
Finite-State Rule Deduction for Parsing
Non-Constituent Coordination

Sina Zarrieß and Wolfgang Seeker

Potsdam University, Germany

Abstract. In this paper, we present a finite-state approach to con-
stituency and therewith an analysis of coordination phenomena involving
so-called non-constituents. We show that non-constituents can be seen
as parts of fully-fledged constituents and therefore be coordinated in
the same way. We have implemented an algorithm based on finite state
automata that generates an LFG grammar assigning valid analyses to
non-constituent coordination structures in the German language.

1 Introduction

In standard syntactic theories, coordination is usually seen as a structure that
conjuncts syntactic entities which are both of the same phrasal category and
maximal projections (see [1] for an example). However, in various languages
one finds examples for coordinated structures where conjoins don’t fit into any
standard concept of syntactic constituent, or don’t even share their phrasal prop-
erties. The main insight the following examples should give is that, in general,
syntactic entities can be coordinated if the material they share completes them
in a syntactically well-formed way.

(1) Asterix
Asterix

darf
may

und
and

Obelix
Obelix

darf
may

nicht
not

vom
of

Zaubertrank
magic potion

trinken.
drink

(2) Asterix
Asterix

gibt
gives

Obelix
Obelix

ein
a

Wildschwein
boar

und
and

Idefix
Idefix

einen
a

Knochen.
bone

(3) Obelix
Obelix

verschlingt
devours

ein
a

kleines
small

und
and

nascht
snacks

von
of

einem
a

großen
big

Wildschwein.
boar

Even on the level of constituent structure, it is quite difficult to assign a valid
analysis to this kind of constructions, see figure 1.

In [2], the author gives an exhaustive overview of strategies that have been
implemented for covering these phenomena. In his paper, he mainly shows that
despite their nearly identical behaviour, constituent and non-constituent coordi-
nation are often treated as completely seperated structures. Sometimes even the
underlying parsing algorithm is modified for being able to parse this particular

214 Sina Zarrieß and Wolfgang Seeker

S��������
��������

??��������
������

??
���
���

Asterix darf

CONJ

und

??
				

Obelix darf nicht

??������
������

vom Zaubertrank trinken

Fig. 1. Which category has a non-constituent?

structure. What seems to make it so difficult to analyze non-constituent phe-
nomena is that they undermine the fundamental concept of syntactic category.

We have implemented an algorithm that generates a grammar allowing par-
tial constituents in the context of coordination from a standard context-free LFG
grammar in the well-known XLE format. This automatically generated gram-
mar then covers the main types of non-constituent coordination as Right Node
Raising and Conjunction Reduction. Our approach has been inspired by [3] who
make use of the fact that the right rule sides of an LFG grammar are regular
languages and can therefore be represented by finite state automata. But still,
their strategy operates on the level of the parsing algorithm and suffers from the
drawback of being barely formalized.

In the remaining of this paper, we will describe the way we apply the theory
of automata to the problem of partial rule generation. Our basic goal is to
assign the same category to partial constituents that expect identical completing
material. When appropriate, we will go into the details of the XLE grammar
implementation that realizes the assignment of a well-formed syntactic analysis
to non-constituent coordination structures.

2 Preliminaries

2.1 Formal Language Devices

Initially, since we want to conceptualize constituency in a finite-state frame, we
give some notations for formal devices that specify regular as well as context-free
languages. For instance, regular expressions are instances of regular languages
over an alphabet Σ. They are usually defined recursively as follows:

Definition 1. The empty set ∅, the empty word ε and all symbols a ∈ Σ denote
regular expressions. If r and s are regular expressions, their disjunction (r + s),
concatenation (rs) and closure r∗ also denote regular expressions.

An alternative device for manipulating regular languages are the so-called
finite-state automata.

Definition 2. A finite-state automaton (or FSA) A is a 5-tuple A = (Σ,Q, I, F,
E) where:

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 215

1. Σ is the finite input alphabet of the automaton;
2. Q is the finite set of states;
3. I ⊆ Q is the set of initial states;
4. F ⊆ Q is the set of final states;
5. E ⊆ Q× (Σ ∪ {ε})×Q the set of transitions.

Given a transition e ∈ E, we denote by s[e] its input label, by p[e] its origin
(previous) and by n[e] its destination (next) state. A path π = e1 . . . en in the
automaton A is defined as an element of E∗ where forall n[ei−1] = p[ei]. A
successful path in A is a path π = e1 . . . en where p[e1] ∈ I and n[en] ∈ F , thus
a path from an initial to a final state. The concept of an origin and destination
state can be extended to paths so that p[π] and n[π] are meant to be the origin
and destination state of the path π. Accordingly, s[π] denotes the concatenation
of the input symbols of a path π.

We define the right language of a state q ∈ Q as follows:−→
L (q) = {w | π(q, w, q′), q′ ∈ F}. The language accepted by an automaton A is
the union of the right languages of all initial states L(A) =

⋃
q∈I
−→
L (q).

The definition of a finite-state automaton can be easily extended to a finite-
state transducer (FST) T = (Σ, Δ, Q, I, F,E) where Δ is the finite output al-
phabet and E ⊆ Q×(Σ∪{ε})×(Δ∪{ε})×Q. The composition of two finite state
transducers T = T 1 ◦ T 2 is defined as T = (Σ1 ,Δ2 , Q1 × Q2 , I1 × I2 , F 1 ×
F 2 , E) where (< q1 , q1

′ >, a, b, < q2 , q2
′ >) ∈ E if (q1 , a, c, q2) ∈ E1 and

(q1
′, c, b, q2

′) ∈ E2 .
Whereas the language L(A) accepted by an FSA A is a set L ⊆ Σ∗, the

language recognized by an FST can be seen as a relation L(T) ⊆ (Σ ×Δ)∗. We
will sometimes use the common set theoretic operations like union and product
to denote operations on FSTs. Furthermore, we define an operation of projection,
where P 1 (T) ⊆ Σ∗ corresponds to the input and P 2 (T) ⊆ Δ∗ to the output
language of T .

The LFG grammar that will provide input for our rule generator is an in-
stance of a context-free language specified as a context-free grammar.

Definition 3. By the classical definition, CFGs are tuples Gc = 〈V T , V N , S,R〉
including the requirements:

1. V T is the finite alphabet of terminals;
2. V N is the finite alphabet of nonterminals;
3. S is the start symbol;
4. R is the set of rules r : σ → ω, so that σ ∈ V N and ω ∈ (V T ∪ V N)∗.

In the following section, we will mainly show how these computationally quite
distinct devices can be interrelated to give rise to a formal concept of (partial)
constituency.

2.2 LFG Grammars in XLE

The actual implementation of our coordination grammar, as described in the
following section, has been done within the XLE development environment for

216 Sina Zarrieß and Wolfgang Seeker

LFG grammars (see [4] or [5] for a general introduction). To enable the reader to
follow the presented examples, we will give a short description of some common
XLE notations.

In general, XLE grammars have to be specified as left-canonical (see defini-
tion 4). An example for a typical rule in XLE is shown in figure 2. Disjunction is
expressed by curly brackets, optionality by round brackets. The category sym-
bol stands to the left of a colon, its f-annotation to the right. An expression
(SUBJ) =! in the f-annotation means that whatever is derived by that symbol
is in the SUBJ feature of the current f-structure. The $-symbol is the ∈-symbol
and is used for sets.

NP -->
{ (D) A*: !$(^ADJUNCT); N:(^SUBJ)=!;
| PRON:(^SUBJ)=!;
}
(PP:!$(^ADJUNCT);).

Fig. 2. A simple NP rule

To formulate category independent structures in a general way one can de-
fine so-called XLE macros. In figure 3, our macro for coordination is shown. A
category symbol placed in _cat is copied to all occurences in the rule body and
associated with the specified f-annotation. Note that the $-operator causes the
coordinated elements to be unified in a set and their f-structures to be treated
as a single set.

COORD(_cat) =
_cat: !$^;
(COMMA _cat: !$^;)*
{CONJ[konj]: (^NUM)=pl | CONJ[disj]: (^NUM)=sg }
_cat: !$^.

Fig. 3. The coordination macro

Another useful XLE mechanism called complex category symbols allows en-
riching category symbols with different parameters to generalize information
about different instances of the same constituent. A parameterized symbol then
stands for all possible instanciations of its parameters. An example is shown in
figure 4.

However, one should not think of category parameters in terms of Prolog-
style variables. Parameters are only interpreted when they occur at the left side
of a rule. Thus, if parametrized categories appear on the right side of a rule,

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 217

NP[_param $ { pl sg }] -->
{

D N
|

N: _param = pl;
}.

Fig. 4. Parameterized NP rule

their mother category is parametrized by at least the sum of all its daughter
parameters. In consequence, underspecified parameters aren’t licensed and we
are forced to enumerate all possible instanciations of a parameter at least at the
root symbol.

3 A Finite-State Concept of Constituency

3.1 A First Approach to Partial Constituents

One can easily see that the right side ω of a standard context-free rule as defined
in definition 3 is equivalent to a regular expression by the finite concatenation of
symbols xi ∈ (V T∪V N), where x1 . . . xn = ω. Very often, context-free grammars
(LFG grammars for instance) especially make use of the regular syntax in that
they allow operations like disjunction or closure to appear on the right rule side.
This fact enables us to define the concept of a left-canonical grammar.

Definition 4. A context-free grammar Gc = 〈V T , V N , S,R〉 is called left-cano-
nical if and only if for every σ ∈ V N there exists at most one r ∈ R such that
r : σ → ω.

For every context-free grammar G that doesn’t satisfy this property, it is
possible to define an equivalent left-canonical grammar G′. Given a grammar
G1 that contains one pair of rules r1 , r2 such that σ1 = σ2 , you simply have to
unify the right sides ω1 , ω2 such that r1+2 : σ1+2 → ω1 + ω2 .

This type of grammar is a useful construction when you want to define the
regular language L1 (σ) that can be derived from a nonterminal σ ∈ G by a single
rule application. If G is left-canonical, for every ωi ∈ R, ωi denotes exactly the
regular expression that corresponds to the language L1 (σi). Thus, it is possible
to represent the set of rules R of a context-free grammar by a set of automata
AR = {Aωi

| L(Aωi
) = L1 (σi)}.

Given these connections between regular and context-free languages, one can
formalize the syntactic concept of constituency in the following way:

Definition 5. A linguistic entity ωi is called a constituent with respect to a
context-free grammar G, if there exists a path π ∈ Aω such that Aω is equivalent
to some right rule side σ → ω ∈ G and s[π] = ωi .

218 Sina Zarrieß and Wolfgang Seeker

In case p[π] /∈ I or n[π] /∈ F , thus if π isn’t successful, the related constituent
s[π] is called partial and labelled by ωi,j where i = p[π] and j = n[π]. Otherwise,
if π is a successful path in Aω we call the constituent ω0 ,n that corresponds to
s[π] complete. We define an isomorphism μ : L1 (σi,j) → Πei ...ej that maps the
regular language representing a (possibly partial) constituent to its correspond-
ing set of paths in the rule automaton.

Now, we are able to state the hypothesis in [3] concerning coordination of
non-constituents in a formal way:

Lemma 1. Two constituents ωi,j , ωu,v with ωi,j = s[πi,j] and ωu,v = s[πu,v],
πi,j , πu,v ∈ Aω can be coordinated iff i = u and j = v.

3.2 A Precise Formalization of Coordination

The intuition underlying this generalized coordination rule is that (partial) con-
stituents can be conjoined if the constituents that make them complete are iden-
tical. However, this lemma doesn’t completely capture this intuition. Consider
the automaton in figure 5 that represents a simplified NP -rule.

0

1

D 2

A 3

N

4A

A

N

A

5PP

6

CP

PP

CP

Fig. 5. An automaton representing the right side of a simple NP rule

Although the constituents labelled by the input sequences N and A can be
completed by identical constituents PP or CP , their corresponding paths don’t
have a single destination state in common. Therefore, we have to refine our
concept of a valid rule automaton Aω.

It can be shown that for every regular set there exists a canonical minimum
state automaton. The well-known Myhill-Nerode theorem (see [6]) states that a
regular language is the union of equivalence classes on a right invariant equiva-
lence relation RL of finite index. RL is defined by: xRLy if and only if for all
z ∈ Σ∗, xz ∈ L if and only if yz ∈ L. In terms of an automaton this means
that its set of states can be partitioned into equivalence classes with respect to
a right invariant relation RL

′ where qiRL
′qj if

−→
L (qi) =

−→
L (qj).

The concept of a state representing an equivalence class with respect to
its right language is exactly what we need for the partial constituents being

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 219

assigned a meaningful category. In consequence of the Myhill-Nerode theorem,
one can now say that all partial constituents ωi,j that can be completed by an
identical constituent ωj ,k lead the canonical rule automaton into an unique state
k, since they have the same right language

−→
L (k). This leads us to a more precise

generalized coordination rule:

Lemma 2. Two constituents ωi,j , ωu,v with ωi,j = s[πi,j] and ωu,v = s[πu,v],
πi,j , πu,v ∈ Aω can be coordinated iff i, u ∈ ||i|| and j, v ∈ ||j||.

Hence, our goal is to generate all possible partial right rule sides ωi,j =
s[πi,j] from the canonical rule automaton and assign them a category which is
parametrized by the pair of states (i, j) in the canonical rule automaton. For-
mally, this can be expressed by a mapping that relates a left-canonical context-
free grammar G to a grammar G′ that is equivalent with respect to the maximal
projections but explicits its partial constituents:

Definition 6. Given a canonical CFG Gc = 〈V T , V N , S,R〉 and its equiva-
lent canonical rule automaton Aω we define a mapping onto a grammar Gp =
〈V T ‘, V N ‘, S‘, R‘〉 that fulfils the following conditions:

1. S = S‘ and V T = V T ‘.
2. V N ‘ = V N ∪

⋃
σ∈V N ,i,j∈QAω

σi,j .
3. Every rule r : σ → ω, r ∈ R is mapped by a function f to a set of rules

f(r) = {σi,j → ωi,j | s[πi,j] = ωi,j , πi,j ∈ E∗Aω
, πi,j ∈ μ(L(σi,j))}.

4. R‘ =
⋃

r∈Rf(r) ∪R.

However, in our XLE implementation we avoid blowing up the set of rules
as is described above. The mechanism of complex category symbols allows us to
treat all partial constituents ωi,j of a mother category σ as derivations of the
same rule that parametrize σ in a different way. Figure 6 shows an example of a
parametrized NP-rule, where the origin and destination state of the constituent
are realized as the parameters _from and _to. To indicate the possibly partial
status of this category it is called XPsub. Every XPsub is parameterized by
all parameters φ1 ...φn of its original category, by a parameter _koord, which
marks the coordination status of the constituent, and two parameters _from
and _to to mark the start and end index of a particular substring (we use the
values sa and se for start and end state). Thus, XPsub is equal to the set of
rules yielded by the mapping f(XP).

Because of the constituent status of the non-constituents we can now coordi-
nate them with the same macro we use for constituent coordination, see figure
3. The restriction, that only constituents with congruent origin and destination
state can be coordinated, is inherent to the macro since only categories with
identical parameters form the same category symbol.

3.3 Assembling Complete Constituents

Up to now, we have completely ignored the fact that we don’t want our grammar
to derive partial constituents in contexts other than coordination. Finally, we

220 Sina Zarrieß and Wolfgang Seeker

NPsub[_ntype $ {std rel int},_koord,_from,_to] -->
{
AP: _ntype = std; e: _from=s19 _to=s21 _koord=no;
|
...
|
@(COORD_PART NPsub[_ntype $ {std rel int},no,_from,_to])
e: _koord=yes;
|
@(COORD NPsub[_ntype $ {std rel int},_koord,_from,_to]
e: _from=sa _to=se)
}.

Fig. 6. NPsub generated from an NP rule

will have to add rules to the grammar that reassemble partial constituents to
complete ones. The formalization is straightforward:

Lemma 3. A sequence of constituents ωi0 ,j 0 , ωi1 ,j 1 , . . . , ωin ,j n , ωii ,j i ∈ Aω

forms a complete constituent, iff for every jn = in+1 and i0 is the initial state
and in some final state in Aω.

Thus, we would have to add to our coordination grammar Gc ‘ all possible in-
stances of the rule r : σi,k → ωii ,j i , . . . , ωik ,j k . But this would lead to an extreme
ambiguity in the resulting grammar where every complete constituent could, in
addition to its original derivations, be derived by numerous ways of putting to-
gether its partial right rule sides ωi,j . To cope with this serious overgeneration,
we restrict the completion to require at least one partial constituent that has
been formed by a conjunction of partial constituents. Every partial constituent is
further parametrized with a boolean feature that marks its coordination status
to check for this condition.

Lemma 4. A sequence ωcoord
i0 ,j 0 , ωcoord

i1 ,j 1 , . . . , ωcoord
in ,j n , ωii ,j i ∈ Aω forms

a complete constituent, iff there exists some ωcoord
i,j with coord = true and for

every jn = in+1 and i0 is the initial state and in some final state in Aω.

In our implementation we have restricted the respective completion rules to
binary branching.

We are now able to give an elegant analysis for e.g. the phenomenon of Right
Node Raising as shown in figure 8.

4 Automated Deduction of Partial Constituents

We could now extract all partial constituents from the rule automaton by per-
forming a standard breadth-first search on its transitions. However, we prefer
this operation to be defined on the algebra of finite state automata.

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 221

NPkompl[_ntype $ {std rel int},_from,_inter,_to] -->
{
NPsub[_ntype $ {std rel int},yes,_from,_inter]
NPsub[_ntype $ {std rel int},no,_inter,_to]
|
NPsub[_ntype $ {std rel int},no,_from,_inter]
NPsub[_ntype $ {std rel int},yes,_inter,_to]
|
NPmiss[_ntype $ {std rel int},yes,_inter]
PPsub[std,no,_inter,se]: !$(^ADJUNCT); e:_from=sa _to=se;
}.

Fig. 7. NPkompl generated from an NP rule

CS 1: ROOT

NPkompl[std,sa,s21,se]

NPsub[std,yes,sa,s21]

NPsub[std,no,sa,s21]

DET

der

AP

ADJ

kleine

CONJ[konj]

und

NPsub[std,no,sa,s21]

DET

der

AP

ADJ

dicke

NPsub[std,no,s21,se]

N

Gallier

Fig. 8. Analysis for the German NP the small and the big gaul

222 Sina Zarrieß and Wolfgang Seeker

In a first step, we define a transducer T sub that can be notated as a regular
expression T sub = (ID(Σ)∗ · (Σ×{ε})∗ · ID(Σ)∗). By definition of the composi-
tion of FSTs, the transducer ID(Aω)◦T sub yields a relation that maps arbitrary
long prefixes and suffixes in Aω to ε, so that the second projection of this rela-
tion P 2 (ID(Aω) ◦ T sub) yields an automaton Aωi,j that accepts all partial and
complete constituents of Aω. The problem with this first approach is that the
states in Aωi,j of course don’t correspond to those in Aω anymore. However, we
have shown in the previous section that the state information inherent to the
canonical rule automaton Aω is exactly what we need to parametrize partial
categories.

Thus, before generating partial constituents, we have to explicitely encode
the states in the FSA Aω. Broadly speaking, we do this by indexing the regular
expression that constitutes the right rules sides ω to label every distinct position
of the expression. Then, the automaton Aω

ind equivalent to the indexed right
rule side contains position labels such that for every given state n[e] ∈ A with
the right language

−→
L \ I there exists a unique input label i[e] ∈ Iω. By a series

of compositions with deletion transducers we obtain an automaton Aω
i,j whose

input sequences s[π], where π is successful, are strings of the form s = ii ·ωi,j · ij .
First, we have to define the operation of indexing positions in regular expres-

sions.

Definition 7. Let r, s and t denote regular expressions and I = {1, 2, 3 . . . n} an
index alphabet such that n is the number of subexpressions of r, t or s respectively.
If r = a, a ∈ Σ, rind = i0 ·a · in . If r = (s+ t), rind = (sind + tind) · in . If r = st,
rind = (sind tind) · in . If r = s∗, rind = (sind)∗ · in .

The automaton Aω
ind = (Σ ∪ Iω, Q, I, F,E) corresponding to an indexed

right rule side ωind accepts input sequences s[π0 ,n] = i0 ·ω0 ,n
ind · in . To remove

redundant position labels in Aω
ind , it is composed with the transducer T delpos :

T delpos = (ID(i0) · (I × {ε})∗ · ID(Σ)) · ((I × {ε})∗ · (ID(I) · ID(Σ))∗) (1)

The second projection Aω
delpos = P 2 (Aω

ind ◦T delpos) yields input sequences
of the form s[π0 ,n] = i0x0 i1x1 . . . xn in where ii ∈ I, xi ∈ Σ so that x0 . . . xn =
ω.

Lemma 5. If there are two constituents ωi,j
ind = s[πi,j], ωu,v

ind = s[πu,v],
with πi,j , πu,v ∈ Aω

delpos , there will be a pair of sequences s[πi−1 ,j+1] = ii ·
xi . . . xj · ij , s[πu−1 ,v+1] = ii · xu . . . xv · ij if and only if i = u, j = v and
i− 1 = u− 1, j + 1 = v + 1.

This lemma shows that 1) if there are some indexed constituents (some paths
whose input sequences start and end with a symbol a ∈ Σ) that have an identical
origin and destination state, there are some paths in the same automaton that
accept these constituents labeled with an identical start and end position and
2) if there are some input sequences that have an identical start and end label,
their corresponding constituents have an identical origin and destination state.

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 223

Now, the deletion transducer has to be changed to preserve the right labels
for each partial constituent. Given the following transductions:

T sub = (ID(Σ) ∪ (Σ × {ε}) ∪ ID(I))∗

T normpos = ((I × {ε})∗ · (ID(I) · ID(Σ))+ · ID(I) · (I × {ε})∗)
T uni = (ID(I) · (ID(Σ) ∪ (I × {ε}))+ · ID(I))

and the composition:

Tωi,j = Aω ◦ T delpos ◦ T sub ◦ T normpos ◦ T uni

The second projection P 2 (Tωi,j) finally produces an automaton Aω
i,j where

each input sequence s[πi−1 ,j+1] = ii · ωi,j · ij .
To conclude, we have shown that the mapping defined in 6 can be performed

on the algebra of FSTs.

5 Extensions

Consider the following coordination:

(4) Asterix
Asterix

spielt
plays

mit
with

und
and

Obelix
Obelix

schimpft
rails

auf
against

Idefix.
Idefix

Currently, our grammar doesn’t cover this type of constructions because there
aren’t some partial constituents being coordinated, but two complete phrases
that contain a partial constituent of the same type. To be able to cover these
phenomena, we define a third constituent type called missing.

Definition 8. A constituent ωi,j has the missing-property if it fulfils the follow-
ing conditions:
1. i and j correspond to some initial and final state in Aω.
2. For the rightmost symbol σr = ωj−1 ,j there is a rule in G such that r : σr →

ω.
3. The rightmost symbol σr is a partial constituent σr

i,j where i corresponds
to the inital state in Aωr and j /∈ FAωr

In figure 9, we give an example for a NPmiss-category. The XPmiss symbol
also contains all parameters φ1 ...φn of its original category and a parameter
_koord to mark its coordination status. In figure 10 we then present an analysis
for a category with the missing property.

Of course, there are still some other specific constructions that aren’t covered
by the presented model. For instance, one could imagine the coordination of
two partial constituents that don’t have the same right language, but whose
intersection of right languages isn’t empty, and the material that completes them
is contained in this intersection. Or else, coordinated constituents may have an
identical right language, but not in the same rule automaton. In this case, their
origin and destination state won’t help identifying them. Thus, an alternative
parametrization for partial constituents would be their right and left language
in contrast to their origin and destination state.

224 Sina Zarrieß and Wolfgang Seeker

NPmiss[_ntype $ {std rel int},_koord,_missing] -->
{
DET: ^=!; AP: _ntype = std; N: _ntype = std;
PPsub[std,no,sa,_missing]: ! $ (^ADJUNCT); e: _koord=no;
|
...
|
@(COORD_PART NPmiss[_ntype $ {std rel int},no,_missing])
e: _koord=yes;
}.

Fig. 9. NPmiss generated from an NP rule

CS 1: ROOT

CP[v2,std]

NPsub[std,no,sa,se]

N

Gallier

Cbar[v2,std]

V[fin]

leben

VPsub[no,sa,se]

PPkompl[std,sa,s21,se]

PPmiss[std,yes,s21]

PPmiss[std,no,s21]

P

für

NPsub[std,no,sa,s21]

DET

das

AP

ADJ

gallische

CONJ[konj]

und

PPmiss[std,no,s21]

P

gegen

NPsub[std,no,sa,s21]

DET

das

AP

ADJ

r
�
mische

NPsub[std,no,s21,se]

N

Gesetz

Fig. 10. Analysis for the German sentence Gauls live for the gaulic and against the
roman law

Finite-State Rule Deduction for Parsing Non-Constituent Coordination 225

6 Conclusion

These considerations outlined some formal properties as well as the limitations
of the coordination approach proposed by [3]. We have shown that the problem
of non-constituent coordination can be solved by expliciting partial constituents
on the surface of the grammar. An adequate way of describing these partial
categories is to see them as paths in a canonical right rule side automaton. This
formalization gives rise to an efficient mechanism of subrule generation. We have
also extended the approach of [3] to coordination of complete constituents with
embedded partial constituents at the right periphery.

References

1. Kaplan, R.M., Maxwell, J.T.: Constituent coordination in lexical-functional gram-
mar. In: Proc. of the 12th COLING, Budapest, Hungary (1988) 303–305

2. Milward, D.: Non-constituent coordination: Theory and practice. In: Proceedings
of the 15th International Conference on Computational Linguistics (COLING94),
Kyoto. (1994)

3. Maxwell, J., Manning, C.: A theory of non-constituent coordination based on finite-
state rules (1996)

4. Butt, M., Dyvik, H., King, T.H., Masuichi, H., Rohrer, C.: The parallel gram-
mar project. In: Proc. of COLING-2002 Workshop on Grammar Engineering and
Evaluation. (2002) 1–7

5. Kaplan, R.M., Maxwell, J.T.: Lfg grammar writer’s cookbook. Technical report,
Xerox PARC (1996)

6. Hopcroft, J., Ullmann, J.: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley (1979)

	Finite-State Rule Deduction for Parsing Non-Constituent Coordination
	1 Introduction
	2 Preliminaries
	2.1 Formal Language Devices
	2.2 LFG Grammars in XLE

	3 A Finite-State Concept of Constituency
	3.1 A First Approach to Partial Constituents
	3.2 A Precise Formalization of Coordination
	3.3 Assembling Complete Constituents

	4 Automated Deduction of Partial Constituents
	5 Extensions
	6 Conclusion
	References

