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Abstract. We study mixed boundary value problems for an elliptic operator A on
a manifold X with boundary Y , i.e., Au = f in int X, T±u = g± on int Y±, where Y
is subdivided into subsets Y± with an interface Z and boundary conditions T± on Y±
that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume
that Z ⊂ Y is a manifold with conical singularity v. As an example we consider
the Zaremba problem, where A is the Laplacian and T− Dirichlet, T+ Neumann
conditions. The problem is treated as a corner boundary value problem near v which
is the new point and the main difficulty in this paper. Outside v the problem belongs
to the edge calculus as is shown in [3].
With a mixed problem we associate Fredholm operators in weighted corner Sobolev
spaces with double weights, under suitable edge conditions along Z \ {v} of trace
and potential type. We construct parametrices within the calculus and establish the
regularity of solutions.
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Introduction

This paper is aimed at studying the Zaremba problem in a smooth bounded
domain G ⊂ R

3 when the interface, i.e., the subset Z of Y := ∂G with the
jump of the boundary conditions has conical singularities. The problem is
represented by equations

Au = f in G, T±u = g± on intY±, (1)

where A is an elliptic differential operator of second order in G with smooth
coefficients up to the boundary; the boundary Y is written as Y = Y− ∪ Y+

for closed subsets Y±, and Z := Y−∩Y+ is a curve with conical singularities.
The operators T± which represent the boundary conditions are assumed to
be of the form T± := r±B± for differential operators B±, given in an open
neighbourhood of Y± with smooth coefficients, r± denote the restriction
operators to int Y±, and T± satisfy the Shapiro-Lopatinskij condition on
int Y± with respect to A, uniformly up to Z.

The Zaremba problem corresponds to the case A = Δ (the Laplacian)
with Dirichlet and Neumann conditions on int Y− and intY+, respectively.

The present paper is focused on new effects close to the conical singulari-
ties of Z. Mixed problems for the case of smooth Z in weighted edge Sobolev
spaces are studied in [3], based on an earlier paper [6] on the behaviour of
mixed problems in standard Sobolev spaces.
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We are interested in an approach which allows us to construct paramet-
rices within a calculus of operators with a specific corner symbolic hierarchy
which gives us elliptic regularity in certain corner Sobolev spaces with double
weights close to the conical points Zsing of Z. Another essential aspect will
be to observe the role of edge weights along Zreg := Z \ Zsing in connection
with extra conditions on Z of trace and potential type that are of a similar
origin as elliptic conditions in standard elliptic boundary value problems.
To illustrate the structure, we first observe that (1) represents continuous
operators

A :=

⎛
⎝ A

T−
T+

⎞
⎠ : Hs(G) →

Hs−2(G)
⊕

Hs− 1
2 (int Y−)
⊕

Hs− 3
2 (int Y+)

(2)

(when A is of second order and the orders of T± as for the Zaremba problem),
for all s > 3

2 , with Hs(G), s ∈ R, being the standard Sobolev spaces and
Hs(int Y±) := Hs(Y )|int Y± . As already noted in [6] for the case of smooth Z,
the operator (2) will not be Fredholm since coker A is not of finite dimension.
First we realise A as continuous operators

A : Vs,(γ,δ)(X) → Ṽs−2,(γ−2,δ−2)(X), (3)

where the space on the right hand side is defined as

Vs−2,(γ−2,δ−2)(X) ⊕ Vs− 1
2
,(γ− 1

2
,δ− 1

2
)(Y−) ⊕ Vs− 3

2
,(γ− 3

2
,δ− 3

2
)(Y+),

with weighted corner Sobolev spaces Vs,(γ,δ)(X), Vs,(γ,δ)(Y±) with double
weights (γ, δ) ∈ R

2, cf. Definition 2.3 (i), (ii) below. Here X and Y±
denote stretched versions of X := G and Y± obtained by introducing polar
coordinates locally near the conical singularities of Z and interpreting Zreg

as an edge (cf. Section 1.3 for more details). We will show that, up to a
discrete set of exceptional weights γ ∈ R, the operator (3) can be filled up
to a block matrix

A :=
(

A K
T Q

)
:

Vs,(γ,δ)(X)
⊕

Hs−1,δ−1(Z, Cj−)
→

Ṽs−2,(γ−2,δ−2)(X)
⊕

Hs−3,δ−3(Z, Cj+)
(4)

by additional operators of trace and potential type T and K, respectively,
and an operator Q in the cone algebra on Z (as a manifold with conical
singularities), where Hs,δ(Z, Cj) are weighted cone Sobolev spaces, cf. Def-
inition 2.3 (iii) below, such that (4) is Fredholm up to a discrete set of
exceptional corner weights δ, cf. Theorem 3.13 below.

This paper is organised as follows.
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In Chapter 1 we formulate the principal edge symbolic structure of mixed
problems outside the conical singularity v of Z, where Zreg := Z \ {v} plays
the role of an edge. Moreover, we introduce some necessary terminology on
configurations with corners. We finally consider weighted edge spaces and
observe the continuity properties of our operators in such spaces.

Chapter 2 gives an interpretation of mixed boundary value problems near
v ∈ Z as corner problems. We define corner Sobolev spaces with double
weights and establish the continuity of the operators from the problems
in those spaces. We then define corner amplitude functions which contain
additional trace and potential data along the interface. At this moment
we generalise the context and admit an arbitrary compact manifold N with
boundary as the base of the local model cones of wedges outside v. We then
introduce holomorphic corner Mellin symbols and smoothing Mellin symbols
near a weight line. They will be crucial for the calculus of corner boundary
value problems which we consider as problems in an infinite cone with a base
that is a manifold with conical singularities and boundary. We establish the
principal symbolic hierarchy of such operators, formulate ellipticity, and
obtain parametrices within that corner calculus.

In Chapter 3 we specify the context and come back to the situation of the
Zaremba problem. In contrast to Chapter 2 where the orders are assumed
to be unified (which is adequate when we take into account the existence
of order reductions within the calculus) we take for the Zaremba problem
the ‘natural’ orders and corresponding modified notation. We then apply
the results from Chapter 2 to study ellipticity with extra edge conditions,
cf. Theorem 3.12, and establish parametrices and the Fredholm property,
cf. Theorem 3.13.

Chapter 4 has the character of an appendix, where we present necessary
material from the calculus of boundary value problems with conical and edge
singularities.

Let us finally note that mixed elliptic and other singular boundary value
problems have been studied by numerous authors before, cf. Zaremba [19],
Vishik and Eskin [18], Zargaryan and Maz’ya [20]. A detailed bibliography
is given in [9]. The pseudo-differential approach refers to the general ideas
of the edge and corner calculus, developed in [14] and [15], cf. also [16], [17].

1 Singular mixed problems in edge representation

1.1 Basic observations

In order to organise the operators (3) and (4) which are connected with our
mixed elliptic problems (1) we find it advisable to first ignore the conical
singularities of Z, i.e., look at the smooth part of Z. Choose a chart on
X = G

χ : U → R
3
+ = {x = (x1, x2, x3) ∈ R

3 : x3 ≥ 0}
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for a neighbourhood U of a point of Z in X that restricts to charts

χ′ : U ′ → R
2 = {x ∈ R

3 : x3 = 0}, χ′′ : U ′′ → R = {x ∈ R
3 : x3 = x2 = 0}

for U ′ := U ∩∂X,U ′′ := U ∩Z. In other words the variable on Z is identified
with x1 ∈ R which we also call z.

In local coordinates we have

A =
∑
|α|≤2

aα(x)Dα
x (5)

with coefficients in C∞(R3
+). Let us introduce polar coordinates (r, φ) in

R
2
+ \ {0}, where R

2
+ = {(x2, x3) ∈ R

2 : x3 ≥ 0}. Then A takes the form of
an edge-degenerate operator

A = r−2
∑

j+k≤2

ajk(r, z)(−r∂r)j(rDz)k (6)

with coefficients ajk ∈ C∞(R+ × R,Diff2−(j+k)(S1
+)). Here S1

+ := {φ ∈ S1 :
0 ≤ φ ≤ π}, and Diffν(M) for a C∞ manifold M with smooth boundary
denotes the space of all differential operators of order ν with smooth coeffi-
cients up to the boundary.

In a similar manner we reformulate the boundary operators T± which
have the form T± : u → r±B±u for r±f := f(x1, x2, 0)|x2≷0 and

B±u =
∑

|α|≤μ±

b±,α(x)Dα
x (7)

(in our case for μ+ = 1, μ− = 0) with smooth coefficients b±,α in a neigh-
bourhood of {(x1, x2, 0) : x2 ≷ 0} in R

3. In polar coordinates we then obtain

T± = r±r−μ±
∑

j+k≤μ±

b±,jk(r, z)(−r∂r)j(rDz)k (8)

with coefficients b±,jk ∈ C∞(R+×R,Diffμ±−(j+k)(S1
+)) where r±u(r, φ, z) :=

u(r, φ±, z) for φ+ = 0, φ− = π.
The choice of our formulations is motivated by the fact that our construc-

tions easily extend to (elliptic) differential operators A of arbitrary order,
together with mixed elliptic boundary conditions.

We want to associate with (6) and (8) continuous operators in weighted
edge Sobolev spaces. To this end we form the operator family

a(z, ζ) :=

⎛
⎝ r−2

∑
j+k≤2 ajk(r, z)(−r∂r)j(rζ)k

r−r−μ−
∑

j+k≤μ− b−,jk(r, z)(−r∂r)j(rζ)k

r+r−μ+
∑

j+k≤μ+
b+,jk(r, z)(−r∂r)j(rζ)k

⎞
⎠ . (9)
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For the case of the Zaremba problem (9) can be interpreted as a family of
continuous maps a(z, ζ) : Ks,γ((S1

+)∧) → K̃s−2,γ−2((S1
+)∧) for

K̃s−2,γ−2((S1
+)∧) := Ks−2,γ−2((S1

+)∧) ⊕Ks− 1
2
,γ− 1

2 (R−) ⊕Ks− 3
2
,γ− 3

2 (R+),
(10)

s > 3
2 . Here, if N is a set, we write N∧ := R+ × N, regarded as a stretched

cone with base N ; concerning the spaces, cf. the formula (76). In our
situation it is adequate to assume that the coefficients ajk(r, z) and b±,jk(r, z)
are independent of r for large r. In addition, since the calculations refer to
local coordinates (and are later on combined with factors from a partition
of unity) we assume the coefficients to be independent of z for large |z|.

Let Ks,γ((S1
+)∧) be endowed with the standard group action

κ
(1)
λ : Ks,γ((S1

+)∧) → Ks,γ((S1
+)∧), u(r, φ) → λu(λr, φ),

λ ∈ R+, cf. (78), while in K̃s−2,γ−2((S1
+)∧) we take

κλ : K̃s−2,γ−2((S1
+)∧) → K̃s−2,γ−2((S1

+)∧),

u(r, φ) ⊕ v−(r) ⊕ v+(r) → κ
(1)
λ u(r, φ) ⊕ λ− 3

2 κ
(0)
λ v−(r) ⊕ λ− 1

2 κ
(0)
λ v+(r),

λ ∈ R+. In the following results we employ notation from Section 4.2 below.

Proposition 1.1 The operator family a(z, ζ) represents a symbol

a(z, ζ) ∈ S2(Rz × Rζ ;Ks,γ((S1
+)∧), K̃s−2,γ−2((S1

+)∧))κ,κ

for κ := {κ(1)
λ }λ∈R+ ,κ := {κλ}λ∈R+ , (cf. also the formula (82)).

The proof is elementary and will be omitted.
The following observation, known from [3], employs the abstract edge

Sobolev spaces of Definition 4.3. For completeness we recall the short proof.

Proposition 1.2 The operator A := t(A T− T+) given by (6), (8)
induces continuous operators

A : Ws(R,Ks,γ((S1
+)∧)) → W̃s−2(R,Ks−2,γ−2((S1

+)∧)) (11)

for

W̃s−2(R,Ks−2,γ−2((S1
+)∧)) := Ws−2(R,Ks−2,γ−2((S1

+)∧))

⊕Ws− 1
2 (R,Ks− 1

2
,γ− 1

2 (R−)) ⊕Ws− 3
2 (R,Ks− 3

2
,γ− 3

2 (R+))

for every s > 3
2 and γ ∈ R.

Proof. From Proposition 1.1 together with Theorem 4.4 (cf. Section
4.2) we obtain the continuity of

A = Opz(a) : Ws(R,Ks,γ((S1
+)∧))κ → Ws−2(R, K̃s−2,γ−2((S1

+)∧))κ

for every s > 3
2 and γ ∈ R (cf. (84)). Then it suffices to observe that

Ws−2(R, K̃s−2,γ−2((S1
+)∧))κ = W̃s−2(R,Ks−2,γ−2((S1

+)∧)).

�
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1.2 Principal symbols and interface conditions

The operator (11) has a principal symbolic hierarchy

σ(A) := (σψ(A), σ∂(A), σ∧(A))

which determines the ellipticity of A as an operator in the edge calculus
with R being regarded as edge. The interior symbol σψ(A) := σψ(A) is
nothing other than σψ(A)(x, ξ) =

∑
|α|=2 aα(x)ξα, the standard homoge-

neous principal symbol, (x, ξ) ∈ T ∗
R

3
+ \ 0. The boundary symbol σ∂(A)

is defined on R
2± and consists of two components, namely, σ∂,±(A). In lo-

cal coordinates near any point of int Y± we have σ∂,±(A)(x1, x2, ξ1, ξ2) :=(
σ∂(A)(x1, x2, ξ1, ξ2)
σ∂(T±)(x1, x2, ξ1, ξ2)

)
, where

σ∂(A)(x1, x2, ξ1, ξ2) := σψ(A)(x1, x2, 0, ξ1, ξ2,Dx3),

σ∂(T±)(x1, x2, ξ1, ξ2) := r±σψ(B±)(x1, x2, 0, ξ1, ξ2,Dx3)

for x2 ≷ 0, (ξ1, ξ2) 
= 0. Clearly, on the minus side (for the Dirichlet condi-
tion) we simply have σ∂(T−)(x1, x2, ξ1, ξ2) : u → u|x3=0.

The edge symbol σ∧(A) has the form

σ∧(A)(z, ζ) := t(σ∧(A)(z, ζ) σ∧(T−)(z, ζ) σ∧(T+)(z, ζ))

for
σ∧(A)(z, ζ) := r−2

∑
j+k≤2

ajk(0, z)(−r∂r)j(rζ)k,

σ∧(T±)(z, ζ) := r±r−μ±
∑

j+k≤μ±

b±,jk(0, z)(−r∂r)j(rζ)k,

(z, ζ) ∈ T ∗
R\0, cf. the formula (9) (in the Zaremba case for μ+ = 1, μ− = 0).

The edge symbol defines a family of continuous operators

σ∧(A)(z, ζ) : Ks,γ((S1
+)∧) → K̃s−2,γ−2((S1

+)∧) (12)

for all s > 3
2 , γ ∈ R, and has the ‘twisted homogeneity’

σ∧(A)(z, λζ) = λ2κλσ∧(A)(z, ζ)κ(1)
λ−1 (13)

for all λ ∈ R+ with κλ as above. The realisation (12) of σ∧(A)(z, ζ) in the
spaces with weight γ ∈ R will now be denoted by σ∧(A(γ))(z, ζ).

Let us recall from [3] the following result:

Theorem 1.3 For every k ∈ Z and γ ∈ (1
2 −k, 3

2 −k) the operators (12)
are Fredholm, and we have

indσ∧(A(γ))(z, ζ) = k

for every (z, ζ) ∈ T ∗
R \ 0.
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Remark 1.4 For every (z, ζ) ∈ T ∗Z \0 and γ /∈ Z+ 1
2 the operator (12)

belongs to the cone algebra of boundary value problems (with the transmission
property) on the infinite (stretched) cone (S1

+)∧, and is elliptic with respect to
the principal symbolic structure, i.e., (σψ, σ∂ , σM ), the interior, the boundary
and the conormal symbol in the cone algebra.

As in [3] we are now able to fill up the Fredholm family (12) to a family of
isomorphisms by additional entries of trace and potential type with respect
to the interface. Their number is determined by the dimensions of kernels
and cokernels.

First recall that by virtue of (13) we have

ind σ∧(A(γ))(z,
ζ

|ζ|) = ind σ∧(A(γ))(z, ζ) (14)

for all (z, ζ) ∈ T ∗
R\0. Because z is of dimension 1 the unit cosphere bundle

S∗
R consists of two copies of R, characterised by (z,−1) and (z,+1), z ∈ R.

As we know from [3] the indices (14) on the plus and the minus side coincide.
Now we can choose dimensions j±(γ) for γ ∈ (1

2 − k, 3
2 − k) such that

j+(γ) − j−(γ) = k and isomorphisms

σ∧(a)(z, ζ) :=
(

σ∧(A(γ))(z, ζ) σ∧(K)(z, ζ)
σ∧(T )(z, ζ) σ∧(Q)(z, ζ)

)
(15)

: Ks,γ((S1
+)∧) ⊕ C

j− → K̃s−2,γ−2((S1
+)∧) ⊕ C

j+

first for |ζ| = 1 and then extended by homogeneity to all ζ 
= 0 by the rule:

σ∧(a)(z, λζ) = λ2χ̃λσ∧(a)(z, ζ)χ−1
λ ,

λ ∈ R+, where χλ := (diag (κ(1)
λ , λ id

C
j− ) and χ̃λ := diag (κλ, λ id

C
j+ ).

Because of the assumption that the upper left corner is independent
of z for large |z| we can (and will) choose the other entries of (15) also
independent of z for large |z|.

Setting

a(z, ζ) :=
(

a(z, ζ) k(z, ζ)
t(z, ζ) q(z, ζ)

)

for t(z, ζ) := χ(ζ)σ∧(T )(z, ζ), k(z, ζ) := χ(ζ)σ∧(K)(z, ζ), q(z, ζ)
:= χ(ζ)σ∧(Q)(z, ζ) for any fixed excision function χ(ζ) we obtain an element

a(z, ζ) ∈ S2(R × R;Ks,γ((S1
+)∧) ⊕ C

j−, K̃s−2,γ−2((S1
+)∧) ⊕ C

j+)χ,χ̃

and associated continuous operators

Op(a) : Ws(R,Ks,γ((S1
+)∧) ⊕ C

j−)χ → Ws−2(R, K̃s−2,γ−2((S1
+)∧) ⊕ C

j+)χ̃.
(16)

for χ = {χλ}λ∈R+ and χ̃ = {χ̃λ}λ∈R+ with χλ and χ̃λ as above.

8



1.3 Manifolds with corner and boundary

In order to describe the operator (4) in more detail we interpret X as a
manifold with corner and boundary. Setting X ′ := ∂X,X ′′ := Z,X ′′′ := {v}
we have a chain of strata X ⊃ X ′ ⊃ X ′′ ⊃ X ′′′, and X is the disjoint union
of C∞ manifolds X = (X \ X ′) ∪ (X ′ \ X ′′) ∪ (X ′′ \ X ′′′) ∪ X ′′′, namely,
X \ X ′ = intX, X ′ \ X ′′ = intY− ∪ int Y+, X ′′ \ X ′′′ = Z \ {v} =: Zreg, and
X ′′′ = {v}.

X itself is regarded as a manifold with corner v and boundary ∂X,
W := X \ {v} is a manifold with edge Z \ {v} and boundary ∂X \ {v}, and
X \ Z is a C∞ manifold with boundary ∂X \ Z.

The most specific aspects concern a neighbourhood U0 of v which we
identify with R

3
+, where v corresponds to the origin and Z to the union of

two half-lines Lk, k = 1, 2, starting from the origin in R
2 = ∂R

3
+, cf. also

Remark 1.5 below. Setting S2
+ := R

3
+ ∩ S2 we obtain an identification

χ : U0 → (S2
+)� (17)

via polar coordinates in R
3
+ \{0} (here, M� for a space M denotes the cone

(R+×M)/({0}×M) with base M ; the tip is represented by {0}×M in the
quotient space). The closed half-sphere S2

+ is regarded as a manifold with
conical singularities v1, v2 on the boundary S1, defined by vk = S1 ∩Lk, k =
1, 2. If S2

+ is interpreted in that way, i.e., with conical singularities on the
boundary, we will write in most cases S

2
+ rather than S2

+.
From (17) we obtain a map

χ|U0\{v} : U0 \ {v} → R+ × S
2
+ (18)

which gives rise to a splitting of variables into (t, ·) with t ∈ R+ being
regarded as the corner axis variable. Two homeomorphisms χ : U0 →
(S2

+)�, χ̃ : U0 → (S2
+)� of the kind (17) are called equivalent if

χ̃|U0\{v} ◦ (χ|U0\{v})
−1 : R+ × S

2
+ → R+ × S

2
+

is the restriction to R+ × S
2
+ of an isomorphism R × S

2
+ → R × S

2
+ in

the category of manifolds with smooth edges and boundary (concerning this
terminology in general, and the meaning of ‘charts’ in singular cases, cf. [2]).
From X \{v} we pass to the stretched manifold X obtained by (invariantly)
attaching {0}× S

2
+ to X \ {v}; in other words, X is locally near the ‘former’

corner v identified with a cylinder R+ × S
2
+, and v itself is obtained by

squeezing down S
2
+ to a single point. In this connection the bottom S

2
+ of

the local cylinder that completes X \ {v} to X will be called Xsing, and we
also set Xreg = X \ Xsing which is the same as X \ {v}. Thus there is a
continuous map

π : X → X (19)
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which projects Xsing to v and restricts to the identity map Xreg → X \ {v}.
By a slight modification of these constructions also the subsets Y± ⊂ Y

can be regarded as manifolds with corner {v}. In this case Y± \ {v} are
manifolds with C∞ boundary, and locally near v they are isomorphic to cones
(I±)� for closed intervals I±, regarded as manifolds with conical singularities
which are the end points. More precisely, restricting (17) to U± := U0 ∩ Y±
we obtain homeomorphisms χ± : U± → (I±)� and then, analogously as
(18), corresponding maps χ±|U±\{v} → R+ × I± that are isomorphisms in
the category of manifolds with C∞ boundary.

Moreover, if χ̃± : U± → (I±)� are other homeomorphisms of that kind,
then χ̃±|U±\{v} ◦ (χ±|U±\{v})−1 : R+ × I± → R+ × I± are restrictions of
isomorphisms R × I± → R × I± in the category of C∞ manifolds with
boundary to R+ × I±. There are then corresponding stretched manifolds
Y± that are locally near Y±,sing identified with R+ × I± (subscript ‘sing’ is
of analogous meaning as before).

The space W := X \ {v} as a manifold with edge Zreg and boundary is
locally near edge points modelled on (S1

+)� ×R for S1
+ = R

2
+ ∩ S1 with the

(x1, x2) half-plane R
2
+ normal to Z. As we saw in the local descriptions in

Sections 1.1, 1.2 it is convenient to pass to the stretched wedges

(S1
+)∧ × R 
 (r, φ, z). (20)

They are the local models of the stretched manifold W associated with W .
The global definition of W may be given in terms of the double 2W of W
(obtained by gluing together two copies of W along the common boundary
∂X \ {v}); then 2W can be interpreted as a manifold with edge Zreg :=
Z \{v} and (S1)� as the local model cone rather than (S1

+)�. The stretched
manifold 2W is then a C∞ manifold with boundary ∂(2W) which is an S1-
bundle over Zreg (induced by the normal bundle of Zreg and the Riemannian
metric that we keep in mind).

We set (2W)sing := ∂(2W), and

Wsing := (2W)sing ∩ W, Wreg := W \ Wsing.

By definition there is a canonical map π : W → W which induces a
diffeomorphism πreg : Wreg → X \ Zreg.

The local weighted edge spaces Ws,γ(R× (S1)∧) := Ws(R,Ks,γ((S1)∧)),
cf. Section 4.2 below, can be pulled back to 2W by means for the mappings
2V \Zreg → R× (S1)∧ that belong to 2V near Zreg, where 2V is the double
of the neighbourhood V mentioned before. Then Ws,γ

loc (2W) is defined as
the space of locally finite sums of pull backs of elements of Ws,γ(R× (S1)∧)
with bounded supports in r and z and elements belonging to Hs

loc(int (2W)).
Moreover, Ws,γ

comp(2W) is the subspace of all elements that have compact
support (which is admitted ‘up to ∂(2W)’). Now we define

Ws,γ
comp(loc)(W) := {u|int Wreg : u ∈ Ws,γ

comp(loc)(2W)}. (21)
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Moreover, we can treat the sets Y±,reg := Y± \ {v} as manifolds with edges
Zreg and then have the global weighted edge spaces Ws,γ

comp(loc)(Y±,reg) that
are far from Zreg modelled on Hs

comp(loc)(int Y±) and locally close to Zreg

by finite (locally finite) sums of pull backs from R+ × R of elements of
Ws(R,Ks,γ(R±)) (with bounded supports in r and z). Finally, Ws,γ

comp(loc)(Y±,reg)
is defined in a similar manner as the ‘comp’ (‘loc’) space on W.

The mixed problem (1) will now be interpreted as a continuous operator
A : Ws,γ

comp(W) → W̃s−2,γ−2
comp (W) for

W̃s−2,γ−2
comp (W) := Ws−2,γ−2

comp (W) ⊕Ws− 1
2
,γ− 1

2
comp (Y−,reg) ⊕Ws− 3

2
,γ− 3

2
comp (Y+,reg).

(22)
A similar continuity together with the trace and potential operators

along Zreg follows from (16). This is just the contribution to (4) outside
any neighbourhood of v. The behaviour close to v is the main content of the
following chapter.

Remark 1.5 In general, the above local description of a neighbourhood
U0 of v as a corner (S2

+)� ∼= R
3
+ such that U0 ∩ ∂X corresponds to R

2 with
the half-lines Z1, Z2 from Z ∩U0, cf. (34) below, is not possible in the frame
of a smooth chart U0 → R

3
+ referring to X as a C∞ manifold with boundary.

We have to expect some singularity of the chart near v; otherwise we restrict
the geometry of the conical singularity v of Z in a specific way. However,
this is unimportant for our corner calculus, since we might assume from
the very beginning X to have a ‘regular’ corner at v and X \ {v} to be a
‘regular’ manifold with edges which is not smooth across Z \{v}. The reason
for that is that the only essential properties of our operators are their corner
or edge-degenerate behaviour in local coordinates, and this is invariant under
the relevant corner or edge charts in the general case.

2 Corner operators in spaces with double weights

2.1 Transformation to a corner problem

The mixed elliptic problem (1) will now be studied in a neighbourhood of the
conical point v, cf. Remark 1.5. We choose the correspondence between U0

and R
3
+ via a ‘singular’ chart χ0 : U0 → R

3
+, cf. the discussion in connection

with (18) and the considerations around (32) below. For simplicity, we
assume that χ0(v) = 0 and χ0(Z ∩ U0) = L1 ∪ L2 for L1 := {x ∈ R

3 :
x1 ≥ 0, x2 = x3 = 0}, L2 := {x ∈ R

3 : x = 0, or x1 + ix2 = teiα, t ∈
R+, for some 0 < α < 2π, x3 = 0} (where we identify for the moment the
(x1, x2) plane with C). Let S2

+ := S2 ∩ R
3
+. The operators (5) and (7) take

11



the form

A = t−2
2∑

j=0

aj(t)(−t∂t)j and B± = t−μ±
μ±∑
j=0

b±,j(t)(−t∂t)j

with aj ∈ C∞(R+,Diff2−j(S2
+)) and b±,j ∈ C∞(R+,Diffμ±−j(S2

+)), respec-
tively.

We now interpret the problem (1) as a corner problem in the Mellin
calculus with corner axis variable t ∈ R+ and covariable w ∈ C. In other
words, we form the (t, w)-depending family of mixed problems on S2

+ which
is a manifold with boundary S1 = {(x1, x2) ∈ R

2 : x2
1 + x2

2 = 1} which is
subdivided into the intervals

I+ = {ϑ ∈ S1 : 0 ≤ ϑ ≤ α}, I− = {ϑ ∈ S1 : α ≤ ϑ ≤ 2π}

mentioned in Section 1.3. Set

h(t, w) := t
( 2∑

j=0

aj(t)wj r−
μ−∑
j=0

b−,j(t)wj r+
μ+∑
j=0

b+,j(t)wj
)
, (23)

where r± denote the operators of restriction to int I±. Then our mixed prob-
lem takes the form Au = diag (t−2, t−μ− , t−μ+)opδ−1

M (h)u for

A := t(A T− T+) (24)

for any δ ∈ R. The task is to single out the adequate weighted corner
Sobolev spaces such that the problem admits a parametrix which leaves
compact remainders in the global calculus (together with the information
of Section 1). The important observation is that (23) represents a family
of mixed problems on S2

+ with respect to the subdivision of the boundary
S1 = I− ∪ I+.

Formally, we now proceed in a similar manner as in Section 1.1. Let v

denote one of the points v1, v2, cf. Section 1.3, and choose a chart U → R
2
+ on

S2
+ near v such that v is transformed to the origin of R

2
+ and U∩∂S2

+ to x3 =
0. It will also be convenient to consider the double 2U as a neighbourhood
on S2 and a corresponding chart 2U → R

2. If (r, φ) are polar coordinates
in R

2 we then identify U \ {v} with {(r, φ) : r ∈ R+, 0 ≤ φ ≤ π} and
(U \ {v})∩ ∂S2

+ with R \ {0}, where {(r, π) : r ∈ R+} ⊂ R \ {0} corresponds
to the Dirichlet side, also denoted by R−, and {(r, 0) : r ∈ R+} ⊂ R \ {0} to
the Neumann side which is R+, or, conversely.

In order to unify some descriptions for the operators A and B± we replace
for the moment the order by any μ ∈ N. Then A takes the form

A = t−μ
μ∑

j=0

aj(t)(−t∂t)j (25)
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with coefficients aj(t) ∈ C∞(R+,Diffμ−j(S2
+)). Writing the operators aj(t)

locally in U ⊂ S2
+ in polar coordinates (r, φ) ∈ R+ × S1

+, we can insert
aj(t) = r−μ+j

∑μ−j
k=0 ajk(r, t)(−r∂r)k in (25) and then obtain

A = t−μr−μ
∑

j+k≤μ

ajk(r, t)(−r∂r)k(−rt∂t)j

with coefficients ajk(r, t) ∈ C∞(R+ ×R+,Diffμ−(j+k)(S1
+)). Here, for conve-

nience, we assume that the coefficients aj(t) are independent of t for large t
(which is automatically satisfied in the localised situations near t = 0).

Example 2.1 We have Δ = t−2r−2{(rt∂t)2 + (r∂r)2 + r2t∂t + ∂2
φ} for

the Laplace operator in R
3.

In order to define the relevant corner Sobolev spaces we first consider
the ‘abstract’ case, cf. also [15].

Definition 2.2 Let E be a Hilbert space, endowed with a group action
{κλ}λ∈R+ , cf. Section 4.2. In addition, together with E we assume to be
given a dimension m that will be specified in every concrete case. Then we
define the abstract corner Sobolev space Vs,δ(R+, E) (of smoothness s ∈ R

and weight δ ∈ R) to be the completion of C∞
0 (R+, E) with respect to the

norm
{

1
2πi

∫
Γm+1

2 −δ

〈w〉2s||κ−1
〈w〉(Mt→wu)(w)||2Edw

} 1
2
.

If we want to indicate m we also write Vs,δ(R+, E)(m). For m = 0 and
E = C we have Vs,δ(R+, E)(0) = Hs,δ(R+), cf. the formula (74) for dimX =
0. If we prescribe another m′ in connection with the space E we have

Vs,δ(R+, E)(m) = Vs,δ+ m′−m
2 (R+, E)(m′) (26)

which is a consequence of the relation Vs,δ(R+, E) = tδVs,0(R+, E) for every
s, δ ∈ R. In our concrete situation we insert the spaces

E = Ks,γ((S1
+)∧) with m = 2 (27)

and κ
(1)
λ : u(r, φ) → λu(λr, φ), λ ∈ R+, and

E = Ks,γ(R±) with m = 1 (28)

and κ
(0)
λ : v(r) → λ

1
2 v(λr), λ ∈ R+. We then obtain the spaces

Vs,δ(R+,Ks,γ((S1
+)∧)) =: Vs,(γ,δ)(R+ × (S1

+)∧) (29)

and, similarly, Vs,δ(R+,Ks,γ(R±)) =: Vs,(γ,δ)(R+ × R±); these are spaces
of distributions u(t, r, φ) on R+ × R+ × int S1

+ and v(t, r) on R+ × R+,
respectively.
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Note that the Vs,δ-spaces contain elements of the definition both of the
Hs,δ-as well as of the Ws-spaces, cf. the formulas (74), (77) and Definition
4.3. For instance, we have

Vs,δ(R+,Ks,γ((S1
+)∧)) ⊂ Ws

loc(R+,Ks,γ((S1
+)∧)),

cf. the notation after Definition 4.3. Moreover, we have

ϕ(r, φ)Vs,δ(R+,Ks,γ((S1
+)∧)) ⊂ Hs,δ(R+ × M)

for every ϕ(r, φ) ∈ C∞
0 (R+ × int S1

+) and any 2-dimensional closed compact
C∞ manifold M such that suppϕ with respect to φ is contained in a coor-
dinate neighbourhood on M . Similar properties hold for the corner spaces
with R± instead of (S1

+)∧.
The latter compatibility properties allow us to form the global weighted

corner Sobolev spaces on the stretched corners. On I+ we choose a partition
of unity consisting of functions {ω1, ω2} such that ω1 + ω2 = 1, ω1 ≡ 1 near
0, ω2 ≡ 1 near α, and set

Vs,(γ,δ)(R+ × I+) := {ω1g1 + ω2g2 : g1 ∈ Vs,δ(R+,Ks,γ(R+)),
g2 ∈ Vs,δ(R+,Ks,γ(R−))}

when we identify a neighbourhood of 0 (α) in I+ with R+ (R−).
In order to define corresponding corner spaces on X near v we identify

a neighbourhood of X \ {v} with R+ × S
2
+, where S

2
+, as above, means the

half-sphere S2
+ in which the subdivision of ∂S2

+ = S1 into the intervals I±
is kept in mind. For S2

+ as a ‘usual’ compact C∞ manifold with boundary
we have the weighted Sobolev spaces Hs,δ((S2

+)∧), cf. the formula (77).
On S1 we fix the points v1, v2 as conical points. Choose an open covering
of S2

+ by neighbourhoods {U0, U1, U2} such that vi ∈ Ui for i = 1, 2, U0 ∩
({v1} ∪ {v2}) = ∅, and Ui diffeomorphic to the half-plane through vi that is
orthogonal to the line containing vi and the origin of R

3. The construction
of corner spaces (29) may be applied to Ui \ {vi} ∼= R+ × (S1

+)∧, i = 1, 2.
This gives us spaces that we denote by Vs,(γ,δ)(R+ × (S1

+)∧)1,2.
Let us choose a partition of unity {ϕ0, ϕ1, ϕ2} on S

2
+ where ϕi are sup-

ported by Ui and equal to 1 in a neighbourhood of vi for i = 1, 2, and
ϕ0 := 1 − (ϕ1 + ϕ2). Then we define

Vs,(γ,δ)(R+ × S
2
+) := {ϕ0u0 + ϕ1u1 + ϕ2u2 : u0 ∈ Hs,δ((S2

+)∧), (30)

ui ∈ Vs,(γ,δ)(R+ × (S1
+)∧)i for i = 1, 2}.

In the latter expression the spaces for i = 1, 2 are combined with the pull
backs under the charts Ui \ {vi} ∼= R+ × (S1

+)∧.
We now define global corner Sobolev spaces Vs,(γ,δ)(X) and Vs,(γ,δ)(Y±).

First recall that in Section 1.3 we have fixed neighbourhoods U0 of v and

14



singular charts (18). Moreover, we have the spaces Ws,γ
loc (W) for W :=

X \{v}. In the following definition we tacitly identify Ws,γ
loc (W) with a space

of distributions on X \ Z.

Definition 2.3 Let s, γ, δ ∈ R.

(i) We define

Vs,(γ,δ)(X) := {u ∈ Ws,γ
loc (W) : ωu ∈ (χ|U0\{v})

∗Vs,(γ,δ)(R+ × S
2
+)}

for any fixed ω ∈ C∞
0 (U0) which is equal to 1 near the point v, cf. (18).

(ii) We set

Vs,(γ,δ)(Y±) := {u ∈ Ws,γ
loc (Y±,reg) : ω′u ∈ (χ±|U±\{v})∗Vs,(γ,δ)(R+×I±)}

for any fixed ω′ ∈ C∞
0 (U0 ∩ Y ), which is equal to 1 near the point v.

(iii) By Hs,δ(Z) we define the set of all u ∈ Hs
loc(Z \ {v}) such that

ω±u ∈ (χ′′
0,±)∗Hs,δ(R±) for cut-off functions ω± on (χ′′

0)
−1L±, cf.

the formulas (33), (34) below. Hs,δ(R+) for s ∈ N is the set of all
u(r) ∈ rδL2(R+) such that (r∂r)ju ∈ rδL2(R+) for all 0 ≤ j ≤ s; for
−s ∈ N we define the space by duality and for s ∈ R by interpolation.
The definition on R− is analogous.

Let
{U0, U1, . . . , UK , UK+1, . . . , UL, UL+1, . . . , UN} (31)

be an open covering of X by coordinate neighbourhoods with the following
properties: U0 is a neighbourhood of the corner point v, and v /∈ Uj , j > 0;
Uj ∩Z 
= ∅, 1 ≤ j ≤ K; Uj ∩Z = ∅, Uj ∩Y 
= ∅, K + 1 ≤ j ≤ L; Uj ∩ Y = ∅,
L + 1 ≤ j ≤ N.

Moreover, we set U ′
j := Uj∩Y, 0 ≤ j ≤ L, U ′′

j := Uj∩Z, 0 ≤ j ≤ K.
Choose a partition of unity {ϕj}0≤j≤N subordinate to (31) and functions

{ψj}0≤j≤N , ψj ∈ C∞
0 (Uj), such that ψj ≡ 1 on suppϕj for all j = 0, . . . , N.

Moreover, let ϕ′
j := ϕj |U ′

j
, ψ′

j := ψj|U ′
j
, 0 ≤ j ≤ L, ϕ′

j = ψ′
j = 0, L + 1 ≤ j ≤

N, ϕ′′
j := ϕj |U ′′

j
, ψ′′

j := ψj |U ′′
j
, 0 ≤ j ≤ K, ϕ′′

j = ψ′′
j = 0,K + 1 ≤ j ≤ N.

We now choose convenient charts on the open sets Uj, namely,

χj : Uj → R
3, L + 1 ≤ j ≤ N, χj : Uj → R

3
+, 0 ≤ j ≤ L,

where χ′
j := χj |U ′

j
: U ′

j → R
2
x1,x2

are charts on Y \ {v}, 1 ≤ j ≤ L, such that
χ′′

j := χj |U ′′
j

: U ′′
j → Rx1, 1 ≤ j ≤ K.

Finally, χ0 : U0 → R
3
+ is assumed to be a homeomorphism, χ0(v) = 0,

such that
χ0|U0\{v} : U0 \ {v} → R

3
+ \ {0} (32)
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is an isomorphism in the category of manifolds with edge and boundary, and
χ0 restricts to homeomorphisms

χ′
0 := χ0|U ′

0
: U ′

0 → R
2, χ′′

0 := χ0|U ′′
0

: U ′′
0 → L1 ∪ L2, (33)

where χ′
0 is an isomorphism in the category of manifolds with corner (and

without boundary) and χ′′
0 an isomorphism between the respective manifolds

with conical singularities. Then (32) restricts to homeomorphisms

χ′
0|U ′

0\{v} : U ′
0 \ {v} → R

2 \ {0},
χ′

0,± := χ′
0|(U ′

0\{v})∩Y± : (U ′
0 \ {v}) ∩ Y± → R+ × I± = I∧±,

that are also isomorphisms in the respective categories (especially, χ′
0,± are

diffeomorphisms between C∞ manifolds with boundary). Finally,

χ′′
0 |U ′′

0 \{v} : U ′′
0 \ {v} → (L1 ∪ L2) \ {0},

χ′′
0,k := χ′′

0 |(U ′′
0 \{v})∩Lk

: (U ′′
0 \ {v}) ∩ Zk → Lk \ {0} (34)

for Zk := (χ′′
0 |U ′′

0 \{v})−1(Lk \ {0}), k = 1, 2.
The mixed problem (1), represented as a column matrix (24), can be

decomposed in the form A =
∑N

j=0
t(ϕjAψj ϕ′

−,jT−ψj ϕ′
+,jT+ψj), where

ϕ′
∓,j := ϕ′

j |Y∓ . As is shown in [3] the operator

N∑
j=1

t(ϕjAψj ϕ′
−,jT−ψj ϕ′

+,jT+ψj) : Ws,γ
comp(W) → W̃s−2,γ−2

comp (W)

is continuous, cf. the formulas (21) and (22). For the continuity (3) it
remains to show that t(ϕ0Aψ0 ϕ′

−,0T−ψ0 ϕ′
+,0T+ψ0) is continuous in our

spaces. This will follow from the considerations of Section 2.2 below.
Let us separately state the continuity of restriction operators:

Theorem 2.4 The restrictions r± from X to Y± induce continuos oper-
ators r± : Vs,(γ,δ)(X) → Vs− 1

2
,(γ− 1

2
,δ− 1

2
)(Y±) for all s, δ, γ ∈ R, s > 1

2 .

Proof. The elements u ∈ Vs,(γ,δ)(X) can be written as u =
∑N

j=0 ϕju.
Let us consider, for instance, r+ (the minus case is analogous). We then have
r+u = r+(ϕ0u) +

∑K
j=1 r+(ϕju) +

∑L
j=K+1 r+(ϕju). From the properties of

the restriction operator between standard Sobolev spaces we see that the
operators r+ϕj for K + 1 ≤ j ≤ L have the desired continuity property
with a shift of smoothness s by 1

2 . Analogously, as is known of edge Sobolev
spaces, the operators r+ϕj for 1 ≤ j ≤ K are continuous between those
spaces, with a shift of smoothness s and weight γ by 1

2 . Recall that the latter
continuity comes from the fact that the restriction to the boundary between
edge spaces is induced by b : Ks,γ((S1

+)∧) → Ks− 1
2
,γ− 1

2 (R+) for s > 1
2 ,

and we have b ∈ S
1
2
cl(Rτ ;Ks,γ((S1

+)∧),Ks− 1
2
,γ− 1

2 (R+)). Thus the restriction
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operator r+ is equal to Op(b) taken along Rt (which is the local variable of
Z). This gives us

r+Op(b) : Ws(R,Ks,γ((S1
+)∧)) → Ws− 1

2 (R,Ks− 1
2
,γ− 1

2 (R+)). (35)

The conclusion for j = 0 is analogous when we apply the formula (30)
together with (29) and Definition 2.2. The change is that instead of (35)
we take r+ : Vs,δ(R+,Ks,γ((S1

+)∧)) → Vs− 1
2
,δ− 1

2 (R+,Ks− 1
2
,γ− 1

2 (R+)). In this
case the continuity of r+ is a consequence of Theorem 2.5 below when we
first interpret b as an element of S

1
2 (Γm+1

2
−δ;Ks,γ((S1

+)∧),Ks− 1
2
,γ− 1

2 (R+))
(independent of the covariable w) for m = 2 which yields

r+op
δ−m

2
M (b) : Vs,δ(R+,Ks,γ((S1

+)∧))(m) → Vs− 1
2
,δ(R+,Ks− 1

2
,γ− 1

2 (R+))(m)

and the space on the right coincides with Vs− 1
2
,δ− 1

2 (R+,Ks− 1
2
,γ− 1

2 (R+))(m′)
for m′ = 1, cf. the formulas (26), (27), (28). Finally, in order to show the
continuity of Vs,(γ,δ)(R+ × S

2
+) → Vs− 1

2
,(γ− 1

2
,δ− 1

2
)(R+ ×R+), cf. the formula

(30), we employ the continuity of the operator of restriction Hs,δ((S2
+)∧) →

Hs− 1
2
,δ− 1

2 ((S1)∧). �

2.2 Continuity in weighted corner Sobolev spaces

We now consider Mellin (pseudo-differential) operators in weighted corner
Sobolev spaces, first in the sense of Definition 2.2. Let E and Ẽ be Hilbert
spaces with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ , respectively. According
to Definition 4.1 we have the symbol spaces Sμ

(cl)(R+ × R+ × Γβ;E, Ẽ) 

f(t, t′, w); here τ := Im w for w ∈ Γβ is treated as the covariable. By
Sμ

(cl)(R+ × R+ × Γβ;E, Ẽ) we understand the subspace of symbols that are
smooth in t, t′ up to 0. For β = 1

2 − δ we define

opδ
M (f)u(t) :=

1
2πi

∫ ∫ ( t

t′
)−( 1

2
−δ+iτ)

f(t, t′,
1
2
− δ + iτ)u(t′)

dt′

t′
d̄τ

which defines a continuous operator C∞
0 (R+, E) → C∞(R+, Ẽ).

Theorem 2.5 Let f(t, t′, w) ∈ Sμ(R+ × R+ × Γm+1
2

−δ;E, Ẽ) (where the

‘dimension number’ m is the same for E and Ẽ, cf. Definition 2.2 ). Assume
that f(t, t′, w) does not depend on t for |t| > c and on t′ for |t′| > c for some
c > 0. Then op

δ−m
2

M (f) extends to a continuous operator

op
δ−m

2
M (f) : Vs,δ(R+, E) → Vs−μ,δ(R+, Ẽ)

for every s ∈ R.
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Proof. If the Mellin symbol f is independent of t, t′, then the asserted
continuity is an easy consequence of Definition 2.2, cf. also the second
statement of Theorem 4.4 below. The operator norm tends to zero as soon
as f tends to zero in the symbol space. In the general case we can write
f = f0+f1 for a (t, t′)-independent symbol f0 and a symbol f1 with compact
support in (t, t′). In that case we can apply a tensor product argument
combined with the observation that the operator of multiplication by some
ϕ(t) ∈ C∞

0 (R+) defines a continuous operator in Vs,δ(R+, E) and its norm
tends to zero for ϕ → 0 in C∞

0 (R+) (cf. also the technique in [5, Section
1.2.2]). �

As noted before in our case we have, for instance, E = Ks,γ((S1
+)∧) and

Ẽ = Ks−μ,γ−μ((S1
+)∧) with the corresponding dimension number m = 2.

In order to construct concrete symbols which also play a role in para-
metrices of our corner boundary value problems we consider an element

p̃(r, t, ρ̃, τ̃ ) ∈ C∞(R+ × R+,Bμ,d(N ; R2
ρ̃,τ̃)) (36)

for some compact C∞ manifold N with boundary, n = dimN , cf. Definition
4.5. Later on we employ the parameters in the meaning

ρ̃ := rρ, τ̃ := rτ̃ and τ̃ := tτ.

For convenience, we assume that p̃ is independent of t for large t. Let

p(r, t, ρ, τ̃ ) := p̃(r, t, rρ, rτ̃ ) and h(r, t,w, τ̃) := h̃(r, t,w, rτ̃)

for h̃(r, t,w, τ̃ ) ∈ C∞(R+ × R+,Bμ,d(N ; C × Rτ̃)), cf. Definition 4.9 below,
that we choose in such a way that

opr(p)(t, τ̃ ) = opβ
M(h)(t, τ̃ ) mod C∞(R+,B−∞,d(N∧; Rτ̃ ))

for every β ∈ R. Here opβ
M(·) indicates the weighted Mellin action in r ∈ R+

(while opβ
M (·) denotes the Mellin action in t ∈ R+). Moreover, setting

p0(r, t, ρ, τ̃ ) := p̃(0, t, rρ, rτ̃ ) and h0(r, t,w, τ̃) := h̃(0, t,w, rτ̃)

we have opr(p0)(t, τ̃ ) = opβ
M(h0)(t, τ̃ ) mod C∞(R+,B−∞,d(N∧; Rτ̃ )).

Choose cut-off functions

ω(r), ω̃(r), ˜̃ω(r) and σ(r), σ̃(r), (37)

and assume that ω̃ ≡ 1 on suppω, ω ≡ 1 on supp ˜̃ω. According to the
quantisations of the edge calculus we form

a(t, τ̃ ) := σ(r)r−μ{ω(r[τ̃ ])op
γ−n

2
M (h)(t, τ̃ )ω̃(r[τ̃ ]) (38)

+ (1 − ω(r[τ̃ ]))opr(p)(t, τ̃ )(1 − ˜̃ω(r[τ̃ ]))}σ̃(r).
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We set

σ∧(a)(t, τ̃ ) := r−μ{ω(r|τ̃ |)opγ−n
2

M (h0)(t, τ̃)ω̃(r|τ̃ |) (39)
+ (1 − ω(r|τ̃ |))opr(p0)(t, τ̃ )(1 − ˜̃ω(r|τ̃ |))}.

Let us set K̃s,γ(N∧) := Ks,γ(N∧) ⊕ Ks− 1
2
,γ− 1

2 ((∂N)∧) with the group
action κ := diag (κ(n)

λ , λ
1
2 κ

(n−1)
λ ).

Proposition 2.6 For every s, γ ∈ R we have

a(t, τ̃ ) ∈ Sμ(R+ × R; K̃s,γ(N∧), K̃s−μ,γ−μ(N∧))κ,κ,

cf. the formula (82) below.

The technique of proving Proposition 2.6 may be found in [9].
Edge quantisations of the kind (38) for closed and compact N are given

in [14]. The case with boundary is treated in [9] and [13]. Many useful
details on the calculus are elaborated in Krainer [11].

Another important ingredient of our corner symbolic structure are the so
called smoothing Mellin symbols and Green symbols. The smoothing Mellin
symbols are of the form

m(t, τ̃) := r−μω(r[τ̃ ])op
γ−n

2
M (f )(t)ω̃(r[τ̃ ]) (40)

for an element f(t,w) ∈ C∞(R+,B−∞,d(N ; Γn+1
2

−γ)ε) for some ε > 0 and

cut-off functions ω, ω̃. Setting E := K̃s,γ(N∧) and Ẽ := K̃s−μ,γ−μ(N∧) we
have

m(t, τ̃ ) ∈ Sμ
cl(R+ × R; E , Ẽ)κ,κ (41)

for all s > d − 1
2 . We set

σ∧(m)(t, τ̃ ) := r−μω(r|τ̃ |)opγ−n
2

M (f)(t)ω̃(r|τ̃ |).

Let us now pass to Green symbols, where we employ the spaces

E := K̃s,γ(N∧) ⊕ C
j− , (42)

Sε := Sγ−μ
ε (N∧) ⊕ Sγ−μ− 1

2
ε ((∂N)∧) ⊕ C

j+, (43)

cf. the notation in Section 4.1.
A Green symbol of order ν ∈ R and type 0, associated with the weight

data gcone = (γ, γ − μ), is defined as an operator family

g(t, τ̃) ∈ C∞(R+ × R,L(E ,Sε)), (44)

ε = ε(g) > 0, s > −1
2 , such that

g(t, τ̃ ) ∈ Sν
cl(R+ × R; E ,Sε)χ,χ̃ (45)
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for χ := κ⊕ λ
n+1

2 id
C

j− , χ̃ := κ⊕ λ
n+1

2 id
C

j+ ; a similar property is required
for g∗(t, τ̃), the pointwise adjoint.

A family (44) is called a Green symbol of order ν ∈ R and type d ∈ N

if it has the form g(t, τ̃) = g0(t, τ̃ ) +
∑d

j=1 gj(t, τ̃ )diag (Dj , 0, 0) for a first
order differential operator D on N which is defined in a neighbourhood of
∂N by the normal vector field to ∂N, and Green symbols gj(t, τ̃) of order ν
and type 0 for j = 0, . . . ,d.

Let R
ν,d
G (R+ ×R,gcone; j−, j+)ε denote the space of all such Green sym-

bols. In particular, we have the space R
−∞,d
G (R+ × R,gcone; j−, j+)ε.

For a g(t, τ̃) ∈ R
ν,d
G (R+ × R,gcone; j−, j+)ε let σ∧(g)(t, τ̃ ) denote the

matrix of homogeneous principal symbols.

Definition 2.7 By Rμ,d(R+×R,gcone; j−, j+)ε, μ ∈ Z,d ∈ N, we denote
the space of all families of operators

a(t, τ̃ ) := p(t, τ̃ ) + m(t, τ̃) + g(t, τ̃) : E → Ẽ

for E := K̃s,γ(N∧) ⊕ C
j− as before, cf. the formula (42), and

Ẽ := K̃s−μ,γ−μ(N∧) ⊕ C
j+, (46)

s > d − 1
2 , such that p(t, τ̃ ) =

(
a(t, τ̃) 0

0 0

)
, m(t, τ̃) =

(
m(t, τ̃) 0

0 0

)
,

with the 2 × 2 upper left corners (38) and (40), respectively, and an ele-
ment g(t, τ̃ ) ∈ R

μ,d
G (R+ × R,gcone; j−, j+)ε (with ε > 0 being involved in the

corresponding spaces).
Let R

μ,d
(G)(R+×R,gcone; j−, j+) :=

⋃
ε>0 R

μ,d
(G)(R+×R,gcone; j−, j+)ε (sub-

script ‘(G)’ indicates Green or general operator families).
Moreover, R

μ,d
(G)(R,gcone; j−, j+) denotes the corresponding elements which

are independent of t.

The operator families a(t, τ̃ ) have a principal symbolic structure σ(a) :=
(σψ(a), σ∂(a), σ∧(a)), consisting of the interior symbol σψ(a), the boundary
symbol σ∂(a), and the edge symbol σ∧(a). The interior symbol is determined
by the upper left corner a(t, τ̃) of p(t, τ̃ ), and defined as

σψ(a)(r, t, x, ρ, τ, ξ) = r−μσψ(p̃)(r, t, x, ρ̃, τ̃ , ξ)|ρ̃=rρ,τ̃=rtτ (47)

where σψ(p̃) means the parameter-dependent homogeneous principal symbol
of (36) of order μ, with the parameters ρ̃, τ̃ , in local coordinates x on N
with the covariables ξ.

The boundary symbol is also determined by p(t, τ̃ ), namely, as

σ∂(a)(r, t, x′, ρ, τ, ξ′) = r−μσ∂(p̃)(r, t, x′, ρ̃, τ̃ , ξ′)|ρ̃=rρ,τ̃=rtτ (48)
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with the parameter-dependent homogeneous principal boundary symbol of
(36) of order μ, with the parameters ρ̃, τ̃ , in local coordinates x′ on ∂N with
the covariables ξ′.

The edge symbol is defined as

σ∧(a)(t, τ̃ ) :=
(

σ∧(a)(t, τ̃ ) 0
0 0

)
+

(
σ∧(m)(t, τ̃ ) 0

0 0

)
+ σ∧(g)(t, τ̃ ),

(t, τ̃) ∈ R+ × (R \ {0}).

Theorem 2.8 Let a(t, τ̃ ) ∈ Rμ,d(R+ × Rτ̃ ,gcone; j−, j+) be independent
of t for large t, and form f(t, w) := a(t, τ̃ ) for τ̃ = Imw,w ∈ Γn+2

2
−δ. Then

op
δ−n+1

2
M (f) : Vs,δ(R+, E)(n+1) → Vs−μ,δ(R+, Ẽ)(n+1) is continuous for every

s > d − 1
2 .

Theorem 2.8 can be regarded as a Mellin version of the second continuity
property of Theorem 4.4 below, also here applied to operator-valued symbols
with twisted homogeneity, cf. Proposition 2.6 and the formulas (41), (45).

Remark 2.9 According to the identity (26) the space Vs,δ(R+, E)(n+1)

is equal to

Vs,δ(R+,Ks,γ(N∧))(n+1) ⊕ Vs,δ− 1
2 (R+,Ks− 1

2
,γ− 1

2 ((∂N)∧))(n)

⊕Vs,δ−n+1
2 (R+, Cj−)(0).

Theorem 2.8 can be modified to a continuity between spaces which are ob-
tained by replacing s in the second and third component by s− 1

2 and s− n+1
2 ,

respectively. This will be the smoothness convention in our spaces in the ap-
plications below, cf. also the formula (4) where n = 1.

2.3 Holomorphic corner symbols

We now turn to a category of Mellin amplitude functions in corner axis
direction t ∈ R+ that are holomorphic in the complex Mellin covariable w.

Below A(D,E) for an open set D ⊆ C and a Fréchet space E denotes
the space of all holomorphic functions in D with values in E.

Definition 2.10 By Rμ,d(C,gcone; j−, j+) for μ ∈ Z,d ∈ N, we denote
the space of all h(w) ∈ A(C,L(E , Ẽ)) with the spaces (42), (46), s > d − 1

2 ,
such that h(δ + iτ̃) ∈ Rμ,d(Rτ̃ ,gcone; j−, j+) for every δ ∈ R, uniformly in
compact intervals. In a similar way we define the space R

μ,d
G (C,gcone; j−, j+).

Remark 2.11 Let R−∞,d(C,gcone; j−, j+)ε defined to be the space of all
c(w) ∈ A(C,L(E ,Sε)) with the above spaces (42), (43), such that c(δ + iτ̃) ∈
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S(Rτ̃ ,L(E ,Sε)) holds for every δ ∈ R, uniformly in compact intervals, and
a similar condition holds for c∗(w).

The space R−∞,d(C,gcone; j−, j+)ε is Fréchet, and we set

R−∞,d(R+ × C,gcone; j−, j+)ε := C∞(R+,R−∞,d(C,gcone; j−, j+)ε),

R−∞,d(R+ × C,gcone; j−, j+) :=
⋃
ε>0

R−∞,d(R+ × C,gcone; j−, j+)ε.

Then we have R−∞,d(C,gcone; j−, j+) ⊂ Rμ,d(C,gcone; j−, j+), but the
left hand side does not coincide with

⋂
μ∈Z

Rμ,d(C,gcone; j−, j+) since gcone =
(γ, γ − μ) is the same on both sides of the inclusion.

Remark 2.12 Definition 2.10 can also be specified for a fixed ε > 0 as
in Definition 2.7 before; then the spaces in Definition 2.10 are the union of
all those spaces over ε > 0. In addition we can form

Rμ,d(R+ × C,gcone; j−, j+) := C∞(R+,Rμ,d(C,gcone; j−, j+)).

The operator families a(t, τ̃ ) of Definition 2.7 belong to

Sμ(R+ × Rτ̃ ; E , Ẽ)χ,χ̃ (49)

with respect to the spaces (42), (46) and the group actions χ, χ̃ mentioned
before. In this situation we have kernel cut-off operations that produce
holomorphic families. Kernel cut-off in corner degenerate situations for the
case without boundary are studied in [7]. In the version of boundary value
problems as is employed here the details may be found in [13] and [4]. The
process in general is as follows.

Given a symbol a(t, τ̃ ) in the space (49) with τ̃ being interpreted as the
covariable on Γ0 ⊂ C we form k(a)(t, b) :=

∫
R

b−iτ̃a(t, τ̃ )d̄τ̃ . Then, for any
ψ ∈ C∞

0 (R+) such that ψ(b) = 1 in a neighbourhood of b = 1 we set

h(t, w) := H(ψ)a(t, w) :=
∫ ∞

0
bw−1ψ(b)k(a)(t, b)db.

We then obtain h(t, w) ∈ A(C, C∞(R+,L(E , Ẽ)) and h(t, δ+iτ̃ ) in the symbol
space (49) for every δ ∈ R, uniformly in compact intervals.

Remark 2.13 For μ ∈ Z,d ∈ N, we have Rμ,d(R+ × C,gcone; j−, j+) =
{h(t, w) + c(t, w) : h(t, w) = H(ψ)a(t, w) for arbitrary a(t, τ̃ ) ∈ Rμ,d(R+ ×
Rτ̃ ,gcone; j−, j+) and c(t, w) ∈ R−∞,d(R+ × C,gcone; j−, j+)}.

Theorem 2.14 (i) For every ã(t, τ̃ ) ∈ Rμ,d(R+ × Rτ̃ ,gcone; j−, j+)
and every β ∈ R there exists an h(t, w) ∈ Rμ,d(R+ × C,gcone; j−, j+)

such that for a(t, τ) := ã(t, tτ) we have opt(a) = op
β−n+1

2
M (h) modulo a

smoothing operator as defined at the end of Section 4.5 below.

22



(ii) We have σ∧(ã)(t,−τ) = σ∧(h)(t, δ + iτ) for ã and h as in (i) for every
δ ∈ R.

The proof of Theorem 2.14 is based on the kernel cut-off technique com-
bined with a Mellin operator convention as is developed in the present vari-
ant in [7], see also [4] and [13] for the case of boundary value problems.

Let us call ã(t, τ̃ ) ∈ Rμ,d(R+×R,gcone; j−, j+) elliptic if σψ(ã) is elliptic,
i.e., σψ(a) is non-vanishing on T ∗(R+×R+×N)\0 and (in the notation (47))
σψ(p̃)(r, t, x, ρ̃, τ̃ , ξ) 
= 0 for (ρ̃, τ̃ , ξ) 
= 0, up to r = t = 0, and, moreover, if
σ∂(a) is a family of isomorphisms in the sense of (87) below, parametrised
by (r, t, x′, ρ, τ, ξ′) ∈ T ∗(R+ × R+ × ∂N) \ 0, and (in the notation (48))
σ∂(p̃)(r, t, x′, ρ̃, τ̃ , ξ′) are isomorphisms for (ρ̃, τ̃ , ξ′) 
= 0 up to r = t = 0;
finally, σ∧(ã)(t, τ̃ ) : E → Ẽ is a family of isomorphisms for all (t, τ̃) ∈
R+ × (R \ {0}).

Remark 2.15 Let ã(t, τ̃) ∈ Rμ,d(R+ ×R,gcone; j−, j+) be elliptic. Then
also h(t, w) ∈ Rμ,d(R+ × C,gcone; j−, j+), associated with ã as in Theo-
rem 2.14, is elliptic in the sense that h(t, δ + iτ̃) is elliptic in Rμ,d(Rt ×
Rτ̃ ,gcone; j−, j+) for some δ ∈ R. This property is independent of δ and
satisfied for all δ ∈ R.

2.4 Corner boundary value problems

Let D be a manifold with conical singularity v and boundary; in particular,
D \ {v} is a C∞ manifold with boundary. If D locally near v is writ-
ten as (R+ × N)/({0} × N) for a compact C∞ manifold N with smooth
boundary, n = dim N, we can pass to the double B which is a manifold
with conical singularity v without boundary, locally near v identified with
(R+ × 2N)/({0} × 2N), and we then have the stretched manifold B with
Breg := B \ ∂B, Bsing := ∂B. In this case B can be written as the double 2D

of a space D which plays the role of the stretched manifold of D with subsets

Dreg := D ∩ Breg, Dsing := D ∩ Bsing.

In particular, Dreg is a C∞ manifold with boundary ∼= ∂(D \ {v}) and Dsing

is diffeomorphic to N , the base of the local cone near v. Observe that a
stretched manifold D with conical singularities and boundary can also be
doubled up by gluing together two copies D− and D+ to a C∞ manifold D̃

with boundary by identifying D−,sing and D+,sing (observe that this operation
has nothing to do with 2D, the double of D obtained by identifying D− and
D+ along ∂(D∓,reg) ∪ ∂D∓,sing).

We then have the spaces Vs,δ(R+,Ks,γ(N∧)) and Hs,δ(R+ × D̃) for
every s, γ, δ ∈ R. Let us fix a cut-off function ω ∈ C∞(B) which is equal to
1 in a collar neighbourhood of Bsing and write ω also for the restriction to
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D. The function 1 − ω will also be interpreted as a function on D̃ vanishing
in a neighbourhood of D−.

Let us set

Vs,(γ,δ)(D∧) := {ωv + (1−ω)u : v ∈ Vs,δ(R+,Ks,γ(N∧)), u ∈ Hs,δ(R+ × D̃)}.
In a similar manner we can form the spaces Vs,(γ,δ)((∂D)∧), based on
Vs,δ(R+,Ks,γ((∂N)∧)) and Hs,δ(R+ × ∂D̃), respectively. Here ∂D is the
stretched manifold belonging to ∂(D \ {v}) ∪ {v} which is a manifold with
conical singularity v and without boundary. We then form

Ṽs,(γ,δ)(D∧) := Vs,(γ,δ)(D∧) ⊕ Vs− 1
2
,(γ− 1

2
,δ− 1

2
)((∂D)∧).

This will be applied below to the case

D = S
2
+ and ∂D = S

1, (50)

cf. Section 2.1. To avoid confusion let us stress once again that from the
geometric point of view the conical points v1, v2 on ∂S2

+ are only fictitious.
For the following definition we need operators C that are continuous as

C : Hs,γ(D)⊕Hs′,γ− 1
2 (∂D)⊕C

j− → H∞,γ−μ+ε(D)⊕H∞,γ−μ− 1
2
+ε(∂D)⊕C

j+

for some ε = ε(C) > 0 and all s, s′ ∈ R, s > −1
2 , such that the for-

mal adjoint has analogous mapping properties. By C−∞,d(D,gcone; j−, j+)ε
for gcone = (γ, γ − μ),d ∈ N, we denote the space of all operators C0 +∑d

j=1 Cjdiag (Dj, 0, 0) where Cj , 0 ≤ j ≤ d, are as described before, and D
is a first order differential operator on D which is near ∂Dreg

⋃
∂Dsing equal

to ∂ν where ν is the normal coordinate to the boundary ∂N. The space
C−∞,d(D,gcone; j−, j+)ε is Fréchet in a natural way.

Definition 2.16 (i) By M−∞,d(D,gcone; j−, j+; Γβ)ε we denote the set
of all f(w) ∈ A(β − ε < Re w < β + ε, C−∞,d(D,gcone; j−, j+)ε) such
that f(δ+iτ) ∈ S(Rτ , C−∞,d(D,gcone; j−, j+)ε) for every δ ∈ (β−ε, β+
ε), uniformly in compact subintervals. Let M−∞,d(D,gcone; j−, j+; Γβ) :=⋃

ε>0 M−∞,d(D,gcone; j−, j+; Γβ)ε. Moreover, we set

M−∞,d(D,gcone; j−, j+; C) :=
⋂
ε>0

M−∞,d(D;gcone; j−, j+; Γβ)ε

(which is, of course, independent of the choice of β).

(ii) The space Mμ,d(D,gcone; j−, j+; C), μ ∈ Z,d ∈ N, is defined to be the
set of all operator functions h(w) + f(w) where

h(w) = θsingh(w)θ̃sing + θregdiag (hreg(w), 0)θ̃reg (51)

for arbitrary h(w) ∈ Rμ,d(C,gcone; j−, j+), hreg(w) ∈ Bμ,d(D̃; C), cf.
Definition 4.9 (ii), and f(w) ∈ M−∞,d(D,gcone; j−, j+; C) with a par-
tition of unity (θsing, θreg) on D, where θsing ≡ 0 outside a neighbour-
hood of Dsing and θsing ≡ 1 near Dsing, moreover θ̃sing, θ̃reg are C∞ func-
tions on D, θ̃sing also supported in a neighbourhood of Dsing, supp θ̃reg∩
Dsing = ∅, θ̃sing ≡ 1 on supp θsing, θ̃reg ≡ 1 on supp θreg.
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In the following by Φ,Ψ, etc., we denote diagonal matrices

Φ := diag (ϕ,ϕ, ϕ), Ψ := diag (ψ,ψ, ψ) (52)

for arbitrary ϕ,ψ ∈ C∞
0 (R+), acting as operators of multiplication.

By C−∞,0(D∧,g; j−, j+) for g := (γ, γ − μ; δ, δ − μ) we denote the space
of all G that induce continuous operators

ΦGΨ :
Ṽs,(γ,δ)(D∧)

⊕
Hs′,δ−n+1

2 (R+, Cj−)
→

Ṽ∞,(γ−μ+ε,δ−μ+ε)(D∧)
⊕

H∞,δ−μ−n+1
2

+ε(R+, Cj+)

for some ε = ε(G) > 0 for every s, s′ ∈ R, s > −1
2 , and for arbitrary Φ,Ψ

of the kind (52); an analogous condition is required for the formal adjoint
G∗ with weights −γ + μ,−δ + μ in the preimage and −γ + ε,−δ + ε in the
image. Moreover, C−∞,d(D∧,g; j−, j+) for d ∈ N is defined to be the space of
all G = G0 +

∑d
j=1 Gjdiag (Dj , 0, 0) for arbitrary Gj ∈ C−∞,0(D∧,g; j−, j+)

and a first order differential operator D that is locally near ∂N equal to ∂xn

where xn is the normal coordinate to the boundary.

Definition 2.17 The space of local corner operators

Cμ,d(D∧,g; j−, j+), g = (γ, γ − μ; δ, δ − μ), μ ∈ Z,d ∈ N,

is defined as the set of all operators A = Lcorner + G with the following
ingredients:

(i)

Lcorner = t−μop
δ−n+1

2
M (h + f) (53)

for a Mellin symbol h(t, w) ∈ C∞(R+,Mμ,d(D,gcone; j−, j+; C)) and
f(w) ∈ M−∞,d(D,gcone; j−, j+; Γn+2

2
−δ);

(ii) G ∈ C−∞,d(D∧,g; j−, j+).

Remark 2.18 If we change the cut-off functions θsing, θ̃sing and θreg, θ̃reg

in the formula (51) we obtain in (53) a remainder in C−∞,d(D∧,g; j−, j+).
If f(t, w) ∈ C∞(R+,M−∞,d(D,gcone; j−, j+; Γn+2

2
−δ)) vanishes at t = 0,

then we have t−μop
δ−n+1

2
M (f) ∈ C−∞,d(D∧,g; j−, j+).

Remark 2.19 For every ϕ,ψ ∈ C∞
0 (R+) and A ∈ Cμ,d(D∧,g; j−, j+) we

have ΦA,AΨ ∈ Cμ,d(D∧,g; j−, j+), cf. the formula (52).
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Theorem 2.20 For every A ∈ Cμ,d(D∧,g; j−, j+), g = (γ, γ−μ; δ, δ−μ),
we have continuous operators

ΦAΨ :
Ṽs,(γ,δ)(D∧)

⊕
Hs−n+1

2
,δ−n+1

2 (R+, Cj−)
→

Ṽs−μ,(γ−μ,δ−μ)(D∧)
⊕

Hs−μ−n+1
2

,δ−μ−n+1
2 (R+, Cj+)

for every s ∈ R, s > d − 1
2 , and arbitrary Φ,Ψ as in (52).

Proof. The result is an immediate consequence of Theorem 2.8 and of
the mapping properties of the smoothing operators in Definition 2.17 (ii).
�

Remark 2.21 If the operator A in Theorem 2.20 satisfies a suitable con-
dition for large t, e.g., that h(t, w) is independent of t for large t and the
smoothing summand vanishes, then A is continuous between the spaces with-
out the factors Φ and Ψ.

The operators A ∈ Cμ,d(D∧,g; j−, j+) have a principal symbolic hierar-
chy

σ(A) = (σψ(A), σ∂(A), σ∧(A), σc(A)) (54)

which is as follows. Writing A = (Aij)i,j=1,2,3 we have A11|R+×(int Dreg) ∈
Lμ

cl(R+×(int Dreg)) with the homogeneous principal symbol σψ(A) := σψ(A11)
of order μ. Locally near t = 0 and Dsing it has the form

σψ(A)(r, t, x, ρ, τ, ξ) = t−μr−μσ̃ψ(A)(r, t, x, rρ, rtτ, ξ)

for a function σ̃ψ(A)(r, t, x, ρ̃, τ̃ , ξ) homogeneous of order μ in (ρ̃, τ̃ , ξ) 
= 0
and smooth up to r = t = 0.

Moreover, we have (Aij)i,j=1,2 ∈ Bμ,d(D∧
reg), and there is then a principal

boundary symbol σ∂(A) := σ∂((Aij)i,j=1,2) parametrised by T ∗(∂D
∧
reg) \ 0.

Locally near t = 0 and ∂D
∧
sing the boundary symbol is a family of maps

σ∂(A)(r, t, x′, ρ, τ, ξ′) = t−μr−μσ̃∂(A)(r, t, x′, rρ, rtτ, ξ′)

for a function σ̃∂(A)(r, t, x′, ρ̃, τ̃ , ξ′) which is κλ-homogeneous of order μ in
(ρ̃, τ̃ , ξ′) 
= 0 and smooth up to r = t = 0.

From the definition it follows that A ∈ Yμ,d(D∧,gcone; j−, j+) with D
∧ =

R+ ×D being regarded as a (stretched) manifold with edge R+ 
 t, cf. Sec-
tion 4.5, below. From the edge calculus the operator A has a homogeneous
principal edge symbol

σ∧(A)(t, τ) : K̃s,γ(N∧) ⊕ C
j− → K̃s−μ,γ−μ(N∧) ⊕ C

j+ (55)

for N = Dsing, (t, τ) ∈ T ∗
R+ \ 0. In the present case there is an analogous

operator function σ̃∧(A)(t, τ̃ ) in (t, τ̃ ), τ̃ 
= 0, smooth in t up to t = 0, such
that

σ∧(A)(t, τ) = t−μσ̃∧(A)(t, tτ).
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Observe that when we form b(t,−τ̃) := h(t, n+2
2 − δ + iτ̃) we have

σ∧(b)(t, τ̃ ) = σ̃∧(A)(t, τ̃ ).
Finally, to define the corner conormal symbol we set

H̃s,γ(D) := Hs,γ(D) ⊕Hs− 1
2
,γ− 1

2 (∂D);

then
σc(A)(w) : H̃s,γ(D) ⊕ C

j− → H̃s−μ,γ−μ(D) ⊕ C
j+, (56)

w ∈ Γn+2
2

−δ, is defined by

σc(A)(w) = h(0, w) + f(w), (57)

cf. the formula (53).

Theorem 2.22 For every

A ∈ Cμ,d(D∧,a; j0, j+), B ∈ Cν,e(D∧, b; j−, j0)

for μ, ν ∈ Z,d, e ∈ N, and a := (γ − ν, γ − (μ + ν); δ − ν, δ − (μ + ν)),
b := (γ, γ − ν; δ, δ − ν) we have AΦBΨ ∈ Cμ+ν,h(D∧,a ◦ b; j−, j+) for h =
max (ν + d, e),a ◦ b = (γ, γ − (μ + ν); δ, δ − (μ + ν)) and for every Φ,Ψ as
in (52), where

σ(AΦBΨ) = σ(AΦ)σ(BΨ)

with componentwise multiplication, and the rule for the conormal symbols

σc(AΦBΨ)(w) = σc(AΦ)(w − ν)σc(BΨ)(w).

Theorem 2.22 states that the operator spaces of Definition 2.17 form (up
to the localising factors Φ and Ψ) an algebra of boundary value problems
on the stretched corner D

∧. An analogous calculus for the case of corners
without boundary is given in [15]. The technique of proving Theorem 2.22 is
quite similar to that in the edge algebra of boundary value problems, cf. [9],
here with respect to the weighted Mellin transform instead of the Fourier
transform along the edge.

2.5 Ellipticity near the corner

Definition 2.23 An operator A as in Definition 2.17 is said to be elliptic
with respect to the symbol (54) if

(i) σψ(A) 
= 0 on T ∗(R+ × (int Dreg))\0 and σ̃ψ(A)(r, t, x, ρ̃, τ̃ , ξ) 
= 0 for
(ρ̃, τ̃ , ξ) 
= 0, up to r = t = 0;

(ii) σ∂(A) is bijective for all points on T ∗(∂D
∧
reg)\0, and σ̃∂(A)(r, t, x′, ρ̃, τ̃ , ξ′)

is bijective for (ρ̃, τ̃ , ξ′) 
= 0, up to r = t = 0;
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(iii) σ∧(A)(t, τ) defines isomorphisms (55) for all (t, τ) ∈ T ∗
R+ \ 0, and

σ̃∧(A)(t, τ̃ ) defines analogous isomorphisms for τ̃ 
= 0, up to t = 0;

(iv) (56) is a family of isomorphisms for all w ∈ Γn+2
2

−δ.

The conditions (ii)-(iv) of the latter definition are required for any s ∈
R, s > max (μ,d) − 1

2 ; they are then independent of s.

Theorem 2.24 An elliptic A ∈ Cμ,d(D∧,g; j−, j+) has a parametrix P ∈
C−μ,(d−μ)+(D∧,g−1; j+, j−), g−1 = (γ − μ, γ; δ − μ, δ), ν+ := max (ν, 0), in
the following sense:

ΦPΦ̃A
˜̃Φ = ΦI and ΦAΦ̃P

˜̃Φ = ΦI

modulo C−∞,dl(D∧,gl; j−, j−) and C−∞,dr(D∧,gr; j+, j+), respectively, for
gl = (γ, γ; δ, δ),dl = max (μ,d), gr = (γ−μ, γ−μ; δ−μ, δ−μ),dr = (d−μ)+,

and arbitrary Φ = diag (ϕ,ϕ, ϕ), Φ̃ = diag (ϕ̃, ϕ̃, ϕ̃), ˜̃Φ = diag (˜̃ϕ, ˜̃ϕ, ˜̃ϕ) with
ϕ, ϕ̃, ˜̃ϕ ∈ C∞

0 (R+) such that ϕ̃ ≡ 1 on suppϕ, ˜̃ϕ ≡ 1 on supp ϕ̃.

Proof. By virtue of Definition 2.17 (i) it suffices to assume that A has
the form (53). The ellipticity of Lcorner gives us the existence of elements
h

(−1)
reg (t, w) ∈ C∞(R+,B−μ,dr(D̃; Γn+2

2
−δ)) and h(−1)(t, w) ∈ R−μ,dr(R+ ×

C,g−1
cone; j+, j−) such that for

h[−1](t, w) := θsingh
(−1)(t, w)θ̃sing + θregdiag (h(−1)

reg (t, w), 0)θ̃reg

we have
h[−1](t, w − μ)h(t, w)|Γn+2

2 −δ
= 1 + f0(t, w) (58)

for some f0(t, w) ∈ C∞(R+,M−∞,dl(D,gcone,l; j−, j−; Γn+2
2

−δ)), gcone,l =
(γ, γ). Note that because of the holomorphy of the involved Mellin oper-
ator functions in w ∈ C this relation holds for all δ ∈ R, although we
only employ it for the prescribed fixed corner weight δ. For the construc-
tion of the parametrix we also have to invert the principal conormal symbol
(57). From (58) we obtain h[−1](0, w − μ)(h(0, w) + f(w)) = 1 + f1(w)
for some f1(w) ∈ M−∞,dl(D,gcone,l; j−, j−; Γn+2

2
−δ). We now use the fact

that there exists an f2(w−μ) ∈ M−∞,dl(D,gcone,l; j−, j−; Γn+2
2

−δ) such that
(1 + f2(w − μ))(1 + f1(w)) = 1. This gives us

(1 + f2(w − μ))h[−1](0, w − μ)(h(0, w) + f(w)) = 1.

From f2(w−μ)h[−1](0, w−μ) =: g(w−μ) ∈ M−∞,dr(D,g−1
cone; j+, j−; Γn+2

2
−δ)

we have (h[−1](0, w − μ) + g(w − μ))(h(0, w) + f(w)) = 1. It follows that
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σc(A)−1(w) = h[−1](0, w − μ) + g(w − μ) for w ∈ Γn+2
2

−δ. We now employ
the relation (58) which yields

h[−1](t, w−μ)�h(t, w)−1 =: h1(t, w) ∈ C∞(R+,M−1,dl(D,gcone,l; j−, j−; C)).

Here � denotes the Mellin-Leibniz product, cf. [12] for an analogous situation
on R+. This allows us to construct an h2(t, w) in the same space as h1(t, w)
with the property

(1+h2(t, w))�(1+h1(t, w)) = 1 mod C∞(R+,M−∞,dl(D,gcone,l; j−, j−; C)).

Thus, modulo a remainder of the same kind, h(−1)(t, w − μ)�h(t, w) = 1 for
h(−1)(t, w − μ) := (1 + h2(t, w − μ))�h[−1](t, w − μ) belonging to the space

C∞(R+,M−μ,(d−μ)+(D,g−1
cone; j+, j−; C)). Now P = tμop

δ−μ−n+1
2

M (h(−1) + g)
is a parametrix as desired. �

3 Corner-edge operators

3.1 Global corner boundary value problems

In this section we introduce a space of global boundary value problems on
the (stretched) corner configuration X, cf. Section 1.3. The most specific
part comes from a (stretched) neighbourhood (S2

+)∧ of the corner point
v ∈ Z. The material on such corner operators is prepared in Section 2.5 for
a general (stretched) manifold D with a conical singularity on the boundary.
In the present case we have S

2
+ = D with two conical points v1, v2 ∈ S1.

Recall that we then write S
1 when we emphasise the presence of the conical

points on the boundary of D, cf. also the formula (50). From Definition 2.17
we have the space Cμ,d((S2

+)∧,g; j−, j+) of corner boundary value problems

which are block matrices of operators A =
(

A K
T Q

)
that are (after a

localisation by cut-off factors as in Theorem 2.20) continuous in the sense

A :
Ṽs,(γ,δ)((S2

+)∧)
⊕

Hs−1,δ−1(R+, Cj−)
→

Ṽs−μ,(γ−μ,δ−μ)((S2
+)∧)

⊕
Hs−μ−1,δ−μ−1(R+, Cj+)

, (59)

Ṽs,(γ,δ)((S2
+)∧) := Vs,(γ,δ)((S2

+)∧)⊕Vs− 1
2
,(γ− 1

2
,δ− 1

2
)(I∧−)⊕Vs− 1

2
,(γ− 1

2
,δ− 1

2
)(I∧+).

For the following notation we define spaces Ṽ(s,s′),(γ,δ)((S2
+)∧) in a similar

manner as Ṽs,(γ,δ)((S2
+)∧) with the only difference that s − 1

2 is replaced by
s′ ∈ R. By C−∞,0(X,g; j−, j+) for g := (γ, γ − μ; δ, δ − μ) we denote the
space of operators G that are continuous as

G : Ṽ(s,s′),(γ,δ)(X) ⊕Hs′′,δ−1(Z, Cj−) (60)
→ Ṽ∞,(γ−μ+ε,δ−μ+ε)(X) ⊕H∞,δ−μ−1+ε(Z, Cj+)
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for some ε = ε(G) > 0, for every s, s′, s′′ ∈ R, s > −1
2 ; an analogous condition

is required for the formal adjoint G∗, with weights −γ + μ,−δ + μ in the
preimage and −γ +ε,−δ +ε in the image. Moreover, C−∞,d(X,g; j−, j+) for
d ∈ N is defined to be the space of all operators

G = G0 +
d∑

j=1

Gjdiag (Dj , 0, 0, 0) (61)

for arbitrary Gj ∈ C−∞,0(X,g; j−, j+) and a first order differential operator
D that is locally near ∂X of the form ∂xn with xn being the normal to the
boundary.

The following definition will refer to localisations of operators on X near
different singular strata.

Let us set (with the notation (31)) U0 := U0, U1 :=
⋃K

j=1 Uj , U2 :=⋃N
j=K+1 Uj which form an open covering {U0,U1,U2} of X, and let {ϕ0, ϕ1, ϕ2}

be a subordinate partition of unity. Moreover, let {ψ0, ψ1, ψ2} be C∞
0 func-

tions in the respective neighbourhoods such that ψj ≡ 1 on suppϕj , j =
1, 2, 3. The functions ϕj , ψj may also be regarded as functions on X when
we identify them with the pull backs under the map (19). Moreover, we
form 4 × 4 diagonal matrices

Φcorner,Ψcorner, and Φedge,Ψedge

defined by Φcorner := diag (ϕ0, ϕ0|int Y− , ϕ0|int Y+ , ϕ0|Z) and, similarly, Ψcorner

in terms of ψ0, furthermore, Φedge := diag (ϕ1, ϕ1|int Y− , ϕ1|int Y+, ϕ1|Z) and,
similarly, Ψedge in terms of ψ1. Finally, we form Φreg := diag (ϕ2, ϕ2|int Y− ,
ϕ2|int Y+ , 0) and, similarly, Ψreg in terms of ψ2.

Definition 3.1 Let X be the (stretched) corner configuration as described
in Section 1.3. Moreover, let μ ∈ Z, d ∈ N, and let g := (γ, γ−μ; δ, δ−μ) be
weight data with a cone weight γ ∈ R and a corner weight δ ∈ R (associated
with the local axial variables r ∈ R+ and t ∈ R+, respectively). Then

Cμ,d(X,g; j−, j+) (62)

is defined to be the set of all operators

A = Acorner + Aedge + Areg + G (63)

where the summands are as follows:

(i) Acorner := ΦcornerLcornerΨcorner for Lcorner ∈ Cμ,d((S2
+)∧,g; j−, j+), cf.

Definition 2.17 for the case D = S
2
+;

(ii) Aedge := ΦedgeLedgeΨedge for Ledge ∈ Yμ,d(U,gcone; j−, j+), cf. Section
4.5 below;
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(iii) Areg := ΦregLregΨreg for Lreg ∈ Bμ,d(X \ Z);

(iv) G ∈ C−∞,d(X,g; j−, j+).

Remark 3.2 The properties (i)reg, (ii)reg are not necessary for our cal-
culus, but they simplify some constructions. If we only require (i)-(iv) we
obtain an operator space which also admits ellipticity and the construction of
parametrices. The condition (i)reg for our singular Zaremba problem means
that the Laplace operator itself is smooth across Z, while (ii)reg says that the
Dirichlet and Neumann conditions are also smoothly extendible to the whole
boundary.

Let Ṽs,(γ,δ)(X) be defined as

Vs,(γ,δ)(X) ⊕ Vs− 1
2
,(γ− 1

2
,δ− 1

2
)(Y−) ⊕ Vs− 1

2
,(γ− 1

2
,δ− 1

2
)(Y+),

cf. Definition 2.3.

Theorem 3.3 Every A ∈ Cμ,d(X,g; j−, j+) induces continuous opera-
tors

A : Ṽs,(γ,δ)(X)⊕Hs−1,δ−1(Z, Cj−) → Ṽs−μ,(γ−μ,δ−μ)(X)⊕Hs−μ−1,δ−μ−1(Z, Cj+),
(64)

s > d − 1
2 .

Proof. In order to prove (64) it suffices to consider the summands in (63)
separately. The desired continuity of Acorner was given in Theorem 2.20. The
continuity of Aedge is the same as in the edge calculus, cf. [9]. The operator
Areg corresponds to a standard pseudo-differential boundary value problem
with the transmission property; thus it is continuous in standard Sobolev
spaces, cf. the formula (86) below. The smoothing term G is continuous by
the properties (60), (61). �

We now turn to the global principal symbolic structure of Cμ,d(X,g; j−, j+)
which consists of 4 components, namely,

σ(A) := (σψ(A), σ∂(A), σ∧(A), σc(A)). (65)

Writing A = (Aij)i,j=1,...,4 from Definition 3.1 it follows that A11 ∈
Lμ

cl(int X). Thus we have σψ(A) := σψ(A11), the standard homogeneous
principal symbol of order μ as a function on T ∗(int X) \ 0.

Close to Zreg = Z \ {v} in local coordinates (r, φ, z), cf. (20), and
covariables (ρ, ϑ, ζ) we have

σψ(A)(r, φ, z, ρ, ϑ, ζ) = r−μσ̃ψ(A)(r, φ, z, rρ, ϑ, rζ) (66)
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for a function σ̃ψ(A)(r, φ, z, ρ̃, ϑ, ζ̃), (ρ̃, ϑ, ζ̃) 
= 0, smooth up to r = 0. More-
over, close to v near the branch Zk ⊂ Z, k = 1, 2, in local coordinates
(r, φ, t) ∈ R+ × S1

+ × R+ and covariables (ρ, ϑ, τ) we have

σψ(A)(r, φ, t, ρ, ϑ, τ) = t−μr−μσ̃ψ(A)(r, φ, t, rρ, ϑ, rtτ) (67)

for a function σ̃ψ(A)(r, φ, t, ρ̃, ϑ, τ̃ ), (ρ̃, ϑ, τ̃ ) 
= 0, which is smooth up to r =
t = 0. The second component of (65) which is the boundary symbol we em-
ploy that (Aij)i,j=1,2,3 belongs to Bμ,d(X\Z). The boundary of X\Z consists
of Y±; so there are two components, namely, σ∂(A) := (σ∂,−(A), σ∂,+(A)),
where

σ∂,−(A) := σ∂((Aij)i,j=1,2), σ∂,+(A) := σ∂((Aij)i,j=1,3),

σ∂,∓(A) : Hs(R+) ⊕ C → Hs−μ(R+) ⊕ C. (68)

The latter boundary symbols are those of the boundary value problems
(Aij)i,j=1,2 on int Y− and (Aij)i,j=1,3 on int Y+ in the standard sense, i.e.,
operator families parametrised by T ∗(int Y∓) \ 0 and homogeneous of order
μ.

Close to Zreg in the variables (r, φ, z) ∈ R+ × S1
+ × R+ we have

σ∂,∓(A)(r, z, ρ, ζ) = r−μσ̃∂,∓(A)(r, z, rρ, rζ)

for operator functions σ̃∂,∓(A)(r, z, ρ̃, ζ̃), (ρ̃, ζ̃) 
= 0, which are smooth up to
r = 0. Moreover, close to v near the branch Zk ⊂ Z, k = 1, 2, in the variables
(r, φ, t) ∈ R+ × S1

+ × R+ we have

σ∂,∓(A)(r, t, ρ, τ) = t−μr−μσ̃∂,∓(A)(r, t, rρ, rtτ)

for operator functions σ̃∂,∓(A)(r, t, ρ̃, τ̃ ), (ρ̃, τ̃ ) 
= 0, which are smooth up
to r = t = 0.

From Definition 3.1 (ii) we have the homogeneous principal edge symbol

σ∧(A)(z, ζ) : K̃s,γ((S1
+)∧) ⊕ C

j− → K̃s−μ,γ−μ((S1
+)∧) ⊕ C

j+, (69)

(z, ζ) ∈ T ∗(Zreg) \ 0, where

K̃s,γ((S1
+)∧) := Ks,γ((S1

+)∧) ⊕Ks− 1
2
,γ− 1

2 (R−) ⊕Ks− 1
2
,γ− 1

2 (R+).

In a neighbourhood of v ∈ Z in the coordinate t ∈ L± \ {0} with the
covariable τ (i.e., (z, ζ) in (69) is replaced by (t, τ), cf. Definition 2.7) we
employ σ∧(A)(t, τ) of the form σ∧(A)(t, τ) = t−μσ̃∧(A)(t, tτ) for an operator
function

σ̃∧(A)(t, τ̃ ) (70)

between the spaces as in (69) which is smooth in t up to zero.
Finally, the principal conormal corner symbol of A is a family of maps

σc(A)(w) : H̃s,γ(S2
+) ⊕ C

j− → H̃s−μ,γ−μ(S2
+) ⊕ C

j+, (71)

w ∈ Γ 3
2
−δ, cf. Definition 3.1 (i) and the formula (57); the spaces are defined

by (79), (80) below.
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Remark 3.4 Let A belong to (62) and assume that σ(A) = 0. Then (64)
is a compact operator for every s > d − 1

2 .

Theorem 3.5 For A ∈ Cμ,d(X,a; j0, j+), B ∈ Cν,e(X, b; j−, j0) for μ, ν ∈
Z,d, e ∈ N, and a := (γ−ν, γ−(μ+ν); δ−ν, δ−(μ+ν)), b := (γ, γ−ν; δ, δ−ν),
we have AB ∈ Cμ+ν,h(X,a ◦ b; j−, j+) for h = max (ν + d, e),a ◦ b =
(γ, γ − (μ + ν); δ, δ − (μ + ν)), where σ(AB) = σ(A)σ(B) with componen-
twise multiplication, and the rule σc(AB)(w) = σc(A)(w − ν)σc(B)(w) for
the conormal symbols.

The proof of Theorem 3.5 is a combination of Theorem 2.22, specified to
D = S

2
+, with the corresponding known composition behaviour in the edge

algebra of boundary value problems outside {v}.

Remark 3.6 Our applications will refer to a slightly modified definition
of the operator space Cμ(X,g; j−, j+). In Definition 3.1 we assumed, for sim-
plicity, that the number of trace and potential conditions on Y± \Z is equal
to 1. In addition we assumed their orders to be μ+ 1

2 and μ− 1
2 , respectively.

In the Zaremba problem we have, of course, only trace (no potential) condi-
tions and order 1

2 and 3
2 , respectively. For the expected parametrices in our

calculus there are only potential (no trace) operators, etc. For that reason
we will also employ the notation in a corresponding generalised sense, where
μ is the order of the upper left corners, and the other orders are assumed
to be known by the context, also the number of trace and potential entries
referring to Y± \ Z. In compositions we assume that rows and colums fit
together. We then have a corresponding generalisation of Theorems 3.3 and
3.5.

3.2 Ellipticity and parametrices

Definition 3.7 An operator A ∈ Cμ,d(X,g; j−, j+) is called elliptic, if

(i) σψ(A) 
= 0 on T ∗(int X)\0, and near Zreg we have σ̃ψ(A)(r, φ, z, ρ̃, ϑ, ζ̃) 
=
0, for (ρ̃, ϑ, ζ̃) 
= 0, up to r = 0, and near v and Zk, k = 1, 2, the
function σ̃ψ(A)(r, φ, t, ρ̃, ϑ, τ̃ ) does not vanish for (ρ̃, ϑ, τ̃ ) 
= 0 up to
r = t = 0;

(ii) σ∂,±(A) defines isomorphisms (68) for all points of T ∗(int Y±) \ 0,
and near Zreg the mappings σ̃∂,±(A)(r, z, ρ̃, ζ̃) are isomorphisms for
(ρ̃, ζ̃) 
= 0, up to r = 0, and near v and Zk, k = 1, 2, the mappings
σ̃∂,±(A)(r, t, ρ̃, τ̃ ) are isomorphisms for (ρ̃, τ̃ ) 
= 0, up to r = t = 0;

(iii) σ∧(A) defines isomorphisms (69) for all (z, ζ) ∈ T ∗(Zreg) \ 0, and
σ̃∧(A)(t, τ̃ ) defines analogous isomorphisms for τ̃ 
= 0 up to t = 0;

(iv) σc(A)(w) defines isomorphisms (71) for all w ∈ Γ 3
2
−δ.
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In the conditions (ii)-(iv) we assume s > max (μ,d) − 1
2 .

Remark 3.8 The operator spaces Cμ,d(X,g; j−, j+) contain subspaces
with more regularity with respect to σψ and σ∂ . Let Cμ,d(X,g; j−, j+)reg de-
note the class of all A such that

(i)reg A11 is regular in the sense that there is a ‘smooth’ element A11 ∈
Bμ,d(X) such that A11|X\Z − A11 ∈ B−∞,d(X \ Z);

(ii)reg (Aij)i,j=1,2 is regular in the sense that there are ‘smooth’ elements
A± ∈ Bμ,d(X) such that (A± − (Aij)i,j=1,2)|X\Y∓ ∈ B−∞,d(X \ Y∓).

Then, if A± are elliptic as elements in that smooth calculus of boundary value
problems with respect to σψ and σ∂ , then the conditions (i), (ii) of Definition
3.7 with respect to σ̃ψ, σ̃ψ and σ̃∂,±, σ̃∂,± are automatically satisfied.

Theorem 3.9 Let A ∈ Cμ,d(X,g; j−, j+),g = (γ, γ − μ; δ, δ − μ), be el-
liptic; then there exists a parametrix P ∈ C−μ,(d−μ)+(X,g−1; j+, j−),g−1 :=
(γ − μ, γ; δ − μ, δ), i.e., we have

I − PA ∈ C−∞,dl(X,gl; j−, j−), I − AP ∈ C−∞,dr(X,gr; j+, j+) (72)

with the same meaning of gl,dl, etc., as in Theorem 2.24.

Proof. We construct P in the form P = Pcorner + Pedge + Preg where
the summands have a similar meaning as in Definition 3.1. The ellipticity
of A implies that Ledge ∈ Yμ,d(U,gcone; j−, j+) and Lreg ∈ Bμ,d(X \ Z) are
elliptic in the respective classes. Therefore, we have corresponding paramet-
rices Medge ∈ Y−μ,(d−μ)+(U,g−1

cone; j+, j−) and Mreg ∈ B−μ,(d−μ)+(X \ Z),
respectively. Concerning Medge we refer, e.g., to [3]. The construction
of Mreg is standard, cf. [1]. We then set Pedge := ΨedgeMedgeΦedge and
Preg := ΨregMregΦreg. Thus the main step is to construct a parametrix
Mcorner of Lcorner, cf. the notation in Definition 3.1 (i), which is an imme-
diate consequence of Theorem 2.24 for the case D = S

2
+ and in a slight

modification (here, because of the two components Y± of ∂(X \ Z) we
have 4 × 4 matrices with a corresponding meaning of Φ, Φ̃, ˜̃Φ). We set
Pcorner := ΨcornerMcornerΦcorner. �

Corollary 3.10 Let A be as in Theorem 3.9, then the associated operator
(64) is Fredholm for every s > max (μ,d) − 1

2 .

In fact, the parametrix P of A has a principal symbolic hierarchy with
the components inverse to those of (65) (up to a translation in w in the
conormal symbol). Then, using the fact that PA and AP as well the identity
operators belong to the corner calculus in the sense of Definition 3.1 for μ = 0
and because the principal symbols are multiplicative under the operator
composition, cf. Theorem 3.5, we see that the operators in (72) are compact,
cf. Remark 3.4. This entails the Fredholm property.
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Remark 3.11 If A is elliptic and belongs to Cμ,d(X,g; j−, j+)reg, it fol-
lows that P ∈ C−μ,(d−μ)+(X,g−1; j+, j−)reg.

3.3 The singular Zaremba problem

In the following consideration we generalise the meaning of the notation in
Definitions 2.17 and 3.1 by admitting different orders in the operators and
spaces referring to the ± side of the boundary.

The assumptions in Definition 3.1 about entries in the 3 × 3 block ma-
trices and their orders are made for convenience. We may admit modified
operators as represented by the Zaremba problem (3) or the operator (4)
with additional trace and potential data on Z \ {v}. In this case the po-
tential operators in (2) do not occur. However, the corresponding version
of Definition 3.7 is evident. The first two conditions only referring to the
operator (2) are as follows:

(i)Z σψ(A)(ξ) = −|ξ|2 
= 0 for ξ 
= 0;

(ii)Z σ∂,±(A)(y, η) : Hs(R+) → Hs−2(R+) ⊕ C is bijective for T ∗Y \ 0|Y± .

This corresponds to the regular behaviour in the sense of Remark 3.8.
Concerning the existence of a block matrix A in the sense of (4) we have

the following result (notation is used here in the sense of Remark 3.6).

Theorem 3.12 For every γ ∈ (1
2 − k, 3

2 − k), k ∈ Z, we find dimen-
sions j± = j±(γ) and elements T ,K and Q in the corner operator space
C2,2(X,g; j−, j+),g = (γ, γ − 2; δ, δ − 2), of orders and weight shifts corre-
sponding to the mapping property (4), for j+ − j− = k, and for every δ ∈ R,
such that
(iii)Z

σ∧(A)(z, ζ) : Ks,γ((S1
+)∧) ⊕ C

j− → K̃s−2,γ−2((S1
+)∧) ⊕ C

j+

is bijective and that also σ̃∧(A)(t, τ̃ ) is bijective up to t = 0, cf. the
formula (10).

(iv)Z There is a discrete set D of reals such that

σc(A)(w) : Hs,γ(S2
+) ⊕ C

j− → H̃s−2,γ−2(S2
+) ⊕ C

j+

for H̃s−2,γ−2(S2
+) := Hs−2,γ−2(S2

+)⊕Hs− 1
2
,γ− 1

2 (I−)⊕Hs− 3
2
,γ− 3

2 (I+) is
bijective for all w ∈ Γ 3

2
−δ and δ ∈ R such that D ∩ Γ 3

2
−δ = ∅.

Proof. The structure of the operator (2) was analysed in Sections 1.1
and 1.2. In particular, in Theorem 1.3 we established the Fredholm property
of the principal edge symbol (12) for all γ ∈ (1

2 − k, 3
2 − k), with index k. In

Section 1.2 we obtained extra entries on the level of edge symbols on Z \{0}
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that turn σ∧(A)(z, ζ) to a family of isomorphisms (15), cf. also [3]. This
construction also gives us the entries in such a way that in local coordinates
under the chart (32) near in the variable t on L± and the covariable τ also
(70) are isomorphisms up to t = 0, for τ̃ 
= 0. From these homogeneous
edge symbols in (t, τ̃ ) we can construct an amplitude function ã(t, τ̃ ) ∈
R2,2(R+ ×Rτ̃ ; j−, j+), cf. Definition 2.7 and then pass via Theorem 2.14 to
a holomorphic representative. Thus we have all ingredients to build up the
operator A which satisfies all ellipticity conditions (i)-(iv), including (i)Z

and (ii)Z . In particular, by Theorem 2.14 we have an exceptional set D of
weights δ as in (iv)Z . �

Theorem 3.13 For every γ ∈ (1
2 −k, 3

2−k), k ∈ Z, the operator A which
represents the singular Zaremba problem

A : Vs,(γ,δ)(X) → Ṽs−2,(γ−2,δ−2)(X)

(cf. the notation in the formula (3)) can be completed by additional interface
conditions on Z to an element A ∈ C2,2(X,g; j−, j+)

A :=
(

A K
T Q

)
:

Vs,(γ,δ)(X)
⊕

Hs−1,δ−1(Z, Cj−)
→

Ṽs−2,(γ−2,δ−2)(X)
⊕

Hs−3,δ−3(Z, Cj+)
, (73)

j+ − j− = k, such that for a discrete set D of reals δ the operator (73)
is Fredholm for all δ ∈ R \ D, s > 3

2 . Moreover, A has a parametrix P

of analogous structure as P in Theorem 3.9, here with the corresponding
modified orders.

Proof. Theorem 3.13 is a special case of Theorem 3.9 and Corollary
3.10, up to an obvious modification of orders. �

Using P of the latter theorem as a left parametrix of A and taking into
account Theorem 3.3 we obtain the following elliptic regularity in weighted
corner spaces:

Corollary 3.14 Let A be as in Theorem 3.13, and let Au = f with
f belonging to the space on the right of (73), and u ∈ V−∞,(δ,γ)(X) ⊕
H−∞,δ(Z, Cj−). Then we have u ∈ Vs,(δ,γ)(X) ⊕Hs,δ(Z, Cj−). A similar el-
liptic regularity is true of the corner operators of Section 2.5.

In fact, it suffices to compose the equation Au = f from the left with
a parametrix P which gives us u = (I − PA)u + Pf. We then obtain the
desired property of u when we apply Theorem 3.3 to P and the mapping
properties of the smoothing remainder I − PA.

Remark 3.15 As we saw, corner boundary value problems belong to a
kind of cone calculus, where the base of the cone itself has conical singu-
larities, and we then have two (local) axial variables r, t ∈ R+. Similarly
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as in Kondratyev’s theory [10] we can ask the asymptotic properties of so-
lutions close to the singularities. Then, for r → 0 we have to expect ‘edge
asymptotics’, and for t → 0 corner asymptotics. The structure of such dou-
ble asymptotics in the boundaryless case was analysed in [15], see also [16].
Similar asymptotics should be established for the case with boundary, cf. [4];
this requires a refinement of the calculus with a corresponding characterisa-
tion of parametrices, together with the meromorphic structure of edge and
corner conormal symbols.

4 Elements of the edge and corner calculus

4.1 Weighted spaces and Mellin operators for conical singu-
larities

Let M be a closed compact manifold, n = dimM, and set M∧ := R+×M 

(r, x). Then the space

Hs,γ(M∧), (74)

s, γ ∈ R, denotes the completion of the space C∞
0 (R+, C∞(M)) with respect

to the norm
{

1
2πi

∫
Γn+1

2 −γ

||Rs(Im z)Mr→zu(z)||2L2(M)dz
} 1

2
, where Mr→z is

the Mellin transform Mr→zu(z) =
∫ ∞
0 rz−1u(r)dr on u(r) ∈ C∞

0 (R+, C∞(M))
(which is holomorphic in z), Γβ := {z ∈ C : Re z = β}, and Rs(τ) ∈
Ls

cl(M ; Rτ ) is an order reducing family of order s (we use the well known fact
that for every μ ∈ R there is a parameter-dependent elliptic element Rμ(λ) ∈
Lμ

cl(M ; Rl) which induces isomorphisms Rμ(λ) : Hs(M) → Hs−μ(M) for all
s ∈ R, λ ∈ R

l).
In this paper a cut-off function on the half-axis is any real-valued element

ω(r) ∈ C∞
0 (R+) that is equal to 1 in a neighbourhood of r = 0. We define

Ks,γ(M∧) := {ωu + (1 − ω)v : u ∈ Hs,γ(M∧), v ∈ Hs
cone(M

∧)}, (75)

s, γ ∈ R. Here Hs
cone(M

∧) denotes the subspace of all v = ṽ|M∧ , ṽ ∈
Hs

loc(R × M), such that for every coordinate neighbourhood U on M , ev-
ery diffeomorphism χ : U → Ũ to an open set Ũ ⊂ Sn, χ(x) = x̃, and
every ϕ ∈ C∞

0 (U) the function ϕ(χ−1(x̃))(1 − ω(r))v(r, χ−1(x̃)) belongs to
the space Hs(Rn+1) (where (r, x̃) has the meaning of polar coordinates in
R

n+1 \ {0}). If n = 0 we obtain the spaces Ks,γ(R+). The spaces (75) are
Hilbert spaces, and for s = γ = 0 we have K0,0(M∧) = r−

n
2 L2(M∧).

If N is a compact C∞ manifold with C∞ boundary ∂N we define

Ks,γ(N∧) := {u|(int N)∧ : u ∈ Ks,γ((2N)∧)}, (76)

Hs,γ(N∧) := {u|(int N)∧ : u ∈ Hs,γ((2N)∧)}, (77)

s, γ ∈ R, where 2N is the double of N which is obtained by gluing together
two copies N± along the common boundary ∂N, where we identify N+ with
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N. In particular, for M := S1 we have the spaces Ks,γ((S1)∧), Ks,γ((S1
(α,β))

∧)
for S1

(α,β) = {φ ∈ S1 : α ≤ φ ≤ β}. The spaces Ks,γ(M∧) are endowed with
a strongly continuous group of isomorphisms

κ
(n)
λ : Ks,γ(M∧) → Ks,γ(M∧) (78)

when we set κ
(n)
λ u(r, x) = λ

n+1
2 u(λr, x), λ ∈ R+. This action will be called

standard, while we also employ other group actions of the form λmκ
(n)
λ for

certain m ∈ R that depend on the context.
Finally, we set Sγ

ε (M∧) := lim←−
k∈N

〈r〉−kKk,γ+ε−(1+k)−1
(M∧), γ ∈ R, ε > 0.

We now define weighted Sobolev spaces on a compact manifold D with
conical singularities and boundary (on the boundary). First there is the
double B := 2D (obtained by gluing together two copies D± of D along the
common boundary, with D being identified with D+). Let us assume that
there is only one conical singularity v (the case with finitely many conical
singularities is completely analogous). With B we associate the stretched
manifold B which is a C∞ manifold with boundary. For s, γ ∈ R we then
define Hs,γ(B) := {u ∈ Hs

loc(int B) : ωu ∈ Hs,γ((∂B)∧)} for any cut-off
function ω(r) on the half-axis, suppω ⊂ [0, 1− ε] for some 0 < ε < 1, where
we identify a collar neighbourhood of ∂B in B with [0, 1) × ∂B. Using the
canonical map π : B → B, where im ∂B = v and π : int B → B \ {v} is a
diffeomorphism, we define D := π−1D. Let Dsing := D∩∂B, Dreg := D\Dsing;
this is a C∞ manifold with boundary. We then set

Hs,γ(D) := {u|int Dreg : u ∈ Hs,γ(B)} (79)

endowed with the quotient topology Hs,γ(B)/ ∼ under the equivalence rela-
tion u ∼ v ⇔ u|int Dreg = v|int Dreg . We will employ this, in particular, to the
case D = S2

+ with two conical points v1, v2 on the boundary S1. As before
we have the associated stretched manifold D = S

2
+ and the spaces Hs,γ(S2

+),
where (by notation) the weight γ is the same for v1 and v2. The boundary
S1 is subdivided into two intervals I± which are also interpreted as mani-
folds with two conical singularities v1, v2. The above definition then gives us
the spaces Hs,γ(I±) (with the same weight γ at the end points). Observe
that the operators of restriction u → u|int I± , u ∈ C∞

0 ((S2
+)reg), extend to

continuous operators r{int I±} : Hs,γ(S2
+) → Hs− 1

2
,γ− 1

2 (I±) for all s > 1
2 and

γ ∈ R. In Section 3.1 we employed the spaces

H̃s,γ(S2
+) := Hs,γ(S2

+) ⊕Hs− 1
2
,γ− 1

2 (I−) ⊕Hs− 1
2
,γ− 1

2 (I+). (80)

4.2 Vector-valued symbols and abstract edge spaces

A Hilbert space E is said to be endoved with a group action κ := {κλ}λ∈R+ ,
if κ is a group of isomorphisms κλ : E → E,λ ∈ R+, such that κλκλ′ = κλλ′

for all λ, λ′ ∈ R+, and strongly continuous in λ.
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Let E and Ẽ are Hilbert spaces endowed with group actions {κλ}λ∈R+

and {κ̃λ}λ∈R+ , respectively. Let S(μ)(U×(Rq\{0});E, Ẽ) be the space of all
f(z, ζ) ∈ C∞(U × (Rq \ {0}),L(E, Ẽ)) such that f(z, λζ) = λμκ̃λf(z, ζ)κ−1

λ
for all λ ∈ R+, (z, ζ) ∈ U × (Rq \ {0}).

Definition 4.1 (i) The space Sμ(U × R
q;E, Ẽ) for an open set U ⊆

R
p denotes the set of all a(z, ζ) ∈ C∞(U × R

q,L(E, Ẽ)) such that

||κ̃−1
〈ζ〉{D

α
z Dβ

ζ a(z, ζ)}κ〈ζ〉||L(E,Ẽ) ≤ c〈ζ〉μ−|β| (81)

for all α ∈ N
p, β ∈ N

q and all (z, ζ) ∈ K × R
q for arbitrary K � U,

with constants c = c(α, β,K) > 0.

(ii) The space Sμ
cl(U × R

q;E, Ẽ) of classical symbols is defined to be the
subspace of all a(z, ζ) ∈ Sμ(U ×R

q;E, Ẽ) such that there are homoge-
neous components a(μ−j)(z, ζ) ∈ S(μ−j)(U × (Rq \ {0});E, Ẽ), j ∈ N,
such that

rN+1(z, ζ) := a(z, ζ) − χ(ζ)
N∑

j=0

a(μ−j)(z, ζ) ∈ Sμ−(N+1)(U × R
q;E, Ẽ)

for all N ∈ N.

Note that when χ(ζ) is an excision function, i.e., χ ∈ C∞(Rq), χ(ζ) = 0
for |ζ| < c0, χ(ζ) = 1 for |ζ| > c1 for certain 0 < c0 < c1, then

χ(ζ)S(μ)(U × (Rq \ {0});E, Ẽ) ⊂ Sμ(U × R
q;E, Ẽ).

The space Sμ(U × R
q;E, Ẽ) is Fréchet with the best constants in the

estimates (81). Moreover, Sμ
cl(U × R

q;E, Ẽ) is Fréchet in the topology of
the projective limit under the maps of Sμ

cl(U ×R
q;E, Ẽ) to S(μ−j)(U × (Rq \

{0});E, Ẽ), a(z, ζ) → a(μ−j)(z, ζ), j ∈ N, and to Sμ−(N+1)(U × R
q;E, Ẽ),

a(z, ζ) → rN+1(z, ζ), N ∈ N. If we talk about classical or general symbols
we also write as subscript ‘(cl)’.

If Ẽ is a Fréchet space such that Ẽ = lim←−
j∈N

Ẽj for Hilbert spaces Ẽj , j =

1, 2, . . . , we define Sμ
(cl)(U × R

q;E, Ẽ) := lim←−
j∈N

Sμ
(cl)(U × R

q;E, Ẽj).

If both E and Ẽ are Fréchet spaces with group actions {κλ}λ∈R+ and
{κ̃λ}λ∈R+ , respectively, we fix a function r : N → N and set Sμ

cl(U ×
R

q;E, Ẽ) :=
⋃

r Sμ
(cl)(U × R

q;E, Ẽ)r, where Sμ
(cl)(U × R

q;E, Ẽ)r is the pro-

jective limit of the spaces Sμ
(cl)(U × R

q;Er(j), Ẽj).
Clearly the spaces of symbols depend on the choice of the group actions

κ = {κλ}λ∈R+ and κ̃ = {κ̃λ}λ∈R+ , respectively; usually they are known from
the context. If we want to indicate this dependence we also write

Sμ
(cl)(U × R

q;E, Ẽ)κ,κ̃. (82)
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Example 4.2 Let us write S(R+) := S(R)|
R+

as a projective limit of
Hilbert spaces S(R+) = lim←−

k∈N

Ẽk for Ẽk := 〈xn〉−kHk(R+) with the group

action (κλu)(xn) = λ
1
2 u(λxn), λ ∈ R+. Then we have the space of symbols

Sμ
cl(Ω × R

n−1 × R
l;L2(R+) ⊕ C

m,S(R+) ⊕ C
m′

) (83)

with the group actions diag (κλ, id) on the respective direct sums.
An element g(x′, ξ′, λ) ∈ C∞(Ω × R

n−1+l,L(L2(R+) ⊕ C
m, L2(R+) ⊕

C
m′

)) is said to be a Green symbol of order μ and type 0 (of the calcu-
lus of boundary value problems with the transmission property at xn = 0)
if g0(x′, ξ′, λ) := diag (1, 〈ξ′, λ〉 1

2 )g(x′, ξ′, λ)diag (1, 〈ξ′, λ〉− 1
2 ) and g∗0(x

′, ξ′, λ)
(with interchanged m,m′) belong to (83), where ‘*’ indicates pointwise ad-
joint in the sense (g(x′, ξ′, λ)u, v)L2(R+)⊕Cm′ = (u, g∗(x′, ξ′, λ)v)L2(R+)⊕Cm

for all u ∈ L2(R+) ⊕ C
m, v ∈ L2(R+) ⊕ C

m′
. An operator family g(x′, ξ′, λ)

is called a Green symbol of type d ∈ N, if it has the form

g(x′, ξ′, λ) = g0(x′, ξ′, λ) +
d∑

j=1

gj(x′, ξ′, λ)diag (∂j
xn

, 0)

for Green symbols gj(x′, ξ′, λ) of order μ− j and type 0, j = 0, . . . ,d. In this
case we have g(x′, ξ′, λ) ∈ Sμ

cl(Ω × R
n−1+l;Hs(R+) ⊕ C

m,S(R+) ⊕ C
m′

) for
every real s > d − 1

2 .

Definition 4.3 Let E be a Hilbert space with group action κ := {κλ}λ∈R+ .
The ‘abstract’ edge Sobolev space Ws(Rq, E) of smoothness s ∈ R is the com-

pletion of S(Rq, E) with respect to the norm
{ ∫

〈ζ〉2s||κ−1
〈ζ〉Fu(ζ)||2Edζ

} 1
2
,

where Fz→ζ is the Fourier transform. If E = lim←−
j∈N

Ej is Fréchet with a group

action {κλ}λ∈R+ we set Ws(Rq, E) = lim←−
j∈N

Ws(Rq, Ej). If necessary we write

Ws(Rq, E)κ (84)

when we want to indicate the dependence of the space on the choice of κ.

Sobolev spaces of that kind, based on a group action in the parameter
space E, have been introduced in [14]; concerning more functional analytic
details, cf. [8].

Observe that Ws(Rq, E) ⊂ S ′(Rq, E) := L(S(Rq), E). Let Ω � R
q be

an open set; then Ws
loc(Ω, E) denotes the set of all u ∈ D′(Ω, E) such that

ϕu ∈ Ws(Rq, E) for ϕ ∈ C∞
0 (Ω); moreover, Ws

comp(Ω, E) is defined as the
subspace of all u ∈ Ws(Rq, E) such that suppu ⊂ Ω is compact.
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Theorem 4.4 For any a(z, z′, ζ) ∈ Sμ(Ω × Ω × R
q;E, Ẽ) the associ-

ated pseudo-differential operator Op(a) : C∞
0 (Ω, E) → C∞(Ω, Ẽ) extends to

continuous operators Op(a) : Ws
comp(Ω, E) → Ws−μ

loc (Ω, Ẽ) for all s ∈ R.
Moreover, if a = a(ζ) (i.e., is independent on z) we have continuous opera-
tors Op(a) : Ws(Rq, E) → Ws−μ(Rq, Ẽ) for all s ∈ R.

4.3 Boundary value problems with the transmission prop-
erty

Let N be a C∞ manifold with boundary ∂N , not necessarily compact. With
N we associate the double 2N , obtained by gluing together two copies N+

and N− along the common boundary ∂N (with N being identified with N+).
We then obtain a C∞ manifold 2N.

On all smooth manifolds in consideration we fix Riemannian metrics; in
the case of a C∞ manifold N with boundary we choose a collar neighbour-
hood ∼= ∂N × [0, 1) ∈ (x′, xn) and assume the Riemannian metric to be the
product metric of a metric on ∂N and the standard metric on [0, 1).

If M is a C∞ manifold by Lμ
(cl)(M ; Rl) we denote the space of all (clas-

sical or general, indicated by ‘(cl)’) pseudo-differential operators on M of
order μ ∈ R with parameter λ ∈ R

l, i.e., the local (left-) symbols a(x, ξ, λ)
contain (ξ, λ) ∈ R

n+l as a covariable, n = dim M, while L−∞(M ; Rl) =
S(Rl, L−∞(M)).

Let Lμ
cl(2N ; Rl)tr for μ ∈ Z denote the subspace of all Ã ∈ Lμ

cl(2N ; Rl)
the local symbols of which have the transmission property at ∂N. If e+

denotes the extension by zero of distributions on int N (that belong locally
to Hs

loc(2N)|int N for s > −1
2) by zero to the opposite side, and r+ the

operator of restriction of distributions on 2N to intN, we can form the
space of operators Lμ

cl(N ; Rl)tr := {A := r+Ãe+ : Ã ∈ Lμ
cl(2N ; Rl)tr}.

An operator C∞
0 (int N) ⊕ C∞

0 (∂N, Cl−) → C∞(int N) ⊕ C∞(∂N, Cl+)
is called smoothing if the kernels of the entries (of the corresponding 2 × 2
block matrix) belong to C∞(N×N), C∞(N×∂N)⊗C

j−, C∞(∂N×N)⊗C
j+

and C∞(∂N × ∂N) ⊗ C
j+ ⊗ C

j− , respectively (with smoothness up to ∂N
in the respective variables). The space of those operators is Fréchet, and
we form B−∞,0(N ; Rl), defined as the space of all Schwartz functions in
λ ∈ R

l with values in smoothing operators as explained before, for certain
j−, j+ ∈ N. More generally, B−∞,d(N ; Rl) for any d ∈ N is the space of all
C(λ) := C0(λ) +

∑d
j=1 Cj(λ)diag (Dj , 0) for arbitrary Cj ∈ B−∞,0(N ; Rl) and

any first order differential operator D on N that is equal to ∂xn in a tubular
neighbourhood of ∂N.

All these notions have a straightforward generalisation to operators be-
tween distributional sections in smooth complex vector bundles on N and
∂N, respectively.

Let (Vι)ι∈N be a locally finite system of coordinate neighbourhoods on
N near ∂N (i.e., V ′

ι := Vι ∩∂N 
= ∅ for all ι ∈ N) such that V ′
ι form an open
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covering by coordinate neighbourhoods of ∂N. Without loss of generality we
assume Vι = V ′

ι × [0, 1) with the above splitting of variables near ∂N.

Fix systems of functions (ϕι)ι∈N, (ψι)ι∈N, ϕι, ψι ∈ C∞
0 (Vι), such that∑

ι∈N
ϕι ≡ 1 in a neighbourhood of ∂N, and ψι ≡ 1 on suppϕι for all

ι. Set ϕ′
ι := ϕι|∂N and ψ′

ι := ψι|∂N . Moreover, let ω ∈ C∞(N) be a function
which is equal to 1 in a neighbourhood of ∂N and 0 outside ∂N × [0, 1

2).
Consider charts χι : V ′

ι → Ω,Ω ⊆ R
n−1 open. With symbols gι(x′, ξ′, λ) as

in Example 4.2 we can associate operator families

Gι(λ) := diag (ωϕι, ϕ
′
ι)(χ

−1
ι )∗Opx′(gι)(λ)diag (ωψι, ψ

′
ι), (85)

where Opx′(gι)(λ)u(x′) :=
∫ ∫

ei(x′−x̃′)ξ′gι(x′, ξ′, λ)u(x̃′)dx̃′d̄ξ′ is interpreted
as a map C∞

0 (Ω× R+)⊕C∞
0 (Ω, Cl−) → C∞(Ω× R+)⊕C∞(Ω, Cl+). Then,

if v := (l−, l+) denotes the pair of dimensions, by Bμ,d
G (N ;v; Rl) for μ ∈

R,d ∈ N, we denote the space of all families G(λ) =
∑

ι∈N
Gι(λ) + C(λ) for

arbitrary Gι(λ) of the form (85) and C(λ) ∈ B−∞,d(N ;v; Rl).
The sum over ι ∈ N is locally finite. Moreover, if we form a similar

operator as G(λ) with the same gι, ϕι, ψι but different ω, we obtain the
original operator modulo B−∞,d(N ;v; Rl).

Definition 4.5 The space Bμ,d(N ;v; Rl) for any μ ∈ Z,d ∈ N,v :=
(l−, l+) is defined to be the set of all A(λ) := diag (A(λ), 0) + G(λ) for
arbitrary A(λ) ∈ Lμ

cl(N ; Rl)tr and G(λ) ∈ Bμ,d
G (N ;v; Rl).

For l = 0 we simply write Bμ,d(N ;v). Moreover, we omit v when it is
known from the context.

Let us set

Hs
(comp)(int N) := Hs

comp(2N)|int N , Hs
(loc)(int N) := Hs

loc(2N)|int N .

A standard property of the operators in Bμ,d(N ;v; Rl) is the continuity

A : Hs
(comp)(int N) ⊕ H

s− 1
2

(comp)(∂N, Cl−) (86)

→ Hs−μ
(loc)(int N) ⊕ H

s− 1
2
−μ

(loc) (∂N, Cl+)

for every s > d − 1
2 and every λ ∈ R

l.

Next recall that operators A ∈ Bμ,d(N ;v; Rl) have parameter-dependent
principal symbolic structure σ(A) := (σψ(A), σ∂(A)), where σψ(A) := σψ(A)
is the (parameter-dependent) principal interior symbol, as a C∞ function
on (T ∗N ×R

l) \ 0 (where 0 indicates (ξ, λ) = 0) and σ∂(A) the (parameter-
dependent) principal boundary symbols as a family of continuous maps

σ∂(A)(x′, ξ′, λ) : Hs(R+) ⊕ C
l− → Hs−μ(R+) ⊕ C

l+ (87)
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parametrised by (x′, ξ′, λ) ∈ (T ∗(∂N) × R
l) \ 0 (where 0 stands for (ξ′, λ) =

0), s > d − 1
2 .

Alternatively, we can also employ

σ∂(A)(x′, ξ′, λ) : S(R+) ⊕ C
l− → S(R+) ⊕ C

l+ (88)

as the family of boundary symbols.

Definition 4.6 An element A(λ) ∈ Bμ,d(N ;v; Rl) is said to be parameter-
dependent elliptic if

(i) σψ(A) 
= 0 on (T ∗N × R
l) \ 0;

(ii) (88) is an isomorphism (or, equivalently, (87) is an isomorphism for
any s > max (μ,d) − 1

2) for every (x′, ξ′, λ) ∈ (T ∗(∂N) × R
l) \ 0.

4.4 Operator families on an interval

Another situation when ∂N has several connected components is the case
N := I for an interval I = [α, β] on the real line. The operator families
A(λ) of the space Bμ,d(I;v; Rl) then have the form

A(λ) : Hs(I, Ce) ⊕ C
n− ⊕ C

n+ → Hs−μ(I, Ce′) ⊕ C
n′
− ⊕ C

n′
+ ,

continuous for s > d − 1
2 ; in this case v := (e, e′;n−, n+, n′−, n′

+).
Since the latter case is basic for this exposition we want to formulate the

classes of operator families for the case e′ = e = n− = n+ = n′− = n′
+ = 1

independently. The generalisation to arbitrary dimensions is then straight-
forward. Also for the case of different orders in the entries we can easily
define corresponding operators if we first have formulated the operators for
the same order μ in all entries. We will define the spaces Bμ,d(I; Rl) for
μ ∈ Z,d ∈ N and Bμ,d

G (I; Rl) for arbitrary μ ∈ R.
Let B−∞,0

G (I) defined to be the space of all 3× 3 block matrix operators
g = (gij)i,j=1,2,3 : Hs(I) ⊕ C

2 → C∞(I) ⊕ C
2, s > −1

2 , where g11 is an
integral operator with kernel in C∞(I×I), g1jc := f1j(φ)c for j = 2, 3, c ∈ C,
gi1u =

∫
I fi1(φ)u(φ)dφ for i = 2, 3, with arbitrary functions f1j, fi1 ∈ C∞(I)

for i, j = 2, 3, and an arbitrary 2 × 2 matrix (gij)i,j=2,3 with entries in C.
The components of c = (cα, cβ) ∈ C

2 are related to the end points {α}
and {β} of the interval I. The space B−∞,0

G (I) is Fréchet in a natural
way (as a direct sum of its 9 components), and we set B−∞,0

G (I; Rl) :=
S(Rl,B−∞,0

G (I)). Moreover, let B−∞,d
G (I; Rl) for arbitrary d ∈ N be the

space of all operator families g(λ) := g0(λ) +
∑d

j=1 Gj(λ)diag(∂j
φ, 0, 0) for

arbitrary gj ∈ B−∞,0
G (I; Rl).

Let us now consider 2 × 2 block matrix symbols f(λ) of the class

Sμ
cl(R

l;L2(R+) ⊕ C, S(R+) ⊕ C), (89)
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where the group actions on L2(R+)⊕C or S(R+)⊕C are defined by u(φ)⊕
c → λ

1
2 u(λφ)⊕c, λ ∈ R+ such that the pointwise adjoint f∗(λ) with respect

to the L2(R+) ⊕ C scalar product belongs to the space (89).
With every such f(λ) we can associate an operator family

a(λ) := ωf(λ)ω̃ : Hs(I) ⊕ C → C∞(I) ⊕ C, (90)

s > −1
2 , for any fixed choice of functions ω, ω̃ ∈ C∞(I) which are equal to 1

near φ = α and vanish in a neighbourhood of the end point β. In a similar
manner we can form operators

b(λ) := χ∗(ωf(λ)ω̃) : Hs(I) ⊕ C → C∞(I) ⊕ C (91)

where χ : I → I is the diffeomorphism defined by χ(φ) := −φ+α+β which
interchanges the role of α and β. In other words, the direct summands C

in the spaces of (90) belong to the end point α, those in the spaces of (91)
to the end point β. Writing (90) and (91) as block matrices with entries aij

and bij, respectively, we now form

g(λ) :=

⎛
⎝ a11 + b11 a12 b12

a21 a22 0
b21 0 b22

⎞
⎠ : Hs(I) ⊕ C

2 → C∞(I) ⊕ C
2. (92)

The space Bμ,d
G (I; Rl) for μ ∈ R, d ∈ N is defined to be the set of all operator

functions g0(λ) +
∑d

j=1 gj(λ)diag(∂j
φ, 0, 0) + c(λ) for arbitrary gj(λ) of the

kind (92), of order μ − j, and c(λ) ∈ B−∞,d
G (I; Rl). Let Bμ,d

G (I; Rl) denote
the space of upper left corners of elements of Bμ,d

G (I; Rl).

Remark 4.7 The space Bμ,d
G (I; Rl) has a natural Fréchet topology. So

we can form spaces of the kind C∞(R+ × U,Bμ,d
G (I; Rl)), U � R

p open, or
A(D,Bμ,d

G (I; Rl)) for an open set D � C..

Let Sμ
cl(I × Rϑ × R

l
λ)tr denote the space of all classical symbols of order

μ ∈ Z in the variable φ and covariables (ϑ, λ) (with ϑ being the covariable to
φ). Recall that the transmission property at the end points of the interval I
(for instance, at φ = α) of a symbol a(φ, ϑ, λ) means that the homogeneous
components a(μ−j)(φ, ϑ, λ) of order μ − j satisfy the conditions

Dk
φDγ

λ{a(μ−j)(φ, ϑ, λ) − (−1)μ−ja(μ−j)(φ,−ϑ,−λ)} = 0

on the set {(φ, ϑ, λ) : φ = α, ϑ ∈ R \ {0}, λ = 0} for all k ∈ N, γ ∈ N
l, and

all j ∈ N. A similar condition is imposed at φ = β.
Given an a ∈ Sμ

cl(I × R
1+l
ϑ,λ )tr we set opI(a)(λ)u(φ) := r op(ã)(λ) eu(φ)

where ã(φ, ϑ, λ) ∈ Sμ
cl(R × R

1+l
ϑ,λ ) is any symbol such that a = ã|I×R

1+l
ϑ,λ

; here

e is the operator of extension by zero from I to R\ I and r the restriction to
int I. We then have continuous operators opI(a)(λ) : Hs(I) → Hs−μ(I) for
all reals s > −1

2 (clearly the operators do not depend on the choice of ã).
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Definition 4.8 The space Bμ,d(I; Rl
λ) for μ ∈ Z, d ∈ N, is defined to

be the set of all operator families of the form opI(a)(λ) + g(λ) for arbitrary
a ∈ Sμ

cl(I × R
1+l
ϑ,λ )tr and g ∈ Bμ,d

G (I; Rl).

Set Bμ,d(I; Rl) := {diag (p, 0, 0) + g : p ∈ Bμ,d(I; Rl), g ∈ Bμ,d
G (I; Rl)}. In

the case p 
= 0 we assume μ ∈ Z, otherwise we admit μ ∈ R.

The space Bμ,d(I; Rl) is Fréchet in a natural way.

4.5 Holomorphic Mellin symbols and edge quantisation

Definition 4.9 (i) The space Lμ
cl(M ; C × R

l), l ∈ N, for a C∞ mani-
fold M , is defined to be he set of all f(w, λ) ∈ A(C, Lμ

cl(M ; Rl)) such
that f(β+iτ, λ) ∈ Lμ

cl(M ; Rl+1) for every β ∈ R, uniformly in compact
β-intervals.

(ii) If N is a C∞ manifold with boundary, the space Bμ,d(N ; C×R
l),d, l ∈

N, is defined to be the set of all f(w, λ) ∈ A(C,Bμ,d(N ; Rl)) such that
f(β + iτ, λ) ∈ Bμ,d(N ; Rl+1) for every β ∈ R, uniformly in compact
β-intervals.

(iii) The space B−∞,d(N ; Γβ×R
l)ε,d ∈ N, is the set of all f(w, λ) ∈ A({β−

ε < Re z < β + ε},B−∞,d(N ; Rl)) for every ε > 0 such that f(δ +
iτ, λ) ∈ S(R1+l

τ,λ ,B−∞,d(N)) for every δ ∈ (β − ε, β + ε), uniformly in
compact subintervals.

Let us now consider a ‘wedge’ U := N� × T for a compact C∞ manifold
N with boundary, n := dimN, and a C∞ manifold T, q := dimT , N� =
(R+ × N)/({0} × N). Moreover, let U := R+ × N × T 
 (r, x, t) denote the
associated stretched wedge. According to the general notation we have the
spaces Ureg := R+ × N × T and Using := {0} × N × T . In the following
definitions we assume, for simplicity, the case that T is diffeomorphic to an
open set in R

q (this is the situation we really need in Definition 3.1 for q = 1
and T = Z \ {v}); the general case is similar.

We form operator functions a(t, τ) ∈ Sμ(T × R
q;E, Ẽ) for the spaces

E := Ks,γ(N∧) ⊕Ks− 1
2
,γ− 1

2 ((∂N)∧, Cl−) ⊕ C
j−, (93)

Ẽ := Ks−μ,γ−μ(N∧) ⊕Ks−μ− 1
2
,γ−μ− 1

2 ((∂N)∧, Cl+) ⊕ C
j+

which have the following form:

a(t, τ) := diag (σ, σ, 0){r−μω(r[τ ])op
γ−n

2
M (h)(t, τ)ω̃(r[τ ])

+ r−μ(1 − ω(r[τ ]))opr(p)(t, τ)(1 − ˜̃ω(r[τ ]))

+ r−μω(r[τ ])op
γ−n

2
M (f)(t)ω̃(r[τ ])}diag (σ̃, σ̃, 0) + g(t, τ).
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Here ω, ω̃, ˜̃ω and σ, σ̃ are cut-off functions as in (37). Moreover, we as-
sume p(r, t, ρ, τ) := p̃(r, t, rρ, rτ), h(r, t, w, τ) := h̃(r, t, w, rτ) for operator
families

p̃(r, t, ξ, η) ∈ C∞(R+ × T,Bμ,d(N ; R1+q
ξ,η )), (94)

h̃(r, t, w, η) ∈ C∞(R+ × T,Bμ,d(N ; Cw × R
q
η)), (95)

such that

opr(p)(t, τ) = op
γ−n

2
M (h)(t, τ) mod C∞(T,B−∞,d(N∧; Rq

τ )) (96)

(for every weight γ ∈ R). For p0(r, t, ρ, τ) := p̃(0, t, rρ, rτ), h0(r, t, w, τ) :=
h̃(0, t, w, rτ) we then also have a relation of the form (96). Furthermore, we
assume

f(t, w) ∈ C∞(T,M−∞,d(N ; Γn+1
2

−γ)ε) (97)

for some ε = ε(f) > 0. Here M−∞,d(N ; Γβ)ε denotes the space of all f(w) ∈
A({β − ε < Rew < β + ε},B−∞,d(N)) such that f(δ + iρ) ∈ B−∞,d(N ; Rρ)
for every δ ∈ (β − ε, β + ε), uniformly in compact subintervals. Finally, we
assume

g(t, τ) ∈ Sμ
cl(T × R

q;E,Sε) (98)

for some ε = ε(g) > 0, where E is as in (93) for arbitrary s > d − 1
2 , and

Sε := Sγ−μ
ε (N∧) ⊕ Sγ−μ− 1

2
ε ((∂N)∧, Cl+) ⊕ C

j+, and the pointwise adjoint
g∗(t, τ) satisfies a similar condition.

Now
Yμ,d(U,gcone; j−, j+)

denotes the set of all operators of the form

Opt(a) + B + G. (99)

Here a(t, τ) are operator functions with arbitrary (94), (95) satisfying (96)
and arbitrary (97), (98).

Moreover, B := diag (1−σ, 1−σ, 0)B diag (1−˜̃σ, 1−˜̃σ, 0) for a third cut-off
function ˜̃σ(r) such that σ ≡ 1 on supp ˜̃σ and arbitrary B ∈ Bμ,d(R+×N×T ).
Finally, G := G0+

∑d
j=1 Gjdiag (Dj , 0, 0) is smoothing; here D is a first order

differential operator which is equal to ∂ν near R+×∂N ×T with the normal
variable ν to ∂N ; the operators Gj are defined by the mapping property

Ws,γ
comp(N∧ × T ) ⊕Ws′,γ− 1

2
comp ((∂N)∧ × T ) ⊕ Hs′′

comp(T, Cj−) (100)

→ W∞,γ−μ+ε
loc (N∧ × T ) ⊕W∞,γ−μ− 1

2
+ε

loc ((∂N)∧ × T ) ⊕ H∞
loc(T, Cj+)

for every s, s′, s′′ ∈ R, s > d − 1
2 , and an ε > 0, depending on the opera-

tor, and a similar mapping property for the formal adjoint. In (100) the
subscripts ‘comp’ and ‘loc’ at the edge spaces refer to the variable t, e.g.,
Ws,γ

comp(N∧, T ) := Ws
comp(T,Ks,γ(N∧)), etc.
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Remark 4.10 The space Yμ,d(U,gcone; j−, j+) is nothing other than the
space of pseudo-differential edge boundary value problems on the (stretched)
wedge U, of order μ and type d. As such we have the material on the prin-
cipal symbolic structure σ = (σψ, σ∂ , σ∧), ellipticity and parametrices, as is
studied in [9]. For Definition 3.1 (ii) we only need the summand Opt(a) from
(99) when the functions Φedge,Ψedge are chosen in such a way that σ ≡ 1
on suppϕ1, σ̃ ≡ 1 on suppψ1, since the terms B and G are included in
Definition 3.1 (iii) and (iv), respectively.
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