
ExPRESS – Extraction Pattern Recognition
Engine and Specification Suite

Jakub Piskorski

Joint Research Center of the European Commission
Web Mining and Intelligence Action

Institute for the Protection and Security of the Citizen
Via Fermi 1, 21027 Ispra (VA), Italy

Abstract. The emergence of information extraction (IE) oriented pat-
tern engines has been observed during the last decade. Most of them
exploit heavily finite-state devices. This paper introduces ExPRESS
– a new extraction pattern engine, whose rules are regular expressions
over flat feature structures. The underlying pattern language is a blend
of two previously introduced IE oriented pattern formalisms, namely,
JAPE, used in the widely known GATE system, and the unification-
based XTDL formalism used in SProUT. A brief and technical overview
of ExPRESS, its pattern language and the pool of its native linguistic
components is given. Furthermore, the implementation of the grammar
interpreter is addressed too.

1 Introduction

The task of information extraction (IE) is centered around extracting specific
structured information from free-text documents. The classical IE tasks focus on
detecting entities, identifying relations which hold among them, and extracting
events. Typically, the major step in the process of retrieving the sought-after
information consists of applying a cascade of so called extraction patterns. Re-
cently, the emergence of IE-oriented pattern specification languages has been
observed. These languages utilize various types of formalisms, ranging from
character-level regular expressions to unification-based formalisms. Due to ef-
ficiency reasons, finite-state based pattern engines are the most prominent ones
being used.

This paper introduces ExPRESS (Extraction Pattern Recognition Engine
and Specification Suite) – a new extraction pattern engine, whose rules are regu-
lar expressions over flat feature structures, i.e., non-recursive feature structures,
where features are string valued. The rule specification language is a blend of
two previously introduced IE-oriented grammar formalisms, namely, JAPE [1]
used in the widely known GATE platform and the unification-based formalism
XTDL deployed in SProUT [2]. The main motivation beyond the development
of ExPRESS comes from: (a) a need of an efficient pattern engine for extracting
facts from vast amount of news articles collected on a daily basis from the web

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 167

by Europe Media Monitor1 (EMM) system [3], and (b) due to efficiency prob-
lems encountered when using other freely available IE-oriented pattern engines,
including the two aforementioned ones.

The rest of this paper is organized as follows. We start in section 2 with some
basic definitions and notions used throughout this paper. Next, in section 3 a
brief overview of the related work is given. Subsequently, in section 4 ExPRESS,
its pattern specification language and its core native linguistic components are
described. Efficiency issues in the context of compiling and processing the gram-
mars are addressed in section 5. Section 6 gives technical details about implemen-
tation and provides some figures concerning the run-time behavior. We provide
a concluding summary in section 7.

2 Basic Definitions and Notions

This section introduces the basic definitions and notions used in this paper. A de-
terministic finite-state automaton (DFSA) is a quintuple M = (Q,Σ, δ, q0 , F),
where Q is a finite set of states, Σ is the alphabet of M , δ : Q × Σ → Q is the
transition function, q0 is the initial state and F ⊆ Q is the set of final states.
The transition function can be extended to δ∗ : Q×Σ∗ → Q ∪ {⊥} by defining
δ∗(q, ε) = q, δ∗(q, a) = δ(q, a) if δ(q, a) is defined or δ∗(q, a) = ⊥ otherwise, and
δ∗(q, wa) = δ(δ∗(q, w), a) for a ∈ Σ and w ∈ Σ∗. The language accepted by a
DFSA M is defined as L(M) = {w ∈ Σ∗|δ∗(q0 , w) ∈ F}. Languages accepted
by finite-state automata are also called regular. The union and concatenation of
two regular languages L1 and L2 is denoted as L1 ∪L2 and L1 ·L2 respectively.
A path in a DFSA M is a sequence of triples 〈(p0 , a0 , p1), . . . , (pk−1 , ak−1 , pk)〉,
where (pi−1 , ai−1 , pi) ∈ Q × Σ × Q and δ(pi , ai) = pi+1 for 1 ≤ i < k. The
string a0a1 . . . ak is the label of the path. Among all DFSAs recognizing the
same language, there is always one which has the minimal number of states. We
call such an automaton minimal (MDFSA). The definition of nondeterministic
finite-state automata (NFSA) is analogous, with the difference that transition
function is set-valued, i.e., more than one transition from a given state q labeled
with a symbol a ∈ Σ might exist.

Next, we define flat feature structures, which are frequently referred to in
this paper. A type space is a triple Φ = (ΣT , ΣF ,Δ), where ΣT is a finite set
of types, ΣF is a finite set of features and Δ : ΣT → 2ΣF is the total type
specification function, i.e., Δ maps types to their features. We say that a feature
f ∈ ΣF is appropriate for the type α if f ∈ Δ(α), otherwise f is inappropriate
for the type α. A flat feature structure (FFS) in the type space Φ = (ΣT , ΣF ,Δ)
is a pair s = (α, val), where α ∈ ΣT (α is a type), and val : Δ(α) → Σ+

V ∪{#}
is a feature-value mapping, where ΣV is a finite set of symbols. The symbol #
is used to denote unspecified (undefined) feature values, i.e., vals(f) = # means
that the value of f is unspecified for s. We say, that two FFSs s = (αs , vals)
and t = (αt , valt) match in the type space Φ if and only if: (a) αs , αt ∈ ΣT ,

1 http://emm.jrc.it/overview.html

168 Jakub Piskorski

(b) αs = αt , and (c) ∀f ∈ Δ(αs) : vals(f) = valt(f) or vals(f) = # or
valt(f) = #. For the sake of simplicity, we denote a FFS s = (α, val) also as
[f1 : v1 . . . fk : vk]α, where ∀1 ≤ i ≤ k : f i is appropriate for α and vi = val(f i).

In this paper, we also refer to typed feature structures (TFS), which are
related to record structures in programming languages and are widely used as
a data structure for NLP. Their formalizations [4] include multiple inheritance
and subtyping, which allow for terser descriptions.

3 Related Work

The idea of using regular expressions over more complex structures is not new
and has been considered by several authors, e.g., [5] uses regular grammars with
predicates over morphologically analyzed tokens. Furthermore, [6] introduces
finite-state transducers with arbitrary predicates over symbols and discusses
various operations on such finite-state devices. In particular, during the last
decade, several high-level IE-oriented specification languages for creating pat-
terns have been developed, e.g., [7] introduced CPSL designed as a language for
specifying finite-state grammars over arbitrary annotations. The widely-known
GATE platform, exploited heavily for development of IE components, comes
with JAPE – Java Annotation Pattern Engine [1], which is similar in spirit
to CPSL. A JAPE grammar consists of pattern-action rules. The left-hand
side (LHS) of a rule is a regular expression over arbitrary atomic feature-value
constraints, while the right-hand side (RHS) constitutes a so-called annotation
manipulation statement which specifies the output structures to be produced
once the pattern matches. Additionally, the RHS may call native code, which
on the one hand provides a gateway to the outer world, but on the other hand
makes pattern writing difficult for non-programmers.

A somewhat more declarative and linguistically-oriented pattern specification
formalism called XTDL is used in SProUT [2], a lesser known IE framework.
It can be seen as an amalgam of finite-state and unification-based grammar for-
malisms. In XTDL the LHS of a rule is a regular expression over typed feature
structures (TFS) with functional operators and coreferences2, and the RHS is a
TFS, specifying the output production. Functional operators are primarily uti-
lized for forming the slot values in the output structures and, secondly, they
can act as Boolean-valued predicates, which allows for introducing complex con-
straints in the rules. The aforementioned features make XTDL more amenable
formalism than JAPE since writing ‘native code’ is eliminated and coreferencing
allows for terser descriptions.

Clearly, rich annotations on automata edges allow for compact descriptions,
but standard finite-state optimization and processing methods are hardly appli-
cable. Although, efficient processing techniques for both JAPE [8] and XTDL [9]
have been developed, to the authors knowledge and experience processing even

2 Coreferences express structural identity, create dynamic value assignments, and serve
as means of data transfer from LHS to RHS of a pattern

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 169

moderate-size grammars with the aforementioned engines remains a bottle-neck.3
In particular, processing XTDL patterns involves unification, a rather expensive
operation.

Some other IE-oriented pattern languages are surveyed in [10], but since
most of them are bound to a specific type of information and exhibit somewhat
black-box character, we do not discuss them any further.

4 ExPRESS

4.1 Overview

ExPRESS is a pattern engine which allows for specifying and processing cas-
caded finite-state grammars, where grammar rules are regular expressions over
feature structures. It has been mainly designed for tackling IE tasks. ExPRESS
consists basically of a grammar parser and a cascaded-grammar interpreter. A
cascaded grammar specification is divided into three parts: (a) types declara-
tion, (b) a set of grammar definitions and (c) a workflow specification. The types
declaration part is a list of all types and appropriate features for these types,
which are used in the grammar(s). In the type declaration example in figure 1,
three types are introduced, namely person, person_group and violent_event,
where for each of them a list of appropriate features is specified.

person:=[NAME,FIRST_NAME,LAST_NAME,INITIAL,AMOUNT,SEX]
person_group:=[NAME,AMOUNT,QUANTIFIER]
violent_event:=[TYPE,METHOD,ACTOR,VICTIM]

Fig. 1. Type declaration in ExPRESS

A single grammar definition consists of two parts: a grammar configuration
part and a rule definition part. In the configuration part, a list of arbitrary pro-
cessing resources can be specified, which will be applied before the interpreter
applies the grammar. These components provide the grammar interpreter with
a stream of input flat feature structures represented as a list of disjunctions of
FFSs. The list of available components and the task of integration of external
components is addressed in section 4.3. Further, for each grammar a different
search strategy can be chosen. Currently the following strategies are supported:
(a) longest-match, (b) all-matches, and (c) all-longest-matches (longest-match
strategy applied at each position in the input). Finally, the last item in the con-
figuration part specifies the output production option. Three alternative options

3 There are several implementations of JAPE. We did not test the recently devel-
oped Japec version [8], which is supposed to be 2-5 times faster than the original
implementation.

170 Jakub Piskorski

are provided: (a) return only structures produced via grammar application, (b)
additionally to (a) return also feature structures produced by other processing
modules applied at the same level, (c) like (b), with the difference that only
those feature structures produced by other processing modules are returned,
which were not consumed by the application of the grammar. The simplified
example in figure 2 gives an idea of the syntax of a single grammar. The rule
specification format is described in detail in section 4.2.

SETTINGS:
{ MODULES: <Tokenizer>, <Morphology>, <Gazetteer>

SEARCH_MODE: longest_match
OUTPUT: grammar_only

}
RULES:
R1
.
.
RN

Fig. 2. Syntax of a single grammar

Finally, the last part of the input to the parser, namely workflow specifi-
cation, is a sequence of grammar names, which defines the order in which the
grammars are applied by the interpreter. In addition, each grammar name, may
be accompanied by a file, which specifies the priorities for the rules in the corre-
sponding grammar. Thus, experimenting with different prioritization set-ups is
more elegant than in JAPE, where priorities are encoded directly in the rules
(XTDL also separates the prioritization settings from the grammars). If there
are several rules which match and have the same priority, then all output struc-
tures are returned by the grammar interpreter, unless the output structures are
identical. In the latter case only one instance is returned.

4.2 Rule Specification Language

This subsection focuses on the particularities of the rule specification formal-
ism of ExPRESS, which is similar in spirit to JAPE, but also encompasses
some features and syntax borrowed from XTDL. The LHS of a rule is a regular
expression over flat feature structures (FFS), i.e., non-recursive TFS without
coreferencing, where features are string-valued and unlike in XTDL types are
not ordered in a hierarchy (see 2). On the LHS of a rule variables can be tai-
lored to the string-valued attributes in order to facilitate information transport
into the RHS, etc. Further, like in XTDL, functional operators are allowed on
the RHSs for manipulating slot values and for establishing contact with the
‘outer world’. They can also be deployed as boolean-valued predicates. There is

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 171

a predefined set of available functional operators, and new ones can be added
by simply implementing an appropriate programming interface by the grammar
developer. Finally, we adapted the JAPE’s feature of associating patterns on
the LHSs with multiple actions (labeling), i.e., producing more than one annota-
tion (eventually nested) for a given text fragment.4 A rule for matching person
names presented in figure 3 illustrates the syntax. This rule matches a sequence

person :> ((dictionary & [TYPE: "first_name",
SURFACE: #first])

(dictionary & [TYPE: "initial",
SURFACE: #in]

token & [SURFACE: "."]) ?
(token & [TYPE: "firstCapital",

SURFACE: #last])):name
-> name: person & [NAME: #full_name,

FIRST_NAME: #first,
LAST_NAME: #last,
INITIAL: #in
AMOUNT: "1"]

& #full_name := ConcWithBlanks(#first,#in,#last)
& ValidatePersonName(#full_name).

Fig. 3. A rule for recognition of person names

consisting of: a structure of type dictionary (output of the dictionary look-up
tool) representing the first name, followed by an optional initial (a sequence of
dictionary and token structures), and another structure representing a capi-
talized token (last name). The symbol & links a type name of the FFS with a
list of feature-value pairs representing the constraints which have to be fulfilled.
It should not be confused with the same symbol denoting unification in XTDL.
The symbols #first, #in and #last establish variable bindings to the surface
forms of the matched text fragments. Further, the label name on the LHS specifies
the start/end position of the action defined on the RHS of the rule. This action
produce a structure of type person, where the value of the slots FIRST_NAME ,
LAST_NAME and INITIAL is created via accessing the variables #first, #in and
#last resp. The value of the NAME slot is computed via a call to a functional op-
erator ConcWithBlanks() which concatenates its arguments and inserts a space
character between them. Finally, the RHS contains a call to a functional opera-
tor ValidatePersonName() which acts as a boolean predicate and contacts some
4 XTDL allows only for producing single output structures and does not provide the
labeling facility, i.e., output structure correspond to the entire text fragment matched
by the LHS pattern. However, there is a ‘dirty’ workaround consisting of accessing
positional information of single feature structures matched by the LHS and using
such information for redefining start/end position of the output structure.

172 Jakub Piskorski

external mechanism (i.e., morphological person name filtering) which estimates
whether the current name is likely to be a person name or not, and returns an
appropriate value. It is important to note that in order for a rule to match, all
boolean-valued predicates in the RHS of the rule must hold.

killing_event :> ((person_group & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

| person & [NAME: #n1,
AMOUNT: #a1]):victim

(dictionary & [TYPE: "death_trigger",
FORM: "passive"
METHOD: #m])

(person_group & [NAME: #n2,
AMOUNT: #a2,
QUANTIFIER: #q2]

| person & [NAME: #n2,
AMOUNT: #a2]):killer

):event
-> killer: actor & [NAME: #n2,

AMOUNT: #a2,
QUANTIFIER: #q2],

victim: dead & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

& IsNonZeroQuantifier(#q1),
event: violent_event & [TYPE: "killing",

METHOD: #m,
ACTOR: #n2,
VICTIM: #n1].

Fig. 4. A rule for violent event recognition

Another example of a rule that matches information concerning actors and
victims in violent events, where a person or a group thereof is killed by another
human body, is given in figure 4. This rule matches a sequence consisting of: a
FFSs of type person or person_group (the disjunction is denoted with ‘|’) rep-
resenting a human(s) who is (are) the victim of the event, followed by a phrase
in passive form, which triggers a ‘killing’ event (dictionary look-up), and another
structure representing the actor (person or group of persons). There are three
labels on the LHS, namely victim, killer, and event, which produce struc-
tures of type dead, actor and violent_event respectively. In case of the dead
structure, the quantifier (variable #q1) must not be a ‘zero’ quantifier. This con-

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 173

dead & [NAME: "Talibani", AMOUNT: "230", QUANTIFIER: "Most of"]
actor & [NAME: "US troops"]
violent_event & [TYPE: "killing",

METHOD: "shooting",
ACTOR: "US troops",
VICTIM: "Talibani"].

Fig. 5. The output structures produced by the rule in figure 4 when matching the text
fragment Most of the 230 Talibani were shot by the US troops

straint is expressed in the rule via the boolean predicate IsNonZeroQuantifier.
The rule described above matches the text fragment Most of the 230 Talibani
were shot by the US troops and produces three output structures depicted in
figure 5. On the contrary, the text fragment None of the Taliban were killed by
UN troops would not be matched since IsNonZeroQuantifier predicate ("None
of ") does not hold.

The handling of Kleene constructions has to be clarified briefly. If a struc-
ture containing a variable within a Kleene construction is matched more than
once, then (optionally) a local instances of the variable is created for each such
submatch, and the local bindings are accumulated into a concatenation thereof.
This resembles the weak unidirectional coreferences in XTDL [9]. Further, labels
are not allowed within Kleene constructions, and labeled construction are not
allowed to consume empty input streams.

The full syntax of ExPRESS extraction rule formalism is given in BNF
format in figure 6. Some constructs known from other pattern languages are
missing, e.g., negation, but it can be simulated via non-productive rules and
prioritization [1].

4.3 Native and External Linguistic Components

In order to facilitate writing grammars ExPRESS comes with a pool of native
basic Unicode-aware IE-oriented linguistic processing resources, which includes:
(a) a basic tokenizer which segments text based on a list of white spaces and
token separators, (b) a tokenizer which additionally performs fine-grained token
classification (circa 40 IE-oriented default token classes are provided, e.g. email
addresses, URLs, hyphenated constructions, etc.), (c) simple morphological an-
alyzer based on full-form lexica encoded in the MULTEXT5 format [11], and (d)
a space and time efficient dictionary look-up tool which allows for storing huge

5 MULTEXT was a EU-funded project aiming at developing a set of generally us-
able software tools to manipulate and analyze text corpora, together with lexicons
and multilingual corpora in several European languages. In particular, harmonized
specifications for encoding computational lexicons have been established, i.e., same
tagset and features are used for all languages.

174 Jakub Piskorski

Rules -> Rule (Rule)*
Rule -> RuleName ":=" Pattern "->" (Actions)? "."
RuleName -> Identifier

Pattern -> "(" Concat ")" (":" Label)?
Label -> Identifier
Concat -> Disjunction (Disjunction)*
Disjunction -> Kleene ("|" Kleene)*
Kleene -> Element ("+" | "*" | "?")?
Element -> (BasicElement | Pattern)
BasicElement -> Type ("&" FeatStruct)?
Type -> Identifier
FeatStruct -> "[" Attribute ":" Value ("," Attribute ":" Value)* "]"
Attribute -> Identifier
Value -> (SimpleValue (Variable)?) | (Variable)
SimpleValue -> Identifier
Variable -> "#"Identifier

Actions -> Action ("," Action)*
Action -> Label ":" Type ("&" OutputStruct ("&" FuncOp)*)?
OutputStruct -> "[" Attribute ":" OVal ("," Attribute ":" OVal)* "]"
Attribute -> Identifier
OVal -> (SimpleValue | Variable)?
FuncOp -> (Variable ":=")? FuncOpName "(" Arg ("," Arg)* ")"
FuncOpName -> Identifier
Arg -> (SimpleValue | Variable)

Fig. 6. ExPRESS Syntax

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 175

amount of entries, where each of them can be associated with arbitrary feature-
value pairs. The latter two components exploit the finite-state compression and
compilation techniques described in [12], [13] and [14].

Additional external processing components can be easily integrated via im-
plementing a special programming interface. Basically this boils down to pro-
viding a function which converts components specific native output format into
a stream of disjunctions of FFSs with positional information, and providing
functions which return a list of types of output structures returned by this com-
ponent and features which are appropriate for these types. The latter ones are
utilized for performing a strict compatibility check with the types declared in
the grammar cascade.

5 Compiling and Processing Grammars

Since the reservoir of FFSs used in extraction rules is potentially infinite, convert-
ing ExPRESS grammars into a single and optimized for processing finite-state
network is not straightforward. Typically, in a grammar consisting of regular pat-
terns over some feature structures the latter ones are replaced by some unique
symbols representing references to these feature structures, i.e., they are treated
in a symbolic way (naive implementation). Subsequently, single extraction pat-
terns are merged into a single MDFSA via application of standard finite-state
optimization techniques. Although such finite-state device is deterministic in a
strict sense, it clearly is not deterministic when we consider the real semantics of
its transition labels, i.e., feature structures. Consequently, while processing such
automata (being the result of merging the elementary rule automata into one
MDFSA), in each step, all outgoing transition from a given state are inspected
one by one whether their label matches with the current input feature structures.
Since distinct feature structures (even pairs of matching feature structures) are
represented as different symbols, some states of the automaton, might have a
quite high number of outgoing transitions. This applies in particular for the ini-
tial state and in its direct proximity. Inspecting all outgoing transition each time
the initial state is visited clearly deteriorates the run-time performance.

The rest of this section describes a method for efficiently processing Ex-
PRESS grammars. First, in in subsection 5.1, the pattern matching algorithm
sketched above is described in a more formal manner. Next, in subsection 5.2,
some enhancements thereof are introduced, which mainly consist of flattening
FFSs in the patterns and input FFSs into character-level regular expressions and
strings respectively, so that matching input FFSs with the grammar automaton
can be performed efficiently.

5.1 Pattern Matching Algorithm

Let G be a grammar consisting of regular patterns r1 . . . rn over FFSs, where
each pattern ri is represented by a regular expression Ri . FFSs are replaced

176 Jakub Piskorski

in each Ri by symbols representing references to these FFSs. Next, we con-
struct a DFSA M (representing the whole grammar) which accepts the language
R1 · {$1} ∪ . . .∪Rn · {$n}, where $1 . . . $n are unique symbols representing rule
identifiers. Additionally, we turn each state q into a final state if it has an outgo-
ing transition labeled with one of the symbols in {$1 , . . . , $n}. All other states
are non-final. Further, let us assume, that the stream of input FFSs is repre-
sented as a directed labeled graph InputFS = (V,E), where all nodes in V
correspond to start/end positions of text spans associated with the input FFSs.
An edge in E is a 3-tuple (v, a, u), where v and u are source/target nodes, and
a is the label which points to some FFS.

An algorithm that takes automaton M and finds all matches in InputFS (an
input stream of flat feature structures) is presented in figure 7. Please note that
M is is not deterministic when we consider the real semantics of its transition
labels. The variable node (initialized in line 1) points to the current node in
InputFS, i.e., the node from which the algorithm tries to find the next potential
match. The main while loop of the algorithm (lines 3-20) is executed until the
current node is the last node in InputFS. Since there is potentially more than
one path from the node u in InputFS which matches with the automaton M and
due to the fact that even one single path in InputFS might match with different
paths in M , we store in the set Active all ‘current’ configurations of M . A single
configuration of M is a triple (q, π, v), where q denotes the current state of M , π
is a sequence of input FFSs which match a path in M from q0 to q, and v denotes
the next node in InputFS from which subsequent matches in the input stream
will be sought. Analogously, in Accepting we store all accepting configurations of
M (ones whose current state is final). Initially this set is empty (line 5). In the
while loop in lines 6-15 all possible configurations of M that match some path
in InputFS starting in the node node are computed. This process resembles
breadth-first-search in graphs. In particular, in the inner loop (lines 8-14) for
each (q, π, v) ∈ Active we compute all ‘subsequent’ configurations, i.e, the ones
being the result of matching some input FFS a starting in node v with a FFS
a′ in the set of transitions for state q, so that δ(q, a′) �= ⊥. Matching test is
done via a call to the function Matches (line 13). Note that for a single input
FFS there might be potentially more than one matching transition in M (for
loop in lines 12-13). Once all ‘new’ configurations have been computed, we select
from the set of accepting configurations one which fulfills selection criteria (line
17). Selection criteria may vary, depending on the search strategy. For instance,
in the longest-match strategy, one simply takes the configuration which covers
the longest text span. If more than one such configuration exists, then the one
being a result of application of a rule with highest priority is chosen, etc.6 Once
an accepting configuration is chosen, an appropriate action is performed (line
18), e.g., output structure(s) is produced. We can restore the rules that matched
via inspecting transition labels from final states. Finally, the value of the current

6 In some applications, it is convenient to select more than one accepting configura-
tion, but the modification to the presented algorithm is straightforward so it is not
discussed any further.

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 177

node in the input graph is then modified accordingly in the line 19. If no accepting
configurations were found, the current node is set to the closest node in InputFS
that has an outgoing edge (line 20).

Find-Matches(M = (Q, Σ, δ, q0 , F), InputFS)
1 node← GetFirstNode(InputFS)
2 lastNode← GetLastNode(InputFS)
3 while node �= lastNode
4 do Active← {(q0 , ε, node)}
5 Accepting ← ∅
6 while Active �= ∅
7 do Next← ∅
8 for (q, π, v) ∈ Active
9 do if q ∈ F
10 then Accepting ← Accepting ∪ {(q, π, v)}
11 for (v, a, u) ∈ InputFS
12 do for a′ ∈ Σ : δ(q, a′) �= ⊥
13 do if Matches(a, a′)
14 then Next← Next ∪ {(δ(q, a′), π · a′, u)}
15 Active← Next
16 if Accepting �= ∅
17 then (q, π, v)← SelectAcceptingConfig(Accepting)
18 ExecuteAction(M, q, π)
19 node← v
20 else node← GetNextNode(InputFS, node)
21 return

Fig. 7. Pattern matching algorithm

Intuitively, the most time-consuming part of the algorithm in figure 7 is
the for loop in lines 12-14. In the naive implementation one has to inspect all
outgoing transitions from the state q whether their label (a′) matches with the
current input FFS (a). Inspecting all outgoing transition for frequently visited
states, e.g., the initial state and its direct proximity, clearly deteriorates the
run-time performance.

For alleviating the aforementioned problem JAPE applies a solution which
exploits the fact that the feature structures being labels of outgoing transitions
from a given state have shared parts. In particular, all such structures are parti-
tioned into disjoint partial feature structures which do not intersect and they are
reordered accordingly in order to avoid redundant computations while matching
the stream of input feature structures.

In XTDL, where the recognition part of the rules consists of TFSs, a similar
technique for ordering the outgoing transitions is used. It consists of comput-

178 Jakub Piskorski

ing a transition hierarchy under TFS subsumption for all outgoing transitions
(labels) of a given state. While traversing the grammar automaton, these tran-
sition hierarchies are utilized for inspecting outgoing transitions from a given
state, starting with the least specific transition(s) first, and moving downwards
in the hierarchy, if necessary. Although this technique proved to give a significant
speed-up, the number of transitions which have to be inspected for computing
‘subsequent’ automaton configurations might be on an average relatively high
due to the low degree of feature-value sharing.

5.2 Matching Flat Feature Structures

In order to efficiently perform the crucial matching step in the algorithm de-
scribed in the previous section (lines 12-14) we apply in ExPRESS a technique
which consists of flattening input FFSs into strings and converting all transitions
labels of a given state into a single DFSA, so that computing ‘new’ target states
(new automata configurations) is reduced to performing a simple deterministic
automaton look-up.

Generally speaking, the process of finding a match at a given position in the
input stream is split into three steps: (1) selection of the sequence(s) of input
FFSs which is (are) covered by some rule(s) according to predefined selection
strategy, (2) performing a fully-fledged match of the selected rule(s) against
the selected input sequence of FFSs, which includes variable and label binding,
and (3) producing and merging output structures. Postponing variable and la-
bel binding allows for efficiently implementing step (1). Further, once an input
sequence and the rules (or more) that match this sequence have been selected,
performing full matching in step (2) can be done quickly due to the limited num-
ber of applicable rules. Thus, step (1) can be seen as a prefiltering of applicable
rules. Since there are potentially several paths in the automaton for the rule(s)
selected in step (2), step (3) is necessary for merging and/or filtering out some
output structures, but we do not describe it here any further.

We now turn to implementing step (1) and sketch the technique for quick
computing matching transitions from a given state in a semi-formal way. Firstly,
let us observe that only a finite number of feature-value pairs are used in the
grammar rules. We can compute for all FFSs of a given type α, which appear in
the rules, the respective value sets Σ1 , . . . Σk , where Σi is the value-set for the
i-th feature appropriate for the type α.7 A given input FFS s = [f1 : v1 . . . fk :
vk]α can be then encoded as a string id(α)·$·v∗1 ·$. . . $·v∗k , where id maps types
to unique symbols representing their identifiers, $ is a unique symbol /∈ Σi ∪{#}
(∀1 ≤ i ≤ k) which represents a separator and v∗i ∈ Σi ∪ {#} are defined as
follows:

v∗i =
{

vi : vi ∈ Σi

: vi /∈ Σi ∨ vi =
For instance, an input FFS [pos : noun, case : loc, gen : fem]morph with pos,
case, and gen being appropriate features for the type morph, where Σpos =
7 Note that we order the features appropriate for a given type

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 179

{noun, adj}, Σgen = {masc, fem}, and Σcase = {nom, acc, dat, gen} (seen fea-
ture values), would be represented as the following string: id(morph) · $ · noun ·
$ · # · $ · fem.

Analogously, each FFS s = [f1 : v1 . . . fk : vk]α being a label of a transition
t from a given state in the grammar automaton is represented as a regular
expression of the form id(α) · $ v∗1 · $. . . $ · v∗k ·% · trans(t), where id and $ are
defined as previously, % is another unique separator, trans maps transitions to
their unique symbolic identifiers, and v∗i ∈ (Σi ∪ {#})∗ is a regular expression
defined as follows:

v∗i =
{

vi : vi ∈ Σi

{#} ∪Σi : vi = #
The second part of the definition of v∗i has to be a disjunction of {#} and Σi

since we intend to merge all regular expressions representing transitions from a
given state into a single DFSA (‘transition’ automaton for a given state), i.e., in
case of encoding a feature with unspecified value, all values (for that feature and
type) seen in other patterns have to be considered (Σi). Now, let T 1 , . . . , Tn

be the regular expressions representing the labels of the transitions t1 , . . . , tn
from a given state q in M resp., which were obtained in the previously described
manner. Let Mq be a DFSA which accepts the language T 1 ∪ . . .∪T n . Then, we
can compute the set of possible target states for the state q in M and an input
FFS a that is represented as a string w simply via computing a target state
p = δMq (q, w) in Mq and inspecting all outgoing paths from p, whose labels
start with % in order to retrieve the target state identifiers in the grammar
automaton M . In this way, the steps 12-14 in the algorithm in figure 7 are
reduced to a simple string matching with the DFSA Mq .

We give an example to clarify the aforementioned technique. Let us assume
that t1 and t2 are two outgoing transitions from state q, which are labeled with
[pos : noun, case : #, gen : #]morph and [pos : #, case : acc, gen : #]morph and
which lead to state q1 and q2 resp. Turning them into corresponding regular ex-
pressions yields id(morph)·$·noun·$·{nom, acc, gen, dat,#}·$·{fem,masc,#}·
%q1 for t1 and analogously id(morph)·$·{noun, adj,#}·$·acc·$·{fem,masc,#}·
%q2 for t2 . The result of merging regular expressions representing the labels of
t1 and t2 into one DFSA Mq is shown in figure 8 in a simplified form ($ symbols
were omitted).

Let us assume that an input FFS s = [pos : noun, case : acc, gen : masc]morph

has to be matched against the grammar automaton M in state q. Matching the
string representation of s, i.e., id(morph) · $ · noun · $ · acc · $ · masc, in the
transition automaton Mq results in state 8. Consequently, both states q1 and
q2 are reachable via matching FFS s in M from state q.

Techniques similar to the one described in this section are also used in other
finite-state based frameworks, e.g., in [15]. A further improvement could be
achieved by turning all input FFSs at a given position into a union of their corre-
sponding string representations and subsequently performing on-the-fly intersec-
tion thereof with the ‘transition’ automaton representing the outgoing transitions
from a given state. Whether this results in an enhanced run-time performance is

180 Jakub Piskorski

� �

�

�

� �

�

	

�

��

��

�
���

�
��

������

���

������������

������������

������������

��
�

��
�

��
�

��
�

���

����
�������� ��

Fig. 8. Transitions labels merged into a single DFSA

unclear since intersection operation is more time-consuming than a single string
acceptance check.

6 Technicalities

ExPRESS has been implemented fully in JAVA. The development is based on
the Java Compiler Compiler [16] and the Java package dk.brics.automaton
containing time efficient implementations of finite-state automata and a bag of
standard operations for manipulating and optimizing them [17]. Currently, Ex-
PRESS consists of two stand-alone programs (parser and interpreter) and a
documented JAVA API for facilitating integration into other frameworks. Mak-
ing ExPRESS publicly available for research purposes is envisaged at a later
stage.

We have carried out some experiments to measure the run-time behavior of
Express with a two-stage grammar for recognition of information on actors, kid-
napped, dead and wounded in violent events. In the first stage standard named
entities are recognized, e.g., persons, group of persons, numerical expressions,
etc. In the second stage, single-slot and two-slot extraction rules are applied
to retrieve the sought-after information on related events, in which the entities
recognized in the first stage participate. The first-stage grammar consisting of
circa 100 rules was developed by an expert, whereas the second-level grammar
was obtained via semi-automatic conversion of ca. 3000 automatically learned IE
patterns [18] into ExPRESS rules. Further, five linguistic processing resources
(e.g., tokenizer, gazetteer and morphology look-up) were involved in the ex-
traction process. Subsequently, the aforementioned two-level grammar has been
converted in almost one-to-one manner into a XTDL grammar. It turned to be

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 181

a relatively simple task since the core linguistic components provided with Ex-
PRESS have nearly identical functionality and I/O specification as those used
in SProUT. However, some rules had to be expressed as two rules in XTDL
since XTDL rules do not allow for specifying more than one output structure
directly.

In an experiment, the grammars were applied to a 167 MB excerpt of the
news in English on terrorism, consisting of 122 files on a PC Pentium 4 machine
with 2,79 GHz. The table 1 gives figures of the average run-time (in seconds) for
processing a single file (average size of 1,37 MB) at different stages. The average
number of matches per document amounted to ca. 60 000. Clearly, ExPRESS

Time \ Grammar Interpreter XTDL ExPRESS
core linguistic components stage I 2.451 1.818
entity-pattern matching 38.212 1.923
entity-structure production 4.172 0.515
core linguistic components stage II 1.092 0.639
event-pattern matching 12.124 0.666
event-structure production 0.156 0.013
Total 58.207 5.574

Table 1. Run-time behavior (in seconds): XTDL vs. ExPRESS

performs significantly better than XTDL interpreter. The pattern matching it-
self constituted 46, 34% (ExPRESS) and 86, 48% (XTDL) of the total process-
ing time respectively. In a second experiment, we have slightly ‘compressed’ the
XTDL grammar through using coreferencing and other XTDL specific features,
which resulted in deterioration of the run-time performance by the factor of two.

Finally, in the last experiment, we applied the same cascade of grammars to
a collection of sentences (8 MB), where for each sentence in this collection there
is at least one second-stage extraction rule that matches. ExPRESS run-time
amounted to 36,7 seconds, whereas SProUT needed for processing the same
collection ca 575 seconds.

Although converting ExPRESS grammars into JAPE format is a more la-
borious task, the above run-time figures for ExPRESS are better than one could
potentially obtain when using JAPE according to the author’s ‘subjective’ expe-
rience with the latter one and some basic experiments of converting the first-level
grammar into JAPE.

7 Summary

In this paper, we presented ExPRESS, a new IE-oriented pattern specification
and recognition engine, which borrows heavily from two previously introduced

182 Jakub Piskorski

pattern languages, namely JAPE and XTDL. In particular, ExPRESS gram-
mars consist of extraction rules which are regular expressions over flat feature
structures with string-valued features. ExPRESS was developed primarily in
order to find a trade-off between ‘compact descriptions’ and efficient processing
of huge text collections. It is already operational and it is being deployed in a
real-time news event extraction system for detecting violent and natural disaster
events [19]. In particular, ExPRESS is capable of applying modest-size event
extraction grammars on MB-sized texts within seconds. Clearly, XTDL or some
other IE-oriented pattern languages are more expressive and more powerful, but
there is a wide range of extraction tasks for which ExPRESS will come in handy
and might constitute a time-efficient alternative.

In future work, the pattern formalism will be extended by adding some new
constructs and providing new native processing resources. Going beyond ‘se-
quential’ processing of grammars is planned. In general, ExPRESS will be kept
as minimal as possible and any future developments will be strictly driven by
the needs of specific applications. In particular, it will be deployed for named-
entity and relation extraction. Finally, exploring additional performance enhanc-
ing techniques for processing grammars is envisaged, e.g., (a) intelligent reorder-
ing of feature-value pairs in the FFS in such a way that features which are most
likely to eliminate a high number of potential target states precede other feature-
value pairs, and (b) conversion of input FFSs starting at a given position into a
union of their corresponding string representations and subsequently performing
on-the-fly intersection thereof with the ‘transition’ automaton representing the
outgoing transitions from a given state.

Acknowledgments

The work presented in this paper was supported by the Europe Media Monitoring
Project (EMM) carried out by the Web Mining and Intelligence Action in the
Joint Research Centre of the European Commission. I would like to thank Hristo
Tanev, Vanni Zavarella, Bruno Pouliquen, Ralf Steinberger, Camelia Ignat and
other EMM colleagues for fruitful discussions. Finally, I am indebted to Clive
Best and Delilah Al-Khudhairy for valuable comments and proof-reading of this
paper.

References

1. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (Second Edition). Technical Report, CS–00–10, University of Sheffield,
Department of Computer Science (2000)

2. Drożdżyński, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow Pro-
cessing with Unification and Typed Feature Structures — Foundations and Appli-
cations. Künstliche Intelligenz 2004(1) (2004) 17–23

3. Best, C., van der Goot, E., Blackler, K., Garcia, T., Horby, D.: Europe Media
Monitor. Technical Report EUR 22173 EN, European Commission. (2005)

ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 183

4. Copestake, A.: Appendix: definitions of typed feature structures. Natural Language
Engineering 6(1) (2000) 109–112

5. Neumann, G., Backofen, R., Baur, J., Becker, M., Braun, C.: An information
extraction core system for real world German text processing. In: Proceedings of
the 5th International Conference of Applied Natural Language. (1997) 208–215

6. van Noord, G., Gerdemann, D.: Finite State Transducers with Predicates and
Identity. Grammars 4(3) (2001) 263–286

7. Appelt, D., Onyshkevych, B.: The Common Pattern Specification Language. In:
Proceedings of Tipster Text Program - Phase III. (1998) 23–30

8. Japec: Japec – A Jape-to-Java Optimizing Compiler. Web document,
http://www.ontotext.com/gate/JapecPres.pdf (2006)

9. Drożdżyński, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: A Bag of Useful
Techniques for Unification-Based Finite-State Transducers. In: Proceedings of of
7th KONVENS Conference, Vienna, Austria. (2004)

10. Muslea, I.: Extraction Patterns for Information Extraction Tasks: A Survey. In:
Proceedings of AAAI 1999. (1999)

11. Erjavec, T.: MULTEXT - East Morphosyntactic Specifications (2004)
12. Daciuk, J.: Incremental Construction of Finite-State Automata and Transducers.

PhD Thesis. Technical University Gdańsk. (1998)
13. Piskorski, J.: On Compact Storage Models for Gazetteers. In: Proceedings of

the 5th International Workshop on Finite-State Methods and Natural Language
Processing, Helisnki, Finland, Springer, LNAI (2005)

14. Daciuk, J., Piskorski, J.: Gazetteer Compression Technique Based on Substruc-
ture Recognition. In: Proceedings of Intelligent Information Systems 2006 - New
Trends in Intelligent Information Processing and Web Mining, Springer Verlag
series "Advances in Soft Computing" (2006)

15. Skut, W., Ulrich, S., Hammervold, K.: A Flexible Rule Compiler for Speech Synthe-
sis. In: Proceedings of the International IIS:IIP WM’2004 Conference. Zakopane,
Poland. Springer, Advances in Soft Computing. (2004) 257–266

16. JavaCC: https://javacc.dev.java.net
17. Moller, A.: http://www.brics.dk/automaton (2007)
18. Piskorski, J., Tanev, H., Oezden-Wennerberg, P.: Extracting Violent Events from

On-line News for Ontology Population. In: 10th International Conference on Busi-
ness Information Systems. Poznan, Poland. Lecture Notes in Computer Science,
LNCS 4439. (2007) 287–300

19. Tanev, H., Piskorski, J., Atkinson, M.: Real-Time News Event Extraction for
Global Crisis Monitoring. In: Proceedings of the 13th International Conference on
Applications of Natural Language to Information Systems (NLDB 2008), London,
UK, 24–27 June, 2008. Lecture Notes in Computer Science Vol 5039, Springer
Verlag Berlin Heidelberg. (2008) 207–218

	ExPRESS – Extraction Pattern Recognition Engine and Specification Suite
	1 Introduction
	2 Basic Definitions and Notions
	3 Related Work
	4 ExPRESS
	4.1 Overview
	4.2 Rule Specification Language
	4.3 Native and External Linguistic Components

	5 Compiling and Processing Grammars
	5.1 Pattern Matching Algorithm
	5.2 Matching Flat Feature Structures

	6 Technicalities
	7 Summary
	References

