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Abstract. This article describes a HMM-based word-alignment method
that can selectively enforce a contiguity constraint. This method has a
direct application in the extraction of a bilingual terminological lexicon
from a parallel corpus, but can also be used as a preliminary step for the
extraction of phrase pairs in a Phrase-Based Statistical Machine Trans-
lation system. Contiguous source words composing terms are aligned
to contiguous target language words. The HMM is transformed into a
Weighted Finite State Transducer (WFST) and contiguity constraints
are enforced by specific multi-tape WFSTs. The proposed method is es-
pecially suited when basic linguistic resources (morphological analyzer,
part-of-speech taggers and term extractors) are available for the source
language only.

1 Introduction

Specialized bilingual terminologies are essential to technical translators for en-
suring correctness and consistency in large translation projects. This is attested
by the presence, in professional translation environments, of tools to collect and
navigate terminologies. Several methods for extracting multilingual terminolo-
gies from parallel document collections have been proposed [1-6]. Unlike these
methods, the method described here does not require the availability of a mor-
phological analyzer and a POS tagger for both languages.

Besides lexicon and terminology extraction, word alignment is also an essen-
tial step in most Statistical Machine Translation approaches, as well as in the
projection of linguistic resources across parallel corpora. Like existing methods
for performing word alignment based on Hidden Markov Models (HMMs) [7],
ours builds an HMM with one state for each words in a source language emitting
words in the target language, and associates alignments with paths through the
HMM. Our method allows the enforcement of the constraint that target words
aligned to a same source term should be contiguous (contiguity constraint), thus
restricting the alignment search space according to a generally acknowledged
linguistic principle, and leading to improved lexica. This is done without im-
posing that alignments be monotonic, i.e. that word order is fully preserved in
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the two languages. The method uses an implementation of weighted multi-tape
finite state automata [8-10].

This paper focuses on the task of word alignment as it is critical in perform-
ing automatic terminology extraction. Existing methods to align documents at
the sentence level [11-14], to identify candidate terms [15] and to extract a ter-
minological dictionary from the word-aligned corpus can be used in conjunction
with what we present here to complete the overall task.

2 Word Alignment, Sentence-Pair HMM

Consider a sentence pair (e;!, f;7), e;! being the English sentence and f;”’
its foreign translation consisting of I and J words, respectively?. Elements in
e;! can be either (possibly multi-word) terms or individual words occurring
outside term boundaries. For reasons that will become clear soon, we will call
such elements states. Let a; 7 be the sequence of alignment variables, with a; =1
if and only if the foreign word f; is aligned to the English word/term e;. We will
restrict our attention to alignments in which a foreign word must be assigned to
one and only one English state. Our objective is to determine a;”/* such that:

a;”’* :argmaxal./{P(a1J|f1Jvell)} (1)

Applying Bayes’ rule and making some conditional independence assumptions,
this becomes:

a;”* = argmax, (] [ j=1'p(f5lea, )p(asla; 1)} (2)

We can model our conditional probability distribution by means of a Hidden
Markov Model (HMM) with states e;,i = 1...I and emitting in the foreign
alphabet X 5.5
The method needs estimates of word translation probabilities in the form p(f|e),
that is, for each English word e, the probability that it will be translated with
word f. These can be achieved, for example, by the use of an Expectation-
Maximization algorithm [16] using a translation model like in [17]. Further pre-
processing may include lowercasing, lemmatisation, stemming, and the decom-
position of compound words.

Emission probabilities can be estimated from the word translation probabili-
ties. For transition probabilities, we would prefer to favor monotonic alignments
but allow other arrangements, too: a two-component discrete Gaussian mixture
is appropriate to model this. The states of the HMM are either contiguous multi-
word terms or out-of-term words. Figure 1 shows an example.

4 Following a convention similar to the standard one in the MT community, in the
following we will assume that English is the source language, for which resources
are available, and a foreign language is what we previously referred to as the target
language. Needless to say, the method is, in its elements described here, independent
of the actual language pair.

5 We use throughout the term alphabet in the language theory sense of “set of symbols”.
In our case symbols will be words, not individual characters.
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Fig.1. HMM for three English terms; there is a single state for each term and the
transition probabilities are modeled by two-component discrete Gaussian mixtures. I
(3 here) and J are source- and target-language term indices, respectively.

The transformation of the HMM into a WFST of tropical semiring (W g )
is as follows:

— For every state of the HMM we create a state in the WFST

— Between any two states e; and e; (including ¢ = ') we add J transitions
labeled by the foreign words on the input tape and i’ on the output tape
with weight — log p(#7) — log p(flex)

We create an initial state from which there will be a transition to every state
e; labeled f; with weight —logp(fle;:)

Every state except the initial one is final.

A part of such an automaton is illustrated in Figure 2.

J:2/— log p(fJ]e2) — log p(2[1)

1:1/-log p(fJlel) — log p(1]1 11:2/- log p(fJ|e2) — log p(2[2)

f2:2/— log p(f2[e2) — log p(2|1)
f1:1/~ log p(fljel) — log p(1|1) £1:2/~ log p(fl]e2) — log p(2[2)

f1:2/— log p(f1]e2) — log p(2|1) ‘
f1:1/- log p(fllel) — log p(1[2)

j f2:1/— log p(f2|e1) — log p(1]2
fJ: 1/~ log p(fllel) — Iogp(lJ

fI:1/=log p(fJlel) — log p(1]0)

f1:2/= log p(fJ|e2) — log p(2/0)

Fig. 2. Two states of the WFST built from the HMM, and their connection to the
initial state.
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3 Enforcing Contiguity

After turning our HMM into a weighted transducer, we can obtain the most
probable alignment by applying Dijkstra’s or Viterbi’s shortest path algorithm. If
we do so directly, with the weighted transducer, however, we are not guaranteed
to obtain alignments respecting the contiguity constraint for terms. Formally:

An alignment a;” is contiguous if and only if there do not exist integers
i, 7, k, with 1 <i<j<k<J, such that a; = ar, =1t and aj #t, for any t such
that e; is a term.

The method we propose to solve this problem is inspired by [18]. In [18] the
authors considered the problem of modeling a probability distribution over all
alternative permutations of the chunks in a sequence: in our case, however, the
foreign and the English sequence do not necessary have the same length, and
the constraint we need to enforce is somewhat different.

Given a WFST encoding an HMM with [ states, we build an automaton PFE
with one state for each pair of a subset of states (term states visited before the
last) and a state (the last visited state if it is a term state, a wildcard symbol
otherwise). The path-set in this automaton will be such that only sequences over
{1...1} that do not contain discontinuous repetitions of term identifiers will be
accepted:

PE = (Qrg,Xpre,Ere,Ips, FpE)

Qpg: {start} @] {<A,CT> € 2%t x 2|UPE ¢ A}
EPE: {1,,]}
EPE:EtUEn, EtﬂZnZQ)
Epg: (start, o, (0, 0))
Vo € Xpg
((4,0),0",(AU{c},0"))
VAC X, Noe Xi,0¢ ANo' € Xpg, o ¢ AU{c}
((A,0),0,(A,0))
VA C X Vo € Xpg,o ¢ A
((4,0),0",(A,0"))
VAC ¥ Vo € ¥,,Vo' € Ypg,0’ ¢ AU{c}
IPEI {start}
FPEI QPE \ {start}

Edges in the first set (first line for Epg) are used to match the first symbol in
the input sentence. Edges in the second set are followed whenever a new symbol
is aligned to a new term or out-of-term word, and the previous was aligned to a
term. The third set covers the case when a symbol is aligned to the same term
or out-of-term word as the symbol just before it. Finally, the fourth set covers
transitions such that the current symbol is aligned to a new term or out-of-term
word, and the previous was aligned to an out-of-term word.

By making every non-start state final and by introducing a special initial
state, we obtain the automaton that accepts all and only the alignments satis-
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fying the contiguity constraint. In the example of Fig. 3, the alignment 1122143
is accepted, while 12324 is not, since 2 is repeated twice separated by a 3. No-
tice that constructing the contiguity enforcing automaton can be done once, in
advance, for all possible combinations of |X;| and |X,| present in the corpus,
renaming states for specific source sentences.

Fig. 3. Contiguity enforcing automaton for an English sentence with four states, two
of which (e2 and e;) correspond to multi-word terms and two of which (e; and egs)
correspond to words occurring outside terms.

The composition of the contiguity enforcing automaton PE and the original
WEST built from the HMM can be constructed directly by expanding every
transition on symbol o € X pg in the contiguity enforcing automaton with | X g
transitions, one for each possible foreign word and assigning weights according
to the appropriate transition and emission log-probabilities:
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(start, o, (0, o))
— (start, f : 0/ — logP(fles) — logP(c0),(0,0))
Vf S EF,VO' € Xpg

(<A70>7U/7<AU{0}7U/>)
S ((Al) o)~ l0gP(fles) — logP(e'|0). (AU {0}.0"))
VAC X, VfeXp,VoeXi0¢ ANo' € Xpg,0' ¢ AU{c}

((4,0),0,(A,0))
— ((A,0),f 0/ —logP(fle,) —logP(clo), (A, o))
VA C Et,Vf € Xp, Vo € Xpg,o ¢ A

((A,0),0",(A,0"))
- (<A7J>7f : OJ/ 7logp(f|6a’) 7lOgP(U/‘O')7 <A7U,>)
VAC X, Vfe XYpVoe X, Vo' € Xpp,o ¢ AU{o}

where X' i denotes the set of distinct words in the foreign sentence to be aligned.
Overall computational complexity is O(I? 212l g ). The result, again, is the
best path of the directly constructed PE’ = W g ¢ PE.

3.1 Lazy contiguity enforcing

In the previous section, the whole contiguity enforcing automaton is composed
a priori with the HMM-derived WFST before the best-path algorithm is run.
While this time-consuming operation ensures that the selected alignment will
respect the contiguity constraint, it is actually pointless in the cases where the
best path in the original HMM-derived WFST does not violate the constraint.
A variation of the previous method thus consists in first running a best-path
algorithm on the initial WEFST, checking whether the constraint is violated for
any term and, if it is, compose the WFST with a reduced contiguity-enforcing
automaton limited to the terms for which contiguity was violated, and iterate
(Algorithm 1). It is easily verified that the automaton in Fig.4 enforces the
contiguity constraint for the term o € X,

Z\o Z\o

@(3 @
N —— 0O —

Fig. 4: The three-state automaton enforcing the constraint that whenever the state o
in the HMM-derived WFST is left, it is never entered again. For efficiency [10], every
single arc with label X\ o represents a set of arcs, one for each o’ # o.
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Algorithm 1 The iterative algorithm that only composes the HMM-derived
WEST with single-term contiguity checker for terms for which contiguity was
violated.
W — W unm
repeat
7 «— Viterbi(F, W)
Z « violate-contiguity(m, W)
for all z in Z do
W—WoA,
until Z = ()
return m

Each composition has the effect of doubling the number of states and edges. In
the worst case, the algorithm is forced to compose again and again for enforcing
contiguity one term at a time, and the finally resulting automaton is the same as
what would be obtained by composing W g directly with P. In this case there
is no asymptotic penalty in the repeated composition itself, but we executed in
vain |X;| — 1 times the best-path algorithm, on WFSTs of exponentially increas-
ing size. Notice, though, that the global asymptotic complexity for all repetitions
of the best-path algorithm is the same as the complexity of the last iteration,
because Y j—g!¥12i 1] = [J(21¥+1 — 1), and O(1J(21%H1 —1)) = O(1.J2!*11).
In other words, by performing composition lazily, we pay at most a constant
factor in time, and nothing in space.

3.2 Local Reordering

While the permutation automaton is, in many cases, an appropriate solution,
it has the drawback of growing exponentially in size with the number of source
terms. The present section describes a method for enforcing the contiguity con-
straint which is not exponential in size in the length of the input and consists in
a single best-search path on a multi-tape weighted finite-state transducer. The
reduction in complexity is obtained at the price of allowing only local reorder-
ings between the source and the target sequence. A permutation 7 is a local
reordering with jump length m; and window size m,, if and only if every ele-
ment is at most m; steps away from its position in the identity permutation (i.e.
|m; —i| < m;) and every deviation from the identity permutation occurs within
a subsequence of size at most m,, (i.e. the corresponding permutation matrix is
block-diagonal with blocks of size at most m.,). For example, for maximal jump
length m; = 2 and window size m,, = 3 an acceptable permutation would be
(3,2,1,4) but not (3,4,1,2). It is possible to write automatically automata to
recognise sequences of jumps (i.e. m; — 1,m2 — 2,..., 7 — I) corresponding to
local reorderings for arbitrary values of m; and m,,. We will first describe how
such a local reordering automata can be automatically generated, and then de-
scribe a method for compiling the original HMM into a new (multi-tape) WFST
[8,10] that represents the same probability distribution but outputs a sequence
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of jumps as well as a sequence of visited states, and that can thus be joined with
the local reordering automaton.

Algorithm 2 builds a local reordering automaton given the parameters m;
and m,,. Although the construction takes O(m,,!my,log(m.,'m,)) time, where

Algorithm 2 ReorderingAutomata(m;, m,)(R)

Create state sg, which will be the initial state and the only final state
Add a loop edge to sy labeled with 0
Generate the list Perm of all possible permutations of m,, many elements
Create empty list JumpSeq
for all 7 in Perm do

tmp=""

for all j in {1,2,..,m4} do

if |7; — j| < m; then

9: Append 7; — j to tmp
10:  if length(tmp) = m, then
11: Add tmp to JumpSeq
12: for all ¢ in JumpSeq do
13:  Strip leading and trailing Os from 14
14:  Create state s;,;
15:  Add an arc going from s¢ to s;,; labeled by i[1]
16:  for all j in {2,..,m, — 1} do
17: Create state s;;
18: Add an arc going from s; j_; to s;; labeled by i[j]
19:  Add an arc going from $; m,—1 to so labeled by i[m.]
20: Minimize the automaton

complexity is dominated by the minimization operation, it needs be done once
only for the desired (max. jump, window size) pair and does not need be repeated
for each sentence. This algorithm was implemented and used in the preliminary
experiments reported in Section 4. Figure 5 shows such an automaton. We note
here that we have a more direct way of building the local reordering automaton,
too.

In order to be able to use this automaton, we need to generate suitable input:
the WFST built from HMM should output jumps between term positions instead
of plain word/term identifiers like with the permutation automaton. Moreover,
the reordering automaton only accepts (appropriately constrained) permutations
of the state identifiers. There are two issues then that must be solved in order
to use an approach based on the reordering automaton. The first is that we
want to allow repeated visits to a same term, provided they are contiguous.
The jump sequence will thus need to be generated from a term sequence from
which contiguous repetitions are replaced by a single occurrence of a special
term identifier. A second issue is that we might or might not be willing to accept
the additional constraint that all English terms must be aligned to some foreign
word. We will first present a solution for the case in which we assume that all
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- ‘\ P

Fig. 5. The automaton produced by Algorithm 2 with parameters m; = 2 and m,, = 3.

occurrences of terms on the English side have a counterpart on the foreign side,
and then propose a modification that relaxes this assumption at the cost of
introducing some complexity in the process.

Cascaded Automata with All English Terms Aligned In order to pro-
duce appropriate input for the reordering automaton, we add to the WFST
derived from the original HMM an additional tape, besides the first reading the
input sequence of foreign words and the second writing the sequence of English
word /term identifiers corresponding to the alignment. A special term identifier
ranging from 1 to the number of terms in the sentence (1 for ey and 2 for ey
in the example) is written on the third tape every time a term-state is entered
from a different state (Fig. 6). Formally:

HZ(QHazHaEHaIH7FH7A)

Qu: {start} U{q,loc € Yy}
Y Xgr x Xyge x Xys
Y Xp
ZHQZ{L...,I} EHQZZtUEn, ZtﬂZn:(Z)
EHgl {1,,|Et|}
Epy: (start, f:0:€,q,)/ —logP(fle,) — logP(c]0)
VfeXp, Voel,
(start, f : 0 1 to,q5)/ — logP(fles) — logP(c|0)
VfeXp, VYoeX,
(@os f:0" 1 €,q5)] —logP(fles) — logP(co'|0)
VfeXp, Vo Xy, Vo' e X,
o f + 0" < torr407)] — L0gP(flear) — LogP(o"|o)
VfieXp, Vo€ Xy, Vo' € Xy, 0# 0’
(¢o, f:0:€,q5)/ —logP(f|es) — logP(o|o)
VfeXp, Voe X,
Ipy: {start}
FH: QH \ {start}
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where t,,0 € X, is a special term identifier in {1,...,|X:|} and
A= (RU{+o0}, min,+,0,+00) is the tropical semiring.

£:2:_/log p(fle2)+log p(2/2)
:2:1/log p(fle2)+log p(2|1)

f:1:_/log p(fle1)+log p(1|2)

f:1:_/log p(flel)+log p(1/0)

f:2:1/log p(fle2)+log p(2/0)

f:4:2/1og p(fle4)+log p(4(2)

©

Fig. 6. An example of a 3-tape WFST encoding an HMM. e, and e; are terms, e; and
es are out-of-term words. Only one transition for every state pair is shown, while in
the actual automaton there is one for every word f in the foreign sentence. Also, only
some labels/weights are shown.

f:3:_/log p(fle3)+log p(3|3)

We introduced two simple auxiliary finite-state machines: the identical per-
mutation automaton I and the difference automaton D: the former just encodes
an increasing integer sequence 1,2, ..., |X:|, while the latter has three tapes and
puts on the third the difference of the first two.

By appropriately joining® the transducers defined so far we obtain a trans-
ducer accepting only alignments corresponding to local reorderings of the English
terms,

GZ((HN{g)):l}D)DQ{4:1}I)l><]{5:1}R, (3)

where the result G has five tapes: H; : Hy : H3 =D; : Dy =1; : Dg = R;.
The best alignment satisfying the contiguity constraint and representing a local
reordering (with parameters m,; and m,,) is then simply obtained through a
best-path search on G, on the tape Gj.

Cascaded Automata with Empty Alignments for Some English Terms
The method described above imposes that all English terms are aligned. If we do

5 Algorithms for joining and composing automata are described in [9].
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not want to impose this additional constraint, we can still enforce the contiguity
constraint with local reorderings, but at the price of making the method more
complicated.

The reordering automaton recognises the language of all jump sequences
corresponding to local reordering permutations. We generated the jump sequence
by computing a symbol-wise difference between the sequence of term identifiers
in the order they were entered and their identical permutations. We could do
that simply through the D transducer because these two sequences have the
same length. If now we want to relax the constraint that all English terms are
aligned we need a way to “visit” all states of the HMM other than by aligning a
foreign word to it. We can do this by introducing special transitions going into
term states that do not “use” any input symbol. When assessing the probability
of an alignment, this will alter the contribution of the transition probabilities. To
account for this effect, we will thus create two separate WFSTs from the original
HMM: one (F) will account for the emission probabilities only, and one will
account for the transition probabilities (7"). The former will accept the input
sequence and will output on one of its tapes a sequence (with no contiguous
repetitions) of identifiers of those visited states which are aligned to real foreign
words only:

E=(Qg,YXp, Eg,Ig, Fg,A)

Qg: {start} U{q,|oc € Y}
Yp: Xg X Xpe X Xps
Yp1: Xr
EEQZ {1,71}
EEQZEtUZIn,EtﬂEn:@
Tpst{L,..., |2}
Eg: (start, f:0:€,q,)/ —logP(fles)
Vf eXp,Yoe X,
(start, f : 0 : ty,q0)/ — logP(f|es)
VfeXp,Voe X,
(start,e:€:ty,qs)/0
VUG Et
(qtﬂf o' 67QU’)/ - logp(f|60’)
Vf€2F7VU€2EQ,VOJ€En
(chvf o’ tU’vQU’)/ - lO.gP(flea’)
VfeXp, Vo€ Xgy, Vo' €X,,0# 0
(@orf 0 5 €100)/ — logP(fleo)
VfeXp Voe X,
(gor€:€:t5,q5)/0
Vo € Et
Ig: {start}
FE: QE \ {start}
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where t,,0 € X, is a special term identifier in {1,...,|X:|} and
A= (RU{+o0}, min,+,0,+00) is the tropical semiring.

The latter will compute the contribution of transition probabilities based on
this state sequence:

T = (QT,ETaETaITaFT7A)

Qr: {start} U{gs|o € X1}

ET : {].,,I}

Er: (start,o,q,)/ — logP(c|0) Vo € X'p

(¢os0',q07)] — logP(0'|0) Vo,0" € Xp

Ip: {start}

Fr: Qp )\ {start}

The result of joining these transducers with the D, I and R transducers
(see before) is a transducer accepting only alignments corresponding to local
reorderings of the English terms where some English terms can remain unaligned:

G = (((E[X]{Q:I}T)N{B:I}D)N{,{‘:J}I)N{5:Z}R (4)

where the result G’ has five tapes: E; : B = T1 : Eg = D; : Dy = I :
Ds = R;. The best local reordering alignment (with m; and m,,) satisfying the
contiguity constraint is then obtained through a best-path search on G’, on the
tape G’ 5.

4 Experiments

Some experiments applying the described word-alignment methods to multilin-
gual terminology extraction were performed. 576 sentence pairs coming from
Xerox manuals in English-German were annotated with 897 term boundaries
and alignments by a native speaker of German. As a base for our projection, we
first took manually identified English terms, then NPs extracted using patterns
of parts-of-speech. For both cases, we aligned German words to English terms
and out-of-term words according to some early variants of the methods described
above:

— SELECT: lazy enforcement of the contiguity constraint to terms only;

— REORD: local reordering method with m; =2 and m,, =3

— SYMMETRIC: the standard symmetric method by which term candidates
are first identified in German using POS patterns and are then aligned,
but without a heuristic that greedily extends term boundaries to improve
boundary detection.

For each method we measured the number of exact matches, together with pre-
cision, recall and F-score at the word level according to the following definitions:
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P > i—1"pi b= po ST L T 2PR
n ) i c; ) n ) A wi’ P+ R
where ¢; is the number of words identified as part of terms in sentence i, w;
is the number of words in terms in the reference for sentence 7, and a; is the
number of correctly aligned in-term tokens in sentence 1.
Test results are in table 1, where terms are all German gold standard terms
for which a translation was provided or not in the candidate sentences.

method manual annotation

exact matches P R F
SELECT 291 (32.44%)(86.39%64.51%|73.87%
REORD 258 (28.76%)(83.65%67.83%|74.91%
SYMMETRIC 282 (31.44%)(97.41%98.12%|97.76%
method automated annotation

exact matches P R F
SELECT 275 (30.66%)(86.69%|67.07%|75.63%
REORD 235 (26.20%)(83.38%|70.53%|76.42%
SYMMETRIC 205 (22.85%)(89.93%196.04%|92.88%

Table 1. Preliminary experiment results.Total number of terms: 897, total number of
sentences: 576.

From such preliminary experiments, it would seem that in the automated
case, performance is comparable with those obtained with the symmetric meth-
od, recall is smaller, more resource-intensive, although this is somewhat under-
estimated due to the fact that an effective recall-oriented heuristic (although
possibly precision-degrading) was not used.

We aligned 576 sentences in 6 hours when enforcing local reordering con-
tiguity constraint and in 10 minutes for the selective lazy one. The standard
symmetric alignment is much faster.

After these experiments, a Norwegian-English terminology containing 4211
candidate term pairs was extracted from a parallel corpus of 38487 sentence pairs
from Xerox manuals using an early version of the lazy contiguity enforcement
method.

5 Summary

We have shown that our method can be used to extract bilingual terminologies in
cases when neither a morphological analyzer nor a POS tagger are available for
the target language. This new result is based on a powerful probabilistic model
that explicitly models distortion in alignments and ensures that the produced
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alignment is optimal respecting the contiguity constraint according to the prob-
abilistic model. The statistical model is advantageously exploited by the use of
weighted multi-tape calculus. Test results confirm the claimed advantages.

Extensive previous literature on the problem of word alignment, from [17]
then [7,19] and [20, 21, 18] to [22] either does not cover the contiguity issue at
all or can not enforce it as a constraint.

As far as bilingual terminology from parallel corpora is concerned, most pro-
posed methods [1-6] rely on target-source matching sequences of Part-of-Speech
requiring reliable POS taggers for both. We need only one, on the source side. [23]
is asymmetric but can not guarantee optimality with respect to the underlying
model .
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