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Abstract

The ellipticity of operators on a manifold with edge is defined as the bijectiv-
ity of the components of a principal symbolic hierarchy o = (oy,0A), where
the second component takes values in operators on the infinite model cone of
the local wedges. In the general understanding of edge problems there are two
basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev
spaces, and verifying the ellipticity of the principal edge symbol o which in-
cludes the (in general not explicitly known) number of additional conditions
on the edge of trace and potential type. We focus here on these questions and
give explicit answers for a wide class of elliptic operators that are connected
with the ellipticity of edge boundary value problems and reductions to the
boundary. In particular, we study the edge quantisation and ellipticity for
Dirichlet-Neumann operators with respect to interfaces of some codimension
on a boundary. We show analogues of the Agranovich-Dynin formula for edge
boundary value problems, and we establish relations of elliptic operators for
different weights, via the spectral flow of the underlying conormal symbols.
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Introduction

This paper is aimed at studying a category of new explicit examples in the calculus
of elliptic operators on a manifold with edges. This type of investigations belongs
to the analysis on manifolds with geometric singularities and is motivated by the
tools that have to be developed for constructing parametrices of mixed elliptic and
crack problems when the interfaces have singularities.
A ‘manifold” M with singularities (in the sense of ‘regular’ edges and cor-
ners) may be characterised by iteratively forming wedges X* x €0, with a cone
X2 = (Ry x X)/({0} x X) for a C* manifold X, and an open set Q@ C R?
as edge, then glue together such wedges to ‘global’ spaces, and then repeat the
procedure. In this connection we impose reasonable assumptions on the transition
maps of corresponding ‘singular charts’ that distinguish regular singularities from
cuspidal ones. Parallel to this procedure we can ask the nature of ellipticity (here
of boundary value problems) near the strata of the configuration in terms of a
principal symbolic hierarchy, the length of which is determined by the number of
iteration steps.
In the present paper we mainly focus on manifolds with edges (with or without
boundary). For the case without boundary such a manifold may be obtained as a
quotient space

W =W/~, (0.1)

where W is a C'*° manifold with boundary W that is a fibre bundle over a C'*°
manifold Y, the edge, where the fibre is a compact C'*° manifold X.If 7 : OW — Y
is the bundle projection then the equivalence w ~ w' in (0.1) means 7w = 7w’ for
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w, w' € OW or w = w' for w, w' € W\ OW.

The space W is called the stretched manifold associated with W. In this paper, for
convenience, we assume OW to be a trivial X-bundle over Y. This assumption is
not really essential, cf. [4].

A differential (or pseudo-differential) operator A on W \ Y is said to be edge-
degenerate if in the splitting of variables (r,z,y) € Ry x X x Q (locally near
OW and in local coordinates € ¥ on X, ¥ C R" open, n = dim X) it has an
amplitude function of the form

riuﬁ(TJ "IJJ y? er 67 rn)

with a (classical) symbol p(r,z,y,p,&,n) of Hormander’s type of order u on
Ry xE xQx ]R;zlgrq (smooth in 7 up to zero).
Examples are geometric operators (such as Laplace-Beltrami operators) with re-
spect to a Riemannian metric of the form dr? + r?gx + dy?, where gx is a Rie-
mannian metric on X.
The general (analytic) task of the edge calculus is to understand the nature of
parametrices of elliptic edge-degenerate operators near the edge, to characterise
elliptic regularity of solutions in suitable weighted edge Sobolev spaces under ad-
ditional edge conditions (of trace and potential type) and the index of elliptic
operators as explicitly as possible.
Ellipticity on a manifold with edges has much in common with elliptic boundary
value problems in the usual sense. In fact, a manifold with boundary can be re-
garded as a special case of a manifold with edges, where the boundary plays the
role of an edge and the inner normal of the (local) model cone. Operators in the
case of boundary value problems are described (modulo lower order terms) by a
principal symbolic hierarchy consisting of the interior and the boundary symbol,
denoted by oy and os, respectively. The second component is operator-valued and
acts in Sobolev spaces on the inner normal (standard Sobolev spaces for operators
with the transmission property at the boundary, otherwise weighted spaces as in
the general edge calculus).
To be more precise, if

A=Y baly,)DyD] (0.2)

Jtlal<p

is a differential operator in the ‘half-space’ {2 x R, for an open set Q C R?, with
coefficients bjo(y,t) € C°(Q x R;), then we have

op(A) .t ) = Y bialy, I,
Jtlal=p

(y,t,?’],T) € T*(Q X KJr) \07 and

oo(A)(y,m) = Y bjaly,0n* Dy,
jt+lal=p
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oo(A)(y,n) - H*(Ry) — H**(Ry), (0-3)

(y,m) € T*Q\ 0.
Note that A can also be written in the form

A=r7" 3" aja(ry)(—rd,) (rD,)°" (0.4)

JtlalSu

with coefficients ajqo(r,y) € C*°(Ry x Q); then o5(A4)(y,n) takes the form of the
so called principal edge symbol

on(A)(y,m) =17 Y ajal0,)(—rn)! (). (0.5)

JtlalSu

More generally, if X is a C'* manifold, a differential operator A on the (open
stretched) wedge X" x Q for X" := Ry x X is called edge-degenerate if it has
the form (0.4) with coefficients a;q(r,y) € C®(Ry x Q, Diff#=Utlel(X)); here
Diff¥(-) denotes the (Fréchet) space of all differential operators of order v on the
C'*° manifold in the brackets. We shall see below that there is a natural scale of
weighted Sobolev spaces K7 (X”) on the infinite stretched model cone X” such
that (0.5) induces continuous operators

on(A)(y,m) - K7(X") — K7 7H(X7) (0.6)

for all s, v € R. The pair (o (A), o (A)) (with oy (A) being the standard homoge-
neous principal symbol of A) is the principal symbolic hierarchy of A in the sense
of the edge calculus.

Recall that in boundary value problems for an elliptic operator (0.2) the extra
boundary conditions (such as Dirichlet or Neumann conditions) come from filling
up the (in the differential case surjective) family (0.3) of Fredholm operators to a
block matrix family of isomorphisms, for (y,n) € T*Q\ 0. Similarly, for an elliptic
edge-degenerate operator (0.4) we know the Fredholm property of (0.6) for all v
(except for a discrete set of ‘forbidden’ weights that may depend on y). The con-
cept of ellipticity of edge problems is also to add extra edge conditions of trace and
potential type, generated by a corresponding block matrix family of isomorphisms

Ks,’y(X/\) Ks—p,,’y—u(X/\)

e = (N7 Tig)ens o o e e
=Y +,y

for any fixed choice of an admissible weight. Associated operators

=(r )

acting in a suitable scale of weighted Sobolev spaces then represent a category of
elliptic edge problems for A, and o(A) = (o4 (A), o4 (A)) is the principal symbolic
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hierarchy of the operator A.

Note that, in contrast to the known behaviour of elliptic differential operators, in
the edge calculus we need both trace and potential operators at the same time,
depending on the weights. In addition it may be extremely difficult to explicitly
calculate the number of extra data that complete on(A)(y,n) to a family of iso-
morphisms (0.7).

The construction needs information on kernels and cokernels of oa(4)(y,n) on
the infinite cone. From that point of view it is interesting to analyse sufficiently
large classes of explicit examples as is done in the papers [4] for the case of closed
manifolds with edges and in [19] for the case of boundary value problems. The
applications of the calculus, for instance, to crack problems [13] or to mixed el-
liptic problems [3] lead to many other ‘unexpected’ difficulties. These lie partly
in the complexity of phenomena that is connected with the iterative structure of
the calculi and in the relevance of ‘nonlinear spectral information’ on subordinate
conormal symbols which determines not only the admissible weights but also the
number of additional edge conditions.

The present paper is focused on a number of new aspects in connection with el-
liptic boundary value problems. In this case we have 3 x 3 block matrices that
contain both boundary and edge conditions, and the principal symbolic hierarchy
of such an operator 2 consists of three components:

a(A) = (o4 (A), 00 (A), 07 (A)).

This paper is organised as follows:

In Chapter 1 we introduce the basics on (pseudo-differential) boundary value prob-
lems on a manifold with boundary and edge that have the transmission property
at the smooth part of the boundary. Close to the edges we impose the typical
edge-degenerate behaviour of symbols which admits operators that are continu-
ous in weighted edge Sobolev spaces. In the case of differential boundary value
problems the quantisation is precise, i.e., they are no smoothing remainders to be
neglected, while in the pseudo-differential case we employ the Mellin transform in
axial direction of the model cone, combined with a kernel cut-off argument which
produces holomorphic Mellin symbols. The quantisation itself is based on ampli-
tude functions of the form (1.23) in a scenario of operator-valued symbols with
‘twisted homogeneity’. Also the weighted edge Sobolev spaces are based on suit-
able rescalings in weighted Sobolev spaces on the infinite model cone. The main
feature of our approach is that the edge boundary value problems are a generali-
sation of Boutet de Monvel’s calculus [2], here, for the case of edge singularities on
the boundary. Other elements of this ‘edge algebra’ of boundary value problems
may be found in [13], see also [31], [32], [33].

Chapter 2 is devoted to the problem of reducing edge boundary value problems to
the edge and to the boundary. In the boundary reduction we take boundary value
problems with the same elliptic operator in the upper left corner but different
edge and boundary conditions, and we prove an index formula of Agranovich-
Dynin type. This compares the indices of the involved problems in terms of an
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elliptic operator on the boundary which is a ‘closed’ manifold with edge. In a sim-
ilar spirit we reduce elliptic edge problems to the edge and obtain an analogue
of the Agranovich-Dynin formula also in this case. We apply the reduction to the
boundary for constructing new (compared with [4]) edge quantisations for elliptic
operators on a closed manifold with ‘fictitious’ edges. As an example we discuss
the Dirichlet-Neumann operator in more detail. The process of reducing problems
to the boundary is also ilustrated in terms of principal edge symbols which gives
us new explicit expressions of parametrices for classes of elliptic boundary value
problems on infinite cones.

In Chapter 3 we discuss the problem to what extent our elliptic edge problems
(constructed before for ‘sufficiently large’ weights and with the exception of dis-
crete exceptional weights) can be understood for arbitrary weights (that may be
negative and of large absolute value). This depends on the evaluation of index
elements of homogeneous principal edge symbols in the 2 x 2 upper left corners.
We express ‘the number’ of new edge conditions in terms of the spectral flow of
subordinate conormal symbols which represents (after the results of [24]) elements
of the K-group on the unit cosphere bundle of the edge. In a final section we illus-
trate the way of constructing extra edge conditions for all weights, provided that
the principal conormal symbol is a bijective family on the corresponding weight
line in the complex plane.

Let us finally note that the analysis on configurations with edges (and other ge-
ometric singularities) is motivated by models of mechanics, physics and the ap-
plied sciences, but also by problems of geometry and topology. Many authors
have contributed under different aspects to this field. The classical theory of
(pseudo-differential) boundary value problems in the sense of Vishik and Es-
kin [38], [39], [6], Boutet de Monvel [2] can be subsumed under the ‘edge analysis’.
Pseudo-differential boundary value problems are, of course, of independent value.
In particular, there are interesting parameter-dependent variants, see, e.g., the
work of Grubb [11]. The dependence of parameters is also crucial for the ‘higher
floors’ of the analysis on stratified spaces, cf. [35]. As a starting point one can take
the case of manifolds with conical singularities, cf. Kondratiev [14] who studied
boundary value problems on such manifolds. Observe that singular integral opera-
tors in the spirit of Gohberg and Krupnik [9] can be seen as an aspect of operators
on a manifold with conical singularities, cf. also the Mellin operator calculus in [6].
These relations show the long history of the analysis on ‘manifolds with singular-
ities’ which cannot be reported here in detail; more references on the historical
background may be found in Kondratiev and Oleynik [15], Plamenevskij [29], Ka-
panadze and Schulze [13]. Papers on concrete problems in domains with edges are
owed by Mazja and Plamenevskij [21] and Mazja and Rossmann [22]. The pseudo-
differential approach to the analysis on manifolds with edges that is used here is
developed in [34]; more technicalities may be found in Egorov and Schulze [5] or in
other monographs, see, e.g., [13] and the references there. In recent years the index
theory and the homotopy classification of elliptic edge operators was intensively de-
veloped, see the papers of Nazaikinskij, Savin, Schulze, and Sternin [23], [24], [25],
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and the references there. There are also connections with anisotropic elliptic and
parabolic boundary value problems, especially on long-time asymptotics of solu-
tions, see [16], [17]. Another stream of new papers studies ellipticity and index
on more general spaces, see, e.g., Nistor [28], Lauter and Nistor [18], Loya [20].
Spectral properties of elliptic operators on manifolds with conical singularities
have been investigated by Gil, Krainer and Mendoza [7], [8], where the spectral
parameter was interpreted as an edge covariable.

1 Edge quantisation of boundary value problems

1.1 Edge-degenerate boundary value problems

Let W be a manifold with edge Y and boundary, that is, W is a topological space
with a subspace Y, such that W \ Y is a C* manifold with boundary, ¥ a C*
manifold, and W is locally near any point y € ¥ modelled on a wedge X x Q,
where X is a (here compact) C°*° manifold with boundary 0X, n = dim X, and
2 C R? an open set, ¢ = dim Y. For convenience all manifolds in consideration are
assumed to be countable unions of compact sets. In addition smooth manifolds
are equipped with Riemannian metrics and associated measures. From W we can
pass to the double 2W obtained by gluing together two copies W=+ of W along the
common boundary (with the plus side being identified with W). Then M := 2W
is a manifold with edge Y and without boundary locally near Y modelled on
(2X)% x Q, and we have the associated stretched manifold M as explained in the
introduction, M = M/~ . Denoting by # : M — M the canonical map to the
quotient space we then set

W =771 (W) and Wyeg 1= (M '\ OM) N'W, Wy := OMNW.

The boundary V' := 0(W\Y)UY is then a manifold with edge Y without boundary,
locally near Y modelled on (0X)® x Q, and we have an associated stretched
manifold V.

Operators near Y are considered in the splitting of variables (r,z,y) € X" x Q
with the covariables (p,&,n). We will study a category of (pseudo-differential)
boundary value problems on W \Y for operators A € L¥, (W \Y )in¢) that have the
transmission property at the smooth part (W \Y') of the boundary and are edge-
degenerate near Y. Here L () denotes the space of classical pseudo-differential
operators of order pu on the manifold in the brackets (i.e., with local classical
symbols in the covariable £ with homogeneous components of order u—j, j € N).
We also need the parameter-dependent variant, with parameter A € R!, denoted
by L% (+;R"), where the local symbols are classical in (£, ) of order .

The edge-degenerate differential operators A discussed in the introduction can be
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written in the form Op, (p) for the operator function

plym) =r" > ajalr,y)(=rd,) (rm)"; (1.1)

JtlelSu

here, for simplicity, we assume the coefficients ajq(r,y) € C®(Ry x
Q, Diff»=(t+leD (X)) to be independent of r for large r. Then p(y,7) is con-
tinuous between spaces K*7(X") that are defined as follows:

First let N := 2X denote the double of X, defined by gluing together two copies
Xt of X along the common boundary (we then often identify the + side with
X). On the infinite stretched cone N* = R, x N we have the space L?(N"\) with
the measure drdz and then define H*°(N") for s € N to be the subspace of all
u(r,z) € v~ 2 L*(N") such that (ro0,)*Veu(r,z) € r—2 L*(N") for all k + |a| < s,
for V¥ := V™ - ... V2, a = (a,...q,), for arbitrary vector fields V; on N.
This definition extends to arbitrary s € R by duality and interpolation, and we
then set H®Y(N") := rYHSO(N") for s, v € R. Moreover, let HE, ,(N”) denote
the subspace of all u € Hf (R x N)|R+XN which behave as the standard Sobolev

spaces for r — oo; in particular, when N = S™ is the unit sphere in R**!,
H¢, .(N™) far from r = 0 corresponds to H*(R*™!) when (r,z) € Ry x S™ are
polar coordinates in R**1 \ {0} .
In this paper a cut-off function on the half-axis is any w(r) € C§°(R;) that is
equal to 1 near 0. We then form the space

KN i={wu+ (1 —w)v: u e H¥'(N"),ve HS (N™)} (1.2)

cone

for any such w (the space is independent of the choice of w). Observe that (1.2)
is a Hilbert space for a suitable scalar product; we then have a natural
identification K®*(N") = r~2L*(N"). For X itself we set K®7(X") :=
{u|R+><intX Tu € ICS"’(NA)} endowed with the Hilbert space structure from the
identification K7 (X") = K&V (NM)/~ for u ~ v < U|R+><intX = U|R+><intX'

As announced before, the operators (1.1) form a family of continuous maps
py,m) : K¥7(X7) — Ko7m771(X7) (1.3)

for all s, v € R, C* dependent on (y,n) €  x R?.

We will often use the fact that the spaces K7 (N”) or K*7(X") are equipped

with a strongly continuous group {xs} SER of isomorphisms when we set
(ksu)(r,x) = (5"T+1u(57“, x), (1.4)

0 € Ry. In general, let E be a Hilbert space equipped with a strongly continuous

group k := {m5}5€R+ of isomorphisms ks : B — E, ksks = Kgs, for all §, §' €

R, ; in that case we simply say that E is endowed with a group action. We then

have the following so called abstract edge Sobolev spaces (modelled on the space
E, and with ‘edge’ R?) :
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Definition 1.1.1. The abstract edge Sobolev space W*(RY, E) is defined to be the
completion of S(R?, E) with respect to the norm

lulbwr sy = { [0l gtz dn}

with @(n) being the Fourier transform of u on RY.

Remark 1.1.2. Clearly the space W*(R?, E) depends on the choice of the group
action {”5}66R+ on E. If necessary we write W¥(R?, E),, for the corresponding
edge space. Observe that k' := {“g}deRp K5 1= 0"Kks, 0 € Ry, defines another
group action on E. We then have W*(R?, E),, = Wt (R?, E),, .

Example 1.1.3. For E := K57 (N") we thus obtain weighted edge Sobolev spaces
WHY(N" x R?) := W9 (R?, K57 (N)),

based on the group action (1.4). In a similar manner we define W57 (X" x R?).
Note that the operator of restriction u(r,x) — u(r, $)|R+><6X first defined on u €

C3 (X)), extends to a continuous operator
WET (XN x RY) — W33 ((0X)" x RY) (1.5)

for every s > %, v € R. Also here the edge spaces are defined in terms of the ‘nat-
ural’ group actions, connected with n = dim X and n — 1 = dim 0X, respectively.

Parallel to the abstract edge Sobolev spaces there is a useful notion of operator-
valued symbols with ‘twisted homogeneity’.

Definition 1.1.4. (i) Let E and E be Hilbert spaces with group actions
{ks}ser, ond {Rs}ser, , respectively. Then S*(Q x R?; E, E) denotes the
set of all a(y,n) € C°(Q x RY, L(E, E)) such that

sup () TR { Dy Dialy,m)} £l oom )
(y,m) €K xR4

is finite for every a, 8 € N and K CC (.

(ii) The subspace S (Q x RY; E, E) of classical symbols is based on components
a(u—y) (y,m) € (2 x (R?\ {0}), L(E, E)) of twisted homogeneity

a(N—j) (y7 67)) = 6H7jﬁéa(y—j) (y7 77)”5—1;

0 € Ry ; more precisely, a classical symbol is an asymptotic sum of terms
xmaq—j(y,n), j €N, for any excision function x in R?, modulo a symbol

in S™°(Q X R E, E) := (,,ep " (2 X R E, E).
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If a relation is valid in the classical or non-classical case, we also write subscript
‘(cl)’. The subspaces of y-independent symbols are denoted by S( o) (R7; E, E).

Remark 1.1.5. The spaces Sél)(ﬂ x RY; E,E) depend on the choice of the
group actions  and & on E and E, respectively. If necessary we write S(”d)(ﬂ X
RY; B, E), 7. Setting k' = {0"Ks}ser, and &' = {5’7/%5}6GR+ we obtain

Sty (X RG B, B)r = S0 (U X RG B, B)w (1.6)

(c)

Remark 1.1.6. (i) We have p(y,n) € SH(Q x R7;K57(X7N), K5 #7H(XN))
for every s, v € R;

(ii) the operator of restriction 1, : C5°(X") — C§C((0X)") extends to a
continuous operator r,_ : K*7(X") — K527 3((dX)") for every s >

Ly € R, and we have r,, € S3(R; K7 (XM), K517~ 3((0X)")).

Similar notation is used when E or E are Fréchet spaces with group action, that
means, for instance, for F, that £ = @jeN EJ for a sequence of Hilbert spaces

E7 with continuous embeddings E+! — EJ — ... — E° where E° is endowed
with a group action {%;};cp, that restricts to group actions on EY for every j.

Then Sﬁ:l) (QxR?; E, E) is simply defined as the projective limit over all S(”CD(Q X
RY; E, EY).

Example 1.1.7. Let E = [*(Ry) & C-, E=S8(R.)®CH for certain g+ € N,
uhere S(Ey) = S(B)| 5, and S(Ey) = lim _ HY*(Ry ), (HOO(R,) = L2(E"))
Then, for the group action {Ks}sep, , Kou(t) = 62u(0t), on both L*(R.) and

S(Ry), and the trivial group action on C% we can form the symbol spaces
SHQ xR LA (Ry) @ €, S(Ry) ® CF).

If g(y,n) is such a symbol, where the pointwise adjoint g*(y,n) belongs to
SE(Q x R LA(Ry) @ €7+, S(Ry) & C-),

then g(y,n) can be expressed in terms of a 2 x 2 block matriz of operator functions
with a (y,n)-wise kernel representation,

9yt u(t) = /Oo fo (6t u(thdt!
0
- (/0 f21’,(t')u(t')dt')l:h“’% €er,
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g—
912t C 3 (e1,ensce ) > D Cmfr, (1),
m=1
fOT‘ functions f11 (tatl) € S(R+ X R-l—) = S(]R X ]R)|ﬁ+ xRy’ le,z: f12,m € S(@-i-) fOT‘
all I, m.

With symbols we associate operators in the usual way, namely,
Op(a)uy) = [ [ 0 aly, ' myuty) dy'dn. (17)

Here we admit symbols a(y,y’,n) € S(‘ZI)(Q x QO x R?; E,E) (in the sense of a
straightforward generalisation of the above notation to (y,y')-depending symbols).
The definition of (1.7), first for v € C§°(12, E) is based on oscillatory integral
arguments. This gives us a continuous operator

Op(a) : C(Q, E) — C=(Q, E). (1.8)

For references below we want to formulate the continuity between abstract edge
Sobolev spaces:

Proposition 1.1.8. Let a(y,y’,n) € S&l)(QXQXRq;E,E)mR. Then (1.8) extends
to continuous operators

Op(a) : W

comp

(0 E)y — WS E): (1.9)
between corresponding ‘comp’ and ‘loc’ generalisations of abstract edge Sobolev
spaces on an open set Q@ S RY, for all s € R

Observe that when we interpret a(y,y’,n) as an element of Ség)'/fﬁ(ﬂ X

RY; E,E) . z, (via a(y,y')-dependent analogue of the relation (1.6)) we obtain
the continuity ) y
Op(a) : Witk (0 E) — W M7 (Q, E) e (1.10)

loc

for every s € R.
Note, in particular, that (1.5) is equal to the operator Op(r,,) with r,, as in
Remark 1.1.6 (ii).
More generally, boundary value problems for a differential operator (0.4) on a
(stretched) wedge X" x Q can be formulated in the framework of operators along
0 with amplitude functions taking values in boundary value problems on the
infinite model cone X”. Differential boundary conditions will be represented as
vectors T' = Y(Ty,...,Ty) of trace operators

Tj =T B]'

X XQ
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for differential operators B; of edge-degenerate form

Bj=rt Z bj7k6(ray)(_rar)k(r‘Dy)B7
k+181Sw;

with coefficients b; xs(r,y) € C° (R, x Q, Diff s ~(k+18D(TM)) for a collar neigh-
bourhood U of X in X. For convenience, we assume again that the coefficients
are independent of (r,y) for large |r,y|. The number N of boundary conditions
is known together with the given elliptic differential operator A; for instance, for
1 =2m and n > 2 we always have N = m.

Remark 1.1.9. As a consequence of the considerations before we have

tj(yﬂ?) = r(ax)/\ rot Z bﬁkﬁ(r:y)(_rar)k(rn)ﬁ
k+[B|Su;

€ SHEI(Q X R (XN), K5H— 371~ 3 ((9X)N))
foralls>,uj+%,7€]R.

We then obtain T; = Op(t;),j = 1,...,N or T = Op(t) for t(y,n) =
Y(t1(y,m),.-.,tn(y,m)). Thus, a boundary value problem

Au=f, Tu=g (1.11)

on X x  for an edge-degenerate operator A gives rise to a continuous operator

A= < ? ) WYX X RT) — W T (XN x RY),

N
WHTHRITTE (XA XRY) i= WS R (XA X RY) @GB WSTHI =5 (0X)N xRY),
j=1
s>pj+3,j=1,....,N,yeR
Analogously, let W be a compact manifold with edge Y and boundary V and W, V
be the associated stretched manifolds. Then we consider boundary value problems
on W, realised as continuous operators

A= ( ? ) CWET(W) — WP H(W) (1.12)
for
N
WETRITTE(W) := W (W) & GB WHHI— 3 THI T 3 (V) (1.13)
j=1

between corresponding weighted Sobolev spaces on W, for a differential operator
A on Wyeg of order p which is edge-degenerate locally near Y in the splitting of
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variables (r,z,y) € X" x Q and vectors of trace operators defined in terms of
differential operators on W, of order p;, edge-degenerate near Y, composed with
the restriction operator to OW,eg.

The global weighted Sobolev spaces W#7(W) for the case of a stretched manifold
with edge without boundary are defined as those subspaces of H .(W,¢z) that are
locally near Y in the variables (r,z,y) € X" x R? of the form W*(R?, %7 (X")).
In the case of W with boundary we set W*7(W) = {u|intWreg fu € WS’V(M)} for
the double M of W as explained before. Here, for simplicity, we assume that the
boundary OW of our stretched manifold is a trivial X-bundle over Y and that the
transition maps between local ‘singular charts’ to X x R? are independent of the
axial variable r € Ry for small r (these assumptions are not essential, cf. [4] for
the case without boundary and Remark... below).

We will also employ spaces of the form

W (W;G) == WS (W) @ WP 3773 (V,G) (1.14)

for a (smooth complex) vector bundle G on V (we could consider spaces of distribu-
tional sections in suitable bundles on W as well; the corresponding generalisation is
straightforward); throughout this paper we content ourselves with trivial bundles
on W of fibre dimension 1.

1.2 Boundary value problems with parameters

In this section we introduce some tools on parameter-dependent boundary value
problems on a (not necessarily compact) smooth manifold X with boundary 0X.
First, if N = 2X is the double of X, we have the subspace L (N;R' ) of all
A\ € LY (N; R'), A\ € R, u € Z, which have the transmission property at 0.X,
cf. Boutet de Monvel [2]. If eT denotes the operator of extension by zero from
intX (= intX,) to N (applied to H{ (intX) for s > —1) and r™ the restriction of
distributions from N to intX we can form the operators

AN =1t AN)et (1.15)

which belong to L% (intX; R").
Write L (int X ; R )y, for the set of all (1.15) when A(\) runs through L (N; R ).
Set

Hlsoc(comp) (X) = {r+u ‘u € Hlsoc(comp) (2X)} :

It is well known that every A € L (X;R!), induces continuous operators

A HE, (X)) — HEH(X)

comp loc
for every real s > —%.
More generally, we can talk about spaces L" (N; E, F;R') of classical parameter-

cl
dependent pseudo-differential operators acting between distributional sections of
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(smooth complex) vector bundles E and F over a C* manifold N. For N =
2X, i € Z, we also have corresponding subspaces with the transmission property
at 0X. We then obtain families of continuous operators

AN =1 A(N)et : HY

comp

(X, E) — Hip (X, F) (1.16)
between Sobolev spaces of distributional sections in the bundles.

The parameter-dependent Boutet de Monvel calculus of ‘boundary value problems’
on X is defined as the union of spaces B*?¢(X;R') of 2 x 2 block matrices A(\) of
operators of order p and type d € N, continuous as operators

Hcsomp(X7 E) HISOEH(XJ F)
A(X) = ) & — 169
Heontr(0X,G) H " 2(0X,G4)
for s > —%, of the form
A(X) = diag(A(N), 0) + G(A) +C(A) (1.17)

with arbitrary operators (1.16). Moreover, G(\) are families of so called Green
operators, and C(\) are families of smoothing operators of order p and type d,
cf [2], [30], or [36]. Let us briefly recall the definition. Assume for convenience the
bundles E, F' and G+ to be trivial and of fibre dimension 1; the case of arbitrary
bundles then is straightforward and omitted.

The space B~°°(X) of smoothing operators (first for the case [ = 0) consists
of 2 x 2 block matrix operators C = (C;j)i j=1,2 where Ci1, C12, C21 and Cyy are
integral operators with kernels in C*°(X x X), C®(X x 0X), C®(0X x X) and
C>(0X x 0X), respectively. The space B~°*9(X) is Fréchet in a natural way, and
we set B~°0(X;R) = S(R', B=°°9(X)). Now B~>¢(X;R') for d € N is the set
of all operator families of the form

d
C(A) =Co(N) + > C;(N)diag(D?, 0) (1.18)

j=1

for arbitrary C;(\) € B~°%(X;R) and any differential operator D on X of first
order that is equal to % in a collar neighbourhood = 90X x [0, 1) of the boundary,
where z,, € [0,1) is the normal variable.

A Green operator of order p and type 0 in the half-space Q@ x Ry 3 (', x,), @ €
R"~! open, is defined (modulo smoothing operators) as

Op,: (9)(A) (1.19)

for an operator-valued symbol g(z', &', \) where

g(@', €', )) € SHQx R L2(Ry) © C,S(R+) ® O s, (1.20)
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cf. Example 1.1.7 for g+ = 1. The symbol space on the right of (1.20) is based on

the group action Kk := {diag(m(;, 5%)}6 N in the preimage and image spaces;
erR 4

we have also g*(z',&,\) € SH(Q x R L2(Ry) & C,S(Ry) @ C)r - for

*

K* = {diag(m(s, 5_%)}

SER,

If Y : U — Q xRy is a chart on X near the boundary (for a coordinate neigh-
bourhood X with U’ := UNdX # (), where x' := x g 2 U — Q defines a chart
on 0X) we can form the operator pull back of operators ¢G(A\)y for localising
functions ¢, 1 € C§°(Q2 x R4) to X.

Then Bé’O(X ;R), the space of Green operators of order y and type 0 on X, is
(modulo B=°*9(X; R)) defined to be the set of all locally finite sums of such oper-
ators (x 1), {¥Op(g)(A\)%} . Finally, Béd(X; R!), the space of all Green operators
of order p and type d, is the set of all G(A\) = Go () +Z?:1 G;(N)diag(D7, 0)+C(\)
for arbitrary G;(\) € B4 7°(X;R!), C(\) € B—4(X;R).

To complete the definition of (1.17) we require G(A) +C()) € BL*(X;R!) (clearly,
by notation, for global Green operators there is no need to split up a global smooth-
ing operator C(A)).

We shall systematically employ the principal symbolic structure of boundary value
problems; let us recall the definition for B#¢(X) (which is the case [ = 0; the no-
tions for arbitrary [ are analogous).

For simplicity, from now on we assume the vector bundles E, F' in the upper left
corners to be trivial, while the bundles G4+ may be non-trivial.

The principal symbol of an A € B#%(X) is a pair

o (A) = (94 (A),00(A))

where oy (A) := oy (A) is the standard homogeneous principal symbol of A in the
upper left corner as an element of L’ (intX). in the scalar case; then oy (A) €
C>®(T*X \ 0) (with smoothness up to the boundary and usual homogeneity of
order y in the covariables). The boundary symbol ¢5(A) parametrised by (z’,¢£') €

T*(0X) \ 0 is defined by
oo (A)(2', &) = diag(oa(4)(2, &), 0) + 09 (G) (2", &)
where o9 (A) (2, &) =170y (A4)(2',0,¢, D, )et. We also write

op(®) (&, € Yulzn) = / / o ES (el g €6 u(En) i s

and op™ (p)(2',&') := rop(p)(z', & )e™ for a symbol p(z', z,, &, &,) in local coor-
dinates (z',z,) € Q x Ry near the boundary. If necessary, instead of op(p) we

write op, (p).
Moreover, 05(G)(z',¢') in local coordinates on 0X, i.e., (z/,¢) € T*Q\ 0, is

nothing other than o5(G)(z',£") = 05(Go)(2', &) + 2?21 05(G;)(x', €)% where

7
oz,
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05(G;)(@',€") = (95) (u—j) (z', ) for g replaced by the symbol g; in the local repre-
sentation of g; as Op,/(g;). Note that homogeneity of the boundary symbol means
oo(A)(a',5¢") = 6ksop(A) (2, & )ky " for all § € Ry, (2/,¢') € T*(0X) \ 0.

For our applications it is essential to admit X to be a non-compact C*° manifold
with boundary. Similarly as in the case without boundary we have a notion of
properly supported operators in B#4(X) (we do not repeat this here but tacitly
use it). Then every A € B#4(X) has a decomposition as A = Ay +C for a properly
supported Ay € B#4(X) and a C € B~°>¢(X). Properly supported operators pre-
serve the ‘comp’ Sobolev spaces and may be extended as continuous map between
the respective ‘loc’ Sobolev spaces.

Theorem 1.2.1. Let A € B»4(X), A € BM4(X), and let A or A be properly
supported. Then AA € BFHil(X) (provided that the bundles in the image of A
fit to the one in the domain of A), for h = max(d + ﬂ,J), and we have o(AA) =
o(A)o(A) (with componentwise composition).

An A € B*%(X) is said to be elliptic if

(i) oyp(A) #0onT*X \0;

(ii) o0s(A) induces isomorphisms

H*(Ry.) H*7H(Ry)
oo(A) (', ¢): o @ — @ (1.21)
G G

for every 2’ € 0X (with subscript ‘z’’ denoting the fibres over z').

Theorem 1.2.2. An elliptic operator A € B*%(X) has a (properly supported)
parametriz P € B~ (X) in the sense that PA—T € B4 (X), AP -1 €
Boodr (X)), (with d; = max(p,d), d, = (d — p)*, and T denoting the respective
identity operators, v := max(v,0) for any v € R).

We now pass to the so «called Mellin quantisation of families
A(z,n) € B»4(X;T3 x R?); here 'y := {z€ C:Rez=p} for some real S,
and I's x R? in the notation of parameter-dependent families means that (Im z, 1)
is treated as a parameter when z varies on ['.

By O(U,E) for U € C open and a Fréchet space E we denote the space of all E-
valued functions that are holomorphic in U (in the Fréchet topology of uniform
convergence on compact sets).

Definition 1.2.3. Let B*%(X;C x R?) denote the set of all H(z,n) €
O(C,B**(X;R?)) such that H(B +ip,n) € B#I(X;R.10) for every 5 € R, uni-
formly in compact intervals.
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The operator functions of the latter definition will be employed as amplitude
functions of pseudo-differential operators based on the Mellin transform in Ry >
r, Mu(z) = [;° r*tu(r)dr.

Given H(r,r',z) € C®(Ry x Ry x F%Jr) for a weight v € R we set

!

T, _(1_ i 1 . dT
op (H)u(r) := // (F) (z=7+ p)/H(r,rl,i—’7+ZP)U(7°I)7dP;

first for u of compact support in 7 € Ry, and then for u in more general weighted
distributions spaces (also vector-valued ones).
Let @ € RP be any open set and fix § € R.

Theorem 1.2.4. There is a continuous map

C®(Ry x Q,BHH(X; Ry E)) — CF(Ry x Q,B44(X;C x RY)),

called a Mellin quantisation A(r,y, p,7) — ’}—Z(r,y,z,ﬁ), such that, when we form

A(r,y, p,m) == A(r,y,mp,mn), H(r,y, 2,n) == H(r,y,z,m) we have
op,.(A)(y,n) = opy, (M) (y, ),

mod C®(Q, B4Ry x X;R?)), for every v € R Moreover, setting

AO(Tayapan) = A(anaTPaTU)a %O(Tayazan) = H(anazaTT’) we also have
op, (Ao)(y, 1) = oy, (Ho)(y, n)

mod C®(Q, B4Ry x X;R?)), for every v € R.

Concerning proofs of the results of this section, see, e.g., [13].

1.3 Edge quantisation

By edge quantisation we understand a (non-canonical) map from the space of
edge-degenerate (pseudo-differential) boundary value problems into the so called
edge algebra of operators, acting between weighted edge Sobolev spaces (and
subspaces with asymptotics). An edge-degenerate boundary value problem on an
(open stretched) wedge X x Q 3 (r,z,y) is an operator of the form

A(r,y,rD,,rD,) := Op,op,(A), (1.22)

for an operator-valued amplitude function A(r,y, p,n) = A(r,y,rp,rn) where
A(r,y, p,7) € C°(Ry x Q,B44(X; ‘1;;7(1))'

In order to construct the edge-quantised operators we first fix cut-off functions
w(r), wo(r), wi(r) such that wg = 1 on suppw, w = 1 on suppwi, and arbitrary
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cut-off functions o(r) and &(r), and form the operator-valued amplitude functions
of the form

aly,n) = o) {w(rll)r opi; (M) (y, n)wo(r [n])
+ (1 —w(rln))r="op,(A)(y,n)(1 —wi(r[n]) }6(r), (1.23)

where A is given as before, and #H associated with A via Theorem 1.2.4.

Observe that
a(y,n) = o(r)op,(A)(y,n)a(r) (1.24)

modulo an element of C*°(Q, B~ °>4(X";RY)), and a(y,n) € C=(Q, B4 (X";R)).
In addition we know that a(y,n) € S*(Q x RY;E, E) for E = K*7(X") &
Ks=27=3 ((OX)N,G_), E = Ks~m7=1(XN) @ Ks~h= 2703 ((§X)", Gy ) where
the group actions in F or F are given as

ks(u(r,z) ®o(r,z')) := 5%1(11(&, x) ®v(dr,z")), (1.25)

0 € Ry. In these relations the smoothness s is arbitrary, up to the condition
s>d— %
With (1.23) we associate the homogeneous principal edge symbol
on@)(y,m) = w(rln))r—"opy * (Ho)(y, mwo(rln|)
+  (L=w(rn))r~*op,(Ao)(y, n)(1 — wi(rinl))

with Ho and Ag as in Theorem 1.2.4.

In parametrix constructions for elliptic operators we shall have to consider com-
positions of operator-valued amplitude functions of the kind (1.23), for different
orders p. It is known, cf. [33], [13], that such compositions are again of that struc-
ture, modulo so called smoothing Mellin plus Green symbols. In our calculus below
we need a few details; therefore we recall the main notation.

Let M°4(X;T3), B € R, denote the space of all

f(2) €0(B —e <Rez < f +¢,B X))
for some e(f) > 0, such that
f(9 +ip) € S(R,, B~(X))

for every f — e < ¥ < 8 + ¢, uniformly in compact subintervals.
For every f(y,z) € C®(Q, M—>4(X; FnT-I—l_,Y)) we form the operators

m(y, ) =~ w(rlopy, * (F)(y)e(r[n)) (1.26)
for any fixed cut-off functions w, @. We then have

m(y,n) € SH(Q x RY; E, E>)
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for B> := K7 (X") @ K7 2((8X)",G_), and E as before, for arbitrary s >

d— %, and the group action (1.25) in E and E*, respectively. In this notation

we keep in mind the bundles G4 that are given in connection with f(y,z). The
operator family (1.26) is called a smoothing Mellin symbol of the edge calculus
of boundary value problems. The homogeneous principal edge symbol of (1.26) is
defined as

on(m)(y,n) = r~"w(rln))op,y * () @)a(rn]).
To complete the symbolic structure of such problems it remains to define the Green
symbols. Those will include (by notation) also additional edge data of trace and

potential type with respect to the edge. That means we are talking about 3 x 3
block matrix-valued symbols. Let us set

ST(XM) 1= wK=7(X) + (1 - w)S(Ry, € (X)),
SY(0X)",G) = wK=7((0X)",G) + (1 - w)S(R+,C¥(X, @)
for some cut-off functions w(r), and set
ST (XN G) :=8"(XN) e ST ((0X)", Q).
Similarly, we also set
K57 (XN G) = K27 (X)) @ K57 2773 ((0X)N, G). (1.27)

In spaces of the kind 87 (X";G) ® T or K*7(X";G) @ U we consider the group
action K := {Ks}scp, , defined by

n41

ks(u(r,z) do(r,z’) ®c) =02 (u(dr,z) dv(dr,z")) @ dc, (1.28)

0 € Ry. The choice of the group action (1.28) will be useful for having transparent
order conventions in our operator-valued symbols. There are also the natural group
actions on the spaces K*7(X”";G) @ CJ given by

u(r,z) ®v(r,z') dec— 6nT+1u(6r, z) ®ozv(dr,z")) @,
0 € Ry . According to Remark 1.1.2 we then have the natural identification
WH(RE, K37 (XM) @ K257 3((0X)N) @ ) =
W (RL, K57 (X)) @ W3 (RE, K527~ 3 (X)) & H* L (RY, C).
A Green symbol g(y,n) of order u € R and type 0 is defined by
a(y,n) € SHQU X R K (XNG) @ T, 87 (XN Gh) & Ut ) (1.29)

for an e(g) > 0 and all s > —%, and a similar condition for the pointwise adjoint

based on group actions k*, similarly as in the definition of Green symbols for
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boundary symbols. Then a Green symbol of order i € R and type d € N is defined

by
d

a(y,m) = go(y:m) + > 9;(y, m)diag(D’, 0, 0) (1.30)
j=1
for Green symbols g;(y,n) of order 1 and type 0, j = 0,...,d, with D being of
analogous meaning as in (1.18) (i.e., differentiation of first order transversal to
0X).
The homogeneous principal edge symbol of (1.30) is defined as

d

on(9)(y:m) = anlg0)(y,m) + Y oalg;)(y,n)diag(D?, 0, 0)
j=1
where o4 (g;)(y,n) is the homogeneous principal symbol of g;(y,n) as an element
of the space on the right of (1.29). Observe that when we set

oty i= ("D 4 gty (1.31)

we have the homogeneity a(y, 6n) = d#ksa(y,n)r; * forall§ € Ry, (y,n) € T*Q\0,
where {Ks}scp, is the group action in (1.28) (of course, defined for the involved

dimensions j1 in the third component).

1.4 Edge boundary value problems

Edge boundary value problems may be introduced in terms of operator block
matrices acting between spaces of the kind W*?(W; G) & H*~1(Y, J) for suitable
bundles G on V and J on Y, respectively (cf. the notation (1.14)). Recall that
the spaces W7 (W; G) are defined with respect to the natural group actions in
K#7(X") and K*~ 272 ((8X)")-spaces, related to the dimensions.

Let us first define the global smoothing operators of the calculus. A smoothing
operator € of type 0 is characterised by the condition of continuity

W(W;G-) WITHEE (W Gy )
¢: D — D
H (Y, J_) H>®(Y, J})

for all s > —1, s’ € R, and some £(¢) > 0 together with a similar property of
the formal adjoint; here G+ and Ji are bundles on V and Y, respectively. Let
2)~°-%(W) denote the space of all those operators (if necessary, we also write
D0 (W;v) for v := (G_,Gy;J_,Jy)).

A smoothing operator € of type d € N is a sum € := & + Z?:l ¢;diag(D?, 0, 0)
for arbitrary elements €; € 9~°°(W), j = 0,...,d, and a first order differential
operator D on W that is equal to the differentiation in normal direction to OW,eg
in a collar neighbourhood of the boundary.
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Definition 1.4.1. Given a compact manifold W with edge Y, by an edge boundary
value problem of order p € Z and type d € N we understand a 3 x 3- block
matriz operator 2 that is modulo =>4 W) of the following form: Writing A =
(A5)i,j=1,2,3 we require

() (RAij)ij=1,2 € B4 Wieg),

(ii) locally near Wying in the splitting of variables (r,z,y) € X" x Q we have
2 = Op,(a) for an amplitude function (1.31) for symbols of the form (1.23)
and (1.26) and a Green symbol (1.30).

By 9*4(W) we denote the space of all edge boundary value problems on W, of
order 1 € Z and type d € N; if necessary, we also write 9*%(W;v) when we refer
to the bundle data v := (G_,G4;J_, Jy).

Theorem 1.4.2. Every A € P4 (W;v) induces a continuous operator

W(W;G-) W (W Gy )
A ® — ® (1.32)
Hs_l(ya J—) HS_N_I(Ya J+)

for every real s > d — %
We now define the principal symbolic structure of operators 21 € 2#4(W).
Definition 1.4.3. Given 2 € 9*4(W;v), the principal symbolic hierarchy
o(A) := (op(A),06(A),0n(A))
consists of
(i) oy (), the interior symbol, defined by
oy () = oy ((Aij)ij=1.2)
in the sense of the interior symbolic structure of B“’d(Wreg), cf.
Definition 1.4.1 (i);
(ii) oa(RA), the boundary symbol, defined by
05 (A) = 0o ((Aij)ij=12)

in the sense of the boundary symbolic structure of BF%(Wieg), cf.
Definition 1.4.1 (i);
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(iii) oa(2A), the edge symbol, defined as the operator family

KS(XNG) JCETETTI(XN Gy )
on(@)(y,n) : @ — @ (1.33)
J—,y J+,y

for (y,m) € T*Y \ 0 for any s > d — %

Observe that the 2 x 2 upper left corner oa((i;)ij=1,2)(y,n) for every fixed
(y,m) € T*Y \ 0 is a family of elliptic boundary value problems on the infinite
(stretched) cone X” with boundary (8X)", with ellipticity referring to the princi-
pal symbolic hierarchy of the cone calculus (Fuchs type symbols, conormal symbols,
exit symbols), cf. [31], [32] and [13]. In particular, the principal conormal symbol
is a family of maps

omon()(y,2) : H¥(X;G_) — H 7" (X;G4) (1.34)

s € R sufficiently large, where we set H*(X; Q) := H*(X) & H*~2(0X, G). Note
that (1.34) only depends on the 2 x 2-upper left corner A of 2; so we also set
omon() = opon(A).

Remark 1.4.4. By virtue of the edge-degeneracy of our operators the compo-
nents oy (A) and op(A) in the local splittings of variables (r,z,y) € X" x Q and
(r,2',y) € (OX)" x Q with the covariables (p,&,n) and (p,&',n), respectively, have
the following specific form:

UlP(Q’l)(r:x:y;pafan) = riuﬁw(m)(rawayarpafarn) and

0—3(9’[) (T', mla Y, p, fla 77) = T_N&a(m)(ra mla Yy, rp, fla 7”77);
where 6y () (r,2,y,p,&, 1) and 6o(RA)(r, ', y, p, &', 7), are of the same nature as the
‘usual’ homogeneous interior and boundary symbols, respectively, but are smooth
up tor =0.

Theorem 1.4.5. A € P»4(W;v) and B € P"*(Ww),v =
(G_,GyJ_,Jy), w = (Go,G_;J_,J_) entail AB € P " (W;v o w) for
vow = (G_,G4;J_,J3), and h as in Theorem 1.2.1, and we have

o(AB) = o (A)o (B)
(with componentwise composition).

Remark 1.4.6. In the following considerations the relations between operators on
W and V will play some role. Note that there is an analogue of Definition 1.4.1 for
the case without boundary which gives us the operator spaces P (V;v) for bundle
data v as before. Those operators are continuous as

Wbt iw,G) Wk (1,64
B ® — ® : (1.35)
Hs_l(Ya J—) Hs_“_l(ya J+)
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in this case for all s. The choice of the smoothness indices in (1.35) is motivated
by (1.32) when we interpret P*(V;v) as the space of lower right 2 X 2 corners of
elements of P4 (W;v). The symbolic hierarchy only consists of two components,
namely,

o(B) = (05(B), oA (B)).

Remark 1.4.7. The assumption that W is compact was made for convenience.
The essential elements of Definition 1.4.3 apply also in the non-compact case when
we assume X to be compact. An example is W := X* xR? with V = (0X)* xR?;
the associated, stretched manifolds in this case are

W=R;y x X xR and V=R, x 90X x R?, (1.36)

respectively. The corresponding edge operator spaces will be again denoted by
D4(W; v). Instead of (1.32) we have continuity between corresponding ‘comp’ and
‘loc” versions of the involved spaces (where ‘comp’ and ‘loc’ in the example (1.36)
refers to (r,y); also in general the supports in the ‘comp’ case may intersect Wsing
and Ving, respectively). Moreover, there is an analogue of Theorem 1.4.5 when one
of the factors is properly supported in an obvious sense, or when we assume a lo-
calising function between the factors.

Remark 1.4.8. Another useful generalisation of 9*(W;wv) is the space of all
operators of the form

{diag(1, R}, )Adiag(L, R;7) : A € V4 W;v)} (1.37)

for any fized reals p, o, where R, is any elliptic element of LY\ (Y, J) that is assumed
to be a reduction of orders by v when Y is compact (i.e., induces isomorphisms
Ry : H¥(Y,J) — H*®*V(Y,J) for all s € R). If we assume the bundles Ji to be
direct sums of bundles J = ®f_,J;, Jy = ®_, Jy j we can also modify (1.37) by
replacing R;° and R§+ by diag(R; " :i=1,...,k) and diag(Rﬁivj j=1,...,10).
For simplicity, we denote again the operator spaces (1.37) by D*4(W;v), where p
is the dominating order in the upper left corner, while the other orders are known in
the concrete context. The basic definitions and assertions, especially, on ellipticity,
have straightforward extensions to that case. Clearly, there are other variants of
choosing order shifts by composing with diagonal matrices, where the other entries
are elliptic in the edge algebra on W (without extra conditions on V and Y) and
on V (without extra conditions on'Y").

2 New quantisations on closed manifolds

2.1 Ellipticity and reduction to the edge

Definition 2.1.1. An element % € D*4(W) is called elliptic if the following
conditions are satisfied:
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(i) oyp(A) #0 on T*(Weeg ) \ 0 and, locally near Wying, 64 (2A)(r,2,y,p,&,7) #0
fOT (ﬁ:f;ﬁ) 7é 07 up tor = 0;

(ii) oa(A) is a family of isomorphisms between the spaces occurring in the
relation (1.21) for any s > max(p,d) — & (where (z',¢') is to be replaced by
points on T*(0Wreg) \ 0), and, locally near OWsing, Go(2A)(r,a',y, p, €', 1)

for (p,&,7n) # 0 is a family of such isomorphisms, up to r = 0;

(iii) The operators (1.33) form a family of isomorphisms for all (y,n) € T*Y \ 0,

for any s > max(u,d) — %

Theorem 2.1.2. Let A € D4(W;v), v :i= (G_,G4;J_,Jy) be an elliptic oper-
ator. Then

(i) A has a parametriz P € @_”’(d_“)+(W;v_1), v li=(Gy,Go;Jy,J), e,
PA—T € Y4 (W;v), AP — T € Y% (W;v,)

for d;y and d,. as in Theorem 122, v, = (G_,G_;J_,J_), v, =
(G4, Gy 4, Iy );

(ii) A defines a Fredholm operator (1.32) for every s > max(u,d) — 3.

Consider elements 2; € P4(W;v;), vj := (G{,Gi; JI, Ji), j =1,2, written in
3 x 3-block matrix form, with elements A; belonging to B*4(Wyes; G*_,G%.) in the

2 x 2-upper left corners. Assuming A := A; = Ay (with G, =: G1) we can also
write

W(W;G-) WTETT(W; Gy )
Q[j = (A IC]) : S¥) — 5% s
7;' Q] Hs_l(Y, Ji) Hs—y—l(Y, JJJF)

j=12.

Let 2(; be elliptic in the sense of Definition 2.1.1 and compare the Fredholm indices
ind?;, 7 = 1,2, by an analogue of the Agranovich-Dynin formula in boundary
value problems.

First observe that the operators

W (WG W ETTE(W Gy )

_ A Ky Ky S 2

A= |71 0 Q: HY(Y,J2) —  HeLY,JL)

0 1 0 ® ®
Ho=Y(Y, Jt) Hs=h=1(Y, J2)



2 NEW QUANTISATIONS ON CLOSED MANIFOLDS 25

WH(W;G) WeTETTH WGy )

_ A Ky Ky ® S5
Uy:= T Q2 0 |: H Y, J2) —  H " YY,J?)

0 0 1 ® ®
H*=Y(Y,J) Hs=r=1(Y, Jb)

1
3

(P Ly
)
denotes a parametrix of 2; which we have by Theorem 2.1.2 we find (by a purely
algebraic calculation) a parametrix B, of 2, in the form

B Pr L1 =Pk
Pr=[0 0 1 : (2.1)

are Fredholm operators for s > max(u,d) —
If

St B =Sk

By virtue of Theorem 2.1.2 (i) and Theorem 1.4.5 we then obtain mod
Yo (W; )

1 0 0
Py = | BP1 T2Lr —ToPiKs + Qs | € DV (W;9); (2.2)
81 81 —81]C2

here, 0 = (G4,G4;J1 ®J2,J2 @ JL), and his as in Theorem 1.2.1. In particular,
the operator
R.= <7§£1 —TPiK2 + Qz>
' By —S51K,

belongs to LY (Y, J: @ J2,J7 @ J) and is elliptic. Thus

H=L(Y, J1) HL(Y, J2)
R: & — ® (2.3)
Ho=L(Y, J2) Ho=Y(Y, JL)

is a Fredholm operator with ind R being independent of s.

Theorem 2.1.3 (first version of the Agranovich-Dynin formula). Let ;
and Ay be elliptic edge operators of the class D (W) with the same 2 x 2-upper
left corner A. Then we have

indAs —ind2; =ind R
for the elliptic operator (2.3) on the edge Y.

Proof. We have ind®?; = ind glj for j = 1,2, and indP; = —ind2A;. The
formula (2.2) gives us ind 2>, = ind R which yields ind 2y —ind 24 =ind R. O
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We now pass to another application of this algebraic construction. Let 2l; €
VWi v;), v; = (GL,GY; 02, J1), j = 1,2 be elliptic elements which are of
3 x 3-block matrix form. In contrast to the construction before we now only as-
sume that the upper left corners A := (2;)1; = (™2)11 are the same for j =1, 2,
and write

4 A WY (W) WE—HY—H (W)
3 yekask(vial g9 yen=banb (v 61, )
W E775(V,G)
where VS—%W—%(V; G,J) = o) for bundles G on V and J on

H* (Y, J)
Y'; further, when we write ((mj)kl)k,l:1,2,3; we have ﬁj = ((Q[j)lz, (Q[j)w), Tj =
C(A5)21, (A)23), Qf = ((A))ki)k,i=2,3- Similarly as before we now form the ex-
tended operators

WSFY(W) WS—HKY—N(W)

) A K K @ ®
o= [Ty 0 Q| VEITE(VGER,JE) — VIR (VGEL L)

0 1 0 & D
VR (VGLLL) e (V6L )
and
WSW(W) Ws—u,’v—ﬂ(w)
~ A RZ Rl 1 169 1 691
Ro:= [Ty Qo 0 |: V7277 2(V;G?,J2) — VST 277072 (V;GE,J7) .
0 0 1 @ @
veoirhviet, gty v k(e )

P g
61 %1
of 2, of analogous form as (2.1) which gives us an elliptic operator

R = 3221 —‘ZgPle + QZ
o %1 —61R2

Now if we form a parametrix P; = < ) of 2; we obtain a parametrix ‘]}1

(2.4)

in 9°(V; ¢) with bundle data v = (GL®G%, G oGL; JL ®J2, J3 & JL). Moreover,
we have

V57%777%(V; GL,J_}_) Vsj%’vi%(V; G%F?Ji)
. ¢ ., 5 , (2.5)
ye-bo—4 (V. G2 J?) VamEaTa (V6L L)
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Theorem 2.1.4 (second version of the Agranovich-Dynin formula). Let
2, and Ay be elliptic edge operators of the class P* (W) with the same 1 x 1-upper
left corner A. Then we have

inds —indA; =indR

for the elliptic operator (2.4) on V.

Proof. The arguments are analogous to the proof of Theorem 2.1.3. We form 2>,
which is again a triangular matrix, similarly as (2.2), now with R in the lower right
corner. This gives us immediately the asserted index expression. O

2.2 Boundary value problems with fictitious edges

We now apply the constructions of the preceding sections to the case of a compact
C*° manifold X with boundary 0X, where on the boundary we fix a closed com-
pact C*° manifold Y, regarded as a ‘fictitious’ edge. As is shown in [19] ‘standard’
elliptic boundary value problems for differential operators with differential bound-
ary conditions can be quantised in a way that the new operators act in weighted
edge Sobolev spaces and are Fredholm, either automatically for sufficiently large
weights, or, after adding extra edge conditions for arbitrary weights. The num-
ber (more precisely, the difference of the numbers) of edge conditions of trace
and potential type follows by applying relative index results for conormal sym-
bols; all this up to a discrete set of exceptional weights. Similar results have been
obtained before in [4] for the case of elliptic differential operators on a closed com-
pact C*° manifold M with fictitious edge Y C M. Although for arbitrary elliptic
pseudo-differential operators on M (for the closed case) or pseudo-differential ellip-
tic boundary value problems on X (for the case with boundary) edge-quantisations
with respect to Y always exist, the explicit information on admissible weights or
the number (and the computation) of extra edge conditions is extremely hard to
deduce. Therefore, it is an interesting task to enlarge the classes of known ex-
amples. What concerns [4] the answers are given for elliptic differential operators
on a closed C'*° manifold M as well as for their pseudo-differential parametrices,
using the fact that the edge calculus is closed under parametrix construction, and
the parametrix for an elliptic edge problem is compatible with the parametrix of
the elliptic operator on M as a smooth manifold. What we do not reach in this
construction are elliptic operators on M which have not the transmission property
with respect to any hypersurface Y on M (when codimY = 1), as is typical for
the case M = 0X for a manifold X with boundary and the Dirichlet-Neumann
operator on M (which is of order 1 and with principal symbol equal to the absolute
value of the covariable on X, up to a constant). Also other elliptic operators on
0X, obtained by reducing elliptic boundary value problems to the boundary are
of that type (except for trivial cases). The program of the present section is to
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derive edge quantisations for such operators in general. For simplicity, we assume
Y to have a trivial normal bundle in 0X; the general case can be treated as well,
cf., analogously, the arguments in [4]. In the following section we give examples
and specify the constructions, in particular, for the Dirichlet-Neumann operator.
Let A be an elliptic differential operator of order 2m on X, and let

A= < ? ) CHY(X) — H?™(X) (2.6)

be the operator, representing an elliptic boundary value problem for A, i.e.,
Au=fin X, Tu = g on 0X,

where T' = *(T1,...,T,,) is a vector of trace operators of the form T; = r,, B; for
differential operators B; of order pu; < 2m — 1 given in a neighbourhood of 0.X,
with smooth coefficients, where 7" satisfies the Shapiro-Lopatinskij condition with
respect to A. For abbreviation, in (2.6) we set

H**"(X) = H*7*™(X) & (P H* " (0X).
j=1

Fix a C'*° submanifold Y of 0X of codimension b, for simplicity, with a trivial
normal bundle in 9X. Then from [19] we have the following result:

Theorem 2.2.1. The operator (2.6) can be written as an elliptic edge boundary
value problem (in the sense of Definition 2.1.1)

Ws,'y(w) Ws—2m,’y—2m(w)
A7 & — & (2.7)
HS(Y,(CL("{,b+1)) HS*Zm(Y,CL(772m,b+1))

for every v € R with v—2m > beTl, 7—2m—beTl EN, y—p; > g, ’Y_,U/j_g ¢ N,

s>,uj+%f0rj:1,...,m, and

b
L('%b) = #{Oé HIOS Nb7|a| <7- 5}7

Hs—2m (Y, (CL(’Y—2m,b+1) )
H572m(Y,(CL(w72m7b+1)) = P ;
@, Homim 5 (Y, CHOmi—2:h)

concerning the other space on the right of (2.7), cf. the formula (1.13).
In other words, we have 27 € 9?™4(W;v) for d = max(uj + 1)j=1,....m, and

v denotes a tuple of trivial bundles where the fibre dimensions of those on the
boundary are ¢(y,b + 1) and ¢(y — 2m, b + 1), respectively (concerning notation,
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cf. also Remark 1.4.8).
Recall that the relation between (2.6) and (2.7) comes from isomorphisms of the
kind
WS7S(W)
(E L): @ — H*(X) (2.8)
HS (Y, (Cb(s,b+1) )

fors >0, s— b+71 ¢ N where X with the prescribed Y on the boundary is identified
with a manifold W with edge Y and boundary, and W is the associated stretched
manifold. Similarly, we have isomorphisms

Ws=3:5=3 (V) 1
(E' L'): e — H* 3(0X) (2.9)
HS—E(Y,CL(S—Evb))

for all s > 0, s — % ¢ N. in this case 0X with the prescribed submanifold ¥ on
the boundary is identified with a manifold V' with edge Y, and V is the associated
stretched manifold. Now 207 is just the result of a composition of A4 with isomor-
phisms of the kind (2.8), (2.9) or their inverses which are corresponding column
matrices.

Let us now observe that the process of reducing edge-boundary value problems to
the boundary has a simpler analogue in the classical context, the reduction to the
boundary in the smooth case. In fact, let

AN .
A = ( T ),1—1,2 (2.10)

be two elliptic boundary value problems for the same elliptic differential operator
A. Then from the pseudo-differential calculus of boundary value problems with
the transmission property at the boundary we can calculate a parametrix P; :=
(P, K;) within the calculus. This allows us to form

1 0
A2P1 = <T2P1 T2K1>

with equality modulo compact (in fact, smoothing) remainders. The operator
T>K; =: R is then pseudo-differential and elliptic on the boundary dX. We now
observe the same process along the lines of transforming 4; to corresponding el-
liptic edge boundary value problems 2], according to Theorem 2.2.1. Then

W (W) Wi (W)
A7 @ — S
HS(Y7CL(’Y,()+1)) Hf—2m(Y,CL(’Y—2m,b+l))

for

(3

W§—2m,fy—2m(w) - Ws—2m,’y—2m(w) ® @ WS—M,J‘—%N—M,J‘—% (V),

Jj=1
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Hgs—2m (Y, C(y—2m,b+1) )
H?72m(Y,CL(Fy—2m,b+l)) — a5 . (211)
@211 HeHii—3 (Y, Culr—ni,j *%rb))

The notation f; ; in connection with the components of T; = *(Tj 1, ..., ;) has
an analogous meaning as in Remark 1.1.9, namely as the orders of the differential
operators involved in Tj ;.

Remark 2.2.2. The assumptions on the weight v in Theorem 2.2.1 depend on i;
however, they exclude only discrete sets X; of exceptional weights. In the following
construction we assume 7y ¢ 1 U Xo.

The upper left corner of ] again coincides with the operator A, now realised
on a corresponding weighted edge Sobolev space. Applying the construction for
Theorem 2.1.4 we can form the operator

1 0
0 = (1 o)

where B] denotes a parametrix of 2] in the edge algebra of boundary value
problems, and R” is an elliptic operator in the edge algebra on the boundary V.

Theorem 2.2.3. The operator R" is an edge-representation of the elliptic operator
R on the boundary in a similar spirit as in the edge-representations of [4], where
we have ind R = ind R".

2.3 Edge quantisation of the Dirichlet-Neumann operator

We now apply the scheme of the preceding section to establish the edge quanti-
sation of a specific elliptic operator on the boundary X of a compact C*° man-
ifold X with boundary, namely, the operator which appears when we reduce the
Neumann problem for the Laplacian to the boundary by means of the Dirichlet
problem (which is the motivation of the notation). In other words, in (2.10) we
consider A = A and take T} = D the Dirichlet, and 75 = N the Neumann prob-
lem. What we want to do in addition to the information of the previous section
is to see in more explicit terms the structure of the operators R” associated with
R = Ty,K;. By ‘explicit’ we mean the symbolic structures of the corresponding
localised operators. Let us first localise the Dirichlet problem A; in the half-space
Ki ={z = (z1,...,2y) € R" : &, > 0}. In the following calculations it will be con-
venient to write ¢ := x,, and 7 := &,,. We have oy (A1) (2, ) = oy (A)(z,§) = —[¢|?
and

H?(Ry)
) . HY(Ry) —» ® (2.12)
C

—|¢')? - D}

Tiioy

o A)E) =
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for s > 3, (2/,¢') € T*R"* \ 0. We want to calculate op(A;)~*(¢'). To this end
we write —|&'|2 — 72 = —1_ (&, 7). (&, 7) for I+(&',7) := |€'| £ it for any fixed
&' # 0. We then have

—|€']* = D} = —op™ (I-)(§)op™ (I4+)(&").

This allows us to write

oA (€) == (PTENED 0) (T

Liimoy

We have, since [_ is a minus-symbol (in the terminology of Eskin [6]),
(opT(12)(€"))~ = optT(IZ1)(¢'). Moreover, if we form the map

KE): C — S(E,)
by k(&) := ce €'l we have

( op™ (14)(£")

L

) = (op*(1;1)(€) K(EY)

which follows by a straightforward calculation. This gives us

P A)HE) = (i) ke (TGO )
= —(op*(1)(€)opT(IZH)(E) k(E)). (2.13)
Note that op™(I31)(€)opt (1=1)(&") = opt (1:11=1)(€') + g(&') for some Green op-

erator g(¢') on Ry (in the sense of the boundary symbolic calculus).
The boundary symbol of A is equal to

_1e2 2 H**(Ry)
oa(A(E) = ( '“_D) mE) — e e

We then have an explicit expression for gy(.A2P;) when P; denotes a parametrix
of A;, namely

Ua(A2P1) = Ua(Az)Ua(Al)fl. (2.15)

In order to calculate the principal symbol of the Dirichlet-Neumann operator R it
suffices to look at the lower right corner of (2.15), and it follows that

d
U¢(R)(£,) = r{::o}ak(fl) = _|§’|'

Let us now recall a relation between ‘standard’ elliptic boundary value problems
and elliptic edge problems in the sense of Definition 2.1.1 for the case of the
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operators (_2.10) which represent the Dirichlet and the Neumann problem in the
half-space ]RZ. On 8]RZ = R"! we prescribe a fictitious’ edge Y that we assume to
be the coordinate hyperplane defined by &' := {z441,...,2,_1} for some 1 < ¢ <

n—1; then o' = (y,&') fory = (z1,...,24), and ¢ = (y, &) for T := (xg41,...,Tn)-
The operator A; = ( f) > is first continuous in the sense
H=2(R%)
A H(RY) — S ; (2.16)
Hs—%(]Rn—l)

in the following we always assume s > %

Introducing polar coordinates & — (r, ¢), Ks_—H \{0} = Ry xS% forb=n—1-—
q, Si =S"n{z, >0}, and 3 — (r,¢'), R® \ {0} = Ry x S°~! we can identify
our Sobolev spaces with weighted edge Sobolev spaces on the (stretched) manifolds
with edge R?

W:=Ry x S, xR? and V:=Ry x 7! x RY,
respectively, cf. the formula (1.36). Observe that, according to the general notation,
Weeg = Ry x S5 x RY, Wyipy = {0} x S} x R? and

Vieg = Ry x SP71 x RY, Ve = {0} x S*71 x RY.

We then have the weighted edge Sobolev spaces W7 (W) = W#(R?, K*7((S5)"))
and W*7 (V) = W*(R?, K*7((S*~1)")), respectively. The identifications are given
by the following theorem, proved in [4] (cf. also [19] for the case with boundary):

Theorem 2.3.1. For every s > bizl, §— ”"'Tl ¢ N, there are natural isomorphisms

p WS (W)
< Bs > : H*(RY) — @ )
s Hs(]Rq7(CL(s,b+1))

Similarly, for every s > %, 5 — % ¢ N, there are natural isomorphisms
WS,S(V)

’
<§7 ); HY R — ® .
s Hs(Rq,(CL(s’b))

By ‘natural’ we mean the constructions of [4]; they are not canonical but depend
on cut-off constructions, etc. Let

-1 -1
F F!
& L= () ma m=( g )
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denote the respective inverses. From (2.16) we then pass to

F572 0 F372AES F572ALS
0 F A F' DE, F' DL,
s . s—3 _ s—1 s—1
1= |5, 0 2 < D > (BEs Ly) = 20 Bs_;ALs (2.17)
B;_% 0 B;_%DLS
which represents continuous operators
WS’S(W) Wi_2’s_2(W)
A7 ® — &
Hs(Rq , CL(S7b+1)) HT*Z(]R‘] , CL(S*Z,b+1))
for o
stz,sfz(w)
Wi (W) = ® :
We5s=5 (V)
and
H372(]Rq,(cl,(572,b+1))
Hi72(Rq7(CL(572,b+1)) = P
Hs=% (R?, CUs=3:0))
A H (R
Similarly, the operator A4s = < > . H*(RY) — ® can be
N s— 32 mn—1
Hs—=z(R* 1)
rephrased as
Fs—2AEs Fs—2ALs
s F;_gNES F;_QNLS
— 2 2
A5 = 0 B, AL, |’ (2.18)
0 B;igNLs
2
which is continuous as
WS (W) W3 (W)
A5 ® — @
Hs(Rq , CL(S7b+1)) H;iz(Rq , CL(S*Z,b+1))

where the spaces Wi~ >**(W) and H3 ?(R?,C*(=2b+1) are defined by

Ws—2,s—2(w) Hs_2(]Rq,(CL(s_2’b+1))
D and D ,
WS*%S’%(V) Hs—%(ﬂgq,(jb(sf%rb))

respectively. Let P; = (P K) be a parametrix of .4;. Then, as in Section 2.2 we
have the operator

R:=NK : H"3(R"™') — H*~5(R* 1) (2.19)



2 NEW QUANTISATIONS ON CLOSED MANIFOLDS 34

as the lower right corner of AP which is just the Dirichlet-Neumann operator.
On the other hand, for the admitted weights, here denoted by s, we have the
associated edge operator in the lower right corner of A7, In order to calculate
that we first express 37, namely

FsPEs > F;KE. , F;PLs > F;KL ,

5 _ -3 -3

L= \B,PE,_» BsKE. , BsPLs—» Bs;KL| ,

2 2

Composition with 205 gives us

1 0 0 0

ASRS = 9011 R()H @112 RO12 7

©21 Ro1 Oz Rao
where @11 = FsligNPES,Q, 612 = FsligNPLsfz, 621 = B;igNLsBsPEsfz,
2 2 2
Q55 := B;_gNLsBsPLs_g. Moreover,
2
F' ,RE' , F' ;RL' ,
mSSZ(Rij)ij:12: ' oz > 2 I bz 82/
Ko B' NL,BKE' , B' ;NLB;KL' ,
§—3 §—3 §—3 §—3
Summing up we have obtained the following result:

Theorem 2.3.2. The (local) Dirichlet-Neumann operator (2.19) has the edge
quantisation

We5s=5(V) Wem5s=5(V)
R® = (Rij)i,j:1,2 : D — D
H#=3(Re,CHs=5:b)) Hs=5 (R, CHs=5:0))

for all s > %, Si — % ¢ N, where s; := s — 2i;l,i: 1,2.

As in the general case of Section 2.2 the latter theorem also admits a global variant
for V in the meaning of the stretched manifold associated with 0.X with edge Y. In
other words, applying Theorem 2.2.3 to tha case of the (global) Dirichlet-Neumann
operator we obtain a corresponding edge quantisation:

Corollary 2.3.3. For every weighty € R, v > %, %—% ¢ N for~; := 7—2i2_1, i=

1,2, the Dirichlet-Neumann operator R admits an elliptic operator R” in the edge
calculus, i.e., a continuous operator

WS=E775(V) We=E=3(V)
R @ — )
H*—3(Y,CH0—3:0) H*~3(Y,Ct0-3:0)

which is Fredholm for every s € R.

In Theorem 2.4.3 (ii) below we will explicitly express the principal edge symbol of
R” in local coordinates.
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2.4 The behaviour of principal edge symbols

Let us observe the above construction on the level of principal edge symbols. With
the reformulation of A; into 2} we can associate the families of operators

il + A- H* > (R}™)
on(RA)(n) == < U _Zz_A1x ) D HA(RYY) — & (2.20)
r-{t:O} a1 HSi (]Rb)
for s; ;= s — 2i2’1, i =1,2,and n € R? \ {0}. Here A; is the Laplace operator
in the variables # € R"*!. By introducing polar coordinates in RC*! we can write
Az =r~2 Z?:O a;(—rd,)’ for coefficients a; € Diff* 7 (S®). Moreover, we have the
isomorphisms

~ Ko ((S5)") b1
Fo: HYRYYH — ® for s >0,s — —— ¢ N, (2.21)
(Cb(s,b+1) 2
-7'13 = t(Fs:Bs)a and
~ ’Csi,si((s’b—l)/\) b
Fi, . H%(R) — ® for s >0, s; — 3 ¢ N, (2.22)

(CL(Si ,b)

}N—;i = “(ﬁ’s’i,B;i). Let us write (F,)~! =: & = (E, L,) and (}N—;i)_1 =: g‘;z =
(B!, L'). Then, if we compose (2.20) with the isomorphisms from (2.21), (2.22)
we obtain (after rearranging some rows and columns in a suitable manner)

FS—2A(W)ENS FS—2A(77)Z/S

. . . F! T,E F! T;L

: 1 s _ s;Lills s dides
dig 7y Fpor@pmés = | B pRTL o)

0 B! T,L,

where A(n) :=r=2{—|ry|> + Z?:o aj(—=rd,)}, Ty =1, _, j;-—__l,

) ) RGN K22 ((S)M)
diag(Fo_n, F1)on (@A) ), - o — o (2.24)
Culsb+1) (CL(S—2,b+1)

for 2 2 b \A
o K22 ((51)7)
K:?fbsfz((si)/\) = o)
’Csi,si((sbfl)/\)
and Cf 2 = CUs=20HD) g CUsiD) for s > 0,5, — L ¢ N, i =1,2.

[3
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Proposition 2.4.1. The operator families (2.24) are isomorphisms for all n # 0.

Proof. The ellipticity of A; as a boundary value problem in the half space en-
tails the bijectivity of the boundary symbols o5(A4;)(£') for every £ # 0, cf. the
formulas (2.12), (2.14). This implies the bijectivity of (2.20) for every n # 0 and
s > 2. In fact, for oA (2$)(n7) we have in the notation (2.20)

W2 (R, H=*(Ry))
on (A7) () = opz (0a(Ai) () = W (R, H*(Ry.)) — b
Hsi(]Rb)

(with the identification W*(R®, H*(R;.)) = H*(R}™)), n # 0, and we obviously
have
oA (A7) (1) = opgz (g0 (Ai) 1) (). (2.25)

Now, as mentioned before, we may apply the isomorphisms (2.21) and (2.22) to
the involved spaces and just obtain the opeator families (2.24) as bijections. [

Observe that the (2% 1)- upper left corners of (2.24), i.e., the corresponding column
matrix operators

on)) = (A ) KPS KRN, 220

n # 0, are elliptic boundary value problems for the operator —|n|*> + Az in the
infinite stretched cone (S%)” with boundary (S°~*)". As such they are Fredholm
operators for all 5, s > %, Si— % ¢ N. In the formulation (2.26) the number s plays
the role of the weight which can be treated independently of the smoothness index
3. As Fredholm operators in the cone calculus the subordinate conormal symbols

2 ) H*72(5%)
orron(A)(z) = ( ?FO o ) L HY(SY) — (@b ;
{t=0} dfi— 1 Hsi (5~

are bijective for all Rez = %L — 5. For those weights s the (differential) cone

boundary value problems (2.26) have the index
indon(A))(n) = (s — 2,0+ 1) + ¢(s;,b) —t(s, b0+ 1).

In fact, oA (A;i)(n) is the upper left corner of the isomorphism (2.24) first for § = s
and then also for arbitrary § > 3. Then the index of o (A;)(n) is necessarily the
difference of the dimensions of the finite-dimensional components of the spaces
in (2.24).
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Remark 2.4.2. The calculus of boundary value problems on a manifold with con-
ical singularities has been elaborated in [31], [32]. In general, the construction of a
pseudo-differential parametriz of an elliptic problem within the corresponding cone
algebra is not elementary. We need the ‘full’ cone calculus with various kinds of
quantisations, etc. However, in the present case of operators (2.26) there is an ex-
plicit solution: The inverse of the block matriz (2.24) follows by the formula (2.25)
and the (1 x 2)-upper left corner of (2.25) is then the parametriz of (2.26).

For purposes below we want to illustrate this for the case i = 1. In the beginning of
this section we calculated (A, *)(¢"), cf. the formula (2.13), and we rewrite the
first component as op* (I;1)(¢)op™ (I=1)(¢") = op* (—|¢']> — 72) + g(¢') for some
Green operator of type 0 on the half-axis, cf. Theorem 1.2.1.

Then, writing £ = (n,£’) it follows that
oa (@)™ () = = (opz (p)(n) opzk(n,E')), (2.27)

n # 0 for p(n, &) == op* (> + |€']* + 73 (0,€) + 9(n, ).

Theorem 2.4.3. (i) The elliptic cone boundary value problems (2.26) on (S%)"
for i =1 have the family of parametrices

on(A1) H(n) = = (Feopg (D) () Es—2 Fyopz (k)(ME;_ ),

1
2

n #0;

(ii) The principal edge symbol of the operator R® of Theorem 2.3.2 has the form

s F;_gr(U)EN';_l F;_gT(Tl)IN/s_l
0’/\(% )(77) = (B/ 237'(77)E’ j B zr(n)il 21
’Csfé,sfé((sbfl)/\) ]Csfgsf%((sbfl)A)
57 — ©® ,
(CL(S—%,())) (CL(S—%,I)))

n # 0, and is a family of isomorphisms; here (1) := opz [—(In|2+]€'12) 2] (7).

Observe that, although the boundary value problems on the infinite cone (S% )"
belong to the cone algebra, cf. Remark 2.4.2, their Mellin symbolic structure,
especially the conormal symbols, are not so explicit in the expressions of the latter
theorem. However, there is a general way of producing the Mellin symbols in terms
of the actions of operators, similarly as the formulas from the pseudo-differential
calculus with the Fourier transform which reproduce the amplitude functions.
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3 Applications and Remarks

3.1 The index of edge symbols in terms of the spectral flow

We now briefly discuss the question to what extent ‘the number’ of elliptic edge
conditions, i.e., the bundles Ji in the Fredholm operators (1.32), depend on the
weight 7. We look at the situation of a differential edge boundary value problem
of the form (1.12) with an edge-degenerate differential operator A and differential
edge-degenerate boundary conditions T such that A is elliptic in the sense of
Definition 2.1.1 (i), (ii).

For simplicity, we content ourselves with the case of trivial bundles G on V, cf.
the notation (1.14). Then we may use the notation (1.13) for the weighted Sobolev
spaces on W and V, respectively, and we set

N
ICETRTTR(XN) = ST TR (XN @ @;CS—M—%W—W_%(@X)A).
j=1

Then, as soon as we find an elliptic operator A7 € ¥ (W;v) for v =
(C,CHN;J_, Jy) with the upper left corner A, the principal edge symbol

on(A)(y,m) : K27 (X7) — KET77H(X7) (3.1)

is a family of Fredholm operators, parametrised by (y,n) € T*Y \ 0. For the

moment let ngn) denote the action (1.4) on K%7(X")-spaces for n = dim X. By
virtue of the homogeneity

on(A)(y,0n) = diag(s”, (6"7%);y N)-
diag(k§™, diag(k2 1) i1, 8o (A) (g, m) (K5) ™

for all 6 € Ry, (y,n) € T*Y \ 0, we can interpret (3.1) as a family of Fredholm
operators on the compact topological space S*Y. There is then a K- theoretic

index element
ind,., on(A) € K(S™Y).

Then the fact that ox(A) completes to a family of isomorphisms (1.33) has the
consequence that the index element is equal to 7 J] — [77J_], i.e.,

ind_,, on(A) € a7 K(Y), (3.2)

S*Y
where m : S*Y — Y, (y,n) — y, is the canonical projection.

Recall the general fact that (3.2) is a necessary and sufficient condition for the
existence of extra edge conditions of trace and potential type that complete A to
a Fredholm operator 7. This is an analogue of the topological obstruction for the
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existence of elliptic boundary value problems to an elliptic operator A, cf. [1]. It
may happen that there is another weight 5 € R such that also

on(A)(y,m) = K2 (X7) — K> T (X) (3.3)

is a family of Fredholm operators. In order to characterise such 8 we look at the
set D(y) of all z € C such that

oaon(A)(y, 2) : H*(X) — HH(X) (3.4)

is not a bijective operator for any sufficiently large real s; here H°* #(X) :=
HHMX) & @jvzl H* #i~2(9X). Then (3.3) is Fredholm whenever D(y) N
F%fﬁ = 0 (and arbitrary n # 0). If (3.3) is Fredholm for all y € ¥ we can
ask again the nature of extra edge conditions.

Denoting for the moment the Fredholm family (3.3) by oA (A”), we have the fol-
lowing result:

Theorem 3.1.1. The property ind,, or(A%) € 77K (Y) is independent of the

choice of 5.

S*Y

A proof may be found in [19].

It is now an interesting task to really calculate ind,,,ox(A”) in terms of
ind,., oA(A7); the latter is assumed to be known. The general answer is deter-
mined by the generalised spectral flow, cf. [24], associated with the conormal sym-
bol opon(A)(y, 2), cf. (1.34), combined with a cutting and pasting construction
for elliptic families as a generalisation of the results of [27].

In order to formulate the result we first recall that for every fixed y € Y we have

ind op (A%)(y,n) — ind op (A7) (y,n) = n(y,5) (3.5)

where n(v, ) is the sum of null-multiplicities (in the sense of Gohberg and Si-
gal [10]) of the non-bijectivity points of opron(A)(y,z) in the strip 2 — v <
Rez < ”Tl — B, cf. [19, Proposition 4.1.2]. The number (3.5) can also be inter-

preted as the spectral flow sf(, g) of the family of conormal symbols

b+1

—— (1= t)y—tB+in)

OMONA (A) (y7 T, t) ‘= OMOA (A)(ya
for 0 <t <1 and fixed y, cf. [24], i.e., we have

sf(y,80mn(A) = n(y, )

(in this notation v and S are fixed). However, the information of [24] is more
precise; it refers to families of conormal symbols, parametrised by the topological
space Y. In other words from [24] we have the first assertion of the following
theorem:
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Theorem 3.1.2. Let A be a differential edge boundary value problem of the
form (1.12) that is elliptic in the sense of Definition 2.1.1 (i), (ii). Assume that
the relation (3.2) is satisfied.

(i) The (generalised) spectral flow belonging to the conormal symbol (1.34) in
the strip HTl —7 <Rez < HTl — B defines an element

Sf(%B)UMO'/\ (.A) S K(Y)
(ii) We have
ind, oA (A7) —ind, or (A7) = sf(y,8)0m0A(A).

Proof. The operator A near the edge Y has the form A = < ? > for

A=r"# Z aja(r,y)(—rar)j(rDy)“

JtlelSu

with coefficients aj, (r,y) € C® (R4 x Y, Diff #= 0+l (X)) and T = (Ty, ..., Tn),

Tj = Ty By, for By = 170 3 s, biks(ry)(=10,)F (rDy)”  with
bjks(r,y) € C°(Ry x Y, Diff #a=(k+1BD(UN)). Then we have
on(AN)(y,m) = diag(r™, (r™");=1,..n) -

Zj+\a|§u Ajor (07 y) (_rar)j (rn)a
(o S pica, bias @, )10 () ’

j=1,..,N

which is the Fredhlom family (3.1). Its principal conormal symbol has the form

Zgzo aro (07 y)zk

aly,z) = <rax S ijkO(O,y)Zk> (3.6)
j=1,....,N
which is a family of isomorphisms parametrised by (y,z) € Y x F%—v'
Let us set
K7 = diag(r", (r) j=1,...5)on(A")(y, 1)
and

K27 = KX, K17 = diag(r#, (7)o, )R (XM,
In a similar manner, if 8 € R is another weight such that oproa(AY)(y, 2) defines

a family of isomorphisms (3.4) for all (y,z) € Y x F%—B’ we form the operator

K# and spaces K*7 and £°7""  Thus we have two families

B

K7 Ko — KM KPP s KT (3.7)
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of Fredholm operators. We then have

ind, K7 = ind, oA(A7), ind, K? = ind, oA (A"). (3.8)
We want to compare (3.7) with modified families
B Ho D) O g g0 g0 (3.9)
with the following meaning:
b b
B :=op,, 2(a) + we, B := opﬁ/‘, 2 (a) + we (3.10)

for
Z ktlalSp aka(oa ?J)(—rar)j(”?)a

|| >0

s St biaa0.0) (10 r0)*)
j=1,..,N

la|>0

(y,2) == <

where w(r) is any fixed cut-off function on the half-axis, and

HOD i WO (X7) + (1= w) M (X,

= 5=, (7,0) R
H = w D
BN e —EH(9X)")
H87,LL,(5(X/\)
+ (1—wi) ®

@é_v:lf;{s—w—%,é—%((axy)

for any other cut-off function wi(r), with a weight § 2 max(y,8); in a similar

75— 1,(8,0 . .
manner we form the spaces H* (%% and o v ), respectively. We fix ¢ in such

a way that (3.6) defines also a bijection (3.4) for all (y,z) € Y x ['oy1 ;. Because we

may take § = 7 this is no additional assumption. The operators (3.9) are defined
on the spaces with double weights in a similar manner as in [12], see also [37]. In
this situation we know the pointwise relation

ind B® —ind BY = n(y, §).
We know, in fact, more, namely,

ind, B’ —ind, B” = sf(, g)000(A). (3.11)

This follows from the relations ind, B® = indyop’i/[_%(a), ind, BY =

_b
ind, op,, 2 (a), since the operator family we in (3.10) takes values in compact
operators, and

_s _s
ind, opﬁ/f 2(a) = sf(5,80m0(A), ind, op,; *(a) = sfs . omon(A),
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together with the relation sf(s gyonron(A) — sfsyyomon(A) = sf, gyomon(A),
cf. [24]. On the other hand from the results of [26] we know that

ind, K —ind, K" = ind, B® —ind, B". (3.12)

The relation (3.12) follows in a similar manner as in [27], now for families. The
assumptions are that for some sufficiently large R > 0, such that w =1 on [0, R],
we have

K'ocr<r = B|ocr<r, KPlocr<r = B lo<r<r,

K7|R<r<oo = KB|R<T‘<OO7 B7|R<r<oo = BB|R<r<oo

(modulo compact operators in the respective spaces).
Then (3.8), (3.11) and (3.12) yield the assertion (ii) of the theorem. O

Remark 3.1.3. There is an analogue of Theorem 3.1.2 also for elliptic pseudo-
differential edge problems in the sense of Definition 2.1.1. In particular, we may
have elliptic operators on V as a ‘closed’ manifold with edges. Applying this, for
instance, to the operator R in the upper left corner of (2.5) we obtain

ind, oA (R7) — ind, oA (R”) = sf(, gyomon(R). (3.13)

3.2 Edge quantisation for arbitrary weights

We now draw some conclusions from the results of the preceding section for the
edge quantised operators from Section 2.2.

Let us first return to Theorems 2.1.3 and 2.1.4 and observe that there are analogues
on the level of principal edge symbols of the corresponding 2 x 2-upper left corners
of the operators. Let us only consider the Theorem 2.1.4; (the case of Theorem 2.1.3
is left to the reader).

Let Aj, j = 1,2 denote the 2 x 2-upper left corner of ;,

A] . WSA/(W; G]_) — W57N7W*I—L(W; Gi)
(which are, of course, not necessarily Fredholm) and
oA (y,m) s K7 (XM GL) — K77 (XN G

the corresponding homogeneous principal edge symbols which are families of Fred-
holm operators, parametrised by 7*Y \ 0, cf. the formula (1.27). We will restrict
them to the unit cosphere bundle S*Y. Then, using operators A]’ in a similar sense
as in Section 2.1 and the corresponding parametrices P; and 75]', respectively, we
have

ind, o5 (A2P1) = ind, op(As) — ind, 0n (A1) = ind, oA (R), (3.14)
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where R denotes the upper left corner of fR.

Let us now consider the operators A; and the associated A]’ for two weights
and S, denoted by A;-', AZ and AJB-, AJB, respectively, 5 = 1,2. Let R7 and R”
denote the upper left corners of (2.5), realised for v and f, respectively. Then
applying (3.14) for the weights v and 3 it follows that

ind, oA (AJP)) = ind, oA (AJ) —ind, oa (A7) = ind, oA (RY), (3.15)
ind, op(ASPP) = ind, on(A5) —ind, o (AY) = ind, oA (R7). (3.16)
This gives us
[ind, oa(A3) = ind, 07 (A))] —  [ind, 0 (A7) — indy oa(A7)]

= ind, oA(RY) —ind, ox(RP).

Moreover, Remark 3.1.3, applied to the pseudo-differential edge problems A;.Y and
AJB- gives us ind, o5 (A]) — indYU/\(A]B-) = sf(y.gomon(A;j) for j = 1,2, and the
relation (3.13) yields the following result:

Theorem 3.2.1. We have

Sf(%B)UMU/\(Az) — Sf(%B)UMU/\(Al) = Sf(%B)UMO'/\(R).

These considerations allow us to edge quantise the operators reduced to X with
respect to the edge Y not only for large weights v but for arbitrary ‘bad’ weights
B < ~. In fact, Theorem 2.2.3 gives us edge quantisations for weights v as in
Theorem 2.2.1 and, at the same time, an explicit expression for the index of the
principal symbol of the upper left corner R” of R”, namely,

m

1 1
Z{LW — P2, — §;b) —u(y = p1j— iab)}a

=1

which is a consequence of the formula (2.11) together with the relation (3.15). Now,
as soon we know a weight 3 <  for which opron(R)(y, 2) is holomorphic in a neigh-
bourhood of Fops g for all y € Y (which is the case when both opron(A1)(y, 2)
and oproa(Az2)(y, z) are holomorphic near that line) then the relation (3.13) allows
us to pass to elliptic operators

1

] ;_TL:lWS*Nl,j*%yB*NI,j*E(V) ‘;_n:lWS*PQ,j*%yB*N&j*%(V)
R” : @ — @
HS(Y,J,) HS(YJJJr)

in the edge calculus, for bundles J_, Jy € Vect(Y') such that
< 1 - 1
[T =[] = Dy — pay — 3 01= D ey = — 52 0] = sfi,5 007 (R).

Jj=1 Jj=1
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The construction of additional conditions to an upper left corner R? with suitable
such bundles Jy is a general procedure which we do not carry out here explicitly;
for similar constructions, see [13] and [19, Theorem 4.2.2].

3.3 Appendix: Proof of Theorem 2.4.3

Proof. (i) Let us first compute the inverse of the block matrix (2.24) for i = 1.

This is equal to Fyon(Af) ™! (n)diag(Es—2, £, ), which, after using (2.27) becomes

1 1
§—3 §—3

(5 ) t-ops ) moakin. &) (EO o e Ef’) (317

for p(n,€') := op™ (In|* +&')> + ) (0, ) + g0, &). )
The (1 x 2)-upper left corner of (3.17) is —(Fsopz (p)(n)Es—2 Fsopgz (k)(n)E! .

2
which according to the Remark 2.4.2 is exactly the parametrix of (2.26) on (S%)
fori =1, i.e.,

on(A1) T () = —(Fsopz (D) () Es—2 Fyopgz (k) (M E;_y).

§—3

),

(ii) In order to calculate the principal edge symbol of the edge quantised operator
R? we will proceed as we did for the Agranovich-Dynin theorem; we will multiply
the extended operator of o (A3)(n) with the previous inverse of the extended
operator of oA (22)(n), (3.17). This gives us

diag(Fy—2, Fu,)on(A3) (N EFson (A7)~ (n)diag(Es—2, &)
= diag(Fs 2, FL)on(@)(0)on (@) ()ding(Ey 2, E,). (3.18)
The term in the middle of (3.18) follows by the formula (2.25), i.e.,
TA(A3) (Mo (@A) ™ (n) = opg (g0(A2)a0(A1) ™) (),

which is equal to

1 0
OpPz/ ~ . o 1
g <h<n,£'> —(|n|2+|€’|2)2>
for h(n,&') = r{t=0}%p(n,£~’), a trace boundary symbol of type 0. If we denote
H(n) := opz (h(1,€") and r(n) := opz [=(|nl* + |€]*)2](n) we obtain

oA (A3) (Man (A7) (n) = <H}n) r(%)) '

Now, (3.18) becomes

1 0 0 0
Fl_sHmE,» F_yr(mME._, F_ HmL,> F_gr(nL_,
2 0 2 0 2 1 2 0 z |
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which gives us the principal edge symbol of the edge quantised operator R*® of
Theorem 2.3.2 (i), namely o, (R*)(n) = F,r(n)€;, having the required mapping
properties, cf. (2.21) and (2.22). O
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