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Abstract. In the last years, statistical machine translation has already
demonstrated its usefulness within a wide variety of translation appli-
cations. In this line, phrase-based alignment models have become the
reference to follow in order to build competitive systems. Finite state
models are always an interesting framework because there are well-known
efficient algorithms for their representation and manipulation. This docu-
ment is a contribution to the evolution of finite state models towards a
phrase-based approach. The inference of stochastic transducers that are
based on bilingual phrases is carefully analysed from a finite state point
of view. Indeed, the algorithmic phenomena that have to be taken into
account in order to deal with such phrase-based finite state models when
in decoding time are also in-depth detailed.

1 Introduction

Machine Translation (MT) is an emerging area of research in computational
linguistics which investigates the use of computer software to translate text or
speech from one natural language to another. The goal of MT is very ambitious
because it would allow for a reduction of the linguistic barriers which all the
people have been ever involved with.

Statistical machine translation represents an interesting framework because
the translation software being developed is language-independent, that is, diffe-
rent MT systems are built if different parallel training corpora are supplied.

Given a source sentence s = s1 . . . sJ , the goal of statistical machine transla-
tion is to find a target sentence t̂ = t1 . . . tÎ , among all possible target strings t,
that maximises the posterior probability, according to a source-channel model:

t̂ = argmax t Pr(t|s) (1)

Source-channel models are often applied the Bayes rule [1] to break them down
into two different statistical models: a translation model to learn translations,
and a language model, to score the quality of the proposed hypotheses [2, 3]:

t̂ = argmax t Pr(s|t) · Pr(t) (2)
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The conditional probability Pr(t|s) can also be approximated by a joint proba-
bility distribution Pr(s, t) in order to be modelled by means of stochastic finite
state transducers [4, 5]:

t̂ = argmax t Pr(s, t) (3)

These models can integrate the probabilistic information that state-of-the-art
phrase-based models [6–9] are used to explicitly separate into two distributions,
that is, a target language model and a phrase translation dictionary.

This paper presents a natural evolution for finite state models in order to be
based on bilingual phrases. Training and decoding algorithms are conveniently
adapted to deal with such phrase-based finite state models. The main contri-
butions are reflected on the translation results, which are clearly favourable to
these phrase-based models, with respect to the original word-based approaches.

The organization of this document is as follows: next section presents a review
of finite state models; sections 3 and 4 deal with, respectively, word-based and
phrase-based finite state models; the experimental setup and results are des-
cribed in section 5; and, finally, conclusions are summed up at the last section.

2 Finite state models

A weighted finite-state automaton is a tuple A = (Γ,Q, i, f, P ), where Γ is
an alphabet of symbols, Q is a finite set of states, functions i : Q → R

+ and
f : Q → R

+ give a weight to the possibility of each state to be, respectively,
initial and final, and parcial function P : Q×{Γ ∪λ}×Q→ R

+ defines a set of
transitions between pairs of states in such a way that each transition is labelled
with a symbol from Γ (or the empty string λ), and is assigned a weight. An
example of a weighted finite-state automaton can be observed in figure 1.

A weighted finite-state transducer [10] is defined similarly to a weighted finite-
state automaton, with the difference that transitions between states are labelled
with pairs of symbols that belong to the cartesian product of two different (input
and output) alphabets, (Σ ∪ {λ})× (Δ ∪ {λ}).

When weights are probabilities, the range of functions i, f , and P is cons-
trained to [0, 1]. Moreover, probabilistic models have to respect the consistency
property in order to define a distribution of probabilities on the free monoid. In
that case they are called stochastic finite-state models. Consistent probability
distributions can be obtained by requiring a series of local constraints, that is:

•
∑

i(q) = 1

• ∀q ∈ Q :
∑

P (q, u, q′) + f(q) = 1

Then, given some input/output strings s and t, a stochastic finite-state trans-
ducer is able to associate them a joint probability Pr(s, t).
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Fig. 1. A weighted finite-state automaton

2.1 Inference of stochastic transducers

The GIATI paradigm [11] has been revealed as an interesting approach to infer
stochastic finite-state transducers through the modelling of languages. Rather
than learning translations, GIATI first converts every pair of parallel sentences
from the training corpus into only one string in order to, afterwards, infer a
language model from.

More concretely, given a parallel corpus consisting of a finite sample C of
string pairs: first, each training pair (x̄, ȳ) ∈ Σ� × Δ� is transformed into a
string z̄ ∈ Γ � from an extended alphabet, yielding a string corpus S; then, a
stochastic finite-state automaton A is inferred from S; finally, transition labels
in A are turned back into pairs of strings of source/target symbols in Σ� ×Δ�,
thus converting the automaton A into a transducer T .

The first transformation is modelled by some labelling function L : Σ�×Δ� →
Γ �, whereas the last transformation is defined by an inverse labelling function
Λ(·), such that Λ(L(C)) = C. Building a corpus of extended symbols from the
original bilingual corpus allows for the use of many useful algorithms for learning
stochastic finite-state automata (or equivalent models) that have been proposed
in the literature about grammatical inference.

Every extended symbol from Γ has to condense somehow the meaningful
relationship that exists between the words in the input and output sentences.
Discovering these relations is a problem that has been thoroughly studied in sta-
tistical machine translation and has well-established techniques for dealing with
it. The concept of statistical alignment [1] formalises this problem. An alignment
is a mapping between words from a source sentence and words from a target sen-
tence. Whether this function is constrained to a one-to-one, a one-to-many or a
many-to-many correspondence depends on the particular assumptions that we
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make. Constraining the alignment function simplifies the learning procedure but
causes the model to lessen its expressive power. The available algorithms try to
find a trade-off between complexity and expressiveness.

2.2 The search problem

Equation 3 expresses the MT problem in terms of a finite state model that is able
to compute the expression Pr(s, t). Given that only the input sentence is known,
the model has to be parsed, taking into account all possible t that are compatible
with s. The best output hypothesis t̂ would be that one which corresponds to a
path through the transduction model that, with the highest probability, accepts
the input sequence as part of the input language of the transducer.

Although the navigation through the model is constrained by the input sen-
tence, the search space can be extremely large. As a consequence, only the most
scored partial hypotheses are being considered as possible candidates to become
the solution. This search process is very efficiently carried out by the well known
Viterbi algorithm [12].

3 Word-based finite state models

As it has been already mentioned, the inference of transducers will be done
through the transformation of the bilingual training corpus into a corpus of
strings, which a language model will be inferred from. This transformation will
be based on the alignment function defined between every pair of bilingual sen-
tences. According to the alignment degree, these transducers could be classified
as word-based or phrase-based finite state models.

One-to-one and one-to-many alignment functions would produce word-based
models, whereas many-to-many correspondences would bring to phrase-based
models.

On the one hand, one-to-one models do not seem a very appropriate ap-
proach since they would require that source-target aligned sentences had exactly
the same number of words. On the other hand, one-to-many alignment models
have been a reference in statistical machine translation until the phrase-based
tendencies took place at the research community. Word-based models constrain
alignments so that one target word has to be aligned to only one source word.

The conversion of every pair of parallel sentences into an extended symbol
string follows this algorithm:

for i = 1, j = 1, 2, ... J
throw s[j]
while ((i <= I) && (alignments[i] <= j))

add t[i]
i++;

while (i <= I)
add t[i]
i++;
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Fig. 2. An alignment situation

which means that compound symbols are left-to-right generated (throw), and
where a target word ti is merged (add) with its corresponding source word sai

iff their alignment ti → sai
does not cross over any other alignment that has not

been explored yet. If this is not possible, then the appearance of ti is delayed
until j reaches, then attached to, the last source word that is implied within the
group of alignment crossing. Spurious source and target words are placed at their
right position, given that a monotonous word order is always demanded. This
procedure ensures that every extended symbol is composed of one and only one
source symbol, optionally followed by an arbitrary number of target symbols.
For example, the alignment in figure 2 would cause the string “s1 t1 , s2 , s3 , . . . ,
sJ t2 t3 . . . tI ” to be produced. If a more detailed description about the labelling
function is preferred, see [11].

A smoothed n-gram model may be inferred from the string corpus previously
generated. Such a model can be expressed in terms of a stochastic finite-state
automaton [13]. Figure 3 shows a general scheme for the representation of n-gram
models through finite state machines.

No-backoff transitions jump from states in a determined layer to the one
immediately above, thus increasing the history levels. Once the top level has been
reached, n-gram transitions allow for movements inside this layer, from state to
state, updating the history to the last n − 1 seen events. Backoff transitions to
lower history levels are taken if no way is found from a specific state for a given
symbol sj . If the lowest level is reached and no unigram transition is found for sj ,
then a transition to the <unk> state is fired, thus considering sj as an unknown
word. There is only one initial state, which is denoted as <s>, and it is placed
at the history level 1.

Since every unigram, bigram, etc., is represented as a transition consuming
their last symbol, and given that all these extended symbols are composed of
exactly one source word, the inverse labelling function can be straight-forwardly
applied. This way, transition labels are turned back into pairs of source/target
words to become a transducer.

Again, since every consuming transition implies that only one source symbol
needs to be parsed, the beam-search Viterbi algorithm can be appropriately
employed for decoding purposes.
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Fig. 3. A finite-state n-gram model

4 Phrase-based finite state models

Some recent researching lines are trying to merge the phrase-based methodol-
ogy within a finite state framework [14]. There, a generative translation process,
which is composed of several transduction models, is applied. Each constituent
distribution of the model, including some well-known aspects in SMT, such as
phrase reordering or spurious word insertion, is implemented as a weighted fi-
nite state transducer. The GIATI paradigm, however, tries to merge all these
operations into only one transduction model.

Phrase-based finite state models come from the concept of monotonous bilin-
gual segmentation, where it is assumed that only segments of contiguous words
are considered, that every pair of source/target sentences is split up into the very
same number of segments, and that they are one-to-one monotonously aligned.
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On this occasion, extended symbol strings would be composed of their corre-
sponding sequences of bilingual segments.

A bilingual segmentation of the training corpus can be approximated through
a phrase-based statistical machine translation approach. In general terms, a sta-
tistical phrase-based model consist of a stochastic phrase translation table. From
this table, those phrase pairs that best match a parallel training sample can be
selected to approximate a bilingual segmentation. Such a phrase selection can be
monotonously generated by translating the source-training sentences with that
phrase-based model, since decoding implies looking for the best segmentation.

Again, a smoothed n-gram model can be inferred from the extended symbol
corpus. Nevertheless, last step of GIATI cannot be applied as directly as word-
based models do. As figure 4 shows, no-backoff transitions are labelled with a
many-to-many extended symbol and they are assigned only one probability.

Q Q’

sj . . . sj′/ ti . . . ti′

Pr = p

Fig. 4. Phrase-based automata transitions

If a transition label only contains one source symbol, the transformation is
the same as for word-based models. However, the inverse labelling algorithm
needs to divide all transitions including more than one source symbol.

These transitions are divided by the length of the source segment, putting
only one source symbol on every resulting transition. The output segments are
delayed to their last transition, which is reaching Q’, thus forcing the previous
ones to produce the empty string λ. Finally, probabilities are placed at their first
transition, leaving 1-probability to the others. Figure 5 shows how this algorithm
works.

Q’Q ...
sj/λ . . . /λ sj′/ti . . . ti′

Pr = p Pr = 1Pr = 1

Fig. 5. Phrase-based transducer transitions

Intermediate states are artificially created on-the-fly and do not belong to
the original automaton model. They are non-final states that should be parsed
through until a real state is being reached, i.e. Q’ in figure 5.

Actually, these transition sequences have to be seen as a unique transition:
the one corresponding to Pr(sj . . . sj ′ , ti . . . ti′ |Q), that is, the phrase translation
probability after a given history Q.
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When in decoding time, the search algorithm takes into account such a spe-
cial situation, thus trying to follow all the paths coming from a determinate
state which are compatible with the input string that has not been analysed
yet. This parsing behaviour, i.e. the non-stop at intermediate states thing, can
be easily implemented adding some extra conditions to the Viterbi algorithm
and including more information within the trellis structure that is commonly
employed.

Yet another change to the search algorithm is needed because of the phrase-
based nature of the proposed approach. Given a starting state Q, a successful
path from Q to any Q’ would take into account a phrase-based n-gram event,
that is, a phrase pair (sj . . . sj ′ , ti . . . ti′) that was seen during training after a
given history Q. However, if only these paths are explored, the model may not
be as effective as it would be able to be.

As a result, backoff transitions must be always allowed in order to cover all
compatible phrases in the model, not only the ones which have been seen after
a given history, but from lower levels as well. One more constraint has to be
included into the parsing algorithm: any directly reaching state Q’ is unable to
be reached through a path that implies a backoff transition between Q and Q’.
Backoff transitions are followed in order to consider all the possible segmenta-
tions of the input sentence.

Q

NULL

p1
p1

p2

p2 p3

p3
p1 p2

<backoff>

Fig. 6. Compatible transitions for a phrase-based bigram model

Figure 6 shows a parsing example over a finite-state representation of a bi-
gram model. Given a reaching state Q, phrases p1, p2 and p3 are all compatible
with the portion of the input sentence that has not been parsed yet. However,
the bigram (Q, p3) did not occur throughout the training corpus, therefore there
is no a direct transition from Q to p3. A backoff transition enables the access to
p3 because the bigram (Q, p3) turns into a unigram event that is actually inside
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the model. Again, unigram transitions to p1 and p2 must be ignored because
their corresponding bigram events were successfully found one level above.

5 Experiments

This approach has been applied to the EuroParl corpus, that is, the benchmark
corpus of the NAACL 2006 and 2007 shared tasks of the Workshops on Machine
Translation of the Association for Computational Linguistics.

The EuroParl corpus is built on the proceedings of the European Parliament,
which are published on its web and are freely available. Because of its nature,
this corpus has a large variability and complexity, since the translations into
the different official languages are performed by groups of human translators.
The fact that not all translators agree in their translating criteria implies that
a given source sentence can be translated in various different ways throughout
the corpus.

Since the proceedings are not available in every language as a whole, a diffe-
rent subset of the corpus is extracted for every different language pair, thus
evolving into somewhat different corpora for each pair.

5.1 Corpus characteristics

Several shared tasks involving, among others, French, English and Spanish lan-
guages, were proposed during the NAACL 2006 and 2007 Workshops on Machine
Translation.

French→English and Spanish↔English experiments were carried out over the
2006 EuroParl benchmark corpus, whereas only Spanish↔English translation
was tackled from the 2007 data.

The characteristics of these corpora can be seen in Table 1.

Table 1. Characteristics of the EuroParl corpora

2006 2007
Fr En Sp En Sp En

Sentences 688031 730740 964791
Training Run. words 15.6 M 13.8 M 15.7 M 15.2 M 20.9 M 20.3 M

Vocabulary 80348 61626 102216 64070 113026 81754
Sentences 2000 2000 2000

Dev-Test Run. words 66200 57951 60332 57951 60243 58059

5.2 System evaluation

We evaluated the quality of a statistical machine translation system by using
the following evaluation measures:
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BLEU (Bilingual Evaluation Understudy) score: This indicator computes the
precision of unigrams, bigrams, trigrams, and tetragrams with respect to a set
of reference translations, with a penalty for too short sentences [15]. BLEU
measures accuracy, not error rate.

WER (Word Error Rate): The WER criterion calculates the minimum number
of editions (substitutions, insertions or deletions) needed to convert the system
hypothesis into the sentence considered ground truth. Because of its nature, this
measure is considered to be a pessimistic indicator.

5.3 Translation results

On the one hand, word-based finite state models are based on statistical align-
ments, which were obtained from the application of the public available tool
GIZA++ [16] to the corresponding training corpora. On the other hand, phrase-
based finite state models are required to operate with a bilingual segmentation
of the training corpus. These bilingual segmentations were provided by means
of a statistical phrase-based machine translation system such as Pharaoh [17].

Table 2. Translation results over the EuroParl corpora

Word-based Phrase-based
Corpus BLEU WER BLEU WER

2006 fr→en 20.0 64.1 28.0 61.9
2006 sp→en 20.6 63.9 27.6 61.6
2006 en→sp 16.8 67.9 26.4 62.3
2007 sp→en 21.9 62.9 28.0 59.6
2007 en→sp 20.1 64.9 25.3 60.8

From the translation results that are presented in Table 2, it can be concluded
that phrase-based finite-state models clearly outperform the models that are
strictly based on words, within the context of such a EuroParl translation task.
Phrase-based finite state models are almost achieving a relative improvement of
35% of BLEU over the language pairs and translation directions that have been
tested on.

6 Conclusions and further work

Phrase-based alignment models have become the predominant technology in
statistical machine translation. However, finite state models are always an in-
teresting approach to be taken into account in translation matters because they
present some advantages with respect to the use of pure source-channel models.

The idea of using phrase-based (rather than word-based) dictionaries can also
be brought to a finite state framework. This paper has presented the implemen-
tation details that are needed to build a phrase-based finite state model from
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a bilingual segmentation of the training corpus. Indeed, the algorithmic pheno-
mena that have to be taken into account in order to deal with such phrase-based
finite state models when in decoding time have also been in-depth described.

Experiments concerning several language pairs from the EuroParl corpus
have been carried out. Translation results from phrase-based finite-state models
are clearly outperforming the ones from a word-based finite state framework. An
approximate relative improvement of 35% over the BLEU metric is observed for
most of the language pairs and translation directions that have been tested on.

Phrase-based finite state models come from the concept of monotonous bilin-
gual segmentation. The experiments reported here are based on a single bilingual
segmentation per every pair of training sentences. That is, any other way of split-
ting a given pair to produce a different monotonous bilingual segmentation is
therefore discarded. Learning from all the possible segmentations (rather than
from the most likely one) that are compatible with a given alignment of a trai-
ning pair will probably enrich the models, since the useful information that is
extracted from the training data increases. This will be part of our future work.
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