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Abstract. We present an algorithm that computes a function that as-
signs consecutive integers to trees recognized by a deterministic, acyclic,
finite-state, bottom-up tree automaton. Such function is called minimal
perfect hashing. It can be used to identify trees recognized by the au-
tomaton. Its value may be seen as an index in some other data structures.
We also present an algorithm for inverted hashing.

1 Introduction

Hashing [1] is a technique where a key is transformed into an integer in a lim-
ited range with a hash function. Usually, there are far more possible keys than
integers in the range, so conflicts where different keys are mapped into the same
integers are unavoidable. However, in certain contexts, it is possible to map n
keys without any conflicts. A function that implements it is called a perfect hash
function. If it maps n keys into a consecutive range of n integers, it is called a
minimal perfect hash function.

The nature of a hash function and its application depends closely on the
hash key. Minimal, deterministic, acyclic, finite state automata (FSAs) provide
a minimal perfect hash function on strings [2], [3]. This allows for fast and
compact representation of dictionaries storing arbitrary information associated
with words. An insight from perfect hashing with FSAs is useful in developing
perfect hashing with deterministic, acyclic, bottom-up tree automata (DTAs),
although the latter case is more complex. DTAs store a finite set of finite trees.
Trees are ubiquitous in both computer science and natural language processing.
They are used e.g. for storing the result of parsing a program or a sentence. A
language that is best suited for parsing with DTAs is XML. It is widely used
both in computer science and in natural language processing. For example, in
natural language processing, it is used for annotating corpora. Perfect hashing
with tree automata implements a mapping from trees to integers. It can be used
for identification of trees, which allows for e.g. retrieval of arbitrary information
associated with the given tree, like all locations in a corpus where the given
parse tree occurs. The inverse mapping has an even greater potential, as a tree
automaton can be used as a compact representation for a forest of trees. A
mapping from an integer to a tree makes it possible to retrieve fast a given tree.
A dictionary associating words with trees can be implemented as a perfect hash
FSA associating words with numbers, a vector associating word numbers with
tree numbers, and a perfect hash DTA.
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The rest of the paper is structured as follows: Section 2 provides basic def-
initions, while Section 3 discusses issues related to counting trees in a tree au-
tomaton. An implementation of a minimal perfect hash function and its inverse
is given in Section 4, while their complexity is investigated in Section 5. The
paper ends with conclusions given in Section 7.

2 Basic Definitions

A finite-state, bottom-up tree automaton [4] is defined as A = (Q, Σ, Δ, F ),
where Q is a finite set of states, Σ is a finite set of symbols called the alpha-
bet, Δ ⊂ ⋃

i=0
mΣ × Qm+1 is a final set of transitions, and F ⊆ Q is a set

of final states. Another name for bottom-up is frontier-to-root. Another name
for final states is accepting states. This definition is similar to the definition of
finite-state automata, except for two differences: there is no initial (start) state,
and a transition is a relation between an alphabet symbol and an arbitrary
number of states (and not necessarily two states, as in case of finite-state au-
tomata). In a deterministic, finite-state, bottom-up tree automaton (or a DTA
for short), for each (σ, q1 , . . . , qm) ∈ Σ × Qm , there is at most one q ∈ Q such
that (σ, q1 , . . . , qm , q) ∈ Δ. In that case, we can define a function δ:

δm(σ, q1 , ..., qm) =
{

q if q ∈ Q is such that (σ, q1 , ..., qm , q) ∈ Δ
⊥ if no such q ∈ Q exists (1)

States q1 , . . . , qm are source states, while q is a target state. Finite-state
automata accept strings. Tree automata accept trees. Trees are defined as follows:

1. Each symbol σ ∈ Σ is a tree.
2. For each t = σ(t1 , . . . , tm), where σ ∈ Σ, and t1 , . . . , tm , m ≥ 0 are trees, t

is a tree.

Any subset of all trees defined over an alphabet Σ is called a tree language
TΣ . We can define an extended transition function on trees:

δA(t) =
{

δ0 (σ) if t = σ ∈ Σ
δm(σ, δA(t1 ), . . . , δA(tm)) if t = σ(t1 · · · tm) ∈ TΣ −Σ

(2)

A language of a state q in an automaton A is a set of trees such that the
extended transition function returns q for each of them:

LA(q) = {t ∈ TΣ : δA(t) = q} (3)

A language of the whole automaton A is the union of the languages of all its
final states:

L(A) =
⋃

q∈FLA(q). (4)
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A language of a transition τ = (σ, q1 , . . . , qm , q) ∈ Δ is the subset of LA(q)
recognized by following τ :

LA(τ) =
{

σ τ = (σ, q)⋃
(t1 ,...,tm)∈L(q1 )×...×L(qm) σ(t1 , . . . , tm) τ = (σ, q1 , . . . , qm , q) (5)

A DTA A is acyclic, when L(A) is a finite set of finite trees. From this moment
on in the paper, when we refer to automata, we mean deterministic, acyclic
finite-state, bottom-up tree automata without useless states, unless otherwise
specifically stated.

3 Numbering Trees in a DTA

A tree t has number i (counting from 0 to n−1, where n = |L(A)| is the number
of trees recognized by the automaton) if there are i trees that precede it in an
order imposed by the automaton. To compute i, we have to count the trees that
precede t. The first step is to compute the number of trees that precede the
current tree t in the language of the state δA(t):

ιA(t) = |{t′ : δA(t′) = δA(t) ∧ t′ ≺ At}| (6)

This can be done recursively. Let t = σ(t1 , . . . , tm), τ = (σ, δA(t1 ), . . . , δA(tm),
q), and q = δA(t). Then ιA(t) is the sum of the number of trees that precede t
but use the same transition τ , and the number of trees recognized while following
transitions preceding τ :

ιA(t) = ρA(t) +
∑

τ ′=(σ′,q′1 ,...,q′m′ ,q)≺Aτ |LA(τ ′)| (7)

The language of a transition (see Equation (5)) can also be defined recursively:

LA(τ) =
{

σ if τ = (σ, q)⋃
(t′1 ,...,t′m)∈LA(q1 )×...×LA(qm)σ(t′1 , . . . , t′m) if τ = (σ, q1 , . . . , qm , q)

(8)
Its cardinality is:

|LA(τ)| =
{

1 if τ = (σ, q)∏
i=1

m |LA(qi)| if τ = (σ, q1 , . . . , qm , q),m > 0 (9)

The key component in (9) is |LA(q)|. We rewrite definition (3) recursively:

LA(q) =
⋃

τ=(σ,q1 ,...,qm ,q)∈Δ,m≥0 |LA(τ)| (10)

so that its cardinality can easily be computed as:

|LA(q)| =
∑

τ=(σ,q1 ,...,qm ,q)∈Δ,m≥0 |LA(τ)| (11)



100 Jan Daciuk

To compute ρA(t), i.e. the number of trees that reach q = δA(t) by the
same transition τ and precede t, we need to introduce some order of trees in the
language LA(τ). Let τ = (σ, q1 , . . . , qm , q), and let next(ti) be the next subtree in
LA(qi). Then ∀1≤j<k≤mσ(t′1 , . . . ,next(t′j ), . . . , t′k , . . . , t′m) ≺ Aσ(t′1 , . . . , t′j ,
. . . ,next(t′k ), . . . , t′m), where t′i ∈ LA(qi). So

ρA(t) =
{

1 if t ∈ Σ∑
i=1

m ιA(ti) ·
∏

j=i+1
m |LA(δA(tj ))| if t = σ(t1 , . . . , tm) ∈ TΣ −Σ

(12)
In practice, we would use ρA

i defined as:

ρA
i(t) =

{
1 if i = 0
ιA

i(t) = ρA
i−1 (t) · |L(δA(ti))|+ ιA(ti) if 1 ≤ i ≤ m

(13)

Thus, ρA(t) = ρA
m(t).

A tree t is recognized if δA(t) ∈ F . However, there may be more than one
final state, and languages of final states are disjoint. We assume that final states
f i ∈ F are ordered: f1 ≺ A . . . ≺ Af |F |. A tree number for a tree t is thus ιA(t)
plus

∑
F�f ′≺AδA(t)|LA(f ′)|.

4 Perfect Hash Function

The perfect hash function is given on Figure 1. The argument is a tree t, for
which we want to obtain the hash value. A call to function rh in line 2 returns
a pair (δA(t), ιA(t)). The loop in lines 4–6 adds the number of trees belonging
to languages of those final states that precede δA(t). If t �∈ L(A), i.e. either
δA(t) �∈ Q or δA(t) �∈ F , hA(t) returns -1. In function rh, the loop in line 13 finds
numbers associated with subtrees ti of t, and the loop in lines 14–20 computes
ρA

i(t). In lines 22–25,
∑

τ ′(σ′,q′1 ,...,q′m′ ,q)≺Aτ |LA(τ ′)| is added to that value.
Inverse perfect hash function is given on Figure 2. The parameter n is the tree

number. First, we process the final states f i one by one, keeping the number
of trees recognized at all preceding final states in the variable h. If h ≤ n <
h + |LA(f i)|, then the tree number n belongs to the language of f i , and it is
(n − h)-th tree in that language. Function rh−1 takes two parameters: a state
q being the root of a subtree, and a tree number among all trees in LA(q). All
transitions reaching q are tried in order, and the number of trees recognized
while following them is added to variable h. The process continues until for the
current transition τ i , h ≤ n < h + |LA(τ i)|. Then the subtree we are looking for
belongs to LA(τ i). To calculate the subtree number among LA(τ i), the subtree
t is decomposed into individual subtrees t1 , . . . , tmi

with roots being the states
q1 , . . . , qmi

. The loop in lines 17–20 builds the tree t from its subtrees. Basically,
it calculates the inverse of ρA

i(t).
Note that the values |LA(q)| for all states, and |LA(τ)| for all transitions can

be calculated in advance and stored in appropriate states and transitions.
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1: function hA(t)
2: (q, v)← rh(t);
3: if q ∈ F ∧ v ≥ 0 then
4: foreach p ∈ F : p ≺ Aq
5: v ← v + |LA(p)|;
6: end foreach;
7: return v;
8: else
9: return -1;
10: end if ;
11: end function;

12: function rh(t = σ(t1 , . . . , tm))
13: h← 0; for i← 1 to m do (qi , vi)← rh(ti) end for;
14: for i← 1 to m
15: if qi = ⊥ ∨ vi = −1 then
16: return -1;
17: else
18: h← h · |LA(qi)|+ vi ;
19: end if ;
20: end for;
21: q ← δ(σ, q1 , . . . , qm);

Let N = |{(σ, q1 , . . . , qm , q) ∈ Δ}|;
Let τ1 ≺ A . . . ≺ AτN , τ i = (σi , q1i , . . . , qmi , q);

22: i← 1;
23: while τ i < (σ, q1 , . . . , qm , q) do
24: h← h + |LA(τ i)|; i← i + 1;
25: end while;
26: return (q, h);
27: end function;

Fig. 1. Perfect hash function

5 Computational Complexity

The time complexity of the perfect hash function given on Figure 1 is O(|t| +
|F |+|Δ|), where |t| is the number of tree nodes – defined below in (14), |F | is the
number of final states, and |Δ| = |{τ : τ ∈ Δ}| is the number of transitions in
the automaton (this could be replaced with |Δ| = ∑

τ∈Δ|τ |, where |τ | = m + 1,
in case we were not to store |LA(τ)| in transitions).

|t| =
{

1 if t = σ ∈ Σ
1 + |t1 |+ . . . + |tm | if t = σ(t1 , . . . , tm) ∈ TΣ −Σ

(14)

In function hA(t), we have one loop that executes at most |F | times, and consists
of adding a constant to a variable (a constant-time operation), as well as a call to
function rh. In function rh, there is a loop in lines 23–25 that adds a constant to
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1: function hA
−1 (n)

2: h← 0;
3: for i ∈ 1, . . . , |F | : f1 ≺ A . . . ≺ Af |F | do
4: if h + |LA(f i)| > n then
5: return rh−1 (f i , n− h);
6: else
7: h← h + |LA(f i)|;
8: end if ;
9: end for;
10: end function;

11: function rh−1 (q, n)
Let N = |{(σ, q1 , . . . , qm , q) ∈ Δ}|;
Let τ1 ≺ A . . . ≺ AτN , τ i = (σi , q1i , . . . , qmi , q);

12: i← 1; h← 0;
13: while h + |LA(τ i)| ≤ n do
14: h← h + |LA(τ i)|; i← i + 1;
15: end while;
16: h← n− h; th← |LA(τ i)|;
17: for j = 1, . . . , mi do
18: th← th/|L(qj ,i)|;
19: tj ← rh−1 (qj ,i , h/th); h← h− (h/th);
20: end for;
21: return σi(t1 , . . . , tmi );
22: end function;

Fig. 2. Inverse perfect hash function

a variable and increments a variable – also constant-time operations. As only |Δ|
transitions can precede the current one across all calls to rh, this loop contributes
an O(|Δ|) component to the time complexity. Another loop in the same function
in lines 14–21 contains constant-time operations and one recursive call to rh.
Since there is one call to rh per every node of the tree, this contributes |t| to the
time complexity.

There is one important trick that eliminates the O(|Δ|) component, and also
reduces the size of the automaton as we are no longer forced to keep back-
transitions. Instead of storing |LA(τ)| in transitions, we store∑

τ ′∈Δ:τ ′≺Aτ |LA(τ ′)| there. The computation in lines 24–26 is then no longer
needed. The same can be done with final states, i.e. they can hold the number of
trees recognized in those final states that precede the current one. This eliminates
the O(|F |) component, giving us O(|t|) time complexity.

For the inverse perfect hashing, the time complexity is O(|t| + |F | + |Δ|),
regardless of the use of the trick described above. We also have to keep back
transitions, as we need to find a transition (or a final state) with the appropriate
value. The loop in function hA

−1 (t) executes at most |F | times, with all but one
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run containing constant-time operations. The loop is finished with a single call
to rh−1 (q, n). Inside that function, the loop in lines 13–15 counts transitions –
at most |Δ| across all calls, and it calls itself – once per tree node, giving the |t|
component.

6 Example

q4

a q2 q2 b q2 q3 q1

q2 q3

q0 q1

a q0 q0 b q0 q1 a q1 q0 a q1 q1 b q1 q1

a bt1 t2

t3 t4 t5 t6 t7

t8 t9

2 3

4 6

10

Fig. 3. A DTA A = ({q0 , . . . , q4}, {a, b}, Δ = {t1 , . . . , t9}, F = {q2 , q4}). Numbers by
circles representing states, or by boxes representing transitions, give the cardinalities
of the languages of states and transitions, respectively. If the number is not given, it is
1.

A DTA recognizing trees:

0. a(a, a),
1. b(a, b),
2. a(a(a, a), a(a, a)),
3. a(b(a, b), a(a, a)),
4. a(a(a, a), b(a, b)),
5. a(b(a, b), b(a, b)),
6. b(a(a, a), a(b, a), b),
7. b(b(a, b), a(b, a), b),
8. b(a, (a, a), a(b, b), b),
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9. b(b(a, b), a(b, b), b),
10. b(a(a, a), b(b, b), b),
11. b(b(a, b), b(b, b), b)

is given on Figure 3. Let us find the number hA(t) associated with t = b(b(a, b),
a(b, b), b). First, rh(t) is called. It is called on t and recursively on each of its
subtrees. We call rh(b(b(a, b), a(b, b), b)), take the first subtree and call rh(b(a, b)),
then take the first subtree and call rh(a). The last call returns (q0 , 0), since q
is set in line 22, and h, which is set in line 13, cannot be modified in loops in
lines 14–21 and 24–26 as they are not executed. Similarly, rh(b) returns (q1 , 0).
In rh(b(a, b)), the loop in lines 14–21 runs twice, but leaving h = 0. The loop in
lines 24–26 increases h by |LA(t3 )| (the number of trees in languages of preceding
transitions), making rh(b(a, b)) return (q2 , 1). Next, rh(a(b, b)) is called, which
in turn calls rh(b) (twice), which returns (q1 , 0) (twice) as described above. In
rh(a(b, b)), the loop in lines 14–21 leaves h = 0, as no trees precede a(b, b) in
the language of t6 , but the loop in lines 24–26 increases that value by |LA(t5 )|,
i.e. the sun of cardinalities of languages of transitions preceding t6 , making the
function return (q3 , 1). Back in rh(b(b(a, b), a(b, b), b)), the value returned by
rh(b(a, b)) (i.e. 1) is multiplied by |LA(q3 )| = 3 before adding 1 returned by
rh(a(b, b)). The result is 4. Since rh(b) returned (q1 , 0), and |LA(q1 )| = 1, 4
is multiplied by 1, and then 0 is added. Afer having added |LA(t8 )|, the value
returned by rh(b(b(a, b), a(b, b), b)) is then (q4 , 8). Since q2 ∈ F precedes q4 , and
|LA(q2 )| = 2, hA(t) returns 8 + 2 = 10.

Now, let us find which tree has number 10. The process is illustrated in
Table 1.

7 Conclusions

We have presented an efficient implementation for minimal perfect hashing with
finite-state, deterministic, acyclic, bottom-up tree automata. It can be used for
computing an index for trees that can further be used to access additional data
structures associated with the trees. We have also shown how to compute the
inverse perfect hash function, which can help to retrieve trees stored in a compact
way in a tree automaton. Our implementation for minimal automata does not
preserve the order of trees at input. However, when the automata are to be used
in a static way, the order imposed by the automaton can easily be found.

The author wishes to thank Rafael Carrasco and Mikel Forcada for discus-
sions about tree automata during the author’s short visits to Alicante supported
by the Spanish CICyT through grants TIN2006-15071-C03-01 and TIC2003-
08681-C02-01, and for jointly developing a program that helped in testing ideas
presented in this paper. Comments from reviewers helped in improving the pa-
per.
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