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Preface

These proceedings contain the revised versions of the paper presented at the
6th International Workshop on Finite-State Methods and Natural Language
Processing, FSMNLP 2007. FSMNLP 2007 was held in Potsdam, Germany, on
September 14 – 16, 2007 and covered a wide range of topics from morphology
to temporal logics.

This volume contains 15 regular and 3 invited papers.
The editors would like to thank all members of the Programme Committees

for their painstaking and precise work. Many thanks go to our invited speakers
Lauri Karttunen, Bruce Watson and Anssi Yli-Jyrä. We would also like to thank
our co-organizers Sina Zarrieß, Andrea Corradini and Jonas Kuhn for their en-
ergy and enthusiasm. Alexander Siebert created our conference web site and Jan
Engel the conference poster, many thanks for that!

We are deeply grateful to our sponsor, the Zentrum für Allgemeine Sprach-
wissenschaft and its assistant director Hans-Martin Gärtner. Last but not least,
without the students and our secretary Ines Mauer who helped us this event
wouldn’t have been possible.

Potsdam
July 2008

Thomas Hanneforth Kay-Michael Würzner
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New Features in PARC Finite State Toolkits

Lauri Karttunen

Palo Alto Research Center

The xfst utility that accompanied the Beesley & Karttunen book on "Finite-
State Morphology" in 2003 ([1]) has been updated. In this talk I will describe
the new features and show how they can be deployed. The new features include:

– full UTF-8 support
– symbol ranges (e.g. "a-z")
– definitions for lists (sets of symbols)
– list flags (symbols for member of, not a member of)
– insert flags (symbols for an embedded language)
– built-in and user-definable functions

The publicly available xfst tool is the “little sister” of a more powerful utility
called fst that is used in commercial applications at companies such as Inxight
(recently acquired by Business Objects) and Powerset. One of the new features
in the fst tool is a pattern matching algorithm that overcomes the limitations
inherent in the approach introduced in the B&K book. As the book explains, in
the (x)fst regular expression language it is possible to define pattern networks
with expressions such as

Example 1. (Det) Adj* Noun* @-> "<NP>" ... "</NP>"

where @-> is the left-to-right longest-match replace operator ([2]). Given
appropriate definitions for Det, Adj, and N, the above expression compiles into
a transducer inserts XML tags around noun phrases. For example, it maps

Example 2. children are playing on a jungle gym

into

Example 3. <NP>children</N> are playing on <NP>a jungle gym</NP>.

While this method works well for many purposes such as the recognition
of dates, phone numbers, addresses, it becomes impractical when the number
of words in the component expressions of the pattern increases beyond a few
thousand words as the case would be in a real noun phrase recognizer.

The principal reason for the blow-up is that the @-> operator encodes the
longest-match constraint in the state and arc space of the resulting transducer.
The new pattern matching method that is implemented in fst enforces the longest
match constraint in the runtime algorithm and not in the physical network. I
will outline the new pattern matching algorithm and illustrate its benefits.
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Advances in Automata Implementation
Techniques
(Abstract)

Bruce W. Watson

Department of Computer Science, University of Pretoria

1 Introduction

In this abstract, I give a brief overview of the latest issues and advances in au-
tomata (state machine) implementations. The full material (available from me
by email) was originally presented in Potsdam at the FSMNLP Conference in
September 2007. Contemporary automata toolkits1 are applied in areas as di-
verse as computational linguistics, network security, text indexing, compression,
and parallel/concurrent systems. Such implementations typically have three us-
age scenarios:

– Compilation from a regular expression to an automaton.
– Minimization of an automaton.
– Execution of the automaton on an input string.

The implementations can be improved in the following areas:

1. Expressive power and succinctness. Using the more exotic regular operators
(such as intersection, negation, etc.) can make a regular expression exponen-
tially more succinct.

2. Memory consumption.
3. Running time.
4. Hardware utilization. Contemporary CPU’s include wide bit-wise operators,

large memories and potentially FPGA’s (‘field-programmable gate arrays’),
all of which can be reconfigured for highly parallel operations.

These particular opportunities are arising for several reasons: CPU’s are not
getting much faster (in terms of clock-speed), but they are getting wider (e.g.
multi-core CPU’s, very wide bit-wise operations); main-memory sizes are grow-
ing, but cache memory is not, meaning memory-access locality is as important
as ever; reconfigurable hardware (e.g. complex multi-core graphics cards from
NVidia and ATI, for FPGA’s) are becoming the norm in high-end computers.
All of these aspects are still underutilized in automata implementations.

Here, I pay particular attention to compilation, though minimization and
execution are equally important phases. Depending on the length of the input
being processed by an automaton, the execution phase consumes the majority
of the time. As such, efficient implementations in hardware are within reach.
1 Examples of such footnotes include FIRE Engine, Grail, Vaucanson, FST, etc.
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2 Compiling (constructing) automata

Automata compilation algorithms fall into two categories:

– Inductive constructions build up an automaton based on the structure of
the input regular expression: simple automata are used for the atomic reg-
ular expressions, and each expression operator gives rise to a constructive
operator on automata. As a result, ‘compiling’ is simply constructing the ho-
momorphic image of the input regular expression. Such constructions have
a number of advantages:
• The automaton’s structure reflects the underlying expression’s structure.
• The subautomata (corresponding to subexpressions) can be constructed

independently.
• Shared subexpressions need only be constructed once.

Similarly, they have some disadvantages:
• Shared subexpressions do not lead to shared subautomata — often lead-

ing to nonminimal automata.
• Dead (unreachable) states may be constructed for some regular expres-

sions.
• Exotic regular operators (negation, etc.) are extremely difficult to im-

plement inductively.
– Reachability constructions being with a just a few states (usually only one

— the start state), and use graph-reachability algorithms to construct the
remainder of the automaton. Such constructions often use derivatives (also
known as continuations). The advantages of reachability constructions are:
• No dead states are constructed.
• Shared subexpressions are handled only once, leading to automata that

are smaller than with inductive constructions.
• Exotic regular operators are handled extremely easily (indeed, all six-

teen Boolean regular operators are handled ‘for free’ in derivative-based
reachability constructions).

The disadvantages are:
• A constructed automaton displays virtually no structure which is recog-

nizable from the input regular expression, especially when exotic opera-
tors are used.

• Subautomaton sharing may occur, but is difficult to identify.

Regardless of which construction style is used, there are only a few algorithmic
optimization that are applicable:

– Incremental algorithms involve doing minimal recomputation of the output
when the input changes — usually accomplished by saving some of the in-
termediate computations. Numerous incremental minimization algorithms
are already known, including algorithms which can be halted at any point
yielding a partially-minimized automaton ([1]). Incremental inductive con-
struction is easily implemented thanks to the homomorphic nature of the
algorithm; by contrast, incremental reachability construction is an impor-
tant area of future work.
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– Parallel algorithms are a new imperative, based on trends in hardware. Re-
cent work has yielded parallel automaton minimization algorithms. For ex-
ample, the algorithm given in [2] checks equivalence of states in separate
threads; with enough available threads, this algorithm can minimize in lin-
ear time. Parallel constructions are straightforward:
• Parallel inductive construction can be done with separate threads deal-

ing with the subexpressions. A linear speedup is possible, with enough
threads.

• Parallel reachability construction can be done with separate threads deal-
ing with the out-transitions of each new state in the reachability graph.
The performance improvement is somewhat sensitive to the structure of
the transition graph (in the worst case, it leads to no speedup).

Acknowledgements: I am particularly thankful to the FSMNLP 2007 organizers
who helped me tremendously in forming my thoughts on this topic.
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Applications of Diamonded Double Negation

Anssi Yli-Jyrä

Department of General Linguistics, University of Helsinki, Finland

Abstract. Nested complementation plays an important role in express-
ing counter- i.e. star-free and first-order definable languages and their
hierarchies. In addition, methods that compile phonological rules into
finite-state networks use double-nested complementation or “double nega-
tion”. This paper reviews how the double-nested complementation ex-
tends to a relatively new operation, generalized restriction (GR), coined
by the author (Yli-Jyrä and Koskenniemi 2004). This operation encap-
sulates a double-nested complementation and elimination of a concate-
nation marker, diamond, whose finite occurrences align concatenations
in the arguments of the operation. The paper demonstrates that the GR
operation has an interesting potential in expressing regular languages,
various kinds of grammars, bimorphisms and relations. This motivates a
further study of optimized implementation of the operator.

1 Introduction

The goal of this paper1 is to advocate implementation and optimization of a non-
classical regular operation – generalized restriction. This operation augments a
double-nested complementation in a very useful way.

Algorithms for complementation are not among the most famous operators
in finite-state toolkits due to various reasons that that include (i) the need to
define the universal language, (ii) the need to determinize the automaton with a
possibly exponential construction and (iii) the absence of weights in the resulting
automaton.

Complementation has an important role in generalized star-free expressions
and hierarchies characterizing star-free languages. Generalized star-free expres-
sions consist of finite languages, concatenations and the Boolean operators, in-
cluding complementation that assumes the universal language. They describe
the counter-free i.e. star-free languages [1, 2]. These languages are also charac-
terized with the dot-depth hierarchy [3] and first order logic with linear order
(FO[<]) [4]. It is also known that typical regular string set expressions in lan-
guage technology can be reduced to star-free expressions [5].

In addition, complementation is an important operation in finite-state mor-
phology, where it is used to compile conditional rules into automata. In the early
finite-state accounts of morphology, phonological rules were compiled manually
into transducers. Johnson [6] sketched in 1972 how to obtain finite-state trans-
ducers (and bimachines) directly from rules. In 1981, Kaplan and Kay presented
1 The original title of this invited paper was The Hidden Jewels of Double Negation.
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another approach to compilation of generative phonological rules descriptions
[7]. A bit later, rules of the classical Two Level (TWOL) model [8] and its early
implementations were at first hand-compiled. In these circumstances, Kaplan
discovered the relevance of double-nested complementation [7]. According to a
recent interview (Kaplan, p.c., 2007), back then his eureka was: “Everything
must be [a] double negation!”

Roughly two decades later the author discovered [9] how to combine double-
nested complementation with special markers (diamonds) that occurred only
a specified number of times (typically twice) in hidden strings. This extension
is called generalized restriction (GR) because it generalizes the semantics of
the context restriction rule of the TWOL model. The new operator has many
applications in linguistic finite-state formalisms.

By surveying the applications of the operation, the paper argues that the
operator is a versatile and practical tool for finite-state grammar construction.

The Structure of the Paper The notational preliminaries are in Section 2.
Section 3 contains introduction to implication rules in finite-state phonology and
morphology. Section 4 introduces diamonds and generalized restriction. Sections
5, 6, 7, 8, 9 tell about their applications in constraint systems, combinatorial
systems, bracketed systems, bimorphisms, and optimality theoretic systems, re-
spectively. Section 10 discusses a measure of locality in nested generalized re-
striction. A case example of the possible optimizations is elaborated in Section
11 and the paper is concluded by Section 12.

2 Preliminaries

We assume the reader is familiar with classical results on the connection between
closure properties of deterministic and non-deterministic automata and those of
regular languages. Apart from Section (7.2), all string sets in this paper are
regular languages.

Let A1 , A2 be sets of symbols. Let U and V be languages over A1 . We
assume that the reader is familiar with regular languages and the basic regular
operations: concatenation UV , intersection U ∩ V , union U ∪ V , asymmetric
difference U\V , complementation U , Kleene’s star U∗, and Kleene’s plus U+.
Let U0 = U≤0 = ε and let Uk and U≤k , where k > 0, denote respectively the
languages UU (k−1) and (ε∪U)U≤(k−1). The local A2 -closure of U is the relation
fA2

:A1
∗ → A1

∗ defined as fA2
(U) = {f(a0 )f(a1 ) . . . f(am−1 ) | a0a1 . . . am−1∈

U ∧ a0 , a1 , . . . , am−1∈A1} where f(a) = a∗ for every a∈A2 , and f(a)=a oth-
erwise. The elimination of symbols A2 in language U is the function dA2

(U) =
fA2 (U)\ A1

∗A2A1
∗. If r is a binary relation, its inverse is denoted by r−1 .

Notation A1 :A2 denotes alphabet {a1 :a2 |a1 ∈ A1 , a2 ∈ A2}. Set Π is called
the total pivot alphabet. Its every element is a character pair a:b and it is closed in
such a way that a:a, b:b ∈ Π for all a:b ∈ Π. The diamond alphabet M contains
markers �0 :�0 , �1 :�1 , �2 :�2 , . . . , �s :�s and it is disjoint from Π. An identity pair
a:a ∈ (Π ∪M) is often written simply as symbol a.
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The null string is denoted by ε. We often denote set {u}, where u ∈ A1
∗, by u.

The length of string u is denoted by |u|. A sequence u = a0 :b0a1 :b1 . . . am−1 :bm−1

⊆ (A1 :A2 )∗ is called a symbol-pair string and analyzed alternatively as a string
pair (x1 , x2 ) = (a0a1 . . . am−1 , b0 b1 . . . bm−1 ). Pair (x1 , x2 ) can be denoted by
x1 :x2 if |x1 | = |x2 |. In such a pair, x1 is called the input string and x2 is called
the output string.

Disjoint sets BL ⊆ Π and BR ⊆ Π have the same cardinality and they are
called the left and the right bracket alphabets, respectively. Set BL contains at
least symbols <1 , <2 , <v, <np, <vp, <←−−subj, <−→obj, and set BR contains at least symbols
>1 , >2 , >v, >np, >vp, >←−−subj, >−→obj. Let B = BL ∪BR and Bi = {<i , >i}.

Let 0:0 ∈ Π be a representative for the empty string ε. The input and out-
put projections π1 , π2 : Π∗ → Π∗ are defined as π1 (X) = {d0 (x1 ):d0 (x1 ) |
x1 :x2∈X} and π2 (X) = {d0 (x2 ):d0 (x2 ) |x1 :x2∈X}. Let I = π1 (Π) and Σ =
I\B.

3 Two Historically Important Implication Operators

Variations of production, alternation and constraint rules in linguistics have a
close relationship to logical implications. In propositional logic, material implica-
tion can be expressed with a disjunction with only one negation: a→ b = (¬a)∨b.
A double negation occurs in de Morgan’s law : a∨ b = ¬(¬a∧¬b). By combining
these equivalences, we obtain a double negation with conjunction:

a→ b = ¬((¬¬a) ∧ ¬b) = ¬(a ∧ ¬b). (1)

3.1 Kaplan’s if-then Operators

The introduction quoted Ronald Kaplan’s spontaneous eureka “everything must
be a double negation” (p.c., 2007). His words crystallize the following discovery:
Choosing Equation (1) instead of equation a → b = (¬a) ∨ b is a very useful
choice when implications in finite-state phonology are compiled into automata:
Equation (1) can be varied by replacing the conjunction with concatenation – a
conjunction of a prefix and a juxtaposed suffix in a string.

Equation (1) resembles Kaplan’s if-then operators [7] that take two argument
languages P, S ⊆ Π∗:

if-P-then-S(P, S) def= PS = (Π∗\P (Π∗\S)) (2)

if-S-then-P(P, S) def= PS = (Π∗\(Π∗\P )S) (3)

P-iff-S(P, S) def= if-P-then-S(P, S) ∩ if-S-then-P(P, S). (4)

3.2 Compound Context Restriction

Definition Koskenniemi [8] employs in his Two-Level Grammar a constraint
rule called context restriction. This rule type involves two-way context con-
ditions such as #L R# whose alternative forms are related by the following
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equivalences:

... ...⇔ ...ε ε...; #Π∗L ...⇔ L ...; ... RΠ∗#⇔ ... R. (5)

If the rule has several two-way contexts, it is called a compound context restric-
tion (CCR) [7] and written as

X ⇒ #L1 R1#, . . . ,#Ln Rn#. (6)

Semantics In Rule 6, languages X, Li , Ri ⊆ Π∗, for every i ∈ {1, 2, . . . , n} are
called, respectively, the center, the left context i and the right context i. The rule
denotes the largest subset of Π∗ where every occurrence of factor x ∈ X splits
the whole string into three parts v, x, y in such a way that there is at least one
i such that v ∈ L1 and y ∈ R1 [7].

The if-then operators provide an easy solution to the exact compilation of
simple (i.e. 1-context) context restriction [7, 8]:

X ⇒ #L1 R1#
def= if-S-then-P(L1 , XΠ∗) ∩ if-P-then-S(Π∗X, R1 ). (7)

Underlying Complexity In contrast to the simple context restriction, CCR
is very combinatorial. Since there are n two-sided contexts, there are 2n − 1
potential ways in which at least one two-sided context #Li Ri# surrounds each
occurrence of the factor x ∈ X. Each context can fail to be satisfied on its left,
right or both sides, i.e. there are 3n potential ways in which too many of the 2n
context parts can be missing.

There are (m + 1)(m + 2)/2 factors in an m-character string. The center can
properly embed to itself (e.g. bcd∪ c), embed to and be aligned with itself (e.g.
bc+), or self-overlap (e.g. bc ∪ cd). According to the given semantics of CCR,
all instances of X must be surrounded by a context. Even if the occurrences of
factors x1 , x2 ∈ X were embedded or overlapping, their contexts should inde-
pendently satisfy the context restriction.

Approximate Formulas Traditionally, the correct semantics has only been ap-
proximated in the previously described implementations of the context restriction
operator: Karttunen et al. [10] and Kaplan and Kay [7] mark the occurrences of
center factors of CCR using a concatenation closure of constrained regions. That
does not work, however, if center X ⊆ Π∗ is not a subset of Π. Grimley-Evans
et al. [11] mark a contiguous sequence of center factors. The method assumes
that the applications of the rule are in consecutive and non-overlapping ranges
of positions. A method by Kempe (p.c., see the appendix of [9]) replaces in an
auxiliary tape all center occurrences that have a valid context and verifies that
there is no occurrence of center that has not been replaced.

Yli-Jyrä and Koskenniemi [9] survey a number of approximate formulas. In
fact, there are real examples of rules where all known approximate methods
fail [5]. Pasi Tapanainen’s program RuleCompile, still in use in 1998, produced
output that has not been shown incorrect, but it is possible that it is based on
a very good approximate algorithm.
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4 First-Order Logic and Diamonds

4.1 Context Restriction

With Star-Free Operators A correct formula for two-context context restric-
tion was published independently by two authors: (i) Dale Gerdemann (see the
appendix of [9]), and (ii) the current author [5, 9]. The first formula was like this:

X ⇒#L1 R1#,#L2 R2#
def=

if-P-then-S(Π∗X, R1 ∪R2 ) ∩ if-S-then-P(L1 , X(R1\R2 )) ∩
if-S-then-P(L2 , X(R2\R1 )) ∩ if-S-then-P(L1 ∪ L2 , X(R1 ∩R2 )). (8)

The second solution [5] handles any number of contexts, but it involves a star-
free expression whose size is exponential to n. This motivates the search for a
better compilation method.

It is remarkable that these compilation methods for CCR are based on con-
catenation and Boolean operations, i.e. star-free operations. Star-free operations
are closely related to finite model-theory and first-order logic in particular. To
study this connection in depth, we can assume that languages X, L1 , R1 , . . . ,
Ln , Rn are star-free.

With Position Variables In the first-order logic with linear order, FO[<],
we can interpret formulas over a finite string w = 〈c0 , c1 , . . . , cm−1 〉. Denote
ci with w[i] and denote substring cici+1 . . . cj−1 with w[i, j], where 0≤i≤j≤m.
Variables i, j, k, · · · ∈ N specify string positions and they have to be bound in
complete FO[<] sentences.

The occurrence of symbol c ∈ Π in position i ∈ N is described by pred-
icate φc(i, i + 1) that is true if and only if i < m and w[i] = c. The sub-
string cbcb+1 . . . ce−1 ∈ Π∗ is described by formula φv (b, e) = φcb

(b, b+1) ∧
φcb+1

(b+1, b+2) ∧ · · · ∧ φce−1
(e−1, e). The universal language over alphabet Π

is described by formula φΠ∗(b, e) = (∀b≤i≤e−1) ∨c∈Πφc(i, i + 1). Let U and V
be languages over Π. The concatenation of languages U and V is described by
formula φUV (b, e)=∃i(φU (b, i) ∧ φV (i, e)). The union of languages U and V is
described by formula φU∪V (b, e)=φU (b, e)∨φV (b, e). The intersection of sets U
and V is described by formula φU∪V (b, e)=φU (b, e)∧ φV (b, e). The asymmetric
difference U\V is described by formula φU\V (b, e)=φU (b, e) ∧ ¬φV (b, e).

For all star-free expressions p over alphabet Π, a corresponding FO[<] ex-
pression can be constructed by collecting it recursively from the expression tree
of p. String w matches the expression p if sentence φp(0, |w|) is true.

If φX (b, e), φL1 (b, e), φR1 (b, e), . . . φLn (b, e), φRn (b, e) are formulas describing
star-free languages X, L1 , R1 , . . . , Ln , Rn , then Rule 6 is described as set

{w∈Π∗ | ¬∃0≤i≤j≤|w|[φX (i, j) ∧ ¬ ∨ i=1
n(φLi (0, i) ∧ φRi (j, |w|))]}. (9)
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With Range Variables The signature of FO[<] can be extended with position
range variables v,x,y, · · · ∈ N × N each of which is a pair of type [b, e] where
b ≤ e. The variables denote substrings w[bv, ev], w[bx, ex], w[by, ey], . . . . Expres-
sion x∈X denotes formula φX (bx, ex). If ev=bx, the concatenation of substrings
denoted by ranges v and x is denoted by range [bv, ex] and expressed as vx.
Equivalence v=x denotes formula bv=bx ∧ ev=ex. The language of expression 6
is described as set

{w∈Π∗ | ¬∃v,x,y[w=vxy ∧ x∈X ∧ ¬ ∨ i=1
n(v∈Li ∧ y∈Ri)]}. (10)

With MSO Logic The logic FO[<] captures only star-free languages. In order
to handle all regular operands, we should extend the logic with monadic second-
order (MSO) quantifiers [12, 13]. In contrast to Vaillette [14] who makes exten-
sively use of MSO when describing various rules we could maintain the structure
of the first-order formula (10) and employ MSO quantifiers only the internal
structure of subformulas φX (b, e), φL1 (b, e), φR1 (b, e), . . . φLn (b, e), φRn (b, e).

4.2 Diamond

As an alternative to an MSO-based semantics, we can use the closure properties
of regular languages and transform Formula 10 into regular operations. Like
MSO logic, a method based on regular operators is not limited to the case where
the operators are star-free.

Our ad hoc transformation is based on an encoding that eliminates individual
range variables. We observe that inside the scope of quantification ∃v,x,y, the
quantified variables are restricted by condition w=vxy. In other words, string
w is a concatenation of three substrings v = w[bv, ev], x = w[bx, ex], and y =
w[by, ey].

To indicate the parts of the string w ∈ Π∗, we use marked concatena-
tion v�1x�1y where �1 /∈ Π. A membership test x ∈ X will be implemented
as condition v�1x�1y ∈ W where W = Π∗�1X�1Π∗. Similarly, the condi-
tion v∈Li ∧ y∈Ri corresponds now to condition v�1x�1y ∈ W ′

i where W ′
i =

Li�1Π∗�1Ri . Subformula φ(v,x,y) = x∈X ∧ ¬ ∨ i=1
n(v∈Li ∧ y∈Ri) thus be-

comes v�1x�1y ∈ C where C = W\ ∪ i=1
nW i

′.
To obtain concatenation as usual, we just eliminate the markers from marked

concatenations: vxy = dM (v�1x�1y). This corresponds to quantifier elimination.
Accordingly, dM (C) denotes the set {w ∈ Π∗ | ∃v,x,y(w=vxy ∧ φ(v,x,y))}.
It is now easy to see that Formula (10) corresponds to regular expression

Π∗\dM (Π∗�1X�1Π∗\ ∪ i=1
nLi�1Π∗�1Ri). (11)

The most obvious advantage of (11) is its linear size according to the number
of contexts. Instead of a Boolean combination of 2n “double negations” as in (8),
Formula (11) contains only one “double negation”.

Expression (11) uses a marker symbol �1 that we call a diamond. If fact, we
assume a marker alphabet M that contains �1 and other diamonds. Diamonds
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differ essentially from auxiliary markers used by Kaplan and Kay [7]: the number
of their occurrences in strings of C is constrained by an integer k. They also bear
resemblance to pebbles in Ehrenfeucht-Fraisse games.2

4.3 Generalized Restriction

Marked concatenations constitute the foundation for generalized restriction op-
erator (GR), a new operation coined by the current author [9]. We define the
GR operator now in a manner that is slightly more general in comparison to the
original definition. The GR operator Π,k,M⇒ : 2(Π∗MΠ∗)≤k × 2(Π∗MΠ∗)∗ → 2Π∗ is
defined by the equation

W
Π,k,M⇒ W ′ def= Π∗\dM (W\W ′). (12)

Languages W and W ′ are called in [15] the generalized precondition and the
generalized postcondition, respectively. When M = {�} and W,W ′⊆(Π∗MΠ∗)k

for some k, the definition is essentially the same as originally.

First-Order Definability A regular expression describes a star-free language
if (but not only if) its generalized star-height [16] is zero. The star-height is
increased by such operators as Kleene’s star. The universal language Π∗ is only
a short-hand for ∅ and is therefore a neutral element for star-height. Compound
context restriction preserves the star-height in regular expressions [5]. It is in-
teresting to see whether the same property holds for generalized restriction.

Assume that the arguments of the GR operator are star-free. To prove that
the operator does not increase the star-height, we first split its operands accord-
ing to the number of diamonds:

[W
Π,k,M⇒ W ′] = ∩i=0

k [W i
Π,k,M⇒ W ′

i ]

where W i = W ∩ (Π∗MΠ∗)i and W ′
i = W ′ ∩ (Π∗MΠ∗)i . (13)

While it is possible that strings of W ′ contain more than k diamonds, it does not
matter, because such strings does not affect the difference W\W ′. It now suffices
to show that each sub-GR W i

Π,k,M⇒ W ′
i preserves the generalized star-height.

For this purpose, we split each sub-GR according to the diamond types used:

[W i
Π,k,M⇒ W ′

i ] = ∩c1∈M · · · ∩ ck∈M [U
Π,k,M⇒ U ′] where

U=W i∩(Π∗ciΠ∗ci+1 . . . Π∗ckΠ∗); U ′=W ′
i∩(Π∗ciΠ∗ci+1 . . . Π∗ckΠ∗). (14)

Because U and U ′ are obtained respectively from star-free languages W and
W ′ by star-free operations, they are also star-free. Again, it suffices to show
2 Recently, Måns Hulden (p.c., 2008) has elaborated this marker-variable connec-
tion and added the likeness of predicate logic to regular expressions using named
diamond-like markers.



Applications of Diamonded Double Negation 13

that every sub-GR U
Π,k,M⇒ U ′ in this decomposition preserves the generalized

star-height. This time, we assume there are finite decompositions of U and U ′:

U
Π,k,M⇒ U ′ = [U1 ∪ . . . U r

Π,k,M⇒ U r+1 ∪ . . . Up ] where every U i is of
the form U i = X i,0 c1X i,1 c1 . . . ckX i,k in which c1 , c2 , . . . , ck ∈M. (15)

In fact, there exists a decomposition like in Formula (15) because the strongly
connected components in the automata recognizing U and U ′ do not contain
diamond transitions and it is therefore easy to extract subautomata between the
diamonds. All subautomata of the automata recognizing U and U ′ are counter-
free because languages U and U ′ are star-free [2]. Accordingly, each component
X i,j corresponds to a counter-free subautomaton and is, thus, star-free and
definable by an FO[<] formula φXi,j (b, e).

Now, as we have split the original GR into sub-GRs, it suffices to show that
every sub-GR [U1 ∪ . . . U r

Π,k,M⇒ U r+1 ∪ . . . U ′p ] is definable in FO[<]. This
holds because we have the equation

[U1 ∪ . . . U r
Π,k,M⇒ U r+1 ∪ . . . Up ] = {w∈Π∗ | ¬∃x0 ,x1 , . . .xk [w=x1x2 . . .xk∧

(∨i=1
r ∧ j=0

kxj∈X i,j ) ∧ ¬(∨i=r+1
p ∧ j=0

kxj∈X i,j )]}. (16)

To conclude, the GR operation preserves the generalized star-height when the
height of all its arguments is zero.

Problem 1. Is it possible to get a shorter proof by proving that deletion dM :
(Π∗MΠ∗)∗ → Π∗ preserves the generalized star height when its domain is
restricted to (Π∗MΠ∗)k?

5 Application: Constraint Systems

Often finite-state grammars and rule compilation methods involve constraint
relations that are either intersected or composed with other regular relations.
The GR operator can be used to construct constraint languages. In addition, it
is possible to combine conjunctive constraints so that only one GR operator is
needed, or decompose the operator into a conjunction of layers in order to reduce
the total count of states in automata. In this section, we will review these three
uses of the operator.

5.1 Simple Constraints

Let X ⊆ Π∗ be a language that acts as a constraint such as in finite-state
intersection grammar [17]. A constraint language X can be turned into its com-
plement through the equation X = [X

Π,0,M⇒ ∅].
Let X ⊆ Π∗ be a local grammar that describes forbidden patterns [18]. It

can be compiled into as a constraint language nowhere(X) def= [Π∗XΠ∗ Π,0,M⇒ ∅].
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The center prohibition rule [15] (denoted by /<=) bears some similarity to the
nowhere operation and is defined by the equation

[X/<=#L1 R1#, . . . ,#Ln Rn#] def= [∪i=1
nLi�0X�0Ri

Π,2,M⇒ ∅]. (17)

Yli-Jyrä and Koskenniemi [9] document how Kaplan’s if-then operators are re-
duced to generalized restrictions: if-P-then-S(P, S) = [P �1Π∗ Π,1,M⇒ Π∗�1S];
if-S-then-P(P, S) = [Π∗�1S

Π,1,M⇒ P �1Π∗]; P-iff-S(P, S) = [(P �1Π∗ ∪ Π∗�1S)
Π,1,M⇒ P �1S]. Generalized restriction captures also compound context restriction
(denoted by =>) and coercion (denoted here by «= although [9] used <=), through
the equations

[X=>#L1 R1#, . . .#Ln Rn#] def= [Π∗�1X�1Π∗Π,2,M⇒ ∪i=1
nLi�1Π∗�1Ri ];

(18)

[X«=#L1 R1#, . . . ,#Ln Rn#]def= [∪i=1
nLi�1Π∗�1Ri

Π,2,M⇒ Π∗�1X�1Π∗].
(19)

Generalized Two-Level Grammar (GTWOL) [15] introduces center presence re-
quirement (denoted by <==, actually the same as coercion with (additional) pre-
conditions [9]), and includes presence requirement (denoted by ==>) that pro-
vides a direct interface to the 2-diamond GRs. These are defined by

[X<==C] def= [C
Π,2,M⇒ Π∗�1X�1Π∗] where C⊆Π∗�1Π∗�1Π∗; (20)

[C==>C ′] def= [C
Π,2,M⇒ C ′] where C,C ′⊆Π∗�1Π∗�1Π∗. (21)

Two-level Grammar [8] contains an operation called surface coercion (tradition-
ally denoted by <=). It is defined by the equation

[X<=#L1 R1#, ...,#Ln Rn#]def= [X<==(∪iLi�1π1
−1(π1(X))�1Ri)]. (22)

5.2 Decomposing into Conjunctive Constraints

It is not always practical to evaluate a GR operation W
Π,k,M⇒ W ′ as a whole.

It may sometimes be better to decompose the operands W using additional
preconditions [9]. For this purpose, we need a number of layer preconditions
P 1 , P 2 , . . . , Pm ∈ (Π∗MΠ∗)∗ that are defined in such a way that
W ⊆ ∪i=1

m(P i ∩W ). The decomposition corresponds then to intersection

∩i=1
m(W ∩ P i

Π,k,M⇒ W ′). (23)
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5.3 Systems of Conjunctive Constraints

In contrast to decompositions, We can also reduce intersection of two GRs into
one GR. The possible scenarios include the equations

[W 1
Π,k,M⇒ W ′

1 ] ∩ [W 2
Π,k,M⇒ W ′

2 ] = [(W 1 ∪W 2 )
Π,k,M⇒ (W ′

1 ∪W ′
2 )]

when W 1 ∩W ′
2 ⊆W 1

′ and W 2 ∩W 1
′ ⊆W 2

′; (24)

[W 1
Π,k,M⇒ W ′

1 ] �[W 2
Π,k,M⇒ W ′

2 ] def= [(W 1∪W 2 )
Π,k,M⇒ ((W 1∩W ′

1 )∪(W 2∩W ′
2 ))].
(25)

In (25), the new operator �is called coherent intersection since it resolves
various implication conflicts between two conjunctive generalized restrictions. In
the following, we illustrate the applications of the conjunctive GR operation in
(24) with three examples.

Enforcing Balanced Structure A new operator match-L-R(L,D,R) is de-
fined by the equation

match-L-R(L,D,R) def=[L�1Π∗ Π,1,�1⇒ L�1DR] ∩ [Π∗�2R
Π,1,�2⇒ LD�2R]. (26)

According to the operator, a left side L (or right side R) must always be paired
with a right side R (or left side L), and separated from that with a string that
belongs to D. The operator is useful in enforcing balanced structures such as
bracketing. Thanks to Equation (24), the operator can also be defined using
only one GR operator as the equation

match-L-R(L,D,R) = [(L�1Π∗ ∪Π∗�2R)
Π,1,M⇒ (L�1DR ∪ LD�2R)]. (27)

Moreover, a feasible superset of L�1DR∪LD�2R can be obtained from L�1D�2R
with the local closure operator fM that acts as a “metarule” in the equation

match-L-R(L,D,R) = [(L�1Π∗ ∪Π∗�2R)
Π,1,M⇒ fM (L�1D�2R)]. (28)

Double Arrow Rules The double arrow operator (context restriction plus
surface coercion) in Two-Level Grammar [8] is a conjunction of two simpler
rules. Each such rule reduces to a single GR operation defined by the equation

[X<=>#L1 R1#, . . . ,#Ln Rn#] def= [C
Π,2,M⇒ ∪i=1

nLi�1X�1Ri ] (29)

where C = (∪i=1
nLi�1 π1

−1 (π1 (X)) �1Ri) ∪ (Π∗�1X�1Π∗).

Coarsely Interpreted Two-Level Grammar Yli-Jyrä and Koskenniemi [15]
compile rules of Generalized Two-level Grammar like in Formulas (17), (18), (20),
(21), (22), and (29). All rule types reduce to a common form W i

Π,2,M⇒ W ′
i .
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If the rules are loose enough to avoid mutual conflicts, they can be compiled
easily in separation. The semantics of the whole grammar is traditionally ob-
tained as an intersection of the individual rules [8], provided that a compound
context restriction is counted as a single rule.

In theory, it is also possible to compile all rules at once as if their intersection
were computed [15]. The uniform rules are combined straightforwardly on the
basis of (24). One possibility to do this is presented in the equation

∩i(W i
Π,2,M⇒ W ′

i) = [(∪i�iW i)
Π,3,M⇒ ∪i�iW i

′]. (30)

6 Application: Combinatorial Systems

We now turn our attention from the constraining power of the GR operator to its
ability to generate a language through its second operand. If the first operand of
the GR operator is the universal language, the second operand specifies strings
that remain. In comparison, if a logical formula φ1 is a tautology, the truth value
of the material implication φ1 → φ2 depends completely on the right-hand side
φ2 . Accordingly, any language X ⊆ Π∗ can be passed through the GR operation
unchanged as follows: X = [Π∗ Π,0,M⇒ X].

6.1 String Coverings with a Lexicon

The things get very interesting when we modify the first operand by adding into
it a diamond that occurs before an arbitrary character position. This changes a
lot: a string in the second operand would now be passed through the GR oper-
ation only if its every character is disjunctively preceded by a hidden diamond:

X=[ν1 ,1
′(Π∗)

Π,1,M⇒ ν�,1
′(X)] where ν1 ,j

′(W )=d{�1 ,...,�j}
−1(W )∩(ε∪(Π∗M)Π+)

(31)

and ν�,j
′(W )=d{�1 ,...,�j}

−1(W )∩(ε∪(Π∗M)∗Π+).

The same effect is captured by adding two diamonds that surround each char-
acter and empty string on both operand languages:

X=[Π∗ν2 ,1 (ε∪Π)Π∗Π,2,M⇒ ν�,1 (X)] where ν2 ,j (W )=d{�1 ,...,�j}
−1 (W ) (32)

∩ (Π∗�jΠ∗�jΠ∗)

and ν�,j (W )=d{�1 ,...,�j}
−1 (W ). (33)

Free Contexts We can now elaborate the right-hand side of the GR and add
there left and right contexts #Π∗ Π∗#:

X ′ = [ν1 ,1
′(Π+)

Π,1,M⇒ Π∗ν�,1
′(X)Π∗]=[Π∗ν2 ,1(Π)Π∗Π,2,M⇒ Π∗ν�,1 (X)Π∗]. (34)
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Every string in the result X ′ will now have a string covering that consists of
possibly overlapping factors X. For example, if X = {autom, mate, eria} then X ′

contains such strings as automate, materia and automateriautom. Accordingly,
we have defined a simple combinatorial system. If we want, we can concatenate
a unique sentinel symbol σ ∈ Π to the end of the lexicon X ⊆ (Π\σ)∗ in order
to generate X ′ = (Xσ)∗ i.e. a set of strings covered with non-overlapping factors
taken from set Xσ.

Problem 2. Can coverings be used to describe allomorph selection, nonconcate-
native morphotactics, interdigitation and multi-component rewriting?

Problem 3. Can ν�,j
′ or ν�,j be used on the left hand side of an extended GR

operator that would still preserve star-freeness? How the change interacts with
star-freeness, automata size and applications?

6.2 Optional Changes

Rules as Permissions The string coverings help us to understand GTWOL
[15]. In GTWOL, any CCR rule is equivalent to a coherent intersection of simple
context restrictions. The set of all n context restrictions are combined under
the coherent intersection operator, which corresponds to automatic right-arrow
conflict resolution [19, 20]. This interpretation is reflected by the equation

[X1=>#L1 R1#] �
. . .

�[Xn=>#Ln Rn#] = [W 1
Π,2,M⇒ S1 ] (35)

where W 1=Π∗ν1 ,1
′(Π)Π∗ and S1= ∪ i=1

nLiν�,1
′(X i)Ri .

Default Correspondences GTWOL [15] assumes that the identity pairs in the
string covering do not need permissions. This is now captured in every GTWOL
by a default context restriction rule [I∗=> ] that permits substrings consisting
of identity pairs I to occur unconditionally. This rule corresponds to default
correspondence pairs in the classical TWOL [8].

Multi-Character Changes In context restriction rules of GTWOL, center X
can contain strings longer than one character. These multi-character changes can
be described also in the classical TWOL through a combined effect of several
rules. Regardless of the description, multi-character changes introduce a so-called
embedded-center conflict. The conflict is more difficult to detect in TWOL that
uses several partial rules.

Consider GTWOL rules [a:i => m:m ] and [a:i b:j c:k => l:l r:r]. In a
conjunctive system, the first rule would reject string l:l a:i b:j c:k r:r although
it is accepted by the second, more specific rule. Meanwhile, the second one
would reject string m:m a:i b:j c:k m:m although it is accepted by the first one.
Because the second rule is more specific, this violates expectations based on the
principle of longest application [15]. To observe this principle, (36) includes the
constraining aspects of context restriction rules. Every application of the rule
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involves a position range whose indication requires at least two diamonds. The
relation ν�,j (W ) is used to produce all entailed (shorter) rules when we redefine

W 1 = Π∗ν2 ,1 (Π ∪ ∪i=1
nX i)Π∗; S1 = ∪i=1

nLi ν�,1 (X i) Ri . (36)

6.3 Coercions

A change such as (reduce+ation):(reduc000tion) requires three double-arrow
rules in the classical Two-Level Grammar [8, 19]. Black et al. [21] make the point
that these rules depend on each other and if one is missing, the failure caused by
the broken interaction may not be easy to recognize. In GTWOL, the support for
multi-character centers considerably alleviates the danger of broken interaction.

In GTWOL, an embedded-center conflict occurs between surface coercion
rules [a:o <= m:m ] and [a:i b:j c:k <= r:r]. The first rule would reject string
m:m a:i b:j c:k r:r but the second would accept it. This conflict is solved again
through the principle of the longest application. Yet GTWOL does not auto-
matically collect rules that interact as parts of long changes, if such changes are
described with multiple rules.

All multi-context surface coercions can be split into rules that have only
one context, because such rules have the common X that is the result of the
coercion. The set of p simple surface coercions are again combined under coherent
intersection. The semantics of a set of surface coercions is, thus, defined by

[X1<=#L1 R1#] �

. . .

�[Xp<=#Lp Rp#] def= [W 2
Π,2,M⇒ S2 ]

where W 2= ∪ i=1
pLi ν2 ,2 (π1

−1 (π1 (X i)))Ri ; S2= ∪ i=1
pLi ν�,2 (X i) Ri .

(37)

Partial-overlap conflicts [22] are difficult to detect and solve. Such a conflict
occurs, for example, when conjunction of surface coercion rules [1:a 2:b <= ] and
[2:p 3:c <= ] do not associate any surface form to lexical string 123. These could
be solved by adding a combined “super-rule” that has a strictly wider center. E.g.,
[1:a 2:b 3:3 ∪ 1:1 2:p 3:c <= ] would override the original conflicting rules.

Disjunctive Ordering In Generative Phonology, alternative rewriting rules for
the same phoneme are disjunctively ordered in such a way that a rule with the
most specific environment condition is preferred over rules that apply elsewhere.
Karttunen [19] presented a similar approach to left-arrow conflicts where two
surface coercions claim opposite surface forms. The conflicting left-arrow rules
can often, but not always, be ordered according to their specificity.

A given disjunctive order can be implemented easily. Define, for the coercion
rule, an extended syntax [li :: X i<=#Li Ri#] that indicates the level of the
rule. The rule belongs to li levels 1, 2, . . . , li . The rules at each level are put
together under coherent intersection that resolves all left-arrow conflicts at that
level. Accordingly, a coercion rule at level l will override a coercion rule at a level
j, 1 ≤ j ≤ l provided that the center of the rule at level j is not strictly longer.
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A rule with strictly longer center cannot be overriden by another rule, which is
a potential problem in the current GTWOL.

We now update the definitions of W 2 and S2 in such a way that both disjunc-
tive ordering and the principle of longest applications are observed. The relation
ν�,j is used to produce all entailed rules where diamonds mark the center and
its substrings. This change is reflected by the redefinitions

W 2= ∪ i=1
pLi ν2 ,l i (π1

−1 (π1 (X i)))Ri ; S2= ∪ i=1
pLi ν�,l i (X i) Ri . (38)

A left-right arrow conflict [15] is not very common but it occurs e.g. between
surface coercion [1 :: a:a <= c:c ] and context restriction [1 :: a:o => c:c ].
The classical formalism guides the user to use double-arrow rules such as [1 ::
a:a <=> c:c ]. Using double arrow rules is no longer necessary in GTWOL [15],
because it is based on coherent intersection rather than intersection of rules. Ac-
cordingly, a successful rule application of one kind of rule overrides a correspond-
ing failing application. Effectively, rules [1 :: a:a => c:c ] and [1 :: a:o <= c:c ]
are thus implicitly added when one is specified.

However, coercion is considered stronger than restriction. At level 2 they can
override and take precedence over conflicting context restriction rules that are
at level 1. We can now combine context restrictions and surface coercions under
coherent intersection, in a similar fashion as [15], by computing

[W 1
Π,2,M⇒ S1 ] �[W 2

Π,2,M⇒ S2 ]. (39)

Problem 4. How the disjunctive order of rules is determined most efficiently?
How the remaining interaction, conflicts and overriding should be addressed?

7 Application: Bracketed Systems

We will now study applications of the GR operation in systems that use brackets
to represent (i) overlap-free rewriting [7, 11, 23] or (ii) limited tree structures of
context-free, dependency and mildly context-sensitive grammars [24, 17, 5, 25,
26].

7.1 Segmentation

Bracketed Generalized Two-Level Grammar (BGTWOL) [27] contains a rules
whose centers are bracketed. In addition, every BGTWOL includes a default core
Gencore. This and bracketed context restriction (denoted by (=>)) are defined
by equations

Gencore = [Π => ] �[I∗ => ] (40)

[X ′ (=>)#L1 R1#, . . .#Ln Rn#]def= [X ′ =>#L1
′ R1

′#, . . .#Ln
′ Rn

′#]where

X ′⊆BLXBR; X, Li , Ri⊆(Π\B)∗, Li
′=dB

−1 (Li), Ri
′=dB

−1 (Ri) for every i.
(41)
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Rewriting or replace rules are usually represented in the literature with an
arrow operator that relates a replaced string (or strings set) and its replacement
[7, 28]. Gerdemann and van Noord [29] argue that this kind of rule format fails
to capture backreferences to the replaced in the replacement. In the current
presentation, we assume that the center X and the contexts L1 , R2 , . . . Ln , Rn

are regular subsets of (Π\B)∗. This helps us to capture the maximally flexible
definition of replace rules, including the backreferences and oriented contexts.

7.2 Tree Structures

According to a classical theorem due to Chomsky and Schützenberger [30], every
context-free language is a homomorphic image of the intersection of a semi-Dyck
language Dm [31] and a regular language R. This representation of context-free
languages is varied in a few recent representations [5, 25, 9, 26] whose regular
approximations provide an excellent application for the GR operation.

In all these representations, the context-freeness of the system comes from a
semi-Dyck language Dm whose strings have balanced bracketing. For example,
the semi-Dyck language over alphabet {<, >} is the language D1 generated by the
context-free grammar with a single nonterminal symbol S, two terminal symbols
<, >, and productions S → S<S>S and S → ε.

Language D1
′ ⊂ B∗ is obtained from D1 by substituting BL and BR re-

spectively for the terminals < and >. Such semi-Dyck languages that use m
different kinds of labeled brackets are obtained from D1

′ with concatenation
and Boolean operations [32, 26]. Often language D1

′ is extended to language
Δ = dΠ\B−1 (D1

′) that contains also freely occurring non-bracket symbols.

Limited Bracketing The approximation Δi ⊂ dΠ\B−1 (D1
′), where i ∈ N,

can be obtained by induction on the bracketing depth i using a nested GR as
follows:

Δ0 = match-L-R(Π∗BL, ∅, BRΠ∗) = W
Π,1,M⇒ ∅

where W = (Π∗BL�1Π∗) ∪ (Π∗�2BRΠ∗); (42)

Δi = match-L-R(Π∗BR,Δi−1 , BRΠ∗) = W
Π,1,M⇒ fM (Π∗BL�1Δi−1 �2BRΠ∗)

where i > 0 and W = (Π∗BL�1Π∗) ∪ (Π∗�2BRΠ∗). (43)

Language Δi is the largest set of strings over Π where the unlabeled bracketing
is balanced and the depth of bracketing is limited by integer i, i ≥ 0. This set is
clearly star-free, because the generalized star-height of expression is zero.

If we add more brackets to BL and BR, the approximation Δi can be used
in certain grammar representations in a useful way although language Δi itself
does not check bracket labels. It can be used in approximations in such a way
that labels get checked on a label-by-label basis [32, 26]. Layerization (see below)
provides an even better way to check labels without large constraint automata.

The context-free sets of parse trees exhibit tree locality that is lost in string-
based representations and their star-free approximations. The inductive star-free
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definition (43) of limited bracketing Δi demonstrates that the approximation
exhibits another form of locality [33] although the tree locality of context-free
grammars is lost in approximation.

Subtypes of Representations There are two main types of grammar encod-
ings that resemble the Chomsky-Schützenberger representations: T1 is based on
local patterns and T2 is based on sparse rules. In T1, the semi-Dyck language is
combined with the grammar by intersection. In T2, it is woven into the grammar
rules with several regular operations.

Types T1 and T2 have subtypes: In [30], local patterns are based on con-
stituent boundaries (T1A). In [26], local patterns describe argument structures
(T1B). Sparse rules are based on either context restrictions (T2A) [17] or brack-
eting restriction constraints (T2B) [9]. Interestingly, all these subtypes are easily
captured by the GR operation.

For each subtype T1A, . . . ,T2B, a typical GR rule is given in the following.
The following examples are based on the local constituency tree [s→ np vp] or
the local dependency tree [hit→ subj 
 obj].

T1A : Π∗ ν1 ,1
′(Π) Π∗ Π,1,M⇒ Π∗ ν�,1

′(<s<np ∪ >np<vp ∪ >vp<s) Π∗ (44)

T1B : Π∗ ν1 ,1
′(Π) Π∗ Π,1,M⇒ Π∗ ν�,1

′(>←−−subj hit <−→obj) Π∗ (45)

T2A : Π∗�1<npΔ>np�1Π∗ Π,2,M⇒ Π∗<s�1<npΔ>np�1<vpΔ>vp>sΠ
∗ (46)

T2B : Π∗<s�1Δ�1>sΠ
∗ Π,2,M⇒ Π∗<s�1<npΔ>np<vpΔ>vp�1>sΠ

∗ (47)

Problem 5. What other grammar systems could be approximated through this
kind of representations?

Layerization In the approximated T2 representations, the compiled grammar
rules tend to grow undesirably when the depth of bracketing grows. Such gram-
mars could be represented, however, much more compactly through layerization.

The layerization technique (Section 5.2) is an additional example of the flex-
ibility of the GR operation. Each layer can correspond to a grammar that con-
straints the labeled bracketing at a given depth [9, 34]. Additional preconditions
added to generalized restrictions split the rules into layers that are easy to com-
bine. A similar approach optimizes T1 representations.

8 Application: Bimorphisms

The notion of bimorphism has been introduced in connection to tree transfor-
mations [35]. However, because strings are a special case of trees, it is possible
to restrict tree bimorphisms to string bimorphisms. Let Σ1 , Σ2 and Π be al-
phabets. A bimorphism is a triple (ψ1 , P, ψ2 ) where ψ1 : Π∗ → Σ1

∗ is the
input homomorphism, P ⊆ Π∗ is the pivot, and ψ2 : Π∗ → Σ2

∗ is the output
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homomorphism. The transformation relation β(P ) ⊆ Σ1
∗ × Σ2

∗ computed by
bimorphism is defined as β(P ) = {(ψ1 (w), ψ2 (w)) | w ∈ P}.

We give two examples on how GR can be used to describe regular relations
through a bimorphism.

Relations Defined by Two-Level Grammars The rule component of every
two-Level grammar G [8, 15] describes the language GenG ⊆ Π∗. Let ψ1 (w) =
π1 (w), ψ2 (w) = π2 (w), Σ1 = ψ1 (Π) and Σ2 = ψ2 (Π). The grammar G defines
bimorphism (ψ1 ,GenG , ψ2 ).

Relations Defined by Conditional Optional Replace Conditional optional
replace (without overlaps) [36, 27], denoted by (->), can be implemented with
a bracketed context restriction P and bimorphism (ψ1 , P, ψ2 ) where ψ1 (w) =
π1 (dB (w)) and ψ2 (w) = π2 (dB (w)). This is defined by the equation

X (->) #L1 R1#, . . .#Ln Rn#
def= β(GenG)

where GenG = Gencore

�[<X> (=>) #L1 R1#, . . .#Ln Rn#]. (48)

Note that the presented new syntax [27] for the replace operator is inspired by
Two-Level Grammar [8]. When Beesley and Karttunen [20] write a replace rule as
[a (->) b //c d], we write the same as [a:b (->) #Π∗π2

−1 (c) π1
−1 (d)Π∗#].

Problem 6. Could a bimorphism be used to relate two GR-based grammars?
Such an arrangement could be useful in machine translation.

Problem 7. Could the GR operation be used to describe properties of tree lan-
guages? Recall that the spine language of recognizable tree languages is regular
and thus closed under the Boolean operations and diamond elimination.

9 Application: Optimality Theoretic Systems

Strict Preference Relations An interesting application of the GR operator
suggests itself when the pivot language P of a bimorphism (ψ1 , P, ψ2 ) is brack-
eted. Yli-Jyrä [27] derives different kinds of replace rules from optional replace
rules using strict preference relations T ⊆ I∗ × I∗ such as

Tmost+
def= {(π1 (w), π2 (w))|w∈

(
BL:0Σ+BR:0∪Σ ∪B

) ∗} (49)

T lest,B ′
def= {(w,w′)|w,w′∈I∗, dB (w)=dB (w′), w/∈I∗B′I∗, w′∈I∗B′I∗} (50)

T lr
def= {(vby, vau)|v, y, u∈I∗, a∈Π\B, b∈BL, dB (y)=dB (au)} (51)

T lrlong
def= {(vau, vby)|v, u, y∈I∗, a∈Π\B, b∈BR, dB (y)=dB (au)}. (52)
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Jäger’s Composition Operation The preference relations are used as an
optimality-theoretic (OT) constraint component (Con) that ranks of the candi-
dates. The composition of the pivot GenG ⊆ Π∗ with the constraints in Con is
implemented with a left-associative operator r-glc that is defined by

GenG r-glc T
def= {w∈GenG | ¬∃w′(w′∈GenG ∧ (π1 (w), π1 (w′))∈T )}. (53)

The operator r-glc is a variant of glc, an operator that Jäger [37] controversially
coined generalized lenient composition (GLC).3

9.1 Examples

The conditional obligatory replace rule (denoted by ->) and the conditional left-
to-right longest replace rule (denoted by @->) are compiled as follows:

X ->#L1 R1#, . . . ,#Ln Rn#
def= β(Gen′G r-glc (Tmost+∪T lest,B2

)) (54)

X @->#L1 R1#, . . . ,#Ln Rn#
def= β(GenG r-glc (T lr ∪ T lrlong)) (55)

where GenG = [<1 X >1 (=>) #L1 R1#, . . . ,#Ln Rn#] �Gencore

and Gen′G = [<2π1 (X)>2 (=>) #L1 R1#, . . . ,#Ln Rn#] �GenG .

In order to compile parallel conditional obligatory replacement, Kempe and
Karttunen [28] employ a large number of brackets. Skut et al. [38] presents
a rule compiler for ranked replace rules. Such ranking can be implemented by
combining a bracketed context restriction and a GLC-based parse ranking [27].

9.2 The Principled Design for Constrained Bimorphisms

The extended bimorphism in (54) and (55) is structured in a similar fashion as
Optimality Theory [39]. The roles of the candidate generator language GenG ,
the constraint component Con and the transformation β are outlined as follows:

β(GenG ◦Con) = β(GenG glc1 Con1 . . . glcc Conc) (56)
where glci ∈ {glc, r-glc, b-glc} is left associative.

It is interesting that the structure of (56) separates tasks according to their
descriptive complexity. Because the candidate language GenG is described with
a generalized restriction whose arguments are, almost without question, star-free,
GenG is typically star-free and thus captured by FO[<]. The Con constraints
that compare candidate strings are not same-length relations [7] but they are
regular relations that could be themselves described with bimorphisms. Finally,
homomorphisms inside β are just stateless mappings and they have therefore

3 According to Dale Gerdemann (p.c., 2008), the GLC operator rather addresses a
crucial problem with ordinary lenient composition than generalizes the operator.
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very simple structure. Accordingly, the components in (56) are relations that
are contrasted as follows:

stateless β vs. star-free same-length GenG vs. regular Con. (57)

We believe that (56) is a design pattern that applies to numberless situations
and helps us to develop algorithms that are designed to address different kinds
of tasks efficiently.

10 Dot-Depth

Non-determinism and locality are related concepts. Mráz et al. [40] use the
amount of encoded structural information as a measure for the degree of non-
determinism of context-free grammars. If enough information on categories is
added to the strings of a context-free language, the language becomes a deter-
ministic context-free language. In a similar fashion, the star-freeness of a regular
language means essentially that there is enough information to make the lan-
guage star-free.

The Dot-Depth Hierarchy The amount of locality in star-free languages can
be measured using the forbidden pattern hierarchy, the group hierarchy and the
concatenation hierarchies such as the dot-depth hierarchy [4, 41, 42]. The dot-
depth hierarchy corresponds in a very natural way to the classical hierarchy of
first-order logic based on the alternation of existential and universal quantifiers
in the prenex normal-form [4].

The dot-depth hierarchy was introduced by Cohen and Brzozowski [3]. In
the dot-depth hierarchy, the first level, B0 , is the Boolean closure of trivial
languages {a}, a ∈ Π. An intermediate family of languages, Mi , i ≥ 0, contains
the concatenations of zero or more languages from Bi−1 . The next level, Bi ,
i > 0, consists of the Boolean combinations of the languages in Mi−1 .

Although an upper bound for the dot-depth of a language can be computed
from a corresponding star-free expression, we do not know if there is a general
decision procedure for the exact dot-depth [42].

The Measuring Problem Star-free constructions such as in [43, 5] allows for
proving by induction on i that the dot-depth of language Δi is actually not larger
than i + 1, because Δi could be contained to Bi+1 . This is done as follows:

Π∗ ={a} − {a} : B0

Δ0 =Π∗{<, >}Π∗ : B1

λi =BLΔi−1BLΔi−2BL . . .Δ1BLΔ0BL : Mi

ρi =BRΔ0BRΔ1BR . . .Δi−2BRΔi−1BR : Mi

Δi =Π∗λiΠ∗ ∩Π∗ρiΠ∗ ∩Δi−1BRΠ∗ ∩Π∗BLΔi−1 : Bi+1 . (58)
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The GR-based construction (43) involves about 2i nested applications of
complementation and local closure fM . It is, however, a surprising fact that
these do not seem to contribute to the dot-depth of the languages Bi more than
one level per an induction step because the dot-depth of these languages cannot
be bigger than the upper-bounds that are computed in (58). The upper bounds
apply to the construction (43) as follows:

B0 : Π∗ ={a} − {a}
B1 : W =(Π∗BL�1Π∗) ∪ (Π∗�2BRΠ∗); Δ0 = Π∗\fM (W )

Mi+1 : W ′
i =Π∗BL�1Δi�2BRΠ∗

Bi+1 : Δi =Π∗\fM (W\fM (W ′
i−1 )). (59)

Problem 8. Can we include generalized restriction to the operations used to build
the dot-depth hierarchy? What is the contribution of diamond elimination to the
dot-depth of the language?

11 Optimized Implementation

In Section 1, we mentioned a few potential objections against the GR operation.
Some of the issues remain to be addressed. For example, we would like to compile
grammars on the fly and apply them efficiently to surface syntactic parsing or
to construction of lexical transducers.

Guided Intersection The intersection of Two-Level rules would normally
be too large [44], which causes difficulties if we try to compile the grammar
component in separation. Karttunen [44] addresses this problem with a high-
arity operation: intersecting composition. Under this operation in expression
L (◦∩) (R1 , R2 , . . . , Rr ), the intersection of the phonological constraints R1 ,
R2 , . . . , Rr ⊆ Π∗ is simultaneously restricted under composition with a regular
relation L that represents the pairs of analyses and lexical forms.

A comparable approach can be used when the grammar is compiled using
the GR operation. This time, however, a constraint language L′ = π1

−1 ({ x2 |
(x1 , x2 ) ∈ L}) based on the set of lexical strings in lexicon L should be added
to the postcondition as a conjunctive:

L◦[L′ ∩ (W
Π,2,M⇒ W ′)] = L◦[�0Π∗ ∪W

Π,2,M⇒ �0L′ ∪W ′] = L◦[Π∗\dM (W ′′)]
where W ′′ = (�0Π∗ ∪W )\(�0L′ ∪W ′). (60)

A new diamond, �0 , is concatenated to L′ because it is not guaranteed that
W ′ ∩Π∗ ⊆ L′. We see now that the set of lexical forms and the grammar can
both be combined under the GR operation, but we do not yet obtain an efficient
compilation method without further optimizations. Languages W and W ′ are
typically similar to local grammar languages such as Π∗GΠ∗ of Mohri (2005),
since it often happens that W = Π∗WΠ∗ or W ′ = Π∗W ′Π∗. A slightly im-
proved compilation method would take advantage of the sparseness and locality
of the grammar constraints.
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Non-Deterministic Failure Automata Because W and W ′ are obtained
as unions from individual grammar rules, it is natural and space efficient to
represent these languages with non-deterministic automata. It might be also a
good idea to compress these automata by optimizing their transition relations
using failure transitions [18].

Optimized State Subsets The classical subset construction algorithm [45]
constructs a deterministic automaton by creating all subsets of the state set
that are reachable from the initial state with some common strings. The failure
representation [18] optimizes also determinization, because it makes earlier states
more popular subset elements than the latter states. In addition, many subsets
could be merged easily by a trick that we call final loop optimization: if the
subset contains an element state q that recognizes the universal language over
the alphabet of the remaining suffixes, it is of no use to add any other element
states to the subset.

Guided Determinization Suppose that we want to determinize the automa-
ton recognizing W ′′ before the diamonds are removed from it. In order to take
better advantage of the final loop optimization, we would like to ensure that
W ′′ is as large as possible. Accordingly, we add all strings that do not occur in
lexicon (i.e. the strings in L′ = Π∗\L′) to the minuend (�0Π∗∪W ). In addition,
these bad strings can contain diamonds freely. This change can make W ′′ larger,
but dM (W ′′) remains the same:

dM (W ′′) = dM ((�0Π∗ ∪W ∪ d0
−1 (L′))\(�0L′ ∪W ′)). (61)

A non-deterministic automaton recognizing (�0Π∗∪W ∪d0
−1 (L′)) reaches a

final loop when it recognizes a marked string w ∈ (Π∪M)∗ for which w(Π∪M)∗∩
d0
−1 (L′) = ∅. This optimizes the subset construction considerably. The resulting

method would apply the grammar to the lexicon in a very much similar way as
intersecting composition [44], i.e. by avoiding paths that are not supported by
the lexicon.

Subtracting Determinization In the above, the subtrahend (�0L′ ∪W ′) has
to be determinized. This can be a bottleneck, because typically W ′ = Π∗W ′.
we can, however, postpone the determinization of the subtrahend by using de
Morgan’s law, which allows us, in a way, subtract during determinization:

(�0Π∗ ∪W ∪ d0
−1 (L′))\(�0L′ ∪W ′) = �0Π∗ ∪W ∪ d0

−1 (L′) ∪ �0L′ ∪W.
(62)

Specialization We can specialize the generalized postcondition W ′ of the gram-
mar by intersecting it with lexicon L′ because only the strings in L′ need per-
missions. The subtrahend can, thus, be replaced with (�0L′∪ (dM

−1 (L′)∩W ′)).
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It is also possible that the determinization of sub-expression �0Π∗ ∪W ∪ L′ is
a bottleneck, because typically W = Π∗W . To address this problem, we can
specialize W and rewrite the sub-expression as �0Π∗ ∪ (dM

−1 (L′) ∩W ) ∪ L′.
In comparison to W , intersection dM

−1 (L′) ∩W is easier to determinize as
a part of the subexpression: it looks like its correlate d0

−1 (L′) is already in
the union. Moreover, if very few marked strings in W applied to the lexicon,
the intersection would result into a small or empty language, which reduces the
burden of determinization. The same could happen also with the strings in W ′,
which suggests that both W and W ′ should be specialized as in the equation

Π∗\dM (W ′′) = Π∗\dM (W ′′′)

where W ′′′ = �0Π∗ ∪ (dM
−1 (L′) ∩W ) ∪ d0

−1 (L′) ∪ �0L′ ∪ (dM
−1 (L′) ∩W ′).

(63)

In sum, a deterministic automaton recognizing the marked language can be
constructed, in most cases, without much effort on useless paths. While this
language still contains diamonds, it is a significant step in computing Formula
(60) efficiently.

We look forward to experiments that compare the GR-based compilation
method for two-level grammars with Karttunen’s intersecting composition [44].

Problem 9. Is there a lazy algorithm that would (1) determinize, (2) comple-
ment, (3) remove diamonds and (4) determinize using dynamic programming?
Can it compute dM (W ′′′) more efficiently than the step-by-step approach?

Problem 10. Are there real cases where the presented optimization is not suffi-
cient? Can the implementation of the GR operator be optimized for them? Can
the evaluation of GR take advantage of layerization?

Problem 11. Can we define weighted generalized restriction and optimize it in
different applications?

Problem 12. Can we define the GR operator even more generally without loosing
its good properties? Study the use of ν� with coherent intersection.

12 Conclusion

Generalized restriction is a new and lesser-known star-free operation. It takes
advantage of special-purpose marker symbols, diamonds, when combining the
Boolean operators with concatenation. It increases the succinctness of star-free
expressions and can be used with other regular operators. The operator has sev-
eral important applications. It expresses a large family of constraints, rules and
grammars as languages whose strings contain diamonds. An elegant representa-
tion for transducers is obtained by defining transductions via bimorphisms where
generalized restriction describes the pivot. Inside bimorphisms, the operator can
generate a set of candidates for a system of violable constraints.

We discussed many properties and applications of generalized restriction and
identified twelve open problems. In addition, we sketched an optimized compi-
lation method for two-level grammars.
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Abstract. This article describes a HMM-based word-alignment method
that can selectively enforce a contiguity constraint. This method has a
direct application in the extraction of a bilingual terminological lexicon
from a parallel corpus, but can also be used as a preliminary step for the
extraction of phrase pairs in a Phrase-Based Statistical Machine Trans-
lation system. Contiguous source words composing terms are aligned
to contiguous target language words. The HMM is transformed into a
Weighted Finite State Transducer (WFST) and contiguity constraints
are enforced by specific multi-tape WFSTs. The proposed method is es-
pecially suited when basic linguistic resources (morphological analyzer,
part-of-speech taggers and term extractors) are available for the source
language only.

1 Introduction

Specialized bilingual terminologies are essential to technical translators for en-
suring correctness and consistency in large translation projects. This is attested
by the presence, in professional translation environments, of tools to collect and
navigate terminologies. Several methods for extracting multilingual terminolo-
gies from parallel document collections have been proposed [1–6]. Unlike these
methods, the method described here does not require the availability of a mor-
phological analyzer and a POS tagger for both languages.

Besides lexicon and terminology extraction, word alignment is also an essen-
tial step in most Statistical Machine Translation approaches, as well as in the
projection of linguistic resources across parallel corpora. Like existing methods
for performing word alignment based on Hidden Markov Models (HMMs) [7],
ours builds an HMM with one state for each words in a source language emitting
words in the target language, and associates alignments with paths through the
HMM. Our method allows the enforcement of the constraint that target words
aligned to a same source term should be contiguous (contiguity constraint), thus
restricting the alignment search space according to a generally acknowledged
linguistic principle, and leading to improved lexica. This is done without im-
posing that alignments be monotonic, i.e. that word order is fully preserved in
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the two languages. The method uses an implementation of weighted multi-tape
finite state automata [8–10].

This paper focuses on the task of word alignment as it is critical in perform-
ing automatic terminology extraction. Existing methods to align documents at
the sentence level [11–14], to identify candidate terms [15] and to extract a ter-
minological dictionary from the word-aligned corpus can be used in conjunction
with what we present here to complete the overall task.

2 Word Alignment, Sentence-Pair HMM

Consider a sentence pair (e1
I , f1

J ), e1
I being the English sentence and f1

J

its foreign translation consisting of I and J words, respectively4. Elements in
e1

I can be either (possibly multi-word) terms or individual words occurring
outside term boundaries. For reasons that will become clear soon, we will call
such elements states. Let a1

J be the sequence of alignment variables, with aj = i
if and only if the foreign word f j is aligned to the English word/term ei . We will
restrict our attention to alignments in which a foreign word must be assigned to
one and only one English state. Our objective is to determine a1

J∗ such that:

a1
J∗ = argmaxa1

J {P (a1
J |f1

J , e1
I )} (1)

Applying Bayes’ rule and making some conditional independence assumptions,
this becomes:

a1
J∗ = argmaxa1

J {
∏

j=1
Jp(f j |eaj

)p(aj |aj−1 )} (2)

We can model our conditional probability distribution by means of a Hidden
Markov Model (HMM) with states ei , i = 1 . . . I and emitting in the foreign
alphabet ΣF .5
The method needs estimates of word translation probabilities in the form p(f |e),
that is, for each English word e, the probability that it will be translated with
word f . These can be achieved, for example, by the use of an Expectation-
Maximization algorithm [16] using a translation model like in [17]. Further pre-
processing may include lowercasing, lemmatisation, stemming, and the decom-
position of compound words.

Emission probabilities can be estimated from the word translation probabili-
ties. For transition probabilities, we would prefer to favor monotonic alignments
but allow other arrangements, too: a two-component discrete Gaussian mixture
is appropriate to model this. The states of the HMM are either contiguous multi-
word terms or out-of-term words. Figure 1 shows an example.
4 Following a convention similar to the standard one in the MT community, in the
following we will assume that English is the source language, for which resources
are available, and a foreign language is what we previously referred to as the target
language. Needless to say, the method is, in its elements described here, independent
of the actual language pair.

5 We use throughout the term alphabet in the language theory sense of “set of symbols”.
In our case symbols will be words, not individual characters.
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p(f1|e2) ... p(fJ|e2) p(f1|e3) ... p(fJ|e3)

p(1|1) p(3|3)

p(2|3)

p(3|1)

p(1|3)

p(2|1) p(3|2)

p(1|2)

e1 e2 e3

p(f1|e1) ... p(fJ|e1)

p(2|2)

Fig. 1. HMM for three English terms; there is a single state for each term and the
transition probabilities are modeled by two-component discrete Gaussian mixtures. I
(3 here) and J are source- and target-language term indices, respectively.

The transformation of the HMM into a WFST of tropical semiring (WHMM )
is as follows:

– For every state of the HMM we create a state in the WFST
– Between any two states ei and ei′ (including i = i′) we add J transitions

labeled by the foreign words on the input tape and i′ on the output tape
with weight − log p(i′|i)− log p(fk |ei′)

– We create an initial state from which there will be a transition to every state
ei labeled f1 with weight − log p(f1 |ei)

– Every state except the initial one is final.

A part of such an automaton is illustrated in Figure 2.

f2:1/− log p(f2|e1) − log p(1|2)

f1:1/− log p(f1|e1) − log p(1|2)

f1:2/− log p(f1|e2) − log p(2|1)

f1:2/− log p(f1|e2) − log p(2|2)f1:1/− log p(f1|e1) − log p(1|1)

fJ:1/− log p(fJ|e1) − log p(1|1) fJ:2/− log p(fJ|e2) − log p(2|2)

fJ:2/− log p(fJ|e2) − log p(2|1)

e1 e2

f2:2/− log p(f2|e2) − log p(2|1)

fJ:1/− log p(fJ|e1) − log p(1|2)

fJ:1/− log p(fJ|e1) − log p(1|0) fJ:2/− log p(fJ|e2) − log p(2|0)
start

Fig. 2. Two states of the WFST built from the HMM, and their connection to the
initial state.
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3 Enforcing Contiguity

After turning our HMM into a weighted transducer, we can obtain the most
probable alignment by applying Dijkstra’s or Viterbi’s shortest path algorithm. If
we do so directly, with the weighted transducer, however, we are not guaranteed
to obtain alignments respecting the contiguity constraint for terms. Formally:

An alignment a1
J is contiguous if and only if there do not exist integers

i, j, k, with 1 ≤ i < j < k ≤ J , such that ai = ak = t and aj �= t, for any t such
that et is a term.

The method we propose to solve this problem is inspired by [18]. In [18] the
authors considered the problem of modeling a probability distribution over all
alternative permutations of the chunks in a sequence: in our case, however, the
foreign and the English sequence do not necessary have the same length, and
the constraint we need to enforce is somewhat different.

Given a WFST encoding an HMM with I states, we build an automaton PE
with one state for each pair of a subset of states (term states visited before the
last) and a state (the last visited state if it is a term state, a wildcard symbol
otherwise). The path-set in this automaton will be such that only sequences over
{1 . . . I} that do not contain discontinuous repetitions of term identifiers will be
accepted:

PE = (QPE , ΣPE , EPE , IPE , FPE )

QPE : {start} ∪ {〈A, σ〉 ∈ 2Σt ×Σ|σPE /∈ A}
ΣPE : {1, . . . , I}

ΣPE = Σt ∪Σn , Σt ∩Σn = ∅
EPE : (start, σ, 〈∅, σ〉)

∀σ ∈ ΣPE

(〈A, σ〉, σ′, 〈A ∪ {σ}, σ′〉)
∀A ⊆ Σt ,∀σ ∈ Σt , σ /∈ A,∀σ′ ∈ ΣPE , σ′ /∈ A ∪ {σ}

(〈A, σ〉, σ, 〈A, σ〉)
∀A ⊆ Σt ,∀σ ∈ ΣPE , σ /∈ A

(〈A, σ〉, σ′, 〈A, σ′〉)
∀A ⊆ Σt ,∀σ ∈ Σn ,∀σ′ ∈ ΣPE , σ′ /∈ A ∪ {σ}

IPE : {start}
FPE : QPE \ {start}

Edges in the first set (first line for EPE ) are used to match the first symbol in
the input sentence. Edges in the second set are followed whenever a new symbol
is aligned to a new term or out-of-term word, and the previous was aligned to a
term. The third set covers the case when a symbol is aligned to the same term
or out-of-term word as the symbol just before it. Finally, the fourth set covers
transitions such that the current symbol is aligned to a new term or out-of-term
word, and the previous was aligned to an out-of-term word.

By making every non-start state final and by introducing a special initial
state, we obtain the automaton that accepts all and only the alignments satis-
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fying the contiguity constraint. In the example of Fig. 3, the alignment 1122143
is accepted, while 12324 is not, since 2 is repeated twice separated by a 3. No-
tice that constructing the contiguity enforcing automaton can be done once, in
advance, for all possible combinations of |Σt | and |Σn | present in the corpus,
renaming states for specific source sentences.

{},1

{},2

{2,4},1

{2},4

{4},1

{2},3

{2},1

{4},2

{4},3

start

{},4

{},3 {2,4},3

1

1

1

1

1

1

1

1

1

1

1

1

1
2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

2

Fig. 3. Contiguity enforcing automaton for an English sentence with four states, two
of which (e2 and e4 ) correspond to multi-word terms and two of which (e1 and e3 )
correspond to words occurring outside terms.

The composition of the contiguity enforcing automaton PE and the original
WFST built from the HMM can be constructed directly by expanding every
transition on symbol σ ∈ ΣPE in the contiguity enforcing automaton with |ΣF |
transitions, one for each possible foreign word and assigning weights according
to the appropriate transition and emission log-probabilities:
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(start, σ, 〈∅, σ〉)
→ (start, f : σ/− logP (f |eσ)− logP (σ|0), 〈∅, σ〉)

∀f ∈ ΣF ,∀σ ∈ ΣPE

(〈A, σ〉, σ′, 〈A ∪ {σ}, σ′〉)
→ (〈A, σ〉, f : σ′/− logP (f |eσ′)− logP (σ′|σ), 〈A ∪ {σ}, σ′〉)

∀A ⊆ Σt ,∀f ∈ ΣF ,∀σ ∈ Σt , σ /∈ A,∀σ′ ∈ ΣPE , σ′ /∈ A ∪ {σ}

(〈A, σ〉, σ, 〈A, σ〉)
→ (〈A, σ〉, f : σ/− logP (f |eσ)− logP (σ|σ), 〈A, σ〉)

∀A ⊆ Σt ,∀f ∈ ΣF ,∀σ ∈ ΣPE , σ /∈ A

(〈A, σ〉, σ′, 〈A, σ′〉)
→ (〈A, σ〉, f : σ′/− logP (f |eσ′)− logP (σ′|σ), 〈A, σ′〉)

∀A ⊆ Σt ,∀f ∈ ΣF ,∀σ ∈ Σn ,∀σ′ ∈ ΣPE , σ′ /∈ A ∪ {σ}

where ΣF denotes the set of distinct words in the foreign sentence to be aligned.
Overall computational complexity is O(I22|Σt |J). The result, again, is the

best path of the directly constructed PE′ = WHMM � PE.

3.1 Lazy contiguity enforcing

In the previous section, the whole contiguity enforcing automaton is composed
a priori with the HMM-derived WFST before the best-path algorithm is run.
While this time-consuming operation ensures that the selected alignment will
respect the contiguity constraint, it is actually pointless in the cases where the
best path in the original HMM-derived WFST does not violate the constraint.
A variation of the previous method thus consists in first running a best-path
algorithm on the initial WFST, checking whether the constraint is violated for
any term and, if it is, compose the WFST with a reduced contiguity-enforcing
automaton limited to the terms for which contiguity was violated, and iterate
(Algorithm 1). It is easily verified that the automaton in Fig.4 enforces the
contiguity constraint for the term σ ∈ Σt

0

Σ \ σ

Σ \ σ

Σ \ σσ

σ
1 2

Fig. 4: The three-state automaton enforcing the constraint that whenever the state σ
in the HMM-derived WFST is left, it is never entered again. For efficiency [10], every

single arc with label Σ \ σ represents a set of arcs, one for each σ′ �= σ.
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Algorithm 1 The iterative algorithm that only composes the HMM-derived
WFST with single-term contiguity checker for terms for which contiguity was
violated.

W ←WHMM

repeat
π ← Viterbi(F, W )
Z ← violate-contiguity(π, W )
for all z in Z do

W ←W �Az

until Z = ∅
return π

Each composition has the effect of doubling the number of states and edges. In
the worst case, the algorithm is forced to compose again and again for enforcing
contiguity one term at a time, and the finally resulting automaton is the same as
what would be obtained by composing WHMM directly with P . In this case there
is no asymptotic penalty in the repeated composition itself, but we executed in
vain |Σt |−1 times the best-path algorithm, on WFSTs of exponentially increas-
ing size. Notice, though, that the global asymptotic complexity for all repetitions
of the best-path algorithm is the same as the complexity of the last iteration,
because

∑
i=0

|Σt |2iIJ = IJ(2|Σt |+1 −1), and O(IJ(2|Σt |+1 −1)) = O(IJ2|Σt |).
In other words, by performing composition lazily, we pay at most a constant
factor in time, and nothing in space.

3.2 Local Reordering

While the permutation automaton is, in many cases, an appropriate solution,
it has the drawback of growing exponentially in size with the number of source
terms. The present section describes a method for enforcing the contiguity con-
straint which is not exponential in size in the length of the input and consists in
a single best-search path on a multi-tape weighted finite-state transducer. The
reduction in complexity is obtained at the price of allowing only local reorder-
ings between the source and the target sequence. A permutation π is a local
reordering with jump length mj and window size mw if and only if every ele-
ment is at most mj steps away from its position in the identity permutation (i.e.
|πi − i| ≤ mj ) and every deviation from the identity permutation occurs within
a subsequence of size at most mw (i.e. the corresponding permutation matrix is
block-diagonal with blocks of size at most mw ). For example, for maximal jump
length mj = 2 and window size mw = 3 an acceptable permutation would be
(3, 2, 1, 4) but not (3, 4, 1, 2). It is possible to write automatically automata to
recognise sequences of jumps (i.e. π1 − 1, π2 − 2, . . . , πI − I) corresponding to
local reorderings for arbitrary values of mj and mw . We will first describe how
such a local reordering automata can be automatically generated, and then de-
scribe a method for compiling the original HMM into a new (multi-tape) WFST
[8, 10] that represents the same probability distribution but outputs a sequence
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of jumps as well as a sequence of visited states, and that can thus be joined with
the local reordering automaton.

Algorithm 2 builds a local reordering automaton given the parameters mj

and mw . Although the construction takes O(mw !mw log(mw !mw )) time, where

Algorithm 2 ReorderingAutomata(mj ,mw )(R)
1: Create state s0 , which will be the initial state and the only final state
2: Add a loop edge to s0 labeled with 0
3: Generate the list Perm of all possible permutations of mw many elements
4: Create empty list JumpSeq
5: for all π in Perm do
6: tmp=""
7: for all j in {1, 2, .., mw} do
8: if |πj − j| ≤ mj then
9: Append πj − j to tmp
10: if length(tmp) = mw then
11: Add tmp to JumpSeq
12: for all i in JumpSeq do
13: Strip leading and trailing 0s from i
14: Create state si,1

15: Add an arc going from s0 to si,1 labeled by i[1]
16: for all j in {2, .., mw − 1} do
17: Create state si,j

18: Add an arc going from si,j−1 to si,j labeled by i[j]
19: Add an arc going from si,mw−1 to s0 labeled by i[mw ]
20: Minimize the automaton

complexity is dominated by the minimization operation, it needs be done once
only for the desired (max. jump, window size) pair and does not need be repeated
for each sentence. This algorithm was implemented and used in the preliminary
experiments reported in Section 4. Figure 5 shows such an automaton. We note
here that we have a more direct way of building the local reordering automaton,
too.

In order to be able to use this automaton, we need to generate suitable input:
the WFST built from HMM should output jumps between term positions instead
of plain word/term identifiers like with the permutation automaton. Moreover,
the reordering automaton only accepts (appropriately constrained) permutations
of the state identifiers. There are two issues then that must be solved in order
to use an approach based on the reordering automaton. The first is that we
want to allow repeated visits to a same term, provided they are contiguous.
The jump sequence will thus need to be generated from a term sequence from
which contiguous repetitions are replaced by a single occurrence of a special
term identifier. A second issue is that we might or might not be willing to accept
the additional constraint that all English terms must be aligned to some foreign
word. We will first present a solution for the case in which we assume that all
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2

5

3

4

1

1

−1 1

−2

0

−1

2

−1
0

Fig. 5. The automaton produced by Algorithm 2 with parametersmj = 2 andmw = 3.

occurrences of terms on the English side have a counterpart on the foreign side,
and then propose a modification that relaxes this assumption at the cost of
introducing some complexity in the process.

Cascaded Automata with All English Terms Aligned In order to pro-
duce appropriate input for the reordering automaton, we add to the WFST
derived from the original HMM an additional tape, besides the first reading the
input sequence of foreign words and the second writing the sequence of English
word/term identifiers corresponding to the alignment. A special term identifier
ranging from 1 to the number of terms in the sentence (1 for e2 and 2 for e4

in the example) is written on the third tape every time a term-state is entered
from a different state (Fig. 6). Formally:

H = (QH , ΣH , EH , IH , FH , A)

QH : {start} ∪ {qσ|σ ∈ ΣH }
ΣH : ΣH1 ×ΣH2 ×ΣH3

ΣH1 : ΣF

ΣH2 : {1, . . . , I} ΣH2 = Σt ∪Σn , Σt ∩Σn = ∅
ΣH3 : {1, . . . , |Σt |}
EH : (start, f : σ : ε, qσ)/− logP (f |eσ)− logP (σ|0)

∀f ∈ ΣF , ∀σ ∈ Σn

(start, f : σ : tσ, qσ)/− logP (f |eσ)− logP (σ|0)
∀f ∈ ΣF , ∀σ ∈ Σt

(qσ, f : σ′ : ε, qσ′)/− logP (f |eσ′)− logP (σ′|σ)
∀f ∈ ΣF , ∀σ ∈ ΣH2 , ∀σ′ ∈ Σn

(qσ, f : σ′ : tσ′ , qσ′)/− logP (f |eσ′)− logP (σ′|σ)
∀f ∈ ΣF , ∀σ ∈ ΣH2 , ∀σ′ ∈ Σt , σ �= σ′

(qσ, f : σ : ε, qσ)/− logP (f |eσ)− logP (σ|σ)
∀f ∈ ΣF , ∀σ ∈ Σt

IH : {start}
FH : QH \ {start}
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where tσ, σ ∈ Σt is a special term identifier in {1, . . . , |Σt |} and
A = 〈R ∪ {+∞},min,+, 0, +∞〉 is the tropical semiring.

start

q2

1

q1

q4
q3

f:2:1/log p(f|e2)+log p(2|1)
f:2:_/log p(f|e2)+log p(2|2)

f:1:_/log p(f|e1)+log p(1|2)

f:4:2/log p(f|e4)+log p(4|2)

f:3:_/log p(f|e3)+log p(3|3)

f:1:_/log p(f|e1)+log p(1|0)
f:2:1/log p(f|e2)+log p(2|0)

Fig. 6. An example of a 3-tape WFST encoding an HMM. e2 and e4 are terms, e1 and
e3 are out-of-term words. Only one transition for every state pair is shown, while in
the actual automaton there is one for every word f in the foreign sentence. Also, only
some labels/weights are shown.

We introduced two simple auxiliary finite-state machines: the identical per-
mutation automaton I and the difference automaton D: the former just encodes
an increasing integer sequence 1, 2, . . . , |Σt |, while the latter has three tapes and
puts on the third the difference of the first two.

By appropriately joining6 the transducers defined so far we obtain a trans-
ducer accepting only alignments corresponding to local reorderings of the English
terms,

G = ((H �� {3=1}D) �� {4=1}I) �� {5=1}R, (3)

where the result G has five tapes: H1 : H2 : H3 = D1 : D2 = I1 : D3 = R1 .
The best alignment satisfying the contiguity constraint and representing a local
reordering (with parameters mj and mw ) is then simply obtained through a
best-path search on G, on the tape G2 .

Cascaded Automata with Empty Alignments for Some English Terms
The method described above imposes that all English terms are aligned. If we do
6 Algorithms for joining and composing automata are described in [9].
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not want to impose this additional constraint, we can still enforce the contiguity
constraint with local reorderings, but at the price of making the method more
complicated.

The reordering automaton recognises the language of all jump sequences
corresponding to local reordering permutations. We generated the jump sequence
by computing a symbol-wise difference between the sequence of term identifiers
in the order they were entered and their identical permutations. We could do
that simply through the D transducer because these two sequences have the
same length. If now we want to relax the constraint that all English terms are
aligned we need a way to “visit” all states of the HMM other than by aligning a
foreign word to it. We can do this by introducing special transitions going into
term states that do not “use” any input symbol. When assessing the probability
of an alignment, this will alter the contribution of the transition probabilities. To
account for this effect, we will thus create two separate WFSTs from the original
HMM: one (E) will account for the emission probabilities only, and one will
account for the transition probabilities (T ). The former will accept the input
sequence and will output on one of its tapes a sequence (with no contiguous
repetitions) of identifiers of those visited states which are aligned to real foreign
words only:

E = (QE , ΣE , EE , IE , FE , A)

QE : {start} ∪ {qσ|σ ∈ ΣE}
ΣE : ΣE1 ×ΣE2 ×ΣE3

ΣE1 : ΣF

ΣE2 : {1, . . . , I}
ΣE2 = Σt ∪Σn , Σt ∩Σn = ∅

ΣE3 : {1, . . . , |Σt |}
EE : (start, f : σ : ε, qσ)/− logP (f |eσ)

∀f ∈ ΣF , ∀σ ∈ Σn

(start, f : σ : tσ, qσ)/− logP (f |eσ)
∀f ∈ ΣF , ∀σ ∈ Σt

(start, ε : ε : tσ, qσ)/0
∀σ ∈ Σt

(qσ, f : σ′ : ε, qσ′)/− logP (f |eσ′)
∀f ∈ ΣF , ∀σ ∈ ΣE2 , ∀σ′ ∈ Σn

(qσ, f : σ′ : tσ′ , qσ′)/− logP (f |eσ′)
∀f ∈ ΣF , ∀σ ∈ ΣE2 , ∀σ′ ∈ Σt , σ �= σ′

(qσ, f : σ : ε, qσ)/− logP (f |eσ)
∀f ∈ ΣF , ∀σ ∈ Σt

(qσ, ε : ε : tσ, qσ)/0
∀σ ∈ Σt

IE : {start}
FE : QE \ {start}
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where tσ, σ ∈ Σt is a special term identifier in {1, . . . , |Σt |} and
A = 〈R ∪ {+∞},min,+, 0, +∞〉 is the tropical semiring.

The latter will compute the contribution of transition probabilities based on
this state sequence:

T = (QT , ΣT , ET , IT , FT , A)

QT : {start} ∪ {qσ|σ ∈ ΣT}
ΣT : {1, . . . , I}
ET : (start, σ, qσ)/− logP (σ|0) ∀σ ∈ ΣT

(qσ, σ′, qσ′)/− logP (σ′|σ) ∀σ, σ′ ∈ ΣT

IT : {start}
FT : QT \ {start}
The result of joining these transducers with the D, I and R transducers

(see before) is a transducer accepting only alignments corresponding to local
reorderings of the English terms where some English terms can remain unaligned:

G′ = (((E �� {2=1}T ) �� {3=1}D) �� {4=1}I) �� {5=1}R (4)

where the result G′ has five tapes: E1 : E2 = T1 : E3 = D1 : D2 = I1 :
D3 = R1 . The best local reordering alignment (with mj and mw ) satisfying the
contiguity constraint is then obtained through a best-path search on G′, on the
tape G′2 .

4 Experiments

Some experiments applying the described word-alignment methods to multilin-
gual terminology extraction were performed. 576 sentence pairs coming from
Xerox manuals in English-German were annotated with 897 term boundaries
and alignments by a native speaker of German. As a base for our projection, we
first took manually identified English terms, then NPs extracted using patterns
of parts-of-speech. For both cases, we aligned German words to English terms
and out-of-term words according to some early variants of the methods described
above:

– SELECT: lazy enforcement of the contiguity constraint to terms only;
– REORD: local reordering method with mj = 2 and mw = 3
– SYMMETRIC: the standard symmetric method by which term candidates

are first identified in German using POS patterns and are then aligned,
but without a heuristic that greedily extends term boundaries to improve
boundary detection.

For each method we measured the number of exact matches, together with pre-
cision, recall and F-score at the word level according to the following definitions:
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P =
∑

i=1
npi

n
; pi =

ai

ci
; R =

∑
i=1

nri

n
; ri =

ai

wi
; F =

2PR

P + R

where ci is the number of words identified as part of terms in sentence i, wi

is the number of words in terms in the reference for sentence i, and ai is the
number of correctly aligned in-term tokens in sentence i.

Test results are in table 1, where terms are all German gold standard terms
for which a translation was provided or not in the candidate sentences.

method manual annotation
exact matches P R F

SELECT 291 (32.44%) 86.39% 64.51% 73.87%
REORD 258 (28.76%) 83.65% 67.83% 74.91%
SYMMETRIC 282 (31.44%) 97.41% 98.12% 97.76%
method automated annotation

exact matches P R F
SELECT 275 (30.66%) 86.69% 67.07% 75.63%
REORD 235 (26.20%) 83.38% 70.53% 76.42%
SYMMETRIC 205 (22.85%) 89.93% 96.04% 92.88%

Table 1. Preliminary experiment results.Total number of terms: 897, total number of
sentences: 576.

From such preliminary experiments, it would seem that in the automated
case, performance is comparable with those obtained with the symmetric meth-
od, recall is smaller, more resource-intensive, although this is somewhat under-
estimated due to the fact that an effective recall-oriented heuristic (although
possibly precision-degrading) was not used.

We aligned 576 sentences in 6 hours when enforcing local reordering con-
tiguity constraint and in 10 minutes for the selective lazy one. The standard
symmetric alignment is much faster.

After these experiments, a Norwegian-English terminology containing 4211
candidate term pairs was extracted from a parallel corpus of 38487 sentence pairs
from Xerox manuals using an early version of the lazy contiguity enforcement
method.

5 Summary

We have shown that our method can be used to extract bilingual terminologies in
cases when neither a morphological analyzer nor a POS tagger are available for
the target language. This new result is based on a powerful probabilistic model
that explicitly models distortion in alignments and ensures that the produced
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alignment is optimal respecting the contiguity constraint according to the prob-
abilistic model. The statistical model is advantageously exploited by the use of
weighted multi-tape calculus. Test results confirm the claimed advantages.

Extensive previous literature on the problem of word alignment, from [17]
then [7, 19] and [20, 21, 18] to [22] either does not cover the contiguity issue at
all or can not enforce it as a constraint.

As far as bilingual terminology from parallel corpora is concerned, most pro-
posed methods [1–6] rely on target-source matching sequences of Part-of-Speech
requiring reliable POS taggers for both. We need only one, on the source side. [23]
is asymmetric but can not guarantee optimality with respect to the underlying
model 7.
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Abstract. This paper describes a two-level formalism where feature
structures are used in contextual rules. Whereas usual two-level gram-
mars describe rational sets over symbol pairs, this new formalism uses
tree structured regular expressions. They allow an explicit and precise
definition of the scope of feature structures. A given surface form may
be described using several feature structures. Feature unification is ex-
pressed in contextual rules using variables, like in a unification grammar.
Grammars are compiled in finite state multi-tape transducers.

1 Introduction

Feature Structures are a convenient way of representing partial information.
They have been broadly used for many purposes in Natural Language Processing.

Finite-State Morphology is an approach of computational morphology where
the morphology of a natural language is described using contextual rules which
denote a rational relation. These rules are simultaneous or sequential constraints.
Each rule is compiled into a rational relation and all the relations are intersected
or composed to obtain a unique relation implementing the grammar.

The use of feature structures for morphological computational descriptions
is now very widespread. Many systems including Pc-Kimmo 2, Mmorph, Xerox
Finite State Tool, have feature structures. Feature structure processing is usually
performed by a separate engine, but there were some attempts to incorporate
features into finite state machines.

Rémi Zajac [1] proposed a two-level formalism where the lexical level consists
in a feature structure. This formalism is compiled into an extended finite-state
transducer. Instead of concatenating the features of the lexical level, the extended
finite-state machine unifies them. The surface representations are concatenated
as usual. There is no restriction on the power of feature structure used, as far as
the unification is decidable. The main drawback of the approach is that there is
no other operation on feature structure than unification. The values may become
more and more precise, but they can’t change in a success path of the trans-
ducer. It is therefore impossible to encode informations such as the grammatical
category that is changed by affix composition (e.g. realization where the form
is a noun but the category of the root realize is verb).

More recently, Amtrup [2] proposed to use weighted finite state-machines,
the weight being a feature structure. The idea is that feature structures with
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union and unification are a semiring, which is the only property required on
weights. Here again, there is no restriction on the feature structures, but the
feature computation has to be monotonous. An important benefit with respect
to Zajac is that there is no modification of the underlying finite-state machines.

Another approach is used by the Xerox tools [3]. There are no feature struc-
ture but flag diacritics which may be seen as independent features. There is
a set of different operations on features: unification, but also positive setting,
which gives a value to a flag, regardless of its previous value, negative setting
which excludes a value for a given flag, positive and negative value test. All the
operations act on a single feature, not a feature structure.

The flag operations are present in the finite state machines as special symbols
concatenated to ordinary symbols. Operations are not performed by finite-state
machines: they are performed at runtime, with an enumeration of the solutions
and using a memory to store a single feature structure. Karttunen and Beesley
propose to use features to decrease the size of finite-state machines. Finite-state
machines over-generate, the over-generation being fixed at runtime. The system
provides a command which transforms automatically a machine having flag di-
acritics into an equivalent machine without such flags, so the user may choose
between run-time evaluation of these flags or compile-time evaluation, which
may cause an explosion of the size of the machine.

Kiraz [4] proposed to compile features into finite-state automata. They are
represented by strings of special symbols which are concatenated to the strings
of grapheme/phoneme of the lexical level. In this framework, features are used
only for two-level rule filtering: two-level rule application involves the unification
of a feature structure associated to the rule with the feature structure associated
to the lexical part of the feasible pair of the rule. Feature structures are always
local to one morpheme. Features can’t govern morpheme composition and no
structure for the complete form is computed.

In this paper, we generalize the work of Kiraz in such a way that feature
structures may be used not only for rule filtering, but also for affix concatenation.
Instead of concatenating lexical representations and feature structure on the
same level, they will be separated in two different levels. The rule application
will involve possibly several feature structures. Two-level grammars become a
kind of unification grammars. Such a formalism will allow the use of a feature
structure as abstract representation of a form, following the proposition of Zajac.

Like Kiraz and the Xerox flag diacritics, some restrictions will apply on fea-
ture structures to allow their compilation as strings. Furthermore, some struc-
tural restrictions will apply on grammars in order to remain finite-state.

2 Compiling feature structures

In this section, we consider the compilation of a restricted kind of feature struc-
tures in strings. There is nothing new in this part of the paper: the techniques
come from previous work about compilation of feature structures either in finite-
state machines or in Prolog terms (see for instance [5]).
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We first restrict ourselves to flat feature structures taking values in finite
domains (small ones). Such structures are a convenient way of describing partial
information, which is possibly incrementally enriched, by unification with other
structures or by applying some rules.

A feature structure is a set of features, each feature being identified by its
name and taking a value in a small domain. Each pair (name, value) may be im-
plemented by a special symbol written <name=value>, and a feature structure
by the concatenation of the symbols corresponding to its features. For instance,
the features pers and num representing respectively the person and the number of
an English verbal form, take respectively the values 1, 2, 3 and sg (singular), pl
(plural). The alphabet used for implementing them are: <pers=1>, <pers=2>,
<pers=3>, <num=sg> and <num=pl>. A structure [num=sg,pers=1] is rep-
resented by the string <num=sg><pers=1>.

To obtain the uniqueness of the representation, one has to use a fixed order
between features such as for instance the lexicographic order between feature
names. If one knows the set of features which may enrich a feature structure
along the computations, a feature structure may be compiled into a regular
expression implementing all these features. For instance, the structure [pers=3]
is compiled into (<num=sg>|<num=pl>)<pers=3>.

Unifying two structures is equivalent to intersecting the strings representing
them.

The compilation technique extends to embedded acyclic structures. The no-
tion of feature name is just replaced by the notion of path. For instance:⎡

⎢⎢⎣
cat name

agr

[
gender masc
number plural

]
⎤
⎥⎥⎦

<agr.gender=masc><agr.number=plural><cat=name>.

Such an imbrication is convenient when several structures share the same
substructure. This may be denoted using a single variable. In the compiled form,
there will be no difference with respect to a flattened structure.

The disjunction and difference over regular expressions give support for fea-
ture structures with disjunctive and negative specification. For instance:[

person 1|2
tense ← past

]

(<person=1>|<person=2>)(dom(tense)–<tense=past>)

3 Relating feature structures and strings

In the propositions of Zajac and Amtrup, a single feature structure is associated
to respectively a surface form and a pair lexical and surface forms. For Kaplan
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and Kay [6], there is a feature structure for each symbol, describing its phono-
logical properties using binary features. Kiraz gives an example where a feature
structure is associated to each lexical entry (typically, a morpheme), several such
entries being concatenated to obtain a surface form. This means that morpholog-
ical descriptions may use feature structures having different scopes with respect
to the symbols of surface form. And why not using several types of structures
with different scopes in the same description? For instance, one feature structure
for each affix and another one for the complete form.

Partition-based morphology gives a way to implement this notion of scope. It
is a variant of two-level morphology first defined by [7] and further improved by
[8], [9] and [10]. Instead of describing a length preserving relation using symbol
pairs, it uses pairs of strings of possibly different length. For instance an affix-
based description of the form impossibly is (im:in)(possibil:possible)(ity:ity). In
such a system, the pairing is not distributive with respect to concatenation, so
the above string is considered different from (i:i)(mpossibil:npossible)(ity:ity),
for instance. In other words, the splitting of strings in substrings is significant.
In the implementations, the boundaries of substrings are represented using a
special symbol. We will use the symbol w.

Such a segmentation of surface form is useful for feature structures. For in-
stance, ([cat=name],spi)([number=plural],es). It is possible to use n-ary relations
instead of binary relations, so the feature structures may be added to the two
classical levels (lexical and surface) as a third level.

The compilation method proposed in [10] consists in compiling n-ary reg-
ular expressions in n-tape transducers synchronized on substrings terminators,
inserted at the end of each pair – or tuple in the case of n-ary expressions. The
other symbols are read independently, ordered according to the level they belong
to. For instance, a string (aaa:xx)(b:yy) is compiled in the same-length expres-
sion a:0 a:0 a:0 0:x 0:x w:w b:0 0:y 0:y w:w, and then in the corresponding letter
transducer.

The join operation is a way to merge relations (resp. transducers) which
share some common components (resp. tapes). [10] shows that this operation is
defined if the two operands have exactly one common level. This property holds
even when this common level is split in two different ways in the two relations.
A different substring terminator is used for each way.

We propose a multi-level formalism where regular expressions and contextual
rules are extended to describe tree-structured relations. Each level in the tree
is an n-tuple with n greater or equal to 1. The syntax <i| and |i> is used
to respectively open and close a tuple at a depth i in the tree. <0| and |0>
open and close the tuple at the root of the tree. Each member of the relation is
composed of exactly one such tuple. <0| and |0> are used in the description as
the string boundaries classically needed and sometimes written #.

Such structured representations are compiled using terminators, i.e. the tuple
openings and commas separating their components disappears and the tuple
closings are compiled into a special symbol ωi read on all the relevant tapes.
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[cat=name,num=pl]
[type=root] [type=suffix]
s p y s
s p i e s

<0| [cat=name,num=pl],
<1| [type=root],

<2| s, s |2>
<2| p, p |2>
<2| y, i |2>
<2| epsilon, e |2> |1>

<1| [type=suffix],
<2| s, s |2> |1> |0>

Fig. 1. An example of the tuple notation

In order to remain finite-state, tree-structures must be restricted. The syntax
that we propose here refers explicitly to the depth of trees, so it describes depth-
bounded trees, which are finite-state. A discussion of the tractable tree structures
will take place in the last section of this paper.

We use a simplified version of the generalized restriction rules by Yli-Jyrä
and Koskenniemi [11]. Let Π be a finite alphabet and � a symbol not in Π. A
rule is written W ⇒ W ′ where W ⊆ Π∗ �Π∗ �Π∗ and W ′ ⊆ Π∗ �Π∗ �Π∗. W
is called the precondition, W ′ the postcondition. The diamonds are used to split
strings in three parts: the left context, the center and the right context. Let d	
be the operator which deletes all the occurrences of the symbols � in a language.
It may be formally defined as the composition with a finite transducer followed
by a projection. The rule W ⇒ W ′ denotes the language Π∗ − d	(W −W ′).

Informally speaking, if the precondition holds, then the postcondition has to
be verified. The diamonds are markers inserted in regular expressions to define
the center of the rule in such a way that precondition and postcondition apply
on the same part of the strings. The context restriction and surface coercion
rules from previous versions of two-level morphology may be written using this
unique kind of rules.

In our system, the patterns W and W ′ of a rule W ⇒ W ′ must be valid tree-
structured regular expressions where the center is any part of the expression.

Feature structure types are declared as a set of names associated to finite
domains, each value being a string. In the expressions, the features are explic-
itly typed. The type is given first, then the pairs (name, value). For instance,
[verb:pers=3,gen=m] is a feature structure of type verb.

Variables may be used to represent a value shared by several features in an
expression or in a rule. An expression with such a variable is equivalent to the
disjunction of the expressions where the variable is replaced by a given value.
Variables will be written with an identifier beginning with the symbol $.
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4 Examples

In the first example, there is a unique feature structure associated to each form.
This example consists in a partial description of the imperfective of the Arabic
verb. The information about gender, number and person is given by prefix and
suffix added to a core.

The description begins with some declarations. The type of feature structures
is given as a list of feature names and for each name, the domain of values of
the feature. In this first example, there are two levels of structure: there is a
grouping of letters into affixes, and then a grouping of affixes into a form to
which a feature structure is associated.

The morphotactics is defined using regular expressions. The construction
REGEXP gives a name to the disjunction of regular expressions it contains. Each
such expression is terminated by a semi-colon. The underscore stands for any
adequately structured string (wildcard). It has different actual meanings depend-
ing on its context. The construction LET allows to define a regular expression by
applying algebraic operations on previously defined expressions.

FEATURE TYPES
verb: gen in {m,f}, pers in {1,2,3}, num in {sg,pl,du};

END TYPES
REGEXP prefix IS

<0| [verb:pers=1,num=sg], <1| a |1> _ |0>;
<0| [verb:pers=2], <1| t a |1> _ |0>;
<0| [verb:pers=3,gen=m], <1| y a |1> _ |0>;
...

END
REGEXP core IS

<0| [verb:_], <1|_|1> <1| k t u b |1> <1|_|1> |0>;
...

END
REGEXP suffix IS

<0| [verb:pers=1|3], _ <1| epsilon |1> |0>;
<0| [verb:pers=2,gen=f], _ <1| i i n a |1> |0>;
...

END
LET form=intersect(prefix,core,suffix);

The relation form obtained by intersection of the three descriptions of prefix,
core and suffix, contains verbal forms such as for instance:

<0| [verb:pers=1,num=sg],
<1| a |1><1| k t u b |1><1| epsilon |1> |0>

It is a structured representation of the form aktub (I write). The notation
epsilon stands for the empty string. The description uses an empty suffix to
describe cases where nothing is suffixed to the core.
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In this example, the notion of circumfix is probably more relevant than prefix
and suffix. In the proposed implementation, the coordination of prefix and suffix
is obtained through feature structure unification. A more explicit alternative is
to define directly the circumfixes using expressions such as:

<0| [verb:pers=2,num=pl,gen=f],
<1| t a |1> _ <1| n a |1> |0>;

The above description gives the lexical form of a verb. To obtain the surface
form, some phonological and graphemical rules are to be applied. It is possible
to express them using a classical set of contextual rules which associates pairs of
symbols from lexical and surface level, and then join this two-level system with
the rational relation form defined here, identifying the lexical level of the two
systems. The result of this join is a ternary relation.

The second example shows that it is possible to use feature structures not
only for the morphotactics but in the contextual rules too. It consists in a partial
description of French conjugation. There is a feature structure for each affix,
having different types according to the affix. The sharp symbol in contextual
rules is used to identify the center of the rule (instead of the � symbol used in
the presentation of generalized restriction rules).

FEATURE TYPES
root: conj in {1,2,3};
suff1: tense in {pres, fut, past, cond, imp};
suff2: conj, tense, pers in {1,2,3}, num in {sg, pl};

END TYPES
ABBREVIATION infix : for tuples depth 2;
REGEXP affix IS

<1| [root:conj=1], a:_ i:_ m:_ |1>;
<1| [root:conj=3], c:_ o:_ u:_ s:_ |1>;
...
<1| [suff1:tense=pres], epsilon:_ |1>;
<1| [suff1:tense=fut], R:_ |1>;
...
<1| [suff2:tense=fut,pers=1,num=sg], a:_ i:_ |1>;
<1| [suff2:tense=!passe,pers=1,num=pl], o:_ n:_ s:_|1>;
...

END
REGEXP morphotactics IS

<0| <1| [root:conj=$C], _ |1><1| [suff1:tense=$T], _|1>
<1| [suff2:conj=$C,tense=$T], _ |1> |0>;

END
LET affix_star=star(affix);
LET verbal_forms=intersect(morphotactics,affix_star);
RULES

<0| <1| [root:conj=3], _ o:_ u:_ #s:_# |1>
<1| [suff1:tense=fut], R:_ |1> _ |0> =>
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_ #s:d# _;
<1| [root:conj=1], _ |1> <1| _, #epsilon:_ R:_# |1> _

=>
_ #epsilon:e R:r# _;
...

END

$C and $T are variables which represent any value for respectively the con-
jugation and the tense of a form. They are used to ensure that two feature
structures have the same value, whatever it is.

Examples of forms are aimerai (I will love) and coudrons (we will sew):

<0| <1| [root:conj=1], a:a i:i m:m |1>
<1| [suff1:tense=fut], epsilon:e R:r |1>
<1| [suff2:tense=fut,pers=1,num=sg,conj=1],

a:a i:i |1>
|0>;
<0| <1| [root:conj=3], c:c o:o u:u s:d |1>

<1| [suff1:tense=fut], R:r |1>
<1| [suff2:tense=fut,pers=1,num=pl,conj=3],

o:o n:n s:s |1> |0>;

This example shows that no new construction is needed for using feature
structures in contextual rules. The usual notions of context and center are suf-
ficient. Features may be seen as a syntactic facility to express regular strings
through a macro-expansion. The result of this macro-expansion is a set of reg-
ular generalized restriction rules which are compiled using the algorithm by
Yli-Jyrä and Koskenniemi [11].

The third example illustrates how two different kinds of feature structures
may be used in the same grammar: one kind will be devoted to the description
of affixes; the other one to the composition of such affixes. They may be viewed
as the terminal and non-terminal nodes of a unification grammar, respectively.

FEATURE TYPES
term: pos in {N,Adj,V}, from in {N,Adj,V,none};
nterm: pos;

END TYPES
CLASSES

<letter>: a,b,c ...
END CLASSES
TUPLE TYPES

<1| [nterm_], [term:_], <letter>* |1>;
END
REGEXP affix IS

<1| _,[term:pos=Adj,from=none], real |1>;
<1| _,[term:pos=V,from=none], move |1>;
...
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<1| _,[term:pos=V,from=Adj], ize |1>;
<1| _,[term:pos=N,from=V], ation |1>;
...

END
LET affix_star=star(affix);
RULES suffixation ARE
<0| #<1| [nterm:pos=$P],_,_ |1># _ |0> =>

_ #<1| [nterm:pos=$P],[term:pos=$P,from=none],_ |1># _;
_ #<1| [nterm:pos=$P1],_,_ |1># _ =>

_ <1| [nterm:pos=$P2],_,_ |1> #<1| [nterm:pos=$P1],
[term:pos=$P1,from=$P2],_ |1># _;

END
LET stem=intersect(affix_star,suffixation);

This piece of code describes structures such as the following:
[nterm:pos=N]���������

���������
[nterm:pos=V]�������

�������
[nterm:pos=Adj]

[term:pos=Adj,from=none]

real

[term:pos=V,from=Adj]

ize

[term:pos=N,from=V]

ation

This syntax tree is encoded into a sequence of triples where each internal
node is aligned with its rightmost child:

<0| <1| [nterm:pos=Adj],[term:pos=Adj,from=none],real |1>
<1| [nterm:pos=V],[term:pos=V,from=Adj], ize |1>
<1| [nterm:pos=N],[term:pos=N,from=V], ation |1>

|0>

The two generalized restriction rules are an encoding of the unification gram-
mar:

[
nterm
pos 1

]
→

⎡
⎢⎣termpos 1

from none

⎤
⎥⎦

[
nterm
pos 1

]
→

[
nterm
pos 2

]⎡⎢⎣termpos 1

from 2

⎤
⎥⎦

Let us detail the compilation of the simplest of the two rules:

<0| #<1| [nterm:pos=$P],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=$P],[term:pos=$P,from=none],_ |1># _;
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The first step consists in replacing the variable appearing in the center of the
rule, namely $P, by its possible values, resulting in a set of three rules:

<0| #<1| [nterm:pos=N],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=N],[term:pos=N,from=none],_ |1># _;

<0| #<1| [nterm:pos=Adj],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=Adj],[term:pos=Adj,from=none],_ |1>#
_;

<0| #<1| [nterm:pos=V],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=V],[term:pos=V,from=none],_ |1># _;

The second step replaces each feature structure by its compiled form as a
symbol string. The wildcard symbol is replaced by the relevant expression where
the symbol <any> stands for any regular symbol in the alphabet (all the symbols
except the end of tuple <wi> and #). For the first of the three rules from the
previous step, it gives:

<0| #<1| <nterm><pos=N>,<any>*, <any>* |1>#
<1| <any>*,<any>*,<any>* |1>* |0> =>

<0| <1| <any>*,<any>*,<any>* |1>*
#<1| <nterm><pos=N>,<term><pos=N><from=none>,<any>*
|1>#

<1| <any>*,<any>*,<any>* |1>* |0>;

The third step consists in compiling the tuples using the techniques presented
in the section 3. Like in classical Two-Level morphology [12], 0 is a special symbol
inserted to obtain same-length relations. It is treated alternatively as an ordinary
symbol (for intersection) or as the empty string (for composition).

#:#:# <nterm>:0:0 <pos=N>:0:0 (0:<any>:0)* (0:0:<any>)*
<w1>:<w1>:<w1> #:#:#
((<any>:0:0)* (0:<any>:0)* (0:0:<any>)* <w1>:<w1>:<w1>)*

=>
#:#:# <nterm>:0:0 <pos=N>:0:0 0:<term>:0 0:<pos=N>:0

0:<from=none>:0 (0:0:<any>)* <w1>:<w1>:<w1> #:#:#
((<any>:0:0)* (0:<any>:0)* (0:0:<any>)* <w1>:<w1>:<w1>)*

Finally, the rule is compiled using the formula from [11], namely Π∗−d	(W−
W ′) where W and W ′ are respectively the left-hand side and the right-hand side
of the rule and Π∗ the support of the relation. In our example,
Π∗ is a sequence of triples <1|_,_,_|1>*. Thanks to the type declaration of the
tuples, the compiler knows that it is more precisely:
<1| [nterm_], [term:_], <letter>* |1>*, which compiles into the follow-
ing:

(<nterm>:0:0 (<pos=V>:0:0|<pos=N>:0:0|<pos=Adj:0:0>)
0:<term>:0 (0:<pos=V>:0|0:<pos=N>:0|0:<pos=Adj:0>)
(0:<from=none>:0|0:<from=V>:0|0:<from=N>:0|

0:<from=Adj:0>)
(0:0:<letter>)* <w1>:<w1>:<w1>)*
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The result of the compilation of the rule is given in the figure 2. The notation
<name=_> is used as an abbreviation which stands for any symbol associating a
value to the feature name.

5 Theoretical and practical limits

There are two kinds of limits to the compilation of feature structures using tree-
structured relations: theoretical limits due to the kind of tree structures which
can be represented in finite-state machines; practical limits due to the size of the
finite-state machines.

Not all structure are implementable as finite-state machines. It is well-known,
for instance, that context-free parsing is not finite-state. Chomsky in [13] gives
a characterization of grammars which are regular. A grammar is said self em-
bedding if there exists a derivation A

∗→ αAβ where A is a non-terminal and
α and β are non-empty strings. A grammar is regular if and only if it is not
self-embedding. This includes finite, right-linear and left-linear grammars.

Note that our examples use implicitly linear structures although it seemingly
describes only finite structures because sequences of tuples of a given level are
allowed within a tuple of higher level. For example in
<0| [verb:_], <1|_|1> <1| k t u b |1> <1|_|1> |0>, there is a sequence
of three tuples of depth 1 as second component of the tuple of depth 0.

Linear structures are sufficient to express some morphologies, such as for,
instance, Turkish morphology or French flexion which use mostly suffixes. They
are not sufficient to represent English or French derivation which use both pre-
fixes and suffixes. The solution in these cases are to restrict to use only finite
grammars, for instance by limiting the depth of recursion for self-embedding
non-terminals.

From a practical point of view, descriptions involving tree-structured rela-
tions may be too large to be compiled and executed. Feature structures may de-
scribe long-distance dependencies like in the example of circumfixation of Arabic
verbal forms. We have implemented a prototype which converts the formalism
presented in this paper into genuine finite-state automata and uses the FSM
toolkit [14] to compile and execute them. We have written a number of sam-
ple grammars for French and Turkish verbs and a medium-size grammar of the
Akkadian verb (about 50 rules). During these experiments, we sometimes en-
countered size explosion that we resolved by a careful writing of grammars and
ordering of algebraic operations

Feature structures must be limited to a small number of features having small
domains. Like feature diacritics in Xerox Tools, feature structures in our system
could be evaluated at run-time, when a composition with a surface or abstract
form drastically decreases the size of the machine. Instead of performing unifica-
tion at compile-time, equations giving values to features should be concatenated
within each scope, i.e. in each tuple.
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0
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<nterm>:0:0

2

<pos=N>:0:0

8

<pos=V>:0:0<pos=Adj>:0:0

3

0:<term>:0

9

0:<term>:0

4

0:<pos=N>:0

5

0:<from=none>:0

6

 <w1>:<w1>:<w1>

11

0:0:<letter>

7

<nterm>:0:0

 <w1>:<w1>:<w1>

0:0:<letter>

<pos=_>:0:0

10

0:<pos=_>:0

0:<from=_>:0

Fig. 2. Result of the rule compilation
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6 Conclusion

The technique proposed in this paper is an improvement of the proposition by
Kiraz, namely compiling feature structures into regular expressions which are
part of a n-ary relation. The benefits of our approach are a more flexible use
of the features and the possible simultaneous use of several kinds of scope for
feature structures. There is also a better integration to contextual rules: the
feature structures are part of the contexts and centers, and not a side condition.

With respect to the propositions by Amtrup and Zajac, the compilation in
regular expressions offers a better integration into the two-level formalism. On
the other hand, there are restrictions on the kind of structures and a risk of
explosion of the size of the machines.

Ideally, a smart compiler should analyze grammars using unrestricted fea-
ture structures and automatically separate them in three parts: a small number
of features or features approximations which are statically compiled, a second
set of features which are computed at runtime as a finite-state operation (e.g.
transducer composition), after the composition with a surface (or abstract) form
and finally the features which are not computable using finite-state machines,
and which would be evaluated separately for each solution by an external device.
There is still a lot of work to perform such a statical analysis of grammars and
to improve compilation techniques for the first two subsets of features.
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Abstract. Since Harris’ parser in the late 50s, multiword units have
been progressively integrated in parsers. Nevertheless, in the most part,
they are still restricted to compound words, that are more stable and less
numerous. Actually, language is full of semi-fixed expressions that also
form basic semantic units: semi-fixed adverbial expressions (e.g. time),
collocations. Like compounds, the identification of these structures lim-
its the combinatorial complexity induced by lexical ambiguity. In this
paper, we detail an experiment that largely integrates these notions in a
finite-state procedure of segmentation into super-chunks, preliminary to
a parser. We show that the chunker, developped for French, reaches 92.9%
precision and 98.7% recall. Moreover, multiword units realize 36.6% of
the attachments within nominal and prepositional phrases.

1 Introduction

Since Harris’ parser in the late 50s [1], multiword units have been slowly inte-
grated in parsers [2]. Nevertheless, in the most part, they are still restricted to
compound words, that are more stable and less numerous. Actually, language is
full of semi-fixed expressions that also form basic semantic units: semi-fixed ad-
verbial expressions (e.g. time), nominal collocations. Like compounds, the identi-
fication of these structures limits the combinatorial complexity induced by lexical
ambiguity.

To study this phenomenon, we implemented an incremental finite-state chun-
ker for French3 based on the notion of super-chunk. Super-chunks are different
from the notion traditionally associated with chunks [4–7], because adjectival
and prepositional attachment has been integrated. From a formal point of view,
non-recursivity is verified. Like chunks, a super-chunk stops at its head (e.g.
the noun in a nominal chunk). Nevertheless, by taking account of multiword
units (MWUs), the notion of head is extended to complex structures. For in-
stance, marge d’exploitation (trading margin) and chiffre d’affaires brut (gross
sales turnover) are tagged as a noun at the lexical analysis stage4 and therefore

3 Tools presented in this paper are in the most part based on the programs of the
Outilex platform [3].

4 Note that morphosyntactic information is inherited from the lexical head of the
MWU (i.e. marge and chiffre). In addition, that information is augmented with the
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are computed as simple words. In that case, the ambiguity reduction is obvi-
ous. By analysing the sequence chiffres d’affaires brut (gross sales turnover) in
a compositional manner, the procedure leads to 24 analyses, that are reduced
to one if the collocation is considered as a whole. Moreover, this sole lexical
entry permits the resolution of a double attachment (a prepositional one and an
adjectival one), which facilitates the identification of the syntactic constituents.

The chunker presented in this paper is part of a larger project of develop-
ing a complete parser for French, directly usable by real applications such as
information extraction. Our system is composed of three successive stages : (1)
lexical segmentation into simple and MWUs ; (2) identification and tagging of
super-chunks ; (3) attachment in constituents. An illustration of this incremental
procedure is given in the table 1. In this paper, we will only focus on the two
first stages that are both based on finite-state resources.

We will first describe the lexical segmentation module with the description of
the lexical resources used; we will show how part of them has been automatically
learnt and how they have been applied to texts. Then, we will present the super-
chunk segmentation module inspired by [4] and next, the disambiguation process.
Finally, an evaluation of the performances of our chunker will be made and its
interest for resolving lexical attachments will be shown.

2 Lexical segmentation

The lexical segmentation is a key part of our chunker. It takes as an input a text
segmented in sentences and in tokens. It is entirely based on Lexical Resources
(LRs) either developed by linguists or automatically learnt from raw texts. These
resources are either in the form of morpho-syntactic dictionaries or in the form
of lexicalized local grammars.

2.1 Manually constructed lexical resources

The lexical module includes a large-coverage morpho-syntactic dictionary of in-
flected French forms. This dictionary has been developed between the mid-80’s
and the mid-90’s by linguists at the University of Paris 7 [8, 9]. It is composed
of 746,198 inflected simple forms and 249,929 inflected compounds (including
245,436 compound nouns). This dictionary is a set of lexical entries, each of
them being composed of an inflected form, a lemma, a part-of-speech, morpho-
logical information (e.g. gender, number), syntactic information (e.g. internal
structure of MWUs) and semantic information (e.g. human feature for nouns).
It is of a great interest because of its fine-grained linguistic precision and the
large amount of MWUs. These MWUs are compound words of the following
types:

– nouns: pomme de terre (potato), faux témoignage (perjury)

syntactic internal structure of the MWUs (i.e. noun-preposition-noun and noun-
preposition-noun-adjective).
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Level Example

Text Le groupe de télécommunications néerlandais KPN a annoncé avoir
acquis une participation de 77,5% dans le troisième opérateur allemand
de téléphonie mobile E-Plus.

Lexical Le [N groupe de télécommunications ] néerlandais KPN a annoncé avoir
acquis une participation de 77,5% dans le troisième [N opérateur alle-
mand de téléphonie mobile ] E-Plus.

Chunk
Le [N groupe de télécommunications ] [XA néerlandais ] KPN a annoncé
[XVI avoir acquis ] une participation de 77,5% dans le [XA troisième ]
[N opérateur allemand de téléphonie mobile ] E-Plus.
[XN Le groupe de télécommunications ] [XA néerlandais ] [XN KPN ] a
annoncé [XVI avoir acquis ] [XN une participation ] de [XN 77,5% ] dans
[XN le troisième opérateur allemand de téléphonie mobile E-Plus ].
[XN Le groupe de télécommunications ] [XA néerlandais ] [XN KPN ]
[XV a annoncé avoir acquis ] [XN une participation ] [XP de 77,5% ]
[XP dans le troisième opérateur allemand de téléphonie mobile E-Plus ].

Sentence [N0 Le groupe de télécommunications néerlandais KPN ] [V a annoncé
avoir acquis ] [N1 une participation de 77,5% dans le troisième opérateur
allemand de téléphonie mobile E-Plus ].

Table 1. Global process

– prepositions: au milieu de (in the middle of), à cause de (because of)
– adverbs: par ailleurs (moreover), en pratique (in practice)
– conjunctions: bien que (although), pendant que (while)

This large-coverage dictionary is compressed in the form of an FST in order
to be efficiently applied to the text.

Our lexical resources also contain a library of lexicalized local grammars. Lo-
cal grammars [10] are Recursive Transition Networks (RTNs) [11] and theoreti-
cally recognizes algebraic languages. They are of great interest for representing
local lexical and syntactic constraints in a simple and compact way. We use them
mostly to describe MWUs. They can define syntactic classes such as noun deter-
miners and even syntactico-semantic classes such as time adverbials. Linguistic
descriptions are in the form of Finite-State Graphs on an alphabet made of ter-
minal and non-terminal symbols. A terminal symbol is a lexical mask, i.e. an
underspecified lexical entry (some features are missing) equivalent to a feature
structure representing a set of lexical entries: e.g. the lexical mask <noun+p>
matches all nouns in the plural. Finally, a non-terminal symbol is a reference to
another graph. A graph is a transducer and its output is the annotation assigned
to structures described in the graph. An example of a local grammar is given in
figure 15. This grammar describes time adverbials and recognizes structures like
5 The local grammars are drawn using the graph editor of the Unitex platform [12].
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en mars 2007 (in March 2007) and cinq minutes plus tard (five minutes later).
The sequences recognized by this graph are tagged as time adverbs (ADV+time6).
Strings between < and > are lexical masks: for instance, <minute> stands for
the inflected forms whose lemma is minute. Greyed vertices are call to other
graphs. For example, Dnum and month are graphs that respectively recognizes
numerical determiners and the names of months.

Fig. 1. Local grammar of time adverbials

Practically, the lexical module includes a network of 190 graphs. Local gram-
mars recognize sequences of the following types:

– nouns: function names [ministre anglais de l’Agriculture (English minister
of Agriculture)]

– prepositions: locative prepositions [à dix kilomètres au nord de (ten kilome-
ters north of)]

– determiners: numerical determiners [vingt-sept (twenty seven), des milliers
de (thousands of)], noun determiners [dix grammes de (ten grams of)]

– adverbs: time adverbials [en octobre 2006 (in october 2006)]

Fig. 2. Collocation: rise of capital

6 The output is in bold and is displayed under the vertices of the graph.
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2.2 Nominal collocations

The lexical analyzer also uses a set of nominal collocations. Collocations are
sequences of words that co-occur more often than usually expected. Their auto-
matic extraction from raw corpora has been the focus of many papers during the
last decade. Nominal collocations can contain a preposition and therefore could
be useful for preposition attachment in parsing. For instance, the collocation
offre d’emploi (job offer) forms a basic semantic unit with the internal struc-
ture noun-preposition-noun. Considering it as a lexical unit would then resolve
the prepositional attachment. To extract collocations, we used the approach de-
fined in [13] and [14]. It consists in applying a set of nominal syntactic patterns
on a tagged text and then in evaluating statistically identified candidates. Our
learning text comprises 1 million words of French broadcast news and is tagged
with TreeTagger [15]. Morpho-syntactic ambiguity, the principal source of noise
in extraction, is therefore removed. Each word of the text is associated with a
unique lemma and a unique part-of-speech. Next, local grammars representing
basic nominal structures and their variants are applied to the tagged text. Ex-
tracted candidates that have a frequency greater than 5 are then statistically
evaluated by computing the log-likelihood measure defined by [13] for bigrams
and by [16] for trigrams. Finally, the best nominal collocations are kept and
each one is assigned an internal syntactic structure. Given this structure, a local
grammar is automatically constructed for each collocation. Each local grammar
represents potential variations of the corresponding collocation (e.g. taking the
insertion of a modifier into account). For instance, the local grammar associated
with the collocation augmentation de capital (rise of capital, cf. Figure 2) rec-
ognizes the sequence augmentations exceptionnelles de capital (exceptional rises
of capital). We therefore extracted 1,330 basic canonical bigrams and 163 basic
canonical trigrams. Note that the number of extracted collocations could seem
rather low. Nevertheless, as we want to obtain a very low error rate in order to
have a totally automated process, we put very strong statistic constraints on the
extraction computation. Note that, among the extracted collocations, 69.1% of
bigrams and 86.5% of trigrams contain a prepositional attachment, which shows
the great interest of locating the extracted nominal collocations during the lex-
ical segmentation process. More details on this extraction process can be found
in [17].

2.3 LR application

The lexical segmentation module is divided in two stages: (1) dictionary lookup
then (2) application of lexicalized local grammars. The dictionary lookup stage
enables to associate each token with all its possible linguistic tags and to rec-
ognize MWUs. The output of the process is a Text Finite State Automaton
(TFSA). Then, local grammars are directly applied to the TFSA, which is then
augmented with the analyses of the matching MWUs.
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This process also allows for reducing artificial ambiguities by removing very
infrequent analyses from the dictionary7. For instance, the analysis of a as a
noun (letter a) is removed. In order to avoid the silence caused by the removal
of analyses from the dictionary, it is possible to get these analyses given a spe-
cific context. To do so, we use local grammars. For instance, the form par is
only tagged as a preposition, except if it belongs to local golf-specific lexicalized
contexts such as 16 au-dessous du par (16-under) in which context it is also
tagged as a noun. Some MWUs also require a specific context to be analyzed as
such. For instance, the sequence en train de can be interpreted as a preposition
if it is followed by an infinitive verb:

Jean est [en train de PREP] dormir (John is sleeping)

Fig. 3. Prepositional chunk

3 Chunk segmentation

Chunking is also an incremental process: it is in the form of a cascade of FSTs
applied on the TFSA, which is then augmented each time a new chunk is found.
It is composed of height stages and uses a network of 18 graphs. It consists in
identifying:

1. adverbials (XADV): simple adverbs or multiword adverbials that have been
recognized during the lexical segmentation

2. adjectival chunks (XA): adjectives that can be preceded by an adverb
3. nominal chunks (XN): simple noun phrases, named entities, some types of

pronouns
4. prepositional chunks (XP): XN preceded by a preposition
5. verbal chunks (cascade of 4 FSTs): passive and active forms of infinitive,

past participle, gerund and simple verbal chunks (XVI, XVI-passive, XVK,
XVK-passive, XVG, XVG-passive, XV, XV-passive)

In general, the identified chunks inherit morpho-syntactic properties from
their head as it is shown in figure 3 that represents an XP. XP inherits the gender
and the number of its head (ˆgender and ˆnumber).
7 Actually, we use a system of priorities.
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Once the cascade of FSTs was applied on the TFSA, the latter is cleaned.
The cleaning process consists in removing the transitions whose labels do not
belong to the chunking level (e.g. nouns, verbs, adjectives, ...). It keeps only
paths of the TFSA that go from the initial state (beginning of sentence) to the
final state (end of sentence).

The chunking process applied to the sequence au sujet d’un attentat terroriste
produces the TFSA given in the figure 4.

4 Incremental disambiguation

The chunk segmentation produces a set of possible analyses in chunks in the
form of a TFSA for each sentence of the input text. In order to reduce or re-
move ambiguity, the chunker includes an incremental disambiguation module
composed of three optional stages.

Fig. 4. TFSA after chunking

4.1 Applying the Shortest Path Heuristic (SPH)

The SPH consists in keeping only the shortest paths of the TFSA. This language-
independent heuristic could seem simple and naïve at first sight. But, in prac-
tice, it is very efficient because it is based on the idea of preferring multiword
expression analyses to sequences of simple analyses. The SPH algorithm is an
adaptation of Dijkstra’s algorithm to keep all shortest paths of a graph instead
of one only.

The application of the heuristic to the TFSA in figure 4 produces a TFSA
reduced to one path: <au sujet d’un attentat terroriste.XP>.

4.2 Applying hand-crafted rules

Given an instance of ambiguity and specific left and right contexts, the chunker
user might want to prefer an analysis to the others. We therefore developed a
simple formalism of disambiguation rules. A rule consists of three parts: two
contextual parts (left and right) that are represented by local grammars (these
two parts can be empty: EMPTY); a central ambiguous part that is a list of possible
analyses. If the ambiguity is found in the TFSA with the defined left and right
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contexts, then the first analysis in the list of ambiguous items is selected. The
other analyses are then removed from the TFSA.

For instance,

XN_elag.wrtn
<XP> <XN>

EMPTY

When applied to the TFSA in figure 5, the rule above would keep only the XP
analysis for the sequence de lutte contre le terrorisme (of war against terrorism)
in the right context of an XN (recognized by the XN_elag.wrtn grammar).

Fig. 5. Chunk ambiguity

4.3 Applying stochastic rules

There are some types of ambiguity that cannot be resolved by manually con-
structed general rules. A typical example is the XV-XN ambiguity (e.g. the word
massacre can be an XV or XN). We therefore decided to use probabilistic rules
automatically learnt from an automatically tagged corpus8. Given a word form
that can be tagged either as a noun or a verb, the most frequent analysis is
prefered. For instance, the form massacre would be tagged noun because the
analysis noun has a probability of 0.7 while the analysis verb has a probability
of 0.3 in our corpus. If no occurrences of a given form have been found in our
corpus then the most frequent chunk category is selected (for instance, XN would
be prefered to XV).

Note that all stages are optional because linearization is optional. There are
some cases where it is better to keep ambiguities when resolving them is too
risky: for instance, if chunking is applied just before an attachment resolution
module. The XN-XV ambiguity is a typical example of ambiguity that is better
resolved at the attachment level.

5 Evaluation and Discussion

Our evaluation process has been carried out on a corpus composed of broadcast
news from http://www.yahoo.fr web site. This 13,492-word corpus includes
6,901 super-chunks.
8 The corpus is one year of the newspaper Le Monde and has been tagged with
TreeTagger.
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Our definition of a chunk is different from the standard definition because it
integrates the notion of MWU. As a consequence, there exists no reference an-
noted corpora that is compatible with our definition. The evaluation was there-
fore carried out manually. The 3-stage process described above was applied to
the corpus: (1) lexical segmentation using dictionaries and local grammars pre-
sented in section 3; (2) segmentation in super-chunks by applying successively 18
finite-state rules; (3) desambiguation by applying SPH, then 26 hand-built rules
and then a statistical module. Precision and recall were evaluated manually by
two persons. Table 2 shows the results obtained.

Precision 92.9%
Recall 98.7%
Table 2. Results

From a general point of view, we observed that most of errors are due to
incomplete lexical and syntactic resources. That means that improvements can
easily be made and will soon be. In practice, we distinguish recall errors and
precision ones.

Recall errors are only caused by incomplete LRs: dictionaries and local gram-
mars. First, some compound grammatical words are missing from the dictionary,
e.g. tandis que (while), au-dessous de (below). Moreover, elements are missing
from the local grammars. For instance, in the named entity grammar, the se-
quence Nouri al Maliki is not recognized as a unit because the form al is unknown
and has not been integrated in the grammar as family name prefix. There are
some semi-fixed expressions that have not been integrated such as vers 8h45 (at
around 8.45 am). Some complex pronominal structures like au cours de laquelle
are also missing in the local grammars.

Precision errors can be divided into four classes:

1. SPH-related errors

Lexical ambiguity can lead to wrong chunks after computing the SPH heuris-
tic because it tends to keep the longest chunks. For instance, in the sentence
après l’affirmation du quotidien espagnol El Pais (after the writing of the Span-
ish newspaper El Pais), there are two possible analyses:

[après l’affirmation XP] [du quotidien espagnol XP] [El Pais XN]
[après l’affirmation XP] [du quotidien XP] [espagnol XA] [El Pais XN]
As quotidien and espagnol are both adjectives or nouns, SPH prefers the

[Prep XA N] analysis to the [Prep N] [XA] one.

2. Wrong decision based on probabilistic rules

For example, in the sentence La côte Est et les villes de New York ..., there
are two possible analyses of the chunk Est : either an XV (to be) or an XA (East).
Although Est is XA in this context, the statistical module prefers the analysis XV
because est is more often tagged as a verb in our training corpus.
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3. Errors caused by the application of disambiguation rules

That kind of errors is fortunately infrequent. They mainly concern the XP–XN
ambiguity due to the lexical ambiguity of de which can be either a determiner or
a preposition. For instance, a disambiguation rule that is applied at a late stage
of the incremental disambiguation process, prefers XP to XN. This analysis is used
to make an arbritrary decision. In the example qui n’a pas fourni de plus amples
détails (who didn’t provide more details), the chunk de plus amples détails is an
XN.

4. Dictionary coverage

Some missing compound structures in the dictionary cause errors. For in-
stance, en outre is a compound adverb but is missing from the dictionary.
Therefore, the compositional analysis is chosen in the sentence ils ont en outre
pris plusieurs centaines de personnes en otage (they took several hundreds of
hostages). It is then chunked as follows

[ils XN] [ont XV] [en outre pris plusieurs centaines XP] [de personnes XP]
[en otage XP]
instead of

[ils XN] [ont en outre pris XV] [plusieurs centaines XN] [de personnes XP]
[en otage XP]

where en outre is an adverb inserted in a verbal chunk.
In addition to recall and precision evaluation, we also estimated the impact

of MWUs for lexical attachment. We observed the actual realization of 36.6%
of the lexical attachment, with no error, within noun phrases and prepositional
ones.

We also applied our chunker on the same corpus without integrating MWU
resources. Our chunker then becomes a standard chunker. The corpus passes
from 6,901 super-chunks to 7,503 chunks (around 8% augmentation). We then
observe a slight rise of precision by using MWUs: the number of errors falls from
600 to 485. Recall is also slightly better: 116 analyses are missing without using
MWUs vs. 89 with MWUs. All these figures show the great interest of using
super-chunks instead of only standard chunks. First, as the number of chunks
decreases, the combinatorial ambiguity is reduced and further processes should
be eased. Moreover, as MWUs form "islands of non-ambiguity", they are useful
to reduce internal ambiguity within chunks and therefore to reduce precision
errors.

6 Conclusion and perspectives

In this paper, we presented a chunking technique based on a significant augmen-
tation of the lexical level by taking into account larger sequences (i.e. MWUs).
By using this approach, we search for optimizing the disambiguation process on
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the one hand and computing a part of the lexical attachment within noun and
prepositional phrases on the other hand.

To evaluate the relevancy and the efficiency of our assumption, we carried
out an experiment on a broadcast news corpus from the web. Results led us to
a double conclusion:

– Our disambiguation procedure reaches excellent recall and precision rates
without the use of any tagger;

– a significant amount of attachments within noun and prepositional phrases
are actually resolved by the use of a large-coverage set of MWUs, and there-
fore do not have to be computed at the syntactic level.

Future work will focus on the improvement of the super-chunker by improv-
ing the lexical and syntactic resources and by integrating a more sophisticated
statistical disambiguation module (e.g. use of Hidden Markov Models). We wish
to extend it in order to process less stable textual data such as spoken texts or
emails. Moreover, we would like to compare the super-chunker with standard
chunkers and to evaluate its impact when it is integrated in a parser.
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Abstract. Finite state methods for natural language processing often
require the construction and the intersection of several automata. In this
paper, we investigate the question of determining the best order in which
these intersections should be performed. We take as an example lexical
disambiguation in polarity grammars. We show that there is no efficient
way to minimize the state complexity of these intersections.

1 Introduction

The main concern of this paper is to answer the following question: given a
set {A1 , . . . , Ak} of finite state automata, can we guess an order on them to
efficiently perform their intersection? More precisely, can we find a permutation
π for which the following algorithm will run as quickly as possible?

A = A[pi[1]];
for i = 2 to k do

A = A intersect A[pi[i]]
done

Observe that computing the intersection as above takes in the worst case
exponential time. Indeed, the size of the result, that is to say the number of
states, is exponential |⋂ i≤kAi | =

∏
i≤k |Ai |. We refer to Saaloma and Yu to

learn more about state complexity [1, 2]. But this is not the issue addressed here.
The question is to find the order in which we have to perform the intersections.
And we show that this part of the problem is also inherently difficult. To get rid
of the size problem, we consider the ordering problem with regards to some a
priori upper bound on the size of automata. The decision problem will be proved
NP-complete.

A standard NP-complete problem about automata intersections is the empti-
ness of the result. See for instance [3] or [4] which give explicit upper bounds.
But, here, we are more concerned with the intersection process than the result
itself. An analogous question to our present issue is matrix multiplication. Given
a sequence of matrices M1 , . . . ,Mk of different sizes, the way one parenthesizes
the expression M1 × · · · ×Mk has a huge impact on the cost of evaluating the
product (see [5]). For this problem, computing the best order can be done in
polynomial time by a dynamic programming procedure.
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Let us now present the practical application which originally motivated the
present study: disambiguation for lexicalized polarized grammars (PGs) like Cat-
egorial Grammars [6], Interaction Grammars [7] or Polarized Unification Gram-
mars [8]. A lexicalized grammar is defined by its lexicon, which associates a set
of syntactic items to every word of the language. Each of these items specifies a
grammatical construction in which the corresponding word participates.

One of the main features of PGs is that each syntactic item is equipped
with polarized features. Polarities are used to guide the process of syntactic
composition: features with the same type but with opposite polarities try to
neutralize each other. The process ends successfully in a parse structure for a
sentence where all polarized features are neutralized.

Syntactic items, if we forget their structure, become bags of polarized fea-
tures. A necessary condition for a tagging to be successful is that summing po-
larized features in the bag must end with a zero. Automata are a well-suited way
of factorizing this counting. The crux is that one may count different features,
each of which provides an automaton. Hence, the resulting necessary condition
is given by the intersection of these automata [9]. Unfortunately, it is known [10]
that when performing multiple intersections, intermediate automata can possibly
be huge, even if the final automaton is small.

We prove that looking for the order in which intersections have to be per-
formed to create the minimal number of intermediate states is actually NP-hard.
For that reason, we have used heuristics3 in our implementation.

2 Polarized Grammars and Lexical Disambiguation

In this section, we present a general lexical disambiguation method for PGs
relying on automata intersection.

2.1 Polarized Grammars and Parsing

We give here a very brief description of such grammars. Any reader who wants a
wider presentation of these grammars should refer to [6–8]. A polarized grammar
is equipped with:

– a set W of words (for instance English vocabulary);
– a set S of items (for example “noun phrase coordination”);
– a function � : W → Pfin(S) which associates words with finite sets of items;
– a set of feature names F (e.g. “category” and “gender”) and a set of feature

values V (e.g. “noun” and “masculine”);
– a function ρ : S × F × V → I[Z] which associates to any item and feature

name/value a finite interval over the integers. This function counts the po-
larized features of items. For instance, ρ(give_Verb, “cat” , “noun phrase”) =
[−3,−1] because a verb like give can be intransitive (expecting 1 noun
phrase), transitive (2 noun phrases) or ditransitive (3 noun phrases).

3 We cannot present these heuristics here for lack of space.
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Given a sentence w1 , . . . , wn of words in W , the parsing process consists of
a) selecting one item for each word of the sentence, say s1 , . . . , sn and b) check-
ing that this selection verifies some properties depending on the grammatical
framework. Still, there is one common property to all PGs which is that 0 must
be an element of the sum of the intervals in the selection, where intervals are
summed according to [a, b] + [c, d] = [a + c, b + d]. This property can be stated:
∀f, v ∈ F × V : 0 ∈ ∑ i≤nρ(si , f, v). We call this property the global neutrality
criterion and it reflects the neutrality constraint on final structures.

2.2 Counting with Automata

We assume a sentence w1w2 . . . wn to parse with a PG G. Given a feature name
and a feature value (f, v), consider the automaton A(f, v) as follows:

– A state of the automaton is a pair (i, p), where i corresponds to the position
of the word in the sentence and p is an interval of Z, which represents the
counting of polarities up to position i.

– Transitions have the form (i, p) sα−→ (i + 1, q), where sα ∈ �(wi), q = p +
ρ(sα, f, v).

– The initial state is (0, [0, 0]).
– The accepting states are states (n, p) such that 0 is an element of p.

Every path in A(f, v) from the initial state (0, [0, 0]) to an accepting state repre-
sents a lexical selection that verifies the global neutrality criterion. Other paths
can be deleted. So, any path to an accepting state is a candidate for selection.

Actually, it is a necessary condition for a correct lexical selection to be rec-
ognized by polarity automata, for every choice of name f and value v. As a
consequence, the intersection of polarity automata gives an automaton which
also contains the valid solutions. The principle of our selection method is to
build the automaton4 ⋂

(f ,v)∈F×VA(f, v).
For example, in our implementation for Interaction Grammars, for a ten word

long sentence we usually make twelve intersections. With this method we go from
5000 raw selections to 10 selections respecting the neutrality criterion. We have
noticed some performance issues depending on the order in which we performed
the intersection. On some sentences, we experienced tenfold variations in the
number of states of the intermediate automata..

3 NP-Completeness of the Problem

In this section, we review three problems, which we prove to be NP-complete,
related to our disambiguation technique based on automata intersections.

In these three problems we ask whether it is possible to determine the right
order in which the intersection of several automata must be performed to mini-
mize the number of intermediate states.
4 Actually we can restrict our attention to some more particular values for f and v.
See [9] for details.
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We prove NP-hardness of these problems by reduction from the Traveling
Salesman Problem (TSP) [3]. To fix the notations, we first recall this illustrious
problem.

An instance of the TSP is a triple (V, d,K) where V = {1, . . . , n} is a set of
cities, d is a distance function between any pair of different cities, d(i, j) ∈ N,
and a bound K ∈ N

+ . The problem is to decide whether there exists a tour of all
cities with a length less than K or in other words if there exists a permutation
π of the cities such that (

∑
i=1

i=n−1d(π(i), π(i + 1))) + d(π(n), π(1)) ≤ K.
For clarity, when π is a function [1..n] → [1..n] and the context is clear, we
write π(n + 1) for π(1) and π(0) for π(n). So the previous sum can be written∑

i=1
i=nd(π(i), π(i + 1)) ≤ K. From now on, we restrict our attention to those

cases where d(i, j) ≤ 2. The problem remains NP-complete (it corresponds to
the reduction from Hamiltonian Circuit).

We will distinguish between the traditional TSP as it has been described
above and a variant that we call the exact TSP in which the tour must be of
length exactly K (see [3]).

3.1 Intersection Optimization Problems

We present a first intersection optimisation problem, that we will enrich to get
the second and third problems, which are more difficult. In the proofs, we do not
use automata with loops. So these problems can be stated with or without star
languages. For an automaton A, the size of A that we write |A| is the number
of states of A. Every automaton is considered minimal, unless stated otherwise.

First Problem (IO1): Let An = (Ai)1≤i≤n be a set of n finite state automata,
B ∈ N

+ a bound and K a target size. Is there an injective function π : [1..j] →
[1..n] such that

– |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · · ) ∩Aπ(j )| = K
– for all k < j, |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · · ) ∩Aπ(k)| ≤ B.

In other words, is there a subset A ⊆ An such that |⋂A∈AA| = K with all
intermediate steps smaller than B? For disambiguation, this means that we are
able to know the size of the final intersection.

Second Problem (IO2): Let An = (Ai)1≤i≤n be a set of n finite state automata
and B ∈ N a bound. Is there a bijection π : [1..n] → [1..n] such that for any
j ≤ n we have |(. . . (Aπ(1)∩Aπ(2))∩· · · )∩Aπ(j )| ≤ B ? For disambiguation, this
means that given a set of polarity automata we are able to know how to perform
their intersection in order to bound the size of each intermediate intersection.

Third Problem (IO3): Let An = (Ai)1≤i≤n be a set of n finite state automata
and B ∈ N a bound. Is there a permutation π of [1..n] such that∑

1≤j≤n |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · · ) ∩Aπ(j )| ≤ B ? This is the problem that we
deal with in disambiguation: is there an order to perform intersection for which
the total number of states that we create is bounded?
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3.2 NP Algorithms

These three problems are in NP. Each time we have to choose a permutation π
and then:

– for (IO1), if an intermediate intersection is empty we stop and the answer to
the problem is “no” (of course, if K = 0 it is “yes” ) if it has a size greater than
B, the answer is no. Otherwise, we proceed to the next intersection. When
j intersections have been performed we compare the size of the resulting
automaton to K. Observe that those intersections can be performed in time
bounded by B2 since all intermediate steps must have a size lesser than B.
And so, we are polynomial with regards to B.

– for (IO2), if an intermediate intersection is empty then the answer is “yes”
else if it is greater than B (again, we may need to consider B2 states before
minimization) the answer to the problem is “no” else we proceed to the next
intersection.

– for (IO3), we need to sum the sizes of the intermediate intersections and
check that this sum is never greater than B. If an intersection is empty or if
a partial sum exceeds B then we can stop immediately.

3.3 NP-Completeness

Theorem 1. (IO1) is NP-complete.

Proof. We consider some cells, that we will associate to build automata. They
are given by Figure 1.

V S :
(s)s∈S

X, Y

X X

Y Y

X

Y

X

Y

X

Y

C2 :C1 :

C⊥: X X XX,Y X, YC0 : X,Y

Fig. 1. Some brick automata

We can note that for i ∈ {0, 1, 2} we have |Ci | = |C0 |+i. In other words, these
automata encode the distance between two cities. Observe also that Ci ∩ C0 =
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Ci . So that C0 is the “neutral” element for the intersection. Finally, if A is
some automaton, A′ denotes the same automaton, but with primed letters. We
suppose we are given an arbitrary (but minimal) automaton D of size 6×n + 3.

Now, given an instance of the exact TSP (V, d, k), we consider a set of au-
tomata Ai,j ,m with i, j ∈ V and m ≤ n where n is the number of cities in V . To
fix the intuition, the automaton Ai,j ,m corresponds to the choice of going from
city i to city j at step m of a tour. In other words, it corresponds to the choice
π(m) = i and π(m + 1) = j. The mth distance is set to l = d(i, j) by cell C l ,
between letters V i and V j . Moreover, if i is the initial city, it is also the last
one. We define:

Ai,j ,1 = V iCd(i,j )V j (C0V V \{i,j})n−2C0V i + V ′V \{1}D
Ai,j ,m = (V V \{i,j}C0 )m−1V iCd(i,j )V j (C0V V \{i,j})n−m + V ′V \{m}D

for n > m > 1
Ai,j ,n = V jC0 (V V \{i,j}C0 )n−2V iCd(i,j )V j + V ′V \{n}D

Let us consider the “witness” automaton A = (V V C0 )nV V where no dis-
tance is set. Remark that |Ai,j ,m | = |A|+ d(i, j)+ |D|. The (polynomial) reduc-
tion is then (V, d,K) �→ ((Ai,j ,m)i,j ,m , 2|D|, |A|+ K).

Correctness If there is a tour defined by π of length exactly K, observe that:⋂
1≤m≤n Aπ(m),π(m+1),m =

V π(1)Cd(π(1),π(2))V π(2)Cd(π(2),π(3)) · · ·Cd(π(n),π(1))V π(1)

which has a size |⋂ 1≤m≤nAπ(m),π(m+1),m | = |A|+∑ 1≤m≤nd(π(m), π(m+1)).
The bound on intermediate automata is discussed widely in the next proof. So,
if the TSP has a solution, then its encoding has a solution for (IO1).

Completeness We consider the set A of automata (Ai,j ,m)i,j ,m closed by inter-
section for the converse part. Any non empty automata A ∈ A has the following
properties (proved by successive inductions):

(i) A = A1 + A2 with
– A1 = ∅ or
– A1 = V α1 Cβ1 V α2 Cβ2 · · ·V αn Cβn V αn+1 , αi ⊆ V , βi ∈ {0, 1, 2},

and A2 = V S
′D with S ⊆ {1..n} ;

(ii) In (i), if αj = {k} for some j, then no other α� contains k for � ≤ n,
(iii) In (i), βi = 0 iff i ∈ S,
(iv) In (i), if βi �= 0, then αi = {k}, αi+1 = {�} are singleton sets and βi =

d(k, �).
(v) In (i), α1 = αn+1

From (i), we can say that |A| ≤ |A1 | + |A2 |. So, in the worst case, |A| ≤
2 +

∑
i=1

n |Cβi
|+ |D| < 2× |D|, and the bound on intermediate steps is always

respected. From (iii), we learn that V S
′D is empty iff ∀j : βj �= 0. So that (iv)
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with (ii,v) gives us the fact (F) that for all i, the set αi = {ki} is a singleton set
and π : [1..n] → [1..n] which sends i �→ ki is a bijection and k1 = kn+1 . Since,
|D| > |A| + k, |A| = |A| + k iff S is empty. The fact (F) above shows that it
corresponds to an acceptable tour.

Theorem 2. (IO2) is NP-complete.

Proof. We reduce the TSP to IO2. Let (V, d, k) be an instance of the TSP, let 2
be the maximal distance between two cities and n = |V |. Again, for each pair of
cities (i, j) with distance d(i, j) we build n automata according to the possible
positions of these cities in a tour. That is to say we build n3 automata Ai,j ,p .
Technically speaking, with regards to (IO1), we must have a stronger control on
the order in which the intersection is performed. This is due to the fact that we
have a weaker condition that applies to every intermediate automaton. That is
also why the proof is much more complex.

We can decompose automata in three components:

1. The first one detailed in Fig. 2 (that we call C1 ,i,j ,p) is responsible for com-
puting the total distance of the tour, like in (IO1) but without indexing V
by a set of cities. The end states of the C0 sub-components are connected
to the initial state of C2 ,i,j ,p by a dummy letter X. Hence, if all the dis-
tances are instantiated (as in IO1) then only the last V will connect this
first component to the second component.

C2 ,i ,j ,p C3 ,i ,j ,p
V V

X

X

X

p− 1 n− p

C0
C0 C0 C0V

X

V XCd(i ,j )

Fig. 2. Automaton Ai,j ,p with detailed first component

2. The second one (C2 ,i,j ,p) is responsible for chaining the edges correctly to
make a valid tour. This component is shown on Figure 3. It should be ob-
served that if it is intersected with C2 ,j ,k ,p+1 then the resulting automaton
is of the same size. Otherwise (if city indices do not match) then it grows by
2n states.

3. The third one (C3 ,i,j ,p), presented in Fig. 4, forbids (by making any unwanted
intersection too big) the use of a position more than once and the use of
position p without first considering positions 1, . . . , p−1. Otherwise it grows
by 4n states.
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Position 1

Position n

Intermediate Position 

X X

X X

X X

X X

2n

1ij
1ij

{∗∗∗}\{1ij} {∗∗∗}\{1ij}
{F ∗}\{F i} {F ∗}\{F i}

X X

2n

nij
nij

F j F j

X X

X X

pij
pij

2n

F ∗F ∗

Otherspij = {∗∗∗}\{pij}\{p′∗i |p′ = p− 1}

Otherspij Otherspij

Othersn ij
Othersn ij

Fig. 3. The second component for the automaton Ai,j ,p
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X X X

X X X

X X X

X X X
X X

X X

H1

H1

H1
H2

H2 H2

H2

pij pij

pij
pij

H1 |H2

X X

X X

H1 |H2

H1

HH

H1 |H2

X X

X X

H1 |H2

4n

n− pp− 1

1∗∗

1∗∗

(p− 1)∗∗

(p− 1)∗∗

(p + 1)∗∗

(p + 1)∗∗

n∗∗

n∗∗

Fig. 4. The third component for the automaton Ai,j ,p

Finally, we need an additional automaton T , shown on Fig. 5. Its role is to
end the intersection process.

V V
C0

C0 C0
X

X

X

n

X⋃ C2 ,i ,j ,p

⋃ C3 ,i ,j ,p

Fig. 5. The automaton T

The size of Ai,j ,p is |Ai,j ,p | = |C1 ,i,j ,p |+ |C2 ,i,j ,p |+ |C3 ,i,j ,p | where

|C1 ,i,j ,p | = 2n + d(i, j)

|C2 ,i,j ,p | =
{

6n + 2 if p = n
4n + 2 otherwise

|C3 ,i,j ,p | = 3(p− 1)(4n) + 2(n− p + 1)(4n) + 2n = 2n(4n + 2p− 1)

|Ai,j ,p | =
{

2 + d(i, j) + 4n(2 + p + 2n) if 1 ≤ p < n
2 + d(i, j) + 2n + 4n(2 + 3n) otherwise

We want to prove that i1 , i2 , . . . , in , i1 is a tour for the TSP with length
lesser than k if and only if every intermediate automaton of the intersection⋂

1≤i≤m,α(i)∈I⊂[1 ..n]3Aα(i) ∩ T
⋂

m+1≤j≤n3 ,β(j )∈[1 ..n]3\IAβ(j )
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is an automaton whose size is lesser than B = 2 + K + 4n(1 + 2n). So the
reduction is (V = {1 . . . n}, d,K) �→ ((Ai,j ,p)1≤i,j ,p≤n ∪ T,B)

Preliminary observations. Without loss of generality, we can suppose that K ≤
2n. Otherwise the TSP is trivial. This entails that among all the automata
(Ai,j ,p)i,j ,p only the automata (Ai,j ,1 )i,j are smaller than B:

i) |Ai,j ,1 | = 2 + d(i, j) + 4n(1 + 2n) < B
ii) otherwise,

|Ai,j ,p | ≥ 2 + d(i, j) + 4n(1 + p + 2n)
≥ 2 + d(i, j) + 4n(2 + 2n) + 4n(p− 1)
> 2 + d(i, j) + 4n(1 + 2n) + K > B

Then, notice that:

iii) |C1 ,i,j ,p | = 2n + d(i, j)
iv)

|C1 ,i,j ,p ∩ C1 ,k ,l,q | =
{

2n + d(i, j) + d(k, l) if p �= q
2n + max(d(i, j), d(k, l)) otherwise

v)

|C2 ,i,j ,p ∩ C2 ,k ,l,q | =
{
|C2 ,i,j ,p | if q = p + 1 and j = k
|C2 ,i,j ,p |+ 2n otherwise

vi)

|C3 ,i,j ,p ∩ C3 ,k ,l,q | =

⎧⎨
⎩
|C3 ,i,j ,p | if q = p + 1
|C3 ,i,j ,p |+ 4n|p− q| if q > p + 1
|C3 ,i,j ,p |+ 4n if q ≤ p

(v) and (vi) mean that there is a way to preserve the size of the second and
third components: it is to perform the intersection with respect to the order of a
tour (v) and by considering each position once in ascending order (vi). Following
these remarks, for any sequence prefix of a tour i1 , i2 , . . . , ik with k ≤ n + 1 (if
k = n + 1 we force ik = i1 ) in our instance of the TSP, we have

|⋂ 1≤p≤kAip ,ip+1 ,p | = |⋂ 1≤p≤kC1 ,ip ,ip+1 ,p |+ |
⋂

1≤p≤kC2 ,ip ,ip+1 ,p |
+ |⋂ 1≤p≤kC3 ,ip ,ip+1 ,p |
= |⋂ 1≤p≤kC1 ,ip ,ip+1 ,p |+ |C2 ,i1 ,i2 ,1 |+ |C3 ,i1 ,i2 ,1 |
= 2n + (

∑
1≤p≤kd(ip , ip+1 )) + 4n + 2 + 2n(4n− 1)

= 2 + (
∑

1≤p≤kd(ip , ip+1 )) + 4n(1 + 2n)

Correctness of the reduction. We first show that all intermediate intersections
of Ai1 ,i2 ,1 ∩ . . . ∩ Aij ,ij+1 ,j for j ranging from 1 to n have a size lesser than B
if there exists a tour i1 , i2 , . . . , in , i1 with length lesser than k. We do this by
induction on the steps of the intersection process.

As stated earlier, the initial automaton must be Ai1 ,i2 ,1 because every other
Ai1 ,i2 ,p would be too large. Then, by application of the equality defined above:
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|A =
⋂

1≤p≤nAip ,j p+1 ,p | = 2 + (
∑

1≤p≤nd(ip , ip+1 )) + 4n(1 + 2n)
≤ 2 + K + 4n(1 + 2n) = B

So these first n intersections straightforwardly encode the tour in the TSP
instance. Now, observe that A ∩ T = ∅ because every Ci from its first com-
ponent is different from C0 . Consequently if the instance of the TSP has a
solution, the sequence Ai1 ,i2 ,1 , . . . ,Ain ,i1 ,n , T, S where S is a sequence over
{(Ai,j ,p)i,j ,p}\{Aik ,ik+1 ,k : k ≤ n} is a solution to IO2.

Completeness. Consider an intersection of the form

A = (
⋂

(αi )i∈IAαi
) ∩ T ∩ (

⋂
(αj )j∈[1 ..n]3\IAαj

)

where no intermediate automaton has a size greater than B. In particular, this
is true for A′ = (

⋂
(αi )i∈IAαi ). We note m = |I| and we can deduce that:

– α1 is of the form (x1 , y1 , 1) ; if αi = (xi , yi , p) then αi+1 = (xi+1 , yi+1 , p+1)
and m ≤ n, otherwise component 3 would make |A′| > B. This implies that
αi is of the form (xi , yi , i)

– if αi = (xi , yi , i) and αi+1 = (xi+1 , yi+1 , i + 1) then yi = xi+1 and m = n
implies that αm is of the form (xm , x1 ,m). Otherwise component 2 would
make |A′| > B

– Finally, m ≥ n otherwise |A′ ∩ T | > B. This implies that m = n. Remark
that this also implies that |A′ ∩ T | = 0.

In other words, A′ encodes a tour i1 , i2 , . . . , in , i1 in our instance of the TSP.
Furthermore, the size of A′ if we follow its construction as stated above is

|A′| = |C1 |+ |C2 |+ |C3 | ≤ B
|C1 |+ |C2 ,i1 ,i2 ,1 |+ |C3 ,i1 ,i2 ,1 | ≤ B
|C1 |+ 4n + 2 + 2n(4n− 1) ≤ B

|C1 |+ 2 + 2n(1 + 4n) ≤ 2 + K + 4n(1 + 2n)
|C1 | ≤ K + 2n

2n + d(i1 , i2 ) + · · ·+ d(in , i1 ) ≤ K + 2n
d(i1 , i2 ) + · · ·+ d(in , i1 ) ≤ K

And so the tour is actually a solution for our instance of the TSP.

Theorem 3. (IO3) is NP-complete.

Proof. The encoding remains the same that the one for (IO2) except for the
first component. The non-instantiated distances before position p are erased by
intersection with C⊥. (Notice that C⊥ ∩ Ci∈{0 ,1 ,2} = C⊥)

Ai,j ,p = (V (C⊥ + XC2 ,i,j ,pXC3 ,i,j ,p))p−1

V Cd(i,j )(V (C0 + XC2 ,i,j ,pXC3 ,i,j ,p))n−p

V (C2 ,i,j ,pXC3 ,i,j ,p)

The bound for this problem is B = K + n(2 + 2n + |C2 |+ |C3 |) = K + n(2 +
8n + 8n2 ) which corresponds to K and the part of the first automaton of the
tour that does not disappear by intersection before the intersection with T .
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4 Conclusion

We showed that determining the best way to intersect a set of automata is an
intractable problem. This compels finite state applications to look for clever
heuristics. In our own implementation we choose to perform intersections ac-
cording to the ascending size of the automata. [10] gives several other heuristics.
Another possibility is to approximate the intersection, see [11].
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Developing a Finite-State Morphological
Analyzer for Urdu and Hindi

Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

Universität Konstanz

Abstract. We introduce and discuss a number of issues that arise in the
process of building a finite-state morphological analyzer for Urdu, in par-
ticular issues with potential ambiguity and non-concatenative morphol-
ogy. Our approach allows for an underlyingly similar treatment of both
Urdu and Hindi via a cascade of finite-state transducers that transliter-
ates the very different scripts into a common ASCII transcription sys-
tem. As this transliteration system is based on the XFST tools that the
Urdu/Hindi common morphological analyzer is also implemented in, no
compatibility problems arise.

1 Introduction

As part of the ParGram (Parallel Grammar) project [1], [2], we are developing a
grammar for the South Asian language Urdu.1 Very few resources exist for this
language, in particular, no broad-coverage finite-state morphological analyzer
exists to date. Part of the Urdu Grammar project is therefore to build a finite-
state morphological analyzer for Urdu and to connect it up with the syntax
via the morphology-syntax interface [3] defined for Lexical-Functional Grammar
(LFG; [4]).

Current features of the Urdu ParGram project in the context of parallel gram-
mar development have already been discussed elsewhere [5]. In this paper, we
focus on some issues that have arisen with respect to the morphological analyzer
in particular. All the (larger) ParGram grammars to date include a finite-state
morphological analyzer that interfaces with the syntax. These morphological an-
alyzers are generally built with the Xerox finite-state technology tools and follow
the methodology established by [6]. The finite-state tools and the solutions al-
ready proposed by [6] prove to be more than adequate to meet the challenges
posed by Urdu. However, some interesting issues do arise with respect to 1) the
script and tokenization (section 2); 2) reduplication (section 3) ; 3) potentially
ambiguous information at the morphology-syntax interface (section 4).

2 Two Different Scripts, One Representation

Urdu is structurally almost identical to Hindi. The major difference is that the
vocabulary of Urdu bears more Persian/Arabic influences, while the vocabulary
1 Thanks go to Tafseer Ahmed for helping us understand some issues with respect to
the script and the morphology.
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of Hindi is more Sanskrit based. Both are ultimately descended from a version
of Sanskrit (i.e., are Indo-European). Urdu as a separate version of the language
came into being when the Moghuls invaded the Indian subcontinent. The lan-
guage of their court was Persian, which came into contact with a local language
generally referred to as Hindustani (or Hindi). The very Persianized version of
this language came to be known as Urdu.2

This brief historical sketch is of relevance because lexical items borrowed in
from Persian tend to behave differently (i.e., have different inflectional possibil-
ities). However, questions of lexical and morphological origin tend to be minor
issues. A more major issue is that Urdu and Hindi are written in very different
scripts. Urdu is written with a version of the Arabic script.3 Hindi, in contrast,
is written in Devanagari, a phonetic-based script passed down over the millenia
from Sanskrit.

2.1 A Common Transliteration System

(1) and (2) show a couplet (162,9) from the poet Mirza Ghalib (1797–1869): (1)
is written in Urdu, (2) is the same couplet, but written in Devanagari (Hindi).
Note that Urdu is written right-to-left, whereas Hindi is written left-to-right.

(1)

(2)

Although the two writing systems differ markedly, the languages they encode
are structurally almost identical. Given this fact, our general strategy in building
a morphological analyzer is to produce a resource that can be used for text
written in both Urdu and Hindi. This involves building a transliteration system
that goes from whichever script is being processed to a common ASCII base and
then being able to generate back out from the common ASCII base to either one
of the scripts. That is, both the texts in (1) and (2) are rendered as in (3).

2 Modern Hindi naturally also bears traces of language contact with Persian, but not
as markedly as Urdu.

3 Unicode fonts for this script have only recently been developed (e.g., see
http://www.crulp.org; [7]).
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(3) hAN bHalA kar tirA bHalA hOgA
yes good.M.Sg do then good be.Fut.M.Sg
Or darvES kI sadA kyA he
and dervish Gen.F.Sg call.F.Sg what be.Pres.3.Sg
‘Yes, do good then good will happen, what else is the call of the dervish.’

Our transliteration is based on proposals by [8]. Capitalized vowels indicate
length, H marks aspiration, N nasalization, S stands for S and other capitalized
consonants indicate retroflexes.

A transliterator in accordance with our overall strategy has been imple-
mented by [9]. Malik’s HUMTS (Hindi-Urdu Machine Transliteration System)
is written as a cascade of finite-state transducers that transliterate from the
Urdu and Hindi scripts to SAMPA [10], a common underlying phonetic ASCII
alphabet, and back out from SAMPA to the two differing scripts. SAMPA has
been developed to enable coverage of all the world’s languages; however, for the
purposes of Urdu, it is unwieldy and very difficult to read. In integrating Malik’s
work into the Urdu grammar, we will therefore use Glassman’s transliteration
system. Beyond the simple conversion of letters that is necessary to do this, we
anticipate no further (major) problems as HUMTS was written with the same
XFST tools used in our Urdu grammar project.4

2.2 Future Morphology: Illustrating Tokenization Problems

Writing a transliterator that takes one script as an input and is able to output
another script is not an easy task. Many of the problems that arise are discussed
in Malik’s work. In terms of the Urdu Grammar, most relevant to us are problems
of tokenization. In particular, problems associated with the future morphology
in Urdu/Hindi was one of the first to arise.

We already had an example of future usage in (1) and (2). An inspection
of each example will quickly reveal one of the very general problems in dealing
with the Urdu script: while in Hindi, each word is clearly demarcated and easy
to identify, in Arabic-based scripts in general, word boundaries are very difficult
to identify. One must basically know the language (i.e., be able to access the
lexical items) in order to be able to read the script.5

Beyond this very general problem, the scripts also encode differences of opin-
ion as to what exactly a word is. This is illustrated in (1) and (2) with respect to
the future form of ‘be’ hOgA. In (1) it is expressed by the last two letter groups
on line one (reading from right to left). In (2), the form is expressed by just one
letter group: the last one (reading from left to right) on line 1. This difference
in encoding reflects an on-going historical change.

The future in Urdu/Hindi is formed as shown in the paradigm (4) for the stem
mAr ‘hit/kill’. The stem is followed by information about person and number
4 Related work has been done by [11], who provide a transliterator into ASCII as well,
but do morphological analysis using the Functional Morphology Toolkit [12].

5 The same is not true for Devanagari, which, being phonetically based, allows a
sounding out of the words.
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(UN/E/EN/O), to which the future marker g is attached. This, finally, is followed
about information about number and gender.

(4) Urdu Future Paradigm
Singular Plural Respect (Ap) Familiar (tum)
M/F M/F M/F M/F

1st mAr-UN-g-A/I mAr-EN-g-E/I
2nd mAr-E-g-A/I mAr-EN-g-E/I mAr-O-g-E/I
3rd mAr-E-g-A/I mAr-EN-g-E/I
mAr- ‘hit’

The future paradigm is thus a relatively complex assemblage of morpho-
logical pieces. The person/number morphology is identical to that used in the
subjunctive paradigm, shown in (5). To these essentially subjunctive forms, a -g-
is attached to mark the future. The consensus in the available literature is that
the future -g- is derived from a Sanskrit participle of the verb gā ‘go’ [13], [14].
This analysis immediately explains the gender and number agreement morphol-
ogy (A/I/E) exhibited by the future: Participles functioned like adjectives and
so generally had number and gender agreement morphology. This morphology
has simply been retained in all the verb forms in Urdu/Hindi that derive from
old participles (i.e., the perfect, imperfect and progressive forms), including the
future.

(5) Urdu Subjunctive Paradigm
Singular Plural Respect (Ap) Familiar (tum)

1st mAr-UN mAr-EN
2nd mAr-E mAr-EN mAr-O
3rd mAr-E mAr-EN
mAr- ‘hit’

The old participle of the verb gā ‘go’ used to form its own word. Indeed, as
recently as a century ago, clitics like the emphatic hI ‘even/only’ could intrude
between the -g- and the stem+subjunctive morphology. This is illustrated in (6).

(6) kAh-ũ=hi=ga
say-1.Sg=Emph=Fut.M.Sg
‘I will say (it), of course.’ (Hindi, from Kellogg 1893:§399)

These examples suggest that while the old participle was no longer function-
ing as an independent word a century ago, it retained some prosodic indepen-
dence and was probably functioning as a clitic (indicated by the glossing with
‘=’). This is entirely consonant with well known processes of historical change
whereby words are reanalyzed as clitics and then reanalyzed further as inflec-
tional morphology as they move from expressing content words to functional
elements (e.g., [15], [16]).

The examples in (6) are only marginally possible in modern Urdu, whereas
speakers of Hindi tend to reject them outright. This difference in native speaker
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judgements may or may not be correlated with the differences encoded in the
writing system. Recall that in written Hindi, the future is expressed in one word
together with the subjunctive stem. In Urdu however, the stem+subjunctive and
the future+number+gender are generally written as two separate words.

In both languages all the pieces of morphology involved nevertheless perform
exactly the same function, so our morphological analyzer should treat them in
parallel. In the morphological analyzer, the future -g- is treated as an inflectional
morpheme and a form like mArEgI would be analyzed as in (7).

(7) mArEgI ⇔
mAr+Verb+Subjunct+2P+Sg+Fut+Fem
mAr+Verb+Subjunct+3P+Sg+Fut+Fem

The tokenizer thus has to turn the Urdu input of mArE gI into mArEgI. This
in and of itself does not present a problem, since the deletion of white space is
not a problem. In principle, since forms like marE are also words in their own
right, a serious ambiguity problem could arise. However, as gI/gA/gE are not
words in their own right,6 we do not anticipate serious problems with our basic
approach.

In sum, the future morphology discussed here provides a good example of
the potentially problematic factors that must be dealt with. Another, perhaps
more interesting problem posed by Urdu is that of reduplication.

3 Reduplication

Urdu/Hindi, like most of the South Asian languages, tends to use reduplication
quite frequently [17]. All content words can generally be reduplicated and the
effect of the reduplication is to either strengthen/emphasize the original word or
to express something like “and those kinds of things”.

(8) a. kHAnA vAnA
food.M.Sg. Redup
‘food and those kinds of things’

b. tHanDA tHanDA
cold.M.Sg. Redup
‘ice cold (cold cold)’

c. kHAtA vAtA
eat.Impf.M.Sg Redup
‘he is eating and such’

There are two different kinds of reduplication strategies. In the one illustrated
by (8a), the onset of the content word is replaced with another consonant. This
consonant could be either v, t. (T) or S (S). In another strategy ((8b)), the word
is simply repeated. We will refer to this latter strategy as full word reduplication,
the former strategy is generally described as echo formation or echo reduplication.
6 gA is a word, namely the bare form of the verb ‘sing’. However, this would never (or
rarely) occur in conjunction with a subjunctive verb.
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3.1 General Strategy

Generally, reduplications are written as seperate words in both Urdu and Hindi.
The fundamental problem facing the tokenizer is thus the fact that a reduplicated
item must be recognized. The transliteration system will yield two words, as
shown in (9), for example, which are separated by white space.

(9) calnA valnA
walk.Inf.M.Sg Redup
‘walking and such things’

Our morphological analyzer basically follows the solution for full stem redu-
plication presented by [6] for Malay. The basic lexicon built independently of
reduplication for nouns, verbs, adjectives and other content words interacts with
reduplicating regular expressions.

The morphological analysis of reduplications as in (9) is shown in (10). That
is, within the morphological analyzer, the reduplicated form is simply registered
via the tag +Redup and is passed on as such to the Urdu grammar, which can
decide how to use this information (or whether to use the very subtle semantic
information implied by reduplication at all).

(10) cal+Verb+Inf+Masc+Sg+Redup

In the Malay example presented by Beesley and Karttunen (B&K), the orig-
inal word and the reduplicated part are merged into a single word. Our imple-
mentation differs from theirs in that we need to deal with the white space. Cur-
rently, we do this by introducing the multiword %ˆHyphen into the lexc source file
(which encodes the basic lexicon plus the morphological continuation classes).
When dealing with reduplication, we thus internally represent the two words
involved as being connected with a hyphen.

Reduplication itself is managed, as in B&K, via the introduction of the multi-
character brackets "^[" and "^]" in order to mark the domain of reduplication.
The right bracket is additionally marked with the characters ˆ2. The lower side
of the finite-state network thus ends up being marked up via the brackets "^["
and "^2^]". As discussed in B&K, the compile-replace algorithm can be applied
to the resulting network — compile-replace essentially treats the marked up
lower side as a regular expression which is to be interpreted. The overall effect
is that something like calnA ends up being doubled to calnA-calnA due to the
ˆ2 specification (and the addition of the hyphen).

We illustrate our approach more concretely with respect to just the adjective
‘strange’ in terms of full word reduplication. The code illustrates a simple lexc
file which allows for two possibilities for all adjectives. In one, a bracketing is
begun which is intended for the reduplicated version. This is notated by the
regular expression ˆ2, which results in the doubling of the material delimited by
the brackets. The bracket filter from B&K removes any unmatched brackets that
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may have resulted from paths which contain only one bracket.7 The bracket filter
and the lexc file are composed, and the compile-replace algorithm is applied to
the resulting network. Compile-replace translates the reduplication [...]ˆ2 into
well-formed strings of this type: [...]%ˆHyphen[...]%ˆHyphen. In a last step a
regular expression (illustrated below as hyph.regex) then replaces the hyphens
(%ˆHyphen) used for internal management of the reduplicated forms with a
white space.

* !AdjRedup.txt, lexc file just for ajIb ’strange’
* Multichar_Symbols
* +Adj +Unmarked +Redup +Intensifier
*
* Lexicon Root
* 0:^[[{ Unmarked ;
* Unmarked;
*
* Lexicon Unmarked
* ajIb Ending ; !the adjective ‘strange’
*
* Lexicon Ending
* +Adj+Unmarked+Redup+Intensifier:}%^Hyphen]^2^] # ;
* +Adj+Unmarked:0 # ;
********************************************************
* ! bracketfilter.regex --- bracket filter from B&K
* [ ~ [ ?* "^[" ~$["^]"] ] & ~[ ~$["^["] "^]" ?* ] ];
********************************************************
* !hyph.regex, removes ’%^Hyphen’ and inserts a white space
* [ %^Hyphen -> 0 || %^Hyphen ?* _ ]
* .o.
* [ %^Hyphen -> " " ] ;

3.2 Echo Reduplication

Recall that echo reduplication further requires the use of a different conso-
nant/onset in the reduplicated form ((11)). In order to deal with this further
complication, we introduce replace rules to effect the phonological change and
further make use of flag diacritics (@P.ECHO.v@ in the rules below, cf. B&K) in
order to flag that the echo type of reduplication has taken place.

(11) AlU vAlU
potato.M Redup
‘potatoes and such’

7 This can be done differently, by controlling the continuation paths of the lexc file
more tightly, however, in the long run, this results in a conceptually more complex
structure of the lexc file and it is thus preferable (and more efficient) to simply apply
the bracket filter on unwanted paths.
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The phonological replace rules shown below exemplify just two cases. In
reduplicating contexts (i.e., contexts which have been marked up by a Hyphen),
either the first consonant8 is replaced by a v, or if there is no onset as in (11), a
v is inserted. We have formulated similar rules for reduplications with t. (T) or S
(S).

Cons stands for the set of consonants (this is predefined). The phonological
replacement rule below thus operates on Consonants or Vowels (listed here in-
dividually, though this could also be done differently). Consonants are replaced
by a v (or T or S in the rules not shown here). If there is no consonant, then a
v (or T or S) is inserted before the vowel.

Cons -> v || ?* %^Hyphen _ ?* "@P.ECHO.v@"
.o.
a -> v a , e -> v e , i -> v i, o -> v o,
u -> v u || ?* %^Hyphen _ ?* "@P.ECHO.v@";

We thus implement the two differing reduplication strategies by using a range
of FST methodologies. Full word reduplication is treated via a markup that feeds
into the compile-replace algorithm. Echo reduplication additionally requires the
use of phonological replace rules and flag diacritics.

Overall, allowing for reduplication results in a threefold increase of the basic
lexicon. However, this increase is dealt with in a conceptually elegant manner and
can be achieved by writing just a few extra lines of code (regular expressions)
that are composed with the source lexc file. In our approach, we have based
ourselves on the B&K solution — the successful application of their basic idea
to Urdu provides a confirmation of the basic principles of finite-state based non-
concatenative morphology formulated by B&K.

4 Issues in Potential Ambiguity

In this final section of the paper, we address some issues that arise with respect to
the morphology-syntax interface. Recall from the discussion of the Urdu/Hindi
future in section 2.2 that the future is formed in combination with subjunctive
forms. Our present analysis of future forms is thus as in (12).

(12) mArUNgI ⇔
mAr+Verb+Subjunct+1P+Sg+Fut+Fem

From the perspective of the syntax (and semantics), marking these forms
as subjunctive as well as future is unnecessary as every future form also carries
some subjunctive meaning with it (this has been dubbed contingent future in the
literature). Experience gathered with respect to the German ParGram grammar
[1] has shown that it is ultimately better to eliminate tags of this kind from the

8 So far, all the words in our lexicon have just simple consonants as onsets — this
seems to be a strong tendency, if not a hard phonotactic constraint of Urdu.
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morphology, since dealing with them complicates the morphology-syntax inter-
face. Given that there are simple subjunctive uses as in (13), the interpretation
of the +Subjunct tag within the morphological component will need to differ
depending on whether it is found in conjunction with future morphology or not.

(13) mArUN ⇔
mAr+Verb+Subjunct+1P+Sg

We have therefore decided to eliminate the +Subjunct tag from the morpho-
logical analysis of future forms altogether even though the morphology involved
is in actual fact the subjunctive morphology.

A somewhat different version of this same problem is found with respect to
Urdu/Hindi infinitives as in dEkHnA ‘to look/looking’, which can also be used
as verbal nouns. To date, the morphology provides analyses as in (14).

(14) dEkHnA ⇔
dEkH+Verb+Inf+Masc+Sg

It will be imperative to know that infinitives can also function as nouns in the
grammar. It might therefore be necessary to anticipate this in the morphology
and provide both the analyses in (15) for the syntax.

(15) dEkHnA ⇔
dEkH+Verb+Inf+Masc+Sg
dEkH+Noun+Deverb+Masc+Sg

However, this would result in quite a bit of ambiguity within the morphologi-
cal analyzer. Our current solution, shown in terms of LFG functional annotations
in (16) is therefore to add the information that this form could optionally (de-
noted by the round brackets) be used as a noun whose type is deverbal as part
of the definition of the morphology-syntax interface.

(16) +Inf ((↑NTYPE) = deverbal).

The abstract morphological tag +Inf is thus annotated with the functional
information that it could also be used as a noun, in which case it is deverbal.
This solution pushes the ambiguity from the morphology into the syntax, but
since the syntax can eliminate the ambiguity by means of unifying in other
information, it may be better to deal with the ambiguity in the syntax, rather
than in the morphology, where no contextual information is available. We are
currently experimenting with both possible solutions to determine the better
one.

5 Conclusion

In this paper, we have introduced and addressed a number of issues that arise
in the process of building a finite-state morphological analyzer for Urdu. Our
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approach allows for an underlyingly similar treatment of both Urdu and Hindi via
a cascade of finite-state transducers that transliterates the very different scripts
into a common ASCII transcription system. As this transliteration system is
based on the XFST tools that the Urdu/Hindi common morphological analyzer
is also implemented in, no compatibility problems arise.

We further explored reduplication in Urdu, again basing ourselves on solu-
tions proposed with respect to XFST and show how differing reduplication pat-
terns in Urdu/Hindi can be dealt with elegantly with the finite-state methods
proposed by B&K.

Finally, we addressed some potential ambiguity problems and discussed diffe-
rent ways of solving them. The discussion here mainly revolves around where and
how information should be encoded with respect to the morphology-syntax in-
terface that has been defined between finite-state morphological analyzers and
LFG grammars as part of the ParGram project.
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Perfect Hashing Tree Automata
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Abstract. We present an algorithm that computes a function that as-
signs consecutive integers to trees recognized by a deterministic, acyclic,
finite-state, bottom-up tree automaton. Such function is called minimal
perfect hashing. It can be used to identify trees recognized by the au-
tomaton. Its value may be seen as an index in some other data structures.
We also present an algorithm for inverted hashing.

1 Introduction

Hashing [1] is a technique where a key is transformed into an integer in a lim-
ited range with a hash function. Usually, there are far more possible keys than
integers in the range, so conflicts where different keys are mapped into the same
integers are unavoidable. However, in certain contexts, it is possible to map n
keys without any conflicts. A function that implements it is called a perfect hash
function. If it maps n keys into a consecutive range of n integers, it is called a
minimal perfect hash function.

The nature of a hash function and its application depends closely on the
hash key. Minimal, deterministic, acyclic, finite state automata (FSAs) provide
a minimal perfect hash function on strings [2], [3]. This allows for fast and
compact representation of dictionaries storing arbitrary information associated
with words. An insight from perfect hashing with FSAs is useful in developing
perfect hashing with deterministic, acyclic, bottom-up tree automata (DTAs),
although the latter case is more complex. DTAs store a finite set of finite trees.
Trees are ubiquitous in both computer science and natural language processing.
They are used e.g. for storing the result of parsing a program or a sentence. A
language that is best suited for parsing with DTAs is XML. It is widely used
both in computer science and in natural language processing. For example, in
natural language processing, it is used for annotating corpora. Perfect hashing
with tree automata implements a mapping from trees to integers. It can be used
for identification of trees, which allows for e.g. retrieval of arbitrary information
associated with the given tree, like all locations in a corpus where the given
parse tree occurs. The inverse mapping has an even greater potential, as a tree
automaton can be used as a compact representation for a forest of trees. A
mapping from an integer to a tree makes it possible to retrieve fast a given tree.
A dictionary associating words with trees can be implemented as a perfect hash
FSA associating words with numbers, a vector associating word numbers with
tree numbers, and a perfect hash DTA.
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The rest of the paper is structured as follows: Section 2 provides basic def-
initions, while Section 3 discusses issues related to counting trees in a tree au-
tomaton. An implementation of a minimal perfect hash function and its inverse
is given in Section 4, while their complexity is investigated in Section 5. The
paper ends with conclusions given in Section 7.

2 Basic Definitions

A finite-state, bottom-up tree automaton [4] is defined as A = (Q, Σ, Δ, F ),
where Q is a finite set of states, Σ is a finite set of symbols called the alpha-
bet, Δ ⊂ ⋃

i=0
mΣ × Qm+1 is a final set of transitions, and F ⊆ Q is a set

of final states. Another name for bottom-up is frontier-to-root. Another name
for final states is accepting states. This definition is similar to the definition of
finite-state automata, except for two differences: there is no initial (start) state,
and a transition is a relation between an alphabet symbol and an arbitrary
number of states (and not necessarily two states, as in case of finite-state au-
tomata). In a deterministic, finite-state, bottom-up tree automaton (or a DTA
for short), for each (σ, q1 , . . . , qm) ∈ Σ × Qm , there is at most one q ∈ Q such
that (σ, q1 , . . . , qm , q) ∈ Δ. In that case, we can define a function δ:

δm(σ, q1 , ..., qm) =
{

q if q ∈ Q is such that (σ, q1 , ..., qm , q) ∈ Δ
⊥ if no such q ∈ Q exists (1)

States q1 , . . . , qm are source states, while q is a target state. Finite-state
automata accept strings. Tree automata accept trees. Trees are defined as follows:

1. Each symbol σ ∈ Σ is a tree.
2. For each t = σ(t1 , . . . , tm), where σ ∈ Σ, and t1 , . . . , tm , m ≥ 0 are trees, t

is a tree.

Any subset of all trees defined over an alphabet Σ is called a tree language
TΣ . We can define an extended transition function on trees:

δA(t) =
{

δ0 (σ) if t = σ ∈ Σ
δm(σ, δA(t1 ), . . . , δA(tm)) if t = σ(t1 · · · tm) ∈ TΣ −Σ

(2)

A language of a state q in an automaton A is a set of trees such that the
extended transition function returns q for each of them:

LA(q) = {t ∈ TΣ : δA(t) = q} (3)

A language of the whole automaton A is the union of the languages of all its
final states:

L(A) =
⋃

q∈FLA(q). (4)
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A language of a transition τ = (σ, q1 , . . . , qm , q) ∈ Δ is the subset of LA(q)
recognized by following τ :

LA(τ) =
{

σ τ = (σ, q)⋃
(t1 ,...,tm)∈L(q1 )×...×L(qm) σ(t1 , . . . , tm) τ = (σ, q1 , . . . , qm , q) (5)

A DTA A is acyclic, when L(A) is a finite set of finite trees. From this moment
on in the paper, when we refer to automata, we mean deterministic, acyclic
finite-state, bottom-up tree automata without useless states, unless otherwise
specifically stated.

3 Numbering Trees in a DTA

A tree t has number i (counting from 0 to n−1, where n = |L(A)| is the number
of trees recognized by the automaton) if there are i trees that precede it in an
order imposed by the automaton. To compute i, we have to count the trees that
precede t. The first step is to compute the number of trees that precede the
current tree t in the language of the state δA(t):

ιA(t) = |{t′ : δA(t′) = δA(t) ∧ t′ ≺ At}| (6)

This can be done recursively. Let t = σ(t1 , . . . , tm), τ = (σ, δA(t1 ), . . . , δA(tm),
q), and q = δA(t). Then ιA(t) is the sum of the number of trees that precede t
but use the same transition τ , and the number of trees recognized while following
transitions preceding τ :

ιA(t) = ρA(t) +
∑

τ ′=(σ′,q′1 ,...,q′m′ ,q)≺Aτ |LA(τ ′)| (7)

The language of a transition (see Equation (5)) can also be defined recursively:

LA(τ) =
{

σ if τ = (σ, q)⋃
(t′1 ,...,t′m)∈LA(q1 )×...×LA(qm)σ(t′1 , . . . , t′m) if τ = (σ, q1 , . . . , qm , q)

(8)
Its cardinality is:

|LA(τ)| =
{

1 if τ = (σ, q)∏
i=1

m |LA(qi)| if τ = (σ, q1 , . . . , qm , q),m > 0 (9)

The key component in (9) is |LA(q)|. We rewrite definition (3) recursively:

LA(q) =
⋃

τ=(σ,q1 ,...,qm ,q)∈Δ,m≥0 |LA(τ)| (10)

so that its cardinality can easily be computed as:

|LA(q)| =
∑

τ=(σ,q1 ,...,qm ,q)∈Δ,m≥0 |LA(τ)| (11)
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To compute ρA(t), i.e. the number of trees that reach q = δA(t) by the
same transition τ and precede t, we need to introduce some order of trees in the
language LA(τ). Let τ = (σ, q1 , . . . , qm , q), and let next(ti) be the next subtree in
LA(qi). Then ∀1≤j<k≤mσ(t′1 , . . . ,next(t′j ), . . . , t′k , . . . , t′m) ≺ Aσ(t′1 , . . . , t′j ,
. . . ,next(t′k ), . . . , t′m), where t′i ∈ LA(qi). So

ρA(t) =
{

1 if t ∈ Σ∑
i=1

m ιA(ti) ·
∏

j=i+1
m |LA(δA(tj ))| if t = σ(t1 , . . . , tm) ∈ TΣ −Σ

(12)
In practice, we would use ρA

i defined as:

ρA
i(t) =

{
1 if i = 0
ιA

i(t) = ρA
i−1 (t) · |L(δA(ti))|+ ιA(ti) if 1 ≤ i ≤ m

(13)

Thus, ρA(t) = ρA
m(t).

A tree t is recognized if δA(t) ∈ F . However, there may be more than one
final state, and languages of final states are disjoint. We assume that final states
f i ∈ F are ordered: f1 ≺ A . . . ≺ Af |F |. A tree number for a tree t is thus ιA(t)
plus

∑
F�f ′≺AδA(t)|LA(f ′)|.

4 Perfect Hash Function

The perfect hash function is given on Figure 1. The argument is a tree t, for
which we want to obtain the hash value. A call to function rh in line 2 returns
a pair (δA(t), ιA(t)). The loop in lines 4–6 adds the number of trees belonging
to languages of those final states that precede δA(t). If t �∈ L(A), i.e. either
δA(t) �∈ Q or δA(t) �∈ F , hA(t) returns -1. In function rh, the loop in line 13 finds
numbers associated with subtrees ti of t, and the loop in lines 14–20 computes
ρA

i(t). In lines 22–25,
∑

τ ′(σ′,q′1 ,...,q′m′ ,q)≺Aτ |LA(τ ′)| is added to that value.
Inverse perfect hash function is given on Figure 2. The parameter n is the tree

number. First, we process the final states f i one by one, keeping the number
of trees recognized at all preceding final states in the variable h. If h ≤ n <
h + |LA(f i)|, then the tree number n belongs to the language of f i , and it is
(n − h)-th tree in that language. Function rh−1 takes two parameters: a state
q being the root of a subtree, and a tree number among all trees in LA(q). All
transitions reaching q are tried in order, and the number of trees recognized
while following them is added to variable h. The process continues until for the
current transition τ i , h ≤ n < h + |LA(τ i)|. Then the subtree we are looking for
belongs to LA(τ i). To calculate the subtree number among LA(τ i), the subtree
t is decomposed into individual subtrees t1 , . . . , tmi

with roots being the states
q1 , . . . , qmi

. The loop in lines 17–20 builds the tree t from its subtrees. Basically,
it calculates the inverse of ρA

i(t).
Note that the values |LA(q)| for all states, and |LA(τ)| for all transitions can

be calculated in advance and stored in appropriate states and transitions.
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1: function hA(t)
2: (q, v)← rh(t);
3: if q ∈ F ∧ v ≥ 0 then
4: foreach p ∈ F : p ≺ Aq
5: v ← v + |LA(p)|;
6: end foreach;
7: return v;
8: else
9: return -1;
10: end if ;
11: end function;

12: function rh(t = σ(t1 , . . . , tm))
13: h← 0; for i← 1 to m do (qi , vi)← rh(ti) end for;
14: for i← 1 to m
15: if qi = ⊥ ∨ vi = −1 then
16: return -1;
17: else
18: h← h · |LA(qi)|+ vi ;
19: end if ;
20: end for;
21: q ← δ(σ, q1 , . . . , qm);

Let N = |{(σ, q1 , . . . , qm , q) ∈ Δ}|;
Let τ1 ≺ A . . . ≺ AτN , τ i = (σi , q1i , . . . , qmi , q);

22: i← 1;
23: while τ i < (σ, q1 , . . . , qm , q) do
24: h← h + |LA(τ i)|; i← i + 1;
25: end while;
26: return (q, h);
27: end function;

Fig. 1. Perfect hash function

5 Computational Complexity

The time complexity of the perfect hash function given on Figure 1 is O(|t| +
|F |+|Δ|), where |t| is the number of tree nodes – defined below in (14), |F | is the
number of final states, and |Δ| = |{τ : τ ∈ Δ}| is the number of transitions in
the automaton (this could be replaced with |Δ| = ∑

τ∈Δ|τ |, where |τ | = m + 1,
in case we were not to store |LA(τ)| in transitions).

|t| =
{

1 if t = σ ∈ Σ
1 + |t1 |+ . . . + |tm | if t = σ(t1 , . . . , tm) ∈ TΣ −Σ

(14)

In function hA(t), we have one loop that executes at most |F | times, and consists
of adding a constant to a variable (a constant-time operation), as well as a call to
function rh. In function rh, there is a loop in lines 23–25 that adds a constant to



102 Jan Daciuk

1: function hA
−1 (n)

2: h← 0;
3: for i ∈ 1, . . . , |F | : f1 ≺ A . . . ≺ Af |F | do
4: if h + |LA(f i)| > n then
5: return rh−1 (f i , n− h);
6: else
7: h← h + |LA(f i)|;
8: end if ;
9: end for;
10: end function;

11: function rh−1 (q, n)
Let N = |{(σ, q1 , . . . , qm , q) ∈ Δ}|;
Let τ1 ≺ A . . . ≺ AτN , τ i = (σi , q1i , . . . , qmi , q);

12: i← 1; h← 0;
13: while h + |LA(τ i)| ≤ n do
14: h← h + |LA(τ i)|; i← i + 1;
15: end while;
16: h← n− h; th← |LA(τ i)|;
17: for j = 1, . . . , mi do
18: th← th/|L(qj ,i)|;
19: tj ← rh−1 (qj ,i , h/th); h← h− (h/th);
20: end for;
21: return σi(t1 , . . . , tmi );
22: end function;

Fig. 2. Inverse perfect hash function

a variable and increments a variable – also constant-time operations. As only |Δ|
transitions can precede the current one across all calls to rh, this loop contributes
an O(|Δ|) component to the time complexity. Another loop in the same function
in lines 14–21 contains constant-time operations and one recursive call to rh.
Since there is one call to rh per every node of the tree, this contributes |t| to the
time complexity.

There is one important trick that eliminates the O(|Δ|) component, and also
reduces the size of the automaton as we are no longer forced to keep back-
transitions. Instead of storing |LA(τ)| in transitions, we store∑

τ ′∈Δ:τ ′≺Aτ |LA(τ ′)| there. The computation in lines 24–26 is then no longer
needed. The same can be done with final states, i.e. they can hold the number of
trees recognized in those final states that precede the current one. This eliminates
the O(|F |) component, giving us O(|t|) time complexity.

For the inverse perfect hashing, the time complexity is O(|t| + |F | + |Δ|),
regardless of the use of the trick described above. We also have to keep back
transitions, as we need to find a transition (or a final state) with the appropriate
value. The loop in function hA

−1 (t) executes at most |F | times, with all but one
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run containing constant-time operations. The loop is finished with a single call
to rh−1 (q, n). Inside that function, the loop in lines 13–15 counts transitions –
at most |Δ| across all calls, and it calls itself – once per tree node, giving the |t|
component.

6 Example

q4

a q2 q2 b q2 q3 q1

q2 q3

q0 q1

a q0 q0 b q0 q1 a q1 q0 a q1 q1 b q1 q1

a bt1 t2

t3 t4 t5 t6 t7

t8 t9

2 3

4 6

10

Fig. 3. A DTA A = ({q0 , . . . , q4}, {a, b}, Δ = {t1 , . . . , t9}, F = {q2 , q4}). Numbers by
circles representing states, or by boxes representing transitions, give the cardinalities
of the languages of states and transitions, respectively. If the number is not given, it is
1.

A DTA recognizing trees:

0. a(a, a),
1. b(a, b),
2. a(a(a, a), a(a, a)),
3. a(b(a, b), a(a, a)),
4. a(a(a, a), b(a, b)),
5. a(b(a, b), b(a, b)),
6. b(a(a, a), a(b, a), b),
7. b(b(a, b), a(b, a), b),
8. b(a, (a, a), a(b, b), b),
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9. b(b(a, b), a(b, b), b),
10. b(a(a, a), b(b, b), b),
11. b(b(a, b), b(b, b), b)

is given on Figure 3. Let us find the number hA(t) associated with t = b(b(a, b),
a(b, b), b). First, rh(t) is called. It is called on t and recursively on each of its
subtrees. We call rh(b(b(a, b), a(b, b), b)), take the first subtree and call rh(b(a, b)),
then take the first subtree and call rh(a). The last call returns (q0 , 0), since q
is set in line 22, and h, which is set in line 13, cannot be modified in loops in
lines 14–21 and 24–26 as they are not executed. Similarly, rh(b) returns (q1 , 0).
In rh(b(a, b)), the loop in lines 14–21 runs twice, but leaving h = 0. The loop in
lines 24–26 increases h by |LA(t3 )| (the number of trees in languages of preceding
transitions), making rh(b(a, b)) return (q2 , 1). Next, rh(a(b, b)) is called, which
in turn calls rh(b) (twice), which returns (q1 , 0) (twice) as described above. In
rh(a(b, b)), the loop in lines 14–21 leaves h = 0, as no trees precede a(b, b) in
the language of t6 , but the loop in lines 24–26 increases that value by |LA(t5 )|,
i.e. the sun of cardinalities of languages of transitions preceding t6 , making the
function return (q3 , 1). Back in rh(b(b(a, b), a(b, b), b)), the value returned by
rh(b(a, b)) (i.e. 1) is multiplied by |LA(q3 )| = 3 before adding 1 returned by
rh(a(b, b)). The result is 4. Since rh(b) returned (q1 , 0), and |LA(q1 )| = 1, 4
is multiplied by 1, and then 0 is added. Afer having added |LA(t8 )|, the value
returned by rh(b(b(a, b), a(b, b), b)) is then (q4 , 8). Since q2 ∈ F precedes q4 , and
|LA(q2 )| = 2, hA(t) returns 8 + 2 = 10.

Now, let us find which tree has number 10. The process is illustrated in
Table 1.

7 Conclusions

We have presented an efficient implementation for minimal perfect hashing with
finite-state, deterministic, acyclic, bottom-up tree automata. It can be used for
computing an index for trees that can further be used to access additional data
structures associated with the trees. We have also shown how to compute the
inverse perfect hash function, which can help to retrieve trees stored in a compact
way in a tree automaton. Our implementation for minimal automata does not
preserve the order of trees at input. However, when the automata are to be used
in a static way, the order imposed by the automaton can easily be found.

The author wishes to thank Rafael Carrasco and Mikel Forcada for discus-
sions about tree automata during the author’s short visits to Alicante supported
by the Spanish CICyT through grants TIN2006-15071-C03-01 and TIC2003-
08681-C02-01, and for jointly developing a program that helped in testing ideas
presented in this paper. Comments from reviewers helped in improving the pa-
per.
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hA
−1 (10)

i← 1; p← q2 ;
h← 2;
i← 2; p← q4 ;

rh−1 (q4 , 10− 2); rh−1 (q4 , 8)
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Abstract. This paper describes the key aspects of the system SynCoP
(Syntactic Constraint Parser) developed at the Berlin-Brandenburgische
Akademie der Wissenschaften. The parser allows to combine syntactic
tagging and chunking by means of constraint grammar using weighted
finite state transducers (WFST). Chunks are interpreted as local de-
pendency structures within syntactic tagging. The linguistic theories are
formulated by criteria which are formalized by a semiring; these criteria
allow structural preferences and gradual grammaticality. The parser is
essentially a cascade of WFSTs. To find the most likely syntactic readings
a best-path search is used.

1 Introduction

In several natural language processing tasks such as information extraction and
machine translation and especially in corpus linguistics information about syn-
tactic structures is needed. The main interest lies in detecting syntactic relations
between words. This is generally done by building dependency structures of sen-
tences.

This paper presents an approach to dependency parsing which combines
chunking ([1]) and syntactic tagging by means of constraint grammar ([2]).
Chunks are interpreted here as local dependency structures within syntactic
tagging; this approach is related to [3]. The advantages of these two linguistic
theories are linked: robustness is achieved by local structures and underspecified
dependencies and disambiguation is done by a greedy strategy and by a pattern
preference strategy.

Previous work which implements chunking (e.g. [4]) and syntactic tagging
(e.g. [5]) with finite state machines leads to some restrictions and problems:
chunking is implemented with the left-to-right, longest-match replacement oper-
ator [5] with which chunks are marked by brackets and are disambiguated by
a left-to-right, longest-match strategy if there are various chunking possibilities.
But the operator restricts the analysis to unambiguous input; in case of ambigu-
ous input the longest-match is calculated for each input string independently.
Hence, to achieve unambiguous chunking an unambiguous input has to be used.1

1 Additionally, sometimes the left-to-right constraint causes unexpected analyses.
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Furthermore, the operator leads to large finite state machines which require the
limitation of patterns (see [6]). Syntactic tagging is implemented as finite-state
intersection grammar by means of the restriction operator [7], which implements
constraints as elimination rules. With these rules readings can be eliminated in
an ambiguous input. But this implementation lacks the possibility of violating
or preferring (weighting) constraints. Thus the main problem of implementing
chunking and syntactic tagging is the way of doing disambiguation.

In the new approach proposed in this paper disambiguation is done by lin-
guistic criteria. These criteria are formalized by a semiring over weights of a
weighted finite state transducer (WFST). Scored dependency structures are gen-
erated over an input by a cascade of WFSTs (i.e. WFSTs are applied sequen-
tially). Then the structures can be ordered on the basis of their weights by means
of linguistic criteria to extract the most likely syntactic readings. This approach
solves the problems mentioned above.

The paper is organized as follows: Section 2 gives basic definitions and nota-
tions. Section 3 is a brief reminder of the used linguistic theories. In sections 4, 5
and 6 the implementation of chunking, syntactic tagging and their combination
with linguistic criteria is presented. Finally, an overview of the system SynCoP
which implements the approach is given in section 7.

2 Definitions and Notations

In our approach syntactic analyses are generated and scored over an input
by a WFST representing a constraint grammar such that syntactic readings
can be judged by linguistic criteria. A weighted finite state transducer T =
(Σ, Δ, Q, q0 , F, E, λ, ρ) over a semiring S is an 8-tuple such that Σ is the fi-
nite input alphabet, Δ is the finite output alphabet, Q is the finite set of
states, q0 ∈ Q is the start state, F ⊆ Q is the set of final states, E ⊆
Q × (Σ ∪ {ε}) × (Δ ∪ {ε}) × S × Q is the set of transitions, λ is the initial
weight and ρ : F �→ S is the final weight function mapping final states to ele-
ments in S.

In this paper individual linguistic criteria are formalized by the notion of a
semiring. Let S �= ∅ be a set and ⊕ (called addition) and⊗ (called multiplication)
binary operations on S, then (S,⊕,⊗, 0̄, 1̄) is called a semiring if (S,⊕, 0̄) is a
commutative monoid, (S,⊗, 1̄) is a monoid and ⊗ distributes over ⊕. Linguistic
criteria are represented by this structure. To judge syntactic readings via addition
an additive idempotent semiring has to be used to create a partial order over S.
Thus a partial order is defined by (a ≤ Sb) ⇔ (a ⊕ b = a). Here a ≤ Sb means
that a is “better” than b in respect to linguistic criteria.

It will be necessary to judge analyses by more than one linguistic crite-
rion; the criteria are ranked by preference. To model this we define the com-
position of additive idempotent semirings as follows: if a linguistic preference
(S1 ,⊕1 ,⊗1 , 0̄1 , 1̄1 ) ! (S2 ,⊕2 ,⊗2 , 0̄2 , 1̄2 ) ! ... ! (Sn ,⊕n ,⊗n , 0̄n , 1̄n) is given
and if for each semiring a partial order is defined by ⊕, then:2
2 The definition is similarly to the cross product of semirings.
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(S,⊕,⊗, 0̄, 1̄) =

(S1 ,⊕1 ,⊗1 , 0̄1 , 1̄1 ) ◦ (S2 ,⊕2 ,⊗2 , 0̄2 , 1̄2 ) ◦ ... ◦ (Sn ,⊕n ,⊗n , 0̄n , 1̄n) =

(S1 × S2 × ...× Sn ,⊕,⊗, (0̄1 , 0̄2 , ..., 0̄n), (1̄1 , 1̄2 , ..., 1̄n)) (1)

The composition ◦ is the vectorization of the individual domains. The operation
⊗ of the semiring (S,⊕,⊗, 0̄, 1̄) is defined as a vectorization too, if
(a1 , a2 , ..., an) ∈ S and (b1 , b2 , ..., bn) ∈ S are given:

(a1 , a2 , ..., an)⊗ (b1 , b2 , ..., bn) = (a1 ⊗ 1 b1 , a2 ⊗ 2 b2 , ..., an ⊗ nbn) (2)

And finally, the operation ⊕ which compares syntactic readings is defined as
follows:

(a1 , a2 , ..., an)⊕ (b1 , b2 , ..., bn) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 , a2 , ..., an) if (a1 , a2 , ..., an) = (b1 , b2 , ..., bn)
(a1 , a2 , ..., an) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕ kbk = ak

with k ≤ n and ak �= bk
(b1 , b2 , ..., bn) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕ kbk = bk
with k ≤ n and ak �= bk

(3)

With this composition it is possible to combine ranked linguistic criteria rep-
resented by several semirings to one semiring. The resulting semiring is now
additive idempotent as well and a partial order can be defined by ⊕.

Syntactic analyses are ordered by linguistic criteria according to their degree
of grammatical acceptance. This is done by a simple comparison: a reading
is better than another or not. That allows structural preferences and gradual
grammaticality. Extracting the most likely readings in a WFST T is a classical
best-path problem. Weights along a path of T are combined by multiplication
and create costs. If several paths are in T their weight equals the addition of
weights of the different paths, that means the “best” cost (see [8]). The most likely
syntactic analyses are simply represented by paths which cause these “best” costs.

A constraint grammar R can be applied by composition in linear time accord-
ing to the size of an input acceptor S. Here, the composition can be computed
in time O(|R||S|) where |R| and |S| denote the number of states of R and S
respectively (cf. [9]). The application of the constraint grammar results in a
WFST which is acyclic. The best-path search can be calculated in O(|Q|+ |E|)
in the acyclic case if Q is the set of states and E is the set of transitions (see [8]).
Thus, the worst case time and space complexity of the application of a constraint
grammar is O(|S|) (cf. [6]).

In the following the ENGCG tagset and the regular expression notation of
[5] (slightly extended) are used.3

3 See appendix for regular expression notation details. Here the precedence is defined
top down. The distinction between the language A and the identity relation which
maps every string of A into itself is ignored.
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3 Linguistic Background

In this section a short summary of syntactic tagging by means of constraint
grammar, chunking and the combination of these two theories is given.

A constraint grammar [2] consists of a set of constraints, which can be seen
as rules which are applied on linear patterns. The analysis starts from a large
number of alternative analyses (syntactic and morphological) that are reduced
by the application of constraints. Syntactic tags are used here to mark depen-
dency relations where every tag represents a special dependency relation within
a clause. In the following example an analysis of the sentence Bill saw the little
dog is given:4

Bill N NOM SG @SUBJ
saw V PAST @+FMAINV
the DET @DN>
little A @AN>
dog N NOM SG @OBJ

(4)

The left column of the example above corresponds to the input sentence, the
middle column to the morphological analyses and the right column shows the
syntactic functions.

Chunks [1] are local constituent structures which are built by two principles:
chunk connectedness and chunk inclusiveness. Chunk connectedness means that
functional elements (e.g. a function word or an empty word) have to be grouped
with their selected thematic elements (e.g. a content word or other chunks)
forming a chunk. In addition to that, chunk inclusiveness claims that every word
has to belong to a chunk with the exception of a distinguished subset of function
words, which can’t be grouped to their selected thematic elements because of
intervening chunks. This function words are called orphaned words. The following
example shows an analysis by chunks of the sentence used above:5

[ØDet Bill][ØComp saw][the little dog][in[the park]] (5)

In our approach, chunks are integrated in the syntactic tagging formalism.
To infer a dependency structure from a constituent structure, a transformation
rule can be applied: a head α governs his dependent β, iff α is the syntactic head
of the constituent and β is its complement. To apply this transformation rule the
syntactic head within a chunk has to be marked by a tag. Furthermore chunks
by themselves have to be marked by a syntactic tag to be integrated into the
syntax of the syntactic tagging. The following example shows this integration:6

[ØDet Bill@HEAD] N NOM SG @SUBJ
[ØComp saw@HEAD] V PAST @+FMAINV
[the little dog@HEAD] N NOM SG @OBJ

(6)

4 syntactic functions: @+FMAINV = finite main verb, @SUBJ = subject, @OBJ =
object, @DN> = determiner, @AN> = premodifying adjective

5 ØDet and ØComp are empty functional elements.
6 The heads in chunks are marked by @HEAD; the morphological analyses and syn-
tactic functions refer to these heads.
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Additionally, orphaned words can also be linked to their chunk by a special tag.
In some languages, for example German, many orphaned words occur. One can
question if chunk inclusiveness holds in all languages. With linking this problem
can be overcome (see [10]).

4 Syntactic Tagging with Linguistic Criteria

Our interpretation of constraint grammar is related to [11]. Instead of imple-
menting constraints as elimination rules constraints are regarded as score rules.
But in addition we use scores to punish and to support patterns.

The constraint optimization criterion which represents the constraint gram-
mar principle is formulated as follows: the patterns which receive the best scores
by the constraints of a constraint grammar are in this sense the most grammati-
cal. The criterion is formalized by the max semiring (R∪{−∞},max,+,−∞, 0);
here the score is coded by numbers: positive numbers support patterns gradually
and negative numbers punish patterns gradually.

To implement a constraint which supports patterns with respect to their
context the optional score operator is defined as follows (it is sufficient to assign
the weights optionally):

A(⇒ ω) B _ C = def [?* B A C 〈ω〉]∗?∗
A(⇒ ω) B _ = def [?* B A 〈ω〉]∗?∗
A(⇒ ω) _ C = def [?* A C 〈ω〉]∗?∗

(7)

In contrast to the restriction operator [7], the optional score operator does not
need the complementation of its operands. Thus, the resulting WFSTs stay small
and transductions can be performed.7

The weights have to be assigned obligatorily (concerning the domain) to
implement a constraint which punishes patterns with respect to their context.
Otherwise the constraints have no effect. Thus, the mandatory score operator is
defined as follows:8

A⇒ ω B _ C = def [∼$Dom(B A C) B A C 〈ω〉]∗ ∼$Dom(B A C)
A⇒ ω B _ = def [∼$Dom(B A) B A 〈ω〉]∗ ∼$Dom(B A)
A⇒ ω _ C = def [∼$Dom(A C) A C 〈ω〉]∗ ∼$Dom(A C)

(8)

With this operator transductions can be performed, too. But the operator is
defined by complementation, hence the operator causes larger WFSTs.

7 Complementation presupposes deterministic finite state acceptors and the deter-
minization of the complement acceptors shows an exponential behaviour concerning
the number of states.

8 The function Dom returns the domain of the constraint patterns. So the regular
language which does not contain the constraint patterns in respect of the domain
can be built by complementation.
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To assign positive or negative potentials to patterns we complete the optional
score operator and the mandatory score operator:

A(⇒ ω) _ = def [?∗ A 〈ω〉]∗?∗
A⇒ ω _ = def [∼$Dom(A) A 〈ω〉]∗ ∼$Dom(A) (9)

In the following an example of a constraint and its application are given.
Let ... a move ... be an input fragment. We define the constraint [@.N.](⇒
10 )[@.DET.] _ to analyse the input fragment as follows:910

@ a DET @DN>
@ move [[N [@SUBJ|@OBJ|@I-OBJ](〈10〉)]|

[V @+FMAINV]]

(10)

With the introduced weight 〈10〉 the reading in which move is a verb can be
suppressed. A constraint grammar is constructed by combining the initial and
the context constraints by composition. The big advantage of this approach is
the possibility to violate constraints; so the application of a constraint grammar
to an input is never empty.

5 Chunking with Linguistic Criteria

The grouping of chunks is formalized on the POS level by patterns which include
the functional element optionally and its selected thematic element and the
elements which can occur between them obligatorily. These patterns are marked
in the input by brackets representing the syntactic projections. This is done by
the optional insertion operator which is defined as follows if A denotes the chunk
pattern and P and S the brackets:

A(→)P...S = def [?∗[0.x.P]A[0.x.S]]∗?∗ (11)

Building chunks with this implementation is not definite because of optional
chunking, optional functional elements, ambiguous possible selections and espe-
cially ambiguous input. The following example this cell structure which includes
the POS sequence [DET|PRON]N[N|V] shows the ambiguous chunking, if the
chunker [[(DET)N∗]|[PRON]](→)%[ ... %] is applied:11

this cell structure
[this] [cell] [structure]
[this] [cell structure]
[this cell structure]

...

(12)

9 The macro “.” is defined as ∼$@ and the symbol “@” is used to mark word borders.
10 For the sake of readability the morphological features are left out in the example.
11 The lexicalized multi-word unit cell structure is treated as a non-lexicalized multi-
word unit like president Kennedy or city Berlin which can also be seen as one the-
matic element.



SynCop 113

The problem of ambiguity arises, because the greedy definition of chunks by
chunk connectedness and chunk inclusiveness is not implemented.

Our approach concerning longest match is based on the work of [6] and [12].
There, a longest match constraint is implemented using the weights of a WFST.
In our approach, the longest match is formalized by the tropical semiring (R ∪
{∞},min,+,∞, 0) and is implemented as follows: intra-chunk symbols receive
a high negative number to prefer exhaustive grouping and brackets receive a low
positive number to prefer large groupings. Following the example above, words
within chunks get the weight 〈-1〉 and bracket pairs the weight 〈0.1〉; the syntactic
readings are ordered by their longest match satisfaction:

-2.9 [this cell structure]
-2.8 [this] [cell structure]
-2.7 [this] [cell] [structure]

...
0 this cell structure

(13)

The analysis on the top represents the longest match (with the weight −2.9). It
is possible to disambiguate chunking with the help of this greedy strategy.

Note that this approach is inconsistent in one case: Let a∗ be the chunk pat-
tern and let a1 a2 ... an be the input. The result of the chunking contains
the weighted strings [ ... | 〈ω1 〉%[a1%]%[a2%] ... %[an%] | 〈ω2 〉%[a1a2 ...
an−1%]an | ... ]; there exists an n with ω1 > ω2 but there also exists an-
other n with ω1 ≤ ω2 . It is possible that the result of the multiplication of the
bracket costs contains the inverse of the cost assigned to a symbol within chunks.
Hence in case of ambiguous input problems can arise.

To avoid this problem we formulate the disambiguation by chunk connect-
edness and chunk inclusiveness as criteria. The two criteria are ranked by pref-
erence: chunk inclusiveness ! chunk connectedness. The criteria say that words
should belong to chunks primarily and words should form large chunks secondar-
ily; that means functional elements should be grouped to their selected thematic
elements. The chunk connectedness criterion and the chunk inclusiveness crite-
rion are formalized separately by the tropical semiring (R∪ {∞},min,+,∞, 0).
Following the approach above the criteria are implemented by assigning negative
numbers to symbols within chunks in respect of chunk inclusiveness on the one
hand and assigning positive numbers to brackets in respect of chunk connect-
edness on the other hand. The optional insertion operator is now adjusted as
follows:

A(→)P...S = def [?∗[0.x.P][A.o.[?〈−1, 0〉]∗][0.x.S]〈0, 1〉]∗?∗ (14)

This implementation works on ambiguous input and disambiguates the input
locally according to the linguistic criteria.12 No complementation operation is
used, hence transductions can be performed and the resulting WFSTs stay small
12 With the given linguistic criteria the acceptance of the syntactic readings [this] [cell

structure] and [this cell] [structure] equals. Such ambiguities should not be solved
within this approach; the remaining ambiguities have no consequences. But in [10]
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in size. Furthermore, the chunking can be affected by a later step because all
chunking possibilities are enhanced.

To build a chunker with several planes of projection, several chunk types are
built by the optional insertion operator and combined by composition. If several
chunk types should compete within one level they are combined by union. Then
the Kleene star is applied.

6 Combining Syntactic Tagging with Chunking

To integrate chunking within syntactic tagging, the syntactic heads in chunks are
marked and the chunk itself is labeled with potential syntactic functions. This is
achieved by the optional insertion operator. The following example shows this:

[DET N[0.x.@HEAD]](→)%[ ... %][@SUBJ|@OBJ|@IOBJ] (15)

Constraints can refer to chunks by their brackets and functions.
Via constraints it should be possible to restrict chunking to resolve garden-

path effects which result from the greedy implementation. The problem is com-
parable to the late closure parsing principle [13] and is shown by the following
example (the example is taken from [14]):

1. ∗[the emergency crews] really hate is [family violence]
→ garden-path effect

2. [the emergency] [crews] really hate is [family violence]
→ resolved

In order to do this, the constraint optimization criterion has to be ranked over
the criteria concerning chunking. But the chunking should not be restricted by
constraints in every case. Hence we distinguish between two kinds of constraint
optimization criteria: strong and weak. The following ranking is used: strong
constraint optimization ! chunk inclusiveness ! chunk connectedness ! weak
constraint optimization. Now an analogical semiring can be built by composition.

Consequently, a constraint grammar contains both chunking and constraints.
Here it is possible to assign costs concerning the weak constraint optimization
criterion to chunk internal patterns. The advantage of combining chunking and
constraints is obvious: robustness is reached by underspecified and local struc-
tures and the input is disambiguated by chunking and by constraints. Thus very
robust and rich parsing is possible while the WFSTs of a constraint grammar
stay small in size.

7 The System

SynCoP (Syntactic Constraint Parser) depends on the Potsdam Finite State
Library (FSM<2.0>) [15], which makes it possible to change semirings via a

a criterion is presented which implements a left-to-right preference strategy which
eliminates these ambiguities.
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template. The system consists of a grammar compiler and a grammar applier.
The grammar compiler takes an XML specification which contains definitions
concerning constraints and chunking and builds a constraint grammar which
consists of a cascade of WFSTs. This constraint grammar is used by the grammar
applier to parse ambiguous input which is the result of the TAGH morphology
[16].13

So far our goal is not to eliminate all morphological ambiguities but to extract
dependency structures. Material which is not integrated into the dependency
structures is not disambiguated. Our current hand-written grammar for German
newspaper texts is compiled to a cascade of five WFSTs:

(1) morphology interface (48 states, 12415 transitions)
(2) chunking (70501 states, 246535 transitions)
(3) local dependency structures (6573 states, 356750 transitions)
(4) embedded clauses (1609 states, 188570 transitions)
(5) main clauses (2515 states, 346788 transitions)
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Fig. 1. Number of states and transitions in respect of the level of analysis

Level (1) does simple transductions mapping different POS tagsets and features
and introduces possible main-clause and sub-clause borders and potential syn-
tactic functions. Level (2) performs the chunking (NP-chunks, PP-chunks, AP-
chunks) and chunk labeling with potential syntactic functions. Level (3) links
13 The TAGH morphology contains information about lexicalized multi-word units.
Hence, lexicalized and non-lexicalized multi-word units are discriminated.
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orphaned words and disambiguates modifier functions or conjunctions which are
related to chunks. The main reason for the large WFSTs concerning level (2) and
(3) is the modeling of agreement in respect of case, number and gender. Finally
level (4) disambiguates the head functions for embedded clauses and level (5)
does the same for main clauses, while main-clauses and sub-clauses are detected.

During the analysis by our constraint grammar the resulting WFST grows
level by level before the most likely syntactic readings are extracted by a best-
path search. This is shown by the analysis of the German sentence der Mann, der
das Auto auf dem Parkplatz lieben wird, weint. (the man, which is going to love
the car at the parking lot, cries.).14 15 The steps of this analysis concerning the
number of states and transitions are shown in figure 1. Here, the number of states
and transitions concerning the “normal” application of the constraint grammar
is shown by variant 1. The input WFST has 158 states and 249 transitions.
However the final result has 21406 states and 48135 transitions. The reason for
that rapid growth is redundancy: ambiguous structures are looped through the
levels instead of being resolved as early as possible.

To diminish this rapid growth we use a local disambiguation strategy. Mate-
rial within chunks is never affected by constraints of higher levels; hence disam-
biguation can be performed within chunks without eliminating readings which
are necessary for later steps. The same holds for sub-clauses. To do so, we im-
plement a best-path search which refers to chunk and sub-clause brackets: after
level (2) we disambiguate within chunks and after level (4) we disambiguate
within sub-clauses. The amount of states and transitions concerning this strat-
egy is shown in the figure above by variant 2. The resulting WFST has finally
1683 states and 2841 transitions; in level 4 the amount of transitions actually
decreases.

8 Conclusion and Future Work

A new approach to robust dependency parsing which brings together syntactic
tagging and chunking has been presented. Their combination is implemented by
WFSTs over a semiring which represents several linguistic criteria. With these
linguistic criteria disambiguation is done by a simple comparison concerning the
degree of grammatical acceptance of syntactic analyses; this allows structural
preferences and gradual grammaticality. It is possible to extend these linguistic
criteria.

The System SynCoP is currently used for the construction of an engine ana-
logical to the Word Sketch Engine [17].16 Our word sketches show a promising

14 PP-attachment is not covered by our constraint grammar yet.
15 That sentence is analysed as follows: [main_cl [npder Mann@HEAD]@SUBJ,

[sub_clder@SUBJ [npdas Auto@HEAD]@OBJ [ppauf@HEAD [npdem
Parkplatz@HEAD]] lieben@-FMAINV wird@FAUXV], weint@+FMAINV .]

16 A word sketch is a summary which is deduced from corpora showing grammatical
and collocational behaviour of a word.
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quality of annotation. An exhausting evaluation of our constraint grammar has
not been done yet; this will be of interest in future work.

9 Appendix: Notations

(A) option (union of A with epsilon)
∼A complement
$A contains (all strings containing at least one A)
A∗ Kleene star
A+ Kleene plus
A B concatenation
A | B union
A .x. B crossproduct
A .o. B composition
Dom(A) the domain of a rational transduction
[ and ] square brackets which group expressions
? sigma
?∗ sigma star
0 epsilon
% escape character
〈ω〉 weights
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Syntactic Error Detection and Correction in Date
Expressions using Finite-State Transducers
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Abstract. This paper presents a system for the detection and correc-
tion of syntactic errors. It combines a robust morphosyntactic analyser
and two groups of finite-state transducers specified using the Xerox Fi-
nite State Tool (xfst). One of the groups is used for the description of
syntactic error patterns while the second one is used for the correction
of the detected errors. The system has been tested on a corpus of real
texts, containing both correct and incorrect sentences, with good results.

1 Introduction

In this work we present a research carried out to detect and correct syntactic
errors in date expressions using finite-state transducers (fsts). Finite-state con-
straints, encoded in the form of automata and transducers, have been applied to
the linguistic analysis. We have used xfst for the definition of complex linguistic
patterns over morphosyntactic information.

We chose to deal with date expressions due to the fact that they contain
morphologically and syntactically rich enough phenomena where several types
of errors can be found. They can be considered representative of the errors that
are detectable by examining local syntactic contexts. Besides, and based on copy-
editors’ and language teachers’ opinion, date expressions in Basque are one of
the most frequent source of errors in both, language learners and native speakers.

Basque is an agglutinative language, and as a consequence, most of the el-
ements appearing in date expressions (year numbers, months and days) must
inflect, i.e. the corresponding article and case morphemes must be attached to
them. Moreover, each different date format requires that the elements involved
appear in fixed combinations of, for example, cases (see table 1), so different
types of agreement are needed. These require a previous linguistic analysis be-
fore applying the fsts for detection and correction.

Finite-state techniques have been used to create most of the nlp tools for
linguistic analysis for Basque [1]. Following a previous experience in the con-
struction of a robust spelling checker based on fsts, xuxen1 [2], we have faced
the task of syntactic error detection and correction in the same way.
1 http://ixa.si.ehu.es
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The remainder of this paper is organised as follows. Section 2 reviews several
related works. After commenting on the linguistic resources we have used in sec-
tion 3, we give a general overview of the system in section 4. Section 5 describes
the error detection process, while section 6 presents the correction procedure.
Then, we evaluate the system in section 7, to conclude in section 8.

2 Related work

The problem of syntactic error detection and correction has been addressed
since the early years of natural language processing. For the treatment of the
significant amount of errors (typographic, phonetic, cognitive and grammatical)
that result in valid words ([3]; [4]) different techniques have been proposed:

– Grammar-based techniques. These systems use the results of a parser as
input. Techniques that use chart-based methods [5] or the relaxation of syn-
tactic constraints [6] could be categorised into this group. In general, these
methods share the problem of incomplete coverage of the underlying gram-
mars. Manually written grammars are often unable to analyse the full range
of sentences in running text. Moreover, when dealing with ill-formed sen-
tences, the systems should accept not only correct sentences, but also the
much wider spectrum of incorrect ones. On the other hand, statistical parsers
induced from treebanks are able to analyse any sentence, but they can not
easily distinguish correct sentences from incorrect ones.

– Error patterns ([7]; [8]; [9]), which are either hand-coded rules or are au-
tomatically learned using statistical techniques. Most of these approaches
are implemented using finite-state techniques, for example the Constraint
Grammar (CG) formalism [10] is used in ([11]; [12]; [13]) for error detection
in Swedish and Catalan, or the Xerox Finite State Tool (xfst)[14] for finding
grammar errors in Swedish texts written by children [15].

Kukich [7] surveys the state of the art in syntactic error detection. She esti-
mates that between 25% and over 50% of the total errors are in fact are valid
words. On the other hand, [16] made a manual study concluding that 55% of the
errors are detectable by an examination of the local syntactic context, 18% are
due to global syntactic errors (involving long-distance syntactic dependencies,
which need a full parse of the sentence), and 27% are semantic errors.

Errors in date expressions can be deemed as a representative of local syntactic
errors. A work similar to the one presented here is that of Karttunen [17], who
describes a system that mapped numbers to numerals in Finnish. This language
has in common to Basque that the created linguistic structures are inflected,
and some of their components must agree in case. That makes the transduction
process of these languages more complex than in languages like English, with a
simpler morphology.

Regarding the treatment of Basque date expressions, [18] presented a system
that detected some types of errors using an unification based partial parser. This
work extends that system with a more comprehensive set of error types and also
including the task of error correction.



Syntactic Error Detection and Correction in Date Expressions 121

Error type Example
0. If the place name is inflected in inessive
case (Donostian),

Donostia[n], 2007ko maiatzaren 27a[]

the day number must be inflected in ines-
sive case.

27th May, 2007

If the place name is inflected in absolutive
case (Donostia), the day number must be
inflected in absolutive case.

Donostia, 2007ko maiatzaren 27a[n]

1. The year number cannot be inflected
using a hyphen

Donostian, 1995[-]eko maiatzaren 14an

2. The month (maiatza) must appear in
lowercase

1999ko [M]aiatzaren 2an

3. The optional place name preceding dates
(Frantzia) must be followed by a comma

Frantzia 1997ko maiatzaren 8an

4. The day number after a month in gen-
itive case (maiatzaren) must have a case
mark

Donostian, 1995eko maiatzaren 22[]

5. The day number after a month in erga-
tive case (maiatzak) cannot have a case
mark

1998.eko maiatzak 14[ean] argitaratua

6. The month (maiatza) must be inflected
in genitive or absolutive case

Donostian, 1995eko Maiatza[ren] 14an

7. The dot that makes a number ordinal
(1995.eko) cannot appear after the year
number except when the word urte (’year ’)
follows it

Donostian 1997[.]eko Maiatzan 28an

8. Numbers 11 and 31 can not take the ab-
solutive singular.

1997-ko maiatzaren 31[a]

Table 1. Most frequent error types in dates (errors marked in boldface).
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3 Linguistic Resources

For the analysis of the input text, we use part of the Basque shallow syntactic
analyser [1], mainly based on finite-state technology [19]. Although information
at chunk or syntactic levels could be used for the treatment of other error phe-
nomena, morphosyntactic information is enough for the recognition of errors in
date expressions.

Fig. 1. Morphosyntactic analysis and disambiguation.

Figure 1 shows the morphosyntactic analyser and the modules for disam-
biguation. The process starts with the outcome of the morphosyntactic analyser
(morfeus), which was created following the two-level morphology [20], and deals
with all the lexical units of a text, both simple words and multi-word units. The
tagger/lemmatiser eustagger not only obtains the lemma and category of each
form but also performs disambiguation using for this task information about part
of speech, fine grained part of speech or case. The disambiguation process is car-
ried out by means of linguistic rules using CG and stochastic rules based on
Hidden Markov Models [21], which reduces the high word-level ambiguity to a
limited amount of remaining interpretations.

All the information in the analysis chain is exchanged by means of standard-
ised xml files [22] and a class library for the management of all the linguistic
information. The full system provides a robust basis, essential not only for any
treatment based on corpora but also for error detection.
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4 General Overview of the System

The process for error detection and correction starts after analysing the input
text. The system (see figure 2) is composed of two groups of fsts, one for error
detection (see section 5) and the other one for the generation of correct dates
(see section 6). Two filters prepare the input for each of these fst groups.

Fig. 2. General architecture of the system.

Take, for example, the date expression “1995eko maiatzaren 15” (15th of
May, 1995). It is incorrectly written because in Basque the day number after a
month in genitive case must take a case mark. Given this text as input, the date
expression will go through the following modules:

1. “From xml to xfst” filter. In a first step, the preprocessing filter changes
the morphosyntactic information in xml to a more suitable format for the
fsts. Figure 3 shows the feature structures that gather the lemma and mor-
phosyntactic information about the incorrect date example, including pos,
fpos (fine grained part of speech), case, num and mug (definite/indefinite
article). Figure 4 represents the corresponding simplified format.

2. fsts for date error detection. For error detection in date expressions, we have
sequentially applied nine finite-state transducers, one for each kind of error
defined (see table 1), creating a cascade of fsts. In the output of each of the
fsts, the incorrect linguistic structures are surrounded by tags describing
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

form ’1995eko’
lemma ’1995’

morph

⎡
⎢⎢⎢⎢⎢⎣

pos noun
fpos number
case gen-l
num s
mug m

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

form ’Maiatzaren’
lemma ’maiatz’

morph

⎡
⎢⎢⎢⎢⎢⎣

pos noun
fpos common
case gen
num s
mug m

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
form ’15’
lemma ’15’

morph

[
pos noun
fpos number

]
⎤
⎥⎥⎥⎥⎦

Fig. 3. Feature structures representing a date expression (see label 1 in figure 2)

each type of error. Figure 4 shows how the incorrect structure is surrounded
by two error tags (beginerrortype4 and enderrortype4)2 .

{ WS { AS +form +1995eko +lemma +1995 +morph +pos +noun +fpos
+numb +case +gen-l +number +s +mug +m AE } WE }

BEGINERRORTYPE4
{ WS { AS +form +Maiatzaren +lemma +maiatz +morph +pos +noun

+fpos +common +case +gen +num +s +mug +m AE } WE }
{ WS { AS +form +15 +lemma +15 +morph +pos +noun +fpos

+number AE } WE }
ENDERRORTYPE4

Fig. 4. Output of the error detection grammar (labeled 3 in figure 2).

3. “To numbers” filter. Once the errors in date expressions are tagged (it is
frequent to find more than one error in each date expression), the correction
process starts. The fsts used for error correction were not created specif-
ically for this purpose but for helping Basque language learners to write
date expressions3. The group of fsts for date generation obtain the cor-
responding text equivalences from numbers representing date expressions.
The “To numbers” filter obtains a numbered expression with the format
“year/month/day”4 (see figure 5) for each date expression tagged with an
error.

4. fsts for date generation. As we have previously mentioned, the correction
module uses fsts that change numbers representing date expressions to their

2 The following tags are added to the morphosyntactic information to facilitate the
regular expression definition in the xfst grammar: ws (word starts), we (word
ends), as (analysis starts) and ae (analysis ends).

3 http://kantauri.eleka.net/neh and http://sisx04.si.ehu.es/˜ iniebla001/idazlagun/
4 In Basque numerically written dates follow the format year/month/day.
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Donostia LocPn 1995/05/15

Fig. 5. Result after the application of the “To numbers” filter (labeled 4 in figure 2).

corresponding full-text equivalences. Figure 6 shows two correction candi-
dates created for correcting the error in the example.

Donostia, 1995eko maiatzaren 15a
Donostian, 1995eko maiatzaren 15ean

Fig. 6. Corrected date expressions (labeled 5 in figure 2).

5 Error Detection

Inflection in date expressions is a common source of errors, not detectable by a
spelling checker, as each isolated word-form is correct. Figure 7 shows one of the
formats of a valid date expression:

Durangon, 1999ko martxoaren 7an
Durango, inessive, sing 1999, genitive martxoa, genitive, sing 7, inessive, sing
In Durango, 1999, March the 7th

Fig. 7. Format of a valid date expression.

After examining different instances of errors, we chose the nine most frequent
error types (see table 1). Some of these errors belong to idiosyncratic facts of
date expressions (errors 0, 3, 4, 5 and 6), while four of them must be considered
linguistically incorrect facts that can be reused in other general contexts (errors
1, 2, 7 and 8). A group of error detection patterns has been defined in xfst for
each of the error types, and after compiling them, a cascade of fsts is applied
to the input text.

We adopted a kind of “gradual relaxation” approach, considering that several
mistakes could co-occur, as quite often two or three errors might appear in the
same expression. We had to design error patterns bearing in mind not only the
correct expression, but also its erroneous versions. This relaxation on what could
be considered a correct date had the risk of increasing the number of false alarms.

The error pattern for the fourth kind of error (the day number after a month
in genitive case must have a case mark) is defined in two steps (see figure 8).
First, the syntactic pattern of the error is defined (a correct month or a month
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1. define Month_Gen ...
2. define Incorrect_Month_Gen_in_Upper ...
3. define Correct_Year ...
4. define Incorrect_Year_with_Hyphen ...
5. define Year [ Correct_Year | Incorrect_Year_with_Hyphen ]
6. define Error_Type_4

[Month_Gen | Incorrect_Month_Gen_in_Upper ] Not_Inflec_Numb;
7. define Mark_Error_Type_4 [ Error_Type_4 ]

@ -> beginerrortype4 ... enderrortype4 || Year _ ;

Fig. 8. Regular expressions for an error pattern.

incorrectly written in uppercase followed by a non inflected number, see defi-
nitions 1 through 6), and named Error_Type_4. Second, a longest-match left-
to-right replace operator (@ - >) is used (Mark_Error_Type_4) to surround the
incorrect pattern (represented by . . . ) by two error tags (beginerrortype4 and
enderrortype4). To further restrict the application of the rule, left and right
contexts for the error can be defined, mostly to assure that the rule is only ap-
plied to dates, thus avoiding false alarms. In this case, a year must be found to
the left of the month. The year could be a correctly written year or a mispelled
one (with a hyphen). As we can see, the error-description pattern considers the
possibility that previous error patterns occur.

6 Error Correction

For the correction task, we took a group of already defined xfst transducers that
was created to map numbers representing date, time and number expressions to
text [23], and adapted a subset of them in order to correct date expressions.

According to The Royal Academy of the Basque Language5, the most ap-
propriate ways to express a date are those in which the locative (place name)
and the declension of the day agree in absolutive or inessive cases (in figure 6
the first date expression agrees in absolutive case and the second one in inessive
case), so, we create date expressions in this format.

A fst has been used for each of the cases. These transducers, nevertheless,
do not create the word indicating location and the comma after it. A fst for
morphological generation created using lexc [24] is used to generate the locative
in inessive case. The comma is generated after checking that a proper name
indicating a locative (LocPn in figure 5) precedes the date.

The process of creating a full-text date is simple. Let us explain the rules
for specifying the fst that generates dates in inessive case (see figure 9). The
input is divided into three groups separated by slashes: year, month and day.

5 http://www.euskaltzaindia.net, 37th rule
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When a year is found, a genitive locative6) morpheme (“-ko”) is added to the
year number (Translate_Year, rule number 1). Months are mapped from num-
bers to text by means of replacement operators that are restricted to the date
context (Translate_Month, rule number 3). Finally, the inessive singular mor-
pheme (“-an”) is added to the day (Translate_Day, rule number 4). There are
several exceptions to these mappings: when the year or day number finishes in
a consonant, an epenthetic “-e” is added to the genitive locative case in the year
(“-e” + “-ko” = “-eko”), and to the inessive case (“-e” + “an” = “-ean”) in the
day (Add_E_Day, rule number 6).

1. define Translate_Year [ "/" -> "ko" || _ Number Number "/" ];
2. define Translate_Month05 [ "0" 5 "/ " -> " maiatzaren " || "ko" _ ];
3. define Translate_Month [ Translate_Month01 .o. Translate_Month02

.o. ... .o. Translate_Month12 ];
4. define Translate_Day [ [ .. ] -> "a" "n" || Number _ .#. ];
5. define Translate [ Translate_Year .o. Translate_Month .o.

Translate_Day ];
6. define Add_E_Day [ "a" "n" -> "e" ... ||

[ [ "0" | 2 | 4 | 6 | 8 ] 1 | [ 1 | 3 | 5 | 7 | 9 ] "0" | 5 ] _ ];
...

n-1. define Clean [ Add_E_Day .o. Add_E_Year ];
n. define Translate_Clean [ Translate .o. Clean ];

Fig. 9. Regular expressions for date generation.

This method, based on the generation of correct date expressions, guarantees
the correction of all the errors in the expression even if not all of them were
detected. For example, if only 2 errors out of 3 are detected, all of them are
properly corrected.

7 Evaluation

The evaluation corpus (development + test) is composed of 267 essays writ-
ten by students (with a high proportion of errors) and texts from newspapers
and magazines, more than 500,000 words altogether. From them we chose 658
sentences, including correct dates, incorrect dates, and also structures similar
to dates. It was relatively easy to obtain test data compared to other kinds of
errors. Although the data must be obtained mostly manually, date expressions
contain several cues (month names, year numbers) that help in the process of
finding semiautomatically test sentences.
6 The genitive locative case “-ko” (“of”) is attached to phrases that denote location, or
to phrases that denote a property.
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All the corpus was inspected looking for false alarms (see table 2), that is,
correct dates or sentences similar to dates that could be flagged as erroneous. The
problem of false alarms is one of the biggest challenges we must face when dealing
with unrestricted texts. As a result of the selection procedure, the proportion
of errors was higher than in normal texts. Therefore, we divided our data into
two groups. One of them was used for development and we left the second one
for the final test. The proportion of correct dates was higher in the case of test
data with respect to those in the development corpus, so that the effect of false
alarms would be evaluated with more accuracy.

Development corpus Test corpus
Number of test items 411 247
Correct dates 51 35
Structures “similar” to dates 263 173
Incorrect dates 97 38
Incorrect dates with 1 error 48 49.6 % 9 23.7 %
Incorrect dates with 2 errors 35 36.0 % 25 65.8 %
Incorrect dates with 3 errors 10 10.3 % 3 7.9 %
Incorrect dates with 4 errors 4 4.1 % 1 2.6 %

Table 2. Test data.

Development corpus Test corpus
Number of test items 411 (97 errors) 247 (38 errors)
Undetected date errors 4 4.1 % 3 7.9 %
Detected date errors 93 95.9 % 35 92.1 %
False alarms 2 4

Table 3. Evaluation results.

Table 3 shows the results of the evaluation. As the development corpus could
be inspected during the refinement of the patterns, the results in the second
and third columns can be understood as an upper limit of the system in its
current state, with 95.9% recall7 and 97.8% precision8 (93 detected errors/95
error proposals, that is, 2 false alarms).

The system obtains 92.1% recall over the corpus of previously unseen 247
test items. Regarding precision the system correctly detects 35 errors, giving 39
proposals (89.7%). If the false alarms are divided by the number of test items
(4/247) of the test corpus, we can estimate the false alarm rate to be around

7 recall = correctly detected errors/all errors
8 precision = correctly detected errors/(correctly detected errors + false alarms)
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1.6% over the number of dates in real texts. Table 4 examines some of the false
alarms and their cause. Although the results are good, more corpus data will be
needed in order to maximize precision.

The correction guarantees that all the errors in date expressions were cor-
rected even when some of them could not be detected. That is, even when a
sentence contains more than one error, once one is detected, it is transformed
to the numerical format. As correct date expressions are generated from this
format, all the errors are corrected.

Example Cause of the error
1998ko abenduak 20. Bizkaiko → 1998ko
abenduak 25. 20th December, 1998. From
Bizcay 25th December, 1998

The analyser does not detect the line end
and analyses the Bizkaiko place name as
it was immediately preceding the date ex-
pression. If it was the case, the comma is
missing.

Primakovek 1998ko irailaren 11n hartu
zuen . . .Primakov took it on the 11th of
September 1998

The unknown word Primakov is inter-
preted as a place name.

Table 4. False alarms.

8 Conclusions and Future Work

This work shows an application of xfst for syntactic error detection and cor-
rection in date expressions. The reported experiment is based on a corpus, and
tested on real examples of both correct and incorrect sentences. This approach
implies the existence of big corpora and manual annotation for most of the errors.

Two of the most successful methods for error detection, i.e., relaxation of
syntactic constraints and error patterns, have been combined in our system with
good results. Relaxation has not been dynamically applied at parsing time, but
it has been manually coded. This implies a considerable amount of work, as we
had to consider the formats for valid sentences as well as for all their incor-
rect variants. Regular expressions in the form of automata and transducers are
suitable for the definition of complex error patterns based on linguistic units.

We are currently exploring extensions to the system to detect new kinds
of errors by combining rule-based error detection and automatic acquisition of
error patterns. We think that this could help to smooth the scaling-up problem
associated to the increase in the number of rules, and the amount of work in the
process of hand-coding them. Using either hand-coded rules or automatically
learned ones, both methods have still the problem of obtaining and marking
big test corpora. Some experiments with the automatic creation and tagging of
errors ([25];[26]) seem to be a possible solution to this bottleneck.
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We plan to extend the error detection/correction system to other qualita-
tively different types of errors, such as those involving agreement between the
main components of the sentence, which is very rich in Basque, errors due to
incorrect use of subcategorization and errors in post-positions. Errors in post-
positions, determiner-noun agreement errors, . . . could be treated using xfst,
but a deeper study must be made if we want to deal with errors involving long-
distance dependencies in the sentence (e.g. agreement between verb and subject,
object or indirect object). Although the number of potential syntactic errors is
huge, we think that the treatment of the most frequent kinds of error with high
recall and precision can result in useful grammar-checking tools.
Acknowledgments. This research is supported by the University of the Basque Coun-
try (GIU05/52) and the Ministry of Industry of the Basque Government (ANHITZ
project, IE06-185). We would like to thank Ruben Urizar for his collaboration in this
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Temporal propositions as regular languages

Tim Fernando

Trinity College Dublin

Abstract. Temporal propositions are mapped to sets of strings that
witness (in a precise sense) the propositions over discrete linear Kripke
frames. The strings are collected into regular languages to ensure the de-
cidability of entailments given by inclusions between languages. (Various
notions of bounded entailment are shown to be expressible as language
inclusions.) The languages unwind computations implicit in the logi-
cal (and temporal) connectives via a system of finite-state constraints
adapted from finite-state morphology. Applications to Hybrid Logic and
non-monotonic inertial reasoning are briefly considered.

1 Introduction

Model-theoretic semantics cashes out the meaning of a formula ϕ by specifying
when a model M satisfies ϕ. The present work converts a temporal formula ϕ to
a regular language that indicates (in a precise sense) which models M satisfy ϕ.
The strings in these languages are not only easier to grasp computationally than
the models M but are natural candidates for events witnessing ϕ. The languages
are formed by adapting finite-state methods widely used in morphology [1].

An instructive example of a temporal formula that can be converted to a
regular language is p until q, which is equivalent to the disjunction

q ∨ (p ∧ next(q)) ∨ (p ∧ next(p ∧ next(q))) ∨ · · · (1)

over discrete linear orders. If we draw the disjuncts as q , p q , p p q and so
on, and rewrite ∨ as non-deterministic choice |, then (1) becomes the language

q | p q | p p q | · · · = p ∗ q

where ·∗ is Kleene star (for zero or more iterations). In general, given a finite
set Φ of formulas and a string a1a2 · · · an ∈ Pow(Φ)∗ of subsets ai of Φ, let
fmla0 (a1a2 · · · an) be the conjunction

fmla0 (a1a2 · · · an) def= (
∧

a1 ) ∧ next(
∧

a2 ) ∧ · · · ∧ nextn−1 (
∧

an)

with conjuncts next i−1 (
∧

ai) that are themselves built from conjunctions
∧

ai .
The conjunction of the empty set is, as usual, some fixed tautology #. For
instance, we have

fmla0 ( p � q, r ) = p ∧ next(next(q ∧ r))
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where formulas constituting a symbol ai in a string are enclosed by a box rather
than by curly braces {·}, and the tautology # for the conjunction

∧
� of the

empty set � is suppressed. Also, fmla0 ( p 0 q ) = q and

fmla0 ( p n+1 q ) = p ∧ · · · ∧ nextn(p) ∧ nextn+1 (q) ,

making p until q equivalent to the disjunction∨
{fmla0 (s) : s ∈ p ∗ q }

over the models of interest.

1.1 Representations over the integers

Before specifying what “the models of interest" are, let us not forget past opera-
tors such as the converse prev of next , and sharpen the map fmla0 accordingly.
To mark out the present, we introduce a fresh formula now �∈ Φ, refining our
picture p q for p ∧ next(q) to now , p q , so as to represent prev(p) ∧ q as
p now , q . Given a subset a of Φ, let us write a† for the union a∪ now , draw-
ing a box instead of {·} as we shall form strings from such sets. Let us call a
string nowΦ-pointed if it has the form sa†s′ for some strings s and s′ over the
alphabet Pow(Φ) and some subset a of Φ. We define a backward version almf (s)
of fmla0 (s)

almf (a1a2 · · · an) def= prevn(
∧

a1 ) ∧ prevn−1 (
∧

a2 ) ∧ · · · ∧ prev(
∧

an)

and map a nowΦ-pointed string sa†s′ to the conjunction

fmla(sa†s′)
def= almf (s) ∧ fmla0 (as′) .

For example, almf ( p �) = prev(prev(p)) and thus,

fmla( p � now , q, r ) = prev(prev(p)) ∧ q ∧ r

(dropping # as before).
Turning now to models, we base our Kripke models for a set P of atomic

formulas on not only the natural numbers (for future operators) but also the
negative integers (for the past). Let Z = {0, 1,−1, 2,−2, . . .} be the set of inte-
gers, and satisfaction |= be defined relative to an integer x ∈ Z and a function
V : P → Pow(Z), called a valuation, as follows. For an atomic formula p ∈ P ,
we set

〈V, x〉 |= p
def⇐⇒ x ∈ V (p) .

The unary connective next moves us to the successor x + 1

〈V, x〉 |= next(ϕ) def⇐⇒ 〈V, x + 1〉 |= ϕ
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while prev steps back to the preceding integer x− 1

〈V, x〉 |= prev(ϕ) def⇐⇒ 〈V, x− 1〉 |= ϕ .

Conjunctions are formed from the binary connective ∧

〈V, x〉 |= ϕ ∧ ψ
def⇐⇒ 〈V, x〉 |= ϕ and 〈V, x〉 |= ψ

as well as the 0-ary connective #

〈V, x〉 |= # .

In what follows, we let Φ denote some fixed finite set of formulas on which |= is
well-defined, and form nowΦ-pointed strings s over the alphabet Pow(Φ∪{now})
with formulas fmla(s) on which |= is well-defined (under the clauses above for
next , prev ,∧ and #). We leave the full specification of clauses for |= open-ended,
introducing clauses such as

〈V, x〉 |= ϕ until ψ
def⇐⇒ (∃y ≥ x) 〈V, y〉 |= ψ and

(∀z < y) z ≥ x implies 〈V, z〉 |= ϕ

to pose the problem of representing a formula such as prev(p until (q ∧ r)).

Definition. A set L of nowΦ-pointed strings stringwise Φ-represents ϕ if ϕ is
equivalent to the disjunction

∨{fmla(s) : s ∈ L} in that

〈V, x〉 |= ϕ ⇐⇒ (∃s ∈ L) 〈V, x〉 |= fmla(s)

for all V : P → Pow(Z) and x ∈ Z.

It is easy to see that prev(p until (q ∧ r)) is stringwise Φ-represented by

q, r now | p now , q, r | p now , p p ∗ q, r

assuming p, q, r ∈ Φ. Indeed, every ϕ ∈ Φ is stringwise Φ-represented by now , ϕ .
For ϕ �∈ Φ, the idea is to turn now , ϕ into an “equivalent" set of nowΦ-pointed
strings. But some cases are hopeless.

Consider, for instance, the formula Gϕ asserting that ϕ is true now and at
every point in the future

〈V, x〉 |= Gϕ
def⇐⇒ (∀y ≥ x) 〈V, y〉 |= ϕ .

If Φ ⊆ P is a set of atomic formulas and p ∈ P , then Gp has no stringwise
Φ-representation. But we will (in section 4 below) modify the notion of repre-
sentation so that

�∗ now , p p ∗ pathwise {p}-represents Gp
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and in general, for every set L of nowΦ-pointed strings,

L stringwise Φ-represents ϕ implies �∗L�∗ pathwise Φ-represents ϕ.

Stringwise or pathwise, can we ensure that our Φ-representations are regular
languages? In view of the prevalence of automata-theoretic methods in temporal
logic [2, 3], it is perhaps not surprising how much we can. Nonetheless, some del-
icacy is required to keep these languages regular. For instance, a straightforward
analog (within the present setting) of the replace operator in [1] takes us outside
the realm of finite automata (see §3.2 below). Instead, we adapt Koskenniemi’s
restriction operator [1] over an alphabet of symbols that have structure reflecting
concurrent computation.

But why should it matter that the languages are regular? One of many useful
properties of regular languages is the decidability of inclusions ⊆ between them
(as opposed say, to context-free languages). In the present context, entailments
are naturally expressed as inclusions between languages (§2.2 below). The reg-
ularity of these languages gives us a computational handle on entailments that
arguably compensates for the loss of first-order logic due to infinitary disjunc-
tions from Kleene star.1

1.2 Related work

Inclusions between languages figure prominently in Model Checking , where a
system A satisfies specification S precisely if L(A) ⊆ L(S) for certain languages
L(A) and L(S) associated with A and S, respectively ([3], page 124). The lan-
guages in this case consist of infinite strings accepted according to Büchi’s crite-
rion. That criterion is closely related to the notion of pathwise Φ-representation
spelled out in §4.2 below.

Staying with finite strings, the present approach uses inclusions to define en-
tailments relative to constraints derived from those in [1] through an operation
called superposition [4], reviewed in §2.1 below. Superposition supports a form
of “true” concurrency different from the non-deterministic interleaving typically
associated with temporal logic ([2], page 1017). The notions of entailment in-
duced by superposition do not in general preserve length, and therefore cannot
be regular under the conventions of Regular Model Checking [5]. They are, how-
ever, computable by finite-state transducers with componentwise ε-moves, and
are therefore regular according to [1]. A notable difference between [5] and [1] is
that regular relations are closed under intersection in the former but not in the
latter. Henceforth, we adopt the latter definition of a regular relation (relaxing
the requirement of length preservation). What is important for our purposes is
that given a relation R and a language L, the L-restriction RL of R defined by

RL
def= {(s, s′) ∈ R : s′ ∈ L}

1 A routine compactness argument shows that the disjunction (1) above cannot be
expressed as a first-order theory.
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and its domain, the Peirce product 〈R〉L of R with L

〈R〉L def= {s : (∃s′) sRLs′} ,

are both regular if R and L are.2 As explained in §3.1 below, Koskenniemi’s
restriction operation can be derived from the Peirce product. The transitive
closure of a regular relation, length preserving or not, need not be regular. An
example in the present context is provided by the obvious analog of the replace
operation from [1]. Because its transitive closure need not be regular, we resort
instead to Koskenniemi-esque constraints.

2 Inclusions comparing information content

This section shows how to compare the information content of languages through
inclusion ⊆. The first way, through subsumption �, is described most directly via
an operation of superposition. The second way, through weak subsumption �,
allows for �-padding in �. As relations on strings, both � and � are regular, and
can be lifted to languages through Peirce products, leading to natural notions
of bounded entailment.

2.1 Superposition and subsumption

Given languages L and L′ over the alphabet Pow(Φ∪{now}), the superposition
L&L′ of L and L′ consists of the componentwise union of strings in L and L′ of
the same length

L&L′ def=
⋃

n≥0{(a1 ∪ a′1 ) · · · (an ∪ a′n) : a1 · · · an ∈ L and a′1 · · · a′n ∈ L′}

[4]. For instance, the superposition of p ∗ q and now �∗ injects now into the
first box of every string in p ∗ q

p ∗ q & now �∗ = now , q | now , p p ∗ q .

2 The terminology “Peirce product” is from [6], but the notation 〈R〉L is borrowed
from dynamic logic [7]. A finite-state transducer for R with transitions → R and a
finite automata for L with transitions→ L combine to form a finite-state transducer
for RL with transitions

(q, q′)
a,b→ (r, r′) def⇐⇒ q

a,b→ Rr and (q′ b→ Lr′ or (b = ε and q′ = r′))

(as in the usual construction for the intersection of regular languages, but with
ε-moves). For the Peirce product 〈R〉L, we existentially quantify b out for

(q, q′) a→ (r, r′) def⇐⇒ (∃b) q
a,b→ Rr and (q′ b→ Lr′ or (b = ε and q′ = r′)) .



Temporal propositions as regular languages 137

To accept L&L′ given finite automata A and A′ accepting L and L′ respectively,
we run A and A′ in lockstep. That is, an automaton accepting L&L′ can be built
as in the usual product construction for the intersection L ∩ L′ except that the
transitions � for L&L′ are obtained by unioning the labels on the transitions
→ A of A and → A′ of A′

(q, q′) b
� (r, r′) def⇐⇒ (∃a, a′ ⊆ b) b = a ∪ a′ and q

a→ Ar and q′ a′→ A′r
′ .

The definition of superposition depends on the assumption that our alphabet
consists of sets closed under union. Instead of using subsets of Φ ∪ {now} as
symbols in our alphabet, we can add a fresh symbol % �∈ Φ∪ {now}, pronounced
“tick” (as in a ticking clock), and rewrite, for instance, the string now , p q of
length 2 to the string now p % q % of length 5 over the alphabet {p, q,now , %}.
This is essentially the approach pursued in [8], taking us back to the usual
interleaving model of concurrency except that the passage of time is marked by
a tick %. As noted in [9], one can build finite-state transducers between Pow(Φ∪
{now})∗ and (Φ∪{now , %})∗ that translate between these in the obvious way and
preserve regularity. For convenience, we work with the alphabet Pow(Φ∪{now}),
abbreviating it to Σ when the exact choice of Φ is immaterial.

Superposition allows us to compare the information content of languages L
and L′ over Σ as follows. We say L subsumes L′ and write L�L′ if L is included
in the superposition L&L′

L � L′ def⇐⇒ L ⊆ L&L′ .

Conflating a string s with the language {s}, it follows that for strings a1 · · · an

and b1 · · · bm over Σ, � picks out pairs with the same length n = m and are
componentwise related by the converse of ⊆

a1 · · · an � b1 · · · bm ⇐⇒ n = m and ai ⊇ bi for 1 ≤ i ≤ n .

As a relation on strings, � is regular; it is computable by a finite-state transducer
with one state q0 , both initial and final, and transitions

q0
a,b→ q0

def⇐⇒ b ⊆ a

for all b, a ∈ Σ. Taking the Peirce product of � with a language L, we get

s ∈ 〈�〉L ⇐⇒ (∃s′ ∈ L) s � s′ .

We can then restate L � L′ as an inclusion involving the Peirce product 〈�〉L′

L � L′ ⇐⇒ L ⊆ 〈�〉L′ .

2.2 Padding and entailments

Although the relation � will prove useful for formulating constraints later on, it
will also be convenient to weaken it slightly so that strings of different length can
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be compared. Towards this end, we define for every string s ∈ Σ∗ its unpadded
form, unpad(s), obtained by deleting all initial and final �’s from s. That is,

unpad(s) def=
{

s if s neither begins nor ends with �
unpad(s′) if s = �s′ or else if s = s′�

so that for example, unpad(� p � now ��) = p � now . As a relation between
strings, unpad is obviously regular (so long as we don’t require length preser-
vation). Next, we say that a string s weakly subsumes s′ and write s�s′ if s
subsumes some string equivalent to s′ up to unpadding

s�s′ def⇐⇒ (∃s′′) s � s′′ and unpad(s′′) = unpad(s′) .

It is easy to see that the relation of unpad -equivalence

{(s, s′) : unpad(s) = unpad(s′)}

is regular, making weak subsumption � regular (since regular relations are closed
under relational composition).

If we think of strings in a language as possibilities in the same way that worlds
in a proposition are under possible worlds semantics (or models of a sentence are
in model-theoretic semantics), then it is natural to lift � to sets L,L′ of strings
through the Peirce product

L�L′ def⇐⇒ L ⊆ 〈�〉L′

⇐⇒ (∀s ∈ L)(∃s′ ∈ L′) s�s′

(paralleling the definition in possible worlds semantics that a proposition p en-
tails p′ if p ⊆ p′). Defining L′� to be the set of strings unpad -equivalent to
strings in L′

L′�
def= {s ∈ Σ∗ : (∃s′ ∈ L′) unpad(s) = unpad(s′)}
= �∗unpad(L′)�∗

(where unpad(L′) def= {unpad(s) : s ∈ L′}), we can relate � back to superposition
& via subsumption � and (un)padding

L�L′ ⇐⇒ L � L′�
⇐⇒ L ⊆ L& L′� .

As some strings may represent spurious possibilities, we can weed out strings
from 〈�〉L by intersecting it with a language C to form

C[L] def= C ∩ 〈�〉L
= {s ∈ C : s�L}
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which is a regular language whenever L and C are. Recall that regular languages
are closed under Boolean operations, including complementation

L
def= Σ∗ − L .

We can express the set of nowΦ-pointed strings as C ′[L′] if we choose C ′ and L′

as follows. Let L′ def= now and let C ′ be the set of strings that do not contain
two occurrences of now

C ′ def= 〈�〉( now �∗ now )

= [�] now �∗ now

where [R]L is the dual of the Peirce product 〈R〉L

[R]L def= 〈R〉L

just as ∀ is the dual of ∃.
In general, we can beef up L�L′ to an entailment L |− CL′ by relativizing it

to a language C that turns L to C[L]

L |− CL′ def⇐⇒ C[L] � L′

⇐⇒ C ∩ 〈�〉L ⊆ 〈�〉L′ .

Clearly, L |− CL′ whenever L�L′. The introduction of C allows us not only
to enlarge a string in L, but also to restrict attention to strings meeting the
membership conditions for C

L |− CL′ ⇐⇒ (∀s ∈ C) s�L implies s�L′ .

These membership conditions can be viewed as constraints (to satisfy), as we
see next.

3 Constraints and their application

In this section, we formulate constraints corresponding to the semantic clauses
for ∨,∧,next , prev , until and since, and apply them to build stringwise repre-
sentations. For this, a useful regular relation between strings is that of a factor:
s′ is a factor of s if s = us′v for some (possibly empty) strings u and v.

3.1 Constraints conditioned by subsumption

Given languages L and L′ over Σ, let L ⇒ L′ be the set of strings s such that
every factor of s that subsumes L also subsumes L′

L⇒ L′ def= {s ∈ Σ∗ : for every factor s′ of s,

s′ � L implies s′ � L′} .
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For example, to pick out strings that contain ϕ ∧ ψ only if they contain ϕ and
ψ in the same box , we let

ϕ ∧ ψ ⇒ ϕ, ψ (2)

and for disjunction ϕ ∨ ψ,

ϕ ∨ ψ ⇒ ϕ | ψ . (3)

Writing ' L for the 〈�〉L-restriction of the factor relation

s ' L s′ def⇐⇒ s′ is a factor of s and s′ ∈ 〈�〉L ,

it follows that

L⇒ L′ = [' L]〈�〉L′ .

As the factor relation is regular, so is ' L for regular languages L. Thus, since the
Peirce product of a regular relation with a regular language is regular, L ⇒ L′

is a regular language if L and L′ are. Indeed,

L⇒ L′ = Σ∗ (〈�〉L ∩ 〈�〉L′) Σ∗ .

Next, we strengthen the constraint next(ϕ) � ⇒ � ϕ to

next(ϕ) a⇒ ϕ (4)

where L
a⇒ L′ is pronounced “L′ after every L” and

s ∈ L
a⇒ L′ def⇐⇒ after every factor of s that subsumes L

is a substring that subsumes L′

for every string s ∈ Σ∗. Defining

s afterL s′ def⇐⇒ (∃u � �∗L) s = us′ ,

we get

L
a⇒ L′ = [afterL] 〈�〉(L′�∗) .

It is not difficult to convert a finite automaton for L into a finite-state transducer
for afterL. Hence, L

a⇒ L′ is regular if L and L′ are. In fact,

L
a⇒ L′ = 〈�〉(�∗L) 〈�〉(L′�∗) .

Modulo subsumption �, L
a⇒ L′ is one form of Koskenniemi’s restrictions [1], a

second one being L
b⇒ L′, read “L′ before every L,” defined by

L
b⇒ L′ def= [beforeL] 〈�〉(�∗L′)
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where

s beforeL s′ def⇐⇒ (∃v � L�∗) s = s′v .

As with ⇒ and a⇒, L
b⇒ L′ is regular if L and L′ are, with

L
b⇒ L′ = 〈�〉(�∗L′) 〈�〉(L�∗) .

We also strengthen � prev(ϕ) ⇒ ϕ � to

prev(ϕ) b⇒ ϕ . (5)

Both ⇒ and a⇒ are used to analyze until through auxiliary formulas ϕ ntil ψ

ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ (6)

with

ϕ ntil ψ
a⇒ ϕ ∗ ψ . (7)

We can treat since similarly, using b⇒ and auxiliary formulas ϕ sinc ψ

ϕ since ψ ⇒ ψ | ϕ, ϕ sinc ψ (8)

ϕ sinc ψ
b⇒ ψ ϕ ∗ . (9)

3.2 Application with minimization and projection

Let P • be the set of formulas constructed from P using #,∧,∨,next , prev , until ,
since,ntil and sinc. We define a function C : P • → Pow(P • ∪ {now})∗ mapping
a formula ϕ ∈ P • to a language C(ϕ) over the alphabet Pow(P • ∪ {now})
by induction on ϕ, using the constraints we have associated above with the
connectives

C(ϕ) def= [�] now �∗ now for ϕ ∈ P ∪ {#}

C(ϕ ∧ ψ) def= C(ϕ) ∩ C(ψ) ∩ ( ϕ ∧ ψ ⇒ ϕ, ψ )

C(ϕ ∨ ψ) def= C(ϕ) ∩ C(ψ) ∩ ( ϕ ∨ ψ ⇒ ϕ | ψ )

C(next(ϕ)) def= C(ϕ) ∩ ( next(ϕ) a⇒ ϕ )

C(prev(ϕ)) def= C(ϕ) ∩ ( prev(ϕ) b⇒ ϕ )

C(ϕ until ψ) def= C(ϕ ntil ψ) ∩ ( ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ )

C(ϕ ntil ψ) def= C(ϕ) ∩ C(ψ) ∩ ( ϕ ntil ψ
a⇒ ϕ ∗ ψ )
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and similarly for since and sinc. For each ϕ ∈ P •, the language C(ϕ) is regular,
as is the language

C(ϕ) ∩ 〈�〉 now , ϕ = {s ∈ C(ϕ) : s� now , ϕ }

which we shall abbreviate Ĉ(ϕ). The language Ĉ(ϕ) can be quite massive, but we
can reduce it a few ways. The first is through �-minimization: given a language
L, define the set L� of �-minimal strings in L by

L�
def= L− 〈�〉L

where � is � minus equality

s � s′ def⇐⇒ s � s′ and s �= s′ .

For example, (�∗|L)� = �∗. Notice that L� is regular if L is. The second way
of trimming a language is by projecting every string a1 · · · an in it to the string

ρ(a1 · · · an) def= (a1 ∩ (P ∪ now )) · · · (an ∩ (P ∪ now ))

restricting the symbols to subsets of P ∪ now . For instance, if p ∈ P then
ρ( p, ψ ∨ ϕ now , prev(χ) ) = p now . In general, if L is a regular language,
then so is {unpad(ρ(s)) : s ∈ L}. Moreover, an argument by induction on ϕ ∈ P •
establishes

Theorem 1. Every ϕ ∈ P • is stringwise P -represented by the regular language
{unpad(ρ(s)) : s ∈ Ĉ(ϕ)�}.

Remark The projection ρ drops #. Writing Fϕ for # until ϕ as usual (and Pϕ

for # since ϕ), one might try to replace Fq � by q � | � Fq . But doing so

in p, Fq + r �∗ (where L+ def= L∗L) can lead to non-regularity, as intersection
with the regular language p + r q + yields the non-regular language

{ p n r q m : n ≥ m ≥ 1}

with regular sublanguage p + r q obtained by �-minimization and unpad .

4 Negation and paths for infinite strings

We turn next to negation and formulas such as Gϕ left out of Theorem 1.

4.1 Negation

The obvious constraints to associate with Boolean negation ¬

〈V, x〉 |= ¬ϕ
def⇐⇒ not 〈V, x〉 |= ϕ



Temporal propositions as regular languages 143

are non-contradiction [�] ϕ,¬ϕ and excluded middle

� ⇒ ϕ | ¬ϕ .

A popular alternative that we will adopt is to treat negation as a function ϕ �→ ϕ
on formulas ϕ such that ϕ = ϕ and p ∈ P for every p ∈ P (if necessary,
doubling P to P×{+,−} with (p, +) = (p,−) and (p,−) = (p, +)). The functions
(valuations) V are then required to satisfy V (p) ∩ V (p) = ∅, suggesting

[�] p, p , (10)

and V (p)∪V (p) = Z. Every n-ary connective θ is paired with an n-ary connective
θ so that θ = θ and

θ(ϕ1 , . . . , ϕn) def= θ(ϕ1 , . . . , ϕn) .

De Morgan’s laws suggest ∨ def= ∧, θ
def= θ for θ ∈ {next , prev}, # def= ⊥ with

[�] ⊥ (11)

(as 〈V, x〉 �|= ⊥) and until def= release where

〈V, x〉 |= ϕ release ψ
def⇐⇒ (∀y ≥ x) 〈V, y〉 |= ψ or

(∃z < y) z ≥ x and 〈V, z〉 |= ϕ

covered by

ϕ release ψ ⇒ ψ (12)

ϕ release ψ � ⇒ ϕ � | � ϕ release ψ . (13)

We treat ntil and since similarly.

4.2 Paths

Gϕ is ⊥ release ϕ and amounts to the infinite conjunction

ϕ ∧ next(ϕ) ∧ next(next(ϕ)) ∧ · · ·

which we shall analyze as follows. Given a language L, we say a language X is
an L-path if ∅ �= X ⊆ L and

(i) for all s ∈ X, there exists s′ ∈ X such that s′ � �+s�+

(ii) for all s, s′ ∈ X, there exists s′′ ∈ X such that s′′�s and s′′�s′.
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For example, for each s ∈ L, �∗s�∗ is a �∗L�∗-path (although a �∗L�∗-path
need not be a subset of �∗L�+ or �+L�∗). An L-path X is said to be principal
if for some string s, X ⊆ �∗s�∗.
Definition. A set L of nowΦ-pointed strings pathwise Φ-represents ϕ if ϕ is
equivalent to the disjunction over L-paths X of conjunctions

∧{fmla(s) : s ∈ X}
in that

〈V, x〉 |= ϕ ⇐⇒ (∃L-path X)(∀s ∈ X) 〈V, x〉 |= fmla(s)

for all V : P → Pow(Z) and x ∈ Z.

We can then prove an analog of Theorem 1 for pathwise (as opposed to string-
wise) P -representations of formulas from a set P∞ extending P • with dual con-
nectives ⊥, release,ntil , since and sinc. C(ϕ) is revised to D(ϕ), bringing in the
two forms (10) and (11) of non-contradiction,

D(p) def= [�] now �∗ now | p, p for p ∈ P

D(ϕ) def= [�] now �∗ now | ⊥ for ϕ ∈ {#,⊥} ,

treating ∧,∨,next , prev , until , since, ntil and sinc as does C

D(ϕ ∧ ψ) def= D(ϕ) ∩ D(ψ) ∩ ( ϕ ∧ ψ ⇒ ϕ, ψ )

D(ϕ ∨ ψ) def= D(ϕ) ∩ D(ψ) ∩ ( ϕ ∨ ψ ⇒ ϕ | ψ )

D(next(ϕ)) def= D(ϕ) ∩ ( next(ϕ) a⇒ ϕ )

etc, and building (12) and (13) into release

D(ϕ release ψ) def= D(ϕ) ∩ D(ψ) ∩
( ϕ release ψ ⇒ ψ ) ∩

( ϕ release ψ �⇒ ϕ � | � ϕ release ψ )

and similarly for since. Finally, we set

D̂(ϕ) def= D(ϕ) ∩ 〈�〉 now , ϕ

and refrain from the unpadding in Theorem 1.

Theorem 2. Every ϕ ∈ P∞ is pathwise P -represented by the regular language
{ρ(s) : s ∈ D̂(ϕ)�}.

5 Conclusion

The main results of the preceding account of temporal propositions as regular
languages are Theorems 1 and 2 (from §§3.2 and 4.2). The theorems essen-
tially implement well-known tableau constructions for Linear Temporal Logic
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[3] through finite-state methods. As we shall see next, these methods extend to
constructs in Hybrid Logic [10]. Beyond any application to a particular formal
system, the methods feature notions (such as bounded entailment |− C defined
in §2.2) that are part of a tool-kit for an approach to natural language semantics
representing events as strings so that entailments can be read directly off the
event representations. We close by outlining an approach based on these methods
to changes over time against an inertial background [11].

5.1 Hybrid Logic

A basic notion in Hybrid Logic is that of a nominal , the collection of which we
shall assume form a designated subset P 0 ⊆ P of atomic propositions that a
valuation V is required to map to singleton sets

(∀n ∈ P 0 ) V (n) has cardinality 1 .

The uniqueness requirement on nominals n is built into the language

[�] n �∗ n

which we may assume is part of the constraints for n ∈ P 0 . For arbitrary lan-
guages L and L′ over Σ, let us write L

�→ L′ for the set of strings that weakly
subsume L′ whenever they weakly subsume L

L
�→ L′ def= {s ∈ Σ∗ : if s�L then s�L′} .

The special case of L′ = ∅ reduces to [�] L

[�] L = L
�→ ∅ .

The operation �→ preserves regularity, as

L
�→ L′ = 〈�〉L ∩ 〈�〉L′

= [{(s, s) : s�L}]〈�〉L′ .

Forming L
�→ L′ with L′ �= ∅ pays off when analyzing a couple of constructs, @

and E, in Hybrid Logic. These constructs allow us to say of a temporal propo-
sition ϕ that it holds at a nominal n

〈V, x〉 |= @nϕ
def⇐⇒ 〈V, nV 〉 |= ϕ where V (n) = {nV } (14)

or that it holds somewhere

〈V, x〉 |= Eϕ
def⇐⇒ (∃y) 〈V, y〉 |= ϕ . (15)

We can capture (14) as

@nϕ
�→ n, ϕ
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and (15) as

Eϕ
�→ ϕ .

To define negation via De Morgan duals, we set

@ = @
E = A

and associate with Aϕ the constraints

�+ Aϕ ⇒ ϕ �+

Aϕ ⇒ ϕ

Aϕ �+ ⇒ �+ ϕ

supporting a reading of Aϕ as “at all times (the past, the present and the future),
ϕ.”

Another construct from Hybrid Logic is the binder ↓ that we will assume
combines a nominal n ∈ P 0 with a temporal formula ϕ in which ‘↓n’ does not
occur. The resulting formula ↓n.ϕ is then interpreted according to

〈V, x〉 |=↓n.ϕ
def⇐⇒ 〈V x/n , x〉 |= ϕ

where V x/n is V except that it maps the nominal n to {x}. The corresponding
constraint is

↓n.ϕ ⇒ n, ϕ

(with the proviso that ‘↓n’ does not occur in ϕ).

5.2 Non-monotonic inertial reasoning

Finally, consider a temporal formula ϕ that, in the absence of a force against
it, persists over time. A simple way of formulating this idea is to introduce a
temporal formula fϕ intuitively saying that “a force is applied to make ϕ true
(at the next step)” so that the constraint

ϕ � ⇒ � ϕ | fϕ � (16)

can be read as: ϕ persists (to the next step) unless a force is applied against it.
Turning the force around to one fϕ for (rather than against) ϕ, we obtain the
backward form of persistence

� ϕ ⇒ ϕ � | fϕ � (17)
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making ϕ persist backward unless it was previously forced [9]. Together, (16)
and (17) imply “no change without force.” Distinguishing fϕ from fϕ allows us
to formulate the constraint

fϕ � ⇒ � ϕ | fϕ � (18)

saying that an unopposed force for ϕ brings ϕ about at the next step. The non-
determinism expressed in the righthand sides of (16), (17) and (18) by choice |
opens the door to non-monotonicity as soon as we apply bias to choosing between
the opposite sides of |. For instance, the assumption

(†) no force is applied unless it is explicitly mentioned

boosts the inference

ϕ � |− (16) � ϕ | fϕ �
to:

(‡) from ϕ �, infer � ϕ

(as no force is mentioned in ϕ �). The inference (‡) is soft inasmuch as the
principle (†) licensing it is. (‡) is non-monotonic in that we lose the conclusion
� ϕ if we enrich the premise ϕ � to ϕ, fϕ � (which subsumes ϕ �).

More precisely, recall that

L |− CL′ ⇐⇒ C ∩ 〈�〉L � L′ . (19)

If in (19) we were to refine the Peirce product

〈�〉L = L� & Σ∗

(where L� is �∗unpad(L)�∗) by &-superposing L� not with Σ∗ but with a
sublanguage H such as

Pow(Φ− {fϕ, fϕ, . . .})∗

then there would be more languages L′ such that

C ∩ (L� & H) � L′ (20)

than such that L |− CL′. As far as computability is concerned, the important
point about (20) is that it is as much an inclusion between regular languages as
L |− CL′ is. What (20) offers is a handle H on what to &-superpose with L�
before intersecting it with the constraints C to see what is weakly subsumed.
Under (20), there are two distinct ways to enrich L�: by intersection with hard
constraints C and by superposition with permissible hypotheses H. The non-
monotonicity in (‡) above can be traced to a choice in (†) of H short of the full
space Σ∗ of possibilities entertained in |− C . Bias is injected into the choice

� ϕ | fϕ �

by including the left side � ϕ in H, while excluding the right side fϕ � from H.

Equally, we could pick an H ′ that throws out � ϕ and lets in fϕ � to explain
the failure of ϕ to persist in ϕ �.
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Phrase-based finite state models �

Jorge González and Francisco Casacuberta
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Abstract. In the last years, statistical machine translation has already
demonstrated its usefulness within a wide variety of translation appli-
cations. In this line, phrase-based alignment models have become the
reference to follow in order to build competitive systems. Finite state
models are always an interesting framework because there are well-known
efficient algorithms for their representation and manipulation. This docu-
ment is a contribution to the evolution of finite state models towards a
phrase-based approach. The inference of stochastic transducers that are
based on bilingual phrases is carefully analysed from a finite state point
of view. Indeed, the algorithmic phenomena that have to be taken into
account in order to deal with such phrase-based finite state models when
in decoding time are also in-depth detailed.

1 Introduction

Machine Translation (MT) is an emerging area of research in computational
linguistics which investigates the use of computer software to translate text or
speech from one natural language to another. The goal of MT is very ambitious
because it would allow for a reduction of the linguistic barriers which all the
people have been ever involved with.

Statistical machine translation represents an interesting framework because
the translation software being developed is language-independent, that is, diffe-
rent MT systems are built if different parallel training corpora are supplied.

Given a source sentence s = s1 . . . sJ , the goal of statistical machine transla-
tion is to find a target sentence t̂ = t1 . . . tÎ , among all possible target strings t,
that maximises the posterior probability, according to a source-channel model:

t̂ = argmax t Pr(t|s) (1)

Source-channel models are often applied the Bayes rule [1] to break them down
into two different statistical models: a translation model to learn translations,
and a language model, to score the quality of the proposed hypotheses [2, 3]:

t̂ = argmax t Pr(s|t) · Pr(t) (2)

� This work is supported by the EC (FEDER) and the Spanish MEC under grant
TIN2006-15694-C02-01.



150 Jorge González and Francisco Casacuberta

The conditional probability Pr(t|s) can also be approximated by a joint proba-
bility distribution Pr(s, t) in order to be modelled by means of stochastic finite
state transducers [4, 5]:

t̂ = argmax t Pr(s, t) (3)

These models can integrate the probabilistic information that state-of-the-art
phrase-based models [6–9] are used to explicitly separate into two distributions,
that is, a target language model and a phrase translation dictionary.

This paper presents a natural evolution for finite state models in order to be
based on bilingual phrases. Training and decoding algorithms are conveniently
adapted to deal with such phrase-based finite state models. The main contri-
butions are reflected on the translation results, which are clearly favourable to
these phrase-based models, with respect to the original word-based approaches.

The organization of this document is as follows: next section presents a review
of finite state models; sections 3 and 4 deal with, respectively, word-based and
phrase-based finite state models; the experimental setup and results are des-
cribed in section 5; and, finally, conclusions are summed up at the last section.

2 Finite state models

A weighted finite-state automaton is a tuple A = (Γ,Q, i, f, P ), where Γ is
an alphabet of symbols, Q is a finite set of states, functions i : Q → R

+ and
f : Q → R

+ give a weight to the possibility of each state to be, respectively,
initial and final, and parcial function P : Q×{Γ ∪λ}×Q→ R

+ defines a set of
transitions between pairs of states in such a way that each transition is labelled
with a symbol from Γ (or the empty string λ), and is assigned a weight. An
example of a weighted finite-state automaton can be observed in figure 1.

A weighted finite-state transducer [10] is defined similarly to a weighted finite-
state automaton, with the difference that transitions between states are labelled
with pairs of symbols that belong to the cartesian product of two different (input
and output) alphabets, (Σ ∪ {λ})× (Δ ∪ {λ}).

When weights are probabilities, the range of functions i, f , and P is cons-
trained to [0, 1]. Moreover, probabilistic models have to respect the consistency
property in order to define a distribution of probabilities on the free monoid. In
that case they are called stochastic finite-state models. Consistent probability
distributions can be obtained by requiring a series of local constraints, that is:

•
∑

i(q) = 1

• ∀q ∈ Q :
∑

P (q, u, q′) + f(q) = 1

Then, given some input/output strings s and t, a stochastic finite-state trans-
ducer is able to associate them a joint probability Pr(s, t).
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Fig. 1. A weighted finite-state automaton

2.1 Inference of stochastic transducers

The GIATI paradigm [11] has been revealed as an interesting approach to infer
stochastic finite-state transducers through the modelling of languages. Rather
than learning translations, GIATI first converts every pair of parallel sentences
from the training corpus into only one string in order to, afterwards, infer a
language model from.

More concretely, given a parallel corpus consisting of a finite sample C of
string pairs: first, each training pair (x̄, ȳ) ∈ Σ� × Δ� is transformed into a
string z̄ ∈ Γ � from an extended alphabet, yielding a string corpus S; then, a
stochastic finite-state automaton A is inferred from S; finally, transition labels
in A are turned back into pairs of strings of source/target symbols in Σ� ×Δ�,
thus converting the automaton A into a transducer T .

The first transformation is modelled by some labelling function L : Σ�×Δ� →
Γ �, whereas the last transformation is defined by an inverse labelling function
Λ(·), such that Λ(L(C)) = C. Building a corpus of extended symbols from the
original bilingual corpus allows for the use of many useful algorithms for learning
stochastic finite-state automata (or equivalent models) that have been proposed
in the literature about grammatical inference.

Every extended symbol from Γ has to condense somehow the meaningful
relationship that exists between the words in the input and output sentences.
Discovering these relations is a problem that has been thoroughly studied in sta-
tistical machine translation and has well-established techniques for dealing with
it. The concept of statistical alignment [1] formalises this problem. An alignment
is a mapping between words from a source sentence and words from a target sen-
tence. Whether this function is constrained to a one-to-one, a one-to-many or a
many-to-many correspondence depends on the particular assumptions that we
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make. Constraining the alignment function simplifies the learning procedure but
causes the model to lessen its expressive power. The available algorithms try to
find a trade-off between complexity and expressiveness.

2.2 The search problem

Equation 3 expresses the MT problem in terms of a finite state model that is able
to compute the expression Pr(s, t). Given that only the input sentence is known,
the model has to be parsed, taking into account all possible t that are compatible
with s. The best output hypothesis t̂ would be that one which corresponds to a
path through the transduction model that, with the highest probability, accepts
the input sequence as part of the input language of the transducer.

Although the navigation through the model is constrained by the input sen-
tence, the search space can be extremely large. As a consequence, only the most
scored partial hypotheses are being considered as possible candidates to become
the solution. This search process is very efficiently carried out by the well known
Viterbi algorithm [12].

3 Word-based finite state models

As it has been already mentioned, the inference of transducers will be done
through the transformation of the bilingual training corpus into a corpus of
strings, which a language model will be inferred from. This transformation will
be based on the alignment function defined between every pair of bilingual sen-
tences. According to the alignment degree, these transducers could be classified
as word-based or phrase-based finite state models.

One-to-one and one-to-many alignment functions would produce word-based
models, whereas many-to-many correspondences would bring to phrase-based
models.

On the one hand, one-to-one models do not seem a very appropriate ap-
proach since they would require that source-target aligned sentences had exactly
the same number of words. On the other hand, one-to-many alignment models
have been a reference in statistical machine translation until the phrase-based
tendencies took place at the research community. Word-based models constrain
alignments so that one target word has to be aligned to only one source word.

The conversion of every pair of parallel sentences into an extended symbol
string follows this algorithm:

for i = 1, j = 1, 2, ... J
throw s[j]
while ((i <= I) && (alignments[i] <= j))

add t[i]
i++;

while (i <= I)
add t[i]
i++;
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...

...s1 s2 sJ

t1 t2 tI

Fig. 2. An alignment situation

which means that compound symbols are left-to-right generated (throw), and
where a target word ti is merged (add) with its corresponding source word sai

iff their alignment ti → sai
does not cross over any other alignment that has not

been explored yet. If this is not possible, then the appearance of ti is delayed
until j reaches, then attached to, the last source word that is implied within the
group of alignment crossing. Spurious source and target words are placed at their
right position, given that a monotonous word order is always demanded. This
procedure ensures that every extended symbol is composed of one and only one
source symbol, optionally followed by an arbitrary number of target symbols.
For example, the alignment in figure 2 would cause the string “s1 t1 , s2 , s3 , . . . ,
sJ t2 t3 . . . tI ” to be produced. If a more detailed description about the labelling
function is preferred, see [11].

A smoothed n-gram model may be inferred from the string corpus previously
generated. Such a model can be expressed in terms of a stochastic finite-state
automaton [13]. Figure 3 shows a general scheme for the representation of n-gram
models through finite state machines.

No-backoff transitions jump from states in a determined layer to the one
immediately above, thus increasing the history levels. Once the top level has been
reached, n-gram transitions allow for movements inside this layer, from state to
state, updating the history to the last n − 1 seen events. Backoff transitions to
lower history levels are taken if no way is found from a specific state for a given
symbol sj . If the lowest level is reached and no unigram transition is found for sj ,
then a transition to the <unk> state is fired, thus considering sj as an unknown
word. There is only one initial state, which is denoted as <s>, and it is placed
at the history level 1.

Since every unigram, bigram, etc., is represented as a transition consuming
their last symbol, and given that all these extended symbols are composed of
exactly one source word, the inverse labelling function can be straight-forwardly
applied. This way, transition labels are turned back into pairs of source/target
words to become a transducer.

Again, since every consuming transition implies that only one source symbol
needs to be parsed, the beam-search Viterbi algorithm can be appropriately
employed for decoding purposes.
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NULL

TRANSITIONS
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TRANSITIONS
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BACKOFF

TRANSITIONS
UNIGRAM

HISTORY LEVEL 0
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HISTORY LEVEL 2

HISTORY
LEVEL 1u1 u2 u3 uK1

b1 b2 b3 bK2

n1 n2 n3 nKN

Fig. 3. A finite-state n-gram model

4 Phrase-based finite state models

Some recent researching lines are trying to merge the phrase-based methodol-
ogy within a finite state framework [14]. There, a generative translation process,
which is composed of several transduction models, is applied. Each constituent
distribution of the model, including some well-known aspects in SMT, such as
phrase reordering or spurious word insertion, is implemented as a weighted fi-
nite state transducer. The GIATI paradigm, however, tries to merge all these
operations into only one transduction model.

Phrase-based finite state models come from the concept of monotonous bilin-
gual segmentation, where it is assumed that only segments of contiguous words
are considered, that every pair of source/target sentences is split up into the very
same number of segments, and that they are one-to-one monotonously aligned.
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On this occasion, extended symbol strings would be composed of their corre-
sponding sequences of bilingual segments.

A bilingual segmentation of the training corpus can be approximated through
a phrase-based statistical machine translation approach. In general terms, a sta-
tistical phrase-based model consist of a stochastic phrase translation table. From
this table, those phrase pairs that best match a parallel training sample can be
selected to approximate a bilingual segmentation. Such a phrase selection can be
monotonously generated by translating the source-training sentences with that
phrase-based model, since decoding implies looking for the best segmentation.

Again, a smoothed n-gram model can be inferred from the extended symbol
corpus. Nevertheless, last step of GIATI cannot be applied as directly as word-
based models do. As figure 4 shows, no-backoff transitions are labelled with a
many-to-many extended symbol and they are assigned only one probability.

Q Q’

sj . . . sj′/ ti . . . ti′

Pr = p

Fig. 4. Phrase-based automata transitions

If a transition label only contains one source symbol, the transformation is
the same as for word-based models. However, the inverse labelling algorithm
needs to divide all transitions including more than one source symbol.

These transitions are divided by the length of the source segment, putting
only one source symbol on every resulting transition. The output segments are
delayed to their last transition, which is reaching Q’, thus forcing the previous
ones to produce the empty string λ. Finally, probabilities are placed at their first
transition, leaving 1-probability to the others. Figure 5 shows how this algorithm
works.

Q’Q ...
sj/λ . . . /λ sj′/ti . . . ti′

Pr = p Pr = 1Pr = 1

Fig. 5. Phrase-based transducer transitions

Intermediate states are artificially created on-the-fly and do not belong to
the original automaton model. They are non-final states that should be parsed
through until a real state is being reached, i.e. Q’ in figure 5.

Actually, these transition sequences have to be seen as a unique transition:
the one corresponding to Pr(sj . . . sj ′ , ti . . . ti′ |Q), that is, the phrase translation
probability after a given history Q.



156 Jorge González and Francisco Casacuberta

When in decoding time, the search algorithm takes into account such a spe-
cial situation, thus trying to follow all the paths coming from a determinate
state which are compatible with the input string that has not been analysed
yet. This parsing behaviour, i.e. the non-stop at intermediate states thing, can
be easily implemented adding some extra conditions to the Viterbi algorithm
and including more information within the trellis structure that is commonly
employed.

Yet another change to the search algorithm is needed because of the phrase-
based nature of the proposed approach. Given a starting state Q, a successful
path from Q to any Q’ would take into account a phrase-based n-gram event,
that is, a phrase pair (sj . . . sj ′ , ti . . . ti′) that was seen during training after a
given history Q. However, if only these paths are explored, the model may not
be as effective as it would be able to be.

As a result, backoff transitions must be always allowed in order to cover all
compatible phrases in the model, not only the ones which have been seen after
a given history, but from lower levels as well. One more constraint has to be
included into the parsing algorithm: any directly reaching state Q’ is unable to
be reached through a path that implies a backoff transition between Q and Q’.
Backoff transitions are followed in order to consider all the possible segmenta-
tions of the input sentence.

Q

NULL

p1
p1

p2

p2 p3

p3
p1 p2

<backoff>

Fig. 6. Compatible transitions for a phrase-based bigram model

Figure 6 shows a parsing example over a finite-state representation of a bi-
gram model. Given a reaching state Q, phrases p1, p2 and p3 are all compatible
with the portion of the input sentence that has not been parsed yet. However,
the bigram (Q, p3) did not occur throughout the training corpus, therefore there
is no a direct transition from Q to p3. A backoff transition enables the access to
p3 because the bigram (Q, p3) turns into a unigram event that is actually inside
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the model. Again, unigram transitions to p1 and p2 must be ignored because
their corresponding bigram events were successfully found one level above.

5 Experiments

This approach has been applied to the EuroParl corpus, that is, the benchmark
corpus of the NAACL 2006 and 2007 shared tasks of the Workshops on Machine
Translation of the Association for Computational Linguistics.

The EuroParl corpus is built on the proceedings of the European Parliament,
which are published on its web and are freely available. Because of its nature,
this corpus has a large variability and complexity, since the translations into
the different official languages are performed by groups of human translators.
The fact that not all translators agree in their translating criteria implies that
a given source sentence can be translated in various different ways throughout
the corpus.

Since the proceedings are not available in every language as a whole, a diffe-
rent subset of the corpus is extracted for every different language pair, thus
evolving into somewhat different corpora for each pair.

5.1 Corpus characteristics

Several shared tasks involving, among others, French, English and Spanish lan-
guages, were proposed during the NAACL 2006 and 2007 Workshops on Machine
Translation.

French→English and Spanish↔English experiments were carried out over the
2006 EuroParl benchmark corpus, whereas only Spanish↔English translation
was tackled from the 2007 data.

The characteristics of these corpora can be seen in Table 1.

Table 1. Characteristics of the EuroParl corpora

2006 2007
Fr En Sp En Sp En

Sentences 688031 730740 964791
Training Run. words 15.6 M 13.8 M 15.7 M 15.2 M 20.9 M 20.3 M

Vocabulary 80348 61626 102216 64070 113026 81754
Sentences 2000 2000 2000

Dev-Test Run. words 66200 57951 60332 57951 60243 58059

5.2 System evaluation

We evaluated the quality of a statistical machine translation system by using
the following evaluation measures:



158 Jorge González and Francisco Casacuberta

BLEU (Bilingual Evaluation Understudy) score: This indicator computes the
precision of unigrams, bigrams, trigrams, and tetragrams with respect to a set
of reference translations, with a penalty for too short sentences [15]. BLEU
measures accuracy, not error rate.

WER (Word Error Rate): The WER criterion calculates the minimum number
of editions (substitutions, insertions or deletions) needed to convert the system
hypothesis into the sentence considered ground truth. Because of its nature, this
measure is considered to be a pessimistic indicator.

5.3 Translation results

On the one hand, word-based finite state models are based on statistical align-
ments, which were obtained from the application of the public available tool
GIZA++ [16] to the corresponding training corpora. On the other hand, phrase-
based finite state models are required to operate with a bilingual segmentation
of the training corpus. These bilingual segmentations were provided by means
of a statistical phrase-based machine translation system such as Pharaoh [17].

Table 2. Translation results over the EuroParl corpora

Word-based Phrase-based
Corpus BLEU WER BLEU WER

2006 fr→en 20.0 64.1 28.0 61.9
2006 sp→en 20.6 63.9 27.6 61.6
2006 en→sp 16.8 67.9 26.4 62.3
2007 sp→en 21.9 62.9 28.0 59.6
2007 en→sp 20.1 64.9 25.3 60.8

From the translation results that are presented in Table 2, it can be concluded
that phrase-based finite-state models clearly outperform the models that are
strictly based on words, within the context of such a EuroParl translation task.
Phrase-based finite state models are almost achieving a relative improvement of
35% of BLEU over the language pairs and translation directions that have been
tested on.

6 Conclusions and further work

Phrase-based alignment models have become the predominant technology in
statistical machine translation. However, finite state models are always an in-
teresting approach to be taken into account in translation matters because they
present some advantages with respect to the use of pure source-channel models.

The idea of using phrase-based (rather than word-based) dictionaries can also
be brought to a finite state framework. This paper has presented the implemen-
tation details that are needed to build a phrase-based finite state model from
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a bilingual segmentation of the training corpus. Indeed, the algorithmic pheno-
mena that have to be taken into account in order to deal with such phrase-based
finite state models when in decoding time have also been in-depth described.

Experiments concerning several language pairs from the EuroParl corpus
have been carried out. Translation results from phrase-based finite-state models
are clearly outperforming the ones from a word-based finite state framework. An
approximate relative improvement of 35% over the BLEU metric is observed for
most of the language pairs and translation directions that have been tested on.

Phrase-based finite state models come from the concept of monotonous bilin-
gual segmentation. The experiments reported here are based on a single bilingual
segmentation per every pair of training sentences. That is, any other way of split-
ting a given pair to produce a different monotonous bilingual segmentation is
therefore discarded. Learning from all the possible segmentations (rather than
from the most likely one) that are compatible with a given alignment of a trai-
ning pair will probably enrich the models, since the useful information that is
extracted from the training data increases. This will be part of our future work.
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Abstract. In this work an extension of CSSR algorithm using Maxi-
mum Entropy Models is introduced. Preliminary experiments to perform
Named Entity Recognition with this new system are presented.

1 Introduction

The Causal State Splitting Reconstruction (CSSR) algorithm [1] infers the causal
states of a process from data, building a deterministic automaton that is expected
to capture the patterns of data. These data are sequences of symbols drawn
from a discrete alphabet Σ. Consider, for example Σ = {M,m} to represent
capitalized words (M) and not capitalized words (m). A history x is defined as
a suffix formed by alphabet symbols (i.e. Mmm, MMmM , etc). CSSR studies
each possible history (up to a preestablished maximum length lmax ), comparing
them in terms of their future probability distributions P (Z|x), where Z is a
random variable taking any value in Σ. Two histories, x and y, are equivalent
when P (Z|x) = P (Z|y), i.e. when they have the same probability distribution for
the future. The different future distributions build the equivalence classes, named
causal states. CSSR iteratively builds these causal states. The algorithm performs
the comparison between probability distributions performing a hypothesis test.

CSSR has been applied to different research areas. For example, it has been
used to learn the patterns of physical systems in crystallography [2] and to
anomaly detection in dynamical systems [3]. These systems use CSSR to capture
patterns representing data that can be then used for different purposes.

This algorithm has been also used in the field of Natural Language Process-
ing (NLP) to learn automata that can be afterwards used to tag new data in
tasks such as Named Entity Recognition (NER) and Chunking [4]. The results
obtained in those experiments show that this technique can provide state-of-the-
art results in some NLP tasks. Given these results, the challenge is to improve
them, developing systems rivalling best state-of-the-art systems. In this work, we
propose an approach to combine CSSR with Maximum Entropy (ME) models
in order to introduce more information into the system and study if the perfor-
mance improves. For these preliminary experiments we focus on NER task.

To apply CSSR to NER and to other NLP tasks, it is necessary to encode each
word as a symbol of the alphabet Σ. This symbol has to take into account the
relevant features for the task as well as the hidden information about whether
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the word belongs to a named entity (NE)1. For example, if the only features
taken into account are if the word is capitalized or not (M or m), the alphabet
will be the combination of each feature with the corresponding “B-I-O” tag:
Σ = {MB ,M I ,MO ,mB ,mI ,mO}

This approach is rather limited, since all information we want to take into
account has to be encoded in the alphabet. Furthermore, the amount of neces-
sary data to build a correct automaton grows exponentially with the alphabet
size. For that reason, a method to introduce more information about the words
independently of the alphabet has been devised.

2 Introducing ME models into CSSR

The main idea of the proposed approach is based on generalizing the concept of
history. Instead of considering histories as sequences of alphabet symbols corre-
sponding to the last lmax words, we define histories as sets of relevant information
about the last lmax words. Thus, histories can be encoded as collections of fea-
tures of the words in a window of size lmax . In this way, causal states can still
be defined as sets of histories with the same distribution for the future and can
be calculated following the structure of CSSR.

This work uses ME models [6] to compute the probability distribution of the
future. The classes of ME models are the alphabet symbols used with CSSR,
and they define the possible transitions of each state in the automaton. The
relevant information associated to each word is encoded as different features,
and ME models are used to compute the probability distribution of the next
symbol given the active features. If with CSSR the probability to be computed
had the form of P (mB |MBM I mO) now the probability will be computed as
P (mB |h) where h is a history including relevant features of last words.

We present three different approaches to use this extended concept of history
and ME models in combination with CSSR:

1. Plain ME: Using the learned ME models, compute the probability of each
word in test corpus of having the tag B, I or O (taking into account that
there is a known part of the symbol, i.e. we know if it is M or m), and
compute the best sequence of tags using the Viterbi algorithm. Note that
this first approach doesn’t use CSSR in any way, but it can be used as a
baseline of ME models performance.

2. ME-over-CSSR: Use CSSR to learn an automaton as in [4], using a simple
alphabet. The ME model is used only during the tagging task, and its pre-
dicted probabilities are combined with the transition probabilities learned by
the automaton. This is a simple way to introduce more complicated features
without changing CSSR algorithm.

3. ME-CSSR: An extended version of CSSR algorithm that defines histories
as sets of features instead of simple symbol suffixes. In this way all the

1 This information is encoded using “B-I-O” approach [5]: B for words at NE beginning,
I for words internal to a NE, and O for words outside a NE
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information encoded in the features is taken into account when building the
automaton and the automaton is expected to better capture the patterns of
sequences since it has more information.

2.1 Experiments and Results

Different experiments with these three different methods were performed. These
are preliminary experiments as the system is still under development.

The used alphabet and data are the same used in [4]. The alphabet has
5 symbols combining different orthographical and syntactic information, which
combined with the B-I-O tags lead to a 15 symbol alphabet. The data are those
of CoNLL-2000 shared task [7].

The experiments presented in this work were performed with two different
feature sets. These sets include few and simple features, and will be extended
in further work. First feature set (FS1 ) takes into account just the alphabet
symbol and the PoS tag. The second one (FS2 ) includes the same features than
FS1 plus 4 more boolean features: capitalized word, word containing numbers,
all letters capitalized, and auxiliary word (words that often appear inside NEs ).
Note that the feature corresponding to the alphabet symbol includes the hidden
B-I-O information which is not available in the test corpus. When performing
tagging step this feature is set to the symbol assumed by the Viterbi algorithm
in the currently analyzed path. All these features are taken into account for each
word in a window of size lmax to the left of the current word. To maintain the
idea of histories it is necessary to consider the same maximum length for all
features which will be the length used by CSSR to learn the automaton. Both
feature sets also include the known part of the symbol (i.e. m or M) and the
PoS tag of the current word.

The implication of taking into account different lengths for different features,
of introducing features of future words, and how to combine it with CSSR algo-
rithm, will be studied in the future.

The experiments were conducted with both feature sets and with lmax from
2 to 4. Table 1 shows the best F 1 scores obtained. The results with lmax = 4
are not presented as they are far behind the other results, since the available
training data is insufficient to learn reliable automata with this history length.

System FS1 FS2

l=02 l=03 l=02 l=03
Plain ME 87.00 86.37 86.56 86.28
ME-over-CSSR 88.51 86.63 88.26 86.61
ME-CSSR 85.89 85.61 85.97 85.18

Table 1. Obtained F 1 results with different feature sets and different approaches

From these results it can be seen that the simple combination ME-over-CSSR
leads to better results than using plain ME models with the Viterbi algorithm,
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and that the proposed ME-CSSR method leads to worse results. The best result
of using only CSSR reported in [4] is F 1 = 88.96% which is not significantly
different (at 95% confidence degree) from the best result presented here. Also
the figures show that increasing lmax or the number of features leads to a lose in
performance, which is surprising specially in the case of using plain ME models.
This can be due to the sparseness of data, or to using over-simplistic feature
sets, and further research is required on this issue.

Another point requesting further study is the trade-off between the data-
sparseness caused by the fact of viewing histories as feature sets. Since the richer
feature set we use, the less occurrences we’ll have of each particular history, the
CSSR algorithm will have less evidence to accurately build the causal states. On
the other hand, richer feature sets should produce better ME models, which can
compensate this lack of evidence.

3 Conclusions and Further Work

An extension of CSSR using ME models has been presented. The best results
obtained are similar to the ones obtained with CSSR without ME models, but
the experiments are very preliminary and the used features very simple, so there
is still room for improvement. We expect to attain better performance when
introducing more complicated features into the system, as ME models estimate
better the probability distributions when rich feature sets are taken into account.

While the ME-over-CSSR approach yields better results than using only plain
ME models, the ME-CSSR proposal leads to worse results in the performed
experiments. One reason for this can be that the hypothesis test to determine if
two probability distributions are different is performed using χ2 statistics, and
this may not be adequate when dealing with histories containing many features,
as the number of occurrences for each history will be low, and χ2 test depends
on the counts of seen events being a poor test if the counts are low. Additionally,
since ME models provide conditional probability distributions, a test comparing
distributions regardless of the counts behind would be much more appropriate.

In the future, experiments introducing more features into the combined sys-
tems will be performed, searching for better results of the approaches combining
CSSR and ME models. Also, other hypothesis tests have to be checked to learn
automata with ME-CSSR, as χ2 seems not to be the most adequate.
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Abstract. The emergence of information extraction (IE) oriented pat-
tern engines has been observed during the last decade. Most of them
exploit heavily finite-state devices. This paper introduces ExPRESS
– a new extraction pattern engine, whose rules are regular expressions
over flat feature structures. The underlying pattern language is a blend
of two previously introduced IE oriented pattern formalisms, namely,
JAPE, used in the widely known GATE system, and the unification-
based XTDL formalism used in SProUT. A brief and technical overview
of ExPRESS, its pattern language and the pool of its native linguistic
components is given. Furthermore, the implementation of the grammar
interpreter is addressed too.

1 Introduction

The task of information extraction (IE) is centered around extracting specific
structured information from free-text documents. The classical IE tasks focus on
detecting entities, identifying relations which hold among them, and extracting
events. Typically, the major step in the process of retrieving the sought-after
information consists of applying a cascade of so called extraction patterns. Re-
cently, the emergence of IE-oriented pattern specification languages has been
observed. These languages utilize various types of formalisms, ranging from
character-level regular expressions to unification-based formalisms. Due to ef-
ficiency reasons, finite-state based pattern engines are the most prominent ones
being used.

This paper introduces ExPRESS (Extraction Pattern Recognition Engine
and Specification Suite) – a new extraction pattern engine, whose rules are regu-
lar expressions over flat feature structures, i.e., non-recursive feature structures,
where features are string valued. The rule specification language is a blend of
two previously introduced IE-oriented grammar formalisms, namely, JAPE [1]
used in the widely known GATE platform and the unification-based formalism
XTDL deployed in SProUT [2]. The main motivation beyond the development
of ExPRESS comes from: (a) a need of an efficient pattern engine for extracting
facts from vast amount of news articles collected on a daily basis from the web
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by Europe Media Monitor1 (EMM) system [3], and (b) due to efficiency prob-
lems encountered when using other freely available IE-oriented pattern engines,
including the two aforementioned ones.

The rest of this paper is organized as follows. We start in section 2 with some
basic definitions and notions used throughout this paper. Next, in section 3 a
brief overview of the related work is given. Subsequently, in section 4 ExPRESS,
its pattern specification language and its core native linguistic components are
described. Efficiency issues in the context of compiling and processing the gram-
mars are addressed in section 5. Section 6 gives technical details about implemen-
tation and provides some figures concerning the run-time behavior. We provide
a concluding summary in section 7.

2 Basic Definitions and Notions

This section introduces the basic definitions and notions used in this paper. A de-
terministic finite-state automaton (DFSA) is a quintuple M = (Q,Σ, δ, q0 , F ),
where Q is a finite set of states, Σ is the alphabet of M , δ : Q × Σ → Q is the
transition function, q0 is the initial state and F ⊆ Q is the set of final states.
The transition function can be extended to δ∗ : Q×Σ∗ → Q ∪ {⊥} by defining
δ∗(q, ε) = q, δ∗(q, a) = δ(q, a) if δ(q, a) is defined or δ∗(q, a) = ⊥ otherwise, and
δ∗(q, wa) = δ(δ∗(q, w), a) for a ∈ Σ and w ∈ Σ∗. The language accepted by a
DFSA M is defined as L(M) = {w ∈ Σ∗|δ∗(q0 , w) ∈ F}. Languages accepted
by finite-state automata are also called regular. The union and concatenation of
two regular languages L1 and L2 is denoted as L1 ∪L2 and L1 ·L2 respectively.
A path in a DFSA M is a sequence of triples 〈(p0 , a0 , p1 ), . . . , (pk−1 , ak−1 , pk )〉,
where (pi−1 , ai−1 , pi) ∈ Q × Σ × Q and δ(pi , ai) = pi+1 for 1 ≤ i < k. The
string a0a1 . . . ak is the label of the path. Among all DFSAs recognizing the
same language, there is always one which has the minimal number of states. We
call such an automaton minimal (MDFSA). The definition of nondeterministic
finite-state automata (NFSA) is analogous, with the difference that transition
function is set-valued, i.e., more than one transition from a given state q labeled
with a symbol a ∈ Σ might exist.

Next, we define flat feature structures, which are frequently referred to in
this paper. A type space is a triple Φ = (ΣT , ΣF ,Δ), where ΣT is a finite set
of types, ΣF is a finite set of features and Δ : ΣT → 2ΣF is the total type
specification function, i.e., Δ maps types to their features. We say that a feature
f ∈ ΣF is appropriate for the type α if f ∈ Δ(α), otherwise f is inappropriate
for the type α. A flat feature structure (FFS) in the type space Φ = (ΣT , ΣF ,Δ)
is a pair s = (α, val), where α ∈ ΣT (α is a type), and val : Δ(α) → Σ+

V ∪{#}
is a feature-value mapping, where ΣV is a finite set of symbols. The symbol #
is used to denote unspecified (undefined) feature values, i.e., vals(f) = # means
that the value of f is unspecified for s. We say, that two FFSs s = (αs , vals)
and t = (αt , valt) match in the type space Φ if and only if: (a) αs , αt ∈ ΣT ,

1 http://emm.jrc.it/overview.html
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(b) αs = αt , and (c) ∀f ∈ Δ(αs) : vals(f) = valt(f) or vals(f) = # or
valt(f) = #. For the sake of simplicity, we denote a FFS s = (α, val) also as
[f1 : v1 . . . fk : vk ]α, where ∀1 ≤ i ≤ k : f i is appropriate for α and vi = val(f i).

In this paper, we also refer to typed feature structures (TFS), which are
related to record structures in programming languages and are widely used as
a data structure for NLP. Their formalizations [4] include multiple inheritance
and subtyping, which allow for terser descriptions.

3 Related Work

The idea of using regular expressions over more complex structures is not new
and has been considered by several authors, e.g., [5] uses regular grammars with
predicates over morphologically analyzed tokens. Furthermore, [6] introduces
finite-state transducers with arbitrary predicates over symbols and discusses
various operations on such finite-state devices. In particular, during the last
decade, several high-level IE-oriented specification languages for creating pat-
terns have been developed, e.g., [7] introduced CPSL designed as a language for
specifying finite-state grammars over arbitrary annotations. The widely-known
GATE platform, exploited heavily for development of IE components, comes
with JAPE – Java Annotation Pattern Engine [1], which is similar in spirit
to CPSL. A JAPE grammar consists of pattern-action rules. The left-hand
side (LHS) of a rule is a regular expression over arbitrary atomic feature-value
constraints, while the right-hand side (RHS) constitutes a so-called annotation
manipulation statement which specifies the output structures to be produced
once the pattern matches. Additionally, the RHS may call native code, which
on the one hand provides a gateway to the outer world, but on the other hand
makes pattern writing difficult for non-programmers.

A somewhat more declarative and linguistically-oriented pattern specification
formalism called XTDL is used in SProUT [2], a lesser known IE framework.
It can be seen as an amalgam of finite-state and unification-based grammar for-
malisms. In XTDL the LHS of a rule is a regular expression over typed feature
structures (TFS) with functional operators and coreferences2, and the RHS is a
TFS, specifying the output production. Functional operators are primarily uti-
lized for forming the slot values in the output structures and, secondly, they
can act as Boolean-valued predicates, which allows for introducing complex con-
straints in the rules. The aforementioned features make XTDL more amenable
formalism than JAPE since writing ‘native code’ is eliminated and coreferencing
allows for terser descriptions.

Clearly, rich annotations on automata edges allow for compact descriptions,
but standard finite-state optimization and processing methods are hardly appli-
cable. Although, efficient processing techniques for both JAPE [8] and XTDL [9]
have been developed, to the authors knowledge and experience processing even

2 Coreferences express structural identity, create dynamic value assignments, and serve
as means of data transfer from LHS to RHS of a pattern
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moderate-size grammars with the aforementioned engines remains a bottle-neck.3
In particular, processing XTDL patterns involves unification, a rather expensive
operation.

Some other IE-oriented pattern languages are surveyed in [10], but since
most of them are bound to a specific type of information and exhibit somewhat
black-box character, we do not discuss them any further.

4 ExPRESS

4.1 Overview

ExPRESS is a pattern engine which allows for specifying and processing cas-
caded finite-state grammars, where grammar rules are regular expressions over
feature structures. It has been mainly designed for tackling IE tasks. ExPRESS
consists basically of a grammar parser and a cascaded-grammar interpreter. A
cascaded grammar specification is divided into three parts: (a) types declara-
tion, (b) a set of grammar definitions and (c) a workflow specification. The types
declaration part is a list of all types and appropriate features for these types,
which are used in the grammar(s). In the type declaration example in figure 1,
three types are introduced, namely person, person_group and violent_event,
where for each of them a list of appropriate features is specified.

person:=[NAME,FIRST_NAME,LAST_NAME,INITIAL,AMOUNT,SEX]
person_group:=[NAME,AMOUNT,QUANTIFIER]
violent_event:=[TYPE,METHOD,ACTOR,VICTIM]

Fig. 1. Type declaration in ExPRESS

A single grammar definition consists of two parts: a grammar configuration
part and a rule definition part. In the configuration part, a list of arbitrary pro-
cessing resources can be specified, which will be applied before the interpreter
applies the grammar. These components provide the grammar interpreter with
a stream of input flat feature structures represented as a list of disjunctions of
FFSs. The list of available components and the task of integration of external
components is addressed in section 4.3. Further, for each grammar a different
search strategy can be chosen. Currently the following strategies are supported:
(a) longest-match, (b) all-matches, and (c) all-longest-matches (longest-match
strategy applied at each position in the input). Finally, the last item in the con-
figuration part specifies the output production option. Three alternative options

3 There are several implementations of JAPE. We did not test the recently devel-
oped Japec version [8], which is supposed to be 2-5 times faster than the original
implementation.



170 Jakub Piskorski

are provided: (a) return only structures produced via grammar application, (b)
additionally to (a) return also feature structures produced by other processing
modules applied at the same level, (c) like (b), with the difference that only
those feature structures produced by other processing modules are returned,
which were not consumed by the application of the grammar. The simplified
example in figure 2 gives an idea of the syntax of a single grammar. The rule
specification format is described in detail in section 4.2.

SETTINGS:
{ MODULES: <Tokenizer>, <Morphology>, <Gazetteer>

SEARCH_MODE: longest_match
OUTPUT: grammar_only

}
RULES:
R1
.
.
RN

Fig. 2. Syntax of a single grammar

Finally, the last part of the input to the parser, namely workflow specifi-
cation, is a sequence of grammar names, which defines the order in which the
grammars are applied by the interpreter. In addition, each grammar name, may
be accompanied by a file, which specifies the priorities for the rules in the corre-
sponding grammar. Thus, experimenting with different prioritization set-ups is
more elegant than in JAPE, where priorities are encoded directly in the rules
(XTDL also separates the prioritization settings from the grammars). If there
are several rules which match and have the same priority, then all output struc-
tures are returned by the grammar interpreter, unless the output structures are
identical. In the latter case only one instance is returned.

4.2 Rule Specification Language

This subsection focuses on the particularities of the rule specification formal-
ism of ExPRESS, which is similar in spirit to JAPE, but also encompasses
some features and syntax borrowed from XTDL. The LHS of a rule is a regular
expression over flat feature structures (FFS), i.e., non-recursive TFS without
coreferencing, where features are string-valued and unlike in XTDL types are
not ordered in a hierarchy (see 2). On the LHS of a rule variables can be tai-
lored to the string-valued attributes in order to facilitate information transport
into the RHS, etc. Further, like in XTDL, functional operators are allowed on
the RHSs for manipulating slot values and for establishing contact with the
‘outer world’. They can also be deployed as boolean-valued predicates. There is
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a predefined set of available functional operators, and new ones can be added
by simply implementing an appropriate programming interface by the grammar
developer. Finally, we adapted the JAPE’s feature of associating patterns on
the LHSs with multiple actions (labeling), i.e., producing more than one annota-
tion (eventually nested) for a given text fragment.4 A rule for matching person
names presented in figure 3 illustrates the syntax. This rule matches a sequence

person :> ((dictionary & [TYPE: "first_name",
SURFACE: #first])

(dictionary & [TYPE: "initial",
SURFACE: #in]

token & [SURFACE: "."]) ?
(token & [TYPE: "firstCapital",

SURFACE: #last])):name
-> name: person & [NAME: #full_name,

FIRST_NAME: #first,
LAST_NAME: #last,
INITIAL: #in
AMOUNT: "1"]

& #full_name := ConcWithBlanks(#first,#in,#last)
& ValidatePersonName(#full_name).

Fig. 3. A rule for recognition of person names

consisting of: a structure of type dictionary (output of the dictionary look-up
tool) representing the first name, followed by an optional initial (a sequence of
dictionary and token structures), and another structure representing a capi-
talized token (last name). The symbol & links a type name of the FFS with a
list of feature-value pairs representing the constraints which have to be fulfilled.
It should not be confused with the same symbol denoting unification in XTDL.
The symbols #first, #in and #last establish variable bindings to the surface
forms of the matched text fragments. Further, the label name on the LHS specifies
the start/end position of the action defined on the RHS of the rule. This action
produce a structure of type person, where the value of the slots FIRST_NAME ,
LAST_NAME and INITIAL is created via accessing the variables #first, #in and
#last resp. The value of the NAME slot is computed via a call to a functional op-
erator ConcWithBlanks() which concatenates its arguments and inserts a space
character between them. Finally, the RHS contains a call to a functional opera-
tor ValidatePersonName() which acts as a boolean predicate and contacts some
4 XTDL allows only for producing single output structures and does not provide the
labeling facility, i.e., output structure correspond to the entire text fragment matched
by the LHS pattern. However, there is a ‘dirty’ workaround consisting of accessing
positional information of single feature structures matched by the LHS and using
such information for redefining start/end position of the output structure.
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external mechanism (i.e., morphological person name filtering) which estimates
whether the current name is likely to be a person name or not, and returns an
appropriate value. It is important to note that in order for a rule to match, all
boolean-valued predicates in the RHS of the rule must hold.

killing_event :> ((person_group & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

| person & [NAME: #n1,
AMOUNT: #a1]):victim

(dictionary & [TYPE: "death_trigger",
FORM: "passive"
METHOD: #m])

(person_group & [NAME: #n2,
AMOUNT: #a2,
QUANTIFIER: #q2]

| person & [NAME: #n2,
AMOUNT: #a2]):killer

):event
-> killer: actor & [NAME: #n2,

AMOUNT: #a2,
QUANTIFIER: #q2],

victim: dead & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

& IsNonZeroQuantifier(#q1),
event: violent_event & [TYPE: "killing",

METHOD: #m,
ACTOR: #n2,
VICTIM: #n1].

Fig. 4. A rule for violent event recognition

Another example of a rule that matches information concerning actors and
victims in violent events, where a person or a group thereof is killed by another
human body, is given in figure 4. This rule matches a sequence consisting of: a
FFSs of type person or person_group (the disjunction is denoted with ‘|’) rep-
resenting a human(s) who is (are) the victim of the event, followed by a phrase
in passive form, which triggers a ‘killing’ event (dictionary look-up), and another
structure representing the actor (person or group of persons). There are three
labels on the LHS, namely victim, killer, and event, which produce struc-
tures of type dead, actor and violent_event respectively. In case of the dead
structure, the quantifier (variable #q1) must not be a ‘zero’ quantifier. This con-
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dead & [NAME: "Talibani", AMOUNT: "230", QUANTIFIER: "Most of"]
actor & [NAME: "US troops"]
violent_event & [TYPE: "killing",

METHOD: "shooting",
ACTOR: "US troops",
VICTIM: "Talibani"].

Fig. 5. The output structures produced by the rule in figure 4 when matching the text
fragment Most of the 230 Talibani were shot by the US troops

straint is expressed in the rule via the boolean predicate IsNonZeroQuantifier.
The rule described above matches the text fragment Most of the 230 Talibani
were shot by the US troops and produces three output structures depicted in
figure 5. On the contrary, the text fragment None of the Taliban were killed by
UN troops would not be matched since IsNonZeroQuantifier predicate ("None
of ") does not hold.

The handling of Kleene constructions has to be clarified briefly. If a struc-
ture containing a variable within a Kleene construction is matched more than
once, then (optionally) a local instances of the variable is created for each such
submatch, and the local bindings are accumulated into a concatenation thereof.
This resembles the weak unidirectional coreferences in XTDL [9]. Further, labels
are not allowed within Kleene constructions, and labeled construction are not
allowed to consume empty input streams.

The full syntax of ExPRESS extraction rule formalism is given in BNF
format in figure 6. Some constructs known from other pattern languages are
missing, e.g., negation, but it can be simulated via non-productive rules and
prioritization [1].

4.3 Native and External Linguistic Components

In order to facilitate writing grammars ExPRESS comes with a pool of native
basic Unicode-aware IE-oriented linguistic processing resources, which includes:
(a) a basic tokenizer which segments text based on a list of white spaces and
token separators, (b) a tokenizer which additionally performs fine-grained token
classification (circa 40 IE-oriented default token classes are provided, e.g. email
addresses, URLs, hyphenated constructions, etc.), (c) simple morphological an-
alyzer based on full-form lexica encoded in the MULTEXT5 format [11], and (d)
a space and time efficient dictionary look-up tool which allows for storing huge

5 MULTEXT was a EU-funded project aiming at developing a set of generally us-
able software tools to manipulate and analyze text corpora, together with lexicons
and multilingual corpora in several European languages. In particular, harmonized
specifications for encoding computational lexicons have been established, i.e., same
tagset and features are used for all languages.
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Rules -> Rule (Rule)*
Rule -> RuleName ":=" Pattern "->" (Actions)? "."
RuleName -> Identifier

Pattern -> "(" Concat ")" (":" Label)?
Label -> Identifier
Concat -> Disjunction (Disjunction)*
Disjunction -> Kleene ("|" Kleene )*
Kleene -> Element ("+" | "*" | "?")?
Element -> (BasicElement | Pattern)
BasicElement -> Type ("&" FeatStruct)?
Type -> Identifier
FeatStruct -> "[" Attribute ":" Value ("," Attribute ":" Value)* "]"
Attribute -> Identifier
Value -> (SimpleValue (Variable)?) | (Variable)
SimpleValue -> Identifier
Variable -> "#"Identifier

Actions -> Action ("," Action)*
Action -> Label ":" Type ("&" OutputStruct ("&" FuncOp)* )?
OutputStruct -> "[" Attribute ":" OVal ("," Attribute ":" OVal)* "]"
Attribute -> Identifier
OVal -> (SimpleValue | Variable)?
FuncOp -> (Variable ":=")? FuncOpName "(" Arg ("," Arg)* ")"
FuncOpName -> Identifier
Arg -> (SimpleValue | Variable)

Fig. 6. ExPRESS Syntax



ExPRESS – Extraction Pattern Recognition Engine and Specification Suite 175

amount of entries, where each of them can be associated with arbitrary feature-
value pairs. The latter two components exploit the finite-state compression and
compilation techniques described in [12], [13] and [14].

Additional external processing components can be easily integrated via im-
plementing a special programming interface. Basically this boils down to pro-
viding a function which converts components specific native output format into
a stream of disjunctions of FFSs with positional information, and providing
functions which return a list of types of output structures returned by this com-
ponent and features which are appropriate for these types. The latter ones are
utilized for performing a strict compatibility check with the types declared in
the grammar cascade.

5 Compiling and Processing Grammars

Since the reservoir of FFSs used in extraction rules is potentially infinite, convert-
ing ExPRESS grammars into a single and optimized for processing finite-state
network is not straightforward. Typically, in a grammar consisting of regular pat-
terns over some feature structures the latter ones are replaced by some unique
symbols representing references to these feature structures, i.e., they are treated
in a symbolic way (naive implementation). Subsequently, single extraction pat-
terns are merged into a single MDFSA via application of standard finite-state
optimization techniques. Although such finite-state device is deterministic in a
strict sense, it clearly is not deterministic when we consider the real semantics of
its transition labels, i.e., feature structures. Consequently, while processing such
automata (being the result of merging the elementary rule automata into one
MDFSA), in each step, all outgoing transition from a given state are inspected
one by one whether their label matches with the current input feature structures.
Since distinct feature structures (even pairs of matching feature structures) are
represented as different symbols, some states of the automaton, might have a
quite high number of outgoing transitions. This applies in particular for the ini-
tial state and in its direct proximity. Inspecting all outgoing transition each time
the initial state is visited clearly deteriorates the run-time performance.

The rest of this section describes a method for efficiently processing Ex-
PRESS grammars. First, in in subsection 5.1, the pattern matching algorithm
sketched above is described in a more formal manner. Next, in subsection 5.2,
some enhancements thereof are introduced, which mainly consist of flattening
FFSs in the patterns and input FFSs into character-level regular expressions and
strings respectively, so that matching input FFSs with the grammar automaton
can be performed efficiently.

5.1 Pattern Matching Algorithm

Let G be a grammar consisting of regular patterns r1 . . . rn over FFSs, where
each pattern ri is represented by a regular expression Ri . FFSs are replaced
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in each Ri by symbols representing references to these FFSs. Next, we con-
struct a DFSA M (representing the whole grammar) which accepts the language
R1 · {$1} ∪ . . .∪Rn · {$n}, where $1 . . . $n are unique symbols representing rule
identifiers. Additionally, we turn each state q into a final state if it has an outgo-
ing transition labeled with one of the symbols in {$1 , . . . , $n}. All other states
are non-final. Further, let us assume, that the stream of input FFSs is repre-
sented as a directed labeled graph InputFS = (V,E), where all nodes in V
correspond to start/end positions of text spans associated with the input FFSs.
An edge in E is a 3-tuple (v, a, u), where v and u are source/target nodes, and
a is the label which points to some FFS.

An algorithm that takes automaton M and finds all matches in InputFS (an
input stream of flat feature structures) is presented in figure 7. Please note that
M is is not deterministic when we consider the real semantics of its transition
labels. The variable node (initialized in line 1) points to the current node in
InputFS, i.e., the node from which the algorithm tries to find the next potential
match. The main while loop of the algorithm (lines 3-20) is executed until the
current node is the last node in InputFS. Since there is potentially more than
one path from the node u in InputFS which matches with the automaton M and
due to the fact that even one single path in InputFS might match with different
paths in M , we store in the set Active all ‘current’ configurations of M . A single
configuration of M is a triple (q, π, v), where q denotes the current state of M , π
is a sequence of input FFSs which match a path in M from q0 to q, and v denotes
the next node in InputFS from which subsequent matches in the input stream
will be sought. Analogously, in Accepting we store all accepting configurations of
M (ones whose current state is final). Initially this set is empty (line 5). In the
while loop in lines 6-15 all possible configurations of M that match some path
in InputFS starting in the node node are computed. This process resembles
breadth-first-search in graphs. In particular, in the inner loop (lines 8-14) for
each (q, π, v) ∈ Active we compute all ‘subsequent’ configurations, i.e, the ones
being the result of matching some input FFS a starting in node v with a FFS
a′ in the set of transitions for state q, so that δ(q, a′) �= ⊥. Matching test is
done via a call to the function Matches (line 13). Note that for a single input
FFS there might be potentially more than one matching transition in M (for
loop in lines 12-13). Once all ‘new’ configurations have been computed, we select
from the set of accepting configurations one which fulfills selection criteria (line
17). Selection criteria may vary, depending on the search strategy. For instance,
in the longest-match strategy, one simply takes the configuration which covers
the longest text span. If more than one such configuration exists, then the one
being a result of application of a rule with highest priority is chosen, etc.6 Once
an accepting configuration is chosen, an appropriate action is performed (line
18), e.g., output structure(s) is produced. We can restore the rules that matched
via inspecting transition labels from final states. Finally, the value of the current

6 In some applications, it is convenient to select more than one accepting configura-
tion, but the modification to the presented algorithm is straightforward so it is not
discussed any further.
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node in the input graph is then modified accordingly in the line 19. If no accepting
configurations were found, the current node is set to the closest node in InputFS
that has an outgoing edge (line 20).

Find-Matches(M = (Q, Σ, δ, q0 , F ), InputFS)
1 node← GetFirstNode(InputFS)
2 lastNode← GetLastNode(InputFS)
3 while node �= lastNode
4 do Active← {(q0 , ε, node)}
5 Accepting ← ∅
6 while Active �= ∅
7 do Next← ∅
8 for (q, π, v) ∈ Active
9 do if q ∈ F
10 then Accepting ← Accepting ∪ {(q, π, v)}
11 for (v, a, u) ∈ InputFS
12 do for a′ ∈ Σ : δ(q, a′) �= ⊥
13 do if Matches(a, a′)
14 then Next← Next ∪ {(δ(q, a′), π · a′, u)}
15 Active← Next
16 if Accepting �= ∅
17 then (q, π, v)← SelectAcceptingConfig(Accepting)
18 ExecuteAction(M, q, π)
19 node← v
20 else node← GetNextNode(InputFS, node)
21 return

Fig. 7. Pattern matching algorithm

Intuitively, the most time-consuming part of the algorithm in figure 7 is
the for loop in lines 12-14. In the naive implementation one has to inspect all
outgoing transitions from the state q whether their label (a′) matches with the
current input FFS (a). Inspecting all outgoing transition for frequently visited
states, e.g., the initial state and its direct proximity, clearly deteriorates the
run-time performance.

For alleviating the aforementioned problem JAPE applies a solution which
exploits the fact that the feature structures being labels of outgoing transitions
from a given state have shared parts. In particular, all such structures are parti-
tioned into disjoint partial feature structures which do not intersect and they are
reordered accordingly in order to avoid redundant computations while matching
the stream of input feature structures.

In XTDL, where the recognition part of the rules consists of TFSs, a similar
technique for ordering the outgoing transitions is used. It consists of comput-
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ing a transition hierarchy under TFS subsumption for all outgoing transitions
(labels) of a given state. While traversing the grammar automaton, these tran-
sition hierarchies are utilized for inspecting outgoing transitions from a given
state, starting with the least specific transition(s) first, and moving downwards
in the hierarchy, if necessary. Although this technique proved to give a significant
speed-up, the number of transitions which have to be inspected for computing
‘subsequent’ automaton configurations might be on an average relatively high
due to the low degree of feature-value sharing.

5.2 Matching Flat Feature Structures

In order to efficiently perform the crucial matching step in the algorithm de-
scribed in the previous section (lines 12-14) we apply in ExPRESS a technique
which consists of flattening input FFSs into strings and converting all transitions
labels of a given state into a single DFSA, so that computing ‘new’ target states
(new automata configurations) is reduced to performing a simple deterministic
automaton look-up.

Generally speaking, the process of finding a match at a given position in the
input stream is split into three steps: (1) selection of the sequence(s) of input
FFSs which is (are) covered by some rule(s) according to predefined selection
strategy, (2) performing a fully-fledged match of the selected rule(s) against
the selected input sequence of FFSs, which includes variable and label binding,
and (3) producing and merging output structures. Postponing variable and la-
bel binding allows for efficiently implementing step (1). Further, once an input
sequence and the rules (or more) that match this sequence have been selected,
performing full matching in step (2) can be done quickly due to the limited num-
ber of applicable rules. Thus, step (1) can be seen as a prefiltering of applicable
rules. Since there are potentially several paths in the automaton for the rule(s)
selected in step (2), step (3) is necessary for merging and/or filtering out some
output structures, but we do not describe it here any further.

We now turn to implementing step (1) and sketch the technique for quick
computing matching transitions from a given state in a semi-formal way. Firstly,
let us observe that only a finite number of feature-value pairs are used in the
grammar rules. We can compute for all FFSs of a given type α, which appear in
the rules, the respective value sets Σ1 , . . . Σk , where Σi is the value-set for the
i-th feature appropriate for the type α.7 A given input FFS s = [f1 : v1 . . . fk :
vk ]α can be then encoded as a string id(α)·$·v∗1 ·$ . . . $·v∗k , where id maps types
to unique symbols representing their identifiers, $ is a unique symbol /∈ Σi ∪{#}
(∀1 ≤ i ≤ k) which represents a separator and v∗i ∈ Σi ∪ {#} are defined as
follows:

v∗i =
{

vi : vi ∈ Σi

# : vi /∈ Σi ∨ vi = #
For instance, an input FFS [pos : noun, case : loc, gen : fem]morph with pos,
case, and gen being appropriate features for the type morph, where Σpos =
7 Note that we order the features appropriate for a given type
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{noun, adj}, Σgen = {masc, fem}, and Σcase = {nom, acc, dat, gen} (seen fea-
ture values), would be represented as the following string: id(morph) · $ · noun ·
$ · # · $ · fem.

Analogously, each FFS s = [f1 : v1 . . . fk : vk ]α being a label of a transition
t from a given state in the grammar automaton is represented as a regular
expression of the form id(α) · $ v∗1 · $ . . . $ · v∗k ·% · trans(t), where id and $ are
defined as previously, % is another unique separator, trans maps transitions to
their unique symbolic identifiers, and v∗i ∈ (Σi ∪ {#})∗ is a regular expression
defined as follows:

v∗i =
{

vi : vi ∈ Σi

{#} ∪Σi : vi = #
The second part of the definition of v∗i has to be a disjunction of {#} and Σi

since we intend to merge all regular expressions representing transitions from a
given state into a single DFSA (‘transition’ automaton for a given state), i.e., in
case of encoding a feature with unspecified value, all values (for that feature and
type) seen in other patterns have to be considered (Σi). Now, let T 1 , . . . , Tn

be the regular expressions representing the labels of the transitions t1 , . . . , tn
from a given state q in M resp., which were obtained in the previously described
manner. Let Mq be a DFSA which accepts the language T 1 ∪ . . .∪T n . Then, we
can compute the set of possible target states for the state q in M and an input
FFS a that is represented as a string w simply via computing a target state
p = δMq (q, w) in Mq and inspecting all outgoing paths from p, whose labels
start with % in order to retrieve the target state identifiers in the grammar
automaton M . In this way, the steps 12-14 in the algorithm in figure 7 are
reduced to a simple string matching with the DFSA Mq .

We give an example to clarify the aforementioned technique. Let us assume
that t1 and t2 are two outgoing transitions from state q, which are labeled with
[pos : noun, case : #, gen : #]morph and [pos : #, case : acc, gen : #]morph and
which lead to state q1 and q2 resp. Turning them into corresponding regular ex-
pressions yields id(morph)·$·noun·$·{nom, acc, gen, dat,#}·$·{fem,masc,#}·
%q1 for t1 and analogously id(morph)·$·{noun, adj,#}·$·acc·$·{fem,masc,#}·
%q2 for t2 . The result of merging regular expressions representing the labels of
t1 and t2 into one DFSA Mq is shown in figure 8 in a simplified form ($ symbols
were omitted).

Let us assume that an input FFS s = [pos : noun, case : acc, gen : masc]morph

has to be matched against the grammar automaton M in state q. Matching the
string representation of s, i.e., id(morph) · $ · noun · $ · acc · $ · masc, in the
transition automaton Mq results in state 8. Consequently, both states q1 and
q2 are reachable via matching FFS s in M from state q.

Techniques similar to the one described in this section are also used in other
finite-state based frameworks, e.g., in [15]. A further improvement could be
achieved by turning all input FFSs at a given position into a union of their corre-
sponding string representations and subsequently performing on-the-fly intersec-
tion thereof with the ‘transition’ automaton representing the outgoing transitions
from a given state. Whether this results in an enhanced run-time performance is
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Fig. 8. Transitions labels merged into a single DFSA

unclear since intersection operation is more time-consuming than a single string
acceptance check.

6 Technicalities

ExPRESS has been implemented fully in JAVA. The development is based on
the Java Compiler Compiler [16] and the Java package dk.brics.automaton
containing time efficient implementations of finite-state automata and a bag of
standard operations for manipulating and optimizing them [17]. Currently, Ex-
PRESS consists of two stand-alone programs (parser and interpreter) and a
documented JAVA API for facilitating integration into other frameworks. Mak-
ing ExPRESS publicly available for research purposes is envisaged at a later
stage.

We have carried out some experiments to measure the run-time behavior of
Express with a two-stage grammar for recognition of information on actors, kid-
napped, dead and wounded in violent events. In the first stage standard named
entities are recognized, e.g., persons, group of persons, numerical expressions,
etc. In the second stage, single-slot and two-slot extraction rules are applied
to retrieve the sought-after information on related events, in which the entities
recognized in the first stage participate. The first-stage grammar consisting of
circa 100 rules was developed by an expert, whereas the second-level grammar
was obtained via semi-automatic conversion of ca. 3000 automatically learned IE
patterns [18] into ExPRESS rules. Further, five linguistic processing resources
(e.g., tokenizer, gazetteer and morphology look-up) were involved in the ex-
traction process. Subsequently, the aforementioned two-level grammar has been
converted in almost one-to-one manner into a XTDL grammar. It turned to be
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a relatively simple task since the core linguistic components provided with Ex-
PRESS have nearly identical functionality and I/O specification as those used
in SProUT. However, some rules had to be expressed as two rules in XTDL
since XTDL rules do not allow for specifying more than one output structure
directly.

In an experiment, the grammars were applied to a 167 MB excerpt of the
news in English on terrorism, consisting of 122 files on a PC Pentium 4 machine
with 2,79 GHz. The table 1 gives figures of the average run-time (in seconds) for
processing a single file (average size of 1,37 MB) at different stages. The average
number of matches per document amounted to ca. 60 000. Clearly, ExPRESS

Time \ Grammar Interpreter XTDL ExPRESS
core linguistic components stage I 2.451 1.818
entity-pattern matching 38.212 1.923
entity-structure production 4.172 0.515
core linguistic components stage II 1.092 0.639
event-pattern matching 12.124 0.666
event-structure production 0.156 0.013
Total 58.207 5.574

Table 1. Run-time behavior (in seconds): XTDL vs. ExPRESS

performs significantly better than XTDL interpreter. The pattern matching it-
self constituted 46, 34% (ExPRESS) and 86, 48% (XTDL) of the total process-
ing time respectively. In a second experiment, we have slightly ‘compressed’ the
XTDL grammar through using coreferencing and other XTDL specific features,
which resulted in deterioration of the run-time performance by the factor of two.

Finally, in the last experiment, we applied the same cascade of grammars to
a collection of sentences (8 MB), where for each sentence in this collection there
is at least one second-stage extraction rule that matches. ExPRESS run-time
amounted to 36,7 seconds, whereas SProUT needed for processing the same
collection ca 575 seconds.

Although converting ExPRESS grammars into JAPE format is a more la-
borious task, the above run-time figures for ExPRESS are better than one could
potentially obtain when using JAPE according to the author’s ‘subjective’ expe-
rience with the latter one and some basic experiments of converting the first-level
grammar into JAPE.

7 Summary

In this paper, we presented ExPRESS, a new IE-oriented pattern specification
and recognition engine, which borrows heavily from two previously introduced
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pattern languages, namely JAPE and XTDL. In particular, ExPRESS gram-
mars consist of extraction rules which are regular expressions over flat feature
structures with string-valued features. ExPRESS was developed primarily in
order to find a trade-off between ‘compact descriptions’ and efficient processing
of huge text collections. It is already operational and it is being deployed in a
real-time news event extraction system for detecting violent and natural disaster
events [19]. In particular, ExPRESS is capable of applying modest-size event
extraction grammars on MB-sized texts within seconds. Clearly, XTDL or some
other IE-oriented pattern languages are more expressive and more powerful, but
there is a wide range of extraction tasks for which ExPRESS will come in handy
and might constitute a time-efficient alternative.

In future work, the pattern formalism will be extended by adding some new
constructs and providing new native processing resources. Going beyond ‘se-
quential’ processing of grammars is planned. In general, ExPRESS will be kept
as minimal as possible and any future developments will be strictly driven by
the needs of specific applications. In particular, it will be deployed for named-
entity and relation extraction. Finally, exploring additional performance enhanc-
ing techniques for processing grammars is envisaged, e.g., (a) intelligent reorder-
ing of feature-value pairs in the FFS in such a way that features which are most
likely to eliminate a high number of potential target states precede other feature-
value pairs, and (b) conversion of input FFSs starting at a given position into a
union of their corresponding string representations and subsequently performing
on-the-fly intersection thereof with the ‘transition’ automaton representing the
outgoing transitions from a given state.
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On Resolving Long Distance Dependencies in
Russian Verbs

Dirk Saléschus

University of Konstanz, Germany

Abstract. Morphological analyses based on word syntax approaches
can encounter difficulties with long distance dependencies. The reason is
that in some cases an affix has to have access to the inner structure of the
form with which it combines. One solution is the percolation of features
from ther inner morphemes to the outer morphemes with some process
of feature unification. However, the obstacle of percolation constraints
or stipulated features has lead some linguists to argue in favour of other
frameworks such as, e.g., realizational morphology or parallel approaches
like optimality theory. This paper proposes a linguistic analysis of two
long distance dependencies in the morphology of Russian verbs, namely
secondary imperfectivization and deverbal nominalization.We show how
these processes can be reanalysed as local dependencies. Although finite-
state frameworks are not bound by such linguistically motivated consid-
erations, we present an implementation of our analysis as proposed in [1]
that does not complicate the grammar or enlarge the network unpropor-
tionally.

1 Secondary Imperfectivization in Russian Verbs

Like tense and person, aspect is one of the grammatical categories of Russian
verbs. The aspectual category consists in the opposition between perfective and
imperfective aspect. The majority of Russian verbs expresses this grammatical
distinction, although its morphological exponence is quite complex. Prefixation,
suffixation, suppletion, stem allomorphy, and a combination thereof can be used.
We will not consider the intricate semantics of the aspect [2] but only concentrate
on the forms, especially on the joint interaction of prefixation and suffixation.
An overview of the data can be found in any grammar of Russian, as e.g. in [3].

We start with simple verb stems. The overwhelming majority of them are
imperfective, however, there also exist perfective simple stems. The aspect of
simple stems is thus an idiosyncratic property and has to be marked for each
single stem.

Before turning to the morphological expression of the aspectual opposition
it is important to consider first the formation of complex verb stems by means
of lexical prefixation. Lexical prefixation of verbs is quite productive in Russian.
It is a derivational process and leads to the formation of both new lexemes and
complex stems. From a semantic point of view this process of lexeme formation
can either be rather opaque or can lead to quite transparent composed meanings



On Resolving Long Distance Dependencies in Russian Verbs 185

as, e.g., in the case of different semantic classes called Aktionsarten. See the
following examples for semantically transparent and opaque lexical prefixation:1

1 nosít’ (carry-indet.ipf.) vnosít’ (carry in-pf.)
vynosít’ (carry out-pf.) iznosít’ (to wear out-pf.)

2 begát’ (run-indet.ipf.) vbegát’ (run inside-ipf.)
vybegát’ (run out-ipf.) izbegát’ (avoid-ipf.)

We also give an example for semantically transparent lexical prefixation with
the ingressive Aktionsart from [4]:388 f.:

3 govorít’ (speak-ipf.) zagovorít’ (start speaking-pf.)
igrát’ (play-ipf.) zaigrát’ (start playing-pf.)
kričát’ (cry-ipf.) zakričát’ (start crying-pf.)

From a morphological point of view, there are around 20 prefixes which can
be used for lexical prefixation with both perfective and imperfective simple verb
stems. Lexical prefixation can also be applied cyclically, leading to complex forms
such as:

4 polnít’ (sloppy:fill-pf.) výpolnít’ (fulfil-pf.)
perevýpolnit’ (overfulfil-pf.)

This phenomenon is also found in other languages like English or German
which forms the verbs füllen, erfüllen, and übererfüllen, respectively.

Note, however, that not every complex stem is formed from an actual exist-
ing base stem. There are verbs like dobávit’ (fill-pf.), pribávit’ (add-pf.), zabávit’
(amuse-pf.), without an existing verb bávit’. Even though they look like complex
stems they have to be analyzed as simple stems. This is similar to English mor-
phology with verbs like perceive, receive with no existing word ceive (see [5] for
a discussion of such examples).

A last fact to note about lexical prefixation is that some stems have only one
or a few actual prefixed variants whereas others combine with lots of prefixes
[4]. See, e.g., the possible lexical derivations of the stem xodít’ (go-indet.ipf.):

vxodít’, vsxodít’, vyxodít’, doxodít’, zaxodít’, isxodít’, naxodít’, obxodít’,
otxodít’, perexodít’, poxodít’, podxodít’, prixodít’, proxodít’, rasxodít’s’a, sxodít’,
uxodít’ ; only exception: *nadxodít’
1 The following writing conventions are adopted here: the y stands for the high back
unrounded dorsal [1]. A soft consonsant is a consonant that is palatal or has secondary
palatalization. The latter feature is signalled by an apostrophe after the consonant
(e.g. t’ ). The softness of consonants is predictable when they are followed by the
front vowels i or e and is left out in these contexts. The symbols č, š and ž stand for
a soft alveo-palatal affricate [tS] and the posterior voiced and unvoiced fricatives [S]
and [Z], respectively. At the surface, the č is always soft whereas š and ž are always
hard. Finally, an accent signals stress.
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Our lexicon shall be fully productive and contain all potential complex word
forms, whether actually existing in Russian or not.

From a grammatical point of view there is one important biproduct associated
with lexical prefixation. All newly formed lexemes are always perfective stems. In
other words, lexical prefixation always leads to perfectivization (with just a few
exceptions). This shows the intricate connection between lexical and aspectual
meaning [6] but its description goes beyond the scope of this work.

Now we can look at the exponence of the aspectual opposition by means
of prefixation and suffixation (ignoring other morphological exponences). Im-
perfective simple verb stems can express the perfective aspect by grammatical
prefixation. From a semantic point of view this stem formation does not alter
the lexical meaning. From a morphological point of view a new complex stem is
formed.

The crucial fact is that the set of prefixes used for grammatical prefixation
is identical to the set of prefixes used for lexical prefixation. However, there is
one important difference between grammatical and lexical prefixation – for each
simple imperfective stem there is exactly one prefix which is used exclusively for
grammatical prefixation. All remaining prefixes can be used for lexical prefixa-
tion. The choice of the grammatical prefix that can combine with an imperfective
simple stem is not predictable and has to be marked for every simple imperfec-
tive stem. The following sketch with some prefixes and stems illustrates this (“G”
means grammatical prefixation, “L” means lexical prefixation):

G: postróit’ (build-pf.)
stróit’ (build-ipf.) po L: popisát’ (write a bit-pf.)

L: podélat’ (carry on-pf.)

L: nastróit’ (adjust-pf.)
pisát’ (write-ipf.) na G: napisát’ (write-pf.)

L: nadélat’ (cause-pf.)

L: sostróit’ (look surly-pf.)
délat’ (do-ipf.) s L: spisát’ (copy-pf.)

G: sdélat’ (do-pf.)

If a simple imperfective stem has formed a grammatically prefixed partner
stem both stems together make up an aspectually complete verbal lexeme. Since
the aspectual opposition is not expressed via exponence on the same stem (as is
the case for other grammatical categories like number or person) this morpho-
logical process is called grammatical derivation [7].

Now let us see how a (simple or complex) perfective stem expresses the im-
perfective form in order to create an aspectually complete lexeme. In traditional
analyses simple perfective verb stems can change the stem vowel to express
imperfective partner stems. In our analysis this is considered to be a case of
suffixation. There are two allmorphs of the imperfective suffix: an empty V-slot
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and the string /yv/. If not filled by an adjacent vowel from some suffix the empty
slot is per default filled with the vowel [a]. The right allomorph of the ipf. suffix
is determined by morphological class membership. Interestingly the allomorph
for simple perfective stems is always the same, namely a:

5 throw: brósit’ (pf.) brosát’ (ipf.)
deprive: lišít’ (pf.) lišát’ (ipf.)

The i in brosít’ could also be analyzed as an aspectual suffix. However, we
analyze it as a thematic vowel for one morphological class of simple perfective
stems. The root would then be bros. It is a fact that morphological verb classes
assign thematic vowels to stems of a paradigm in different ways. Sometimes
this vowel is kept in only some stems of the paradigm, sometimes in almost all
stems. This separation of thematic vowels from roots facilitates the analyses of
the imperfective suffix and of the deverbal nominalization.

Complex perfective verb stems also use suffixation. For these stems this pro-
cess is called secondary imperfectivization. This is a grammatical process only
and is never an option for simple imperfective verb stems. Complex pf. stems
normally take the allomorph yv but some have the allomorph a and some even
have both:

6 manufacture: izgotóvit’ (pf.)
izgotovl’át’ (ipf.) or izgotávlivat’ (ipf.)

Finally, some (simple or complex) perfective stems show consonant alter-
nations when imperfectivized while others do not. This also has to be marked
lexically:

7 stem allmorph: render: javít’ (pf.) javl’át’ (ipf.)
manufacture: izgotóvit’ (pf.) izgotávlivat’ (ipf.)

8 no stem allmorph: throw: brósit’ (pf.) brosát’ (ipf.)
copy: perepisát’ (pf.) perepísyvat’ (ipf.)

The following table gives an overview of prefixation and suffixation in Russian
verb stems with two example verbs. Empty cells signal that the morphological
process is not possible.

simple verb stem
perfective (brós-it’ ) imperfective (pis-át’ )

prefixation gramm lex none gramm lex none
↓

input to výbrosit’ brósit’ napisát’ spisát’ pisát
↓

ipf. suff vybrásyvat’ brosát’ spísyvat’
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Before turning to the analysis we want to point out an interesting typological
fact. In morphological approaches based on word syntax there is some discussion
about the notion of a head (e.g. [8] or [9]). On the assumption that Russian
complex stems are indeed derived and not stored in the lexicon, both prefixes
and suffixes can determine the aspect of the complex stem and thus constitute
the head. The last applied affix always has the last word.

2 Blocking Affixation with Derived Flag Diacritics

The crucial question is how secondary imperfectivization can be blocked for
grammatically prefixed perfective complex stems. We will first sketch the solution
informally and then consider possible implementations.

In fact, the imperfective suffix needs two kinds of information. First, is the
stem perfective or imperfective? Suffixation is only possible for perfective verb
stems.

The second question is whether the verb is lexically prefixed. Secondary im-
perfectivization applies only if the complex stem is created by lexical prefixation,
not by grammatical prefixation. Thus, imperfectivization is accomplished in or-
der not to just create imperfective verb stems but to create imperfective partner
verbs, i.e. aspectually complete lexemes.

How can this long distance dependency be captured in a morphological frame-
work? How can a morphological type of affixation be made sensible to the com-
plex morphological as well as lexical structure of a verb stem?

One possibility would be the following. Assume that the imperfective suffix
requires a stem which is not yet aspectually complete. Assume also that every
stem can signal whether it is aspectually complete by some kind of feature.

Next let us assume that every simple imperfective stem is marked for its
matching grammatical prefix (if there is one at all). Let us call this marking the
stem-prefix-feature. Once this prefix is encountered the lexeme is saturated and
signals that it is aspectually completed by setting the mentioned feature. The
imperfective suffix is then blocked from application by reference to that feature.
Thus, if the prefix and the stem-prefix-feature match, then a new feature is set
and suffixation is blocked by that new feature.

There are several ways to implement these ideas in computational linguistics.
[10] discusses different strategies, among them using concurrent rule transducers
as in two-level morphology or composing in constraints at compile time. The
first solution has the disadvantage of slower performane at runtime whereas the
latter solution leads to an enormous increase in network size.

Beesley favours a solution with flag diacritics (also described in [1]). In xfst,
flag diacritics are part of the normal alphabet insofar as they are interpreted
like epsilons. However, the enhanced xfst lookup routines process them specially
and enforce the dependencies between morphemes. The lookup routines do this
by introducing a small amount of memory which suffices to capture the long
distance dependencies [10]. The overall flag system in xfst is non-monotonic and
thus exceed the expressive power of regular transducers [1]. With flags it is in
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principle possible to create a blatantly overgenerating lexicon and let the lookup
routines rule out impossible or undesired combinations. The only disadvantage
of flags is a possible slower performance due to backtracking.

We try to solve the problem with the Russian data by reference to flag dia-
critics, a feature-like symbol in xfst. The solution seems quite obvious: the flag
of the imperfective suffix interacts with the flags from stem and prefix according
to well-defined conditions. This is broken down into two steps. First the flags of
the prefix and the stem interact. Second, the result is handled over to the flag of
the imperfective suffix. There are several kinds of flags triggering different pro-
cesses and so again there are several possible strategies for an implementation
of flags. We will not describe the whole inventory of flags in xfst but hope that
the following discussion is easy to understand. For detailed information we refer
the reader to [1].

Working exclusively with flag diacritics, one could assign every prefix an own
flag signaling a positive value, e.g. @P.NA.PLUS@ for the prefix na and similarly
@P.U.PLUS@ for the prefix u. The first P stands for an operation over the feature,
in that case positive setting of the feature. NA is the name of the feature and
PLUS is its value. The whole expression is surrounded by @-signs.

Stems are also assigned flags. A stem flag checks the value of the prefix
flag and resets it only if the prefix combines with this stem for grammatical
prefixation. E.g., the grammatical prefix of the stem pis is na and therefore
changes its flag value. This is achieved by the flag @N.NA.MINUS@. In that case,
N signals negative resetting of the value ot the NA feature such that the value is
reset to MINUS. The value of another prefix like u is left intact by the stem pis.

The imperfective suffix, finally, is also assigned a flag requiring a flag with a
value set to PLUS. It has to list all possibilities like @R.NA.PLUS@, @R.U.PLUS@
etc.

A simplified example shall illustrate how this works. The following expres-
sions would lead to possible concatenations in lexc2 (concatenation is accom-
plished via continuation classes (linked sublexicons) and here marked with a
plus for clarification):

na@P.NA.PLUS@+pis@N.NA.MINUS@+[yv @R.NA.PLUS@ |
@R.U.PLUS@...]

u@P.U.PLUS@+pis@N.NA.MINUS@+[yv@R.NA.PLUS@ |
@R.U.PLUS@...]

In the first case the value of the first flag is set to PLUS. This value is reset by
the stem flag to MINUS. As a result, the flag of the imperfective suffix requiring
a PLUS value can no longer match with this complex stem. In the second case
the value of the first flag is again set to PLUS. This time it is left intact by the

2 A language for specifying lexicons, also provided by the XEROX finite-state tools
[1].
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stem flag and the imperfective suffix can successfully check for a PLUS value.
This gives us exactly the right results.

With the sketched solution the imperfective suffix would have attached to it
flags which check for every possible prefix. This is expressed by the disjunctive
listing of flags for the imperfective suffix, indicated by ” |”. One could also have
multiple entries for the imperfective suffix, each one bearing only flag. However,
we would like to keep the number of flags and morphemes minimal.

There is a second strategy which uses a combination of flags and continuation
classes by doubling the entries for stems. To take the example from above, the
prefix na takes again the flag @P.NA.PLUS@. The first entry for the stem pis has
the flag @D.NA.PLUS@ where the D indicates that the feature NA is not allowed
to have the value PLUS. Thus the stem pis may combine with any prefix except
the one it uses for grammatical prefixation, namely na. The continuation class
of that stem is the imperfective suffix. The second entry for pis has the flag
@R.NA.PLUS@. Here the R indicates the requirement for a preceding flag with the
feature NA set to the value PLUS. The absence of a preceding flag or any other flag
setting is forbidden. The continuation class of that stem entry can be anything
except the imperfective suffix. The obvious disadvantage of that solution is the
increase in network size by doubling information.

There is also a third solution with single entries for all morphemes and a
minimal number of flags used that is already sketched in [1]. In that analysis all
morphemes in the overgenerating lexc grammar have a special formal marking.
Rewrite rules check the markings of the morphemes and change them into flags
in special contexts. To take a concrete example, the prefix na has the notation
naPLEX, the prefix u has the form uPLEX, and the prefix s has the form sPLEX.
PLEX is a dummy meaning lexical prefix. Stems also have some special formal
marking which indicates the prefix that is used for grammatical prefixation. E.g.,
the stem pis has the form pisNA, indicating that the prefix na is used for gram-
matical prefixation. Similarly, the stem sluš is notated as slushU. Finally, the
imperfective suffix also has an additional formal marking, namely IMPRLEX. All
these additional formal markings are just menmonic placeholders and could be
transformed into a more sophisticated notation according to the linguist’s needs.
When the lexc grammar is compiled it contains all conceivable combinations of
prefixes, stems and suffixes, among them unwanted combinations. In a next step
simple rewrite rules delete the special formal marking of the prefix if the prefix
happens to have the same form as the extra formal marking of the stem. Rewrite
rules are given here in the xfst formalism. They denote regular relations which
can later be composed with the lexicon.

The form naPLEX, e.g., is replaced by simple na if somewhere after the prefix
the form NA is found:

define rule1 [n a P L E X -> "na" || _ $[N A] ];

All that is left to do now is to transform all special formal markings which
have not been deleted into flag diacritics. This is also accomplished by rewrite
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rules which are ordered after the prefix rules.

define rule2 [P L E X -> "@P.LEX.LEX@"] ;
define rule3 [R L E X -> "@R.LEX.LEX@"] ;

In effect, only prefixes which combine with stems in lexical prefixation can
now have a flag which is required by the imperfective suffix. The imperfective
suffix cannot combine with grammatically prefixed stems because in the complex
stems the prefixes do not have the required flag. The long distance dependency
between prefix and suffix is thus resolved into a local binary interaction between
only two flags. This is similar to the resolution of long distance dependencies
in phonology. A phoneme can be conceived as a muli-tiered representation with
each feature belonging to its own tier [11]. Two sounds, although separated from
each other by intervening sounds, can excert an influence on each other because
their features are neighbours on one of these tiers.

Our implementation has several advantages. From a linguistic point of view,
it comes close to the theoretical analysis. There are two stages of morphological
stem formation and each time only two features are checked. It is not the case
that one affix has to have access to the inner structure of a complex stem. In
order to achieve these theoretical goals, in our analysis flags are not part of the
lexicon but instantiated in a later step by rewrite rules.

From an implementational point of view, we avoid the use of filters and the
resulting increase in network size. We also use a minimal amount of information
by severely restricting the number of flags and continuation classes. As is to be
expected, each time a stem is added to the lexicon the amount of states and arcs
is more increased in the hybrid solution than in the solution with only flags. The
opposite is true with the number of paths. As far as the mini lexicon and the
addition of a handful of stems is concerned, the overall increase in network size
is the same for both solutions.

So far we have shown how to block a special case of suffixation. The long
distance dependency was resolved into two local phenomena. First, the concate-
nation of prefixes and stems was checked for some kind of pattern matching.
Second, the concatenation of the complex stem and the imperfective suffix was
restrained by flag diacritics.

In the next paragraph a long distance dependency is again resolved into a
purely local phenomenon.

3 Russian Deverbal Nominalization with /nie/

In [12] a special case of blocking in Russian is described. Almost all simple or
complex Russian verb stems as described above can combine with the deverbal
nominalization suffix nie. See the following examples:
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9 pisát’ pisánie RES/CEN
(write-ipf.) (writing-N.)

pét’ pénie SE/CEN
(sing-ipf.) (singing-N.)

sobrát’ sobránie RES/SE
(collect-pf.) (meeting-N.)

starát’s’a staránie SE
(try-ipf.) (endeavour-N.)

raspisát’ raspisánie RES
(write out-pf.) (timetable-N.)

spisát’ spisánie CEN
(write off-pf.) (writing off-N.)

zatverdét’ zatverdénie RES/CEN
(harden-pf.) (hardening-N.)

izgotóvit’ izgotovlénie SE/CEN
(manufacture-pf.) (manufacture-N.)

The type of the resulting nominalization (adopted from [12] and given at the
end of the line) is not predictable and can be a complex event nominal (CEN,
e.g. spisánie), a simple event nominal (SE, e.g. staránie), a result nominal (RES,
e.g. raspisánie), and one nominalization can also have different types. We will
not provide more details about the semantic characteristics and the tests for
different types of nominalizations because they are not crucial for the following
discussion.

In [12] two generalizations are mentioned that apply to that kind of word
formation. First, if nominalization applies the secondary imperfectivization of a
lexically prefixed verb then the type of the nominalization is always the same,
namely a complex event nominal. Second, if the secondary imperfectivization of a
lexically prefixed word does not use the allomorph yv but instead the allomorph
a then the deverbal nominalization suffix nie cannot be attached to that verb.
As examples for that blocking they cite the following data from lexically prefixed
verbs:

10 proclaim: provozglasít’ (pf.) provozglašát’ (ipf.)
proclamation: provozglašénie *provozglašánie

visit: posetít’ (pf.) poseščát’ (ipf.)
visit (N): poseščénie *poseščánie

inform: soobščít’ (pf.) soobščát’ (ipf.)
communication: soobščénie *soobščánie
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consolidate: ukrepít’ (pf.) ukrepl’át’ (ipf.)
consolidation: ukreplénie *ukrepl’ánie

destroy: razrušít’ (pf.) razrušát’ (ipf.)
destruction: razrušénie *razrušánie

destroy: razorít’ (pf.) razor’át’ (ipf.)
destruction: razorénie *razor’ánie

resolve: postávit’ (pf.) postavl’át’ (ipf.)
resolution: postanovlénie *postanovl’ánie

Again this is a case of long distance dependency. The suffix nie has to have
access to the inner structure of the morphologically complex verb.

In [12] this problem is discussed from the point of view of word syntax.
According to their analysis such an approach in combination with locality con-
ditions on affixation has to abuse feature marking and percolation conventions
to “permit a purely morphological feature to percolate from the root to the top
of the tree”. Even then it does not explain blocking effects of deverbal nominal-
izations in Russian verbal morphology. It is argued that the generalization can
only be stated by a morphological rule of referral.

In [13] it has already been shown how morphological frameworks using rules
of referral can be fomulated in a finite-state framework. However, we would like
to suggest another and much more simple analysis of the facts.

4 Renalysis of the Long Distance Dependency

A simple solution could again use flag diacritics. However, there is a much simpler
approach. The crucial assumption in [12] is: “There is no purely phonological
restriction which will account for the lack of *razrušánie, *ukrepl’ánie [...].”

But let us have a closer look at the data. The first thing to note is that
if a verb contains stems with palatalized allomorphs in its paradigm then the
deverbal suffix nie is always attached to such a stem allomorphs:

11 izgotóvit’ (manufacture-pf.)
izgotóvl’u (manufacture-1.Sg.pres.pf.)
izgotovlénie (manufacture-N.)

12 provozglasít’ (proclaim-pf.)
provozglašú (proclaim-1.Sg.pres.pf.)
provozglašénie (proclamation-N.)

The next thing to note is that the suffix nie is always added to a stem ending
either in a or e, even though the stem to which the deverbal nominalization is
added might never realize that vowel elsewhere in the paradigm:
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13 izgotóvit’ izgotovlénie, *izgotovlínie
ukrepít’ ukreplénie, *ukreplínie

Our assumption then is that the vowel preceding nie in fact belongs to the
nominalizing suffix. It is attached to a stem that does not have an thematic
vowel and is realized as a after hard consonants and as e after soft consonants.
The only morphological requirement for the application of the nominalization
suffix is to take a special palatalized stem form if there is one in the paradigm.
Everything else is governed by phonology:

14 /Vnie/→ [enie] / C[soft] _
/Vnie/→ [anie] elsewhere

This analysis can be stated in a more sophisticated phonological theory. Using
underspecified feature structures, one possibility would be to say that the under-
lying vowel needs only to be specified for [LOW]. A postlexical rule deletes this
feature in the context of a preceding soft consonant which is always specified for
[HIGH] (see [14]). A vowel with no feature specification at all will per default be
as realized as coronal [e]. With only specified for [LOW] after hard consonants,
a redundancy rule will realize this vowel as dorsal [a].

There is one slight complication with sibilants in Russian. In Russian all con-
sonants can have soft (with secondary palatalization) and hard variants (without
secondary palatalization). The sibilants š, ž and the dental affricate ts, however,
do not have both variants but always surface as hard consonants. On the other
hand, in certain phonological contexts which are sensitive to the softness of
the consonant the hard sibilants behave like soft consonants. This is true for
the above mentioned rules of vowel alternation and for similar rules of stress-
sensitive vowel neutralization. There is thus evidence that underlyingly they are
soft. With that assumption one could explain why the form provozglašénie is en-
countered instead of provozglašánie. Again only a detailed phonological analysis
will lead to these generalizations. The exact details of the Russian phonologi-
cal system are quite elegant and straightforward but need not to be copied one
by one into the xfst-framework. It suffices to know that the generalization to be
captured is phonological. With these observations at hand one could now explain
the following blocking effect:

15 razrušít’ (destroy-pf.) razrušénie (destruction)
razrušát’ (destroy-ipf.) *razrušánie

16 razorít’ (destroy-pf.) razorénie (destruction)
razor’át’ (destroy-ipf.) *razor’ánie

The reason why a form like *razoránie is never encountered as opposed to
the form razorénie is that there is a simple case of phonological neutralization at
work. The underlying stem used for the formation of razorenie is /razor’/ which
ends in a soft consonant. The vowel of the derverbal suffix undergoes a simple
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assimilation – after soft consonants it is fronted and surfaces as [e] whereas
elsewhere it surfaces as [a].

This phonological generalization holds also for verbs from the consonantal
class which do not have imperfective suffixes but signal the secondary imperfec-
tivization via the whole stem form:

17 sobrát’ (collect-pf.) sobirát’ (collect-ipf.)
sobránie (collection) sobiránie (collecting-N)

18 výžat’ (wring out-ipf.) výžimat’ (wring out-ipf.)
not attested vyžimánie (wringing out-N)

The phonological generalization also applies to unprefixed verbs:

19 pisát’ (write-ipf.) pisánie (writing-N)
bít’ (beat-ipf.) bijénie (beat-N)

The last piece of evidence comes from semantics. Normally, nominalizations
with nie formed from perfective verbs do not show a predictable pattern of nom-
inalization type, as pointed out in [12]. It is therefore interesting to note that
nominalizations of lexcially prefixed verbs where the secondary imperfectiviza-
tion uses the allomorph a almost always have a complex event reading besides a
simple event reading or result reading. The explanation is easy in our analysis –
since the nominalization of these verbs can have two potential underlying stems
(perfective and imperfective) and since the secondary imperfectives show a reg-
ular pattern of nominalization type this generalization is preserved independent
of the phonological neutralization.

In sum, with another morphological segmentation the effect of blocking turns
into a case of phonological neutralization.

5 Conclusion

We have demonstrated how linguistic analyses can be simplified when seen from
different perspectives. It remains an interesting but open question whether sim-
ilar phenomena can also be reanalyzed in this way and what repercussions a
special linguistic theory has for engineering aspects.
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Transducers from Parallel Replace Rules and
Modes with Generalized Lenient Composition

Anssi Yli-Jyrä

Department of General Linguistics, University of Helsinki, Finland

Abstract. Generalized Two-Level Grammar (GTWOL) provides a new
method for compilation of parallel replacement rules into transducers.
The current paper identifies the role of generalized lenient composition
(GLC) in this method. Thanks to the GLC operation, the compilation
method becomes bipartite and easily extendible to capture various appli-
cation modes. In the light of three notions of obligatoriness, a modifica-
tion to the compilation method is proposed. We argue that the bipartite
design makes implementation of parallel obligatoriness, directionality,
length and rank based application modes extremely easy, which is the
main result of the paper.

1 Introduction

It is extremely difficult to compile grammars into finite-state transducers without
efficient and readily implemented compilation methods for high-level rules. In
particular, replace rules (such as [1]) have a rich semantics that is difficult to
capture. The goal of this paper is to analyze the author’s recently proposed
method [2] and the related approach in general.1

The new method [2] differs from the most similar alternative approach of
Kempe and Karttunen [1] in some obvious ways:

– It reduces oriented replace rules to two-level rules
– It does not necessarily use composition
– It derives all modes from optional replacement
– Its left-and-right context conditions are closed under Boolean operations
– It uses brackets only to avoid overlapping rule applications.

In this paper, perhaps the most important contribution is the recognition
of the relevance of the bipartite architecture of the new method. According to
it, the rule-independent mode constraints are separated from rule-specific con-
dition. Related to this, we present the necessary machinery including Jäger’s
composition operator [3] and new strict preference relations. The second im-
portant contribution is to present Bracketed Generalized Two-Level Grammar
(BGTWOL) that is crucial to the new compilation method. The third contribu-
tion is to separate three modes of obligatoriness. A clear understanding of these
1 For further resources http://www.ling.helsinki.fi/users/aylijyra/replace.
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modes helps relate the existing compilation methods and improve the compati-
bility of the new method and the Xerox calculus. Finally, the paper sketches a
rich rule system that covers the multi-character two-level rules of GTWOL [4,
5] and BGTWOL, parallel replace and marking rules [1, 6], directed modes [7]
and three principles for ranking [8] or disjunctive ordering [5].

The paper is structured as follows: Preliminary definitions are in Section
2. In Section 3, we describe the essentials of Generalized Two-Level Grammar
(GTWOL) [4]. Section 4 reduces replace operations into the GTWOL formalism.
Section 5 studies applications of generalized lenient composition to obligatory
replacement. The new design pattern for compilation methods is discussed in
Section 6. The conclusion is in Section 7.

2 Preliminaries

Let A1 , A2 be sets of symbols. Let U and V be languages over A1 . We assume
that the reader is familiar with regular languages and the basic regular opera-
tions: concatenation UV , intersection U ∩V , union U ∪V , asymmetric difference
U\V , complementation U , Kleene’s star U∗, and Kleene’s plus U+. Let U0 = ε
and let Uk , where k > 0, denote the languages UU (k−1).

The local A2 -closure of U ⊆ A1
∗ is the relation fA2 :A1

∗ → A1
∗ defined

as fA2 (U) = {f(a0 )f(a1 ) . . . f(am−1 ) | a0a1 . . . am−1 ∈ U ∧ a0 , a1 , . . . , am−1 ∈
A1} where f(a) = a∗ for every a∈A2 , and f(a)=a otherwise. The elimination
of symbols A2 in language U is the function dA2

(U) = fA2
(U)\A1

∗A2A1
∗. The

inverse of relation dA2
is denoted by dA2

−1 .
Notation A1 :A2 denotes alphabet {a1 :a2 |a1 ∈ A1 ∧ a2 ∈ A2}. Set Π is

called the total pivot alphabet. Its every element is a character pair a:b and it
is closed in such a way that a:a, b:b ∈ Π for all a:b ∈ Π. The diamond alphabet
M contains markers #:#, : , �0 :�0 , �1 :�1 , �2 :�2 , . . . , �s :�s and it is disjoint from Π.
The indices of the diamonds will be used to indicate the disjunctive ordering
level of GTWOL rules. Level 1 is the level of the least specific rules. An identity
pair a:a ∈ (Π ∪M) is often written simply as a.

We use marker ∈ M to represent the place for centers in an environ-
ment string. The center extension with V ⊆ A1

∗ is the relation σV :(A1 ∪
{ })∗ → A1

∗ defined as σV (U)={σ(a0 )σ(a1 ) . . . σ(am−1 ) | a0a1 . . . am−1∈U ∧
a0 , a1 , . . . , am−1

∈ A1 ∪ { }} where σ(a)=V when a = , and f(a)=a otherwise.
The null string is denoted by ε. Let u be a string over an alphabet A1 .

We often denote set {u} by u. The length of u is denoted by |u|. A sequence
u = a0 :b0a1 :b1 . . . am−1 :bm−1 ⊆ (A1 :A2 )∗ is called a symbol-pair string and
analyzed alternatively as a string pair (x1 , x2 ) = (a0a1 . . . am−1 , b0 b1 . . . bm−1 ).
Pair (x1 , x2 ) can be denoted by x1 :x2 when |x1 | = |x2 |. String x1 is called the
input string and x2 is called the output string.

Disjoint sets BL ⊆ Π and BR ⊆ Π have the same cardinality and they
are called the left and the right bracket alphabets, respectively. Set BL contains
symbols <1 , <2 , . . . , <s , and set BR contains symbols >1 , >2 , >, . . . , >s . Let B =
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BL ∪ BR and Bi = {<i , >i}. The indices of the brackets will be used to denote
the ranking level of a ranked rule.

Let 0:0 ∈ Π be a representative for the empty string ε. The input and
output projections π1 , π2 : Π∗ → Π∗ are defined respectively as π1 (X) =
{d0 (x1 ):d0 (x1 ) |x1 :x2∈X} and π2 (X) = {d0 (x2 ):d0 (x2 ) |x1 :x2∈X} where
d0 = d{0 :0}. Let I = π1 (Π) and Σ = I\B.

Let U2 = Π∗MΠ∗MΠ∗. Define relations ν�,l , ν2 ,l : Π∗→(Π ∪ M)∗ by
equations ν�,l(w) = d{�1 ,�2 ,...,�l}

−1 (w) and ν2 ,l(w) = ν�,l(w)∩U2 , and relations
μ, μ4 : (Π∪M)∗ → (Π∪M)∗ by equations μ(w) = {#vν�,l(x)y# | �j ∈ M ∧
v, x, y ∈ Π∗ ∧ #v�jx�j y# ∈W} and μ4 (w) = μ(w) ∩ #U2 #.

Let W,W ′ ∈ (Π ∪M)∗. The language Π∗\dM (W \W ′) is denoted by gen-
eralized restriction W

Π,4,M⇒ W ′, if W ⊆ #U2 #, and by extended generalized
restriction W

Π,μ,M⇒ W ′, if W=μ(Y ) and W ′=μ(Y ′) for some Y, Y ′ ⊆ #U2 #.

It holds that [W
Π,4,M⇒ μ4 (W ′)] = [W

Π,4,M⇒ μ(W ′)] and [μ4 (W )
Π,4,M⇒ μ(W ′)] =

[μ(W )
Π,μ,M⇒ μ(W ′)]. Accordingly, [μ4 (W )

Π,4,M⇒ μ4 (W ′)] = [μ(W )
Π,μ,M⇒ μ(W ′)].

3 Generalized Two-Level Grammars

The formalism of Generalized Two-Level Grammars (GTWOL) [4, 5] presents
several improvements over the classical Two-Level formalism [9, 10] in computa-
tional morphology. Its main improvement is to support multi-character changes
while not turning the formalism into so-called partition-based two-level system
which would behave quite differently. Since Yli-Jyrä [5] adds disjunctive order-
ing to the definition of GTWOL grammars, we will use the same notation here.
However, we adopt in this paper an extended notion of the GR operation.

Simple and Complex Rules For any i ∈ N, let X i , Li and Ri denote regular
languages over Π, and let li be a positive integer. The GTWOL formalism [4,
5] includes center prohibition rule [li :: X i/<=Li Ri ], context restriction rule
[li :: X i=>Li Ri ], surface coercion rule [li :: X i<=Li Ri ], and composite i.e.
double-arrow rule [li :: X i<=>Li Ri ] that is a short-hand notation for a context
restriction rule and a surface rule. The symbols and # belong to the diamond
alphabet M . Each context condition Ci = #Li Ri# ⊆ #Π∗ Π∗# can be repre-
sented by a weaker form C ′i ⊆ (ε∪ #)Π∗ Π∗(ε∪ #) that is related to Ci by the
following equivalence:

Ci = [(ε ∪ #Π∗)C ′i(ε ∪Π∗#)] ∩ (#Π∗ Π∗#). (1)

In other words, the following syntactic conventions are implemented: ... ... ⇔
...ε ε...; #Π∗L ... ⇔ L ...; ... RΠ∗# ⇔ ... R. The GTWOL formalism sup-
ports rules that have multiple contexts or, more generally, even Boolean com-
binations of two-sided context conditions, because these context conditions are
actually languages.
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Let the set of rule operators O contain symbols /<=, <=, =>, <=>. The rule
types have a general form X i opi Ci , where X i ∈ Π∗, opi ∈ O, and Ci ⊆
#Π∗ Π∗#.

The Individual Rules of GTWOL The semantics of the individual rules of
GTWOL grammar is defined as follows:

[li :: X i/<=Ci ]
def=[σν�,li

(Xi )(Ci)
Π,μ,M⇒ ∅] (2)

[li :: X i=>Ci ]
def=[σν�,li

(Xi )(#Π
∗ Π∗#)

Π,μ,M⇒ σν�,li
(Xi )(Ci)] (3)

[li :: X i<=Ci ]
def=[σν�,li

(π1
−1 (π1 (Xi )))(Ci)

Π,μ,M⇒ σν�,li
(Xi )(Ci)] (4)

[li :: X i<=>Ci ]
def=[σν�,li

(πj
−1 (πj (Xi )))(Ci)∪σν�,li

(Xi )(#Π
∗ Π∗#)

Π,μ,M⇒ σν�,li
(Xi )(Ci)]. (5)

In contrast to [4], the generalized postconditions specify now immediately the
successful rule applications (like Si later in [4]).

Since the original GTWOL [4], context restriction rules have had both licens-
ing and restricting functions because of the longest application principle [4, 5].
While the problematic left-arrow rules with empethesis [14] were addressed [4],
the double function of context restriction rule [(a ∪ a:b)∗=>c d] restricted the
occurrences of such substrings as ε, a and aa. The currently updated GTWOL
contains a default core Gencore of two rules: rule [1 :: Π=>∅] says that every
symbol in strings needs to be licensed, and rule [1 :: I∗=> ] says that all sub-
strings consisting of identity pairs are licensed. The latter default rule is now in
an intended conflict with [1 :: a∗=>c d].

Coherent Intersection An important aspect of GTWOL is how it combines
rules. In the classical Two-Level Grammar, rules are compiled in separation and
then combined under intersection, whereas GTWOL can combine rules before
they are compiled. The operation �under which the rules are combined is
introduced in [5], and it is called coherent intersection.

[W 1
Π,μ,M⇒ W ′

1 ] �[W 2
Π,μ,M⇒ W ′

2 ] def= [(W 1∪W 2 )
Π,μ,M⇒ ((W 1∩W ′

1 )∪(W 2∩W ′
2 ))]
(6)

Let G be a collection of GTWOL rules that use alphabet Π. When all rules
are combined under the coherent intersection, the grammar reduces to a single
generalized restriction W

Π,μ,M⇒ W ′ that returns the language described by G.
This language is denoted by GenG .

Coherent intersection implements conflict resolution for various kinds of ar-
row conflicts [11, 4, 5]. In addition, two further resolution strategies follow from
the definition of ν�,l : conflicts between embedded rule applications are resolved
on the basis of the longest application principle [4] and disjunctive ordering
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of the levels [5]. Disjunctive ordering uses alternative diamonds �1 , . . . �s . The
disjunctive level denoted by �1 is the least general one. Rules at level strictly
greater than 1 use several alternative diamonds. However, partially overlapping
applications are not resolved automatically and rules with shorter applications
cannot override rules with strictly longer applications. This is where GTWOL
will continue to mature.

Most GTWOL rules are stored at the level 1. Therefore, we can abbreviate
such rules by leaving out their level specifications.

Bimorphisms Defined by GTWOLs Bimorphisms [12] are a useful notion
that can be combined with generalized restriction [5]. Let Σ1 , Σ2 and Π be
alphabets. A bimorphism is a triple (ψ1 , P, ψ2 ) where ψ1 : Π∗ → Σ1

∗ is the
input homomorphism, P ⊆ Π∗ is the pivot, and ψ2 : Π∗ → Σ2

∗ is the output
homomorphism. The transformation relation β(P ) ⊆ Σ1

∗ × Σ2
∗ computed by

bimorphism is defined as β(P ) = {(ψ1 (w), ψ2 (w)) | w ∈ P}.
Let GenG ⊆ Π∗ be a language described by a two-level grammar. Ac-

cording to bimorphism (π1 ,GenG , π2 ), this language defines a regular relation
β1 (GenG) where β1 (P ) = {(π1 (w), π2 (w)) | w ∈ P} [9, 4].

4 Reduction of Replace Rules into Two-Level Grammars

In the literature, a diverse variety of algorithms have been proposed as solutions
to compilation of oriented, inverted, directed, parallel, and ranked replacement
and marking rules [6, 7, 1, 13]. In order to integrate different rule types and their
compilation methods, we relate them to Generalized Two-Level Grammar that
provides a good basis for representation of conditions of individual rules.

Centers The heart of a usual replacement rule is the description of change, or
the center, that consists of two regular languages, U ⊆ Σ∗ and Y ⊆ Σ∗, meaning
that a substring in U will be replaced disjunctively with replacements that are
picked from set Y . The separate description of U and V is motivated by the usual
rule formats in production systems and it may be easier to read. Some rules e.g.
in Generative Phonology contain backreferences that are normally expressed
with feature variables. According to Kaplan and Kay [14], such rules could be
split into a number of subrules.

However, it is arguable [15] that if the centers are defined as regular rela-
tions we obtain a more expressive and useful definition that includes, for ex-
ample, marking rules. Therefore, we will specify the center X i directly as a
same-length relation i.e. a language over Π. In fact, there are various ways to
obtain an adequate X i from languages U i and Y i , if needed. If X i is obtained
adequately, cross product U i ×Y i equals to β1 (X i). Rules that contain a list of
centers X1 , X2 , . . . Xn reduce now to union ∪i=1

nX i . Moreover, the center of
the marking rules [7, 13] can be expressed easily as a subset of Π∗. For example,
the description of change in the marking rule [a+ -> b e g ... e n d] in XFST
[13] corresponds to two-level center 0:b 0:e 0:g a+ 0:e 0:n 0:d.
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Oriented Contexts Both replace (and marking) rules can be conditional [6,
7, 13] i.e. restricted to apply only in certain contexts. The context conditions of
these rules can be reduced into GTWOL context conditions easily. For consistent
presentation, assume that boundary markers .#. [13] and # are synonymous.

The previous implementations of replace rules express each context condition
Ci as a language #Li Ri#, where Li , Ri ⊆ Σ∗. For convenience, each such context
condition can be represented in a weaker form C

′
i ⊆ (ε∪ #)Σ∗ Σ∗(ε∪ #) that is

related to Ci by the following equivalence:

Ci = [(ε ∪ #Σ∗)C
′
i(ε ∪Σ∗#)] ∩ (#Σ∗ Σ∗#). (7)

In contrast to two-level contexts that are subsets of (Π ∪M)∗, the replace
rules restrict their context conditions to languages over (Σ∪M)∗. This is due to
the fact that these contexts have four possible orientations: left-to-right, right-
to-left, upward and downward. If the context condition Ci of the replace rule is
left-to-right (or right-to-left), it is interpreted as a combination of a look-a-head
condition Ri (Li) in the input string and a trailer condition Li (Ri) in the output
string. Conditions with either upward or downward orientation are simpler and
they check either the input or the output string, respectively.

In Generative Grammar, the slash character / is conventionally used to sep-
arate the description of change and the context condition [16]. In the replace
formalism [6], the specific form of this separator si ∈ {//, \\, | |, \/} indicates
also the orientation of the context. The oriented context condition siCi corre-
sponds to a two-level context condition

Ci=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{x1 :x2∈Π∗|x∈d0

−1(Ci) ∧ x1 :x∈#Π∗ Σ∗# ∧ x:x2∈#Σ∗ Π∗#}, if si=′// ′;
{x1 :x2∈Π∗|x∈d0

−1(Ci) ∧ x1 :x∈#Σ∗ Π∗# ∧ x:x2∈#Π∗ Σ∗#}, if si=′\\ ′;
{ x:x2∈Π∗|x∈d0

−1(Ci)}, if si=′ | | ′;
{x1 :x ∈Π∗|x∈d0

−1(Ci)}, if si=′\/ ′.
(8)

The reduction lends itself for a simple finite-state implementation e.g. by using
composition or a simpler ad hoc algorithm. Given the reductions (7) and (8),
a typical weak replacement context condition such as // c d is considered a
two-level context #Π∗π2

−1 (c) π1
−1 (d)Π∗#.

The subsets of #Π∗ Π∗# are obviously closed under the Boolean operations.
As we have now reduced all context conditions into these sets, we can combine
contexts with different orientations under intersection, asymmetric difference and
symmetric difference. Accordingly, we capture more than the usual possibilities
[13] with considerable ease.

Two-Level Operators for Replace Modes When the center X i and the
context condition Ci are both in the two-level format, it is natural to introduce a
flexible rule syntax for parallel rules. On one hand, centers and context conditions
can both be combined with Boolean operations. On the other, the extended
generalized restrictions obtained from each parallel rule can be combined under
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coherent intersection. Parallel rules can be indicated in the rule formalism in
different ways. One possibility is the XFST notation:

X1 op1 C1 „ X2 op2 C2 „ . . . „ Xn opn Cn . (9)

In XFST, the rule operators are used to indicate the mode of application. Alter-
native operators include (->), ->, <-, <->, @->, ->@, @>, and >@. These indicate
respectively the optional, obligatory, inverse, bidirectional, longest left-to-right,
longest right-to-left, shortest left-to-right, and shortest right-to-left replacement
modes.

In order to account for different replacement modes compactly, it is useful to
understand what aspects they have in common and which mode could be used
as a primary notion for obtaining the others.

4.1 Overlapping vs. Non-Overlapping Applications

In GTWOL, rules such as [1 :: a:b=>c d] are actually very similar to optional re-
placement rules [4, 5]. Provided that the rule neither overlaps nor interacts with
itself or any other rule than the default rules, the semantics of context restriction
actually coincides with optional replacement. However, a self-overlapping context
restriction [1 :: a:b a:b=> ] and optional replace aa(->)bb are not interchange-
able (consider e.g. the input aaa). And due to the overlaps, context restriction
rules [1 :: a:b=>x x] and [1 :: x a:b x=> ] do not differ when considered in iso-
lation [2]: both would accept the symbol-pair string x a:b x a:b x. However, the
contributions of these rules differ under coherent intersection because the latter
rule has a longer center.

Double-arrow rules are the classical way to express obligatoriness in two-level
grammars. They involve a right-arrow rule and a left-arrow rule. However, the
resulting notion of obligatoriness is quite strict (denoted by M1), because the
combination of such left-arrow rules as [1 :: A:a B:p<= ] and [1 :: B:b C:c<= ]
rejects the input ABC. The consequences B:p and B:b generate a conflict that is
not solved automatically by the current GTWOL.

Kaplan and Kay [14] underlines that phonological rules do not normally
rewrite their own output. This does not refer to overlapping simultaneous rule
applications at the first place but such directed rewriting that does not advance
monotonously in the original input string but resume, after an application, an
earlier string position in the modified string. Anyway, overlapping applications
does not belong to replace rules such as [1].

The interpretations of the optional replace rules [1] and right-arrow rules
on one hand, and obligatory replace and double-arrow rules, on the other, will
coincide if the center is free from self-overlaps and self-embeddings. Thus, re-
placement rules should somehow be reduced to overlap-free GTWOL grammars.

4.2 A Bracketed GTWOL

We use term Bracketed Generalized Two-level Grammar (BGTWOL) to refer to
a loosely characterized family of such GTWOL grammars that assume a non-
empty sub-alphabet B ⊆ I and use it to indicate bracketing in the strings of
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language GenG . The default core Gencore is now [1 :: Π=>∅] �[1 :: Σ∗=> ],
because now alphabet B �⊆ Σ is reserved for a special use and the user does not
have a normal access to it.

Let G be a BGTWOL grammar. The language GenG described by grammar
G is used as the pivot in bimorphism (ψ1 ,GenG , ψ2 ) where ψ1 (w) = π1 (dB (w))
and ψ2 (w) = π2 (dB (w)). In this bimorphism, the grammar describes the regular
relation β2 (GenG) where β2 (P ) = {(π1 (dB (w)), π2 (dB (w)))|w ∈ P}.

Bracketed Grammar Rules In addition to the disjunctive ordering of rules,
BGTWOL involves another ranking mechanism that is based on bracket labels. It
is, however, not really used before Section 6. For all i = 1, 2, . . . , let X i ⊆ (Π\B)∗

and Ci ⊆ #(Π\B)∗ (Π\B)∗# be regular languages, and let X i
′ = <bi X i>bi ,

Ci
′ = dB

−1 (Ci), Δ0 = (Π\B)∗ and Δ1 = Δ0 (BLΔ0BRΔ0 )∗.
BGTWOL supports some new rule types that include bracketed coercion

[li :: <bi
X i>bi

(<=) Ci ], bracketed inverse coercion [li :: <bi
X i>bi

(=<) Ci ],
bracketed context restriction [li :: <bi X i>bi(=>) Ci ], bracketed double-arrow [li ::
<bi X i>bi(<=>) Ci ], bracketed inverse double-arrow [li :: <bi X i>bi(=<>) Ci ], and
bracketed bidirectional double-arrow [li :: <bi

X i>bi
(<=<>) Ci ]. These operations

are defined as follows:

[li :: X ′
i (<=) Ci ]

def=[σν�,li
(π1

−1 (π1 (dB (X ′i ))))(C
′
i ∩ #Δ1 Δ1 #)

Π,μ,M⇒ ∅] (10)

[li :: X ′
i (=<) Ci ]

def=[σν�,li
(π2

−1 (π2 (dB (X ′i ))))(C
′
i ∩ #Δ1 Δ1 #)

Π,μ,M⇒ ∅] (11)

[li :: X ′
i (=>) Ci ]

def=[li :: X ′
i => C ′i ] (12)

[li :: X ′
i(<=>)Ci ]

def=[li :: X ′
i(<=)Ci ]

�[li :: X ′
i(=>)Ci ] (13)

[li :: X ′
i(=<>)Ci ]

def=[li :: X ′
i(=<)Ci ]

�[li :: X ′
i(=>)Ci ] (14)

[li :: X ′
i(<=<>)Ci ]

def=[li :: X ′
i(<=>)Ci ]

�[li :: X ′
i(=<>)Ci ]. (15)

Bracketed coercion bears functional similarity to surface coercion. It says intu-
itively that the center X i that is non-embedded (i.e. #Δ1 Δ1 #) must not be
left unbracketed in the specified contexts.

Applications of bracketed surface coercion can overlap one another, but even
the first application suffices to reject the pair-string and is normally not can-
celled by other GTWOL rules. Meanwhile, applications of bracketed context
restrictions cannot be embedded or overlapping because X i does not contain
brackets. Accordingly, we can give for the operator a simpler, purely licensing
definition that looks like a tautology but still contributes against the default rule
[1 :: Π => ∅] under coherent intersection.

[li :: X ′
i (=>) Ci ]

def= [σν�,li
(X ′i )(C

′
i)

Π,μ,M⇒ σν�,li
(X ′i )(C

′
i)]. (16)

Optional Replace Rules Yli-Jyrä and Koskenniemi [2] observe that paral-
lel conditional optional replace rules can be represented using context restric-
tion in GTWOL. In the current terms, the representation uses bimorphism
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(ψ1 ,GenG , ψ2 ) where the pivot GenG is obtained by changing the replace rules
into bracketed context restrictions:

[X1(->) C1 „ X2(->) C2 „ . . . „ Xn(->) Cn ] def=
β2 (Gencore

� �

i=1
n [1 :: <1X i>1(=>)Ci ]) (17)

Note that the brackets indicate the regions where a rule has been correctly
applied. This is a quite different approach than the multiplicity of brackets that
are used in [1] to indicate partial satisfaction of conditions for rule application.
For example, pivot language GenG obtained from optional BGTWOL replace
(that corresponds to rule [ab (->) x // ab b] in Karttunen’s [6] formalism)

[1 :: a:x b:0 (->) #Π∗π2
−1 (a b) π1

−1 (a)Π∗#] (18)

contains exactly the following mappings for input string abababa:

(19a) (19b) (19c)
abababa ab<1ab>1aba abab<1ab>1a
abababa, ab<1x0>1aba, abab<1x0>1a.

(19)

Obligatory Replace Rules For the sake of compatibility to the Xerox calculus
[13], it is desirable to pursue the semantics of obligatory conditional parallel
replace such as in [6]. This can be done using bracketed double-arrow rules.

[X1-> C1 „ X2-> C2 „ . . . „ Xn-> Cn ] def=
β2 (Gencore

� �

i=1
n [2 :: <1X i>1(<=>)Ci ]) . (20)

Because the substrings undergoing a change are indicated by brackets, it is easy
to enforce that a substring must be changed whenever the conditions for the
replacement are met. This requirement is contributed by the bracketed coercion.
Its disjunctive ordering level is now 2, because the default rule [1 :: Σ∗=> ]
would cancel the effect of bracketed coercion [1 :: <1X i>1(<=)C ′i ] at level 1.

In inverse replacement (denoted by <-), the roles of the input and output
strings are switched. The bidirectional obligatory replacement requires bracketed
bidirectional double-arrow (i.e. (<=<>)).

5 Violable Mode Constraints

Although BGTWOL provides a solution to obligatory replacement through the
bracketed double-arrow, we will now compare the solution to the new method
of Yli-Jyrä and Koskenniemi [2]. For this purpose, we introduce some additional
machinery.
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5.1 Strict Preference Relations

A binary relation T ⊆ I∗×I∗ is a strict preference relation (SPR) if it is irreflex-
ive (thus not complete), transitive and antisymmetric. The following relations
and their inverses are strict preference relations:

Tmost = {(π1 (w), π2 (w))|w∈(BL:0Σ∗BR:0∪Σ ∪B:B)∗} (21)

Tmost+ = {(π1 (w), π2 (w))|w∈(BL:0Σ+BR:0∪Σ ∪B:B)∗} (22)
T norep = {(w,w′)|w,w′∈I∗∧dB (w)=dB (w′)∧w/∈(I∗BLBRBLBRI∗)*w′} (23)
T lest = {(w,w′)|w,w′∈I∗∧dB (w)=dB (w′)∧w/∈(I∗BI∗)*w′} (24)
T lr = {(vby, vau)|v, y, u∈I∗ ∧ a∈Σ ∧ b∈BL ∧ dB (y)=dB (au)} (25)
T rl = {(ybv, uav)|v, y, u∈I∗ ∧ a∈Σ ∧ b∈BR ∧ dB (y)=dB (ua)} (26)
T lrlong = {(vau, vby)|v, u, y∈I∗ ∧ a∈Σ ∧ b∈BR ∧ dB (y)=dB (au)} (27)
T rllong = {(uav, ybv)|v, u, y∈I∗ ∧ a∈Σ ∧ b∈BL ∧ dB (y)=dB (ua)} (28)
Tα,B ′ = {(w,w′)|w,w′∈I∗ ∧ (dB\B ′(w), dB\B ′(w′)) ∈ Tα}. (29)

Let T be an SPR. According to T , element x1 ∈ I∗ is interpreted strictly
more preferable than x2 ∈ I∗, i.e. x1 ≺ x2 , if and only if (x1 , x2 ) ∈ T . For
example, Tmost+ compares only compatible bracketings and prefers those that
have more markup:

aa<1ab>1<2ab>2a ≺ { aaab<1ab>1a, aa<1ab>1aba } ≺ aaababa;
{<1aa>1<1aa>1 , a<1aa>1a} ≺ aaaa.

Let us prove that Tmost+ is an SPR. Relation Tmost+ removes at least one
pair of brackets, but it can also remove more, or even all brackets. Therefore,
the expressed relation is transitive, since for all v, x, y ∈ I∗, (v, y) ∈ Tmost+ if
(v, x) ∈ Tmost+ and (x, y) ∈ Tmost+. It is irreflexive and antisymmetric, since
for all (v, w) ∈ Tmost+, |v| > |w|. Thus, the relation of Tmost+ is a SPR.

The union of two strict preference relations is not generally a strict preference
relation since the result is not necessarily antisymmetric. Still, some preference
relations can be combined under union.

All the SPRs defined in (21–29) are regular and easily implementable with
finite-state transducers or bimorphisms. Typically the corresponding transducer
contains only a few states.

5.2 Applications of Strict Preference Relations

The Method of Yli-Jyrä and Koskenniemi Yli-Jyrä and Koskenniemi [2]
were inspired by the “matching” approach [17] used in selecting candidates that
have minimal compatible set of constraint violations in Finite-State Optimal-
ity Theory. A somewhat similar approach has been used in [18]. In order to
implement the method for parallel obligatory replacement [2], the minimality
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constraint is inverted to obtain strings with maximal bracketing. The five steps
of the resulting method in [2] are the following:

1. Prepare Ci (and compute X i);

2. Compute Ci
′ = dB

−1 (Ci) and X i
′ = <1X i>1 ;

3. Compute GenG = [1 :: (Π\Σ)=>∅] � �

i=1
n [1 :: X i

′=>Ci
′];

4. Compute D = π1 (GenG) and D′ = {w2 |w1 ∈ D ∧ (w1 , w2 ) ∈ Tmost+};
5. Compute Gen′G = {w1 :w2 ∈ GenG |w1 /∈ D′} and return β2 (Gen′G).

(30)

Generalized Lenient Composition Jäger [3] defines a left-associative binary
operator (glc) and controversially calls it generalized lenient composition op-
erator although it rather addresses a problem with lenient composition than
generalizes it. We add two variants: inverse one (denoted by r-glc) and bidirec-
tional one (denoted by b-glc). The operators assume two operands: a candidate
set S ⊆ Π∗ and a strict preference relation T ⊆ I∗× I∗, and they are defined as
follows:

S glc T
def={w∈S | ¬∃w′(w′∈S ∧ (π2 (w), π2 (w′))∈T )}; (31)

S r-glc T
def={w∈S | ¬∃w′(w′∈S ∧ (π1 (w), π1 (w′))∈T )}; (32)

S b-glc T
def=(S glc T ) ∩ (S r-glc T ). (33)

Now, as we have slightly elaborated our formal machinery, we can express
the compilation method of [2] as a two-step algorithm:

1. Compute GenG = Gencore

� �

i=1
n [1 :: <1X i>1(=>)Ci ];

2. Compute β2 (GenG r-glc Tmost+). (34)

5.3 The Alternative Modes of Obligatoriness

Together with Kaplan and Kay [14], Yli-Jyrä and Koskenniemi [2] maintain
that all other replacement modes are subsets of the relation described by the
corresponding optional replacement (denoted by Opt), which contrasts to the
approach of [6].

It is not trivial to describe how obligatory replacement restricts Opt. Three
different approaches have already been presented in this paper (Sections 4.1, 4.2
and 5.2). These do not produce the results in general, and it is therefore at least
fair to say a word about their differences. The replace relations corresponding
to these modes form an inclusion order M1 ⊆ M2 ⊆ M3 ⊆ Opt. The modes
themselves can be described as follows:

M1 – Overlapping Synchronized Coercion Kaplan and Kay (page 357 of
[14]) mention but do not elaborate a possibility of overlapping applications of
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obligatory rules. However, Section 4.1 and [2] point out that a GTWOL rule
can have overlapping applications. Due to this, a double arrow rule such as
[1 :: A:a B:p ∪ B:b C:c <=> ] is in a self-conflict, which results into an over-
constrained input-output mapping that fails to relate any output to input string
ABC.

M2 – Non-Overlapping Coercion The bracketed double arrow of BGT-
WOL (Section 4.2) differs from the double arrow of GTWOL by using a brack-
eting that serves to avoid overlapping applications in every candidate mapping.
Its left-arrow part is, however, surprisingly constrained since, for example, rule
[2 :: a:xb:0 (<=) #Π∗π2

−1(ab) π1
−1(a)Π∗#] does not allow such mapping as

(abab<1ab>1a): (abab<1x0>1a).
As far as I can judge, Karttunen et al. [6, 1, 13] seem to implement this notion

of obligatoriness into XFST when compiling the right-oriented rule ab (->) x //
ab b.2 In particular, the definition 27 (the Replace component relation) in
[6] cannot skip a center in a proper context without replacing it. Candidate
(abab<1ab>1a):(abab<1x0>1a) is not included to the result, because there is a
non-overlapping substring (underlined) that should have been replaced with x0.
The method ignores the fact that this additional change cannot be done (it would
result into incorrect symbol-pair string *(ab<1ab>1<1ab>1a):(ab<1x0>1<1x0>1a))
without altering the lower left context that was assumed by one of the changes.

M3 – Maximal Set of Non-Overlapping Changes This third notion of
obligatoriness is represented by Section 5.2 and [2]. The subtle difference between
the new method [2] and [6] was not recognized in [2] although it is a crucial
part of backward compatibility. The semantics of the new method is illustrated
considering the mappings of optional replace rule (18). Mappings (19b and 19c)
are maximal candidates under the preference relation Tmost+.

5.4 The GLC Approach to M2

Besides the bracketed double arrow, the new method of [2] can be modified to
capture mode M2. The solution is based on the idea of a bracketed identity
rule where brackets B2 are used to mark the valid replacement locations that
are held back i.e. the applications of the rule [1 :: <2π1 (X i)>2 (=>)Ci ]. The
contribution of this is to make the candidate set more dense under Tmost+. SPR
T lest,B2 prefers candidates that do not contain B2 . Pivot GenG has always at
least one candidate without brackets B2 .

[X1->C1 , , . . . , X i->Cn ] def= β2 (GenG r-glc (Tmost+∪T lest,B2
)) (35)

where GenG = Gencore

� �

i=1
n [1 :: <1X i>1∪<2π1 (X i)>2(=>)Ci ].

2 It may be helpful to remark that [19] and [14] compile directed rewriting rules, see
the discussion in [6]. Therefore they do not belong here.
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Example The set GenG contains the following candidates for the unbracketed
input abababa:⎧⎪⎪⎨
⎪⎪⎩
abababa ab<2ab>2aba abab<2ab>2a ab<2ab>2<2ab>2a
abababa, ab<2ab>2aba, abab<2ab>2a, ab<2ab>2<2ab>2a,

ab<1ab>1aba abab<1ab>1a ab<2ab>2<1ab>1a
ab<1x0>1aba, abab<1x0>1a, ab<2ab>2<1x0>1a

⎫⎪⎪⎬
⎪⎪⎭ . (36)

The set of all maximal bracketings in GenG is obtained using strict prefer-
ence relation Tmost+ that ignores the bracket labels when comparing bracketed
strings:

GenG r-glcTmost+
∩

dB
−1 (π1

−1 (abababa))
=
{
ab<2ab>2<2ab>2a ab<1ab>1aba ab<2ab>2<1ab>1a
ab<2ab>2<2ab>2a, ab<1x0>1aba, ab<2ab>2<1x0>1a

}
.

(37)

The set of candidates without identity rule applications is obtained with an
additional preference transducer T lest,B2

:

GenG r-glcT lest,B2

∩
dB
−1 (π1

−1 (abababa))
=
{
ab<1ab>1aba abab<1ab>1a
ab<1x0>1aba, abab<1x0>1a

}
. (38)

There is only one candidate that remains in the intersection of these sets.

GenG r-glc (Tmost+ ∪ T lest,B2
)

∩
dB
−1 (π1

−1 (abababa))
=
{
ab<1ab>1aba
ab<1x0>1aba

}
. (39)

Insertion Replaces It does not make sense to apply the obligatoriness con-
straint to insertion rules or, more generally, to rules where ε ∈ π1 (X i). Because
there could always be more insertions, no candidate would qualify as maximal
according to Tmost. Using SPR Tmost+ instead has avoided this problem.

Sometimes it is desirable to make insertions only once at any position match-
ing the context conditions. E.g. we may not want to limit insertions by consum-
ing the material that might be rewritten by other parallel rules. Kempe and
Karttunen [1] address the problem by providing a special strategy for one-time
insertion. A similar strategy can be captured easily with SPR T norep. After this
constraint has been applied, it is natural to apply SPR Tmost in order to get can-
didates with maximal sets of non-repeated insertions and other replacements.

[. X i .] ->Ci
def= β2 (GenG r-glc T norep r-glc (Tmost ∪ T lest,B2 )). (40)

Inverse and Bidirectional Replacement Inverse and bidirectional replace-
ment [1] are extremely easy to implement. All what is needed is to use an ade-
quate generalized lenient composition operator i.e. glc or b-glc.
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Directed Replace It is possible to implement various directed replace opera-
tors [7] (and similar methods of [14, 19]) using suitable strict preference relations.

X i @->Ci
def= β2 (GenG r-glc (T lr ∪ T lrlong)) (41)

X i ->@Ci
def= β2 (GenG r-glc (T rl ∪ T rllong)) (42)

X i @>Ci
def= β2 (GenG r-glc (T lr ∪ T lrlong

−1 )) (43)

X i >@Ci
def= β2 (GenG r-glc (T rl ∪ T rllong

−1 )). (44)

Accordingly, we observe that using generalized restriction with BGTWOL gives
an elegant and uniform approach for computing a large family of different replace
(and marking) rules.

6 The Bipartite Approach

A New Design Pattern The method of [2] has a bipartite design that contains
two main components: GenG and Con.

β2 (GenG ◦Con) = β2 (GenG ◦ 1T 1 ◦ 2T 2 · · · ◦ mTm). (45)

The components are responsible for different kinds of tasks. GenG is the candi-
date generator, and Con is the lenient constraint component. The latter consists
of lenient constraints T 1 , T 2 , . . . , Tn and left-associative generalized lenient com-
position operators ◦i , ◦2 , . . . , ◦m ∈ {glc, r-glc, b-glc}. Jäger [3] observes that
lenient composition [20] can be expressed with generalized lenient composition.

The bipartite approach is very useful because it lends itself to many appli-
cations such as compilation of ranked rewriting rules and directed replacement
rules. By encapsulating the context conditions of the replacements into GenG ,
the conditions are always observed in the generated candidates regardless of
any strategic preferences. It is the task of Con to choose among alternative
candidates, but it does not have to know about the internal structure of the
candidate generator. By using strict preference relations, we obtain a uniform
representation for various rule modalities.

Ranked Rules In Optimality Theory [21], the constraints are ranked. Similar
ranking is possible also among parallel replacement rules. Various kinds of ranked
rules have numberless applications beyond phonology and morphology.

Skut et al. [8] present a compiler for ranked left-to-right fixed-length re-
placement rules with upward-oriented contexts. A similar system of rules can be
implemented easily in the current approach. First, we construct the bracketed
GTWOL grammar corresponding to optional rules in such a way that brackets
<i and >i occur in rules of rank i. The highest rank is now 1, and lowest n. The
resulting bracketed relation, GenG , is constrained as follows:

GenG r-glc T lr,B1 r-glc T lr,B1∪B2 r-glc T lr,B1∪B2∪B3 . . . r-glc T lr,B .
(46)
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In order to give preference to longest applications, strict preference relation
T lr,B ′ ∪ T lrlong,B ′ could be used instead of T lr,B ′ .

In [8], each rule rewrites a fixed-length substring. Our solution is more general
since (i) the contexts in rules can be oriented and combined under Boolean
operators, (ii) centers are not restricted to fixed-length substrings, and (iii) each
rank can be shared by several parallel rules.

7 Conclusion

In the paper, we reviewed and extended the previously published 2-page descrip-
tion of the Yli-Jyrä and Koskenniemi method [2] for compiling parallel replace
rules into transducers. Its relationship to the method of Kempe and Karttunen
[1] is elaborated and discussed critically.

The background sections of this paper included an updated description of
Generalized Two-Level Grammars (GTWOL). The semantics of GTWOL was
defined, for the first time, using an extended notion of generalized restriction.
In comparison to [14, 19, 1], the solution reduces considerably the number of
different brackets needed to compile parallel replacement rules.

The main result in this work is to elaborate the bipartite design pattern that
was employed implicitly in [2].

– Candidates are generated with a GTWOL grammar.
– Three forms of Jäger’s composition operator [3] (GLC) were employed.
– Strict preference relations account for obligatoriness, directionality and

length-based preferences.

The design makes it easy to capture a variety of rule application modes without
bothering about conditions of individual rules. Parallel replace rules can have
even heterogeneous modes and the rules can be ranked.

In addition, the paper presented three important notions of obligatoriness and
defined new compilation methods for each of them. The notion corresponding
to the method of Kempe and Karttunen [1] was covered by two alternative
solutions.
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Finite-State Rule Deduction for Parsing
Non-Constituent Coordination

Sina Zarrieß and Wolfgang Seeker

Potsdam University, Germany

Abstract. In this paper, we present a finite-state approach to con-
stituency and therewith an analysis of coordination phenomena involving
so-called non-constituents. We show that non-constituents can be seen
as parts of fully-fledged constituents and therefore be coordinated in
the same way. We have implemented an algorithm based on finite state
automata that generates an LFG grammar assigning valid analyses to
non-constituent coordination structures in the German language.

1 Introduction

In standard syntactic theories, coordination is usually seen as a structure that
conjuncts syntactic entities which are both of the same phrasal category and
maximal projections (see [1] for an example). However, in various languages
one finds examples for coordinated structures where conjoins don’t fit into any
standard concept of syntactic constituent, or don’t even share their phrasal prop-
erties. The main insight the following examples should give is that, in general,
syntactic entities can be coordinated if the material they share completes them
in a syntactically well-formed way.

(1) Asterix
Asterix

darf
may

und
and

Obelix
Obelix

darf
may

nicht
not

vom
of

Zaubertrank
magic potion

trinken.
drink

(2) Asterix
Asterix

gibt
gives

Obelix
Obelix

ein
a

Wildschwein
boar

und
and

Idefix
Idefix

einen
a

Knochen.
bone

(3) Obelix
Obelix

verschlingt
devours

ein
a

kleines
small

und
and

nascht
snacks

von
of

einem
a

großen
big

Wildschwein.
boar

Even on the level of constituent structure, it is quite difficult to assign a valid
analysis to this kind of constructions, see figure 1.

In [2], the author gives an exhaustive overview of strategies that have been
implemented for covering these phenomena. In his paper, he mainly shows that
despite their nearly identical behaviour, constituent and non-constituent coordi-
nation are often treated as completely seperated structures. Sometimes even the
underlying parsing algorithm is modified for being able to parse this particular



214 Sina Zarrieß and Wolfgang Seeker

S��������
��������

??��������
������

??
���
���

Asterix darf

CONJ

und

??
				






Obelix darf nicht

??������
������

vom Zaubertrank trinken

Fig. 1. Which category has a non-constituent?

structure. What seems to make it so difficult to analyze non-constituent phe-
nomena is that they undermine the fundamental concept of syntactic category.

We have implemented an algorithm that generates a grammar allowing par-
tial constituents in the context of coordination from a standard context-free LFG
grammar in the well-known XLE format. This automatically generated gram-
mar then covers the main types of non-constituent coordination as Right Node
Raising and Conjunction Reduction. Our approach has been inspired by [3] who
make use of the fact that the right rule sides of an LFG grammar are regular
languages and can therefore be represented by finite state automata. But still,
their strategy operates on the level of the parsing algorithm and suffers from the
drawback of being barely formalized.

In the remaining of this paper, we will describe the way we apply the theory
of automata to the problem of partial rule generation. Our basic goal is to
assign the same category to partial constituents that expect identical completing
material. When appropriate, we will go into the details of the XLE grammar
implementation that realizes the assignment of a well-formed syntactic analysis
to non-constituent coordination structures.

2 Preliminaries

2.1 Formal Language Devices

Initially, since we want to conceptualize constituency in a finite-state frame, we
give some notations for formal devices that specify regular as well as context-free
languages. For instance, regular expressions are instances of regular languages
over an alphabet Σ. They are usually defined recursively as follows:

Definition 1. The empty set ∅, the empty word ε and all symbols a ∈ Σ denote
regular expressions. If r and s are regular expressions, their disjunction (r + s),
concatenation (rs) and closure r∗ also denote regular expressions.

An alternative device for manipulating regular languages are the so-called
finite-state automata.

Definition 2. A finite-state automaton (or FSA) A is a 5-tuple A = (Σ,Q, I, F,
E) where:
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1. Σ is the finite input alphabet of the automaton;
2. Q is the finite set of states;
3. I ⊆ Q is the set of initial states;
4. F ⊆ Q is the set of final states;
5. E ⊆ Q× (Σ ∪ {ε})×Q the set of transitions.

Given a transition e ∈ E, we denote by s[e] its input label, by p[e] its origin
(previous) and by n[e] its destination (next) state. A path π = e1 . . . en in the
automaton A is defined as an element of E∗ where forall n[ei−1 ] = p[ei ]. A
successful path in A is a path π = e1 . . . en where p[e1 ] ∈ I and n[en ] ∈ F , thus
a path from an initial to a final state. The concept of an origin and destination
state can be extended to paths so that p[π] and n[π] are meant to be the origin
and destination state of the path π. Accordingly, s[π] denotes the concatenation
of the input symbols of a path π.

We define the right language of a state q ∈ Q as follows:−→
L (q) = {w | π(q, w, q′), q′ ∈ F}. The language accepted by an automaton A is
the union of the right languages of all initial states L(A) =

⋃
q∈I
−→
L (q).

The definition of a finite-state automaton can be easily extended to a finite-
state transducer (FST) T = (Σ, Δ, Q, I, F,E) where Δ is the finite output al-
phabet and E ⊆ Q×(Σ∪{ε})×(Δ∪{ε})×Q. The composition of two finite state
transducers T = T 1 ◦ T 2 is defined as T = (Σ1 ,Δ2 , Q1 × Q2 , I1 × I2 , F 1 ×
F 2 , E) where (< q1 , q1

′ >, a, b, < q2 , q2
′ >) ∈ E if (q1 , a, c, q2 ) ∈ E1 and

(q1
′, c, b, q2

′) ∈ E2 .
Whereas the language L(A) accepted by an FSA A is a set L ⊆ Σ∗, the

language recognized by an FST can be seen as a relation L(T ) ⊆ (Σ ×Δ)∗. We
will sometimes use the common set theoretic operations like union and product
to denote operations on FSTs. Furthermore, we define an operation of projection,
where P 1 (T ) ⊆ Σ∗ corresponds to the input and P 2 (T ) ⊆ Δ∗ to the output
language of T .

The LFG grammar that will provide input for our rule generator is an in-
stance of a context-free language specified as a context-free grammar.

Definition 3. By the classical definition, CFGs are tuples Gc = 〈V T , V N , S,R〉
including the requirements:

1. V T is the finite alphabet of terminals;
2. V N is the finite alphabet of nonterminals;
3. S is the start symbol;
4. R is the set of rules r : σ → ω, so that σ ∈ V N and ω ∈ (V T ∪ V N )∗.

In the following section, we will mainly show how these computationally quite
distinct devices can be interrelated to give rise to a formal concept of (partial)
constituency.

2.2 LFG Grammars in XLE

The actual implementation of our coordination grammar, as described in the
following section, has been done within the XLE development environment for
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LFG grammars (see [4] or [5] for a general introduction). To enable the reader to
follow the presented examples, we will give a short description of some common
XLE notations.

In general, XLE grammars have to be specified as left-canonical (see defini-
tion 4). An example for a typical rule in XLE is shown in figure 2. Disjunction is
expressed by curly brackets, optionality by round brackets. The category sym-
bol stands to the left of a colon, its f-annotation to the right. An expression
( SUBJ) =! in the f-annotation means that whatever is derived by that symbol
is in the SUBJ feature of the current f-structure. The $-symbol is the ∈-symbol
and is used for sets.

NP -->
{ (D) A*: !$(^ADJUNCT); N:(^SUBJ)=!;
| PRON:(^SUBJ)=!;
}
(PP:!$(^ADJUNCT);).

Fig. 2. A simple NP rule

To formulate category independent structures in a general way one can de-
fine so-called XLE macros. In figure 3, our macro for coordination is shown. A
category symbol placed in _cat is copied to all occurences in the rule body and
associated with the specified f-annotation. Note that the $-operator causes the
coordinated elements to be unified in a set and their f-structures to be treated
as a single set.

COORD(_cat) =
_cat: !$^;
( COMMA _cat: !$^; )*
{CONJ[konj]: (^NUM)=pl | CONJ[disj]: (^NUM)=sg }
_cat: !$^.

Fig. 3. The coordination macro

Another useful XLE mechanism called complex category symbols allows en-
riching category symbols with different parameters to generalize information
about different instances of the same constituent. A parameterized symbol then
stands for all possible instanciations of its parameters. An example is shown in
figure 4.

However, one should not think of category parameters in terms of Prolog-
style variables. Parameters are only interpreted when they occur at the left side
of a rule. Thus, if parametrized categories appear on the right side of a rule,
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NP[_param $ { pl sg }] -->
{

D N
|

N: _param = pl;
}.

Fig. 4. Parameterized NP rule

their mother category is parametrized by at least the sum of all its daughter
parameters. In consequence, underspecified parameters aren’t licensed and we
are forced to enumerate all possible instanciations of a parameter at least at the
root symbol.

3 A Finite-State Concept of Constituency

3.1 A First Approach to Partial Constituents

One can easily see that the right side ω of a standard context-free rule as defined
in definition 3 is equivalent to a regular expression by the finite concatenation of
symbols xi ∈ (V T∪V N ), where x1 . . . xn = ω. Very often, context-free grammars
(LFG grammars for instance) especially make use of the regular syntax in that
they allow operations like disjunction or closure to appear on the right rule side.
This fact enables us to define the concept of a left-canonical grammar.

Definition 4. A context-free grammar Gc = 〈V T , V N , S,R〉 is called left-cano-
nical if and only if for every σ ∈ V N there exists at most one r ∈ R such that
r : σ → ω.

For every context-free grammar G that doesn’t satisfy this property, it is
possible to define an equivalent left-canonical grammar G′. Given a grammar
G1 that contains one pair of rules r1 , r2 such that σ1 = σ2 , you simply have to
unify the right sides ω1 , ω2 such that r1+2 : σ1+2 → ω1 + ω2 .

This type of grammar is a useful construction when you want to define the
regular language L1 (σ) that can be derived from a nonterminal σ ∈ G by a single
rule application. If G is left-canonical, for every ωi ∈ R, ωi denotes exactly the
regular expression that corresponds to the language L1 (σi). Thus, it is possible
to represent the set of rules R of a context-free grammar by a set of automata
AR = {Aωi

| L(Aωi
) = L1 (σi)}.

Given these connections between regular and context-free languages, one can
formalize the syntactic concept of constituency in the following way:

Definition 5. A linguistic entity ωi is called a constituent with respect to a
context-free grammar G, if there exists a path π ∈ Aω such that Aω is equivalent
to some right rule side σ → ω ∈ G and s[π] = ωi .
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In case p[π] /∈ I or n[π] /∈ F , thus if π isn’t successful, the related constituent
s[π] is called partial and labelled by ωi,j where i = p[π] and j = n[π]. Otherwise,
if π is a successful path in Aω we call the constituent ω0 ,n that corresponds to
s[π] complete. We define an isomorphism μ : L1 (σi,j ) → Πei ...ej that maps the
regular language representing a (possibly partial) constituent to its correspond-
ing set of paths in the rule automaton.

Now, we are able to state the hypothesis in [3] concerning coordination of
non-constituents in a formal way:

Lemma 1. Two constituents ωi,j , ωu,v with ωi,j = s[πi,j ] and ωu,v = s[πu,v ],
πi,j , πu,v ∈ Aω can be coordinated iff i = u and j = v.

3.2 A Precise Formalization of Coordination

The intuition underlying this generalized coordination rule is that (partial) con-
stituents can be conjoined if the constituents that make them complete are iden-
tical. However, this lemma doesn’t completely capture this intuition. Consider
the automaton in figure 5 that represents a simplified NP -rule.

0

1

D 2

A 3

N

4A

A

N

A

5PP

6

CP

PP

CP

Fig. 5. An automaton representing the right side of a simple NP rule

Although the constituents labelled by the input sequences N and A can be
completed by identical constituents PP or CP , their corresponding paths don’t
have a single destination state in common. Therefore, we have to refine our
concept of a valid rule automaton Aω.

It can be shown that for every regular set there exists a canonical minimum
state automaton. The well-known Myhill-Nerode theorem (see [6]) states that a
regular language is the union of equivalence classes on a right invariant equiva-
lence relation RL of finite index. RL is defined by: xRLy if and only if for all
z ∈ Σ∗, xz ∈ L if and only if yz ∈ L. In terms of an automaton this means
that its set of states can be partitioned into equivalence classes with respect to
a right invariant relation RL

′ where qiRL
′qj if

−→
L (qi) =

−→
L (qj ).

The concept of a state representing an equivalence class with respect to
its right language is exactly what we need for the partial constituents being
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assigned a meaningful category. In consequence of the Myhill-Nerode theorem,
one can now say that all partial constituents ωi,j that can be completed by an
identical constituent ωj ,k lead the canonical rule automaton into an unique state
k, since they have the same right language

−→
L (k). This leads us to a more precise

generalized coordination rule:

Lemma 2. Two constituents ωi,j , ωu,v with ωi,j = s[πi,j ] and ωu,v = s[πu,v ],
πi,j , πu,v ∈ Aω can be coordinated iff i, u ∈ ||i|| and j, v ∈ ||j||.

Hence, our goal is to generate all possible partial right rule sides ωi,j =
s[πi,j ] from the canonical rule automaton and assign them a category which is
parametrized by the pair of states (i, j) in the canonical rule automaton. For-
mally, this can be expressed by a mapping that relates a left-canonical context-
free grammar G to a grammar G′ that is equivalent with respect to the maximal
projections but explicits its partial constituents:

Definition 6. Given a canonical CFG Gc = 〈V T , V N , S,R〉 and its equiva-
lent canonical rule automaton Aω we define a mapping onto a grammar Gp =
〈V T ‘, V N ‘, S‘, R‘〉 that fulfils the following conditions:

1. S = S‘ and V T = V T ‘.
2. V N ‘ = V N ∪

⋃
σ∈V N ,i,j∈QAω

σi,j .
3. Every rule r : σ → ω, r ∈ R is mapped by a function f to a set of rules

f(r) = {σi,j → ωi,j | s[πi,j ] = ωi,j , πi,j ∈ E∗Aω
, πi,j ∈ μ(L(σi,j ))}.

4. R‘ =
⋃

r∈Rf(r) ∪R.

However, in our XLE implementation we avoid blowing up the set of rules
as is described above. The mechanism of complex category symbols allows us to
treat all partial constituents ωi,j of a mother category σ as derivations of the
same rule that parametrize σ in a different way. Figure 6 shows an example of a
parametrized NP-rule, where the origin and destination state of the constituent
are realized as the parameters _from and _to. To indicate the possibly partial
status of this category it is called XPsub. Every XPsub is parameterized by
all parameters φ1 ...φn of its original category, by a parameter _koord, which
marks the coordination status of the constituent, and two parameters _from
and _to to mark the start and end index of a particular substring (we use the
values sa and se for start and end state). Thus, XPsub is equal to the set of
rules yielded by the mapping f(XP ).

Because of the constituent status of the non-constituents we can now coordi-
nate them with the same macro we use for constituent coordination, see figure
3. The restriction, that only constituents with congruent origin and destination
state can be coordinated, is inherent to the macro since only categories with
identical parameters form the same category symbol.

3.3 Assembling Complete Constituents

Up to now, we have completely ignored the fact that we don’t want our grammar
to derive partial constituents in contexts other than coordination. Finally, we
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NPsub[_ntype $ {std rel int},_koord,_from,_to] -->
{
AP: _ntype = std; e: _from=s19 _to=s21 _koord=no;
|
...
|
@(COORD_PART NPsub[_ntype $ {std rel int},no,_from,_to])
e: _koord=yes;
|
@(COORD NPsub[_ntype $ {std rel int},_koord,_from,_to]
e: _from=sa _to=se)
}.

Fig. 6. NPsub generated from an NP rule

will have to add rules to the grammar that reassemble partial constituents to
complete ones. The formalization is straightforward:

Lemma 3. A sequence of constituents ωi0 ,j 0 , ωi1 ,j 1 , . . . , ωin ,j n , ωii ,j i ∈ Aω

forms a complete constituent, iff for every jn = in+1 and i0 is the initial state
and in some final state in Aω.

Thus, we would have to add to our coordination grammar Gc ‘ all possible in-
stances of the rule r : σi,k → ωii ,j i , . . . , ωik ,j k . But this would lead to an extreme
ambiguity in the resulting grammar where every complete constituent could, in
addition to its original derivations, be derived by numerous ways of putting to-
gether its partial right rule sides ωi,j . To cope with this serious overgeneration,
we restrict the completion to require at least one partial constituent that has
been formed by a conjunction of partial constituents. Every partial constituent is
further parametrized with a boolean feature that marks its coordination status
to check for this condition.

Lemma 4. A sequence ωcoord
i0 ,j 0 , ωcoord

i1 ,j 1 , . . . , ωcoord
in ,j n , ωii ,j i ∈ Aω forms

a complete constituent, iff there exists some ωcoord
i,j with coord = true and for

every jn = in+1 and i0 is the initial state and in some final state in Aω.

In our implementation we have restricted the respective completion rules to
binary branching.

We are now able to give an elegant analysis for e.g. the phenomenon of Right
Node Raising as shown in figure 8.

4 Automated Deduction of Partial Constituents

We could now extract all partial constituents from the rule automaton by per-
forming a standard breadth-first search on its transitions. However, we prefer
this operation to be defined on the algebra of finite state automata.
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NPkompl[_ntype $ {std rel int},_from,_inter,_to] -->
{
NPsub[_ntype $ {std rel int},yes,_from,_inter]
NPsub[_ntype $ {std rel int},no,_inter,_to]
|
NPsub[_ntype $ {std rel int},no,_from,_inter]
NPsub[_ntype $ {std rel int},yes,_inter,_to]
|
NPmiss[_ntype $ {std rel int},yes,_inter]
PPsub[std,no,_inter,se]: !$(^ADJUNCT); e:_from=sa _to=se;
}.

Fig. 7. NPkompl generated from an NP rule
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Fig. 8. Analysis for the German NP the small and the big gaul
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In a first step, we define a transducer T sub that can be notated as a regular
expression T sub = (ID(Σ)∗ · (Σ×{ε})∗ · ID(Σ)∗). By definition of the composi-
tion of FSTs, the transducer ID(Aω)◦T sub yields a relation that maps arbitrary
long prefixes and suffixes in Aω to ε, so that the second projection of this rela-
tion P 2 (ID(Aω) ◦ T sub) yields an automaton Aωi,j that accepts all partial and
complete constituents of Aω. The problem with this first approach is that the
states in Aωi,j of course don’t correspond to those in Aω anymore. However, we
have shown in the previous section that the state information inherent to the
canonical rule automaton Aω is exactly what we need to parametrize partial
categories.

Thus, before generating partial constituents, we have to explicitely encode
the states in the FSA Aω. Broadly speaking, we do this by indexing the regular
expression that constitutes the right rules sides ω to label every distinct position
of the expression. Then, the automaton Aω

ind equivalent to the indexed right
rule side contains position labels such that for every given state n[e] ∈ A with
the right language

−→
L \ I there exists a unique input label i[e] ∈ Iω. By a series

of compositions with deletion transducers we obtain an automaton Aω
i,j whose

input sequences s[π], where π is successful, are strings of the form s = ii ·ωi,j · ij .
First, we have to define the operation of indexing positions in regular expres-

sions.

Definition 7. Let r, s and t denote regular expressions and I = {1, 2, 3 . . . n} an
index alphabet such that n is the number of subexpressions of r, t or s respectively.
If r = a, a ∈ Σ, rind = i0 ·a · in . If r = (s+ t), rind = (sind + tind) · in . If r = st,
rind = (sind tind) · in . If r = s∗, rind = (sind)∗ · in .

The automaton Aω
ind = (Σ ∪ Iω, Q, I, F,E) corresponding to an indexed

right rule side ωind accepts input sequences s[π0 ,n ] = i0 ·ω0 ,n
ind · in . To remove

redundant position labels in Aω
ind , it is composed with the transducer T delpos :

T delpos = (ID(i0 ) · (I × {ε})∗ · ID(Σ)) · ((I × {ε})∗ · (ID(I) · ID(Σ))∗) (1)

The second projection Aω
delpos = P 2 (Aω

ind ◦T delpos) yields input sequences
of the form s[π0 ,n ] = i0x0 i1x1 . . . xn in where ii ∈ I, xi ∈ Σ so that x0 . . . xn =
ω.

Lemma 5. If there are two constituents ωi,j
ind = s[πi,j ], ωu,v

ind = s[πu,v ],
with πi,j , πu,v ∈ Aω

delpos , there will be a pair of sequences s[πi−1 ,j+1 ] = ii ·
xi . . . xj · ij , s[πu−1 ,v+1 ] = ii · xu . . . xv · ij if and only if i = u, j = v and
i− 1 = u− 1, j + 1 = v + 1.

This lemma shows that 1) if there are some indexed constituents (some paths
whose input sequences start and end with a symbol a ∈ Σ) that have an identical
origin and destination state, there are some paths in the same automaton that
accept these constituents labeled with an identical start and end position and
2) if there are some input sequences that have an identical start and end label,
their corresponding constituents have an identical origin and destination state.
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Now, the deletion transducer has to be changed to preserve the right labels
for each partial constituent. Given the following transductions:

T sub = (ID(Σ) ∪ (Σ × {ε}) ∪ ID(I))∗

T normpos = ((I × {ε})∗ · (ID(I) · ID(Σ))+ · ID(I) · (I × {ε})∗)
T uni = (ID(I) · (ID(Σ) ∪ (I × {ε}))+ · ID(I))

and the composition:

Tωi,j = Aω ◦ T delpos ◦ T sub ◦ T normpos ◦ T uni

The second projection P 2 (Tωi,j ) finally produces an automaton Aω
i,j where

each input sequence s[πi−1 ,j+1 ] = ii · ωi,j · ij .
To conclude, we have shown that the mapping defined in 6 can be performed

on the algebra of FSTs.

5 Extensions

Consider the following coordination:

(4) Asterix
Asterix

spielt
plays

mit
with

und
and

Obelix
Obelix

schimpft
rails

auf
against

Idefix.
Idefix

Currently, our grammar doesn’t cover this type of constructions because there
aren’t some partial constituents being coordinated, but two complete phrases
that contain a partial constituent of the same type. To be able to cover these
phenomena, we define a third constituent type called missing.

Definition 8. A constituent ωi,j has the missing-property if it fulfils the follow-
ing conditions:
1. i and j correspond to some initial and final state in Aω.
2. For the rightmost symbol σr = ωj−1 ,j there is a rule in G such that r : σr →

ω.
3. The rightmost symbol σr is a partial constituent σr

i,j where i corresponds
to the inital state in Aωr and j /∈ FAωr

In figure 9, we give an example for a NPmiss-category. The XPmiss symbol
also contains all parameters φ1 ...φn of its original category and a parameter
_koord to mark its coordination status. In figure 10 we then present an analysis
for a category with the missing property.

Of course, there are still some other specific constructions that aren’t covered
by the presented model. For instance, one could imagine the coordination of
two partial constituents that don’t have the same right language, but whose
intersection of right languages isn’t empty, and the material that completes them
is contained in this intersection. Or else, coordinated constituents may have an
identical right language, but not in the same rule automaton. In this case, their
origin and destination state won’t help identifying them. Thus, an alternative
parametrization for partial constituents would be their right and left language
in contrast to their origin and destination state.
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NPmiss[_ntype $ {std rel int},_koord,_missing] -->
{
DET: ^=!; AP: _ntype = std; N: _ntype = std;
PPsub[std,no,sa,_missing]: ! $ (^ADJUNCT); e: _koord=no;
|
...
|
@(COORD_PART NPmiss[_ntype $ {std rel int},no,_missing])
e: _koord=yes;
}.

Fig. 9. NPmiss generated from an NP rule
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6 Conclusion

These considerations outlined some formal properties as well as the limitations
of the coordination approach proposed by [3]. We have shown that the problem
of non-constituent coordination can be solved by expliciting partial constituents
on the surface of the grammar. An adequate way of describing these partial
categories is to see them as paths in a canonical right rule side automaton. This
formalization gives rise to an efficient mechanism of subrule generation. We have
also extended the approach of [3] to coordination of complete constituents with
embedded partial constituents at the right periphery.
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