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Abstract. Green operators on manifolds with edges are known to be an in-
gredient of parametrices of elliptic (edge-degenerate) operators. They play a
similar role as corresponding operators in boundary value problems. Close to
edge singularities the Green operators have a very complex asymptotic be-
haviour. We give a new characterisation of Green edge symbols in terms of
kernels with discrete and continuous asymptotics in the axial variable of local
model cones.
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Introduction

This paper is aimed at studying the structure of so called Green operators on a
manifold W with edges (with or without boundary). Green operators as well as
trace and potential operators appear in problems of mechanics, for instance, in
crack theory, cf. the monograph [7], or the paper [8] on boundary contact prob-
lems with interfaces having singularities. Another category of problems with edges
are mixed boundary value problems, e.g., the Zaremba problem, where boundary
conditions have a jump along an interface on the boundary, cf. [3]. In all these
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problems we have to expect asymptotics of solutions. The machinary is to construct
parametrices and to state elliptic regularity of solutions in weighted Sobolev spaces
with asymptotics; then the Green operators are just the crucial ‘remainders’ which
encode the asymptotic information. It is therefore of interest to characterise Green
operators in a manageable form, despite on the fact that they may appear in a form
which does not reveal at once their nature.

Another important aspect is that boundary (or edge) conditions of trace and po-
tential type can be subsumed under the concept of Green operators. Moreover, the
behaviour of potentials of surface distributions and various kinds, or jump relations
may be understood in terms of properties of Green operators, cf. [6]. The compo-
sition of a trace and a potential operator is of Green type; the composition in the
other way gives us a pseudo-differential operator on the boundary (or edge). This is
a background of the well known reduction of problems to the boundary (or edge).
Moreover, as noted before, crack problems can be interpreted as edge problems
when we assume smoothness of the crack boundary (otherwise, such problems be-
long to a higher singular calculus). The crack boundary in this case is the edge, and
the model cone of local wedges is the slit normal plane to the crack boundary, cf. [7].

Locally a manifold with edges is modelled on a wedge X� × Ω for an open set
Ω ⊆ Rq and a model cone X� := (R+ × X)/({0} × X), with a base X that is
assumed to be a compact C∞ manifold (with or without boundary). A special
case of such a wedge is the ‘half-space’ R+ × Ω which corresponds to dimX = 0.
As is well known, parametrices of classical elliptic boundary value problems on a
(say, compact) C∞ manifold W with boundary, contain Green’s function as an
ingredient of solution operators (or parametrices). For instance, if we write the
solution u of the Dirichlet problem Δu = f, u|∂W = 0 (with Δ being a Laplace
operator on W ) in the form u = Pf, then we have P = G + E where E is a funda-
mental solution (or a parametrix) of Δ and G a Green operator in our sense, cf. [1].

Similarly, the Green operators in the edge calculus are pseudo-differential along
the edge, cf. [4], [12]. Their symbols (in the framework of twisted homogeneity)
take values in so called Green operators on the model cone of local wedges. Green
operators in the cone algebra with discrete asymptotics admit useful kernel charac-
terisations, cf. [15]. They can be employed to characterise Green operators of the
edge calculus locally by integral expressions of a specific kind, cf. [14] for the case
of discrete asymptotics. The relevance of such representations lies in the fact that
they are transparent and concise, although, as noted before, the Green operators
of the edge calculus appear in various operations as remainders that may be of an
extremely complex structure.

Let us stress that Green operators are a typical ‘pseudo-differential’ effect in the
analysis on configurations with singularities. In fact, if we ask a calculus which is
able to express parametrices of elliptic differential boundary problems in a domain
with conical singularities or edges, cf. [9] or [10], then the answer may be produced
in terms of pseudo-differential and Green operators, cf. [7] or [12].
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In order to illustrate the origin of asymptotic data in solutions, consider, for in-
stance, an edge-degenerate differential operator A on a manifold W with edge Y
which is locally near Y in the splitting of variables (r, x, y) ∈ R+ × X × Ω of the
form

(0.0.1) A = r−μ
∑

j+|α|≤μ

ajα(r, y) (−r∂r)
j (rDy)α

with Diffμ−(j+|α|)(X)-valued coefficients ajα, smooth up to r = 0. Ellipticity of A
means (apart from the standard ellipticity on W \ Y ) that∑

j+|α|≤μ

ajα(0, y) (−i�̃)j
η̃α

is parameter-dependent elliptic on X with parameters (�̃, η̃) ∈ R
1+q, for every

y ∈ Ω. Elliptic regularity of solutions to the equation Au = f near Y in weighted
edge Sobolev spaces can be obtained by constructing a left parametrix P such that
PA = 1+G, where G is just a Green operator, that is smoothing in W \Y, but with
a specific singular kernel near Y. The parametrix P is essentially a Mellin pseudo-
differential operator in the axial variable r. The singularities are determined by the
non-bijectivity points z ∈ C of the operator family

(0.0.2) σM (A)(y, z) :=
μ∑

j=0

aj0(0, y)zj : Hs(X) → Hs−μ(X)

in Sobolev spaces on X (for simplicity, we assume here that X is a closed C∞ ma-
nifold). More precisely, the pointwise inverses σM (A)−1(y, z) form a y-dependent
family of meromorphic operator functions. These appear as symbols of Mellin
operators along the (stretched) model cone X∧ := R+ × X which are then in-
volved in operator-valued symbols depending on (y, η) ∈ T ∗Y \ 0. The poles of
σM (A)−1(y, z) including multiplicities and Laurent coefficients may depend on y;
they constitute the asymptotic type of the Mellin operators and finally contribute
to the singular kernels of Green operators. In this paper we do not develop all
elements of the asymptotic properties of parametrices of elliptic edge degenerate
operators; more details may be found in [12]. Let us only mention here, that the
y-depending asymptotic types motivate the concept of continuous asymptotics of
weighted Sobolev distributions on a cone which is necessary to express the mapping
properties of Green operators. The present paper is organised as follows.

In Chapter 1 we first formulate Green operators and Green edge symbols modelled
on spaces with constant discrete asymptotics. The main feature is the pseudo-
differential structure along the edge Rq with symbols that operate along the infi-
nite (stretched) model cone X∧ of the local wedges. The symbolic estimates are
based on the action of a strongly continuous group of isomorphisms {κλ}λ∈R+

on
the parameter spaces on X∧ with asymptotics for r → 0. For the analysis later on
it is essential to represent those spaces in a convenient manner, as projective limits
of Hilbert spaces that are preserved under the action {κλ}λ∈R+

.

Chapter 2 starts with a simple class of Green symbols with discrete asymptotics,
represented in integral form (2.1.2) with kernels on the infinite cone, tensorised with
scalar symbols on the edge. The main result is that in fact every Green operator
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is of that form (Theorem 2.1.1). We then formulate an analogous result for the
trace and potential symbols of the edge calculus. Compared with [14] our starting
point is more general; we do not employ projective tensor products of spaces with
asymptotics but a much weaker assumption. This allows us to obtain analogous
results also for Green operators with continuous asymptotics.

Chapter 3 starts with a brief description of spaces with continuous asymptotics,
motivated by parameter-dependent discrete asymptotics, where poles and multi-
plicities of Mellin transformed functions may vary along the edge variable y. The
Green operators on the model cone X∧ then belong to the tensor product of cor-
responding spaces with continuous asymptotics. By similar methods as in Chapter
1 we then obtain a general integral representation of the corresponding operator-
valued Green edge (as well as of trace and potential) symbols.

Chapter 4 studies Green operators with (discrete or continuous) asymptotics on a
configuration with edges.

1. Edge operators of Green type

1.1. Asymptotics near conical singularities. Green operators in the context
of classical boundary value problems are (locally in a collar neighbourhood of the
boundary) pseudo-differential operators along the boundary with symbols acting
as operators normal to the boundary. More precisely, the values of the symbols
are operators G in L2(R+) such that G, G∗ : L2(R+) −→ S(R+)(= S(R)|

R+
)

are continuous (this concerns the so called type zero; otherwise the operators are
combined with differentiations transversal to the boundary). In the generalisation
to the case of a manifold with edges we replace the inner normal R+ by a non-trivial
model cone X� := (R+ × X)/({0} × X) belonging to corresponding local wedges,
and the spaces L2(R+) and S(R+) by weighted spaces K0,γ(X∧) and Sβ

P (X∧),
respectively, on the open stretched cone X∧ := R+ × X � (r, x) with a certain
behaviour for r → 0, encoded by a so called asymptotic type P . In simplest cases
asymptotics will have the form

(1.1.1) u(r, x) ∼
∑

j

mj∑
k=0

cjk(x)r−pj logk r for r → 0

with a sequence of triples P := {(pj , mj , Lj)}j=0,1,...,N , N ∈ N ∪ {∞}, pj ∈ C,
mj ∈ N, and finite-dimensional subspaces Lj ⊂ C∞(X), such that cjk ∈ Lj for all
0 ≤ k ≤ mj , and all j. For dimX = 0 we have, in particular, a natural identification
of S(R+) with S0

T (R+) for the Taylor asymptotic type T = {(−j, 0)}j=0,1,... (the
spaces Lj disappear in this case). Let us now pass to the precise definitions.

We say that P is associated with weight data (γ, Θ) for a weight γ ∈ R and
Θ = (ϑ, 0] for some −∞ ≤ ϑ < 0 if the set πCP = {pj}0≤j≤N is contained in
the strip

{
n+1

2 − γ + ϑ < Re z < n+1
2 − γ

}
, n = dimX, πCP finite for finite ϑ, and

Re pj → −∞ as j → ∞ when ϑ = −∞ and N = ∞.
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In this paper a cut-off function on the half-axis is any ω ∈ C∞0 (R+) equal to 1 near 0.

Given P associated with (γ, Θ) for a finite weight interval Θ we set

EP(X∧) :=
{ N∑

j=0

mj∑
k=0

ω(r)cjkr−pj logk r : cjk ∈ Lj for 0 ≤ k ≤ mj , 0 ≤ j ≤ N
}
.

Moreover, let Hs,γ(X∧) for s ∈ N, γ ∈ R, denote the subspace of all u(r, x) ∈
rγ−n

2 L2(X∧) (with L2 referring to drdx) such that

(r∂r)
k
Dα

xu(r, x) ∈ rγ−n
2 L2(X∧)

for every k ∈ N, α ∈ Nn, k + |α| ≤ s; here Dα
x := vα1

1 · . . . · vαn
n means the differ-

entiation with arbitrary vector fields vj on X. In particular, we have H0,0(X∧) =
r−

n
2 L2(X∧). Then duality and interpolation give us a definition of Hs,γ(X∧) for

arbitrary s, γ ∈ R.

There is another useful scale of weighted spaces on X∧ defined by

Ks,γ(X∧) := {ωf + (1 − ω)g : f ∈ Hs,γ(X∧), g ∈ Hs
cone(X

∧)}
for some cut-off function ω; here Hs

cone(X
∧) is defined to be the subspace of all

g ∈ Hs
loc(R × X)|R+×X such that for every chart χ : U → B on X to B :=

{x ∈ R
n : |x| < 1} and every ϕ ∈ C∞0 (U) we have

(1 − ω)ϕg ∈ (β ◦ (1 × χ))∗Hs(Rn+1)|Γ
for Γ :=

{
(r, x̃) ∈ Rn+1 : r ∈ R+, x̃/r ∈ B

}
, and β : R+×B → Γ, β(r, x) := (r, rx),

(1 × χ)(r, .) := (r, χ(.)).

The spaces Ks,γ(X∧) can be endowed with scalar products such that they are
Hilbert spaces in a natural way; in particular, K0,0(X∧) = H0,0(X∧) = r−

n
2 L2(X∧).

For a finite weight interval Θ = (ϑ, 0] we set

(1.1.2) Ks,γ
Θ (X∧) := lim←−

N∈N

Ks,γ−ϑ− 1
N+1 (X∧)

which is a Fréchet space in the projective limit topology, and

Ks,γ
P (X∧) := Ks,γ

Θ (X∧) + EP(X∧),

as a direct sum, for every asymptotic type P which is associated with the weight
data (γ, Θ). For purposes below for every N ∈ N and for γ = 0, we now form the
spaces

(1.1.3) BN := 〈r〉−NKN,0(X∧)

and

(1.1.4) AN
P := 〈r〉−NKN,−ϑ− 1

N+1 (X∧) + EP(X∧) = w−ϑ− 1
N+1 BN + EP(X∧);

here, w(r) := 1 + (r − 1)ω(r).

These are Hilbert spaces in a natural way, and we set

S0(X∧) := lim←−
N∈N

BN , S0
P(X∧) := lim←−

N∈N

AN
P .
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More generally, we can form

Sγ(X∧) := wγS0(X∧),

and
Sγ

T−γP(X∧) := wγS0
P(X∧),

respectively, where T−γP := {(pj − γ, mj , Lj)}j=0,...,N .

Remark 1.1.1. (i) There are canonical continuous embeddings

(1.1.5) AN
P ↪→ AN−1

P , BN ↪→ BN−1

for all N ≥ 1;

(ii) let us set

(1.1.6) (κλu)(r, x) := λ
n+1

2 u(λr, x),

λ ∈ R+. Then we obtain strongly continuous groups of isomorphisms

κλ : AN
P → AN

P as well as κλ : BN → BN

for every N ∈ N (recall that {κλ}λ∈R+
is called to be strongly continuous

on a Banach space B if λ �→ κλb represents a continuous function R+ → B
for every b ∈ B).

1.2. Green edge symbols. A manifold with edges (without boundary) is a topo-
logical space W with a subspace Y (the edge) such that W \ Y and Y are C∞

manifolds, and W is the quotient space of a so called stretched manifold W with
respect to an equivalence relation defined as follows. W is a C∞ manifold with
boundary ∂W, and ∂W is a smooth fibre bundle over Y with fibre X ; here X is a
closed compact C∞ manifold. If π : ∂W −→ Y denotes the canonical projection,
for w, w′ ∈ W we write w ∼ w′ if and only if πw = πw′ for w, w′ ∈ ∂W, or w = w′

for w, w′ �∈ ∂W. Then W := W/ ∼ . Representing a collar neighbourhood of ∂W in
the form R+ × ∂W we obtain a cylinder bundle over Y with fibres R+ ×X. Locally
over Y we then have trivialisations R+ × X × Ω for open Ω ⊆ Rq, q = dimY, with
a splitting of variables (r, x, y). As noted in the beginning we formulate things for
r > 0, i.e., consider open stretched wedges X∧ × Ω in the local descriptions.

As noted before Green symbols are particular operator-valued symbols within the
framework of ‘twisted homogeneity’. Homogeneity in that sense means the follow-
ing. Let E be a Hilbert space equipped with a strongly continuous group {κλ}λ∈R+

of isomorphisms κλ : E → E, λ ∈ R+, such that κλκρ = κλρ for all λ, ρ ∈ R+

(in such a case we simply say that E is endowed with a group action). If Ẽ is
another Hilbert space with group action {κ̃λ}λ∈R+ , a C∞ function a(μ)(y, η) in
Ω× (Rq \{0}), Ω ⊆ Rq open, with values in L(E, Ẽ) is called homogeneous of order
μ ∈ R if

a(μ)(y, λη) = λμκ̃λa(μ)(y, η)κ−1
λ

for all λ ∈ R+.

Let χ(η) be an excision function, i.e., any χ ∈ C∞(Rq) that vanishes near η = 0
and is equal to 1 for |η| ≥ C for some C > 0. Then, if a(μ)(y, η) is homogeneous of
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order μ, the function a(y, η) := χ(η)a(μ)(y, η) is an element of the space of classical
operator-valued symbols

(1.2.1) Sμ
cl(Ω × R

q; E, Ẽ).

Let us give the definition of Sμ(Ω × Rq; E, Ẽ) without subscript ‘cl’. This space
consists of the set of all C∞ functions a(y, η) in Ω×Rq with values in L(E, Ẽ) such
that

(1.2.2) sup
y∈K
η∈R

q

〈η〉|β|−μ
∥∥∥κ̃−1
〈η〉

{
Dα

y Dβ
η a(y, η)

}
κ〈η〉

∥∥∥
L(E,Ẽ)

is finite for every K ⊂⊂ Ω and every α, β ∈ Nq; here 〈η〉 := (1 + |η|2) 1
2 . Moreover,

we denote by S−∞(Ω × Rq; E, Ẽ) :=
⋂

μ∈R
Sμ(Ω × Rq; E, Ẽ) the space of symbols

of infinite order.

Symbols of that kind form a Fréchet space with the expressions (1.2.2) as semi-
norms. They are ‘twisted’ analogues of Hörmander’s symbol spaces from the scalar
case (i.e., when E = Ẽ = C, κλ = κ̃λ = idC for all λ ∈ R+). Standard manipula-
tions known from the scalar case also make sense in analogous form in the operator-
valued case. In particular, we can form asymptotic sums of sequences aj(y, η) of
symbols the order of which tend to −∞ as j → ∞. Now (1.2.1) is defined as the
subspace of a(y, η) ∈ Sμ(Ω × R

q; E, Ẽ) which admit asymptotic expansions into
symbols of the kind χ(η)a(μ−j)(y, η), j ∈ N, where a(μ−j)(y, η) is homogeneous in
the above sense, of order μ − j and χ(η) an excision function.

In order to define Green symbols we need a slight generalisation to the case of
Fréchet spaces. We say, that a Fréchet space E, written as the projective limit of a
sequence of Hilbert spaces Ej , j ∈ N, with continuous embedding Ej+1 ↪→ Ej ↪→
. . . ↪→ E0 for all j, is endowed with a group action {κλ}λ∈R+

, if {κλ}λ∈R+
is a

group action on E0 and {κλ|Ej}λ∈R+
defines a group action on Ej for every j.

Symbol spaces of the kind (1.2.1) will be applied for the spaces

(1.2.3) Ks,γ(X∧), Sβ
P(X∧)

for some discrete asymptotic type P (associated to weight data (β, Θ), cf. Section
1.1). The spaces (1.2.3) will be considered with the group action (1.1.6).

Definition 1.2.1. An operator function g(y, η) ∈ C∞
(
Ω × Rq,L(K0,γ(X∧),

K0,β(X∧)
))

is said to be a Green symbol of order μ ∈ R, with (discrete) asymptotic
types P and Q (associated with the weight data (β, Θ) and (−γ, Θ), respectively) if
g(y, η) induces symbols

g(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,γ(X∧),Sβ
P (X∧)

)
(1.2.4)

and

g∗(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,−β(X∧),S−γ
Q (X∧)

)
(1.2.5)

for all s ∈ R. Here g∗ denotes the (y, η)-wise formal adjoint with respect to the
respective sesquilinear pairings

Ks,β(X∧) ×K−s,−β(X∧) → C
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induced by the K0,0(X∧) scalar product, for arbitrary s, β ∈ R.

Remark 1.2.2. Observe that the Green operators of type 0 in the calculus of clas-
sical (pseudo-differential) boundary value problems are operators with special such
symbols. In this case it suffices to replace Ks,γ(X∧) and Ks,−β(X∧) by L2(R+)
(with R+ being the inner normal to the boundary in consideration) and Sβ

P (X∧)
and S−γ

Q (X∧) by S(R+), cf. [13].

Remark 1.2.3. The conditions (1.2.4) and (1.2.5) are slightly stronger than nec-
essary. It suffices to require them for s = 0; however, this is not the main point
of our consideration. What we can see immediately is that it suffices to require the
conditions (1.2.4) and (1.2.5) for all s ∈ Z owed by the interpolation property of
the spaces Ks,γ(X∧) in s. It follows that the space of Green symbols of order μ and
fixed P ,Q is a Fréchet space.

From the Green symbols which are known from the calculus of operators on a
manifold with edges we know in fact more, namely, that the spaces Ks,γ(X∧) and
Ks,−β(X∧) may even be replaced by 〈r〉jKs,γ(X∧) and 〈r〉jKs,−β(X∧), respectively,
for arbitrary j ∈ N. Therefore, we start with that property. In that case it is
known that the kernels of the homogeneous components g(μ−j) are C∞ functions
of (y, η) ∈ Ω × (Rq \ {0}) with values in the space{

Sβ
P(X∧)⊗̂πS−γ(X∧)

}
∩

{
Sβ(X∧)⊗̂πS−γ

Q (X∧)
}

where Sβ(X∧) = lim←−
j∈N

〈r〉−jK∞,β(X∧) for any β ∈ R. Here Q :=
{
(qj , nj, Lj)

}
j

when Q = {(qj , nj , Lj)}j , and ⊗̂π denotes the (completed) projective tensor pro-
duct between the respective Fréchet spaces. In this conclusion we employ the fact
that when an operator g : H → F is continuous from a Hilbert space H to a nuclear
Fréchet space F (written as lim←−

j∈N

Fj for Hilbert spaces Fj with nuclear embeddings

Fj+1 ↪→ Fj for all j), the operator g has a kernel in lim←−
j∈N

Fj ⊗H H∗ = lim←−
j∈N

Fj⊗̂πH∗ =

F ⊗̂πH∗, cf. [5].

2. Integral representations

2.1. Green symbols with discrete asymptotics. Let f(r, x, r′, x′; y, η) be a
function in the space

(2.1.1)
{
Sβ
P (X∧)⊗̂πS−γ(X∧)

}
∩

{
Sβ(X∧)⊗̂πS−γ

Q (X∧)
}
⊗̂πSμ+n+1

cl (Ω × R
q).

and let η �→ [η] denote any strictly positive C∞ function in Rq such that [η] = |η|
for |η| > C for some constant C > 0. Form the operator function

(2.1.2) g(y, η)u(r, x) :=
∫

X

∫ ∞
0

f(r[η], x, r′[η], x′; y, η)u(r′, x′)(r′)ndr′dx′.

Then we get a Green symbols of order μ in the sense of Definition 1.2.1. For
purposes below we set

(2.1.3) gf(y, η) := g(y, η).
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Theorem 2.1.1. Every Green symbol g(y, η) of order μ as in Definition 1.2.1 has
a representation of the form (2.1.2) for an element f(r, x, r′, x′; y, η) in the space
(2.1.1).

Proof. For convenience we consider a Green symbol with constant coefficients, i.e.,
g = g(η) (the straightforward generalisation of arguments to the y-dependent case
will be omitted). First observe that a simple composition of g with suitable powers
in r and r′, allows us to consider the case β = γ = 0. Moreover, without loss of
generality we may assume μ = 0 (it suffices to replace g by [η]−μg). In other words
we start with g ∈ S0

cl

(
Rq;Ks,0(X∧),S0

P (X∧)
)

with the homogeneous components
g(−j)(η), j ∈ N. We use the fact that the series

(2.1.4) g̃l(η) :=
∞∑
j=l

χ(
η

cj
)g(−j)(η)

converges in S−l
cl

(
Rq;Ks,0(X∧),S0

P(X∧)
)

for every l ∈ N. Here χ(η) is any excision
function in Rq, and cj are constants tending to ∞ sufficiently fast. Then g(η)−g̃(η),
for g̃(η) := g̃0(η), is of order −∞ in the sense of the first part of Definition 1.2.1. In
a similar manner we can proceed with the formal adjoint and choose, if necessary,
the constants cj once again larger, such that g∗(η) − g̃∗(η) is of order −∞ in the
sense of the second part of Definition 1.2.1.

Setting

(2.1.5) S0
P(X∧)⊗̂ΓS0

Q(X∧) :=
{S0
P(X∧)⊗̂πS0(X∧)

} ∩ {S0(X∧)⊗̂πS0
Q(X∧)

}
,

the components g(−j)(η) can be identified with an η-dependent kernel function of the

form |η|n+1−j
e(−j)(r |η| , x, r′ |η| , x′; η

|η| ), η �= 0, for e(−j)(r |η| , x, r′ |η| , x′; η

|η| ) ∈
C∞

(
Sq−1

η ,S0
P(X∧)⊗̂ΓS0

Q(X∧)
)
, with Sq−1 being the unit sphere in Rq, such that

(2.1.6)

g(−j)(η)u(r, x) =

|η|n+1−j
∫

X

∫ ∞
0

e(−j)(r |η| , x, r′ |η| , x′; η

|η| )u(r′, x′)(r′)ndr′dx′.

If E is a Fréchet space with the countable semi-norm system (pk)k∈N we denote by
Sμ(Rq, E) the set of all a ∈ C∞(Rq, E) such that

sup
η∈Rq

〈η〉−μ+|α|
pk(Dα

η a) < ∞

for all α ∈ Nq, k ∈ N. There is then the subspace Sμ
cl(R

q, E) of classical E-valued
symbols in terms of asymptotic expansions of elements χ(η)a(μ−j)(η) with homo-
geneous components a(μ−j)(η) ∈ C∞(Rq \ {0}, E) of order μ − j.

Setting

(2.1.7) hj(r, x, r′, x′; η) := χ(
η

cj
)[η]n+1−je(−j)(r, x, r′, x′;

η

|η| )

we obtain elements

(2.1.8) hj ∈ Sn+1−j
cl

(
R

q,S0
P(X∧)⊗̂ΓS0

Q(X∧)
)
.
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Choosing the constants cj > 0 increasing sufficiently fast as j → ∞ we obtain

convergence of al(η) :=
∞∑
j=l

hj(η) in Sn+1−l
cl

(
Rq,S0

P(X∧)⊗̂ΓS0
Q(X∧)

)
for every l ∈

N. Clearly we can take the same constants as in (2.1.4); it suffices to take the
maximums of both choices. Note that hj(r, x, r′, x′; η) may be replaced by

hj(r[η], x, r′[η], x′; η) = χ(
η

cj
) |η|n+1−j

e(−j)(r |η| , x, r′ |η| , x′; η

|η| )

when we choose c0 sufficiently large and cj > c0 for all j ≥ 1. According to (2.1.3)

we obtain associated Green symbols ghj(η), and
∞∑
j=l

ghj (η) converges to gal
(η) in the

Fréchet space of Green symbols of order −l for the given fixed P ,Q; this holds for ev-
ery l ∈ N. Thus it follows that c(η) := g(η)−ga0(η) is a Green symbol of order −∞.
It remains to prove that there is an m(r, x, r′, x′; η) ∈ S(

Rq,S0
P(X∧)⊗̂ΓS0

Q(X∧)
)

such that c(η) = gm(η). The Green symbol c(η) is of order −∞; then there is a

(2.1.9) k(r, x, r′, x′; η) ∈ S(
R

q,S0
P(X∧)⊗̂ΓS0

Q(X∧)
)

such that

c(η)u(r, x) =
∫

X

∫ ∞
0

k(r, x, r′, x′; η)u(r′, x′)(r′)ndr′dx′.

In Lemma 2.1.2 below we will show that

(2.1.10) k(
r

[η]
, x,

r′

[η]
, x′; η) =: m(r, x, r′, x′; η) ∈ S(

R
q,S0
P(X∧)⊗̂ΓS0

Q(X∧)
)
.

Then we obviously obtain c(η) = gm(η).

Lemma 2.1.2. We have (2.1.9) ⇒ (2.1.10).

Proof. The proof is elementary though voluminous. Therefore, we only describe
the typical steps. By virtue of (2.1.5) it suffices to show that

(2.1.11) k ∈ S(
R

q,S0
P(X∧)⊗̂πS0(X∧)

) ⇒ m ∈ S(
R

q,S0
P(X∧)⊗̂πS0(X∧)

)
and a similar relation for Schwartz functions with values in the second space of
(2.1.5). Let us consider, for instance, the case (2.1.11). We now observe that

S0
P (X∧)⊗̂πS0(X∧) = lim←−

N∈N

AN ⊗H BN

for the spaces AN := AN
P and BN , cf. Section 1.1, with ⊗H being the Hilbert tensor

product. Then we have

S (
R

q,S0
P(X∧)⊗̂πS0(X∧)

)
= lim←−

N∈N

S (
R

q, AN ⊗H BN
)
.

As the semi-norm system for this space we can take

(2.1.12) sup
η∈Rq

∥∥∥∥〈η〉lDβ
η k(

r

[η]
, x,

r′

[η]
, x′; η)

∥∥∥∥
AN⊗HBN

for all l, N ∈ N, β ∈ Nq.
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It suffices to show that for every l, β, N there are finitely many triples (l′, β′, N ′)
such that

(2.1.13) sup
η∈Rq

∥∥∥∥〈η〉l′Dβ′
η k(

r

[η]
, x,

r′

[η]
, x′; η)

∥∥∥∥
AN′⊗HBN′

< ∞

for all those (l′, β′, N ′) implies that (2.1.12) is finite.

Let us look at the case q = 1 and n = dimX = 0; the general case is completely
analogous. For β = 0 we use the fact that when {κλ}λ∈R+

is a strongly continuous
group of isomorphisms on a Hilbert space E, there are constants c, M > 0 such
that

(2.1.14) ‖κλ‖L(E,Ẽ) ≤ c
(
max(λ, λ−1)

)M

for all λ ∈ R+. From (a slight modification of) Remark 1.1.1 we know that u(r, x) �→
u(λr, x), λ ∈ R+, induces strongly continuous groups of isomorphisms on the spaces
AN and BN for all N ∈ N. Then (2.1.14) yields estimates of the kind

(2.1.15)
∥∥∥∥k(

r

[η]
,

r′

[η]
; η)

∥∥∥∥
AN⊗HBN

≤ c〈η〉M ‖k(r, r′; η)‖AN⊗HBN

for all η, for suitable constants c, M > 0, for all k ∈ AN ⊗H BN . This gives us
immediately the conclusion (2.1.13) ⇒ (2.1.12) with β′ = 0 and l′ = l + M.

Let us now check the case β = 1. In this case we obtain

d

dη
k(

r

[η]
,

r′

[η]
; η) = ({ϕr∂r + ϕr′∂r′ + ∂η} k) (

r

[η]
,

r′

[η]
; η)

with a uniformly bounded function ϕ(η) and ∂/∂η denoting the derivative in the
third variable. Then

∥∥∥∥〈η〉l
(

d

dη
k

)(
r

[η]
,

r′

[η]
; η

)∥∥∥∥
AN⊗HBN

≤ c

∥∥∥∥〈η〉l (r∂rk)
(

r

[η]
,

r′

[η]
; η

)∥∥∥∥
AN⊗HBN

+ c

∥∥∥∥〈η〉l (r′∂r′k)
(

r

[η]
,

r′

[η]
; η

)∥∥∥∥
AN⊗HBN

+
∥∥∥∥〈η〉l (∂ηk)

(
r

[η]
,

r′

[η]
; η

)∥∥∥∥
AN⊗HBN

with some c > 0. The operator r∂r is continuous in the sense

(2.1.16) r∂r : AN → AN−1, BN → BN−1

for every N ≥ 1. In combination with the estimates (2.1.15) this implies
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∥∥∥∥〈η〉l
(

d

dη
k

)(
r

[η]
,

r′

[η]
; η

)∥∥∥∥
AN⊗HBN

≤ c
∥∥∥〈η〉l+M

k (r, r′; η)
∥∥∥

AN−1⊗HBN

+ c
∥∥∥〈η〉l+Mk (r, r′; η)

∥∥∥
AN⊗HBN−1

+
∥∥∥〈η〉l+M (∂ηk) (r, r′; η)

∥∥∥
AN⊗HBN

.

The desired estimate then follows from Remark 1.1.1 (i). In an analogous manner
we can treat the semi-norms with higher η-derivatives.

Remark 2.1.3. Theorem 2.1.1 remains true in analogous form if we replace [η]
in the formula (2.1.2) by any other strictly positive C∞ function p(η) such that
c[η] ≤ p(η) ≤ c′[η] for all η, with suitable constants 0 < c < c′. In particular, we
may take p(η) = 〈η〉.
2.2. Trace and potential symbols with discrete asymptotics. The Definition
1.2.1 at page 7 can be generalised to 2 × 2 block matrix-valued functions g(y, η) ∈
Sμ

cl

(
Ω × Rq;K0,γ(X∧) ⊕ C,K0,β(X∧) ⊕ C

)
such that

g(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,γ(X∧) ⊕ C,Sβ
P(X∧) ⊕ C)

and
g∗(y, η) ∈ Sμ

cl

(
Ω × R

q;Ks,−β(X∧) ⊕ C,S−γ
Q (X∧) ⊕ C

)
for all s ∈ R, with suitable g-dependent discrete asymptotic types P ,Q (the point-
wise adjoints refer to corresponding sesquilinear pairings induced by the scalar
product of K0,0(X∧) ⊕ C). In C we always assume the trivial group action, i.e.,
κλ acts as the identity for all λ ∈ R+. Writing g(y, η) = (gij(y, η))i,j=1,2 , we call
g21(y, η) a trace symbol and g12(y, η) a potential symbol of order μ ∈ R (of the edge
calculus). Clearly g22(y, η) is nothing other than a classical scalar symbol of order μ.

Examples of trace and potential symbols may be obtained by functions in

(2.2.1) S−γ

Q (X∧)⊗̂πS
μ+ n+1

2
cl (Ω × R

q) � f21(r′, x′; y, η)

and

(2.2.2) Sβ
P(X∧)⊗̂πS

μ+ n+1
2

cl (Ω × R
q) � f12(r, x; y, η)

respectively. The symbols themselves are obtained by integral representations of
the kind

(2.2.3) g21(y, η)u =
∫

X

∫ ∞
0

f21(r′[η], x′; y, η)u(r′, x′)(r′)ndr′dx′,

u(y, η) ∈ Ks,γ(X∧), and

(2.2.4) g12(y, η)c(r, x) = cf12(r[η], x; y, η),

c ∈ C, respectively.

Theorem 2.2.1. (i) Every trace symbol g21(y, η) can be written in the form
(2.2.3) for an element (2.2.1);
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(ii) every potential symbol g12(y, η) can be written in the form (2.2.4) for an
element (2.2.2).

The proof employs analogous arguments as those for Theorem 2.1.1.

3. Continuous asymptotics

3.1. Continuous asymptotics and Green symbols. In Section 1.1 we have
formulated spaces Ks,γ

P (X∧) with discrete asymptotics of type P for r → 0, cf. the
formula (1.1.1) at page 4. As is known, cf. [12], asymptotics of that form can also
be written as

(3.1.1) u(r, x) ∼
∑

j

〈ζj , r
−z〉

where ζj are C∞(X)-valued analytic functionals carried by the points pj ∈ C which
are of finite order (in fact, derivatives of the Dirac distribution at pj of order mj +1
in the notation of the formula (1.1.1)).

For an open U ⊆ C and for a Fréchet space E, we denote by A(U , E) = A(U)⊗̂πE
the space of all holomorphic E-valued functions in U . Moreover, let A′ (K, C∞(X))
(= A′(K)⊗̂πC∞(X)) denote the space of all analytic functionals carried by a com-
pact set K ⊂ C. From generalities on analytic functionals it follows that every
ζ ∈ A′ (K, C∞(X)) can be represented in the form

(3.1.2) ζ : h �→ 1
2πi

∫
C

f(z)h(z)dz

for some f ∈ A (C \ K, C∞(X)) , where C is a C∞ curve counter clockwise sur-
rounding K (such that the winding number with respect to every z ∈ K is equal to
1). In other words, to express (3.1.1) it suffices to represent ζj by a meromorphic
function with a pole at pj of order mj +1 and Laurent coefficients belonging to the
space Lj (cf. the notation in Section 1.1).

Now an element u(r, x) ∈ Ks,γ(X∧) is said to have continuous asymptotics (first
in a finite weight strip Θ) if there is an element ζ ∈ A′ (K, C∞(X)) for a suitable
compact K ⊂ {

z : Re z < n+1
2 − γ

}
such that

u(r, x) = ω(r)〈ζ, r−z〉 + uΘ(r, x)

for some uΘ ∈ Ks,γ
Θ (X∧).

In order to unify notation in connection with discrete or continuous asymptotics
we consider the space

(3.1.3)
{
ω(r)〈ζ, r−z〉 : ζ ∈ A′(K, C∞(X))

}
.

The quotient space of (3.1.3) with respect to the equivalence relation u ∼ v ⇔
u− v ∈ Ks,γ

Θ (X∧) is called a continuous asymptotic type P , associated with weight
data (γ, Θ). The cut-off function ω is fixed, but the quotient space is independent
of ω. Denoting the space (3.1.3) by EP(X∧) we then define

(3.1.4) Ks,γ
P (X∧) := Ks,γ

Θ (X∧) + EP(X∧)

in the Fréchet topology of the non-direct sum. To recall the terminology, the non-
direct sum of two Fréchet spaces E and F (embedded in a Hausdorff topological
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vector space) is defined as E + F := {e + f : e ∈ E, f ∈ F} endowed with the
Fréchet topology from E + F � E ⊕F/Δ, where Δ := {(e,−e) : e ∈ E ∩ F} . Note
that P only depends on the set K ∩ {

Re z > n+1
2 − γ + ϑ

}
. For a generalisation to

infinite weight intervals we define the system V of closed subsets V ⊂ C such that
V ∩ {c ≤ Re z ≤ c′} is compact for every c ≤ c′. Then for every V ∈ V contained
in

{
Re z < n+1

2 − γ
}

we can consider Vϑ := V ∩{
Re z ≥ n+1

2 − γ + ϑ − 1
}

and the
associated continuous asymptotic type Pϑ. We then have continuous embedding

Ks,γ
Pϑ

(X∧) ↪→ Ks,γ
Pϑ′ (X

∧)

for every ϑ < ϑ′, and we then set Ks,γ
P (X∧) := lim←−

ϑ∈R−

Ks,γ
Pϑ

(X∧) in the Fréchet topol-

ogy of the projective limit; the subscript P incorporates a continuous asymptotic
type associated with (γ, Θ) for Θ = (−∞, 0], and stands for an equivalence class of
sequences {Pϑ} where ϑ runs over any monotonely decreasing sequence of negative
reals, tending to −∞. The equivalence relation just means the equality of the re-
spective projective limits. The set V is called a carrier set of the asymptotic type
P (when Θ = +∞, otherwise V ∩ {

Re z ≥ n+1
2 − γ + ϑ

}
is called the carrier of the

corresponding P when Θ is finite).

We do not need the sets V in full generality. Let us content ourselves with those
V that are convex in imaginary direction, i.e., z0, z1 ∈ V and Re z0 = Re z1 imply
λz0+(1−λ)z1 ∈ V for all 0 ≤ λ ≤ 1. There is then an obvious one-to-one correspon-
dence between such V contained in

{
Re z < n+1

2 − γ
}

and associated continuous
asymptotic types by the above construction.

If P is a continuous asymptotic type, we set

Sγ
P (X∧) := lim←−

N∈N

〈r〉−NK∞,γ
P (X∧)

which is a nuclear Fréchet space in the topology of the projective limit.

Let us make some remarks about the motivation of continuous asymptotics. As
noted in the introduction the elliptic regularity of solutions to elliptic equations
Au = f on a wedge X∧ × Ω, Ω ⊆ Rq open, and A edge-degenerate of the form
(0.0.1), contains a statement on asymptotics of u(r, x, y) for r → 0, even if we are
considering C∞ functions on X∧×Ω. Similarly as (1.1.1) the asymptotics have the
form

(3.1.5) u(r, x, y) ∼
∑

j

mj(y)∑
k=0

cjk(x, y)r−pj (y) logk r for r → 0,

where the exponents −pj(y) and the numbers mj(y) are determined by those points
z ∈ C where the operators (0.0.2) are not bijective, cf. [11]. These points (as well
as the mj(y)) may depend on y in a very irregular way. This may happen even for
dimX = 0. The inverse of (0.0.2) is then a family of meromorphic functions, and the
main ingredients of the parametrices P of A are Mellin operators with such symbols.
Applying P to functions (say, with compact support with respect to r ∈ R+)
gives us functions u(r, x, y) of a behaviour like (3.1.5). If we consider the Mellin
transform (M(ωu)) (z, x, y) (for any cut-off function ω(r) on the half-axis) we obtain
a family of meromorphic functions in the complex plane the poles and multiplicities
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of which inherit the corresponding behaviour of the Mellin symbols. Now the
parameter-dependent asymptotics of u can be interpreted in terms of functions
ζ(y) ∈ C∞ (Ω,A′(K, C∞(X))) for suitable compact K, such that ζ(y) is pointwise
discrete and of finite order but of the above mentioned irregular behaviour. Here
‘pointwise discrete’ means that 〈ζ(y), r−z〉 has the form (3.1.5) for certain pj ∈ K,
mj ∈ N for every y ∈ Ω.

Proposition 3.1.1. For every continuous asymptotic type P associated with weight
data (γ, Θ) there is a scale of Hilbert spaces AN

P , N ∈ N, with nuclear embedding
AN
P ↪→ AN−1

P for every N ≥ 1 such that

Sγ
P (X∧) = lim←−

N∈N

AN
P .

The spaces AN
P can be chosen as continuously embedded subspaces of K0,γ(X∧) such

that (1.1.6) induces a strongly continuous group of isomorphisms

κλ : AN
P → AN

P
for every N ∈ N.

Proof. We first assume the weight interval Θ to be finite. Similarly as (3.1.4) we
write Sγ

P(X∧) as a (non-direct) sum of Fréchet spaces, namely

Sγ
P (X∧) = lim←−

N∈N

〈r〉−NK∞,γ
Θ (X∧) + EP(X∧).

We then consider the spaces

(3.1.6) ÃN
P := 〈r〉−NKN,γ−ϑ− 1

N+1 (X∧) + EN
P (X∧).

The meaning of the first summand is clear, cf. also the formula (1.1.2); so it re-
mains to define EN

P (X∧). Recall that the space (3.1.3) may be described in terms of
a compact set K := V ∩{

Re z ≥ n+1
2 − γ + ϑ − 1

}
for a set V ⊂ {

Re z < n+1
2 − γ

}
of the above mentioned kind. Choose any C∞ curve CN ⊂ C\K counter clockwise
surrounding K, such that the winding number with respect to any z ∈ K is equal
to 1 and dist(z, K) ≤ 1

N (it is well known that such curves always exist). Then the
weighted Mellin transforms

(
Mγ−n

2
u
) |CN belong to C∞(CN ) (concerning notation

around the weighted Mellin transform, cf. Section 3.2 below). By EN
P (X∧) we then

denote the completion of
{(

Mγ−n
2
u
) |CN : u ∈ EP(X∧)

}
in the norm of HN(CN ),

the Sobolev space of smoothness N on the curve CN . This is a Hilbert space, and
we have EP(X∧) = lim←−

N∈N

EN
P (X∧).

It is now clear that the space (3.1.6) is nuclearly embedded into a corresponding
space of analogous structure belonging to N ′ < N when N −N ′ is sufficiently large.
This allows us to find a sequence of Nj, j ∈ N, with Nj+1 > Nj such that, if we set
Aj
P := Ã

Nj

P , we have nuclearity of Aj+1
P ↪→ Aj

P for all j. We then have

Sγ
P(X∧) = lim←−

j∈N

Aj
P .

It remains to note that the group action κλ : u(r, .) �→ λ
n+1

2 u(λr, .) restricts to a
group action on the space Aj

P for every j. It suffices to check that for the spaces
(3.1.6). The factor λ

n+1
2 is not essential, so we have to look at the influence of

rescaling to the space EN
P (X∧). By definition we restrict the Mellin transform to
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the curve CN and measure the result in HN(CN ). The Mellin transform of the
rescaled function is obtained by multiplying the original one by λ−z. The continuous
dependence of the HN(CN )-norm on λ ∈ R+ is then obvious. For the infinite weight
interval Θ = (−∞, 0] we first write Sγ

P (X∧) = lim←−
m∈N

Sγ
Pϑm

(X∧) for a sequence of

finite ϑm < 0 tending to −∞ and form the spaces AN
Pϑm

for every ϑ of this sequence,
such that Sγ

PϑM
= lim←−

N∈N

AN
PϑM

. Then we can set AN
P := AN

PϑN
.

Remark 3.1.2. Definition 1.2.1 has an immediate generalisation to Green symbols
with continuous asymptotic types P and Q, associated with weight data (β, Θ) and
(−γ, Θ), respectively.

3.2. Mellin symbols. As noted in the beginning Green operators on a manifold
with conical singularities belong to the algebra of cone pseudo-differential ope-
rators. Technically they appear as remainders in some typical operations with
so called smoothing Mellin operators, also defined in terms of asymptotic data.
Let us first recall some basic notation. By M we denote the Mellin transform

on R+, i.e., Mu(z) :=
∫ ∞

0

rz−1u(r)dr, first for u ∈ C∞0 (R+) and then extended

to more general function and distribution spaces, also vector-valued ones. Let
Γβ := {z ∈ C : Re z = β} for any β ∈ R, then the map Mγ : u �→ Mu(z)|Γ 1

2−γ
,

u ∈ C∞0 (R+), is called the weighted Mellin transform with weight γ. It is known
to induce an isomorphism Mγ : rγL2(R+) → L2(Γ 1

2−γ). With Mγ we can associate
Mellin (pseudo-differential) operators

opγ
M (f)u(r) := M−1

γ {f(z)(Mγu)(z)}

for symbols f(z) ∈ Sμ(Γ 1
2−γ) (here, Sμ(R) is Hörmander’s classical Sμ

1,0 space of
symbols of order μ ∈ R (with constant coefficients), and Γ 1

2−γ in place or R gives
us a corresponding space with the covariable Im z for z ∈ Γ 1

2−γ). More gener-
ally, we can also form Mellin operators with operator-valued amplitude functions
f(r, r′, z) ∈ C∞

(
R+ × R+, Lμ(X ; Γ 1

2−γ)
)

; here Lμ(X ; R) is the (Fréchet) space of
parameter-dependent pseudo-differential operators on a C∞ manifold X of order
μ with parameter on R. We can also talk about the parameter z ∈ Γ 1

2−γ which
explains our notation.

Operators of that kind on an infinite stretched cone X∧ occur as the values of
operator-valued symbols in the calculus of operators on a wedge. In this connec-
tion the Mellin symbols depend on edge variables and covariables, and the mapping
properties refer to asymptotic data for r → 0. In this connection it is typical that
the Mellin amplitude functions are not only defined on Γ 1

2−γ but in the complex
z-plane, up to a subset V which encodes asymptotic properties, similarly as in the
context of functions with (discrete or continuous) asymptotics. We want to give
a definition and then observe the way how Green operators are induced by Mellin
operators with asymptotics.

From now on, we assume sets V ∈ V to be convex in imaginary direction. A V -
excision function is any χ ∈ C∞(C) such that χ(z) = 0 when dist(z, V ) < ε0,
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χ(z) = 1 for dist(z, V ) > ε1 for certain 0 < ε0 < ε1.

By M−∞
V (X) we denote the space of all f(z) ∈ A (C \ V, L−∞(X)) such that

χ(z)f(z)|Γβ
∈ S (

Γβ , L−∞(X)
)

for every V -excision function χ and every real β, uniformly in compact β-intervals.
Moreover, let Mμ

O(X), μ ∈ R, denote the space of all h(z) ∈ A (C, Lμ
cl(X)) such

that
h(z)|Γβ

∈ Lμ
cl(X ; Γβ)

for every real β, uniformly in compact β-intervals.

The spaces M−∞
V (X) and Mμ

O(X) are nuclear Fréchet spaces in a natural way.

Let us set

Mμ
V (X) := Mμ

O(X) + M−∞
V (X)

in the Fréchet topology of the non-direct sum. Then, for every f(r, r′, z) belong-
ing to the space C∞

(
R+ × R+, Mμ

V (X)
)
, we can form associated weighted Mellin

operators opβ
M (f), for every weight β ∈ R such that V ∩ Γ 1

2−β = ∅.

Theorem 3.2.1. For every f(r, r′, z) ∈ C∞
(
R+ × R+, Mμ

V (X)
)
, V ∩Γn+1

2 −γ = ∅,
the operator ωopγ−n

2
M (f)ω̃ (with cut-off functions ω(r), ω̃(r)) induces continuous

operators

ωopγ−n
2

M (f)ω̃ : Ks,γ(X∧) → Ks−μ,γ(X∧)

and

ωopγ−n
2

M (f)ω̃ : Ks,γ
P (X∧) → Ks−μ,γ

Q (X∧)

for every s ∈ R and every continuous asymptotic type P with some resulting contin-
uous asymptotic type Q, associated with the weight data (γ, Θ) for every Θ = (ϑ, 0],
−∞ ≤ ϑ < 0.

This result is known, cf. [12]. Recall that the main idea of the continuity in spaces
with continuous asymptotics is to characterise the Mellin transforms of ωu as holo-
morphic functions outside the union of V and the carrier set of the asymptotic type
P ; then we obtain another carrier set which just determines the asymptotic type Q.

Mellin operators as in Theorem 3.2.1 belong to the ingredients of parametrices of
elliptic (pseudo-differential) operators on manifolds with conical singularities (mod-
elled on X∧) or edges (modelled on X∧ × Ω for some open set Ω ⊆ Rq). These
operators are combined with other operators of the calculus.

Green operators in the set-up of conical singularities appear in the following manner.
Consider an element f ∈ M−∞

V (X), let j > 0, μ ∈ R, and let γ − j ≤ β, δ ≤ γ for
some reals β, δ, such that

V ∩ Γn+1
2 −β = V ∩ Γn+1

2 −δ = ∅.
The following result is known; for completeness we give a proof here.
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Proposition 3.2.2. For the operator

g := ωr−μ+jopβ−n
2

M (f)ω̃ − ωr−μ+jopδ−n
2

M (f)ω̃

there are continuous asymptotic types P and Q associated with the weight data
(γ − μ, Θ) and (−γ, Θ), respectively, such that

(3.2.1) g : 〈r〉lKs,γ(X∧) → Sγ−μ
P (X∧),

and

(3.2.2) g : 〈r〉lKs,−γ+μ(X∧) → S−γ
Q (X∧)

are continuous operators for all s ∈ R, l ∈ N.

Proof. Let us check the mapping property (3.2.1); the property (3.2.2) can be
verified in an analogous manner by passing to formal adjoints of the involved Mellin
operators, using the fact that they are of analogous type with resulting ‘adjoint’
Mellin symbols, etc., cf. [12]. By virtue of the fact that the operators contain
cut-off functions we immediately see that the factors 〈r〉l are harmless; so we may
look at the case l = 0. In addition it suffices to assume μ = 0. The operator g is
then continuous as a map Ks,γ(X∧) → Ks,γ(X∧) because of the assumed weight
conditions. We have

(3.2.3) gu(r) =
1

2πi
rj

∫
Γ n+1

2 −β

r−zf(z)Mω̃u(z)dz − 1
2πi

rj

∫
Γ n+1

2 −δ

r−zf(z)Mω̃u(z)dz.

Let, for instance, β ≤ δ. Observe that Mω̃u(z) for u ∈ Ks,γ(X∧) is holomor-
phic in Re z ≥ n+1

2 − γ. Thus, because of the position of Γn+1
2 −β and Γn+1

2 −δ

on the right of Γn+1
2 −γ we can replace the difference of integrals (3.2.3) as an in-

tegration over a closed curve C counter clockwise surrounding the compact set
K := V ∩{

n+1
2 − β < Re z < n+1

2 − δ
}

. The function f̃(z) := f(z)Mω̃u(z) is holo-
morphic in the strip outside K. Hence (3.2.3) takes the form (3.1.2) for h(z) = r−z ,
up to the factor ω(r)rj . We thus obtain altogether gu(r) = ω(r)rj〈ζ, r−z〉 for
ζ ∈ A′(K, C∞(X)) which gives us the mapping property (3.2.1), where the asymp-
totic type P is represented by the compact set K, cf. the notation in connection
with (3.1.3).

Let us consider what are called Mellin edge symbols. Such symbols are finite linear
combinations of operator families of the form

(3.2.4) m(y, η) := ω(r[η])r−μ+jopγj−n
2

M (fjα)(y)ηαω̃(r[η])

for cut-off functions ω, ω̃, and fjα(y) ∈ C∞
(
Ω, M−∞

V (X)
)

for a set V ∈ V such
that V ∩ Γn+1

2 −γj
= ∅, Ω ⊆ R

q open. In such expressions we have j ∈ N, α ∈ N
q,

|α| ≤ j, and the weights γj ∈ R are assumed to satisfy the condition

(3.2.5) γ − j ≤ γj ≤ γ

for every j ∈ N.

Then (3.2.4) is a C∞ family of continuous operators

m(y, η) : Ks,γ(X∧) → Sγ−μ(X∧),

cf. Section 1.1. We have, in fact, more, namely

m(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,γ(X∧),Sγ−μ(X∧)
)
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for every s ∈ R, cf. notation (1.2.1), and

m(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,γ
P (X∧),Sγ−μ

Q (X∧)
)

for every continuous asymptotic type P with some resulting continuous asymptotic
type Q (associated with the weight data (γ, Θ) and (γ−μ, Θ), respectively). More-
over, the pointwise formal adjoint m∗(y, η) (cf. also Definition 1.2.1), has a similar
structure as (3.2.4), i.e., we have

m∗(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,−γ+μ
(R) ,S−γ

(S)(X
∧)

)
for all s ∈ R, where the subscripts mean without or with the corresponding contin-
uous asymptotic types.

There are now several essential operations in the edge symbolic calculus which
produce Green symbols in the sense of Remark 3.1.2. More precisely, we obtain
Green symbols g(y, η) of the kind

(3.2.6) g(y, η) ∈ Sμ
cl

(
Ω × R

q; 〈r〉lKs,γ(X∧),Sγ−μ
P (X∧)

)
,

such that

(3.2.7) g∗(y, η) ∈ Sμ
cl

(
Ω × R

q; 〈r〉lKs,−γ+μ(X∧),S−γ
Q (X∧)

)
for suitable continuous asymptotic types P and Q associated with the weight data
(γ − μ, Θ) and (−γ, Θ), respectively, for all l ∈ N, s ∈ R.

Remark 3.2.3. An element m(y, η) of the form (3.2.4) is a Green symbol for
every j > −ϑ, where Θ = (ϑ, 0] is the finite weight strip which plays the role in the
continuous analogue of Definition 1.2.1.

Another point concerns the fact that there may be different choices of γj (when
j > 0, otherwise for j = 0 we have γ0 = γ) such that (3.2.5) holds. Let γ̃j denote
any other choice. Then we have the following result:

Remark 3.2.4. Let j > 0, and let γj and γ̃j denote different weights satisfying
(3.2.5). Consider the operators (3.2.4) for both weights, e.g.

m̃(y, η) := ω(r[η])r−μ+jopγ̃j−n
2

M (fjα)(y)ηαω̃(r[η]).

Then we have m(y, η) = m̃(y, η) modulo a Green symbol with continuous asymp-
totics, cf. Remark 3.1.2.

3.3. Integral representations in the continuous case. Let f(r, x, r′, x′; y, η)
be a function in the space

(3.3.1)
{Sγ−μ
P (X∧)⊗̂πS−γ(X∧)

}∩
{
Sγ−μ(X∧)⊗̂πS−γ

Q (X∧)
}
⊗̂πSμ+n+1

cl (Ω×R
q),

now for continuous asymptotic types P and Q. Then the integral representation

(3.3.2) g(y, η)u(r, x) :=
∫

X

∫ ∞
0

f(r[η], x, r′[η], x′; y, η)u(r′, x′)(r′)ndr′dx′,

n = dimX, gives us special Green symbols with the properties (3.2.6) and (3.2.7)
for all l ∈ N, s ∈ R.

Theorem 3.3.1. Let g(y, η) satisfy the conditions (3.2.6) and (3.2.7) for all l ∈ N,
s ∈ R. Then there is an f(r, x, r′, x′; y, η) in the space (3.3.1) such that the integral
representation (3.3.2) holds.
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Proof. The proof employs analogous steps as that of Theorem 2.1.1; so we only
discuss the main ideas. For simplicity we omit again the y-variable and write the
Green symbol g(η) as an asymptotic sum of the kind (2.1.4), modulo a Green
symbol of order −∞. For the homogeneous components we take the integral repre-
sentation (2.1.6) for all j, then form the functions (2.1.7) and obtain the symbols
(2.1.8). This yields the corresponding analogue of ga0(η) which is of the desired
integral form, modulo a Green symbol of order −∞, given by a kernel like (2.1.9).
It then remains to show the analogue of Lemma 2.1.2 for the case with continuous
asymptotics. The proof of that is a purely technical (but elementary) construction
in terms of the scales of spaces AN and BN . The spaces BN are the same as before,
while the AN are constructed in Proposition 3.1.1. The main new aspect to be
employed in the proof is the first of the relations (2.1.16). In the present case we
have to look at (3.1.6). The first summand is as in (1.1.4), and it remains to observe
that −r∂r transforms the space EN

P (X∧) to EN−1
P (X∧), modulo a flat contribution

which is absorbed by the first summand in (3.1.6). Applying −r∂r to the second
factor of ω(r)〈ζ, r−z〉 ∈ EN

P (X∧), cf. (3.1.3), we obtain ω(r)〈ζ, zr−z〉; thus we re-
main in the space EP(X∧) and hence, from the continuity of EP(X∧) → EP(X∧),
ω(r)〈ζ, r−z〉 �→ ω(r)〈ζ, zr−z〉 and the definition of EN

P (X∧), we immediately obtain
the desired relation, i.e., −r∂r : EN

P (X∧) → EN−1
P (X∧). The other element of the

proof are very close to the ones of Lemma 2.1.2 and will be omitted.

Analogously to the discrete case, cf. Section 2.2, we can consider 2 × 2 block
matrix-valued functions g(y, η) ∈ Sμ

cl

(
Ω × Rq;K0,γ(X∧) ⊕ C,K0,β(X∧) ⊕ C

)
such

that

(3.3.3) g(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,γ(X∧) ⊕ C,Sβ
P (X∧) ⊕ C

)
and

(3.3.4) g∗(y, η) ∈ Sμ
cl

(
Ω × R

q;Ks,−β(X∧) ⊕ C,S−γ
Q (X∧) ⊕ C

)
for all s ∈ R, with suitable g-dependent continuous asymptotic types P ,Q. Let
g(y, η) = (gij(y, η))i,j=1,2; then we call g21(y, η) a trace symbol and g12(y, η) a po-
tential symbol of order μ ∈ R, while g22(y, η) is nothing other than a classical scalar
symbol (of order μ).

Let f21 ∈ S−γ

Q (X∧)⊗̂πS
μ+ n+1

2
cl (Ω×Rq) and f12 ∈ Sβ

P (X∧)⊗̂πS
μ+ n+1

2
cl (Ω×Rq), and

consider the integral representations

(3.3.5) g21(y, η)u =
∫

X

∫ ∞
0

f21(r′[η], x′; y, η)u(r′, x′)(r′)ndr′dx′,

u(r, x) ∈ Ks,γ(X∧), and

(3.3.6) g12(y, η)c(r, x) = cf12(r[η], x; y, η),

c ∈ C. Then we have (trace and potential) symbols satisfying the mapping proper-
ties (3.3.3) and (3.3.4).

Theorem 3.3.2. (i) Every trace symbol g21(y, η) can be written in the form

(3.3.5) for an element f21(r′, x′; y, η) ∈ S−γ

Q (X∧)⊗̂πS
μ+ n+1

2
cl (Ω × Rq);

(ii) every potential symbol g12(y, η) can be written in the form (3.3.6) for an

element f12(r, x; y, η) ∈ Sβ
P(X∧)⊗̂πS

μ+ n+1
2

cl (Ω × R
q).
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This can be proved by analogous arguments as for Theorem 3.3.1.

Remark 3.3.3. (i) Green symbols in the sense of block matrices (3.3.3) can
be composed within the respective spaces of Green symbols (with discrete or
continuous asymptotics) and the homogeneous principal components behave
multiplicatively.

(ii) The classes of Green symbols (with discrete or continuous asymptotics) are
closed under asymptotic summation when the involved asymptotic types are
the same for all the summands.

Let us conclude this section with a few intuitive remarks on the nature of continuous
asymptotics which give rise to some ‘unexpected’ examples of Green, trace, or
potential operators in that context. First note that when ω(r) is any fixed cut-
off function and z ∈ C, Re z < n+1

2 − γ, then we have ω(r)r−zc(x) ∈ K∞,γ(X∧)
for any c ∈ C∞(X). Recall that such functions may be interpreted as singular
functions of the discrete cone asymptotics for r → 0 with exponent −z. Now if
ζ(y) ∈ C∞

(
Ω,A′(K, C∞(X))

)
is any family of analytic functionals carried by a

compact set K ⊂ {
Re z < n+1

2 − γ
}

, the function

(3.3.7) ω(r)〈ζ(y), r−z〉
may be interpreted as the linear superposition of singular functions for the discrete
asymptotics with the (y-dependent) density ζ(y). Such ‘densities’ may be organised
as follows. Choose an arbitrary function f(y, z) ∈ C∞(Ω × (C \ K), C∞(X)),
holomorphic in z ∈ C \ K that extends for every y ∈ Ω to a certain (C∞(X)-
valued) meromorphic function in z ∈ C with poles pj(y) ∈ K, j = 1, . . . , N(y), of
multiplicities mj(y) + 1. These poles including multiplicities may be not constant
in y. Then, setting

ζ(y) : h(z) �→ 1
2πi

∫
C

h(z)f(y, z)dz

where C ⊂ {
Re z < n+1

2 − γ
}

is a compact (say, C∞) curve counter clockwise
surrounding the set K such that C has the winding number 1 with respect to every
point of K, we obtain an element ζ(y) ∈ C∞

(
Ω,A′(K, C∞(X))

)
such that (3.3.7)

has discrete asymptotics of the kind (3.1.5) for every fixed y. Now

C � c �→ c · ω(r[η])[η]μ+ n+1
2 〈ζ(y), (r[η])−z〉

defines a potential symbol of order μ in the frame of continuous asymptotics which
just produces functions with pointwise (in y) discrete but branching asymptotics.
In a similar manner we can organise trace symbols which reflect such asymptotics
as well as more general Green symbols of that kind. Constructions of that kind
may also be found in [12].

4. Green operators

4.1. Green operators on a manifold with edges. Let W be a compact mani-
fold with edge Y, locally near any y ∈ Y modelled on X�×Rq, where X is a closed
compact C∞ manifold. Recall that transition functions between (open) stretched
wedges R+ × X × Rq � (r, x, y) are assumed to be C∞ up to r = 0. In addition
we choose the global atlas by such singular charts near Y in such a way that the
transition functions are constant with respect to r for 0 < r < ε for some ε > 0. By
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W we denote the stretched manifold associated with W, cf. Section 1.2.

We consider the weighted edge Sobolev space Ws,γ(W) that is defined as the sub-
space of all u ∈ Hs

loc(intW) which locally near Y in the coordinates (r, x, y) belong
to Ws(Rq,Ks,γ(X∧)). Here Ws(Rq, E) for a Hilbert space E with group action κλ

is the completion of S(Rq, E) with respect to the norm{∫
〈η〉2s

∥∥∥κ−1
〈η〉û(η)

∥∥∥2

E
dη

} 1
2

,

with û(η) being the Fourier transform of u in R
q. In a similar manner we define

Ws(Rq, E) for a Fréchet space E which is the projective limit of Hilbert spaces Ej

with group actions, with continuous embeddings Ej+1 ↪→ Ej ↪→ · · · ↪→ E0 for all
j ∈ N, such that the group action on Ej is the restriction of the one on E0 for every
j.

This allows us to define subspaces

(4.1.1) Ws(Rq,Sγ
P (X∧))

of Ws(Rq,Ks,γ(X∧)) for any (discrete or continuous) asymptotic type P , using the
fact that Sγ

P (X∧) is a Fréchet space with group action induced by κλ on Ks,γ(X∧),
s ∈ R. Globally on W we then define Ws,γ

P (W) to be the subspace of Ws,γ(W)
locally near the edge described by (4.1.1).

A Green operator G (of the type of an upper left corner) with (discrete or con-
tinuous) asymptotics is an operator that is locally near Y in stretched coordinates
(r, x, y) of the form

Opy(g)u(y) =
∫

Rq

∫
Rq

ei(y−y′)ηg(y, η)u(y′)dy′d−η,

for a Green symbol g(y, η) of order μ, modulo a global smoothing operator. The
latter category of operators is characterised by the property to define a continuous
map Ws,γ(W) → W∞,γ−μ

P (W) for some asymptotic type P and a similar property
of the formal adjoint. The global definition of Green operators is justified by the
following remark.

Remark 4.1.1. With symbols g(y, η) ∈ Sμ
(cl)(Ω × Rq; E, Ẽ) in the sense of the

notation in Section 1.2 we can form associated operators

Opy(g)u(y) =
∫

Rq

∫
Ω

ei(y−y′)ηg(y, η)u(y′)dy′d−η,

d−η := (2π)−qdη. In particular, if g(y, η) is a Green symbol of the kind (3.2.6), then
for every ϕ(r) ∈ C∞0 (R+×) the operators ϕOpy(g) and Opy(g)ϕ are smoothing on
R+×Rq×X. In particular, we see that the singularities of Green operators are con-
centrated on the boundary {0}×Ω×X as is expected in analogy to a corresponding
behaviour of Green operators in classical boundary value problems.

In fact, let us first note that the operators of multiplication Mϕ by ϕ generate
(non-classical) symbols Mϕ ∈ S0 (Ω × Rq;Ks,γ(X∧),Ks,γ(X∧)) for every γ ∈ R.
Moreover, the multiplication by r−Nϕ for any N ∈ N is of similar behaviour. Then,

ϕg(y, η) = r−NϕrNg(y, η) = r−Nϕ[η]−N (r[η])N g(y, η).
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Since the order of (r[η])N g(y, η) is the same as that of g(y, η) and the multiplication
by [η]−N gives rise to an order shift by −N we obtain that ϕg(y, η) is an operator-
valued symbol of order −∞, and hence ϕOpy(g) = Opy(ϕg) is smoothing.

Observe that a Green operator G on W induces continuous operators

Ws,γ(W) → Ws−μ,γ−μ
P (W)

for every s ∈ R, where P is a (discrete or continuous) asymptotic type associated
with G. This is a consequence of general continuity on Sobolev spaces.

Remark 4.1.2. Green operators on a (stretched) manifold W with edges form
an algebra, and the composition is compatible with the local symbolic structure; in
particular, the homogeneous principal symbols (in the sense of twisted homogeneity)
behave multiplicatively.

4.2. Green operators with parameters. The concept of operator-valued sym-
bols as in Section 1.2 has a parameter-dependent analogue, when we replace the
covariable η ∈ R

q by (η, λ) ∈ R
q × R

l and require the symbolic estimates with
respect to (η, λ). In particular, we obtain a generalisation of Definition 1.2.1 to the
λ-dependent case, cf. also Remark 3.1.2.

The construction of the preceding section then gives us parameter-dependent fam-
ilies of Green operators. According to the iterative concept of building up pseudo-
differential calculi on manifolds with higher (polyhedral) singularities we may em-
ploy such parameter-dependent families as (operator-valued) symbols of a next
generation of operators, for instance, on the infinite (stretched) cone R+ ×W with
base W. Constructions in that sense may be found in the paper [2], in particular, a
number of kernel cut-off results for such operator functions.

Kernel cut-offs can be organised on the level of symbols. In order to illustrate the
effects we want to consider Green symbols with discrete asymptotics as in Definition
1.2.1 which belong to spaces of the kind

(4.2.1) Sμ
cl

(
Ω × R

q × R
l;Ks,γ(X∧),Sβ

P(X∧)
)

such that g∗(y, η, λ) belongs to corresponding analogue of the space in (1.2.5). For
l = 1 we also write Γδ instead of R when λ is involved in the form z = δ + iλ for
some δ ∈ R. Moreover, let

Sμ
cl

(
Ω × R

q × C;Ks,γ(X∧),Sβ
P(X∧)

)
denote the space of all g(y, η, z) which are holomorphic in z ∈ C such that g(y, η, δ+
iλ) belongs to (4.2.1) (for l = 1) for every δ ∈ R, uniformly in compact δ-intervals,
and where g∗(y, η, z) satisfies an analogous condition.

Theorem 4.2.1. For every δ ∈ R there is a continuous map

Sμ
cl

(
Ω × R

q × Γδ;Ks,γ(X∧),Sβ
P (X∧)

)
→ Sμ

cl

(
Ω × R

q × C;Ks,γ(X∧),Sβ
P (X∧)

)
,

g(y, η, δ + iλ) �→ h(y, η, δ + iλ), such that

g(y, η, z) − h(y, η, z)|Ω×Rq×Γδ
∈ S−∞

(
Ω × R

q × Γδ;Ks,γ(X∧),Sβ
P (X∧)

)
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for every s ∈ R (and such that the pointwise formal adjoint have an analogous
property).

Theorem 4.2.1 can be proved by applying a kernel cut-off argument as used in an
analogous context in [2]. A similar result holds for Green symbols with continuous
asymptotics.

According to Theorem 2.1.1 the holomorphic symbol h(y, η, z) has a family of in-
tegral kernels

(4.2.2) fRe z(r[η, λ], x, r′[η, λ], x′, y, η, λ),

λ = Im z, via a representation of the form (2.1.2). This is valid for every fixed Re z;
however, the holomorphic dependence of (4.2.2) on z is by no means obvious. In
other words, kernel cut-off constructions which produce a holomorphy in a complex
covariable are better applied to the symbols in their original definition rather than
their integral kernels.
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