many authors. For instance, Porco et al. (2005) report drop-offs in the

optical depth (Sec. 3.4.2) on the scale of meters from roughly 10−2 down to zero.

These features point to the action of embedded moonlets even others than Pan in

the case of the Encke gap. Such moonlet-family might be the key-ingredient for the
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existence of faint ringlets.

This work is organized as follows: In the two subsequent chapters, we investigate

the pure kinematics of dust grains and the structure that comes with it. Any kinetic

interactions are neglected, presuming a timescale separation of kinematics and kinetics.

In chapter 3, we apply our kinematic model to the Encke gap and relate our analytical

findings to observations, discussing very briefly some fundamentals of photometry. The

kinetic theory is addressed in chapter 4, where we investigate lifetimes and possible

mechanism that steadily replenish the ringlet with material. Finally, chapter 5 gives

conclusive remarks as well as an outlook to further investigations.



CHAPTER 2

Circumplanetary Dust-Dynamics In The Solar System

According to Kepler’s laws, most celestial objects in our solar system move on ellipses

in the gravity field of a massive central body. Perturbation forces lead to variations

of this Keplerian-like motion, although their relative strengths may vary significantly

from one situation to another. Following planetary gravity, the strongest forces act-

ing on circumplanetary micrometer-sized dust grains are: solar tides, solar radiation

pressure, planetary oblateness, and Lorentz force. The first one is important for the

orbits of grains far from planets, while the latter two dominate in the planet’s vicinity.

At intermediate distance, all four forces may be simultaneously important, depending

on the grain’s size.

2.1. Extended Newton Kinematics

In order to get some non-trivial motion of dust grains in orbit about a planet the

left-hand side of Newton’s second law F = ma is extended by additional forces, which

brings additional non-linearities in the equations of motion and do often not allow

for analytical solutions. Nevertheless, using osculating orbital elements in conjunction

with perturbation theory it is possible to find the characteristic properties of the

studied system.

Figure 2.1 shows one possible set of the six osculating orbital elements (Ω,̟, i, e, a, T ),

which are equivalent to the canonical description via space-momentum coordinates.

The first three variables longitude of ascending node (Ω), longitude of pericenter (̟),

and inclination (i) describe the orientation of the ellipse with respect to the ecliptic,

whereas eccentricity (e) and semi-major axis a define shape and extend of the ellipse.

T corresponds to the time of pericenter passage. Of course, other choices are possi-

ble, e.g., Danby (1988). For small perturbations one finds periodic variations of the
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Keplerian orbital elements around the free ones. Free refers to the unperturbed case,

where values are solely given by initial conditions and are constants of motion.

A

ecliptic

P
O

Ω
̟

x y

z

r

H

h

i

i
a(1− e)

ϕ

Figure 2.1 One set of possible orbit elements adopted from Danby (1988). The origin
O is placed in the center of the planet. Vector x points towards the vernal equinox and
z towards the north pole of the ecliptic. The orbital plane lies in the pie wedge HPO,
where the ascending node H marks the point, at which a celestial body rises northward
on its orbit. The descending node is on the opposite side, where the body crosses the
ecliptic while moving southward. The longitude of ascending node is marked by Ω and
is measured eastward, as indicated by the arrow. The inclination i measures the angle
between the plane of the orbit and the ecliptic, or equivalently, between the angular
momentum vector h and z direction. The longitude of pericenter is given by ̟. The
remaining orbit elements are given by semi-major axis a, eccentricity e, and time of

pericenter passage T . The angle ϕ measures the local position of the radius vector and
is termed true anomaly.

2.1.1. Planetary Oblateness

A massive central body is far from being a perfect sphere. This is especially true for

non-rigid planets, which are more sensible to mechanical deformation than solid ones.

Besides deformation of the planet itself, we also have topographic and - in the case of
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Earth - oceanic mass contributions to a nonspherical mass distribution. Thus, particles

in orbit of such a dented central body feel a non-uniform gravitational acceleration.

The nonspherical mass distribution can be modeled by a multipole expansion of the

gravity potential of the central body using Legendre polynomials in a planetocentric

spherical coordinate system (r, φ, ϑ). Here, r denotes the radial distance from the

central planet, φ the position of longitude, and ϑ the position of latitude of the particle

(Fig. 2.2).

φ
ϑ

r

EastWest

North

South

Figure 2.2 Sketch of the inertial frame of reference fixed at the origin of the oblate
planet. As illustrated, regions around the north and south pole are flattened due to
centrifugal accelerations.

For an ideal spinning planet with a smooth surface, longitudinal variations in the mass

distribution may be neglected, making the problem axial symmetric. The assumption

of axial symmetry is excellent for planets in our solar system, and the extended gravity

potential V to that of a point source in a planetocentric-corotating frame of reference

then reads

V = −µ
r



1−
∞
∑

j=1

J2j

(

Rp
r

)2j

P2j(sinϑ)



 . (2.1)

Here, the J2j are dimensionless coefficients, which measure deviations from the spher-

ical mass distribution of a perfect spherical planet (equatorial radius Rp, mass Mp,

and µ = MpG, with gravity constant G). The P2j(sinϑ) are Legendre polynomials of

degree 2j in sinϑ.

Usually we have J2 ≫ J2j, ∀ j > 1, i.e., to a reasonable amount of accuracy, gravity

potentials of nonspherical planets may be represented by the monopole (Kepler) and

quadrupole J2 term. As a matter of fact, far away from the planet, i.e., several
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planetary radii, higher order terms get negligible small, due to the (Rp/r)
2j scaling.

The lack of the dipole term simply comes from the fact, that the classical mass is

always positive. The gravity force FGR felt by a particle of mass m is then given by

taking the gradient according to

FGR = −m∇V. (2.2)

Orbit-averaged equations of motion for this scenario have been first derived by Danby

(1988). Solutions are still ellipses, with constant eccentricity and inclination, but

harmonic varying positions of pericenter and nodes. To second order in eccentricity

and inclination, it can be shown, that the position of pericenter advances, whereas the

position of nodes regresses (Danby, 1988).

Remark: Horseshoe- And Tadpole-Like Orbits

Particles that move around planets may also be affected by other gravity sources,

including satellites of the planet and dusty rings. This is usually treated as N-body

interaction, which in some cases can be dealt with using the restricted circular three

body problem or even simple - the Hill’s problem. The former one is applicable to

problems, where one mass (dust grain) is much smaller than the two others (e.g. Saturn

and Pan), the latter problem applies to situations, where the motion in the vicinity

of the secondary (e.g. the satellite) is addressed. Hill’s problem emerges from the

restricted three body problem as an expansion around the position of the secondary,

which has to be much less massive than the primary. There have been many studies

carried out about this problem. The most relevant work in this context was done by

Henon and Petit (1986). They derive parametrized solutions, which can be used to

study efficiently the interaction during an encounter of dust grain and moon in the

gravity field of a central planet, see also Ida and Nakazawa (1989).

In the Encke gap we have the setup, where the moon Pan shares its orbit with the

central ringlet. Certainly, Pan and the ringlet are somehow connected to each other.

Pan opens and maintains the gap, while at the same time it forces most of the particles

on horseshoe- and tadpole-like orbits. The names come from the shape of motion in a

frame of reference, rotating with the moon (Fig. 2.3).
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L1 L2

L3

L4

L5

Planet
Moon

Figure 2.3 Depending on the pseudo-energy (Jacobi-integral), which is the only inte-
gral that exists in the restricted three body problem, possible solutions lie outside the
regions, encircled by the boundaries of the curves. The two thick black dots indicate the
large central planet and the moon, whereas the arrows indicate possible motions of test
particles. The frame of reference corotates with the moon. Starting from orbits (brown,
dashed) restricted around each individual mass (central planet and moon) or far away
around both (outermost, brown, dashed curve), the two innermost circular-like regions
as well as the outermost closed curve join to form first horseshoe-like (gray colored re-
gion), then tadpole-like (black colored region) motion, when the pseudo-energy is raised.
There are 3 joining points, which are referred to as co-linear Lagrange points, L1/2/3.
At these points, gravitational as well as centrifugal accelerations of central planet and
moon balance. Raising the pseudo-energy further on, the restricted horseshoe-like region
continuously morphs into the two separated tadpole-shapes, which in the limit of the
lowest possible pseudo-energy give the positions of two further Lagrange points, L4/5, of
which L4 is the upper, L5 the lower one in this image. Notice the flip-flop mechanism,
especially for horseshoe- and tadpole-like orbits. This planar view can be extended to
three dimensions, where the restricting regions resemble cylinders and spheres.

These shapes - closely related to the zero velocity curves - represent possible exclusion

domains of solutions to the restricted circular three body problem, which are in essence

quite insensitive to drag forces. This stems from the fact, that the semi-major axes

of particles on such special orbits follow a flip-flop mechanism (Dermott et al., 1980,

Spahn, 1987).

In detail, at each encounter with the moon (semi-major axis a0), the semi-major

axes of the particles flip from ai = a0 +∆a→ af = a0 −∆a, if the initial semi-major

axis ai lies in the regime of the Hill radius of the moon hmoon (Spahn, 1987), which is
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given by

hmoon ≡ a0 3

√

Mmoon

3(Mplanet +Mmoon)
. (2.3)

The Hill radius defines the radial extend, to which the gravitational influence of the

satellite dominates the one from the central planet. It can also be used, to identify

the positions of the 5 Lagrange points in the restricted three body problem, at which

gravitational as well as centrifugal accelerations of central planet and moon balance.

Since any drag force is related to energy loss, and hence, decrease of semi-major

axis, the particles are immune to them on timescales of tens to hundreds of years.

The restricted three body problem does not conserve energy, however, in total energy

conservation holds so that the entire system losses energy, i.e., the semi-major axis of

the moon decreases, but on astronomical timescales.

We note that the flip-flop mechanism requires strict symmetry, which cannot be

fully established. For instance, a particle at position of the Lagrange point L1 feels a

slight different force than a particle at Lagrange point L2 (Fig. 2.3). Positions L1 and

L2 are only symmetric with respect to the particle’s motion, if the moon were infinitely

far away from the planet - meeting the conditions for Hill’s problem. Additionally,

other perturbations may interfere, so that long term dynamics may differ and lose the

flip-flop mechanism.

2.1.2. Solar Radiation

Photons of any wavelength carry energy and momentum. Accordingly, when inter-

acting with matter through absorption, emission, or scattering processes, small forces

come into play. The net force on a particle exposed to solar radiation including terms

of order |v|/c reads (Burns et al., 1979)

FRP =
σQpr
c

J0

(

1AU

d

)2 [(

1− 1

c
v · Ĵ0

)

Ĵ0 −
1

c
v
]

, (2.4)

where σ is the cross section of the particle, v is the particle’s velocity in an inertial

frame of reference fixed in the center of the Sun. Furthermore, Ĵ0 is the unit vector

pointing away from the Sun. The solar radiation energy flux at the distance of Earth

(d = 1 AU) is given by J0 = 1.36 kJ m−2 sec−1. For Saturn we have d = 9.58 AU.

Finally, Qpr is the dimensioneless radiation pressure efficiency factor and c is the speed

of light in SI units.
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The radiation pressure coefficient Qpr - here averaged over the solar spectrum and

phase - corresponds to the fractional amount of absorbed and scattered energy per

grain. Absorption as well as scattering characteristics are, of course, given by the

grain’s size, composition and surface topology. From geometrical optics and scattering

theory one has Qpr ∈ [0 . . . 2]. For grain sizes (here and thereafter always referred to

radius size) bigger than a few microns, Qpr ≈ 1, whereas for submicrons, the solar

pressure coefficient drops below unity, e.g., a grain of size s ≈ 0.1µm has Qpr ≈ 0.3

(Burns et al., 1979).

In principle, two possible scenarios of particle motion may occur. At first, particles

can move on Keplerian-like orbits around the Sun. Then, since solar gravity has the

same - but opposite in sign - scaling in the distance as the solar radiation, a reduced

mass of the Sun can be introduced to account for the interplay of attractive solar

gravity and repulsive solar radiation pressure. Usually, solar gravity dominates solar

radiation pressure. However, if the particles are sufficiently small, solar radiation pres-

sure may exceed solar gravity, putting particles on hyperbolic orbits. These particles

are called β−meteoroids.

A second scenario of particle motion is given by circumplanetary motion, i.e., par-

ticles move around a central planet, while being exposed to solar radiation. Here, the

motion is perturbed, depending on the season and position around the central planet.

A simple mass reduction cannot serve further to quantify the effect.

The solar perturbation can be split into direct radiation pressure - the velocity inde-

pendent term in Eq. (2.4) - and velocity dependent Poynting-Robertson drag (second

and third terms in Eq. (2.4)). The latter results from a net mass loading of the mov-

ing particle being in thermal equilibrium with the solar radiation field. In particular,

re-radiation of the absorbed energy is isotropic in the frame of reference of the par-

ticle. Thus, in a helio-/planetocentric frame of reference, the radiated energy has a

net momentum component in tangential direction of the orbit. Conservation principle

holds, and hence, the gain of momentum by re-radiation must be compensated by an

equal amount of momentum loss of the radiating particle. This results in a net mass

loading and causes the semi-major axis to decrease; the action of an effective radiative

drag.

As discussed by Burns et al. (1979), Poynting-Robertson drag has little effects on

orbit-averaged motion and is therefore neglected in the following. In contrast, direct

radiation pressure noticeably affects the orbit-averaged motion, and therefore needs

to be taken into account. In particular, reasonably far away from the Sun, a particle’s

orbit around a massive planet is mainly characterized by a rise of eccentricity. In such a
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situation, the solar radiation direction and magnitude is assumed to be constant, since

the orbital period of the planet is much longer than the one of the particle around

the planet. Notice that both, Poynting-Robertson drag as well as direct radiation

pressure, are purely non-relativistic effects. A coherent treatment of non-relativistic

as well as relativistic effects is given in Burns et al. (1979).

Concerning a periodic forcing due to planetary shadow, Mignard (1984) has shown

that these effects are of minor importance, leading to small oscillations in the semi-

major axis. There are also charging and sputtering mechanism by solar radiation,

which indirectly influence the evolution of the particle’s orbit. The former mechanism

is discussed in the following subsection, whereas the latter one is addressed in chapter 4.

Shapes of lunar microcraters, and those found on returned spacecraft detectors

point towards nearly spherical impact projectiles. Motivated by this observational fact,

particle shapes are usually assumed to be spherical. From the theoretical point of view,

one can show that mean optical responses of irregular shaped particles may be well

represented by spheres. However, irregular particles are more efficient scatterers per

unit mass due to their large surface area, and additionally more isotropic, i.e., forward-

and backward scattering is less developed. Given an ensemble of irregularly shaped

grains, the radiation pressure causes a stochastic diffusion of the orbital elements, as

discussed in (Makuch et al., 2006, Spahn et al., 2003). Assuming spherical shapes,

orbit-averaged equations of motion for micron-sized particles have comprehensively

been derived by Burns et al. (1979) and Chamberlain (1979).

2.1.3. Lorentz Force

Planetary magnetic fields trap electrons and ions to form a plasma. Dust grains,

which are being plunged into such a plasma suffer charging effects by a variety of

mechanisms. The most dominant ones being sweep-up of electrons and ions, which

gyrate around the magnetic field lines. The electron’s thermal speeds are usually much

higher than those from the ions, and hence, uncharged dust grains are more frequently

hit by electrons, charging them more negatively. While the grains become more and

more negative, the electron current goes down. At the same time, ions can more easily

attach to the negatively charged grains. In the end, a balance between electron and

ion flux is attained; typically in a fraction of an orbital period (Hamilton, 1993). The

grain charge Q can be related to the surface potential Φ via (Horanyi, 1996)

Q ≃ 700Qe

(

Φ

1V

)

(

s

1µm

)

(2.5)
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with elementary charge

Qe ≈ −1,6 · 10−19 C. (2.6)

The charging time of a dust grain is proportional to the inverse of its radius size s.

Therefore, larger particles reach their equilibrium potential faster than smaller ones.

However, their charge-to-mass ratio Q/m is smaller, so that usually Lorentz accelera-

tion of micron-sized dust grains can be neglected. Note that charging of dust grains is

a highly fluctuating process, so that the balance between electron and ion fluxes only

holds on average.

There are two additional noteworthy mechanism that make grain charging even

more complicated, i.e., secondary electron emissions as well as photoelectron currents.

Generally, these two contributions are treated as perturbations to the equilibrium

grain charge. A detailed discussion on a number of possible charging mechanisms,

including the ones adumbrated in this work, can be found in Goertz (1989).

The Lorentz force FΦ of a dust grain is determined by the local magnetic field B

and - assuming an infinite-conductivity magnetosphere that corotates rigidly with the

planet at rotation rate Ω - by the corotational electric field

Ec =
√

4πǫ0(r×Ω)×B, (2.7)

with vacuum permittivity ǫ0. Thus, in an inertial planetocentric coordinate system,

the Lorentz force reads (Hamilton, 1993),

FΦ = Q (ṙ×B + Ec) . (2.8)

The magnetic field B can be described by a gradient of the magnetic potential φj,k,

which can be expanded in spherical harmonics, e.g., Hamilton (1993). Then, the total

magnetic field is given by

B =
∞
∑

j=1

j
∑

k=0

Bj,k (2.9)

with

Bj,k = −∇Φj,k, (2.10)
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and the j,k components of the scalar magnetic potential, given by the expansion in

spherical harmonics in a frame rotating with the planet,

Φj,k = Rp

(

Rp
r

)j+1

[gj,k cos (k(φ−Ωpt)) + hj,k sin (k(φ−Ωpt))Pj,k(cosϑ)] . (2.11)

The expression for the Schmidt-normalized associated Legendre polynomials Pj,k in

terms of the usual Legendre polynomials can be found in Schaffer and Burns (1992).

Despite the magnetic field, the Lorentz force itself cannot be expressed as a gradient

of a potential. This is due to the velocity dependence of the force. Here, the typical

disturbing function (=perturbation potential) approach does not work and one has

to go back to the Gauss’ form of planetary equations (Danby, 1988). From those,

Hamilton (1993) derives time-averaged perturbation equations for the orbital elements.

Considering the axisymmetric case of an aligned dipole, Hamilton (1993) shows, that

electromagnetic forces have nonzero contributions to variations in eccentricity and

inclination, although to powers of sin i and e. Being therefore very small, the major

effect for small inclination and eccentricity is that of the solar radiation pressure, i.e.,

precession of longitude of pericenter and nodes. This could have been expected, since

most of the gradient of the electromagnetic as well as radiation force varies - at least

near the equatorial plane - in radial distance and direction.

2.2. Expected Magnitudes Of The Perturbing Forces

In order to quantify the perturbing strength of the additional forces, we follow Hamil-

ton and Krivov (1996), and take their dimensionless force parameters, which we eval-

uate for expected dust grain sizes in Saturn’s environment at planetary distance of

2.21RSaturn, i.e., Encke gap mean center.

2.2.1. Planetary Oblateness

The oblateness parameter W is defined by

W ≡ 3

2
J2

(

Rp
a

)2 n

n⊙
(2.12)

with mean motion of the particle around the planet

n =
√

µ/a3. (2.13)
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The planetary orbit is assumed to be circular with mean motion about the Sun

n⊙ =
√

µ⊙/d3 (d is the distance from Sun, µ⊙ = G M⊙, M⊙ mass of the

Sun). Note, that the ratio (2.13) puts the perturbation due to oblateness (J2) into the

relation of that of solar tides ( n⊙). For Saturn we have n⊙ ≈ 0.21 year−1, and hence

W ≈ 94.75.

2.2.2. Solar Radiation Pressure

The radiative parameter C is defined by

C ≡ 3

2

n

n⊙
Σ (2.14)

with the ratio Σ of radiative force to Saturn’s point source gravity force for a circular

orbit at planetary distance a,

Σ =
FRP

FGR

=
3J0Qpra

2

4ρcd2s
. (2.15)

Again, the solar tides are also taken into account. Assuming a radiation pressure

efficiency factor of Qpr = 1 we find

C ≈ 0.49
(

1µm

s

)

. (2.16)

2.2.3. Lorentz Lorce

The Lorentz parameter L is introduced by

L ≡ 2
1

n⊙

n2

Ωp
L, (2.17)

where |L| = |FΦ|
FGR

measures the ratio of Lorentz force to Saturn’s point source gravity

force and is given by

L ≡ QB0R
3
pΩp

µm
, (2.18)

whereas solar tides are also considered. Here, B0 is the magnetic strength at the plane-

tary equator of Saturn, Q and m are the grain’s charge and mass, respectively, and Ωp

is the angular velocity of the planet’s rotation. WithB0 ≈ −21µT,Ωp ≈ 14.36 day−1
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and ρ = 1g cm−3, the Lorentz parameter evaluates to

L ≈ 14.95
(

Φ

1V

)(

1µm

s

)2

. (2.19)

In Fig. 2.4 the three parameters are shown as a function of grain size radius. Grains

with radius in the micron range are predominately perturbed by planetary oblateness,

since radiative and Lorentz parameter drop off quickly. In the submicron range, the

Lorentz force dominates.
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Figure 2.4 Dimensionless force parameters W (planetary oblateness), C (solar radi-
ation pressure), and L (Lorentz force) as a function of grain size evaluated at plane-
tary distance 2.21RSaturn (mean center of the Encke gap), assuming uniform density
ρ = 1g cm−3 as well as a spherical shape of the (icy) grains and surface potential of
Φ = 1V. Roughly, for grains with radius above 1 micron, radiation pressure and Lorentz
force drop off quickly making planetary oblateness the most strongest perturbation. In
the submicron range, the Lorentz force dominates.

In the context of faint heliotropic ringlets of Saturn, one has to deal with particles in

the range of 1 − 100 microns, so that one may expect Saturn’s oblateness to be the

most dominant perturbation with respect to the position of the pericenter, while the
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Lorentz force contribution is negligible small. Although solar radiation pressure is of

the same order as the Lorentz force - at least in the considered size range - it has

to be taken into account, since it affects the eccentricity and does not compete with

Saturn’s oblateness.





CHAPTER 3

The Annulus Model Of Heliotropic Ringlets

Suggested by direct observations (Showalter et al., 1992), the central ringlet of the

Encke gap is mostly made up by micron sized, icy particles. These tiny particles

are distributed in size and space according to their creation and removal processes in

conjunction with dynamical effects, arising from a suite of forces that act on them. The

major particle source is most likely to be given by micrometeoroid bombardment of

embedded moonlets in the ringlet. This has been suggested by many authors including

(Cuzzi et al., 1984, Ferrari and Brahic, 1997, Divine, 1993, Spahn et al., 1999).

The peculiar orientation - heliotropicity - of Encke-like ringlets can be astonishingly

well explained by three perturbation forces, i.e., planetary oblateness, Lorentz force,

and solar radiation pressure. The two former once give rise to precession of an elliptic

orbit, whilst the latter increases the orbital eccentricity. Combining both effects yields,

in the end, an eccentric ringlet, with apocenter at local noon, pericenter at local

midnight, respectively, which indeed corresponds to observational findings.

3.1. The Equation Of Motion

In an inertial frame of reference, the motion of a charged grain (mass m, radius s and

charge Q) around an oblate planet exposed to solar radiation can be approximated by

(see for instance, Spahn et al., 1999)

r̈ = − µ
r3

r−∇VJ2
+
Q

m
(ṙ×B + Ec) +

3J0Qpr
4ρcd2s

, (3.1)
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with first non-vanishing correction to the gravity field of a point source

VJ2
= J2
µ

r

(

Rp
r

)2
(

3 sin2 ϑ− 1
)

/ 2, (3.2)

presuming axial symmetry. The first term on the right-hand-side (forces per unit mass)

in Eq. (3.1), fKepler = − µ
r3

r, corresponds to the case of Keplerian motion in a point

source potential. Then, we have the following additional forces per unit mass from left

to right in this order, quadrupole moment fJ2
of the gravity potential, Lorentz force

fΦ, and solar radiation pressure fRP. For details about the forces and nomenclature

see chapter 2.

3.1.1. Simplifications

For the purpose of a keen understanding, we restrict ourselves to planar motion. In

particular, we consider the particle’s orbital plane, the planet’s orbital, and the planet’s

equatorial plane to coincide. This is a good approximation for planets with reasonable

low obliquities. Furthermore, we neglect the planet’s motion about the Sun, since the

expected timescales of the perturbations are of the order of months. For the same

reason, we also neglect dragforces, including Poynting Robertson and plasma drag.

In fact, particles on the central ringlet in the Encke gap are believed to mainly live

on horseshoe- and tadpole-like orbits, which can be regarded as being immune to any

dissipative forces on the timescales of months (Ch. 2). Particles on such stabilized

orbits are mostly lost during long-term dynamics, or by non-dynamical mechanism,

e.g., sputtering or sublimation (Ch. 4).

Close to the planet, the dominant perturbation in the multipole expansion of the

gravity potential is given by the quadrupole term J2. Any other gravitational in-

fluences, whether coming from the non-spherical gravity potential of the planet, or

possible accompanying dust rings and satellites, or the Sun are neglected. The mag-

netic field B is assumed to be of a simple dipole form,

B =
B0

r3
− 3

r (B0 · r)

r5
(3.3)

=
B0

r3
(ez − 3 er(ez · er)) , (3.4)

located at the planet’s center having its dipole moment aligned with the rotation axis

of the planet. In the equatorial plane it reads B = B0 (Rp/r)
3, with the magnetic

field strength B0 at the planet’s surface. The charge of the particle is assumed to
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be constant. This assumptions is excellent, since most of the stable particles in the

Encke-Gap have sizes s > 1µm, which in turn reduces electromagnetic perturbations

to a tiny, negligible amount. On the timescale of perturbation, the grain’s equilibrium

potential of this size class we are dealing with is built up fast (shorter than orbital

time scales). This further means, that possible dis- or recharging during planetary

shadow passage - for instance due to variation in photo-electron emission or plasma

environment - has little effect on the orbital motion. Hence, planetary shadowing is

also neglected, which might slightly overestimate the maximal eccentricity, gained via

solar radiation pressure.

3.1.2. The Perturbation Equations

Planar Keplerian motion is determined by four free orbital elements, i.e., semi-major

axis a, eccentricity e, longitude of pericenter ̟ and mean anomaly. Without any drag

forces, the semi-major axis stays constant. Since orbit-averaged equations are being

used, perturbations of the mean anomaly, which describes how fast a dust grain circles

the planet, are not of interest in our current effort. Thus, only the eccentricity and

longitude of pericenter remain to be considered. The forces per unit mass fJ2
, fΦ, and,

̟

ϕ

r

Planet

Orbit

Sun

Figure 3.1 Planar geometry of the problem. All angles are measured with respect to
the line of sight from planet to Sun. The radial distance from the planet is written as r.

fRP can be treated as small perturbations to the Keplerian motion, as long as |fKepler| ≫
|fi| ; i = {J2, Φ,RP}. Following Horanyi et al. (1992), we assume small eccentricities

(e ≪ 1) and use the perturbation equations (Burns et al., 1979, Chamberlain, 1979)

in a planetocentric frame of references (Fig. 3.1). The time histories of the three
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forced elements a, e,̟ averaged over one particle orbit (assumed to be constant), as

indicated by 〈 〉, then read (Horanyi et al., 1992)

〈ȧ〉 = 0 (3.5)

〈ė〉 = β sin̟ (3.6)

〈 ˙̟ 〉 =
β

e
cos̟ + γ, (3.7)

using solar radiation pressure quantity

β ≡ 3

2
hf/µ, (3.8)

with specific angular momentum (angular momentum per unit mass)

h =
√

µa(1− e2) (3.9)

and acceleration due to solar radiation pressure

f =
3J0Qpr
4ρcd2s

. (3.10)

Equation (3.7) incorporates the uniform precession rate γ, at which planetary oblate-

ness in conjunction with Lorentz force would move the longitude of pericenter in the

absence of radiation pressure (Sec. 2.1.1 - 2.1.3), i.e.,

γ ≡ ˙̟ J2
+ ˙̟ Φ. (3.11)

The precession rate of planetary oblateness is given by (Danby, 1988)

˙̟ J2
=

3

2
ωKJ2

(

RS
a

)2

≃ 0.897
(

RS
a

)3.5

rad day−1, (3.12)

with Keplerian angular velocity ω2
K ≡ µa−3. The right-hand-side term gives values

of ˙̟ J2
for orbits around Saturn. The precession rate of pericenter provided by the

Lorentz force reads (Horanyi and Burns, 1991)

˙̟ Φ = −2
QB0

m

(

RS
a

)3

≃ 0.089
(

RS
a

)3 (1µm

s

)2 ( Φ

1V

)

rad day−1, (3.13)
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where the right-hand-side term is again evaluated for orbits around Saturn, expressing

Q according to Eq. (2.5) in terms of the surface potential, and magnetic field strength

at Saturn’s surface B0 = −21µT. Notice that B0, evaluated at Saturn’s equator, is

negative owing to its antispin orientation with respect to the corotational magnetic

field. The grain mass m is translated into grain size s, assuming uniform density

ρ = 1 g cm−3 as well as a spherical shape of the icy grain.

Now there are 3 principle scenarios that might occur to a grain placed into an orbit

of a planet under common influences of planetary oblateness, Lorentz force and solar

radiation pressure. With respect to the uncharged case, the longitude of pericenter’s

motion can be

(a) slowed down, with remaining γ > 0,

(b) stopped, γ = 0, or

(c) reversed, γ < 0.

Which of these 3 principle scenarios occurs, depends solely on the grain’s size, charge

and position in the planet’s magnetosphere. For a nominal grain of size 1 micron,

placed into the center of the Encke gap, scenario (b) can be established with a grain

potential of Φ ≈ −7 V. As a matter of fact, surface potentials are rather unknown,

however believed to be positive, small of the order of Volts. A comparison of Eqs.

(3.12) and (3.13) shows the dominant contribution of planetary oblateness for particles

in the micron range, even for surface potentials of the orders of volts. This is due

to the grain size scaling of the Lorentz force, which is ∝ s−2 (see also Sec. 2.2).

Consequently, Lorentz force contribution may be safely neglected for particles bigger

than a few microns, which in turn makes the precession rate γ independent of the

grain size.

3.2. Solutions

3.2.1. Solution For Arbitrary Initial Conditions

Horanyi et al. (1992) derived solutions for vanishing free eccentricity for the model

given by Eqs. (3.6), (3.7) to describe the dynamics of the forced eccentricity. Here,

we follow their approach to find solutions for non-vanishing free eccentricity by trans-
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forming to the variables

q ≡ e cos̟ (3.14)

p ≡ e sin̟, (3.15)

omitting the indication for the orbit average 〈·〉 here and in the following. In this new

set of variables, it is straight-forward to cast Eqs. (3.6), (3.7) into the form

q̈ + γ2(β/γ + q) = 0, (3.16)

which is known to be the equation of motion for an undamped pendulum. The general

solution reads

q(t) = A sin (±γt+ α)− β/γ, (3.17)

with amplitude A and phase α, determined by the initial (=free) conditions, Eq.

(3.20), (3.21) below. The ± sign accounts for the choice of time-direction. Without

any loss of generality, we choose t ∈ R+, and accordingly drop the negative sign.

Transforming back to the initial variables e and ̟, the solutions take the form of two

coupled transcendent equations

ε2 = κ2 + 1− 2κ sin (γt+ α) (3.18)

sin̟ = −κ
ε

cos (γt+ α), (3.19)

with ε ≡ eγ/β and κ ≡ Aγ/β. Inserting initial conditions (e0,̟0) into equations

(3.18) and (3.19) determines amplitude and phase via

κ =
√

ε20 + 1± 2ε0 cos̟0 (3.20)

cosα = −ε0 sin(̟0)/κ. (3.21)

3.2.2. Solution For Simplified Initial Conditions

Consider the case of an initial circular orbit, which corresponds to the limit of zero

initial eccentricity, i.e., ε0 → 0. Then, from equation (3.20), we have κ→ 1 and from

(3.21) α(mod π)→ π/2. Note that both, amplitude κ and phase α, are determined by

the initial eccentricity ε0 = 0. At first sight, the initial longitude of pericenter ̟0 may

take any value between 0 and 2π, which accounts for its degenerated state on circular

orbits. From physics however, circular orbits gain eccentricity due to solar radiation
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pressure (Sec. 2.1.2), which, on orbital timescales, has a unique flux direction, and

hence, determines the initial longitude of pericenter.

In our planetocentric frame of reference the orbit-averaged longitude of pericenter is

always born at ̟0 = π/2 for ε0 = 0. This is of crucial importance for the heliotropic

structure, since a coherent phase relation between all longitudes of pericenter and

eccentricities is maintained. Finally, from Eq. (3.18) and (3.19) we find the solutions

given by Horanyi et al. (1992) for zero initial eccentricity,

e(s,t) =
2β(s)

γ

∣

∣

∣

∣

sin
(

γ

2
t
)∣

∣

∣

∣

(3.22)

and

̟(s,t) =
(

γ

2
tmod π

)

+
π

2
. (3.23)

Of course, both elements also vary with surface potential Φ and semi-major axis a

through the precession rate γ, which is also a function of grain size. We do not

explicitly mark these dependencies in the equations for the precession rate, since once

again, its variation with surface potential and grain size is rather weak for micron

sized particles immersed in an electromagnetic potential of the order of several volts

(Eq. (3.12), (3.13)). The dominant effect is caused by planetary oblateness, which

solely depends on the semi-major axis (Sec. 2.2). At the Encke gap, precession rate

γ is essentially independent of grain size and surface potential, which we assume in

the following by setting ̟Φ ≡ 0. It should be noted here, that one may expect other

reduced plasma components due to the presence of the rings, so that charging is mainly

caused by UV radiation giving positive charge. Latter just enhances the precession

induced by J2, which means, that ̟Φ = 0 does not change the picture.

Using (3.22) we define the maximum eccentricity as the ratio

emax(s) ≡ 2β(s)

γ
, (3.24)

with β(s) ∝ 1/s. Assuming γ to be fixed, particle size itself influences the maximal

eccentricity through solar radiation pressure, i.e., smaller particles have larger eccen-

tricity and in turn larger radial excursion during their orbit. Furthermore, a particle

of given size s (fixed β(s)) may have any eccentricity between 0 and 1, as long as the

planetary environment allows for the demanded precession rate γ. Usually, this is not

the case, which in turn puts constraints on expected particle size distributions for a
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given planetary setup. In most cases, the radial excursion can be limited by either gap

edges (in case of the Encke gap), central planet or other celestial objects the particles

might impact on. This constraints the maximal possible eccentricity via

emax(s) ≤ ec, (3.25)

ec being the critical eccentricity derived from the maximal possible radial excursion,

which immediately results in a lower size limit smin. If such a critical eccentricity

exists, we can parametrize the maximum eccentricity as

emax(s) = ec
smin

s
. (3.26)

For the Encke gap, particles in the range 1 − 100 microns are expected (Hedman

et al., 2007). From Eq. (3.26) however, the minimal “allowed” grain size evaluates

to smin = 8.7µm, assuming circular gap edges and a gap width of p = 320 km, which

translates into a critical eccentricity of ec ≈ 1.2 · 10−3. Particle with s < smin are

removed by the gap edges, since their radial excursion due to the increased orbital

eccentricity by radiation pressure exceeds ec.

It is instructive to have a look at the timescales, on which the eccentricity and the

longitude of pericenter vary. They are roughly given by

te ∝
e

ė
≈ 2/γ and t̟ ∝

̟

˙̟
≈ 2/γ. (3.27)

For microns sized particles in the Encke gap, we have (Lorentz force neglected) te =

t̟ ≈ 112 days, independently of the particle size. Half of this timescale corresponds

to maximal eccentricity and passage of the pericenter through the midnight position

with respect to Saturn.

To put it more generally, ringlets that show the heliotropic property are formed by

material with lifetimes greater or at least equal to about

tlow
life ≈ 2/γ. (3.28)

Note that this holds for arbitrarily uniform precession rate γ, including the Lorentz

force. This lower lifetime limit can be used to constrain the maximal strength of the

sink, at least for heliotropic ringlets, discussed in chapter 4.
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3.3. Annulus Generation

3.3.1. From Orbital Elements To Streamlines

Solutions (3.22) and (3.23) can be translated into streamlines, which represent solu-

tions to our problem in the spatial phase space. In polar-coordinates, a streamline is

defined by radial component r and longitude ϕ (Fig. 3.1). The radial component at

longitude ϕ with given position of pericenter ̟, eccentricity e and semi-major axis a

of a particle with radius size s is given by

r(ϕ,̟,s) =
a(1− e(̟,s)2)

1 + e(̟,s) cos(ϕ−̟)
, (3.29)

with eccentricity re-expressed from equations (3.22), (3.23) and (3.24) as

e(̟,s) ≡ emax(s) sin(̟ − π/2). (3.30)

Let’s have a look at the equations (3.22)-(3.23) and (3.29)-(3.30), and trace a cycle of

eccentricity build-up as shown in panel (a) of Fig. 3.2. The lower panel (b) depicts

several orbits (black) for the nominal grain at different phases of the precession cycle.

The Sun is located on the right side of the page, i.e., the solar flux travels from right

to left. For clarity, eccentricity has been scaled by a factor 103 in panel (b). The

orange, numbered points correspond to the subsequent time steps of panel (a) and

indicate the actual longitude of pericenter.

Assume a nominal grain of given radius size s = 33µm is born on a circular orbit

(= zero initial eccentricity) about Saturn at arbitrary azimuthal position ̟ having

semi-major axis a = 2.21RSaturn and zero inclination. Solar radiation pressure starts

to increase the eccentricity of the particle, i.e., the particle is accelerated on the local

noon-midnight side of its orbit (lateral east-side of Saturn with respect to Sun) - birth

of pericenter at ̟ = π/2 - and decelerated on local midnight-noon side - birth of

apocenter at ̟ = 3π/2. Note, both longitudes are orbit-averaged, i.e., the maximal

acceleration can be found at these two positions.

Under the influence of Saturn’s oblateness, and possibly Lorentz force, the longitude

of pericenter starts to move in prograde direction. Note, retrograde direction is only

possible, if Lorentz force exceeds the force due to planetary oblateness and acts in

opposite direction, which is not the case for the Encke gap, i.e., the plasma environment

as well as the examined family of grain sizes do not allow for the retrograde case.

From symmetry in the dynamics, the maximal eccentricity of the precessing orbit lies
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at ̟ = π (planetary shadow neglected). After the longitude of pericenter has passed

midnight position, the eccentricity starts to shrink until ̟ = 3π/2. Then, the cycle

restarts at ̟ = π/2. Obviously, the faster the argument of pericenter moves, i.e.,

larger γ, the smaller is the maximal eccentricity and vice versa (see also Eq. (3.24)).

Having a myriad of nominal grains on different phases of the precession cycle results

in an annulus, which is shifted towards Sun. The annulus itself can be described by

two enclosing ellipses (inner: green, dashed; outer: blue, dashed), which are functions

of the grain size through the maximal eccentricity. Apparently, their apocenters point

towards the Sun, so that the apocenter of the eccentric annulus, which can be defined

by the apocenters of the enclosing ellipses, also points towards Sun. Notice, this

orientation of the enclosing ellipses - or equivalently the annulus - must hold for any

ensemble of a certain grain sizes that follows such a dynamic, i.e., uniform precession

of the pericenter in conjunction with periodic variation of eccentricity.

Semi-major axes and eccentricities for inner (i) and outer (o) ellipses are given by

ei =
emax(s)

emax(s)− 2
; ai = a

2− emax(s)

2
; ̟i = 0, (3.31)

and

eo =
emax(s)

emax(s) + 2
; ao = a

2 + emax(s)

2
; ̟o = 0, (3.32)

whereas the annulus area A is given by

A =
1

2
πa2

(

(2 + emax(s))
√

1 + emax(s)− (2− emax(s))
√

1− emax(s)
)

= 2πa2
(

emax(s) +
e5max(s)

128
+O(e7max(s))

)

. (3.33)

Clearly, the smaller the particles, the larger the maximal eccentricity, which results

in a larger annulus area. This behavior is found in equation (3.33). There exist more

than one particular grain size ensemble, so we may expect a continuous overlay of

annuli, different in area and particle density, depending on the particle size distribu-

tion. From their origin by impact-ejecta process (Spahn et al., 2006), smaller particles

are naturally more abundant than larger ones. On the other hand, they have smaller

cross-sections, their annuli are very wide and have smaller particle densities. These

interplays between particle density, annuls area, and particles’ cross sections shape the

ringlet profile, including its width, which is indeed found in the Cassini observations.
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Figure 3.2 The upper panel (a) shows the dynamical evolution of the orbit elements,
assuming a nominal grain of radius size s = 33µm in orbit about Saturn with semi-major
axis a = 2.21RSaturn and zero initial eccentricity. The lower panel (b) depicts several
orbits (black) for the nominal grain at different phases of the precession cycle, whereas
the red, solid circle indicates the semi-major axes of the particles. The Sun is located
on the right side of the page, i.e., the solar flux travels from right to left. In the lower
panel, the eccentricity has been scaled by a factor of 103. The orange, numbered points
correspond to the subsequent time steps of panel (a) and indicate the actual longitude
of pericenter. Having a myriad of nominal grains on different phases of the precession
cycle produces an annulus, which is shifted sunward. The annulus itself can be described
by two enclosing ellipses (inner: green, dashed; outer: blue, dashed).
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3.3.2. Heliotropicity - The Peculiar Orientation

The ringlet itself can be understood as being formed by a superposition of heliotropic

annuli created by particle ensembles of different sizes s. The origin of an heliotropic

annulus stems from the precession of the longitude of pericenter in conjunction with

symmetric eccentricity gain and loss due to radiation pressure. This produces a sun-

ward shifted eccentric annuls for a given grain size ensemble with phases distributed

over the whole precession cycle of the pericenter. From symmetry in the dynamics

one can conclude, that the orientation of an annulus is independent of particle char-

acteristics. Indeed, weighting the longitude of pericenter ̟ (Eq. (3.23)) with the

corresponding eccentricity e (Eq. (3.22)) and averaging over the cycle of pericenter

precession yields an estimate for the mean longitude of pericenter

̟† ≡
〈e̟〉γ
〈e〉γ

= π, (3.34)

with

〈·〉γ ≡
1

2π

2π
∫

0

d(γt/2) · . (3.35)

Hence, as long as the position of pericenter is constantly spinning around the planet,

causing oscillatory changes in eccentricity, heliotropicity of an annulus is unaffected by

the size or charge of the particle. This sort of averaging is based on the assumption,

that a myriad of particles with radius size s at different phases of longitude of pericenter

and corresponding eccentricity contribute to form an annulus.

For the sake of understanding, we note, that anti-heliotropicity is established by an

inverse solar flux, by inverse precession of the pericenter, i.e., the pericenter moves

towards local noon of the planet, or, by retrograde orbits of dust material around

such a planet with corresponding pericenter motion. If the inclination is non-zero,

there is also the regression of the longitude of ascending node (Ch. 2.1.1). In this

case, regression of the longitude of ascending node and advance of the longitude of

pericenter compete, which might also result in an anti-heliotropicity or even locked

pericenter (Burns et al., 2001). The latter case would immediately imply arbitrarily

large eccentricities, or to put it differently, particle removal.
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3.4. Observations

Now that we have understood the special orientation, we are left to examine further

consequences for observations of such heliotropic ringlets. From the number density

in space, we may estimate optical quantities given by the heliotropic dynamics, which

can be directly related to Cassini observations.

3.4.1. Dynamical Density In The Ringlet Region

To derive a dynamical density in the ringlet region, we neglect particle gains and

losses, assuming the ringlet material to be in equilibrium and long-living with respect

to the timescales of eccentricity and pericenter motion. The full problem of kinetics

under dynamics (Boltzmann-equation) is broken down by timescale arguments, which

allows a separate treatment of (heliotropic) kinematics and kinetics, i.e., gain and loss

modeling (see Ch. 4).

We use the heliotropic dynamics, to derive a particle density, which in turn can

be related to the optical depth (measurable quantity) of the ringlet. We therefore

assume, that the number of streamlines at a given position (r,ϕ) in space corresponds

to the dynamical number of particles. By this, we equally spread the mass of each

individual grain over its streamline. Since small eccentricities can be assumed (e≪ 1),

the streamline of a particle is given by the simplified version of Eq. (3.29)

r̃(ϕ,̟) ∼= a(1− e cos(ϕ−̟)). (3.36)

Dynamically, the number of streamlines at position (r,ϕ) of size s, having all semi-

major axis a is given by

n(r,ϕ,s,a) = C0

3π/2
∫

π/2

d̟ δ(r − r̃(ϕ,̟)), (3.37)

with normalization constant C0, which allows to set the right units and scaling. The

Dirac-Delta function δ(r − r̃(ϕ,̟)) ensures, that all streamline contributions to the

number of particles at position (r,ϕ) are counted. Note that Eq. (3.37) does not

account for the motion of pericenter ˙̟ and the particle itself. The former effect

would slightly change the contributions of streamlines along the integration of ̟,

since ˙̟ implies rotating ellipses. The latter implies a non-homogeneous mass distri-

bution along the streamline, which results into symmetric n(r,ϕ,s,a) around the initial
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starting points (Horanyi et al., 1992). Indeed, the motion of the particle depends on

its azimuthal position, i.e., a particle spends more time around apocenter than at

pericenter, while at the same time, apocenter particles are more spread over a propor-

tionally larger annulus. Both effects exactly balance each other, to produce symmetric

n(r,ϕ,s,a). Integration of equation (3.37) yields

n(r,ϕ,s,a) =
C0

a emax

√

1−
(

2(r−a)
a emax

− cosϕ
)2
. (3.38)

The number of streamlines n(r,ϕ,s,a) can be interpreted as a measure for the particle

occurrence at a given point normalized to the annulus area, which is created by the

particle ensemble. Thus, we refer to n(r,ϕ,s,a) as the number density of particles

in the following, by choosing C0 in such a way, that n(r,ϕ,s,a) rdϕdr becomes the

vertically integrated number of particles at (r,ϕ) in the area increment rdϕdr. It is of

crucial importance, not to confuse this density with the classical streamline density,

which is a complete different measure (e.g. Showalter et al., 1986).

From Eq. (3.38), we find more particles at the radial turning points (Fig. 3.3). This

is an analogous behavior to a pendulum of a pendulum clock, which spends most of

its time at the turning points. Note, the same result could have been obtain by the

fact, that the dynamical density is proportional to the inverse of the radial velocity

times radial distance (e.g. Horanyi et al., 1992), which also accounts for the particles

speed, producing symmetric dynamical densities.

3.4.2. Photometric Measurements

Images of the ringlet are based on absorbed, reflected, and transmitted light, either

coming from the Sun or other light sources. Based on these images, photometric

quantities can be derived, which in turn give clues about particle composition and dy-

namics of a ringlet or ring, respectively. Most commonly used quantity in photometry

is the ratio of intensity of light I/F , which measures the ratio of a body’s detected

brightness I (power per area per wavelength interval per steradian) at a given phase

angle to that of the incoming solar flux density π F (power per area per wavelength

interval) and can be directly probed by occultation experiments. The phase angle α is

defined as the angle between light source, object, and observer. Using the ratio I/F is

very convenient, since spectral effects from the Sun’s light flux and its distance from

the rings are removed. At normal incidence, I/F equals unity for a perfectly diffusing

Lambert surface.



3.4. Observations 39

133 600 133 650 133 700 133 750 133 800 133 850
0.0

0.1

0.2

0.3

0.4

0.5

0.6
133 600 133 650 133 700 133 750 133 800 133 850

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ϕ
=
π
/2

ϕ
=
π

ϕ
=

2π

D
y
n
am

ic
al

D
en

si
ty
n

(r
,ϕ
,s
⋆
,a

)
[a

rb
it

ra
ry

u
n
it

s]

Radial Distance From Saturn r [km]

Figure 3.3 Dynamical particle density in arbitrary units as a function of radial distance
evaluated around Saturn’s Encke gap, using a nominal grain size of s⋆ = 30µm with
semi-major axis a = 2.21RSaturn. The three curves correspond to the lateral (ϕ = π/2),
local noon (ϕ = 2π) and midnight position (ϕ = π) at Saturn. Apparently, particles
spend most of their time at their radial turning points, analog to a pendulum. All cuts
are asymmetric, since we have neglected the speeds of the particles on the streamlines,
hence, assuming equally distributed particles over the streamlines, when deriving the
dynamical density. This is why at ϕ = π, 2π, we find a diverging density at a. The
dynamical density is normalized to have unit area and clipped, owing the fact to be
ill-defined at the turning points. The three vertical lines indicate the a (center) and
extend to Pan’s characteristic range of gravitational influence, i.e., Hill radius hPan.

Closely related to I/F is the optical depth τ , which describes how much absorption and

scattering occurs, when light travels through a medium and directly reflects particle

properties. For reasonably low optical depths, τ ≪ 1, I/F and τ are related via

(Burns et al., 2001)

I

F
=
τζ0P (α)

4ς
, (3.39)
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where ς is the cosine of the emission angle measured from the ring normal vector to

the line of sight, ζ0 is the single scattering albedo, and P (α) is the phase function

with phase angle α. Scattering albedo as well as phase function can for instance be

derived from Mie theory and reflect averages over the particle size distribution. The

single scattering albedo represents the fractional amount of impinging light, which is

not absorbed by the particle. Its range lies between zero and one. The phase function

describes the fraction of light scattered into a given direction. It is normalized to give

an average value of unity, when integrating over all solid angles.

The normal τ ≡ ςτ of a heliotropic ringlet, i.e., the optical depth seen perpendicular

to the ringlet, is given by

τ(r,ϕ) = C1

∫

ds τs(s,r,ϕ)N(s), (3.40)

with normalization constant C1 and individual annuli contributions

τs(s,r,ϕ) = σ(s)Qeff (s,λ)n(r,ϕ,s). (3.41)

We shall make a series of comments on this.

The basic idea of this procedure is to multiply the size dependent normal optical

depth of every annulus with its number of occurrence, i.e., number of particles having

size s, and sum over the resulting individual optical depths. The individual annuli

contributions are given by particle cross-section σ(s) = πs2, scattering efficiency fac-

tor Qeff , vertically integrated dynamical particle density n(r,ϕ,s) =
∫

dz nz(z,r,ϕ,s),

which we take from Eq. (3.38), since we want to investigate optical properties, that

arise from heliotropic dynamics.

In general, Mie theory is employed to derive the relation between Qeff and particle

size s as well as the wavelength λ of the light. For micron sized dust grains, it is

convenient to introduce the dimensionless size parameter X ≡ 2πs/λ. For X of the

order of unity, Qeff is of order unity, decreasing rapidly for smaller X; typically

∝ X4 (Burns et al., 2001). For large X, Qeff approaches 2, which reflects Babinet’s

principle. We assume Qeff = 1, for all particles sizes in the micron range, which is a

fair approximation for wavelengths in the visible part of the solar spectrum.

In order to model the optical depth of the ringlet, information about the particle

size distribution N(s) is required, which we assume to be mainly determined by the

particle source mechanisms. A potential particle source mechanism is given through

constant bombardments of source bodies with micrometeoroids (Krüger et al., 2000).

From this model one expects a power law for the particle size distribution N(s) with
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slope q ≈ 3,

N(s) ∝ (1/s)3 smin < s < smax. (3.42)

Note, this choice is generally non-unique, when deriving the particle size distribution

from photometric measurements (Burns et al., 2001). However, for the Encke gap,

we can already constrain the minimal size smin from Eq. (3.25). Assuming the mi-

crometeoroid flux model, the maximal grain size smax can be approximated by the

biggest micrometeoroids (Krivov et al., 2003, Spahn et al., 2006). This approximation

of maximal grain size is motivated by an energetic argument, i.e., it is very unlikely,

that particles larger than the impacting ones (radii of about 100 microns) are produced

during the impact. These choices are in full agreement with observations and related

photometric modeling for heliotropic ringlets (Hedman et al., 2007), from which a

particle size range of 1− 100 microns is expected.

To test our heliotropic model against observations, especially the heliotropic eccen-

tricity and the ringlet-width, we calculate the normal optical depth (3.40) of a ringlet,

placed into the center of a gap, i.e., semi-major axis of the particles lies in the center,

by assuming the size distribution (3.42), and find

τ(r,ϕ,a) = C2
s4maxs

4
min

s4max − s4min

arcsin (xmax(r,ϕ,a))− arcsin (xlow(r,a,ϕ))

2(r − a) , (3.43)

with normalization constant C2, which has to be chosen in such a way, that τ(r,ϕ,a)

becomes dimensionless, and

xmax(r,ϕ,a) =
2(r − a)
eca

s⋆max

smin

− cosϕ (3.44)

xmin(r,a,ϕ) =
2(r − a)
eca

− cosϕ, (3.45)

whereas the position dependent (indicated by ⋆) upper grain size limit s⋆max reads

s⋆
max

=







smaxΘ(s⋆
1
− smax) + (s⋆

1
Θ(s⋆

1
− smin) + sminΘ(smin − s⋆1))Θ(smax − s⋆1) : I

smaxΘ(s⋆
2
− smax) + (s⋆

2
Θ(s⋆

2
− smin) + sminΘ(smin − s⋆2))Θ(smax − s⋆2) : II,

(3.46)

distinguishing cases I : 0 < r ≤ a and II : 0 < a < r. Θ(x) represents the Heaviside
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function defined as

Θ(x) =











0 x < 0

1 x ≥ 0.
(3.47)

Finally, we have

s⋆1 = smin
eca

2(a− r)(1− cosϕ), (3.48)

s⋆2 = smin
eca

2(r − a)(1 + cosϕ), (3.49)

and the critical eccentricity ec, which comes from the parametrization of the maximal

eccentricity (Eq. (3.26)),

ec =
p

2a
, (3.50)

assuming circular shapes of the gap edges and a finite gap width p. Figure 3.4 illus-

trates the spatial dependence of the upper size limit (Eq. (3.46)).

These parameters arise from the position-dependence of the grain size limits. At any

azimuthal position there is a radial window of half of the gap width, to which particles

on eccentric orbits, and hence their streamlines, are constrained. This is taken into

account by Eq. (3.46), setting the upper grain size limit to that of the smallest grain

size, outside the radial window, which in turn produces zero contribution to the normal

optical depth.
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Figure 3.4 Spatial dependence on the upper limit of the grain size, evaluated for
different azimuthal positions at the Encke gap. The abscissa - radial position - spans
the whole gap width. The lower green, dashed line corresponds to the smallest possible
grain size. Also visible is the radial window - intersections of the s⋆max curves with the
lower green, dashed line - of about 160 km width, which corresponds roughly to half of
the Encke gap. The three vertical lines indicate semi-major axis a (center) and extend
to Pan’s characteristic range of gravitational influence, i.e., Hill radius hPan ≈ 19 km.

3.5. Application To The Central Ringlet In The Encke Gap

The critical eccentricity for particles in the central ringlet evaluates to ec ≈ 1.2 · 10−3,

which - from relation (3.25) - translates into a minimal grain size of smin ≈ 8.7 microns.

The maximum grain size is taken to be smax = 100 microns. Figure 3.5 shows the

normal optical depth from equation (3.43) for different azimuthal positions, upper

panel (a). The lower panel (b) shows the normal optical depth, averaged over the

semi-major axes, indicated by 〈〉a, which should be closer to the physics of “smeared”

semi-major axes. Consequently, the average is taken in the range a ± hPan, with

equally distributed semi-major axes, reflecting the belt of source moonlets, which is
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restricted to Pan’s horseshoe region. Here, hPan ≈ 19 km is Pan’s characteristic range

of gravitational influence, i.e., Hill radius, with mean distance of Pan from Saturn

a = 2.21RSaturn. We do not consider variations of ̟ with semi-major axes, while

averaging, since they are negligible small. All curves are measured per unit area.

Naively, from Fig. 3.3 one would expect to get a mean U-shaped-like profile. Indeed,

this is the case for a constant particle size distribution (N(s) = const. = smax), visible

in Figs. 3.4 and 3.5 (a) and assumed for radial range

r ∈
[

a

2
(emax(smax)(cosϕ− 1) + 1) ,

a

2
(emax(smax)(cosϕ+ 1) + 1)

]

. (3.51)

Outside this range, the optical depth drops, simply because larger particles become

more and more depleted, since they are rather concentrated to the center of the ringlet.

Besides the explained peculiar orientation, there are two additional important out-

comes of our annulus ringlet model compared to observations (Ferrari and Brahic,

1997, Hedman et al., 2007), i.e., the apparent eccentricity of the ringlet and the ringlet-

width.

3.5.1. Apparent Eccentricity Of The Ringlet

To measure the ringlet’s eccentricity, we use the radial shifts in Fig. 3.5, as well as

the averaged eccentricity from Eq. (3.22) according to

eringlet ≡ 〈e〉s,γ (3.52)

with

〈·〉s,γ =

∫

ds 〈·〉γ σ(s)N(s)
∫

ds σ(s)N(s)
, (3.53)

particle cross-section σ(s) = πs2, particle size distribution N(s), and 〈·〉γ from Eq.

(3.35). The limits of the size integration are given by the particle size distribution.

Note, the average over the particle sizes (3.53) accounts for the number of occurrence

and weights also the visibility in the observation data via the particle cross-section.

This average should be somewhat closer to observations than a simply average over

the particle size distribution. The apparent particle size distribution is then ∝ s−q+2,

which effectively makes the ringlet heavier, since larger particles are favored more with

respect to the size distribution (3.42). Further on, the apparent ringlet eccentricity is

pushed down, since larger dust grains have smaller eccentricities.
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(a) Normal optical depth (in arbitrary scale) produced by particles on
circular orbits about Saturn with a = 2.21RSaturn.
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(b) Normal optical depth (in arbitrary scale) produced by particles on
circular orbits about Saturn with a = 2.21RSaturn ± hPan.

Figure 3.5 Normal optical depth for (a) particles on circular orbits at a = 2.21RSaturn

and (b) numerically averaged over equally distributed semi-major axes a = 2.21RSaturn±
hPan. All curves are normalized to have same areas. In panel (a) the bump in the curves
comes from the shape of the dynamical density. In this region, all particle sizes are
allowed, whereas in the other region, the contribution by large particles vanishes and
approaches the minimal grain size (Fig. 3.4). In both plots, the helitropicity is evident
by the radial shift away-from/towards Saturn at local noon/midnight (apo-/pericenter)
position, respectively, in our frame of reference. The three vertical lines indicate semi-
major axis a (center) and extend to Pan’s characteristic range of gravitational influence,
i.e., Hill radius hPan.
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To fix ideas, we use the particle size distribution from Eq. (3.42), when explicitly

averaging over particle sizes in the following subsections. We further neglect the

Lorentz contribution by setting γ ≡ ̟J2
, which makes γ independent of the grain size

s, and define the particle size ratio ξ ≡ smax/smin. Then, the apparent eccentricity of

the ringlet reads

eringlet =
2

π
emax(smax)

ξ − 1

log ξ
, (3.54)

with limits (smax fixed)

lim
ξ→1
eringlet =

2

π
emax(smax) (3.55)

and

lim
ξ→∞
eringlet =∞. (3.56)

These limits illustrate the heliotropic physics going on. In the latter case, arbitrarily

small particles may contribute to the mean eccentricity, which of course diverges ∝
1/smin, the scaling of solar radiation pressure with grain size (Sec. 2.2.2). Note, these

limits are only valid, if the Lorentz force is neglected. Especially in the case of ξ →∞,

we would find different limits, depending on the sign of the surface potential, since

the Lorentz force is capable of influencing the maximal eccentricity via the precession

rate of the pericenter.

Evaluation at the center of the Encke gap yields eringlet ≈ 2.4 · 10−4. From the

optical depths in Fig. 3.5 we have in panel (a) / (b) radial shifts of ∆r ≈ 13 km /

≈ hPan, which correspond to eccentricities of eτ ≈ 1 · 10−4 / ≈ 1.4 · 10−4. In panel (a)

we use the radial shift of the bump, in panel (b) the maximum of the optical depth.

Both values fit fairly well the observations (Ferrari and Brahic, 1997, Hedman et al.,

2007), which report eccentricities around e ≈ 1 ·10−4 and ≈ 2 ·10−4, respectively. The

semi-major axis scaling is eringlet ∝ a4 and stems from stronger gravity and planetary

oblateness perturbations of the central planet. Particles move faster the closer they

get to the central planet. Additionally, their precession rates of pericenter speed up. In

the picture of orbit-averaged motion, both accelerations result into a smaller maximal

eccentricity, which a grain of given size can obtain from solar radiation pressure.
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3.5.2. The Narrow Ringlet-Width

As shown in Fig. 3.2 (b), the initial infinitesimal ringlet-width wini = 0 km at radial

position r = a - particles start on circular orbits (red circle) - broadens to an apparent

width (black ellipses), under the influences of solar radiation pressure and precessions

of the pericenters. This width can be quantified by the distance between enclosing

ellipses, eccentricity dispersion, full-width-at-half maximum of the optical depth profile

(FWHM), and maximal eccentricity.

3.5.2.1. Distance Between Enclosing Ellipses

In Fig. 3.2 (b) we have depicted the enclosing ellipses, that envelope the annulus

(green and blue dashed lines). From Eqs. (3.31), (3.32) we calculate the distance

between those two ellipses for every grain size s and average over the grain sizes,

which provides us a measure of the ringlet-width. The distance ∆r(s)enclose between

the enclosing ellipses at pericenter of the outer and apocenter of the inner one (ϕ = π)

is given by

∆r(s)enclose = aemax(s). (3.57)

Defining the apparent ringlet-width based on the enclosing ellipses we have

wenclose ≡ 〈∆r(s)enclose〉s = a 〈emax(s)〉s (3.58)

with size average

〈f〉s =

∫

ds fσ(s)N(s)
∫

ds σ(s)N(s)
, (3.59)

whereas f is an arbitrary function f(s), σ(s) = πs2 is the particle cross-section and

N(s) the particle size distribution (Eq. (3.42)). The size average of the eccentricity

in Eq. (3.58) yields

〈emax(s)〉s = emax(smax)
ξ − 1

log ξ
, (3.60)
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where the Lorentz force contribution has been neglected. The limits for fixed smax

read

lim
ξ→1
〈emax(s)〉s = emax(smax) (3.61)

and

lim
ξ→∞
〈emax(s)〉s =∞, (3.62)

reflecting the physics, that the ringlet-width is given by eccentric dust grains, whereas

the eccentricity is inversely proportional to the grain size. In the former case (ξ = 1),

only grains of size s = smax are present in the ringlet, producing only one annulus of

width wenclose = aemax(smax) ≈ 14 km. Here the right-hand-side term is evaluated for

the central ringlet of the Encke gap. This sets the lower ringlet-width limit of our annu-

lus model. With the presumed size distribution (3.42) and the ringlet-width measure

of radial distance between enclosing ellipses, we cannot produce thinner heliotropic

ringlets than this!

From the definition of emax(s) we find, that heliotropic ringlet-widths in Saturn’s

ring system at position a are roughly given by

wenclose ≈ 0.26 ·
(

a

RSaturn

)5 ξ − 1

log ξ
km, (3.63)

assuming smax = 100µm.

For the central Encke gap ringlet, this evaluates to wenclose ≈ 60 km. Observations

report ringlet-width of about 10 to 23 km (Ferrari and Brahic, 1997, Murray and

Dermott, 2000, personal communication M. M. Hedman), which differs by a factor

of about 3 to 6 from the ringlet-width based on the enclosing ellipses. To equate

observations with this ringlet-width measure wenclose, the lower size limit should be

at least smin ≥ 39µm, with power law slope q = 3. Note that Eq. (3.63) gives the

possibility to get hints about the particle size distribution (e.g. for an assumed power

law one could obtain slope q and the boundaries smin, smax), by directly measuring the

ringlet-width in the Cassini data.

For fixed ξ, Eq. (3.63) implies, that ringlet-widths become smaller with decreasing

semi-major axis, since the scaling is ∝ a5, which can be split into two contributions.

The linear a contribution stems from smaller radial excursion of eccentric particles,

closer to the central planet. The additional a4 contribution is due to the eccentricity

scaling (Sec. 3.5.1).
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3.5.2.2. Eccentricity Dispersion

The eccentricity dispersion is given by

δe ≡
√

〈e2〉s,γ − 〈e〉
2
s,γ . (3.64)

From Eqs. (3.22) and (3.53) we have

δe =
2

π
emax(smax)

√

√

√

√

π2

16

(ξ2 − 1)

log ξ
−
(

ξ − 1

log ξ

)2

. (3.65)

For fixed smax, the limits of δe read

lim
ξ→1
δe =

2

π
emax(smax)

√

π2/8− 1 (3.66)

and

lim
ξ→∞
δe =∞. (3.67)

Based on the eccentricity dispersion, we can define a measure for the ringlet-width-

variation, i.e.,

δ[w] ≡ 2aδe, (3.68)

Assuming smax = 100µm, heliotropic ringlet-width-variations in Saturn’s ring system

at position a are roughly given by

δ[w] ≈ 0.33 ·
(

a

RSaturn

)5
√

√

√

√

π2

16

(ξ2 − 1)

log ξ
− (ξ − 1)2

(log ξ)2
km. (3.69)

For the center ringlet of the Encke gap, we have δe ≈ 2.5 · 10−4, which corresponds to

a ringlet-width-variation of about δ[w] ≈ 67.9 km.

3.5.2.3. The FWHM

Another measure for the ringlet-width is given by the FWHM, directly derived from

the heliotropic optical depth. From Eq. (3.43) we numerically determine the FWHM

for the central ringlet at azimuthal position ϕ = π/2 to about wFWHM ≈ 26.4 km. The

FWHM of the semi-major axis averaged optical depth yields a somewhat larger value
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of wFWHM ≈ 52 km, still below the ringlet-width derived from the enclosing ellipses.

This is due to the fact, that the FWHM is not that susceptible to the tails as is the

average over the entire size ensembles.

3.5.2.4. Maximal eccentricity

When moving radially further out- or inward, the normal optical depth decreases

gradually, until the edges of the radial window of allowed dust grains are passed (see

Figs. 3.5 and 3.6). However, the Encke gap ringlet is reported to be very confined

(Porco et al., 2005, personal communication M. M. Hedman and J. A. Burns) within

the measured ringlet-widths, implying a sharp drop-off within hundreds of meters or

even less. Taking this as the measure, our model would yield a ringlet-width of about

160 km (radial window width), simply because the A ring edges constitute a sharp

drop-off in the size distribution via absorption of dust grains with eccentricities larger

than half of the gap width.

Figure 3.6 Normal - semi-major axis averaged - optical depth of the central Encke gap
ringlet as a function of radial and azimuthal position with linear gray scale. The black
line indicates the center of the ringlet, whereas the thin, gray lines represent isolevels of
the maximum normal optical depth. The isoline increment is 10 % starting from 50 to
90 %.
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These consistent overestimates of the ringlet-width by the annulus model are indicative

for a size distribution that differs from the one being used (Eq. (3.42)). This is due to

neglected mechanisms, that lead to various lifetimes for different grain sizes, which are

directly related to the very confined ringlet. For instance, scattering of dust grains at

moonlets embedded in the ringlet, especially those with semi-major axes close to the

edge of the observed ringlet, could lead to the observed sharp drop-off (Spahn, 1987,

Spahn and Sponholz, 1989, Hahn, 2006).

Notice that Pan itself cannot noticeably remove ringlet particles, which fulfill the

critical eccentricity criterion, derived from the gap edges (Eq. (3.25)), if diffusive

process are neglected (see Ch. 4). This can easily be shown by applying the encounter

problem of Henon and Petit (1986). They investigate the circular Hill problem, which

is the encounter version of the restricted circular three body problem, and derive an

expression for the closest approach distance η between the guiding center of the test

particle (horseshoe motion assumed) and the center of the moon. The guiding center

refers to the mean circular orbit of a particle, on which the epicyclic motion - due

to the particle’s eccentricity - is superimposed. This is an approximation accurate to

order e, and very useful for system, viewed in a corotating frame of reference. In a

frame of reference that corotates with the satellite, the closest approach distance for

a given impact parameter b = |∆a|
hPan

reads (Henon and Petit, 1986, Ida and Nakazawa,

1989)

η =
8

b2
hPan

b=1

↓≈ 160 km. (3.70)

Pan itself extends almost to its Hill radius, so that one has to subtract hPan = 19 km

from the closest approach η, to get the closest possible collision-free approach of ηcf =

141 km, presuming the particle to have semi-major axis a = aPan ± hPan. Note, this is

a lower limit for particles in the ringlet region, since η ∝ 1/b2. Consequently, almost

any configuration of impact parameter (= semi-major axis) and allowed eccentricity

(Eq. (3.25)) within the horseshoe region of Pan (aPan ± hPan) is unaffected by Pan.

Small particles (s < 13µm), that have semi-major axes close to the edge of Pan’s

Hill sphere (a = aPan ± hPan) and sufficiently large eccentricities, can be removed.

This is of negligible amount (less than 2%, assuming the particle size distribution

from Eq. (3.42) and semi-major axes equally distributed from aPan − hPan < a <

aPan + hPan), since particles with allowed eccentricities and semi-major axes in the

range aPan − 14 km < a < aPan + 14,km have collision-free closest approaches. On the

other hand, embedded moonlets, which are sufficiently small to live on Pan’s horsehoe
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orbits but at the same time have enough mass to affect dust grains, could do the job

by either scattering material directly out of the ringlet region or by pushing them into

Pan’s scattering zone.

Additional observatory facts, that also call for embedded moonlets, are the very

kinky and clumpy structures as well as the strong azimuthal brightness variations

of the Encke gap ringlets. The Encke gap ringlets are morphological very close to

the F ring, Fig. 1.6. Murray et al. (2008) have recently shown, that shepherding of

Pandora and Prometheus - two of Saturn’s satellites - including embedded moonlets

in the bright core of the F ring can account for the observed clumpy structures. In

the case of the F ring, these structures vary on timescales of days, alarmingly close to

those of heliotropic dynamics.

Another possibility to explain the narrow confined ringlet comes from the observa-

tion itself. Figure 3.6 illustrates a pol view of the ringlet (normal optical depth from

Eq. (3.43)). The isolines of 50 to 100 % of the normal optical depth maximum form

a very constrained ringlet. Usually, one has to remove a contamination level (=back-

ground) in the I/F data. A background level, which is above the I/F level produced

by ringlet grains that lie radially around the tails of the optical depths, would produce

a sharp edge. For instance, if the background level would be around 80% of the max-

imum of the heliotropic optical depth, a very confined ringlet of about 15 km width

would be measured (Fig. 3.6). Notice the heliotropicity is easily seen at ϕ = π and

ϕ = 2π.

Finally we note, that mechanisms which decrease the maximal eccentricity of a dust

grain, e.g., higher precession rate of the ringlet particles or smaller radiation pressure

effects, cannot produce a nice drop-off at 10 − 20 km ringlet-width, since eccentric

particles would still fill half of the gap width. These mechanisms would only decrease

the lower limit of the particle size distribution.



CHAPTER 4

The Sinks And Sources Of Dusty Ringlets

The annulus model has a slight deficit in describing the ringlet-width. This is most

likely related to mechanism that have not been included into the model and possibly

calls for strong grain size dependence on the lifetimes. The lifetime of each individual

dust grain is given by dynamic as well as kinetic processes. So far we have been dealing

with dynamics and related normal optical depth of the ringlet produced by a given

particle size distribution. In this chapter we identify kinetic processes, that maintain

the ringlet itself, influence lifetimes, and contribute to the particle size distribution.

4.1. Identification Of Possible Particle Sinks And Sources

4.1.1. Particle Sinks

We have already identified dynamical sinks for heliotropic ringlet particles in Ch. 3, i.e.,

gap edges and other potential celestial bodies, which remove particles from the ringlet

via collisions. Moonlets embedded in the ringlet region would also serve as sinks,

whereas Pan can be excluded, assuming horseshoe-like motion of the dust grains.

This does not hold, if diffusive processes due to stochastic fluctuation (e.g. moon-

let scattering, charge fluctuations, or radiative forces) drive ringlet particles into the

scattering region of Pan.

Micrometeoroids have high relative velocities and - once striking a ringlet dust

grain - are capable of immediately removing it from the ringlet region. Furthermore

adhesion of colliding ringlet particles may preferentially remove smaller particles to

form larger ones. Furthermore, even collisions among the ringlet particles may lead

to fragmentation.

Besides dynamical sink mechanisms, dust grains suffer mass loss due to sublimation
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and sputtering. The former sink being of negligible strength at Saturn’s distance from

Sun. The second sink mechanism can be split into plasma sputtering via energetic ions

and electrons, and UV photon sputtering. Sputtering can be thought of micro-erosion,

i.e., the impacting elementary particles alter a grain’s chemical as well as structural

composition, preferably on the surface, and lead to a successive desorption (Johnson,

1991, Strazzulla and Johnson, 1991).

4.1.2. Particle Sources

Already registered as a potential sink, micrometeoroid bombardment is also efficient

in producing ringlet material, when projectiles impact onto a satellite’s surface with

relative high velocities of tens of kilometers per second. At the Encke gap, we have

Pan and other putative embedded moonlets, that might supply the surface of impact.

The same impact mechanism onto embedded moonlets also holds for the ringlet

particle itself, although orders of magnitude less efficient, due to small relative veloci-

ties of meters per second. Inter-moonlet-collisions might also supply ringlet material.

Here, the efficiency is probably orders of magnitude below that of the micrometeoroid

contribution, since again low relative velocities of meters per second are expected.

Additionally, the dynamical optical depth of the moonlets is supposed to be small.

Finally we also have contributions from inter-particle collisions, which potentially pro-

duces larger particles, while at the same time, removes the smaller ones. However, the

contrary case can also not be excluded.

Concerning the micrometeoroid bombardment scenario, we note that Pan is a rather

insufficient source. This is due to the fact, that almost all of the ejected material falls

back onto the moon’s surface. However, there are two positions in the vicinity of Pan,

Lagrange points L1 and L2, at which the material can easily escape, since at these

points, the combined gravitational accelerations of central planet and moon as well as

the centrifugal forces acting on dust grains balance. Topologically, this results into two

saddle-points, which separate regions of different kinds of motion of the dust grains

(Fig. 2.3), i.e., orbits solely around the moon, horseshoe-like orbits around the central

planet, or other non-classified types. We recall from Ch. 2, that these two points must

be aligned with the central planet and the moon, whereas their separation from the

moon is almost the moon’s Hill radius.

Since Pan almost fills its entire Hill sphere, it is very unlikely, that particles can

encircle Pan. So in order to get away from Pan, dust grains must pass one of the

two Lagrange points. This in turn forces the ejected material on orbits, which have

semi-major axes in the vicinity of Pan’s Hill sphere. Spahn (1987) have shown, that
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in this region, strong scattering occurs, so that most of the material, that has made

it through L1/2, is scattered out of the ringlet region during the next encounter.

This qualitative reasoning is supported by numerical results from my colleague M.

Makuch, which indicate that Pan’s contribution to the ringlet material is evanescent

small. In Fig. 4.1 we show the distribution of semi-major axes of particles (all of size

s = 37 microns) after 10 days have elapsed from their launch of Pan, assuming the

micrometeoroid bombardment scenario. Out of Ni = 106 starting particles, 4.2 · 103

particles can escape, but none of these has a semi-major axis within the Hill region

of Pan. The semi-major axes of the remaining particles lie in the scattering region of

Pan, so that with probability at least ≥ (1− 1/Ni) ejected particles cannot contribute

to the ringlet.

Figure 4.1 This plot shows the final semi-major axes distribution of nominal grains,
having size s = 37 microns, which have been launched from Pan, according to the
micrometeoroid bombardment scenario, and “survived” in the sense, that they did not
fall back onto Pan nor did they hit the gap edges. The two vertical black lines, which
surround a centered one (Pan’s semi-major axis at 2.21RSaturn), represent part of Pan’s
Hill sphere (hPan ≈ 19 km). Apparently, none of the particle has a semi-major axes
within the Hill sphere of Pan, so that none out of these 106 particles can contribute to
the central ringlet in the Encke gap. The simulations have been run for 10 days, without
any of the perturbation forces we have considered, since none of these can potentially
change the semi-major axis. Furthermore, particle orbits of the nominal grain size do
not evolve to eccentricities, which might push the particles into the gap edges. Credit:
M. Makuch, AGNLD Universität Potsdam
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4.2. Feeding The Ringlet

4.2.1. Simple Kinetics

The evolution of the total number of particles N in the ringlet region can be described

by the gain-loss master equation

Ṅ = N+ −N−, (4.1)

where N+, N− represent particle gain and loss rates, respectively, averaged over the

particle size distribution. If the loss rate is poorly known, it is possible to model the

loss rate via an effective lifetime tlife, by assuming that the entire system has evolved

to a steady state (Ṅ ≡ 0) after the lifetime tlife has elapsed, i.e.,

N− ≃ N+Θ(t− tlife). (4.2)

Then, the solution of Eq. (4.1) takes the simple form

N = N+ tlife +N0, (4.3)

where N0 represents the initial number of ringlet particles, which is assumed to be

zero. The total number of particles N can be transformed into an optical depth, using

the relation

τ ≡ σ(seff )N
A

, (4.4)

where the ringlet area is given by A = 2a2πeτ ,with estimated eτ from Sec. 3.5.1. The

effective particle size seff is obtained from the size average (Eq. (3.53)),

seff ≡ 〈s〉s = smin
ξ − 1

log ξ
. (4.5)

Assuming smax and smin according to the dynamics in the Encke gap, we find an

effective particle size of seff ≈ 37 microns.

4.2.2. Application To The Encke Gap

The model parameters for the most sufficient source (micrometeoroid bombardment)

are poorly constrained, i.e., the reported mass fluxes vary about 2 orders of magnitude.
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It becomes even worse for the sink mechanisms. Although the main sinks are clear,

there are little measurements, that can constrain the efficiencies of the various sinks.

Therefore we adopt the adumbrated black box model for the sinks, based on an effective

lifetime and a measured normal optical depth, which reflects an average over the entire

particle size distribution in the ringlet. The gain rate is modeled by considering only

the micrometeoroid bombardment scenario.

The optical depth is directly related to the source and sink mechanisms, since it

is produced by material that has sufficient lifetimes to contribute to optical mea-

surements. The ringlets in the Encke gap have large azimuthal brightness variations.

Nevertheless, Porco et al. (2005) have determined a mean optical depth for the Encke

gap ringlets of τ ≈ 1.6 · 10−2.

In this simple approach, the effective optical depth of the ringlet formed by par-

ticles having sizes s in the range s ∈ [smin . . . smax] evolves according to (Eqs. (4.1)-

(4.2),(4.4))

τ̇ = τ+ τm (1−Θ(t− tlife)), (4.6)

where τ+ represents the optical depth gain rate of the ringlet given by the micromete-

oroids that eject material from parent bodies, τm (m = moonlet). Assuming a steady

state after the effective lifetime has elapsed, the loss term should be of the same order

as the gain term. Note, Eq. (4.6) is averaged over the entire grain size distribution.

Following Krivov et al. (2003), the gain rate of the optical depth reads

τ+ = π s2eff
1− α
α

M+

Mmax

(

Mmax
Mmin

)α

. (4.7)

This represents a power-law with slope α, upper (Mmax) and lower (Mmin) mass limits

of the cumulatively generated dust grains, that contribute to the optical depth. Rea-

sonable slopes α vary in the range between 0.5 and 1 (see discussion in Krivov and

Jurewicz, 1999). We assume α = 0.8 (Krüger et al., 2000). The mass production rate

M+ is given by

M+ = FimpY, (4.8)

where Fimp gives the mass flux of impactors, taking into account gravitational focusing

by the planet and scales according to Fimp ∝ vimp, the impact velocity of the microme-

teoroids corrected by gravitational focusing effects. The ejecta yield Y , defined as the

ratio of the total ejecta mass to the mass of impactors, scales like Y ∝ v2.5imp (Koschny
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and Grün, 2001). We note, that yield Y and micrometeoroid flux Fimp are rather

uncertain.

Equation (4.6) can be readily solved to give a crude estimate for the optical depth

of the moonlet population τm embedded in the ringlet, presuming known effective

lifetime tlife and optical depth τ of the ringlet,

τm ≈ 11.8 τ

(

yr

tlife

)

. (4.9)

From the normal optical depth τm we can derive an effective cross section σ(rm) and

number density Nm/A, where Nm is the number of moonlets with radius rm embedded

in the ringlet (Eq. (4.4)). Moreover, we can then estimate the mass of the moonlet

population, which again is assumed to have dominant source contribution.
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Figure 4.2 Optical depth of moonlets, that replenish the ringlet with material via
micrometeoroid bombardment as a function of effective lifetime of the dust grains, eval-
uated for the central Encke gap ringlet. The normal optical depths has been derived by
Porco et al. (2005), assuming mostly forward scatterers, i.e., small dust particles.
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In Fig. 4.2 we plot relation (4.9), assuming an optical depth of the ringlet of τ =

1.6 · 10−2, which has been given by Porco et al. (2005). The upper limit of the

moonlets’ optical depth is given by the heliotropic timescale, Eq. (3.28), which in

the Encke gap results to τm ≤ 0.6 (Eq. (4.9)). This is very high, since the optical

depth of the moonlets is expected to be smaller than the optical depth of the ringlet,

measured by Porco et al. (2005). The lower limit is given by the maximal lifetime of

the smallest dust grains. We use the sputtering timescale, which for the Saturnian

system is roughly 103±1 yr (Burns et al., 2001). Taking the upper estimate of 104 yr

we find τm ≥ 1.9 · 10−5, which corresponds to a minimum of ≈ 300 moonlets with a

radius of 500 m, or roughly 3 · 10−2MPan, needed to sustain the ringlet (Eq. (4.4)).





CHAPTER 5

Conclusion & Outlook

In the planar orbit-averaged picture we can give a solid understanding of the heliotrop-

icity observed in some of Saturn’s ringlets. Including three additional perturbation

forces that lead to periodic eccentricity variations and precession of the longitude of

pericenter, we qualitatively as well as quantitatively reproduce the “locked” orienta-

tion of the ringlet with respect to the Sun, neglecting any kinetic processes. The

ringlet itself is modeled by superimposed annuli, which are created by the interaction

of the three additional perturbation forces. We can constrain the minimal possible

grain size that can possibly survive the heliotropic dynamics. We further can give a

lower lifetime limit for particles, that form heliotropic ringlets. In the Encke gap we

have chiefly smin ≈ 8.7 microns, and lifetimes of at least 3 to 4 months.

The annulus model can fairly well reproduce observed eccentricities of the central

ringlet, but has slight deficits in reproducing the observed confined ringlet-width. In

Fig. 5.1 the left panel shows the Encke gap with its kinky and clumpy ringlets, the right

panel gives a collage of the central Encke gap ringlet based on our annulus model and

the A ring. Apparently, the ringlet-width is overestimated. This is due to neglected

physics, which is a mixture of both, kinematic as well as kinetic mechanisms. The

most promising kinematic mechanisms that may account for the ringlet-confinement

as well as the kinky- and clumpiness are embedded moonlets and related stochastic

scattering processes. Shepherding mechanisms likewise those of the F ring should also

be considered in further investigations. Furthermore, azimuthal brightness variations

as seen in the real world - also indicative for moonlets - cannot be described by our

model.

From the kinetic point of view, we could identify several processes, that may serve

as sinks and/or sources. We use a simple balance equation to model material gain

and loss terms, whereas the loss term is black-boxed. Applying this model to the
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central Encke gap ringlet provides us a relation between effective material lifetime and

optical depth of embedded moonlets. Assuming lifetimes of 104 years, the mass of the

embedded moonlet population should be at least of the order of 3 · 10−2MPan, in order

to sustain the central Encke gap ringlet with dust material.

However, there is more to be included into a solid ringlet model. Starting from

collisional dynamics of visco-elastic particles, including adhesion and gravity, ongoing

gravitational scattering and other stochastic sources, a kinetic description of coagu-

lation, restitution and fragmentation should also be taken into account. The magni-

tudes of potential sinks should be investigated further on, including erosion by means

of UV-photon sputtering. This should yield a lifetime distribution, which is of crucial

importance to explain the diverse structures seen in the Saturnian ringlets. All these

Figure 5.1 The left panel shows the Encke gap ringlets as seen in the real world.
The right panel is a composition of a picture from the A ring and the theoretical
modeled central ringlet, based on the annulus model, developed in this work. Credit:
www.ciclops.org

items pinpoint milestones of future work in understanding the faint ringlets of Sat-

urn. Finally, continuation and re-examination of Cassini data should provide hints for

further investigative theoretical approaches, which might reveal new physics for these

amazing structured, dusty ringlets in Saturn’s ring system.
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Deutsche Zusammenfassung

Im Sommer 2004 erreichte die Raumsonde Cassini Saturn, den zweitgrößten Plan-

eten in unserem Sonnensystem. Seitdem wurden fantastische Entdeckungen von einer

über 250 Wissenschaftler umfassenden internationalen Gemeinschaft gemacht, deren

physikalische Erklärungen unser Verständnis der Welt enorm erweitert haben.

Die Saturnringe, welche aus losem, zumeist eisigem Staubmaterial bestehen, bieten

außergewöhnlich viele Strukturen, welche räumlich und zeitlich mehr oder weniger

stark variieren. Diese Eigenschaft resultiert aus einer Unzahl an zusätzlichen Kräften,

welche die allgemein bekannte Kepler-Bewegung beeinflussen. So befinden sich meh-

rere Lücken, oder auch Teilungen, in den Ringen, welche schon in Voyager 1/2 Daten

Anfang der achtziger Jahre gesehen wurden. Diese werden teilweise durch Resonanzen

der Saturn Monde (z.B. innere Ringkante der Cassini Teilung und Mimas), aber auch

durch Monde an sich (z.B. Keeler Teilung und Daphnis, Encke Teilung und Pan) über

gravitative Wechselwirkungen erzeugt.

In diesen Ringteilungen befindet sich - mit Ausnahme von dem ein oder anderen

feinen Staub-Ringlein - kein Material. Hedman et al. (2007) haben eine interessante

Entdeckung gemacht. Einige dieser feinen Staub-Ringlein sind exzentrisch und halten

eine besondere Orientierung zur Sonne aufrecht. Genauer, ihr Apozentrum ist in

Richtung Sonne gerichtet, weshalb sie heliotropische Ringlein getauft wurden.

Für exzentrische Strukturen im Saturnsystem ist diese eingefrorene Orientierung

ungewöhnlich. Normalerweise würde eine Präzession von exzentrischen Strukturen

um Saturn auf einer Zeitskala von Monaten, deren Rate im Wesentlichen durch die

Abplattung von Saturn bestimmt ist, erwartet werden.

In dieser Diplomarbeit untersuchen und erklären wir das außergewöhnlich heliotropis-

che Verhalten qualitativ, sowie quantitativ mit Hilfe von Orbit gemittelten Störungs-

gleichungen. Dabei demonstrieren wir, dass ein Zusammenspiel von drei Störungskräften

(Strahlungsdruck der Sonne, Abplattung der Pole vom Saturn, Lorentzkraft) peri-

odisch gekoppelte Variationen von Orbitexzentrizität und Position des Perizentrums

erzeugen, und im Ensembel einen exzentrischen Ring hervorbringen, dessen Apozen-
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trum in Richtung Sonne zeigt.

Mit diesem Modell können wir gemessene Ringleinexzentrizitäten und -breiten in

der Encke Teilung (Ferrari and Brahic, 1997, Hedman et al., 2007), unter Annahme

gängiger Größenverteilungen (Divine, 1993, Krivov et al., 2003), sehr gut bzw. befriedi-

gend reproduzieren. Die Ringleinbreiten werden um den Faktor 3 bis 10 überschätzt,

was auf zusätzliche, nicht berücksichtigte Wechselwirkungen schließen läßt. Hier seien

Teilchenstreunung an möglichen Moonlets (kleinere Monde) im Ringlein und Wech-

selwirkungen zwischen den Staubteilchen als zwei mögliche Ursachen genannt. Auf-

bauend auf dieser heliotropischen Dynamik können wir eine untere Grenze der Staub-

größenverteilung in der Encke Teilung ableiten, welche in eine Mindestlebenszeit für

heliotropisches Ringleinmaterial übersetzt werden kann.

Motiviert durch die leicht überschätzen Ringleinbreiten, azimuthal unregelmäßi-

gen Helligkeitsschwankungen (z.B. Ferrari and Brahic, 1997), früheren (Cuzzi et al.,

1984, Spahn and Wiebicke, 1989, Spahn and Sponholz, 1989) und aktuellen Arbeiten

(Murray et al., 2008), sowie der evidenten knickrigen Struktur des zentralen Encke

Ringleins (siehe Titelbild, linke Seite), wenden wir zur Materialgenerierung das sog.

Impact-Eject Szenario (Divine, 1993, Krüger et al., 1999) auf Moonlets an, welche an

mit Sicherheit grenzender Wahrscheinlichkeit in dem Ringlein eingebettet sind.

Damit können wir ein einfaches kinetisches Modell basierend auf gemessenen Daten

von Cassini (optische Tiefen, Porco et al., 2005) entwerfen. Jenes liefert, bei gegebener

effektiver Lebenszeit der Teilchen im Ringlein in der Encke Teilung, eine dazu mindest

nötige Quellmasse. Dabei räsonieren wir, dass Pan, welcher seine Bahn mit dem zen-

tralen Ringlein der Encke Teilung teilt, eine untergeordnete Rolle als Materiallieferant

spielt, und bestätigen somit die bisherigen Vermutungen von eingebetteten Moonlets

im zentralen Ringlein der Encke Teilung. Jedoch zwingt Pan die als Materialquellen

fungierenden Moonlets auf “Hufeisenbahnen”, was so das Ringlein radial begrenzt.

Des Weiteren vermuten wir, dass ein Großteil der Staubringlein auf diese Weise

in einer stationären Balance zwischen Mikrometeoriten Erosion als Quelle und dy-

namischen Verlusten gehalten werden, welche erst durch die Existenz einer Moonlet-

Population ermöglicht wird. Die Abschätzung der minimal nötigen Quellmasse liefert

einen weiteren wichtigen Schritt in Richtung Antwort zu der Frage, in welcher Beziehung

kleinere Monde wie Pan zu den sie umgebenden Ringlein stehen.

Zum Titelbild: Das Titelbild zeigt Saturns äußeren A Ring inklusive der Encke Teilung

mit Haupt- und Nebenringlein (nur linkes Bild). Das recht Bild stellt eine Collage vom

A Ring und dem Hauptringlein, welches durch das in dieser Diplomarbeit entwickelte

Modell generiert wurde, dar. Im linken Bild, in der rechten unteren Ecke ist eine
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Bildirritation zu erkennen. Diese ist auf ein Staubteilchen oder ähnliches zurück-

zuführen, welches womöglich auf die Kameralinse eingeschlagen ist.
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